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1) What is the problem being addressed by the manuscript and why is it important to the IEEE TMTT community? 

The demand for the higher data rate has necessitated the development new generation of mobile communication systems. 
Antennas interface the mobile communications devices to the transmission medium and their performance is affected by the 
environment such as the human body and/or other objects in its proximity. The environment can adversely affect the antenna 
impedance resulting in a mismatch with input of the RF front end [1-3]. This paper describes an effective adaptive antenna 
impedance matching control algorithm which has two cascaded control loops to independently control the impedance’s real- and 
imaginary-parts. Voltage and current are monitored in the matching network to reliably control the impedance and thereby reduce 
insertion-loss (IL). In addition, the proposed technique operates autonomously. 

2) What is the novelty of your work over the existing work? 

The proposed technique uses a tuning algorithm that converges to a matching point and does not require complex mathematical 
modelling of the system including its nonlinear control components. The system employs digital circuitry to generate the timing 
signal and simple analogue components. It is shown reliable convergence is realised inside the LC network’s tuning range. 
Furthermore, insertion-loss was minimised by using matching network components to monitor the voltage/current signals. The 
proposed technique enables autonomous control of adaptive antenna matching networks for optimum power transfer.   

3) Provide up to three references, published or under review, (journal papers, conference papers, technical reports, etc.) 

done by the authors/coauthors that are closest to the present work. Upload them as supporting documents if they are 

under review or not available in the public domain. Enter “N.A.” if it is not applicable.

[4] M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, E. Limiti, “Automated Reconfigurable 

Antenna Impedance for Optimum Power Transfer,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), pp.1461-1463. 

4) Provide up to three references (journal papers, conference papers, technical reports, etc.) done by other authors that 

are most important to the present work. Enter “N.A.” if it is not applicable.

This is an extension of Ref. [2]. Additionally, we have provided a comparison section to comparing the proposed work with the 
recent and related literature focusing on the adaptive impedance matching techniques, which have been presented in Refs. [15-36]. 

The novelty of the propose work is: (i) automated tuning of LC impedance matching network to compensate for antenna mismatch 
with the RF-front-end; (ii) use of a tuning algorithm that converges to a matching point without the need of complex mathematical 
modeling of the system and nonlinear control components (varactor-diode) are taken into account to realise rapid convergence of 
impedance matching; (iii) varactor-diodes with any range of capacitance are applicable, (iv) employs digital circuitry for timing 
generation and simple analogue components; (v) reliable convergence is realized inside the tuning range of the LC network; (vi) 
reduces insertion-loss by using matching network elements to monitor voltage/current signals; and, (vii) enables autonomous 
control of adaptive antenna matching networks for optimum power transfer.
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    Abstract- Matching the antenna’s impedance with the RF-front-

end is an issue for optimum power transfer, which affects 

radiation efficiency. This paper describes a technique for 

automatically tuning an LC impedance matching network to 

compensate for antenna mismatch with the RF-front-end. The 

technique converges to a matching point and does not require 

complex mathematical modelling of the system comprising non-

linear control components. The system implementing the 

technique employs digital circuitry for synchronization and to

realize relatively simple analogue circuits. Reliable convergence is 

realised inside the adjusting range of the LC network using a 

couple of control-loops whose purpose is to independently control 

the LC impedance. The systems insertion-loss is reduced by using 

matching network components that monitor the voltage/current 

variations. The technique enables autonomous control of adaptive 

antenna matching networks for optimum power transfer.   

     Keywords- LC impedance matching network (IMN), optimum

power transfer, antenna impedance, RF-front-end transceiver,

simple analogue circuits, couple of control-loops. 

I. INTRODUCTION

The demand for the higher data rate has necessitated the 
development new generation of mobile communication 
systems. Antennas interface the mobile communications 
devices to the transmission medium and their performance is 
affected by the environment such as the human body and/or 
other objects in its proximity. The environment can adversely 
affect the antenna’s impedance resulting in unwanted 
mismatch at the input of the RF-front-end [1]-[3]. In the 
transmission-mode and under the worst-case scenario the 
mismatch in the impedance can adversely affect the power-
amplifier performance resulting from reflected power, which is 
likely to reduce the life of the battery due to excessive energy 
consumption [4]. In the receive mode, the carrier-to-noise ratio 
is degraded.  
     To resolve the issue with impedance mismatch, isolators 
can be used however they can undermine the maximum 
radiated power and efficiency. In addition, isolators have a 
narrow bandwidth and therefore are unsuitable for multiband 
phones. Alternatively, the quality of the link can be maintained 
by applying adaptive impedance matching techniques [5],[6].
This technique is popular for maintaining system performance 
parameters, i.e. optimum radiated power, linearity of power-
amplifier, sensitivity of receiver, and power-efficiency.
Moreover, its applicable for wireless systems operating at 
multiple bands as it enables a single impedance matching 
network (IMN) to suffice. However, the use of adaptive IMN
in wireless systems are incumbered by stringent criteria on
insertion-loss (IL), degree of linearity, and tuning span. The 
use of adaptively controlled IMNs [7],[8] is only possible with 
the availability of highly linear and high Quality-factor 
tuneable components such as RF microelectromechanical 

(MEM) devices [9],[10], CMOS-switches [11],[12], silicon and 
Barium-Strontium-Titanate (BST) varactor diodes [13],[14]. 

Recent works reported in literature on adaptive impedance-
matching include: (i) a T-shaped adaptive impedance matching 
system that refers to predetermined load-Q information for 
different matching conditions to implement the impedance 
matching [15]. Here the T-shaped network uses tuneable 
capacitors that are controlled by digital relays. The frequency 
range for tuning is limited to between 10-95 MHz; (ii) the use 
of fuzzy inference system to construct the mapping relationship 
between load impedance and the matched capacitor set [16].
This technique is applied to optimise power transfer between 
coupled coils at a fixed frequency; (iii) the use of a machine 
learning strategy based on neural networks for the real-time 
range-adaptive automatic impedance matching of wireless 
power transfer applications [17]. Here the voltage controlled 
variable capacitors are employed in a π-type matching circuit. 
The matching is implemented for different gap spacing 
between the transmitter and receiver coils at a fixed frequency; 
and (iv) using RF MEMS based on a coplanar waveguide 
based on suspended bridges for impedance tuning [18]. The
tuning is controlled by a variable applied DC voltage to the 
bridges over 1-6 GHz. 
     This paper describes an effective adaptive antenna 
impedance matching control algorithm. The IMN includes a
couple of control-loops for independently controlling the
impedance. It senses the voltage/current in the matching 
network to reliably control the real and imaginary parts of 
impedance and thereby reduce IL. In addition, the proposed 
technique operates autonomously.  

Rest of the paper has been organized as follow as. The 
proposed approach to control antenna-impedance matching has 
been described in Section II. Section III presents controlling 
antenna-impedance matching based on LC network, which has 
been divided to two sub-sections of (i) series LC network, and 
(ii) parallel LC network. Adaptive control of parallel LC 
network has been illustrated in Section IV. Next section 
explains the LC-network adjusting zone. The Insertion loss has 
been presented in Section VI. Finally the paper has been 
concluded in the last Section VII. 

