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Abstract

Mean-variance portfolio theory remains frequently used as investment rationale because of its sim-

plicity, its closed-form solution, and the availability of many well-performing robust estimators. At

the same time, it is also frequently rejected on the grounds that it ignores the higher moments

of non-Gaussian returns. However, higher-moment portfolios are associated with many different

objective functions, are numerically more complex, and exacerbate estimation risk. In this paper,

we reconcile mean-variance portfolio theory with non-Gaussian returns by identifying, among all

portfolios on the mean-variance efficient frontier, the one that optimizes a chosen higher-moment

criterion. Via numerical simulations and an empirical analysis, we find that, for three higher-

moment objective functions and adjusting for transaction costs, the resulting portfolios outperform

the minimum-variance and fully optimized portfolios out of sample both in terms of Sharpe ratio

and higher moments, thus striking a favorable tradeoff between specification and estimation error.
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1. Introduction

Mean-variance portfolio theory, introduced by Markowitz (1952) and consolidated by many others

ever since, remains the most important framework in investment science, for several reasons. First,

it has intuitively clear implications in terms of portfolio strategy (choose a portfolio on the mean-

variance efficient (MVE) frontier) and asset pricing (the capital market line and CAPM of Sharpe

1964). Second, it has simple and efficient mathematical and numerical solutions as its objective

function is convex. Third, a vast literature exists on powerful robust estimators of mean-variance
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portfolios such as, to mention a few, shrinkage estimation (Ledoit and Wolf 2004, 2017), Bayesian

statistics (Jorion 1986, Bauder et al. 2018), dimension reduction (Chen and Yuan 2016), robust

optimization (Goldfarb and Iyengar 2003), portfolio-weight constraints (DeMiguel et al. 2009, Levy

and Levy 2014) and portfolio combination (Kan and Zhou 2007, Tu and Zhou 2011).

However, mean-variance portfolio theory is often rejected based on numerous evidence that

asset returns are non-Gaussian/elliptical (Mandelbrot 1963, Gormsen and Jensen 2020) and that

investors have preferences for higher moments (Scott and Horvath 1980, Ang et al. 2006). This has

pushed researchers to propose higher-moment portfolio strategies as alternatives to mean-variance

portfolios; see Briec et al. (2013) and Section 1.2 of Lassance (2020) for reviews. However, in

departing from the MVE frontier, one abandons its aforementioned benefits. First, while the mean-

variance objective is clear (maximize expected quadratic utility), it is not obvious for the investor

which alternative to select as there are dozens of different higher-moment approaches corresponding,

for example, to performance ratios (Cogneau and Hubner 2014 list many of them), non-quadratic

utility functions (Levy 1969, Jondeau and Rockinger 2006, Martellini and Ziemann 2010, Dahlquist

et al. 2017), moment constraints (Athayde and Flores 2004, Briec et al. 2007), or downside-risk

criteria such as Value-at-Risk, expected shortfall, lower-partial-moments and drawdown measures

(Price et al. 1982, Basak and Shapiro 2001, El Ghaoui et al. 2003, Alexander and Baptista 2004,

Leòn and Moreno 2017, Lwin et al. 2017, Van Hemert et al. 2020). Second, such alternative objective

functions are mathematically and numerically more complex, particularly in high dimension, as

they require for example the identification of a mean-variance-skewness(-kurtosis) efficient surface

or the solution to a non-convex objective function. Third, including higher moments exacerbates

estimation risk and, although a recent literature proposes robust estimation schemes for higher-

moment portfolios (Harvey et al. 2010, Martellini and Ziemann 2010, Boudt et al. 2018, Lassance

and Vrins 2019, Khashanah et al. 2020), the question remains whether one can really improve

upon MVE portfolios out of sample. As Brandt et al. (2009, p.3418) explain, “[...] extending the

traditional approach beyond first and second moments, when the investor’s utility function is not

quadratic, is practically impossible because it requires modeling not only the conditional skewness

and kurtosis of each stock but also the numerous high-order cross-moments.”

Let us suppose however that those three issues can be ignored: a single higher-moment objective

function has been identified, the global optimum has been found and the parameters are known

without estimation errors. Even in this ideal scenario, a whole body of literature provides evidence

that one is not much worse off relying on a portfolio on the MVE frontier nonetheless because, for a
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wide class of utility functions, MVE portfolios provide good approximations of maximum-expected-

utility portfolios; see Levy and Markowitz (1979), Pulley (1979), Simaan (1983, 2014), Kroll et al.

(1984) and Markowitz (2014).

