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The prediction reliability is of primary concern in many clinical studies when
the objective is to develop new predictive models or improve existing risk scores.
In fact, before using a model in any clinical decision making, it is very impor-
tant to check its ability to discriminate between subjects who are at risk of, for
example, developing certain disease in a near future from those who will not.
To that end, the time-dependent receiver operating characteristic (ROC) curve is
the most commonly used method in practice. Several approaches have been pro-
posed in the literature to estimate the ROC nonparametrically in the context of
survival data. But, except one recent approach, all the existing methods provide
a nonsmooth ROC estimator whereas, by definition, the ROC curve is smooth.
In this article we propose and study a new nonparametric smooth ROC estima-
tor based on a weighted kernel smoother. More precisely, our approach relies on
a well-known kernel method used to estimate cumulative distribution functions
of random variables with bounded supports. We derived some asymptotic prop-
erties for the proposed estimator. As bandwidth is the main parameter to be set,
we present and study different methods to appropriately select one. A simula-
tion study is conducted, under different scenarios, to prove the consistency of the
proposed method and to compare its finite sample performance with a competi-
tor. The results show that the proposed method performs better and appear to
be quite robust to bandwidth choice. As for inference purposes, our results also
reveal the good performances of a proposed nonparametric bootstrap procedure.
Furthermore, we illustrate the method using a real data example.
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1 INTRODUCTION

In clinical medicine, identifying individuals with high risk of developing a certain event of interest is crucial as it helps
to plan early prevention and possibly treatment. The event can be death due to certain disease, diagnosis of a disease
or the recurrences of a disease. In particular, the use of prediction models to predict the risk of developing a disease
(eg, diabetes, breast cancer, asthma, dementia), given the individual’s characteristics and diagnostic test(s) measures, is
very popular. Nowadays, prognostic risk scores (or markers) derived from statistical models are widely used to identify
high risk individuals. In public health, for example, the Framingham risk score is a well-known tool used to predict the
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probability of developing cardiovascular disease within 10-year period. This probability is estimated from a risk score
obtained by combining risk factors such as age, blood pressure, smoking status, diabetes, high density lipoproteins, and
total cholesterol levels.

However, before a prognostic risk score is used in routine clinical practice, its predictive quality has to be proven.
One common way to do that is to measure its ability to correctly discriminate subjects with and without the outcome of
interest. Different accuracy measures exist in the literature. For binary marker, the most common known measures are
the sensitivity and specificity. Sensitivity is defined as the probability that a test result will be positive when the disease
is present (true positive rate) and specificity is the probability that a test result will be negative when the disease is not
present (true negative rate). For continuous diagnostic test, the receiver operating characteristic (ROC) curve and area
under the ROC curve (AUC) are the two commonly used measures. The ROC curve is the plot of sensitivity against
one minus specificity for all possible cutoff values of the marker. In the literature, both ROC curve and AUC have been
receiving increased attention over the past few decades.1,2

In classical analysis, disease status is assumed to be known. However, in prognostic studies, as for example in survival
analysis, the disease status of the subject is time-dependent. In such a case, a time-dependent event is dichotomized as
positive or “diseased” and negative or “nondiseased” by considering a particular fixed time of interest, t. This leads to
defining time-dependent sensitivity, time-dependent specificity and the resulting time-dependent ROC and AUC. Hea-
gerty et al,3 Heagerty and Zheng,4 Etzioni et al,5 and Slate and Turnbull,6 among others, proposed several definitions and
extension to expand the classical methodology to the case of time to event data. The cumulative sensitivity and dynamic
specificity are, however, the most widely used definitions in clinical applications as they are more relevant.7,8 Therefore,
in this article we will focus on these definitions for measuring the discrimination ability of a given risk score.

Let T denote the time to occurrence of a certain event of interest, and M be a continuous marker measured at baseline.
The event status of a subject at time horizon t is defined as Dt = I(T ≤ t), with 1 indicating that the subject has the event
before t (positive) and 0 otherwise (negative). Without loss of generality, hereafter, we assume that a higher value of M is
indicative of a shorter survival time. Hence, for a given cutoff value c, a subject i is classified as positive if its marker value
is greater than c (Mi > c). Accordingly, the time-dependent true positive rate (Tpt) and false positive rate (Fpt) are defined
as

Tpt(c) = P(M > c|Dt = 1),
Fpt(c) = P(M > c|Dt = 0),

where c∈ (−∞,∞) is a fixed cutoff value. The corresponding time-dependent ROC function (ROCt) is

ROCt(u) = Tpt{Fp−1
t (u)}, (1)

where u∈ (0,1) and c = Fp−1
t (u) is the threshold value such that u=Fpt(c).

ROCt can be quantitatively summarized by the time-dependent area under the ROC curve (AUCt) defined as

AUCt = ∫
1

0
ROCt(u)du. (2)

The main challenge in estimating the above quantities is that, because of censoring, the disease status is not known
for all subject under study. In fact, in survival analysis, some individuals are typically lost during the follow-up period,
due to various causes, or did not develop the event of interest by the end of the study. There is abundant literature about
the estimation of ROC curves taking censoring into account using either parametric, nonparametric, or semiparametric
techniques. Heagerty et al3 proposed two nonparametric methods. The first one is based on the Kaplan-Meier estimator
of the survival function, whereas the second is based on the bivariate nearest neighbor estimator of Akritas.9 Their work
can be considered as the cornerstone for the area of time-dependent accuracy measures estimation since it opened the
door for many proposals. For instance, Chambless and Diao10 proposed a nonparametric Kaplan-Meier like method and
a semiparametric model based approaches. Martínez-Camblor et al11 and Li et al12 independently proposed methods
for ROC curve and AUC estimation based on imputation idea, where the missing event status for censored subjects are
replaced by their “expected” values obtained from the Cox model or the (conditional) Kaplan-Meier estimator. There are
plenty of other proposals; see References 13-15 and the references given in these papers. For a comprehensive summary
the reader is also referred to Blanche et al8 and Kamarudin et al.16



Like a cumulative distribution function, the ROC is commonly estimated nonparametrically using empirical method.
This simple and very popular approach leads to a valid and reliable estimator. However, unlike the population ROC which
is continuous and smooth, the empirical ROC is a step function. This is a serious drawback in many real applications,
where the ROC curves are used not only to evaluate and compare the discriminatory ability of markers but also to find an
optimal cutoff point. To achieve this, the most commonly used methods are the point on the ROC curve closest to (0,1)
and the point on the ROC curve farthest from the noninformative marker (diagonal line), also called the Youden index;
see References 17,18, for more details. Finding a cut point from a smooth ROC curve is clearly more convenient as the
empirical ROC will typically lead to a nonunique solution. Fluss et al19 compare empirical method with a kernel-based
method and come to the conclusion that the former “has the worst performance and is not recommended unless sample
size is very large” and advocate the use of kernel method in most situations. We shall not discuss further the problem of cut
point in the present work and refer interested readers to References 20-22 for more information. In their refined analysis,
Lloyd and Yong23 compare, theoretically and via simulations, the empirical ROC estimator with a kernel estimator, in the
case of uncensored data, and prove that the latter dominate the former for moderate to large samples. Similar conclusions
hold when comparing the classical empirical and the kernel smooth estimator of a distribution function.24-26 These and
other related works show that kernel-based estimators are, in general, asymptotically more efficient than corresponding
classical empirical estimators. Another argument in favor of smoothing is that the discontinuity of the empirical ROC
makes its graphical representations not very nice from a visual point of view and not intuitive. All these justify our interest
on developing a smooth nonparametric estimator for the time-dependent ROC for censored data. Note that, in contrast
to cross-sectional studies, where there is an abundance literature about smoothing ROC curves, see the recent paper of
Pulit27 and the references given therein, this problem is not well studied in the context of survival analysis. In fact, to
the best of our knowledge, the only related work is the recent paper of Martínez-Camblor and Pardo-Fernández.28 These
authors proposed a smooth time-dependent ROC curve estimators for both cumulative sensitivity/dynamic specificity
and incident sensitivity/dynamic specificity. Their estimators are based on bivariate kernel density estimation and they
showed that their cumulative/dynamic smoothed ROC estimator out performs over the nearest neighbor estimator of
Heagerty et al.3