II. PROPOSED APPROACH TO CONTROL ANTENNA-IMPEDANCE

MATCHING

The proposed configuration of the adaptive matching system 
is depicted in Fig.1. In the transmit mode it consists of a
matching network, directional coupler for mismatch 
measurement, a switch, switching timing generator, and time 
constant generator. Varactor diodes in the matching network 
provide electronically controllable capacitance. The system 
uses the magnitude of the return-loss (Г) that is measured 
between the RF-source and the matching circuit input for 
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impedance matching. As information on the Г phase is also 
essential to minimize the degree of mismatch the system uses a 
test signal to determine whether the mismatch increases or 
decreases. This information is used to precisely control the 
capacitance in the matching network. 

Fig.1.Configuration of the proposed adaptive matching system.

     Protocol used here for adaptively matching involves 
measuring the degree of mismatch with the detection circuitry.
This is achieved by turning the switch ‘on’ to increase the 

control voltage to the varactor#1 (VC1). If the mismatch 
worsens the system acknowledges this and turns the switch 
‘off’. If the mismatch reduces the system acknowledges this by 
keeping the switch ‘on’. This is maintained for the period of 
the control frame for VC1. In the time frame period of VC1, the 
control voltage to the varactor#2 (VC2) is maintained at the 
value of the last time frame of the VC2. The voltage is 
maintained using the sample-and-hold circuitry. At the end of 
the time frame period of VC1, the control voltage for VC1 is 
maintained and the time frame period commences for VC2. 
Compared to other conventional techniques that use the 
steepest descent algorithm for optimization, the merits of the 
proposed system are: (i) no need for complex mathematical 
modelling; (ii) the nonlinearity of the control elements 
(varactor-diode) are taken into account to realise rapid 
convergence of impedance matching; and (iii) varactor-diodes 
with any range of capacitance are applicable. As it is not 
possible to obtain a desired varactor-diode with the required 
capacitance range the only option therefore is to use an 
available varactor-diode with a broader capacitance range. In
the system an appropriate inductance L needs to be chosen, 
which is determined by simulation through parametric analysis. 
To characterise the improvement in impedance mismatch time 
characteristics of the return-loss between the matching network 
and the RF-front-end was used. 

III. CONTROLLING ANTENNA-IMPEDANCE MATCHING BASED 

ON LC NETWORK

In the proposed technique the LC-network is extended in
comparison to Ref. [2] to include two loops comprising a serial 
LC sub-loop and a parallel LC sub-loop that are independent 
from each other, as shown in Fig.2. These loops can now 
control components constituting the impedance matching 

network. The control loops essentially convert an undefined 
load admittance Yload to the required matching impedance !"#$%& represented by [2] 

!"#$%& = '"#$%& + j ("#$%& (1)

The loop#1 controls the parallel and series capacitors )*#+#,,-,.
and )/-+0-/1, respectively, constituting the imaginary-part of the 

match impedance ("#$%&. The loop#2 controls the parallel and 
series capacitors )*#+#,,-,2 and )/-+0-/3, respectively, to set 

'"#$%&. '"#$%& is the real-part of the match impedance. The 
intermediate impedance (!04$-+"-50#$-) is given by [2] 

!04$-+"-50#$-= '04$-+"-50#$- + j (04$-+"-50#$- (2)

If loop#2 is frozen and the amplifier-gain .errors 6-++7+2 and 

6-++7+38become significant, the signal errors 9-++7+2 and 9-++7+3
will be insignificant.

'04$-+"-50#$- = : ; <=>?1
@A=1  (3)

               
Where '+-BC and D5+C are the magnitude of the reference and 

the detector constant, respectively, of loop#2 setting '"#$%&.
Loop#2 introduces an intermediate reactance defined by

(04$-+"-50#$- =
@AE1
F=>?1 G :  (4) 

Where (+-BC and D5HC are the magnitude of the reference and 

the detector constant, respectively, of loop#2 setting ("#$%&.  
Similarly,  if loop#1 is frozen  and the amplifier-gain errors 
6-++7+. and 6-++7+1are significant, the signal errors 9-++7+. and 

9-++7+1will be insignificant .and, .by .approximation, .hold .true 

'"#$%& I J ; <=>?.
@A=. ;

<=>?1
@A=1      (5) 

Where '+-BK and D5+K are the magnitude of the reference and 

the detector constant, respectively, of loop#1 setting '"#$%&.
Loop#1 introduces .an intermediate reactance ("#$%& defined 
by

("#$%& =
@AE.
F=>?. ; @AE1

F=>?1   (6) 

Where (+-BK and D5HK are the reference value and the detector 

constant, respectively, of the first loop setting ("#$%&. From 
Eqn. (1) !"#$%& can be written as

!"#$%& = J ; <=>?.
@A=. ;

<=>?1
@A=1 ; LM@AE.F=>?. ; @AE1

F=>?1N  (7) 

Eqn. (7) confirms the matched impedance is not dependent.of
O,7#5, the amplifier gain errors, and. the magnitude of the 
matching-network .components.
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Fig.2. Schematic diagram for independent control of the matched impedance !"#$%& of an LC network. 

Monitoring impedance. mismatch involves monitoring of 
RF signal and converting it to. dc. As the impedance is a
function of voltage and current, the RF voltage. and RF 
current. can be sensed to establish the impedance. Fig.3 shows 
the point of voltage measurement “v” and differential. voltage. 
across a. monitoring component is used to measure the current. 
“i” and hence its reactance. (/-4/- can be determined. The 
monitoring component can be either an inductance or. 
capacitance that .is part of the tuneable IMN. The impedance at 
the node Z is determined by taking the ratio between the 
outputs of the two buffer-amplifiers in Fig.3.  

! I H
P(/-4/-            (8) 

O I P
H

K
FQ>RQ>              (9) 

Fig.3. Impedance Z or admittance Y can be deduced by sensing the voltage “v” 

and current “i”.

Individual components representing the impedance can be 
determined from the RF signals. ‘x’ and ‘y’ using the detector. 
configuration shown in Fig.4. Impedance detection requires 
applying voltage information to input ‘x’

S I 6Hcos8MTU V ; WHN  (10) 

and current information.to input “y”  

X I 6P cosYTU V ; WPZ U [ K
FQ>RQ>[ U \]

^
3 (11) 

Input signal ‘x’ is fed the first three mixers, i.e. to mixer #1 

with _`° shifted in phase, to mixer #2 with a limited amplitude, 
and to mixer #3. Whereas input signal ‘y’ is fed to the same 

mixers with _`° shifted in phase and is also applied to mixer #4
with limited amplitude to generate cosine and sine terms of the 
phase difference between ‘x’ and ‘y’, both corresponding to 
magnitudes 6H and 6P. Mixers 1 & 2, and mixers 3 & 4 are 

used to find the magnitudes 6H and 6P of input signals ‘x’ and 

‘y’, respectively. The output signal of mixers #1 & #2 is split 
by the output signal of mixers #3 & #4 and vice versa to obtain 
the detected impedance !5-$-%$, represented by 

!5-$-%$ I '5-$-%$ ; L(5-$-%$  (12) 

where   '5-$-%$ I #×a
5     (13) 

(5-$-%$ I %×5
#     (14) 

W5-$-%$ I WH G WP   (15) 

where a, b, c, and d are defined as 

b I Jd6H cosMW5-$-%$N U K
FQ>RQ>  (16) 

e I f
C 6H sinMW5-$-%$N    (17)

g I d6P cosMW5-$-%$N     (18) 

h I f
C 6P sinMW5-$-%$N U K

FQ>RQ>  (19) 

From Eqn.(16)-(19), the real and imaginary parts of the 
detected impedance are specified as follow as: 

'5-$-%$ I CfjE1klm8MpA>q>rqNmtu8MpA>q>rqN8
jv mtuMpA>q>rqN    (20) 

(5-$-%$ I fjv1 klmMpA>q>rqN mtuMpA>q>rqN
wjEklm8MpA>q>rqN8    (21) 

By combining Eqns. (20) and (21) the impedance detected is 
given by  

!5-$-%$ I
CfjE1klm8MpA>q>rqNmtu8MpA>q>rqN8

jv mtuMpA>q>rqN ; L fjv1 klmMpA>q>rqN mtuMpA>q>rqNwjEklm8MpA>q>rqN8
 (22) 

According to Eqns. (20) and (21), the detected values of the 
impedance are independent of the frequency. This means 
frequency compensation is not required for high accuracy 
across a wideband frequency. The detected values of the 

impedance are related .to the ratios 
jE
jv and 

jv
jE, hence they are. 
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independent. of the power of the RF signal transmitted. 
Moreover, according.to Eqn. (15), W5-$-%$ is the differential 
phase difference between WH and WP. 