Putting all these elements together, we propose to reconcile mean-variance portfolio theory

with non-Gaussian returns by identifying, among the continuum of all MVE portfolios, the one

that optimizes a chosen higher-moment criterion. Indeed, while all portfolios on the MVE frontier

are optimal in terms of expected quadratic utility for some choice of risk-tolerance coefficient, they

are not expected to all behave similarly in terms of higher moments when asset returns are not

Gaussian. We do so by identifying the quadratic-utility risk-tolerance coefficient that maximizes the

chosen higher-moment criterion, which is a simple single-variable optimization problem. With this

approach, one keeps the appeal of Markowitz mean-variance framework, while improving higher

moments and keeping an efficient mean-variance tradeoff.

The paper is structured as follows. In Section 2, we detail the theoretical framework surrounding

the proposed approach, and illustrate the method with two examples.

In Section 3, we rely on Monte Carlo simulations and the Value-at-Risk objective function

to compare the out-of-sample performance of the global minimum-variance (GMV) portfolio, our

portfolio strategy, and the fully optimized portfolio. We find that our strategy always outperforms

the fully optimized portfolio, except when the number of assets is small and the sample size is large

(10 assets and 10 years of daily returns). It also outperforms the GMV portfolio expect when the

sample size is small in which case they perform similarly. Thus, it has lower estimation error than

the fully optimized portfolio, and lower specification error (bias) than the GMV portfolio.

In Section 4, we conduct an empirical analysis using daily returns on two benchmark datasets

of 25 assets from Kenneth French’s library. Looking at out-of-sample performance adjusted for

transaction costs as in DeMiguel et al. (2009a), we obtain compelling evidence that our proposed

strategy is the best portfolio on the MVE frontier compared to the GMV and maximum-Sharpe-

ratio (MSR) portfolios. Moreover, it outperforms the fully optimized portfolio in terms of Sharpe

ratio and higher moments, while systematically reducing turnover. These results are in line with

Simaan (2014) who, for the log, exponential and power utilities, find that there is an out-of-sample

opportunity cost of relying on the maximum-expected-utility portfolio rather than a MVE portfolio.

They conclude that “[...] the mean–variance model extracts more information from sample data

because it uses the covariance matrix of returns. The expected utility model may reach its optimal

solution without using information from the covariance matrix.” Contrary to Simaan (2014), the
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objective functions we consider depend directly on the portfolio-return moments, and thus, the fully

optimized portfolios make use of the covariance matrix (and higher-comoment matrices). Therefore,

our results indicate that the out-of-sample superiority of mean-variance goes beyond the specific

setting of Simaan (2014) based on sample estimates of maximum-expected-utility portfolios.

It is worth noting how our work differs from Simaan (2014). First, whereas Simaan restricts

to expected utility as objective function, which is not always the most natural choice in practice

when asset returns are non-Gaussian, our framework allows for any objective function desired by the

investor. In particular, the log, exponential and power utility functions are often qualified of “locally

quadratic”, so that Simaan’s results are not very surprising. In contrast, we use three distinct higher-

moment objectives: the Value-at-Risk, the lower-partial-moment (Price et al. 1982, Sortino and van

der Meer 1991, Leòn and Moreno 2017) and the constant-relative-risk-aversion utility (Jondeau and

Rockinger 2006, Guidolin and Timmermann 2008, Martellini and Ziemann 2010). Second, Simaan’s

results are based on monthly returns, and the corresponding low sample size is disadvantageous for

optimal portfolio rules based on higher moments (Martellini and Ziemann 2010), especially since he

relies on sample estimates. In contrast, we use daily returns to make the comparison more fair, and

consider both sample and robust shrinkage estimates. Third, Simaan only exemplifies his method

on the Dow Jones index, whereas we consider simulated data in Section 3 and two real datasets

in Section 4. Finally, Simaan does not consider the GMV portfolio as benchmark even though it

is often the best MVE portfolio out of sample (Jagannathan and Ma 2003). We include it in our

results and find indeed that it performs well compared to the fully optimized portfolios. Still, our

alternative MVE portfolio strategy does better than GMV both in terms of Sharpe ratio and higher

moments even though we adjust for transaction costs.

Finally, Section 5 concludes. There are supplementary materials to the paper in which we provide

additional empirical results.

2. Theoretical framework

We place ourselves in a standard static one-period framework and adopt the following notation.

X ∈ RN is a random vector of asset returns with mean µ and positive-definite covariance matrix

Σ, w ∈ RN is a vector of portfolio weights, and P := w′X is the associated portfolio return.