To construct our kernel-based smooth estimator we use the fact that the time-dependent ROC can be expressed as
a weighted cumulative distribution of a random variable supported on the unit interval. The weights are nothing but a
random variable used to impute the “missing” values of I(Ti ≤ t) for censored observations. In this proposal there are
some important challenges that must be addressed. The first is the bounded support of ROC function. This is a problem
because standard kernel estimates suffer from boundary effects when the support of the variable of interest is bounded.
As this may affect the performances (convergence rate and bias) of the estimator near the boundaries, a “boundary cor-
rection” is needed. For that, one of the most used method, that we adopt in this work, is to use a transformation mapping
the unit interval to the real line. After transforming the observed data, standard kernel method may be satisfactorily
applied without further consideration. The second difficulty is that the weight variable is unknown and hence needs
to be estimated from the observed data. For this we use a plug-in method based on Beran’s nonparametric estimator.29

As an additional problem, in addition to the smoothing parameter needed to compute Beran’s estimator, we need to
choose a bandwidth parameter for our kernel estimator of the ROC curve itself. For that, we adapt some well-known
existing bandwidth selection methods, used in kernel estimation of a classical (unweighted) cumulative distribution, to
our situation.

The rest of this article is organized as follows. Next section gives the main statements and definitions of the article
and describes in details our estimation approach. In this section, we also present some asymptotic results and introduce
a bootstrap procedure for estimating the standard deviation and constructing confidence intervals. Section 3 is devoted
to the problem of the bandwidth selection. In Section 4, the finite sample performances of our estimator is evaluated
by simulations. A real data illustration is provided in Section 5. Finally, discussions and conclusions are presented in
Section 6.

2 ESTIMATION METHOD

We assume that the observed data set consists of {(Yi,Δi,Mi), i = 1, 2 … ,n}, where Y i = min(Ti, Ci) is the observed
survival time, Ti is the time to the event of interest, Ci is the censoring time, Δi = I(Ti ≤ Ci) is the censoring indicator, and
Mi is the marker observed at the ith subject. In the following, the event status of interest will be denoted by D(t)= I(T ≤ t),
with 1 (0) indicating that the event happened before (after) a given time horizon, t.



2.1 Imputation

As mentioned in the Introduction, our objective is to measure the predictive ability of M using a smooth ROC curve.
The main difficulty is that event status D(t) is unknown for some subjects as a result of censoring. Hence, following an
idea suggested independently by Martínez-Camblor et al11 and Li et al,12 we impute D(t) by its expected value given the
observed data. Thus, we impute D(t) by the random variable

W(t) = E{D(t)|Y ,Δ,M} =
[

1 − (1 − Δ) S(t|M)
S(Y |M)

]
I(Y ≤ t),

where S(t|m)=P(T > t|M =m) denotes the conditional survival function of T given the marker M. The second equality in
the above equation is true under the usual assumption, in survival analysis, that T and C are independent given M. Unlike
other existing methods in the literature, here all the available information is used in the imputation. Also, it is interesting
to observe that W(t)=D(t) except in the case when Y = y < t and Δ = 0. In this case, W(t) is nothing but the conditional
probability P(T ≤ t|T > y,M). In the above expression of W(t), S(t|m) is unknown and needs to be estimated form the
observed data. This can be done via, for example, the kernel estimator of Beran that can be written in the following form:

Ŝ(t|m) =
∏

i∶ Yi≤t

(
1 − vi(m)∑n

j=1 vj(m)I(Yj ≥ Yi)

)Δi

,

where, for a given bandwidth b≡ bn and a given kernel density k, vi(m) =
k( Mi−m

b
)∑

jk(
Mj−m

b
)
. The consistency and asymptotic nor-

mality of this estimator were established by several researchers.29-32 In the following, we will use the notation Ŵi(t) to
denote

[
1 − (1 − Δi)

Ŝ(t|Mi)
Ŝ(Yi|Mi)

]
I(Yi ≤ t).

2.2 Estimation

In this section, we first introduce an empirical (nonsmooth) estimation of the ROC and from this we propose a smooth
version of it. As given by (1), the ROC can be written as

ROCt(u) = P(Fpt(M) ≤ u|Dt = 1) = E{I(Z(t) ≤ u)W(t)}
E{W(t)}

, (3)

where Z(t) denote the random variable Fpt(M). The function Fpt can also be written on terms of W(t) as

Fpt(m) = E{I(M ≥ m)(1 − W(t))}
E{(1 − W(t))}

.

An empirical estimator, say F̂pt(m), of this quantity can be obtained by replacing expectations with simple averages.
Plugging-in this on (3), leads to the following empirical estimator of the ROC,

R̂OCemp(u) =
∑n

i=1 ŴiI(Ẑi ≤ u)∑n
i=1 Ŵi

, (4)

where Ẑi ≡ Ẑi(t) = F̂pt(Mi) and Ŵi ≡ Ŵi(t). Here and in the following, we suppress the dependence on time t for
notational simplicity.

The ROC curve estimator given in Equation (4) is nothing but a weighted empirical distribution function with
weights given by ̂ i = Ŵi∕n−1 ∑n

i=1 Ŵi, that is, R̂OCemp = n−1∑
î iI(Ẑi ≤ u). To the best of our knowledge, this sim-

ple and promising estimator has never been proposed or studied in the literature. However, it has a serious drawback
of being a step function. For this reason, and given the arguments invoked in the Introduction, here we are interested
in getting a smooth ROC curve estimator. As done to smooth out the classical empirical distribution,33 this goal can be
easily achieved by replacing the indicator function I(.) in R̂OCemp by a kernel distribution function. More precisely, for a



bandwidth parameter h≡ hn, that is, a sequence of strictly positive real numbers converging to zero with n, a kernel
smooth estimator of ROC(u) is given by

R̂OC(u) = ∫
∞

−∞
k
(u − x

h

)
dR̂OCemp(x)

= n−1
n∑

i=1
̂ iK

(
u − Ẑi

h

)
, (5)

where K(x) = ∫ x
−∞ k(s)ds is a (kernel) distribution function with a density k. Clearly R̂OC inherits its smoothness from K.

Also, observe that when K is chosen to be the indicator function I(x ≥ 0) then R̂OC reduces to R̂OCemp. So that this latter
can be seen as a particular case of Equation (5).

2.3 Some asymptotic results

In this section we establish some asymptotic properties of the proposed estimator including its consistency and asymptotic
mean squared error. For that let us assume, for simplicity, that the kernel k is a bounded symmetric (around zero) density
with a bounded support, say [− 1,1]. Put 𝜇2(k) = ∫ y2k(y)dy and 𝜌(k) = 2 ∫ yk(y)K(y)dy. The bandwidth h is such that
h→ 0 and nh→∞. We will also need the following assumption.

Assumption A: For the fixed t, (i) sup m|Ŝ(t|m) − S(t|m)| = O(rn) a.s., for some rn = o(1), and (ii) inf mS(t|m) > s, for
some s > 0. Under some suitable conditions,34 Assumption A(i) holds with rn = (log(b−1)∕(nb))1∕2 = o(b1+𝛿), for some
0 < 𝛿 < 1. This Assumption guarantees that max i|Ŵi − Wi| = O(rn) a.s. Which, by some simple algebra, implies that
max i|Ẑi − Zi| = O(rn) a.s.. Using these two equalities, it can be shown that, uniformly in u,

R̂OC(u) = ROCn(u) + O(rn) a.s., (6)

where ROCn(u) = n−1 ∑n
i=1 iK

(
u−Zi

h

)
and i =

Wi
E(Wi)

= Wi
P(T≤t)

.
Let f and F denote the density and cumulative distribution of Z. Define 𝜓p(z) = E(p|Z = z), p= 1,2, and

𝜉p(u) = ∫
u

−∞
𝜓p(z)dF(z) = E{pI(Z ≤ u)}.