Fig.4. Quadrature detector that generates the constituent parts of the detected 
impedance from the return-loss.  

By simply exchanging the detector input signals ‘x’ and ‘y’
the detector. generates the real-. and imaginary-parts of the 
admittance. When input signals ‘x’ and ‘y’ represent. the 
reflected and incident power, the detector generates a reading. 
of return-loss (Г). The accuracy of the detector over a wide 
output power range, which is essentially dependent on limiter. 
and its amplitude. dependent. phase-delay, is traded-off. 
against power. consumption. The detector needs to be operated 
at a lower ‘on/off’ duty-cycle (<1%) to conserve power since 
the settling time of the detector is normally short (10-100 s) 
compared. to the impedance variation of the antenna. The 
detector is susceptible to receiving unwanted signals as it’s not 

frequency selective. These signals can cause the direction of 
the energy flow to change when they are stronger than the 
transmit signal. In that case the detector. reads the network. 
impedance. seen into the reverse. direction. However, at lower
output. power (<0.dBm), there is no advantage from .adaptive 
.impedance .matching, and the .detector .can .be .turned . ‘off’

to prevent erroneous control.  

A. Series LC Network 

     In Fig.5, the matched impedance !"#$%& of a series LC

network represents the tuneable network of the sub-loops 3 and 
4 of the first and second loops, respectively, in Fig.2, and is 
given by 

  !"#$%& I '"#$%& ; L("#$%&   (23) 

in which the matched reactance ("#$%& is given by 

("#$%& I (xQ>=y>Q ; (zQ>=y>Q ; (,7#5  (24) 

where      
     (xQ>=y>Q I (xQ>=y>Q81 ; (xQ>=y>Q83   (25) 

and       
(zQ>=y>Q I (zQ>=y>Q81 ; (zQ>=y>Q83      (26) 

and the matched resistance '"#$%& is   

             '"#$%& I ',7#5     (27) 

Tuning the series capacitor values )/-+0-/ affects ("#$%&,
which is a function of tuning reactance ((zQ>=y>QN, whereas. the 

matched. series. resistance ('"#$%&) .is equivalent to load 
resistance. (',7#5). In adaptive. matching. .networks, the 
orthogonal property of .resistance and .reactance is exploited in
the .adaptive LC network to modify the matched .reactance 
M("#$%&) to the required .value .without .affecting the .matched 
.resistance M'"#$%&). 

Fig.5. Adjustable LC network to provide the required inductive and capacitive 
load reactance. 

The proposed series LC network is used to alter the real-part of 
the matched admittance. The matched impedance (!"#$%&N can 
be represented by matched admittance given by 

     O"#$%& I {"#$%& ; L|"#$%&   (28) 

where    {"#$%& I M<}~�AN1�MF��qr�N1
<}~�A    (29) 

and    |"#$%& I M<}~�AN1�MF��qr�N1
F��qr�    (30) 

The matched conductance M{"#$%&N is a .symmetric .function 
of ("#$%& .with a maxima of : ',7#5� . Consequently, a .series 
LC network, shown in Fig.6, can only convert load resistance 
',7#5 to a conductance that is smaller than : ',7#5� . Two 
solutions. exist for. the condition  {"#$%& � : ',7#5�  .given. by

         ("#$%& I <}~�A
���qr��M: ; {"#$%&',7#5N   (31) 

Fig.6. Series.LC network to control the real-part of the matched.admittance 

{"#$%&. 

Substitution of Eqn. (31) into (30) gives corresponding 
matched susceptance given by 
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|"#$%& I �� <}~�A
���qr� ; {"#$%&',7#5� ; :  (32) 

B. Parallel LC Network

Fig.7 shows the matched admittance O"#$%& of a parallel LC

network and representing the tuneable network of the sub-
loops 1 and 3 of the first and second loops, respectively, (see 
Fig.2), is defined as 

   O"#$%& I {"#$%& ; L|"#$%&     (33) 
Where       
         |"#$%& I |x��=�}}>} ; |z��=�}}>} ; |,7#5 (34) 

      
            |x��=�}}>} I |x��=�}}>}8K ; |x��=�}}>}8�  (35) 

      |z��=�}}>} I |z��=�}}>}8K ; |z��=�}}>}8�  (36) 

and the matched conductance {"#$%& is presented by 

            {"#$%& = {,7#5    (37) 

Matching admittance (O"#$%&N of this parallel.LC-network 
corresponds. to. O04$-+"-50#$- of the LC-network. The matched 
susceptance M|"#$%&N is a function of tunable susceptance 
(|z��=�}}>}N, .whereas the matched. conductance. {"#$%& is 

equal .to load conductance {,7#5 and independent |z��=�}}>}.  O"#$%&M)*#+#,,-,N and the orthogonal. property of 

conductance/susceptance can .be exploited for adaptive. 
control. of the IMN by tuning the matched susceptance to the 
required .value without adversely affecting the matched 
conductance.

Fig.7. Variable parallel LC network and its matched admittance O"#$%&. 

Moreover, the parallel LC network. allows control of the 
real-part of '"#$%&. Matched admittance. (O"#$%&N can be 
represented by matched. impedance (!"#$%&N thus 

    !"#$%& I '"#$%& ; L("#$%&       (38) 

where   '"#$%& I �}~�A����qr�
M�}~�AN1      (39) 

    ("#$%& I �}~�A����qr�
M���qr�N1      (40) 

In Fig. 8, '"#$%& is a.symmetric function. of |"#$%& with a 
maxima of : ',7#5� . . 

Fig.8. Parallel LC network to control the real-part of the matched impedance 
'"#$%&. 

Hence, a parallel. LC. network. can transform load 
conductance M{,7#5N to a .resistance that.is smaller than 
: ',7#5� . When  '"#$%& � : {,7#5� , two solutions are 
obtained from Eqn. (39) and given by 

  |"#$%& I <��qr�
�}~�A �M: ; '"#$%&{,7#5N   (41) 

Substitution of Eqns. (36) into (35) gives the two matched 
reactances 

("#$%& I �}~�A
<��qr��M'"#$%&{,7#5N ; :       (42) 

IV. ADAPTIVE CONTROL OF PARALLEL LC NETWORK 

The algorithm that was developed determined the 
convergence operation of the control loop. In fact, the 
tuneable capacitor, which is essentially a switched-capacitor 
array, is controlled by the sign of the error signal 
SIGN(9-++7+) generated from the series and parallel control 
loops. The up/down counter (U/D) is used to store the value 
of the control array. The output of the U/D is incremented or 
decremented in steps of one least significant bit, which 
depends on the error signal.