All vectors are column vectors. The mean and variance of P are µP and σ2P , the third and fourth

central moments are m3,P := E((P −µP )3) and m4,P := E((P −µP )4), and the skewness and excess

kurtosis are ζP := m3,P /σ
3
P and κP := m4,P /σ

4
P − 3. Finally, we denote the set of unconstrained
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fully invested portfolios by

W :=
{
w ∈ RN

∣∣ w′1 = 1
}
. (1)

2.1. Mean-variance-efficient portfolios

Given a mean-variance risk-tolerance coefficient λ ∈ R+, the unconstrained mean-variance-efficient

(MVE) portfolio is defined as the expected-quadratic-utility maximizer:

w(λ) := argmax
w∈W

µP −
1

2λ
σ2P = argmax

w∈W
w′µ− 1

2λ
w′Σw.

Defining

Q := Σ−1 − Σ−111′Σ−1

1′Σ−11
,

w(λ) has the well-known solution

w(λ) = wMV + λQµ, (2)

where

wMV :=
Σ−11

1′Σ−11
= w(0) (3)

is the global minimum-variance (GMV) portfolio. Another notable MVE portfolio is the maximum-

Sharpe-ratio (MSR) portfolio,

wMSR :=
Σ−1µ

1′Σ−1µ
= w(λMSR), (4)

where λMSR = (wMSR −wMV )′µ/(µ′Qµ).

At this stage, it is important to realize that there are an infinite number of MVE portfolios

depending on the coefficient λ. For example, λ = 0 gives the GMV portfolio, λ = ∞ gives the

maximum-mean-return portfolio, and λ = λMSR gives the MSR portfolio.

2.2. Optimal MVE portfolio with non-Gaussian returns

While all these portfolios are mean-variance efficient, there is however no reason to believe that

they all behave similarly in terms of higher moments. This is illustrated in the next example.

Example 1. We collect value-weighted daily returns on the 25 size-and-book-to-market portfo-

lios dataset from Kenneth French’s library, for the time period January 1970 to May 2020. We
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Figure 1 First four moments of mean-variance-efficient portfolios
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Notes. The figure is based on value-weighted daily returns for the 25 size-and-book-to-market portfolios dataset from
Kenneth French’s library, for the time period January 1970 to May 2020. The three plots depict the mean-variance (top
left), mean-skewness (top right) and mean-excess-kurtosis (bottom) frontiers of all mean-variance-efficient portfolios
with mean return between that of the minimum-variance portfolio (252µP = 0.1715) and 252µP = 0.5. The green
cross is the minimum-variance portfolio wMV and the red cross is the maximum-Sharpe-ratio portfolio wMSR.

consider all MVE portfolios with annualized mean return between µMV = 0.1715 and 0.4, cor-

responding to λ ∈ [0, 0.1593]. In Figure 1, we plot the mean-variance, mean-skewness and mean-

excess-kurtosis frontiers of all these MVE portfolios. Depending on the MVE portfolio chosen,

one can get very different moment profiles. For example, the minimum-variance portfolio wMV ,

corresponding to λ = 0, has (252µP ,
√

252σP , ζP , κP ) = (0.1715, 0.1206,−0.5369, 14.98), and the

maximum-Sharpe ratio wMSR, corresponding to λMSR = 0.0858, has (252µP ,
√

252σP , ζP , κP ) =

(0.3528, 0.1730,−0.1047, 4.628). Thus, one can already reap substantial in-sample higher-moment

improvements by going from the GMV to the MSR portfolio, even though they are both MVE.

Because investors care about higher moments, it is theoretically no longer fully optimal to rely

on the expected quadratic utility as objective function when asset returns are non-Gaussian. We

suppose that the investor has chosen an alternative objective function C(w). As reviewed in Section

1, many higher-moment criteria have been put forward in the literature. Our objective in this paper

is not to propose a new one or argue in favor of an existing one, hence we take C(w) as a given.

We denote the portfolio maximizing C(w) as

wC := argmax
w∈W

C(w). (5)

6



Our proposal is, instead of relying onwC that may be difficult to find numerically and may be highly

prone to estimation risk, to find the MVE portfolio that maximizes C(w). In doing so, one can get

improvements in terms of higher moments as illustrated in Example 1 while keeping the appeal of

the MVE frontier such as its clear objective function, its closed-form solution, its mean-variance

efficiency, and its reduced estimation risk compared to higher-moment portfolios.