Observe that 𝜉1(u) = ROC(u) and

E
{pKp

(u − Z
h

)}
= E

{
𝜓p(Z)Kp

(u − Z
h

)}
= ∫

∞

−∞
Kp

(u − z
h

)
d𝜉p(z).

Standard tools from kernel estimation literature, see chapter 1 of Li and Racine,35 lead to the following result.

Theorem 1. Assume that f′, 𝜓 ′
1 and 𝜓2

2 are continuous at u, then

(i) E{ROCn(u)} = ROC(u) + h2

2
𝜇2(k)ROC′′ (u) + o(h2).

(ii) nVar{ROCn(u)} = Var{I(Z ≤ u)} − h𝜌(k)𝜓2(u)f (u) + o(h).

By combining this theorem and Equation (6), we obtain the following result on the MSE of R̂OC(u):

MSE{R̂OC(u)} = AMSE(u) + o
(

h4 + h
n
+ b2+2𝛿 + h2b1+𝛿

)
,

where

AMSE(u) = h4

4
𝜇2

2(k)(ROC′′ (u))2 + n−1Var{I(Z ≤ u)} − h
n
𝜌(k)𝜓2(u)f (u). (7)



The mean square error of R̂OC(u) is of order o(h4 + h
n
+ b2+2𝛿 + h2b1+𝛿), which is different from the order of MSE of

the classical (unweighted) kernel smoothed distribution estimator that is o
(

h4 + h
n

)
(see Li and Racine35(p22). The extra

term b2+2𝛿 + h2b1+𝛿 comes from the estimation of an unknown weight W . The order of the variance term here is o(hn−1),
which is the same as the classical kernel smoothed distribution estimator. However, the bias term has an extra term b1+𝛿 ,
which comes from the estimation of the weight. These asymptotic results reduce to the classical case if the weights are
known constant.

2.4 Boundary correction

As any standard kernel-based nonparametric estimator R̂OC(u) is subject to boundary bias because Ẑ (the pseudodata)
is supported in the unit interval [0,1]. This bias comes from the fact that the kernel, which has no knowledge of the
boundary, assigns positive weight outside the compact support of the variable. To be more clear, the calculation done in
the previous section assumes, implicitly, that u∈ [h,1− h]. When, for example, u∈ [0,h), that is, u ≡ un = 𝛼h, for some
0 ≤ 𝛼 < 1, it can be shown that

E{ROCn(u)} = ROC(u)∫
𝛼

−1
k(y)dy + O(h).

This implies that our estimator R̂OC is inconsistent in the boundary regions. Such a problem is very well docu-
mented in the literature, especially in the case of kernel density estimation, and several modified estimators have
been proposed. The most used methods are the reflection method, the boundary kernel method, the local linear
approach, and the transformation method; see References 36,37 and the references therein for more about this
subject. In the case of completely observed data, Koláček and Karunamuni38 has recently suggested and studied
a boundary correction method for the classical kernel estimator of the ROC curve. Here, the procedure we shall
use to handle this problem is to apply the method of transformation that aims at “sending away” the bound-
aries to ±∞.39,40 Specifically, the idea consist on transforming the variable with bounded support (Z in our case)
to that with an unbounded support. The distribution of the transformed variable can then be estimated using the
standard kernel estimator. Let Q ∶ [0, 1] → R be any continuous and increasing function such that limx→0Q(x) =
−∞ and limx→1Q(x) = +∞, since ROCt(u)=P(Q(Zt)≤Q(u)|Dt = 1), we suggest the following modified kernel ROC
estimator

R̂OCTR(u) = n−1
n∑

i=1
̂ iK

(
Q(u) − Q(Ẑi)

h

)
. (8)

The most commonly used transformations are the quantile functions of random variables with unbounded support
like, for example, the Probit transform corresponding to the standard normal quantile function denoted hereafter by
Φ−1. In the case of kernel density estimation, with completely observed data, this approach was recently investigated by
Geenens41 and Wen and Wu.42 They show some drawbacks of this simple method and suggest some refinements. Here
we stick to the “naive” approach, as given by Equation (8), but we believe that it could be interesting to investigate this
problem in more details.

Note that when Q is chosen to be the identity function, R̂OCTR reduces to the estimator given in Equation (5).

Remark 1. As for the AUC, since

AUCt = ∫
1

0
ROCt(u)du =

∫ 1
0 E(I(Zt ≤ u)Wt)du

E(Wt)
= 1 − E(tZt),

an estimate of it can be obtained easily using either the empirical version of this last expression, that
is, 1 − n−1 ∑n

i=1 ̂ iẐi, or by a numerical integration method, that is, ∫ 1
0 R̂OCTR(u)du. The former has the

advantage of being simple and independent of the bandwidth parameter needed for the smooth ROC
estimator.



2.5 Variance estimation and inference

To make inference about the ROC or the AUC, one needs to estimate the (asymptotic) distribution of the proposed
estimators. In the following we will focus on the AUC but the same procedure can be applied to the ROC. Given the
difficulties on getting an asymptotic distribution or at least a close and easy to estimate formula for the asymptotic
variance, here we propose to use the well-known “naive” nonparametric bootstrap method of Efron.43 This consist of
first drawing, with replacement, a large number, say B, of random samples of size n from the original observed data
{(Mi,Yi,Δi), i = 1, 2, … .,n}. Next, from each bootstrap sample b, b= 1,… ,B, we calculate ÂUCb, the estimated bootstrap
AUC statistic. The empirical variance of this bootstrap statistic, that is,

S2
B = B−1

∑
b

(
ÂUCb − B−1

∑
b

ÂUCb

)2

can be then used as an estimator of the variance of ÂUC, the original estimate of the AUC. {ÂUCb, b = 1, 2, … .,B} can
also be used to construct asymptotic confidence intervals. For that, several approaches exist in the literature.44 Among
them there is (i) the standard normal method: ÂUC ± z1−𝛼∕2SB, where z𝛼 is the 𝛼-quantile of a N(0,1) and (ii) the per-
centile method: [ÂUCB(𝛼∕2), ÂUCB(1 − 𝛼∕2)], where ÂUCB(𝛼) is the 𝛼-quantile of the B bootstrap sample estimates. The
validity and precision of these bootstrap procedures will be investigated via simulations in Section 4. Note that the use of
bootstrap in the context of time-dependent ROC and AUC estimations is not new but appears in several papers including
References 3,12,13.

3 BANDWIDTH SELECTION

To compute the proposed estimator we have to choose the kernel and the two bandwidths: b, needed by Beran’s estimator
in the imputation stage, and h needed to smooth the indicator function. It is well-known form kernel smoothing literature,
see Jones,45 that the kernel function has little effect on the performance of the resulting estimates but this is not the case,
in general, for the bandwidth(s) that has to be selected carefully. Now, the effect of b should be less important than the
effect of h as the latter is the parameter that really controls the degree of smoothness of our estimator. Also, observe that
b intervenes only in the calculation of W i for subjects with Y i < t and Δi = 0. More precisely, for these subjects, we need
b to get Ŝ(t|Mi)∕Ŝ(Yi|Mi). Dabrowska46 showed that, uniformly in t, the bias of Ŝ(t|Mi) is asymptotically proportional to
b2. Hence, as noted by Li et al,12 for inappropriately larger or smaller b, the biases in Ŝ(t|Mi) and Ŝ(Yi|Mi) are in the same
direction and may cancel out to some extent, particularly when Y i and t are close to each other. This is confirmed by our
simulation study reported in the next section where we investigate the robustness of our estimator to the selection of b.
So in this section we will focus on the bandwidth h that may have a significant influence on the ROC estimate.