The convergence operation can be examined in open-
loops conditions. At the controller when the loops (Figs. 6 
and 8) are opened we sense SIGN(9-++7+) across the entire. 
ranges of ("#$%& and |"#$%&, SIGN(9-++7+) is +1. Hence, the 
directions of capacitor controls shown in Fig. 6 and 8 are not 
definitive. This can be resolved by using the detected. 
information on. the signs .of .the .matched susceptance 
SIGN(-|"#$%&) and the matched reactance SIGN(-("#$%&), 
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respectively, as a secondary .control criterion. shown in Fig.9 
by dotted green blocks. The secondary feedback path allows 
the series and parallel control. loops. Criteria to be 
determined by the two detection. thresholds. for each loops 
of {"#$%& = '+-B-+-4%-Q>=y>Q  and |"#$%& = 0 (for series 

control. loop shown in Fig.6) and '"#$%& = '+-B-+-4%-��=�}}>}
and ("#$%& = 0 (for parallel control loop. shown in Fig.8).
Assuming. that detector. constants D/-+0-/ and D*#+#,,-, are 

equated to one,. 9-++7+ is now represented by

9-++7+Q>=y>Q = SIGN(-|"#$%&) . '+-B-+-4%-Q>=y>QG'5-$-%$7+Q>=y>Q
               (43)
9-++7+��=�}}>} = SIGN(-("#$%&) . '+-B-+-4%-��=�}}>}G'5-$-%$7+��=�}}>}           (44) 

As '+-B-+-4%-, '"#$%& and {"#$%& are always positive, error 

signal 9-++7+ becomes strongly negative when SIGN(-
("#$%&) and SIGN(-|"#$%&) are negative. Hence, 
SIGN(9-++7+) is now unambiguous, and the first and second 
loops converge .reliably .to .operating .over the .entire .range 
of |"#$%& and ("#$%&. 

The impedance matching network characteristics are 
applied to create .an adaptive LC network. that comprises a
pair of loops, as shown in Fig.9. Control loop#1 sets the real-
part of '"#$%&. The sensing inductor �/-4/- consists of the 
series LC network controlled by the both loops. The loop#2
transforms the matched reactance ("#$%& to (+-B-+-4%-. In

fact, no information. on the real-part of the matched 
impedance is required. This makes. '5-$-%$7+ surplus to 
requirement. If ("#$%& is controlled iteratively the sign of 
(5-$-%$7+ is significant.  

Fig.9. LC network implemented. An extra feedback path is shown in dotted ‘green’ blocks. This feedback ensures the first and second loops to function in their 
stable regions. 

V. LC-NETWORK ADJUSTING ZONE

The LC-network impedance adjusting zone is determined by 
the relationship between. the impedance correction and the 
required capacitor’s adjusting range for the LC network.in 
Fig.9. As the .impedance transformation needs to be done in 
two steps, the intermediate impedance !04$-+"-50#$- is first 
defined that is .required to ..an arbitrary load-admittance 
O,7#5 I {,7#5 ; L|,7#5 to the required !"#$%& I '"#$%& ;L("#$%&. For. this reason the parallel section converts the O,7#5
to a transitional impedance, whose. real-part '04$-+"-50#$-
should be .equal to the .matched .resistance '"#$%&. Using (34)
and (39) and rewriting define '04$-+"-50#$- as

'04$-+"-50#$- I '"#$%& I M�}~�AN1�M�}~�A��Q>=y>Q����=�}}>}N1
�}~�A   

(45) 

Similarly, from Eqn. (42), the imaginary-part of. this 
intermediate.impedance.is given by 

     (04$-+"-50#$- I '"#$%&� <��qr���}~�A
<��qr��}~�A�K        (46) 

and the corresponding intermediate susceptance is given by  

       |04$-+"-50#$- I {,7#5� <��qr���}~�A
<��qr��}~�A�K        (47) 

From. Eqn. (34), the required. parallel capacitor. )*#+#,,-, is. 

given. by. 

)*#+#,,-, I wfB
CfBM�yRq>=�>Ay�q>��}~�A�����=�}}>}N                 (48) 

Eqns. (45) and (46) define )*#+#,,-, that. .is. needed to realise a

desired .correction .from .a .load {,7#5 ; L|,7#5 to a .matched 
resistance '"#$%& at frequency. f and parallel inductor 
susceptance |x��=�}}>}. Eqn. (24) can be rewritten to give the 

required magnitude of capacitance expressed as  

)/-+0-/ I Jd�M(04$-+"-50#$- ; ("#$%& ; (xQ>=y>QN (49)

Eqns. (45) and (46).define the .series .capacitance )/-+0-/ that. 
is. required to correct from a load {,7#5 ; L|,7#5 to. a
matched. resistance '"#$%& and. a matched reactance ("#$%& at 
a frequency f and known inductor reactance (xQ>=y>Q. It should 

be noted that )/-+0-/ is independent of load susceptance. 
Furthermore, to realise a physically realizable solution, these 
two formulations are valid when.the series and parallel 
capacitors and the.square-root argument are positive. The last 
one is met for 
                     '"#$%& � : {,7#5�   (50) 

which. represents the impedance down-converting properties. 
of this LC network. For real-to-real impedance conversion, this 
transformation can only be descending, which outlines the 
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impedance adjusting zone. The boundary condition for the up-
converting LC network in Fig.10 is obtained when 

  |x��=�}}>} � |04$-+"-50#$- ; |,7#5  (51) 

and. (xQ>=y>Q � (04$-+"-50#$- G ("#$%&  (52) 

     Impedance adjusting range is bounded by fixed inductors 
�*#+#,,-, and �/-+0-/. Susceptance of the parallel inductor sets 

the correction limit of the capacitive mismatch, and the
reactance of the series inductor sets the correction limit of the  
capacitive intermediate impedances. 
 Capacitance ratios to transform an arbitrary load admittance 
O,7#5 I {,7#5 ; L|,7#5 to a required matched impedance 
!"#$%& needs to be determined. To do this the network should 
be able to adjust load admittance O,7#5K I {,7#5K ; L|,7#5K to
match with impedance !"#$%&K with a real-part '"#$%&K, at a 
given frequency f1, by a .parallel capacitance )*#+#,,-,K and a. 

series. capacitance )/-+0-/K. Furthermore, the same network 
must be able to tune a load admittance. O,7#5C I {,7#5C ;L|,7#5C to. !"#$%&C with resistance. '"#$%&C, at a frequency f2,
by capacitance )*#+#,,-,C and a series. capacitance )/-+0-/C. 

From Eqn. (46), the required capacitance adjusting zone of
)����=�}}>} , given. by the capacitor ratio, can be expressed as 

)����=�}}>} I B.
B1 �

�yRq>=�>Ay�q>1��}~�A1�����=�}}>}1
�yRq>=�>Ay�q>.��}~�A.�����=�}}>}.� (53)   

and, similarly, from Eqn. (47), for the series capacitor as 

)��Q>=y>Q I B.
B1 �

FyRq>=�>Ay�q>.�F��qr�.�F�Q>=y>Q.FyRq>=�>Ay�q>1�F��qr�1�F�Q>=y>Q1�       (54) 

The above equations yield four solutions at the two frequencies 
(f1 and f2). This is because we can realise matching by 
transforming. the inductive. or capacitive intermediate. 
impedance. In addition, the equations reveal the capacitance 
ratio. is proportional to the frequency range of operation.  