Mathematically, we select the portfolio w(λC) = wMV + λCQµ, where

λC := argmax
λ∈R+

C(w(λ)). (6)

We name this portfolio optimal MVE (OMVE) portfolio. Contrary to the identification of wC , we

are pretty much guaranteed to find the OMVE portfolio w(λC) as λC is the result of a single-

variable optimization problem. The OMVE portfolio w(λC) only requires estimating µ, Σ and λC ,

and all higher-moment estimation risk is transferred to the latter parameter. This is beneficial out

of sample given how challenging it is to estimate higher moments in a robust manner. Sections 3 and

4 will provide evidence that w(λC) achieves a better out-of-sample tradeoff between specification

error and estimation error than wMV and wC .

Example 2. Suppose for the sake of mathematical tractability that there are N = 2 assets, the

investor’s objective function is a variance-skewness expansion of the constant-relative-risk aver-

sion (CRRA) expected utility (Martellini and Ziemann 2010 p.1487), and the asset returns are

independent. In that case, the MVE portfolio is w(λ) = (w(λ), 1− w(λ))′ with

w(λ) =
µ1 − µ2 + λσ22
λ(σ21 + σ22)

, (7)

and the objective function is given by

C(w(λ)) = −γ
2
σ2P +

γ(γ + 1)

6
m3,P

= −γ
2

(
w(λ)2σ21 + (1− w(λ))2σ22

)
+
γ(γ + 1)

6

(
w(λ)3m3,1 + (1− w(λ))3m3,2

)
.

(8)

By differentiating C(w(λ)) with respect to λ and with some algebra we find that λC is the real root

with largest C(w(λ)) of the polynomial aλ3 + bλ2 + cλ+ d, where

a = 2σ21σ
2
2(σ21 + σ22)(1− σ21 − σ22), b = (γ + 1)(µ1 − µ2)(σ42m3,1 − σ41m3,2),

c = 2(µ1 − µ2)2
(
(γ + 1)(σ21m3,2 + σ22m3,1)− (σ21 + σ22)2

)
, d = (γ + 1)(µ1 − µ2)3(m3,1 −m3,2).

(9)

For example, suppose (µ1, µ2) = (0.10, 0.05), (σ1, σ2) = (0.2, 0.3) and (ζ1, ζ2) = (−2, 2). Clearly,
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Figure 2 Cornish-Fisher Value-at-Risk of mean-variance-efficient portfolios
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Notes. The figure is based on value-weighted daily returns on the 25 size-and-book-to-market portfolios dataset from
January 1970 to May 2020. The figure depicts the Cornish-Fisher Value-at-Risk C(w) in (10), with α = 1%, of the
MVE portfolio w(λ) with a risk-tolerance coefficient λ ∈ [0, 0.2]. The value of λ maximizing C(w(λ)) is λC = 0.066,
corresponding to C(w(λC)) = −3.57%

from a mean-variance perspective, it is better to invest aggressively in the second asset and, indeed,

for a low value of γ = 10 we have λC = 0.59 and w(λC) = 1.35. However, the first asset has a large

negative skewness and, when γ increases to 500, we have λC = 6.45 and w(λC) = 0.75.

Example 1 (Continued). Consider as higher-moment objective function C(w) the Cornish-Fisher

Value-at-Risk (Cornish and Fisher 1938, Favre and Galeano 2002), which is a four-moment expan-

sion of the Value-at-Risk given by

C(w) = CFVaR := µP − σP
(

1

36
(2z3α − 5zα)ζ2P −

1

6
(z2α − 1)ζP −

1

24
(z3α − 3zα)κP − zα

)
, (10)

where zα is the standard Gaussian quantile at confidence level α. For the data of Example 1, Figure 2

shows how C(w(λ)) evolves as a function of λ ∈ [0, 0.2] for α = 1%. The optimal λC = 0.066,

corresponding to the MVE portfolio with annualized mean µP = 0.3076 in Figure 1. It has a 1%

CFVaR of C(w(λC)) = −3.57% versus −4.60% for the GMV portfolio for example.

3. Monte Carlo simulations

To assess the out-of-sample performance of our approach, we rely in this section on Monte Carlo

simulations. We describe the methodology in Section 3.1 and we discuss the results in Section 3.2.
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3.1. Methodology

We consider a non-Gaussian data-generation process and, for different values of the number of

assets N and sample size T , we report the out-of-sample performance of four portfolio strategies

averaged over 100 Monte Carlo simulations.