Let start with some theoretical considerations. The asymptotic integrated mean square error (AMISE) is found by
integrating the AMSE(u), see (7). The bandwidth which minimizes this AMISE can be easily obtained by differentiation
and it can be expressed as

h =

(
E(2)𝜌(k)

n𝜇2
2(k)𝜅(ROC)

)1∕3

,

where 𝜅(ROC) = ∫ ∞
−∞ {ROC′′ (u)}2du = ∫ {(𝜓1(u)f (u))

′}2du, where f (.) is the density of Z and 𝜓1(z) = E(|Z = z).
It is interesting to note that when W is a constant (nonstochastic) then ROC(u)=P(Z ≤u) and h reduces to

hF =
(

𝜌(k)
n𝜇2

2 (k)𝜅(F)

)1∕3
, which is the optimal bandwidth that minimizes the AMISE of the classical kernel distribu-

tion function, see Polansky and Baker.47 The difference between h and hF comes from E(2) = Var{} + 1. As
a consequence, when the variability of  increases a larger bandwidth will be needed, which sounds intuitive.
E(2) = E{W2}∕(E{W})2 can be easily estimated empirically using the estimated weights Ŵi given at the end
of Section 2.1.

To estimate h, the real problem comes from the estimation of 𝜅(ROC). In the case of the (unweighted) distribution
function, the simplest and most used approach, known as Rule-of-Thumb, is to estimate 𝜅(F) using a parametric model.



For example, if we assume that f is a normal density with mean𝜇 and variance 𝜎2, then it is very simple to show that 𝜅(F) =
(4𝜎3𝜋0.5)−1; see Polansky and Baker.47 An estimate for 𝜅(F) is given by 𝜅(F) = (4�̂�3𝜋0.5)−1, where �̂� is an estimator for
the population standard deviation 𝜎. Silverman48 suggest to use the minimum of sample standard deviation and sample
interquartile range divided by 1.349 as a robust estimate of 𝜎.

Since the ROC can be seen as a weighted distribution function, one may adapt the above normal reference rule and
estimate 𝜅(ROC) by

̂𝜅(ROC)NR = (4�̂�3
w𝜋

0.5)−1, (9)

where �̂�w is the smaller of weighted sample standard deviation and weighted sample interquartile range divided by 1.349.
The resulting bandwidth is given by

ĥNR =

[
Ê{̂2}𝜌(k)

n𝜇2
2(k) ̂𝜅(ROC)NR

]1∕3

, (10)

and will be called normal reference bandwidth.
Another option is to estimate the quantity 𝜅(ROC) nonparametrically as it was done by Polansky and Baker47 for 𝜅(F).

Following these authors, using integration by parts, we can easily show that

𝜅(ROC) = −E{ROC(3)(Z)},

where ROC(3)(.) is the third derivative of the ROC function. Which suggests estimating 𝜅(ROC) by

̂𝜅(ROC)PI = −Ê ̂{̂ROC(3)(Z)} = −n−2g−3
n∑

i=1

n∑
j=1

̂ î jK(3)

(
Ẑi − Ẑj

g

)
, (11)

where K(3)(.) is the third derivative of the kernel distribution function K and g is a smoothing parameter that needs to
be chosen. We will refer to the resulting bandwidth, obtained by replacing ̂𝜅(ROC)NR by ̂𝜅(ROC)PI in (10), as the plug-in
bandwidth and will be denoted by hPI. The main difficulty of this approach is that one still needs to choose the pilot
bandwidth g in order to calculate hPI ≡ hPI(g). For the classical (unweighted) kernel distribution estimation, Polansky and
Baker47 proposed an iterative method where g is selected based on the asymptotic mean squared error of 𝜅(F). Due to
the complexity of deriving the asymptotic mean squared error for ̂𝜅(ROC)PI, in this study we use the normal reference
method given in (10) to calculate the bandwidth g.

An alternative approach is to use cross-validation (CV). In the case of the distribution function, different approaches
exist in the literature.49-51 In the latter the authors proposed a modified cross-validation estimator that is asymptoti-
cally optimal and performs well in simulation studies and real data analysis. The suggested bandwidth is obtained by
minimizing the function

CVF(h) =
n∑

i=1
∫

∞

−∞
[I(x ≥ xi) − F̂−i(xi)]2dx,

where F̂−i(xi) denotes the kernel distribution estimator calculated with the bandwidth h and without the ith observa-
tion. To adapt this method to our case, we suggest incorporating the weight variable into the CV function and select the
bandwidth that minimizes

CVROC(h) =
n∑

i=1
∫

1

0
[̂ iI(u ≥ Ẑi) − R̂OC

−i
(u)]2du, (12)

where R̂OC
−i
(u) = (n − 1)−1∑

j≠î jK( u−Ẑj

h
) is the ROC curve estimate without the ith observation.

The performances of the three methods discussed above (normal reference (NR), plug-in (PI) and cross-validation
(CV)) will be investigated in the next section.



4 SIMULATION STUDY

In this section, we present a Monte Carlo simulation study to investigate the finite sample performance of the
proposed ROC curve estimators: the empirical (nonsmoothed), see Equation (4), the smoothed estimator without
boundary correction, see Equation (5), and the smoothed estimator with boundary correction, see Equation (8).
We are also interested in comparing the performance of the latter with the smoothed time-dependent ROC curve
estimator proposed by Martínez-Camblor and Pardo-Fernández,28 hereafter denoted by (MP). As mentioned above,
the ROC curve estimator with and without the boundary correction requires selecting two bandwidth parame-
ters. Given the difficulty to select these parameters in an optimal way, we also investigate here the robustness
of these ROC estimators to the choice of the bandwidth parameters and assess the performance of the pro-
posed modified bandwidth selection methods. Furthermore, the validity of the proposed bootstrap approach is
also examined. The behavior of the estimator depends on various aspects, including sample size and censoring
rates. Therefore, we generate data considering different scenarios, the details of which are given in the upcoming
subsection.

4.1 Data generation

To generate the data, we considered two scenarios

• Scenario I: The survival time T is assumed to follow a log-normal distribution with parameters 𝜇 = 0 and 𝜎 = 2. The
censoring time C is independently generated from a log-normal distribution with parameters 𝜇 and 𝜎 = 2. The value
of 𝜇 is chosen to produce the required censoring proportions. The marker is given by M =

√
pT +

√
1 − pR, where R

is a log-normal distributed random variable with parameters 𝜇 = 0 and 𝜎 = 2.
• Scenario II: The survival time is assumed to follow an Exponential(1) distribution. The censoring time is taken to be

independent of T and also follows an exponential distribution with parameter 𝜆, where the value of 𝜆 is chosen to pro-
duce the required censoring proportions. The marker is given by M =

√
pT +

√
1 − pR, where R is an Exponential(1)

distributed random variable.

These scenarios are very similar to those of Martínez-Camblor and Pardo-Fernández.28 The values of p are set to be
0.25 and 0.50. The later corresponds to a stronger association between the survival time and the marker. The parameter
of the censoring time distributions are chosen to achieve 20% and 50% censoring rates. Furthermore, for the ROC curves
calculation, we consider the time horizon t corresponding to the quartile values (Q1, Q2, and Q3) of the survival time T.
For both scenarios, we generate N = 1000 replicates of samples of sizes n= 100, 200, 400. The true time-dependent ROC
curves for both scenarios are presented in Figure 1.

The performance measures for the proposed ROC estimator with and without boundary correction are calcu-
lated using the three proposed data-driven bandwidth selection methods for h: the normal reference bandwidth
(NR), the plug-in (PI), and the cross-validation (CV). To select b, the bandwidth parameter needed for Beran’s
weight calculation, we simply use the plug-in bandwidth selection method of the classical density estimation
that was proposed by Sheather and Jones.52 This method is implemented in the bandwidth function of the
stats package of R.53

The MP estimator of Reference 28 is based on the bivariate kernel density estimation and hence it uses a 2× 2 matrix
of smoothing parameters. In their simulations, the authors considered six data-driven bandwidths selection methods:
plug-in (PI), least-squared cross-validation (LSCV), and unbiased cross-validation (UCV), based either on diagonal or
nondiagonal smoothing matrices. They found that the nondiagonal version has better performance and hence in our
comparison we only consider this latter. The MP method is implemented in the R package smoothROCtime,54 which
was used in our simulations.