VI. INSERTION LOSS

     The improvement in output power resulting from adaptive 
impedance matching is eroded by the insertion-loss of the 
matching network. In the case of parallel elements in the LC-
network the loss is equivalent to the ratio between its loss and 
load conductance; and in the case for series elements, the loss 
is equivalent to the ratio between its loss and load resistance. A
more accurate expression of loss is given by [2] 

�� I :`U �o�8M: ; {,7#5 � ����=�}}>}
[����=�}}>}[

; ����=�}}>}
[����=�}}>}[

� ;
'"#$%& � ��Q>=y>Q

[F�Q>=y>Q[
; ��Q>=y>Q

[F�Q>=y>Q[
�N      (55) 

The above expressions reveal the insertion-loss is a function of 
the impedance transformation step, as well as the component. 
values. used. to realise the transformation. To achieve a 

minimum loss, the susceptance of the parallel elements. and 
the reactance. of the series. elements must be small. 

VII. STATE-OF-THE-ART IMNS COMPARISON 

In this section, the characteristics of the proposed impedance 
matching network (IMN) has been mentioned and compared 
with the recent State-of-the-Art literature. The results are 
summarized in Table I, which illustrates that, the novelty of the 
propose work is: (i) automated tuning of LC impedance 
matching network to compensate for antenna mismatch with 
the RF-front-end; (ii) use of a tuning algorithm that converges 
to a matching point without the need of complex mathematical 
modeling of the system and nonlinear control components 
(varactor-diode) are taken into account to realise rapid 
convergence of impedance matching; (iii) varactor-diodes with 
any range of capacitance are applicable, (iv) employs digital 
circuitry for timing generation and simple analogue 
components; (v) reliable convergence is realized inside the 
tuning range of the LC network; (vi) reduces insertion-loss by 
using matching network elements to monitor voltage/current 
signals; and, (vii) enables autonomous control of adaptive 
antenna matching networks for optimum power transfer.

VIII. CONCLUSIONS 

Adaptive impedance matching technique is proposed that 
controls reactive elements in an LC network for automatic 
compensation of fluctuations in antenna impedance. By
cascading the two control loops we can achieve independent 
control of the real. and the imaginary-parts of the antenna 
impedance for fast convergence. Appropriate range of the 
capacitances was investigated for the varactor diodes as well as 
a useful way to realise improvement. in the mismatch by 
employing available varactor diodes. Prior to integration of the 
proposed technique in mobile wireless systems consideration 
will need to be given on how the impedance matching 
improvement is offset by loss introduced by its 
implementation.  
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TABLE I. STATE-OF-THE-ART IMNS COMPARISON

Refs. Methodology Impedance Type Structure Implementation Bandwidth Notes

[2] Numerical Insertion Loss Flexible Combination Narrow
Complex control system, automated tuning, 
simple analogue components, complex 
mathematical modeling

[4] Analytical Single Flexible Combination Wide alleviated method, linear control components,
simple analogue components, automated tuning

[15] Numerical Single Fixed Passive Narrow
Complex mathematical modeling, alleviated
method, complex control system

[16] Numerical Single Fixed Passive Narrow
Transformers used, complex control system, 
expensive transformers, nonlinear control 
components

[17] Analytical Insertion Loss Fixed Combination Narrow Complex control system, nonlinear control 
components, transformers used

[18] Analytical Insertion Loss Fixed Passive Wide Alleviated method, complex mathematical 
modeling, heavy and expensive transformers

[19] Analytical Single Fixed Combination Narrow Transformers used, alleviated method

[20] Analytical Insertion Loss Fixed Passive Narrow Bulky, heavy and expensive transformers
[21] Numerical Single Flexible Passive Wide Complex control system, nonlinear control 

components
[22] Analytical Single Flexible Combination Narrow Control system not discussed

[23] Analytical Single Flexible Combination Narrow/Wide
Transformers used, Complex control system, 
nonlinear control components

[24] Analytical Single Fixed Combination Narrow Complex control system, alleviated method

[25] Analytical Insertion Loss Fixed Passive Narrow Bulky, heavy and expensive transformers

[26] Numerical Insertion Loss Fixed Passive Narrow
Transformers used, complex control system, 
expensive transformers, nonlinear control 
components

[27] Analytical Insertion Loss Fixed Passive Narrow Alleviated method, complex control system, 
expensive transformers

[28] Analytical Insertion Loss Fixed Combination Narrow Transformers used, bulky, complex control
system, expensive transformers

[29] Numerical Insertion Loss Fixed Combination Narrow Alleviated method, complex mathematical 
modeling, expensive transformers

[30] Numerical Insertion Loss Flexible Passive Narrow Complex control system, nonlinear control 
components, transformers used

[31] Analytical Insertion Loss Fixed Passive Wide Alleviated method, transformers used, nonlinear 
control components, complex control system

[32] Analytical Single Fixed Combination Wide Fully integrated, tuning for load (antenna) 
matching, nonlinear control components

[33] Analytical Insertion Loss Fixed Passive Narrow Alleviated method, complex control system, fast 
operating speed, low development cost

[34] Analytical Insertion Loss Fixed Passive Narrow Transformers used, alleviated method, complex
control system, nonlinear control components

[35] Analytical Insertion Loss Flexible Combination Narrow
Fully integrated, complex control system, 
expensive transformers, nonlinear control 
components

[36] Analytical Insertion Loss Flexible Combination Wide
Transformers used, fully integrated, nonlinear 
control components, complex mathematical 
modeling

This 

work Numerical Insertion Loss Flexible Combination Wide

Automated tuning, no need of complex 
mathematical modeling, linear control 
components, digital circuitry, simple analogue 
components, reliable convergence, reduction in 
insertion-loss, autonomous control of adaptive 
antenna matching networks, optimum power 
transfer, fully integrated

Combination: Passive and Active 
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1

1) What is the problem being addressed by the manuscript and why is it important to the IEEE TMTT community?

The demand for the higher data rate has necessitated the development new generation of mobile communication systems. 
Antennas interface the mobile communications devices to the transmission medium and their performance is affected by the 
environment such as the human body and/or other objects in its proximity. The environment can adversely affect the antenna 
impedance resulting in a mismatch with input of the RF front end [1-3]. This paper describes an effective adaptive antenna 
impedance matching control algorithm which has two cascaded control loops to independently control the impedance’s real- and 
imaginary-parts. Voltage and current are monitored in the matching network to reliably control the impedance and thereby reduce 
insertion-loss (IL). In addition, the proposed technique operates autonomously.

2) What is the novelty of your work over the existing work?

The proposed technique uses a tuning algorithm that converges to a matching point and does not require complex mathematical 
modelling of the system including its nonlinear control components. The system employs digital circuitry to generate the timing 
signal and simple analogue components. It is shown reliable convergence is realised inside the LC network’s tuning range. 
Furthermore, insertion-loss was minimised by using matching network components to monitor the voltage/current signals. The 
proposed technique enables autonomous control of adaptive antenna matching networks for optimum power transfer.  

3) Provide up to three references, published or under review, (journal papers, conference papers, technical reports, etc.) 

done by the authors/coauthors that are closest to the present work. Upload them as supporting documents if they are 

under review or not available in the public domain. Enter “N.A.” if it is not applicable.