The four portfolio strategies are: the GMV portfolio wMV , the MSR portfolio wMSR, our

proposed OMVE portfolio w(λC) using the CFVaR with α = 1% in (10) as objective, and the

fully optimized portfolio wC in (5).1 The portfolio wC is the maximum of a non-concave objective

function, which rules out the use of local optimizers, particularly for large N . We use Matlab

global optimizer GlobalSearch to find wC , and similarly for λC . We restrict here to the CFVaR

for brevity but, in the empirical analysis of Section 4, we consider two additional higher-moment

objective functions. All portfolios are estimated via sample moment estimates only for brevity. In

the empirical analysis of Section 4, we also consider robust shrinkage estimates.

We consider a non-Gaussian data-generating process similar to Section 4 in Lassance and Vrins

(2020), to which we refer for details. In summary, we simulate T + τ daily asset returns X, where

T is the sample size used to estimate the portfolios, and τ is the out-of-sample period. We fix τ to

be 20 years of daily returns, whereas T will be varied in our experiments from 1 to 10 years. As

commonly done in the literature for Gaussian data-generation processes (MacKinlay and Pastor

2000, DeMiguel et al. 2009a), we simulate the returns from a factor model. Specifically, we simulate

our T + τ asset returns via a non-Gaussian independent factor model of the form

X = µ+AY + ε, (11)

where µ is of size N × (T + τ) with each row being constant, the loading matrix A is of size N ×K,

the K factors Y are of size K × (T + τ) and are mutually independent, and the residuals ε are of

size N × (T + τ) and are independent from the factors Y . The factors Y have zero mean and are

simulated from a Clayton copula with Student t marginals. The residuals ε have zero mean and are

simulated from a Gaussian distribution. The loading matrix A is taken as the eigendecomposition

of a randomly simulated covariance matrix. Contrary to Lassance and Vrins (2020), we do not

take zero-mean asset returns as we include the extra term µ. The mean return of each asset, µi,

i = 1, . . . , N , is randomly sampled from a uniform distribution between 0.05/252 and 0.35/252. We

fix the number of factors at K = 5, and we consider N = 10, 30, 50 in our experiments.

1Another common choice is α = 5%. We set α = 1% because Cavenaile and Lejeune (2012) show that α > 4.16%
is inconsistent with investors’ negative preferences for kurtosis.
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3.2. Results

In Figure 3, we report the daily CFVaR achieved by the considered portfolios, averaged over the 100

simulations. Recall that the portfolios are estimated based on the returns from t = 1 to t = T . On

the left plots, we report the in-sample CFVaR computed on the estimation window. On the right

plots, we report the out-of-sample CFVaR computed on the returns from t = T + 1 to t = T + τ .

Because the MSR portfolio wMSR always performs worst, we do not report its performance.

We make the following observations. First, in-sample performance is always better than out-

of-sample performance: it provides an overoptimistic estimate because it ignores estimation risk.

This is why the comparison of portfolio strategies should be conducted out of sample. Second, the

in-sample ordering of the portfolios from best to worst is wC , w(λC) and wMV because specification

error (bias) increases in that order as well. Third, our proposed OMVE strategy is the best option

out of sample. The only instances where it does not perform best is for N = 10 and T = 1 year

where wMV does better because it has lower estimation risk, and for N = 10 and T = 10 years

where wC does better because it has lower specification error. The outperformance compared to wC

is particularly visible when the sample size is small, but it remains present even until T = 10 years

for N = 30 and 50. This is striking because estimation risk is reduced in our Monte Carlo setting as

the asset returns are drawn from the same distribution for the in-sample and out-of-sample periods.

This contrasts with real data for which the distribution of asset returns evolves over time; we will

observe in Section 4 that the outperformance in that case is even more substantial.

In summary, there is no out-of-sample benefit in moving away from the MVE frontier. However,

one is better off choosing the optimal portfolio on the frontier rather than the commonly used GMV

and MSR portfolios.

4. Empirical analysis

In this section, we test the out-of-sample performance of the proposed portfolio strategy on real

data. We describe the methodology in Section 4.1, and we discuss the results in Section 4.2.