To compare the performance of the ROC estimators we chose two criteria: the integrated mean bias given by

MIB(R̂OC) = 1000−1
1000∑
l=1

∫ (R̂OCl(u) − ROC(u))du
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where R̂OCl(.) is the ROC estimate from the lth sampled data and the integrated mean square error (MISE) given by

MISE(R̂OC) = 1000−1
1000∑
l=1

ISE(R̂OCl),

where ISE(R̂OCl) = ∫ (R̂OCl(u) − ROC(u))2du. In the above formulas, the true ROC(.) was calculated from a simulated
sample (Ti,Mi), i= 1,… ,4× 106, using Equation (4) with Ŵi = I(Ti ≤ t).

4.2 Simulation results

The simulation results below are organized into two parts. First, we compare the overall performance of the smooth ROC
curve estimator with and without boundary correction and also compare the performance of the proposed bandwidth
selection methods. Furthermore, we also explore the robustness of these estimators to the choice of the bandwidth param-
eters. Second, we compare the finite sample performances of the boundary corrected smooth ROC estimator with the
empirical nonsmoothed ROC estimator and the MP method of Martínez-Camblor and Pardo-Fernández.28

4.2.1 Bandwidth selection and boundary correction

We first present the results of the simulation study conducted to investigate the finite sample behavior of the ROC curve
estimator with and without boundary correction given in Equations (5) and (8), respectively. Table 1 shows the MIB and
the MISE for both estimators for the first scenario obtained with sample sizes n= 100, 200, 400, censoring rates 20% and
50%, p= 0.25, 0.50, and t =Q1, Q2, Q3. These results clearly show that the ROC curve estimator with boundary correction
has smaller MIB and MISE than the ROC curve estimator without boundary correction. This is true for all censoring rates,
sample sizes, p and t values. Both the MIB and the MISE decrease with the sample size and increases with the censoring
percentages. Results for the second scenario presented in Table 2 also show similar findings.
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Regarding the bandwidth selection methods, the results presented in Tables 1 and 2 indicated that all the three band-
width selection methods produce very similar results. However, the NR method has slightly better performance for the
ROC curve estimator with boundary correction, whereas for the ROC estimator without boundary correction the PI
method seems to be better. Globally, the PI method also shows smaller bias and, typically, it performs better for a relatively
large time horizon (t =Q3). Now we turn to the question of robustness with respect to bandwidth selection. To investigate
this problem, we reran the simulations but instead of using a data-driven bandwidth we choose the Beran’s bandwidth
to be b= c1 ×n−1/5, with c1 = 0.001,0.1,0.5,1,1.5,2,3, and the ROC’s bandwidth to be h= c2 ×n−1/3, with c2 = 1,2,3,4,5,6.
Table 3 (Table 4) shows the MISEs obtained with the first scenario for n= 100 (n= 400). For the sake of brevity, the results
for the other scenarios are not reported as they lead to the same general conclusion. In these tables, the columns show
the effect of b for a fixed h and the rows show the effect of h for a fixed b. From these results, one can clearly see that
both estimators are almost insensitive to the choice of b as the change in MISE is almost negligible. For example, at 20%
censoring rate and h= 100−1/3, as the b value increase by 5-folds the MISE increased by less than 0.17% for the ROC curve
with boundary correction and increased by less than 2.32% for the ROC curve without boundary correction. The results
also reveal that the ROC estimator without boundary correction is more sensitive to the choice of h than the ROC esti-
mator with boundary correction. For example, at 20% censoring rate and b= 100−1/5, doubling the value of h decreased
the MISE by less than 10% for the ROC curve with boundary correction and increased the MISE by almost 75% for the
ROC curve without boundary correction. In these tables, the minimum obtained value of the MISE using the grid search
is indicated in bold and the minimum data-driven MISE is indicated in italic. From these results one can observe that
the data-driven bandwidth selection methods of both the bandwidth b and h perform reasonably well, especially for a
large sample size and a small censoring rate. For example, for the boundary corrected smooth ROC curve estimator with
n= 100 and 20% censoring rate, the minimum MISE value using the grid search (for both b and h) is 3.247 vs 3.725 for the
data-driven bandwidths. When n= 400, the corresponding values are 0.964 and 0.982, respectively. This is also true for
50% censoring rate but with relatively larger differences. This suggest that, although Sheather and Jones52 method does
not take censoring into account, it results in a smooth ROC estimate close to the “optimal” one.

4.2.2 Comparing the proposed method with the competitors

In this section, we present the results of a simulation study conducted to compare the finite sample performance of the
proposed boundary corrected ROC curve estimator with the proposed empirical (nonsmoothed) estimator and the MP
method of Martínez-Camblor and Pardo-Fernández.28 Table 5 (Table 6) shows the MIB and the MISE of the first (sec-
ond) scenario obtained for different sample sizes, censoring rates, p values, and time horizons. As can be seen from these
tables, the MP method has a notably larger MIB and MISE than both the empirical (nonsmoothed) and the boundary
corrected smooth estimators proposed in this work; see Equations (4) and (8), respectively. In general this is true for all
censoring rates, sample sizes and time horizons. In addition, compared with the MP method, our smooth estimator has
relatively faster rate of convergence as its MISE decays faster. For example, at 20% censoring rate, p= 0.25, and t = 0.3,
as the sample size increases from n= 100 to n= 200 the MISE decreases by around 50% for the smooth ROC estimator
with boundary correction and decreases only by around 20% for the MP method. Furthermore, we also observed that the
variance of the integrated squared errors of the MP method is larger than both the proposed smooth and the empirical
(nonsmoothed) estimators (the results are not reported here), which is consistent with the results presented in Tables 5
and 6. Finally, these tables show that the proposed boundary corrected ROC estimator has smaller MISE than the nons-
moothed (empirical) one except for a few cases where the prediction time is relatively large (ie, t =Q3). In such a situation,
the plug-in bandwidth method (PI) seems to be more adapted as it performs better than the NR method (see Tables 1 and
2) and gives results that are very close to the empirical estimator. This is consistent with the finding of a simulation study
by Lloyd and Yong23 that was conducted to compare the empirical ROC estimator with a kernel based estimator in the
case of uncensored data.

In conclusion, we can say that the proposed boundary corrected smoothed time-dependent ROC estimator has better
performance than both the proposed empirical (nonsmoothed) estimator and the MP method.

4.2.3 Validity of the bootstrap

In this section, we investigate the validity of the bootstrap procedures described in Section 2.5 to estimate the
variance and construct confidence intervals for the time-dependent AUC. For that, form each of the 1000



T A B L E 3 The MISE (× 10−3) of ROC estimators with and without boundary correction computed with different
censoring rates (%cen), n= 100, p= 0.25, and t =Q2= 1 for the first scenario and with b= c1 ×n−1/5 and h= c2 ×n−1/3