[4] M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, E. Limiti, “Automated Reconfigurable 
Antenna Impedance for Optimum Power Transfer,” 2019 IEEE Asia-Pacific Microwave Conference (APMC), pp.1461-1463.

4) Provide up to three references (journal papers, conference papers, technical reports, etc.) done by other authors that 

are most important to the present work. Enter “N.A.” if it is not applicable.

This is an extension of Ref. [2]. Additionally, we have provided a comparison section to comparing the proposed work with the 
recent and related literature focusing on the adaptive impedance matching techniques, which have been presented in Refs. [15-36].

The novelty of the propose work is: (i) automated tuning of LC impedance matching network to compensate for antenna mismatch 
with the RF-front-end; (ii) use of a tuning algorithm that converges to a matching point without the need of complex mathematical 
modeling of the system and nonlinear control components (varactor-diode) are taken into account to realise rapid convergence of 
impedance matching; (iii) varactor-diodes with any range of capacitance are applicable, (iv) employs digital circuitry for timing 
generation and simple analogue components; (v) reliable convergence is realized inside the tuning range of the LC network; (vi) 
reduces insertion-loss by using matching network elements to monitor voltage/current signals; and, (vii) enables autonomous 
control of adaptive antenna matching networks for optimum power transfer.
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Optimum Power Transfer in RF-Front-End Systems Using 
Adaptive Impedance Matching Technique 

Mohammad Alibakhshikenari, Member IEEE, Bal S. Virdee, Senior Member IEEE, Mohammad Naser-Moghadasi, Senior 
Member IEEE, Chan H. See, Senior Member IEEE, Raed Abd-Alhameed, Senior Member IEEE, Francisco Falcone, Senior 

Member IEEE, Isabelle Huynen, Senior Member IEEE, Tayeb A. Denidni, Fellow IEEE, and Ernesto Limiti, Senior Member IEEE
     

    Abstract- Matching the antenna’s impedance with the RF-front-

end is an issue for optimum power transfer, which affects 

radiation efficiency. This paper describes a technique for 

automatically tuning an LC impedance matching network to 

compensate for antenna mismatch with the RF-front-end. The 

technique converges to a matching point and does not require 

complex mathematical modelling of the system comprising non-

linear control components. The system implementing the 

technique employs digital circuitry for synchronization and to 

realize relatively simple analogue circuits. Reliable convergence is 

realised inside the adjusting range of the LC network using a 

couple of control-loops whose purpose is to independently control 

the LC impedance. The systems insertion-loss is reduced by using 

matching network components that monitor the voltage/current 

variations. The technique enables autonomous control of adaptive 

antenna matching networks for optimum power transfer.  

     Keywords- LC impedance matching network (IMN), optimum 

power transfer, antenna impedance, RF-front-end transceiver, 

simple analogue circuits, couple of control-loops.

I. INTRODUCTION

    The demand for the higher data rate has necessitated the 
development new generation of mobile communication 
systems. Antennas interface the mobile communications 
devices to the transmission medium and their performance is 
affected by the environment such as the human body and/or 
other objects in its proximity. The environment can adversely 
affect the antenna’s impedance resulting in unwanted 
mismatch at the input of the RF-front-end [1]-[3]. In the 
transmission-mode and under the worst-case scenario the 
mismatch in the impedance can adversely affect the power-
amplifier performance resulting from reflected power, which is 
likely to reduce the life of the battery due to excessive energy 
consumption [4]. In the receive mode, the carrier-to-noise ratio 
is degraded. 
     To resolve the issue with impedance mismatch, isolators 
can be used however they can undermine the maximum 
radiated power and efficiency. In addition, isolators have a 
narrow bandwidth and therefore are unsuitable for multiband 
phones. Alternatively, the quality of the link can be maintained 
by applying adaptive impedance matching techniques [5],[6]. 
This technique is popular for maintaining system performance 
parameters, i.e. optimum radiated power, linearity of power-
amplifier, sensitivity of receiver, and power-efficiency. 
Moreover, its applicable for wireless systems operating at 
multiple bands as it enables a single impedance matching 
network (IMN) to suffice. However, the use of adaptive IMN 
in wireless systems are incumbered by stringent criteria on 
insertion-loss (IL), degree of linearity, and tuning span. The 
use of adaptively controlled IMNs [7],[8] is only possible with 
the availability of highly linear and high Quality-factor 
tuneable components such as RF microelectromechanical 

(MEM) devices [9],[10], CMOS-switches [11],[12], silicon and 
Barium-Strontium-Titanate (BST) varactor diodes [13],[14].

Recent works reported in literature on adaptive impedance-
matching include: (i) a T-shaped adaptive impedance matching 
system that refers to predetermined load-Q information for 
different matching conditions to implement the impedance 
matching [15]. Here the T-shaped network uses tuneable 
capacitors that are controlled by digital relays. The frequency 
range for tuning is limited to between 10-95 MHz; (ii) the use 
of fuzzy inference system to construct the mapping relationship 
between load impedance and the matched capacitor set [16]. 
This technique is applied to optimise power transfer between 
coupled coils at a fixed frequency; (iii) the use of a machine 
learning strategy based on neural networks for the real-time 
range-adaptive automatic impedance matching of wireless 
power transfer applications [17]. Here the voltage controlled 
variable capacitors are employed in a π-type matching circuit. 
The matching is implemented for different gap spacing 
between the transmitter and receiver coils at a fixed frequency; 
and (iv) using RF MEMS based on a coplanar waveguide 
based on suspended bridges for impedance tuning [18]. The 
tuning is controlled by a variable applied DC voltage to the 
bridges over 1-6 GHz.
     This paper describes an effective adaptive antenna 
impedance matching control algorithm. The IMN includes a 
couple of control-loops for independently controlling the 
impedance. It senses the voltage/current in the matching 
network to reliably control the real and imaginary parts of 
impedance and thereby reduce IL. In addition, the proposed 
technique operates autonomously. 
    Rest of the paper has been organized as follow as. The 
proposed approach to control antenna-impedance matching has 
been described in Section II. Section III presents controlling 
antenna-impedance matching based on LC network, which has 
been divided to two sub-sections of (i) series LC network, and 
(ii) parallel LC network. Adaptive control of parallel LC 
network has been illustrated in Section IV. Next section 
explains the LC-network adjusting zone. The Insertion loss has 
been presented in Section VI. Finally the paper has been 
concluded in the last Section VII.

II. PROPOSED APPROACH TO CONTROL ANTENNA-IMPEDANCE 
MATCHING

    The proposed configuration of the adaptive matching system 
is depicted in Fig.1. In the transmit mode it consists of a 
matching network, directional coupler for mismatch 
measurement, a switch, switching timing generator, and time 
constant generator. Varactor diodes in the matching network 
provide electronically controllable capacitance. The system 
uses the magnitude of the return-loss (Г) that is measured 
between the RF-source and the matching circuit input for 
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3

impedance matching. As information on the Г phase is also 
essential to minimize the degree of mismatch the system uses a 
test signal to determine whether the mismatch increases or 
decreases. This information is used to precisely control the 
capacitance in the matching network.

Fig.1.Configuration of the proposed adaptive matching system.