4.1. Methodology

Data. We use value-weighted daily returns of two benchmark equity datasets from Kenneth French’s

library: 25 size-and-book-to-market portfolios (25BTM ) and 25 size-and-operating-profitability

portfolios (25Prof ). The sample period is from January 1970 to May 2020. We use daily returns
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Figure 3 Out-of-sample performance via Monte Carlo simulations
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Notes. The figure depicts, for the Cornish-Fisher Value-at-Risk (CFVaR) with α = 1% in (10) as objective function
C(w), the out-of-sample performance of the GMV portfolio wMV (green circles), our proposed optimal MVE portfolio
w(λC) (blue crosses), and the fully optimized portfolio wC (red triangles) for the Monte Carlo simulations of Section 3.
The way the daily asset returns are randomly sampled is described in Section 3.1. The portfolios are estimated on
a window of T returns reported on the x-axis, which goes from 1 to 10 years of daily returns. The y-axis of the
left plots depict the in-sample CFVaR computed on the estimation window. The y-axis of the right plots depict the
out-of-sample CFVaR computed on a different window of τ = 20 years of daily returns. We consider a number of
assets N = 10, 30, 50. The performance is averaged over 100 Monte Carlo simulations.

to reduce estimation error and give the optimal portfolios wC a fair chance. Indeed, Martellini and

Ziemann (2010) find that, with monthly returns, higher-moment portfolios cannot outperform the

GMV portfolio even when using robust moment estimates.

Portfolio strategies. We consider four portfolio strategies: the GMV portfoliowMV , the MSR portfo-

lio wMSR, the OMVE portfolio w(λC), and the fully optimized portfolio wC . We use three objective

functions C(w). λC and wC are found using Matlab GlobalSearch optimizer.

Objective functions. The first objective is the CFVaR in (10) with α = 1%. The second objective

is the lower-partial-moment (LPM); see, for example, Price et al. (1982) and Sortino and van der
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Meer (1991). In all generality, the LPM is defined as

LPM(τ,m) :=

∫ τ

−∞
(τ − x)mfP (x)dx, (12)

where fP is the portfolio-return density. We consider the case m = 2 and τ = µP , which corresponds

to the well-known semivariance. To express the LPM in terms of moments, we rely on Leòn and

Moreno (2017) who derive a four-moment Gram-Charlier expansion of this measure. For the general

case LPM(τ,m), the expansion takes a complex form. However, we show in Appendix A that for

our special case m = 2 and τ = µP , the expansion reduces to maximizing the objective function2

C(w) = −GCLPM := −σ2P
(
1/2− (18π)−1/2ζP

)
. (13)

The third objective is the four-moment Taylor-series expansion of the CRRA expected utility

(Jondeau and Rockinger 2006, Guidolin and Timmermann 2008, Martellini and Ziemann 2010):

C(w) = CRRA := µP −
γ

2
σ2P +

γ(γ + 1)

6
m3,P −

γ(γ + 1)(γ + 2)

24
m4,P . (14)

Because m3,P and m4,P are small in magnitude compared to the mean and variance, we set γ = 100

to ensure that higher moments matter. This also ensures a minor sensitivity to estimation error in

µP , just like Martellini and Ziemann (2010) who remove µP from (14).

Rolling-window approach. All results are out of sample based on an estimation window of five years,

on which the portfolios are estimated, and the subsequent testing window of one month, on which

the performance metrics below are computed. The windows are rolled over by one month over time.

Performance metrics and transaction costs. We report the annualized mean, annualized volatility,

annualized Sharpe ratio, daily skewness, daily excess kurtosis, daily CFVaR, square root of annu-

alized GCLPM, daily CRRA, and finally daily turnover. As in DeMiguel et al. (2009a, p.1930),

the returns are computed net of transaction costs, using a proportional transaction cost of 30 basis

points. Results without transaction costs are available in the supplementary materials.

Moment estimation. All portfolios considered depend on some or all of the first four portfolio-

return moments. We consider two types of moment estimators. First, sample moment estimators.

Second, shrinkage estimators using a target derived under the assumption that asset returns are

iid. Such estimators have been derived by Ledoit and Wolf (2004) for the covariance matrix, and

Martellini and Ziemann (2010) and Boudt et al. (2018) for the coskewness and cokurtosis matrices.

2Note that the GCLPM in (13) becomes negative if ζP >
√

9π/2 = 3.76, but this case never occurred.
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We use the R package PerformanceAnalytics to compute the estimators. For the portfolio mean

return, we use the estimator of Jorion (1986). It is consistent with the iid target as it shrinks

the sample mean return toward the mean return of the GMV portfolio, and the GMV portfolio is

obtained by assuming identical asset mean returns. We observe that the GMV portfolio performs

very similarly under both estimators because the shrinkage intensity is close to zero. For the OVME

and fully optimized portfolios, we observe that, compared to sample estimators, the portfolios under

shrinkage estimators have a lower turnover but most of the time a worse performance even adjusting

for transaction costs. This is because, when using daily returns, introducing additional bias may

hurt out-of-sample performance (Jagannathan and Ma 2003). Thus, we only report the results for

sample estimators; results for shrinkage estimators are available in the supplementary materials.