%cen = 20 ROC estimator with boundary correction

c1/c2 1 2 3 4 5 6 NR PI

0.001 4.212 3.754 3.491 3.491 3.875 4.730 3.762 4.058

0.100 4.164 3.664 3.337 3.247 3.515 4.238 3.631 4.011

0.500 4.171 3.701 3.400 3.338 3.638 4.398 3.687 4.032

1.000 4.165 3.718 3.436 3.398 3.730 4.527 3.723 4.037

1.500 4.157 3.723 3.454 3.432 3.786 4.609 3.739 4.033

2.000 4.147 3.720 3.461 3.453 3.823 4.665 3.743 4.025

3.000 4.133 3.717 3.475 3.490 3.887 4.758 3.750 4.014

b̂ 4.148 3.725 3.472 3.470 3.848 4.698 3.752 4.029

%cen = 50

0.001 6.267 5.617 5.271 5.321 5.881 6.991 5.741 6.010

0.100 6.045 5.134 4.419 3.951 3.858 4.255 5.067 5.866

0.500 6.110 5.362 4.781 4.463 4.545 5.130 5.374 5.969

1.000 6.228 5.578 5.078 4.862 5.086 5.841 5.674 6.111

1.500 6.405 5.801 5.356 5.222 5.559 6.446 5.949 6.294

2.000 6.597 6.023 5.623 5.555 5.980 6.965 6.203 6.490

3.000 6.923 6.394 6.071 6.111 6.668 7.790 6.606 6.820

b̂ 6.738 6.183 5.810 5.778 6.245 7.274 6.379 6.636

%cen = 20 ROC estimator without boundary correction

0.001 5.657 9.841 17.716 26.530 34.479 41.175 5.330 4.931

0.100 5.303 9.332 17.147 25.964 33.945 40.680 5.096 4.785

0.500 5.426 9.518 17.349 26.160 34.126 40.846 5.176 4.836

1.000 5.526 9.647 17.489 26.298 34.256 40.967 5.253 4.886

1.500 5.597 9.732 17.582 26.390 34.344 41.048 5.306 4.916

2.000 5.649 9.794 17.650 26.459 34.409 41.109 5.340 4.932

3.000 5.741 9.911 17.778 26.586 34.530 41.222 5.390 4.952

b̂ 5.679 9.828 17.686 26.494 34.443 41.140 5.361 4.945

%cen = 50

0.001 7.535 11.53 19.382 28.125 35.965 42.544 7.473 7.114

0.100 5.712 8.708 16.152 24.893 32.901 39.697 6.622 6.643

0.500 6.470 9.853 17.384 26.076 33.994 40.697 7.026 6.874

1.000 6.969 10.468 18.050 26.733 34.615 41.272 7.374 7.133

1.500 7.424 11.002 18.627 27.303 35.153 41.771 7.706 7.390

2.000 7.827 11.458 19.113 27.781 35.603 42.188 8.001 7.627

3.000 8.502 12.229 19.929 28.579 36.352 42.880 8.471 8.011

b̂ 8.072 11.724 19.385 28.042 35.846 42.412 8.191 7.791

Note: The last two columns correspond to the NR and the PI selection methods for h and the last row (b̂) corresponds to Sheather and
Jones’s selection methods for b.



T A B L E 4 The MISE(× 10−3) of ROC estimators with and without boundary correction computed with different
censoring rates (%cen), n= 400, p= 0.25, and t =Q2= 1 for the first scenario and with b= c1 ×n−1/5 and h= c2 ×n−1/3

%cen = 20 ROC estimator with boundary correction

c1/c2 1 2 3 4 5 6 NR PI

0.001 1.094 1.015 0.970 0.968 1.016 1.125 0.987 1.078

0.100 1.111 1.029 0.980 0.977 1.027 1.139 0.996 1.101

0.500 1.086 1.014 0.973 0.977 1.034 1.152 0.988 1.077

1.000 1.062 0.998 0.965 0.975 1.037 1.162 0.979 1.052

1.500 1.053 0.992 0.964 0.978 1.044 1.174 0.978 1.042

2.000 1.051 0.991 0.966 0.983 1.052 1.186 0.980 1.039

3.000 1.054 0.996 0.973 0.994 1.068 1.210 0.987 1.041

b̂ 1.053 0.994 0.968 0.984 1.052 1.185 0.982 1.042

%cen = 50

0.001 1.819 1.657 1.519 1.406 1.334 1.333 1.590 1.762

0.100 1.598 1.449 1.328 1.251 1.227 1.265 1.367 1.590

0.500 1.465 1.360 1.284 1.249 1.265 1.345 1.318 1.452

1.000 1.491 1.410 1.361 1.350 1.391 1.504 1.392 1.469

1.500 1.660 1.587 1.548 1.550 1.609 1.751 1.580 1.634

2.000 1.877 1.804 1.768 1.777 1.851 2.017 1.801 1.847

3.000 2.317 2.243 2.209 2.228 2.324 2.528 2.244 2.283

b̂ 1.813 1.741 1.705 1.713 1.782 1.941 1.737 1.785

%cen = 20 ROC estimator without boundary correction

0.001 2.542 4.545 7.6831 12.370 17.960 23.681 1.950 1.406

0.100 2.570 4.642 7.814 12.509 18.098 23.812 1.945 1.393

0.500 2.601 4.702 7.895 12.602 18.193 23.907 1.962 1.395

1.000 2.645 4.759 7.961 12.675 18.270 23.984 1.996 1.413

1.500 2.693 4.815 8.023 12.742 18.339 24.053 2.034 1.432

2.000 2.736 4.866 8.080 12.803 18.402 24.116 2.068 1.448

3.000 2.811 4.954 8.176 12.905 18.508 24.221 2.122 1.473

b̂ 2.723 4.850 8.062 12.784 18.382 24.096 2.058 1.445

%cen = 50

0.001 2.793 4.141 6.8972 11.434 16.995 22.739 2.518 2.158

0.100 2.760 4.484 7.397 11.961 17.498 23.204 2.280 1.866

0.500 2.890 4.825 7.898 12.539 18.101 23.802 2.316 1.822

1.000 3.151 5.156 8.284 12.963 18.541 24.242 2.526 1.955

1.500 3.469 5.510 8.672 13.380 18.971 24.671 2.801 2.166

2.000 3.786 5.845 9.027 13.756 19.357 25.054 3.080 2.396

3.000 4.378 6.456 9.660 14.417 20.028 25.717 3.599 2.846

b̂ 3.686 5.738 8.911 13.632 19.229 24.927 2.995 2.328

Note: The last two columns correspond to the NR and the PI selection methods for h and the last row (b̂) corresponds to Sheather
and Jones’s selection methods for b.