     Protocol used here for adaptively matching involves 
measuring the degree of mismatch with the detection circuitry. 
This is achieved by turning the switch ‘on’ to increase the 
control voltage to the varactor#1 (VC1). If the mismatch 
worsens the system acknowledges this and turns the switch 
‘off’. If the mismatch reduces the system acknowledges this by 
keeping the switch ‘on’. This is maintained for the period of 
the control frame for VC1. In the time frame period of VC1, the 
control voltage to the varactor#2 (VC2) is maintained at the 
value of the last time frame of the VC2. The voltage is 
maintained using the sample-and-hold circuitry. At the end of 
the time frame period of VC1, the control voltage for VC1 is 
maintained and the time frame period commences for VC2. 
Compared to other conventional techniques that use the 
steepest descent algorithm for optimization, the merits of the 
proposed system are: (i) no need for complex mathematical 
modelling; (ii) the nonlinearity of the control elements 
(varactor-diode) are taken into account to realise rapid 
convergence of impedance matching; and (iii) varactor-diodes 
with any range of capacitance are applicable. As it is not 
possible to obtain a desired varactor-diode with the required 
capacitance range the only option therefore is to use an 
available varactor-diode with a broader capacitance range. In 
the system an appropriate inductance L needs to be chosen, 
which is determined by simulation through parametric analysis. 
To characterise the improvement in impedance mismatch time 
characteristics of the return-loss between the matching network 
and the RF-front-end was used.

III. CONTROLLING ANTENNA-IMPEDANCE MATCHING BASED 

ON LC NETWORK

    In the proposed technique the LC-network is extended in 
comparison to Ref. [2] to include two loops comprising a serial 
LC sub-loop and a parallel LC sub-loop that are independent 
from each other, as shown in Fig.2. These loops can now 
control components constituting the impedance matching 

network. The control loops essentially convert an undefined 
load admittance Yload to the required matching impedance 

 represented by [2] !"#$ℎ

  =  + j  (1) !"#$ℎ &!"#$ℎ '!"#$ℎ

The loop#1 controls the parallel and series capacitors  ()"*"++,+1

and , respectively, constituting the imaginary-part of the (-,*.,-2

match impedance . The loop#2 controls the parallel and '!"#$ℎ

series capacitors  and , respectively, to set ()"*"++,+3 (-,*.,-4

.  is the real-part of the match impedance. The &!"#$ℎ &!"#$ℎ

intermediate impedance ( ) is given by [2] ./#,*!,0."#,

 =  + j  (2) ./#,*!,0."#, &./#,*!,0."#, './#,*!,0."#,

If loop#2 is frozen and the amplifier-gain .errors  and 1,**2*3

become significant, the signal errors  and  1,**2*4 3,**2*3
3,**2*4

will be insignificant. 

 = (3)&./#,*!,0."#, 1 +
&*,42

50*2

              
Where  and  are the magnitude of the reference and &*,42 50*2

the detector constant, respectively, of loop#2 setting . &!"#$ℎ

Loop#2 introduces an intermediate reactance defined by

 =  (4)'./#,*!,0."#,
5062

'*,42
― 1

Where  and  are the magnitude of the reference and '*,42 5062

the detector constant, respectively, of loop#2 setting . '!"#$ℎ

Similarly,  if loop#1 is frozen  and the amplifier-gain errors 
 and are significant, the signal errors  and 1,**2*1

1,**2*2
3,**2*1

will be insignificant .and, .by .approximation, .hold .true3,**2*2

     (5)&!"#$ℎ = 2 +
&*,41

50*1
+

&*,42

50*2

Where  and  are the magnitude of the reference and &*,41 50*1

the detector constant, respectively, of loop#1 setting . &!"#$ℎ

Loop#1 introduces .an intermediate reactance  defined '!"#$ℎ

by

 = (6)'!"#$ℎ
5061

'*,41
+

5062

'*,42

Where  and  are the reference value and the detector '*,41 5061

constant, respectively, of the first loop setting . From '!"#$ℎ

Eqn. (1)  can be written as !"#$ℎ

  = (7) !"#$ℎ 2 +
&*,41

50*1
+

&*,42

50*2
+ 8(

5061

'*,41
+

5062

'*,42
)

Eqn. (7) confirms the matched impedance is not dependent.of 
, the amplifier gain errors, and. the magnitude of the 9+2"0

matching-network .components.
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4

Fig.2. Schematic diagram for independent control of the matched impedance  of an LC network. !"#$ℎ

Monitoring impedance. mismatch involves monitoring of 
RF signal and converting it to. dc. As the impedance is a 
function of voltage and current, the RF voltage. and RF 
current. can be sensed to establish the impedance. Fig.3 shows 
the point of voltage measurement “v” and differential. voltage. 
across a. monitoring component is used to measure the current. 
“i” and hence its reactance.  can be determined. The '-,/-,

monitoring component can be either an inductance or. 
capacitance that .is part of the tuneable IMN. The impedance at 
the node Z is determined by taking the ratio between the 
outputs of the two buffer-amplifiers in Fig.3. 

            (8) =
6

:
'-,/-,

              (9)9 =
:

6

1

'-,/-,

Fig.3. Impedance Z or admittance Y can be deduced by sensing the voltage “v” 
and current “i”. 

Individual components representing the impedance can be 
determined from the RF signals. ‘x’ and ‘y’ using the detector. 
configuration shown in Fig.4. Impedance detection requires 
applying voltage information to input ‘x’

  (10)6 = 16cos (;.# + <6)

and current information.to input “y”

(11): = 1:cos (;.# + <:).| 1

'-,/-,
|. ,8

=

4

Input signal ‘x’ is fed the first three mixers, i.e. to mixer #1 

with  shifted in phase, to mixer #2 with a limited amplitude, 90°

and to mixer #3. Whereas input signal ‘y’ is fed to the same 

mixers with  shifted in phase and is also applied to mixer #4 90°

with limited amplitude to generate cosine and sine terms of the 
phase difference between ‘x’ and ‘y’, both corresponding to 
magnitudes  and . Mixers 1 & 2, and mixers 3 & 4 are 16 1:

used to find the magnitudes  and  of input signals ‘x’ and 16 1:

‘y’, respectively. The output signal of mixers #1 & #2 is split 
by the output signal of mixers #3 & #4 and vice versa to obtain 
the detected impedance , represented by 0,#,$#

 (12) 0,#,$# = &0,#,$# + 8'0,#,$#

where (13)&0,#,$# =
" × >

0

(14)'0,#,$# =
$ × 0

"

 (15)<0,#,$# = <6― <:

where a, b, c, and d are defined as

(16)" = 2=16cos (<0,#,$#).
1

'-,/-,

(17)> =
=

2
16sin (<0,#,$#)

 (18)$ = =1:cos (<0,#,$#)

(19)0 =
=

2
1:sin (<0,#,$#).

1

'-,/-,

From Eqn.(16)-(19), the real and imaginary parts of the 
detected impedance are specified as follow as:

 (20)&0,#,$# =
2=12

6cos (<0,#,$#)sin (<0,#,$#) 

1:sin (<0,#,$#)

(21)'0,#,$# =
=12

:cos (<0,#,$#)sin (<0,#,$#)

416cos (<0,#,$#) 

By combining Eqns. (20) and (21) the impedance detected is 
given by 

 0,#,$# =
2=12

6cos (<0,#,$#)sin (<0,#,$#) 

1:sin (<0,#,$#)
+ 8

=12
:cos (<0,#,$#)sin (<0,#,$#)

416cos (<0,#,$#) 

(22)

According to Eqns. (20) and (21), the detected values of the 
impedance are independent of the frequency. This means 
frequency compensation is not required for high accuracy 
across a wideband frequency. The detected values of the 

impedance are related .to the ratios  and , hence they are. 
16

1:

1:

16
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5

independent. of the power of the RF signal transmitted. 
Moreover, according.to Eqn. (15),  is the differential <0,#,$#

phase difference between  and .<6 <:

Fig.4. Quadrature detector that generates the constituent parts of the detected 
impedance from the return-loss. 