4.2. Results

The out-of-sample results for the 25BTM and 25Prof datasets are reported in Table 1. The results

indicate that the OMVE portfolio w(λC) is the best portfolio on the MVE frontier compared to

the GMV and MSR portfolios and, moreover, outperforms the fully optimized portfolio wC both in

terms of Sharpe ratio and higher moments, with a reduced turnover.

In terms of Sharpe ratio, the OMVE portfolios for the three objective functions C(w) have

the best performance compared to all other portfolios. The improvement is particularly significant

compared to the fully optimized portfolios wC . Thus, by staying on the MVE frontier, we enjoy

a strong mean-variance tradeoff even after adjusting for transaction costs. In addition to a large

Sharpe ratio, the OMVE portfolios perform overall best with respect to the three higher-moment

criteria C(w) considered. For C(w) = CFVaR, w(λC) performs worse than wC for 25BTM, and

performs equally well for 25Prof. For C(w) = −GCLPM, w(λC) clearly outperforms wC for both

datasets, and does best out of all portfolios. For C(w) = CRRA, w(λC) outperforms wC and does

best out of all portfolios for 25BTM, and second best for 25Prof.

Concerning turnover, the OMVE portfolio w(λC) reduces turnover compared to wC in all cases

because all higher-moment estimation risk is transferred to a single parameter λC . It also has a

higher turnover than the GMV portfolio, which makes the outperformance even more material

given that we adjust the returns to transaction costs.

Another interesting observation is that, even though we use daily returns for which estimation

risk is reduced, the GMV portfolio may already be an appealing alternative to the fully optimized

portfolio wC . Indeed, it has a larger Sharpe ratio for C(w) = −GCLPM and C(w) = CRRA, and

13



Table 1 Out-of-sample empirical performance for the 25BTM and 25Prof datasets

(a) 25BTM dataset C(w) = CFVaR C(w) = −GCLPM C(w) = CRRA
wMV wMSR w(λC) wC w(λC) wC w(λC) wC

252µP 16.67% 8.43% 18.62% 16.35% 17.11% 14.69% 19.01% 18.93%√
252σP 10.65% 27.68% 11.40% 11.57% 10.66% 11.49% 10.89% 11.01%√
252µP /σP 1.56 0.30 1.63 1.41 1.60 1.28 1.75 1.72

ζP -0.59 -1.87 -0.21 -0.29 -0.53 -0.75 -0.36 -0.27
κP 23.48 76.66 19.55 18.17 22.94 18.43 18.48 19.31
CFVaR -5.38% -35.38% -4.98% -4.86% -5.29% -4.99% -4.63% -4.79%√

252GCLPM 8.11% 23.95% 8.28% 8.48% 8.05% 8.90% 8.06% 8.06%
CRRA×1000 -4.20 -347.67 -4.54 -4.75 -4.11 -5.04 -3.84 -4.02
Turnover 4.84% 32.36% 7.38% 8.58% 5.03% 6.75% 6.22% 6.78%

(b) 25Prof dataset C(w) = CFVaR C(w) = −GCLPM C(w) = CRRA
wMV wMSR w(λC) wC w(λC) wC w(λC) wC

252µP 13.19% -4.77% 14.39% 12.07% 13.45% 11.91% 14.87% 14.68%√
252σP 11.43% 26.79% 12.32% 12.50% 11.44% 12.00% 11.76% 11.87%√
252µP /σP 1.15 -0.18 1.17 0.97 1.18 0.99 1.26 1.24

ζP -0.29 -3.00 -0.09 0.42 -0.24 -0.38 -0.13 0.12
κP 24.69 52.67 21.88 23.19 24.32 20.24 21.53 22.48
CFVaR -5.91% -22.74% -5.77% -5.76% -5.83% -5.46% -5.46% -5.54%√

252GCLPM 8.39% 25.40% 8.82% 8.34% 8.34% 8.91% 8.46% 8.26%
CRRA×1000 -5.45 -232.57 -6.38 -6.60 -5.38 -5.93 -5.42 -5.55
Turnover 4.96% 39.30% 7.66% 9.26% 5.16% 7.05% 6.28% 6.96%