Proposed MP

n= 100 Empirical unsmoothed NR LSCV PI

p %cen t MIB MISE MIB MISE MIB MISE MIB MISE

0.25 20 0.3 0.197 7.454 1.294 5.271 3.337 13.288 4.656 10.855

0.25 20 1.0 0.184 4.674 1.080 3.752 3.963 13.073 8.872 21.811

0.25 20 3.9 −0.076 3.141 0.389 3.461 4.464 13.437 11.02 35.811

0.25 50 0.3 0.817 8.654 1.825 6.384 2.995 9.5497 7.773 15.740

0.25 50 1.0 1.238 7.395 2.086 6.379 5.074 12.281 11.14 28.206

0.25 50 3.9 0.062 7.271 0.509 7.486 9.049 22.848 15.12 51.266

0.50 20 0.3 0.202 6.863 1.425 5.028 3.627 14.964 4.722 12.394

0.50 20 1.0 0.198 3.925 1.064 3.513 3.914 13.506 9.203 25.066

0.50 20 3.9 −0.025 2.196 0.156 2.691 4.330 11.962 10.48 35.452

0.50 50 0.3 0.989 8.154 2.126 6.304 3.958 11.793 9.025 20.339

0.50 50 1.0 1.295 6.591 2.136 6.158 6.111 14.837 12.48 35.521

0.50 50 3.9 0.041 4.857 0.259 5.359 9.904 25.819 15.58 55.915

n= 200

0.25 20 0.3 0.026 3.837 0.730 2.860 3.860 10.555 5.098 9.8133

0.25 20 1.0 0.214 2.332 0.728 1.976 4.408 11.576 9.052 21.026

0.25 20 3.9 0.123 1.481 0.354 1.694 4.901 12.906 10.45 33.018

0.25 50 0.3 0.640 4.277 1.323 3.268 3.243 8.0379 7.255 13.896

0.25 50 1.0 1.058 3.874 1.599 3.431 5.112 11.524 10.11 25.000

0.25 50 3.9 −0.068 3.116 0.169 3.235 8.447 21.377 13.32 44.034

0.50 20 0.3 0.050 3.525 0.835 2.692 4.522 12.717 5.324 11.686

0.50 20 1.0 0.224 1.975 0.724 1.840 4.898 13.554 9.502 24.762

0.50 20 3.9 0.075 1.040 0.115 1.366 5.001 13.317 9.973 32.953

0.50 50 0.3 0.693 4.004 1.466 3.168 4.163 10.069 8.588 18.643

0.50 50 1.0 0.983 3.489 1.526 3.324 6.158 14.420 11.50 32.253

0.50 50 3.9 −0.070 2.108 −0.004 2.384 9.286 24.232 13.85 48.584

n= 400

0.25 20 0.3 0.008 1.766 0.468 1.392 4.678 10.024 5.377 9.5197

0.25 20 1.0 0.091 1.103 0.384 0.982 5.655 13.474 9.018 20.559

0.25 20 3.9 0.003 0.729 0.079 0.894 5.834 16.270 9.859 30.817

0.25 50 0.3 0.466 2.104 0.922 1.677 3.925 8.3241 6.873 12.733

0.25 50 1.0 0.716 1.911 1.051 1.737 5.875 13.357 9.418 22.864

0.25 50 3.9 −0.102 1.523 −0.014 1.594 8.649 23.373 12.08 38.910

0.50 20 0.3 0.007 1.612 0.517 1.315 5.456 14.057 5.768 11.603

0.50 20 1.0 0.087 0.927 0.363 0.907 6.309 17.167 9.596 24.661

0.50 20 3.9 −0.003 0.506 −0.037 0.796 5.898 16.969 9.442 30.803

0.50 50 0.3 0.488 1.970 1.004 1.628 5.098 11.376 8.244 17.489

0.50 50 1.0 0.601 1.674 0.934 1.624 7.062 17.313 10.82 29.878

0.50 50 3.9 −0.093 1.001 −0.110 1.233 9.438 26.390 12.63 43.121

Note: The bandwidth(s) are selected using the NR method for our estimator and the LSCV and the PI methods for
the MP estimator.

T A B L E 5 The MIB (× 10−2)
and MISE (× 10−3) of the
empirical, the smooth (boundary
corrected), and the MP estimators
computed for different sample
sizes (n), censoring rates (%cen), p,
and t values obtained with the first
scenario



T A B L E 6 The MIB
(× 10−2) and MISE (× 10−3) of
the empirical, the smooth
(boundary corrected), and the
MP estimators computed for
different sample sizes (n),
censoring rates (%cen), p, and t
values obtained with the
second scenario

Proposed MP

n= 100 Empirical unsmoothed NR LSCV PI

p %cen t MIB MISE MIB MISE MIB MISE MIB MISE

0.25 20 0.3 0.281 7.788 1.392 5.548 0.915 4.969 1.141 3.533

0.25 20 0.7 0.470 5.064 1.321 3.941 2.503 4.541 3.000 4.593

0.25 20 1.4 0.815 4.723 1.515 4.288 4.470 7.180 5.014 7.953

0.25 50 0.3 0.588 8.632 1.619 6.393 1.902 5.926 2.067 4.977

0.25 50 0.7 1.292 6.566 2.081 5.511 4.247 7.316 4.404 7.134

0.25 50 1.4 1.699 10.76 2.342 10.44 7.931 16.13 8.097 16.25

0.50 20 0.3 0.292 6.458 1.550 4.813 0.846 4.019 1.057 2.833

0.50 20 0.7 0.467 3.802 1.314 3.278 2.780 4.092 3.324 4.468

0.50 20 1.4 0.660 2.859 1.077 3.114 4.907 7.956 5.400 8.874

0.50 50 0.3 0.678 7.169 1.859 5.597 2.730 5.841 3.024 5.094

0.50 50 0.7 1.311 5.073 2.113 4.681 5.686 9.075 5.910 9.159

0.50 50 1.4 1.567 6.778 1.990 7.238 9.580 20.25 9.786 20.72

n= 200

0.25 20 0.3 0.068 3.641 0.810 2.721 0.623 2.506 0.837 2.054

0.25 20 0.7 0.041 2.439 0.576 1.961 1.788 2.438 2.294 2.776

0.25 20 1.4 0.276 2.199 0.668 1.998 3.602 4.450 4.125 5.341

0.25 50 0.3 0.462 4.025 1.172 3.096 1.159 3.139 1.407 2.896

0.25 50 0.7 0.753 3.243 1.272 2.760 3.301 4.343 3.533 4.546

0.25 50 1.4 0.984 4.721 1.391 4.503 6.484 10.49 6.720 10.99

0.50 20 0.3 0.086 3.033 0.946 2.345 0.655 2.044 0.857 1.693

0.50 20 0.7 0.093 1.899 0.620 1.669 2.189 2.322 2.704 2.863

0.50 20 1.4 0.295 1.376 0.518 1.523 4.225 5.683 4.680 6.619

0.50 50 0.3 0.529 3.388 1.356 2.724 1.892 3.130 2.333 3.174

0.50 50 0.7 0.814 2.623 1.335 2.438 4.680 5.825 5.040 6.476

0.50 50 1.4 0.876 2.868 1.121 3.052 8.067 14.31 8.376 15.29

n= 400

0.25 20 0.3 0.230 2.027 0.719 1.627 0.756 1.480 0.916 1.333

0.25 20 0.7 0.160 1.247 0.485 1.053 1.676 1.542 2.136 1.944

0.25 20 1.4 0.161 1.122 0.373 1.050 3.258 3.327 3.723 4.127

0.25 50 0.3 0.500 2.230 0.968 1.808 0.717 1.924 0.980 1.870

0.25 50 0.7 0.672 1.775 0.995 1.567 2.657 2.912 2.921 3.211

0.25 50 1.4 0.635 2.389 0.867 2.276 5.257 7.301 5.523 7.842

0.50 20 0.3 0.209 1.689 0.784 1.401 0.839 1.211 0.972 1.110

0.50 20 0.7 0.159 0.961 0.479 0.887 2.120 1.605 2.557 2.124

0.50 20 1.4 0.142 0.690 0.256 0.812 3.987 4.897 4.357 5.657

0.50 50 0.3 0.514 1.850 1.068 1.554 1.465 1.924 1.878 2.117

0.50 50 0.7 0.690 1.403 1.019 1.328 4.094 4.310 4.448 4.998

0.50 50 1.4 0.531 1.455 0.663 1.559 6.986 11.13 7.283 12.03

Note: The bandwidth(s) are selected using the NR method for our estimator and the LSCV and the PI methods for the
MP estimator.



simulated data, we draw B= 2000 bootstrap samples and then calculate the bootstrap variance S2
B and the two confidence

intervals (standard normal and percentile) using the formulas provided in Section 2.5. The consistency of SB will be
assessed by comparing its average (here after ASDB) with the simulation-based empirical standard deviation ESD =√

1000−1∑
l

(
ÂUCl − 1000−1∑

lÂUCl

)2
, where ÂUCl is the AUC estimate from the lth simulated data. On the other hand,

the validity and precision of the proposed confidence intervals will be assessed by calculating their coverage probabilities
(CP) and their average widths (AW), respectively. The former refers to the proportion of times that the confidence interval
encloses the true AUC value and the latter is the average difference between the lower and upper limits of the confi-
dence intervals. Table 7 shows the obtained results for data generated according to the first scenario with sample sizes
n= 100,400, censoring rates 20% and 50%, p= 0.25,0.5, and t = 0.3,1.0,3.9. From this table, we can first notice that ASDB
increases with the censoring rate and decrease with the sample size. Also, ASDB remains close to ESD and the difference
between these two quantities decreases as sample size increases. Next, regarding the confidence intervals, we notice that,
globally, for all the cases, the coverage probabilities are close to the nominal level of 95% and improve (deteriorate) as n
(% of censoring) increases. On the other hand, the average widths decrease (increase) with sample size (censoring). The
percentile method lead to the best performances, both in terms of coverage probability and average width. The classi-
cal normal method gives some unsatisfactory results when the sample size is small and/or the percentage of censoring
is high. These results clearly demonstrate that the proposed bootstrap provides a good approximation of the sampling
distribution of ÂUC.

5 REAL DATA ANALYSIS

To illustrate our method, we apply it to a real data set from a randomized placebocontrolled trial of the drug
D-penicillamine for treating primary biliary cirrhosis (PBC) of the liver conducted at the Mayo Clinic between 1974 and
1984. A total of 312 subjects were randomized to the treatments and among these 125 died by the end of the follow-up
and the remaining are censored subjects. Heagerty and Zheng4 used this data to illustrate their proposed time-dependent
ROC curve estimator. They fitted a Cox model and developed two prognostic scores. This data are available in the R
package survivalROC.55 For the purpose of demonstration, we use here the prognostic score derived by Heagerty and
Zheng using the following five variables: log(bilirubin), albumin, log(prothrombin time), edema, and age. Figure 2 dis-
plays the time-dependent ROC curves estimated using the proposed boundary corrected smooth ROC curve estimator,
the MP method, and the proposed empirical (nonsmoothed) method evaluated at the prediction times t = 3, 6 years.
The boundary corrected smooth ROC estimator was calculated using the NR bandwidth selection method. As for the
MP method, we used the nondiagonal least squares cross-validation method. The estimated ROC curves for the bound-
ary corrected smooth and the empirical (nonsmoothed) methods are very close to each other, whereas the MP method
results in a smaller ROC, especially at 6 years prediction time. Table 8 shows the estimated time-dependent AUC with
the corresponding 95% bootstrap confidence intervals for the proposed smoothed and empirical methods. The reported
confidence intervals were calculated based on 2000 bootstrap samples using either the standard normal approach or
the percentile method. Regarding the importance of the marker’s discrimination ability, the obtained confidence inter-
vals reveals similar decision about the significance of the AUC values, since the “null” value (ie, 0.5) is not contained in
the intervals.

6 DISCUSSION

In this article, we proposed and investigated a nonparametric smoothed time-dependent ROC curve estimators based on
a weighted kernel smoothing technique for right censored time-to-event data. Our method relies on well-known kernel
techniques used to estimate cumulative distribution functions of random variables with bounded support. We derived
some asymptotic properties of the proposed estimators and suggested a boundary correction based on a quantile transfor-
mation method. An important problem in conducting kernel based estimation is the choice of bandwidth. The proposed
smooth estimators require selecting two bandwidth parameters: one for Beran’s weight calculation and one for smooth-
ing the ROC curve itself. To select the latter, we proposed three data-driven methods: the normal reference (NR), the
plug-in (PI), and the cross-validation (CV). In order to estimate the variability and construct confidence intervals for the
time-dependent ROC curve and its corresponding AUC, we proposed a bootstrap method.



T A B L E 7 The empirical
standard deviation (ESD), the
average bootstrap standard
deviation (ASDB), the coverage
probability (CP), and the
average width (AW) of
95%-bootstrap confidence
intervals obtained with the
smooth estimator using the
standard normal method
(normal) and the percentile
method computed for different
sample sizes (n), censoring rates
(%cen), p, and t values

n= 100 Normal Percentile

p %cen t ESD ASDB CP AW CP AW

0.25 20 0.3 0.061 0.062 0.943 0.243 0.945 0.243

0.25 20 1.0 0.050 0.050 0.942 0.194 0.945 0.193

0.25 20 3.9 0.044 0.043 0.937 0.168 0.946 0.166

0.25 50 0.3 0.067 0.066 0.936 0.261 0.943 0.260

0.25 50 1.0 0.063 0.059 0.940 0.233 0.944 0.232

0.25 50 3.9 0.066 0.061 0.890 0.240 0.930 0.236

0.50 20 0.3 0.059 0.059 0.944 0.233 0.945 0.232

0.50 20 1.0 0.047 0.046 0.934 0.180 0.935 0.179

0.50 20 3.9 0.037 0.036 0.925 0.140 0.939 0.139

0.50 50 0.3 0.065 0.064 0.933 0.249 0.932 0.248

0.50 50 1.0 0.058 0.055 0.928 0.216 0.937 0.214

0.50 50 3.9 0.054 0.050 0.890 0.197 0.917 0.194

n= 400

0.25 20 0.3 0.030 0.031 0.956 0.122 0.959 0.122

0.25 20 1.0 0.024 0.025 0.956 0.096 0.952 0.096

0.25 20 3.9 0.020 0.020 0.940 0.079 0.948 0.079

0.25 50 0.3 0.033 0.034 0.956 0.131 0.955 0.131

0.25 50 1.0 0.029 0.029 0.943 0.115 0.954 0.115

0.25 50 3.9 0.029 0.028 0.928 0.109 0.944 0.108

0.50 20 0.3 0.029 0.030 0.954 0.116 0.958 0.116

0.50 20 1.0 0.022 0.023 0.957 0.089 0.955 0.088

0.50 20 3.9 0.017 0.017 0.939 0.067 0.947 0.066

0.50 50 0.3 0.031 0.032 0.954 0.125 0.953 0.125

0.50 50 1.0 0.027 0.027 0.942 0.105 0.948 0.105

0.50 50 3.9 0.024 0.023 0.922 0.090 0.945 0.089

Note: Data simulated according to the first scenario.

F I G U R E 2 Estimated
time-dependent ROC curve from the
empirical (solid line), boundary corrected
smooth (dashed line), and the MP method
(dotted line) for 3 years (left) and 6 years
(right) prediction time False positive rate
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Proposed smoothed 95% bootstrap confidence interval

t Estimate Percentile Normal

3 0.891 [0.839, 0.932] [0.844, 0.939]

6 0.873 [0.821, 0.919] [0.824, 0.923]

Empirical (nonsmoothed)

3 0.898 [0.847, 0.940] [0.850, 0.944]

6 0.877 [0.826, 0.923] [0.827, 0.926]

T A B L E 8 The estimated AUC value with 95% bootstrap
confidence intervals using the percentile method and the
standard normal method (normal) from both the proposed
smoothed and empirical (nonsmoothed) methods for t = 3, 6 years

Our simulation results show better performance, in terms of the MIB and MISE, for the boundary corrected smooth
ROC estimator compared with the one without the boundary correction. Results for comparing the robustness of these
estimators suggest that the latter is relatively highly sensitive to the choice of the bandwidth parameter needed for smooth-
ing the ROC curve. However, both these estimators are almost insensitive to the choice the bandwidth needed for Beran’s
weight calculation. We also compared the performance of the three proposed bandwidth selection methods. From the
results, we found that these methods produce very similar results with slightly better performances of the NR (PI) method
for the ROC estimator with (without) boundary correction. The simulation results also show that the proposed smooth
estimators lead, in general, to better results compared with the method of Martínez-Camblor and Pardo-Fernández,28

which is, to the best of our knowledge, the only available competitor in the literature. Regarding the performance of
the proposed bootstrap confidence intervals estimation approach, we found that, globally, for all the cases, the coverage
probabilities are close to the nominal level of 95%. The percentile method lead to the best performances, both in terms
of coverage probability and average width, compared with the classical normal method which gives some unsatisfactory
results when the sample size is small and/or the percentage of censoring is high. The results clearly demonstrate that the
proposed bootstrap provides a good approximation of the sampling distribution of ÂUC. The methods also illustrated with
a real data analysis from the PBC data set. Finally, it is important to note that, in practice, a marker is typically built from
the observed data using a given statistical model (Cox, AFT, etc). In such a situation, before the model/marker can be
really used, the discrimination analysis, based on the ROC or the AUC, should always be coupled with a good calibration
algorithm.56,57

In this study we only considered a quantile transformation technique to correct the boundary problem. However,
considering other boundary correcting approaches, such as the reflection method, and comparing its performance with
the one used in this article is an interesting open problem. Furthermore, selecting the pilot bandwidth g of the plug-in
method, see Equation (11), based on the asymptotic mean square error is also another interesting research topic. Finally,
extending and investigating the proposed smoothing method to other metrics, such as standardized net benefit and net
reclassification improvement at the event rate, would be an interesting future research topic.

Finally, the proposed method is implemented in the open-source R-package cenROC, which is publicly available from
the GitHub repository (https://github.com/elghouch/cenROC).
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