Notes. The table reports, using daily returns on 25 size-and-book-to-market and size-and-operating-profitability
portfolios datasets from January 1970 to May 2020, the out-of-sample performance of the GMV portfolio wMV ,
the MSR portfolio wMSR, the OMVE portfolios w(λC) and the fully optimized portfolios wC . We use three higher-
moment objective functions C(w): the Cornish-Fisher Value-at-Risk (CFVaR) in (10) with α = 1%, the Gram-
Charlier lower-partial-moment (GCLPM) in (13), and the four-moment CRRA expected utility in (14) with γ = 100.
The out-of-sample performance is computed via an estimation window of five years and a testing window of one
month that are rolled over time by one month. The portfolio returns are net of transaction costs using a proportional
transaction cost of 30 basis points. More details on the methodology are provided in Section 4.1. The bold figures
indicate the best portfolio for each performance metric.

achieves a better higher-moment objective C(w) compared to the corresponding portfolio wC in

three out of six cases. Along the MVE frontier, the investor should however pick the OMVE rather

than the GMV portfolio as evidenced above.

In Figure 4, we depict the time evolution of the optimal λC for the three objective functions

C(w). The figure shows that, whereas the magnitude of λC depends on the objective considered,

it remains quite small. In particular, λC is small compared to λMSR in (4) that equals 0.1713 and

0.1832 on average for the 25BTM and 25Prof datasets, respectively. This means that the OMVE

portfolios w(λC) are not very sensitive to estimation risk in asset mean returns µ, and thus, work

well out of sample as observed above. The variability in λC in Figure 4 also explains why the OMVE
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Figure 4 Time evolution of optimal risk-tolerance coefficient λC
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Notes. The figure draws on the empirical analysis of Section 4 using daily returns on the 25 size-and-book-to-market
and size-and-operating-profitability portfolios datasets from January 1970 to May 2020. It depicts the time evolution,
across all five-year estimation windows that are rolled over time by one month until April 2020, of the optimal risk-
tolerance coefficient λC in (6). We use three higher-moment objective functions C(w): the Cornish-Fisher Value-at-
Risk (CFVaR) in (10) with α = 1%, the Gram-Charlier lower-partial-moment (GCLPM) in (13) and the four-moment
CRRA expected utility in (14) with γ = 100. More details on the methodology are provided in Section 4.1.

portfolios have a larger turnover than the GMV portfolio.

5. Conclusion

The main conclusion of the paper is that mean-variance portfolio theory is not incompatible with

non-Gaussian returns as long as the right MVE portfolio is chosen. From an out-of-sample perspec-

tive, we find no benefit in moving away from the MVE frontier: by adjusting the quadratic-utility

risk-tolerance coefficient to improve higher moments, we obtain a portfolio strategy that strikes a

better tradeoff between specification error and estimation error than the fully optimized portfo-

lio and the GMV and MSR portfolios. This reconciles mean-variance portfolio theory with non-

Gaussian returns and is an important implication for investors who may be attracted by the clarity

and closed-form solution of mean-variance portfolio theory, but who may fear that the obtained

portfolio does not perform well in terms of higher-moment risk.
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A. Appendix: Gram-Charlier lower-partial-moment

In this appendix, we prove the formula for the GCLPM in (13). For a general τ , Leòn and Moreno

(2017) show that the four-moment Gram-Charlier expansion of LPM(τ,m = 2) in (12) is given by

LPM(τ, 2) ≈ LPMφ(τ, 2) +
ζP√

6
θ2,2 +

κP√
24
θ3,2, (A.1)

where

LPMφ(τ, 2) = (τ − µP )Φ(τ?) + (τ − µP )σPφ(τ?) + σ2PΦ(τ?),

θj,2 = (τ − µP )2A0,j − 2(τ − µP )σPA1,j + σ2PA2,j ,

Ak2 =
1√
6

(Bk+3 − 3Bk+1),

Ak3 =
1√
24

(Bk+4 − 6Bk+2 + 3Bk),

Bk =

∫ τ?

−∞
xkφ(x)dx,

(A.2)

with φ and Φ the pdf and cdf of the standard Gaussian, and τ? := (τ − µP )/σ. For τ = µP , and

thus τ? = 0, (A.1)–(A.2) reduces to

LPM(τ, 2) ≈ σ2P
(

1

2
+
ζP
6

(B5 − 3B3) +
κP
24

(B6 − 6B4 + 3B2)

)
, Bk =

∫ 0

−∞
xkφ(x)dx. (A.3)

Because, for τ? = 0, B2 = 1/2, B3 =
√

2/π, B4 = 3/2, B5 = −4
√

2/π and B6 = 15/2, we have

B6 − 6B4 + 3B2 = 0 and B5 − 3B3 = −
√

2/π, resulting in (13).
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