By simply exchanging the detector input signals ‘x’ and ‘y’ 
the detector. generates the real-. and imaginary-parts of the 
admittance. When input signals ‘x’ and ‘y’ represent. the 
reflected and incident power, the detector generates a reading. 
of return-loss (Г). The accuracy of the detector over a wide 
output power range, which is essentially dependent on limiter. 
and its amplitude. dependent. phase-delay, is traded-off. 
against power. consumption. The detector needs to be operated 
at a lower ‘on/off’ duty-cycle (<1%) to conserve power since 
the settling time of the detector is normally short (10-100 s) 
compared. to the impedance variation of the antenna. The 
detector is susceptible to receiving unwanted signals as it’s not 
frequency selective. These signals can cause the direction of 
the energy flow to change when they are stronger than the 
transmit signal. In that case the detector. reads the network. 
impedance. seen into the reverse. direction. However, at lower 
output. power (<0.dBm), there is no advantage from .adaptive 
.impedance .matching, and the .detector .can .be .turned . ‘off’ 
to prevent erroneous control. 

A. Series LC Network

     In Fig.5, the matched impedance  of a series LC  !"#$ℎ

network represents the tuneable network of the sub-loops 3 and 
4 of the first and second loops, respectively, in Fig.2, and is 
given by

(23) !"#$ℎ = &!"#$ℎ + 8'!"#$ℎ

in which the matched reactance  is given by'!"#$ℎ

(24)'!"#$ℎ = '?-,*.,- + '(-,*.,- + '+2"0

where

     (25)'?-,*.,- = '?-,*.,- 2
+ '?-,*.,- 4

and 

        (26)'(-,*.,- = '(-,*.,- 2
+ '(-,*.,- 4

and the matched resistance  is &!"#$ℎ

            (27)&!"#$ℎ = &+2"0

Tuning the series capacitor values  affects , (-,*.,- '!"#$ℎ

which is a function of tuning reactance ( , whereas. the '(-,*.,-)

matched. series. resistance ( ) .is equivalent to load &!"#$ℎ

resistance. ( ). In adaptive. matching. .networks, the &+2"0

orthogonal property of .resistance and .reactance is exploited in 

the .adaptive LC network to modify the matched .reactance (

) to the required .value .without .affecting the .matched '!"#$ℎ

.resistance ).(&!"#$ℎ

Fig.5. Adjustable LC network to provide the required inductive and capacitive 
load reactance.

The proposed series LC network is used to alter the real-part of 

the matched admittance. The matched impedance (  can  !"#$ℎ)

be represented by matched admittance given by

(28)9!"#$ℎ = @!"#$ℎ + 8A!"#$ℎ

where (29)@!"#$ℎ =
(&+2"0)2 + ('!"#$ℎ)2

&+2"0

and (30)A!"#$ℎ =
(&+2"0)2 + ('!"#$ℎ)2

'!"#$ℎ

The matched conductance  is a .symmetric .function of (@!"#$ℎ)

 .with a maxima of . Consequently, a .series LC '!"#$ℎ
1 &+2"0

network, shown in Fig.6, can only convert load resistance  &+2"0

to a conductance that is smaller than . Two solutions. 1 &+2"0

exist for. the condition   .given. by@!"#$ℎ < 1 &+2"0

          (31)'!"#$ℎ =
&+2"0

@!"#$ℎ
(1 + @!"#$ℎ&+2"0)

Fig.6. Series.LC network to control the real-part of the matched.admittance 

.@!"#$ℎ
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6

Substitution of Eqn. (31) into (30) gives corresponding 
matched susceptance given by

(32)A!"#$ℎ = (
&+2"0

@!"#$ℎ
+ @!"#$ℎ&+2"0) + 1

B. Parallel LC Network

    Fig.7 shows the matched admittance  of a parallel LC 9!"#$ℎ

network and representing the tuneable network of the sub-
loops 1 and 3 of the first and second loops, respectively, (see 
Fig.2), is defined as

(33)9!"#$ℎ = @!"#$ℎ + 8A!"#$ℎ
Where 
      (34)A!"#$ℎ = A?)"*"++,+ + A()"*"++,+ + A+2"0

            (35)A?)"*"++,+ = A?)"*"++,+ 1 + A?)"*"++,+ 3

(36)A()"*"++,+ = A()"*"++,+ 1 + A()"*"++,+ 3

and the matched conductance  is presented by@!"#$ℎ

         = (37)@!"#$ℎ @+2"0

Matching admittance (  of this parallel.LC-network 9!"#$ℎ)

corresponds. to.  of the LC-network. The matched 9./#,*!,0."#,

susceptance  is a function of tunable susceptance ((A!"#$ℎ)

, .whereas the matched. conductance.  is equal A()"*"++,+) @!"#$ℎ

.to load conductance  and independent .  @+2"0 A()"*"++,+ 9!"#$ℎ(

 and the orthogonal. property of ()"*"++,+)

conductance/susceptance can .be exploited for adaptive. 
control. of the IMN by tuning the matched susceptance to the 
required .value without adversely affecting the matched 
conductance. 

Fig.7. Variable parallel LC network and its matched admittance .9!"#$ℎ

Moreover, the parallel LC network. allows control of the 

real-part of . Matched admittance. (  can be &!"#$ℎ 9!"#$ℎ)

represented by matched. impedance (  thus !"#$ℎ)

      (38) !"#$ℎ = &!"#$ℎ + 8'!"#$ℎ

where  (39)&!"#$ℎ =
@+2"0 + A!"#$ℎ

(@+2"0)2

 (40)'!"#$ℎ =
@+2"0 + A!"#$ℎ

(A!"#$ℎ)2

In Fig. 8,  is a.symmetric function. of  with a &!"#$ℎ A!"#$ℎ

maxima of . .1 &+2"0

Fig.8. Parallel LC network to control the real-part of the matched impedance 

.&!"#$ℎ

Hence, a parallel. LC. network. can transform load 

conductance  to a .resistance that.is smaller than (@+2"0)

. When  , two solutions are obtained 1 &+2"0 &!"#$ℎ < 1 @+2"0

from Eqn. (39) and given by

 (41)A!"#$ℎ =
&!"#$ℎ

@+2"0
(1 + &!"#$ℎ@+2"0)

Substitution of Eqns. (36) into (35) gives the two matched 
reactances

       (42)'!"#$ℎ =
@+2"0

&!"#$ℎ
(&!"#$ℎ@+2"0) + 1

IV. ADAPTIVE CONTROL OF PARALLEL LC NETWORK

The algorithm that was developed determined the 
convergence operation of the control loop. In fact, the 
tuneable capacitor, which is essentially a switched-capacitor 
array, is controlled by the sign of the error signal SIGN(3,**2*
) generated from the series and parallel control loops. The 
up/down counter (U/D) is used to store the value of the 
control array. The output of the U/D is incremented or 
decremented in steps of one least significant bit, which 
depends on the error signal. 

The convergence operation can be examined in open-
loops conditions. At the controller when the loops (Figs. 6 
and 8) are opened we sense SIGN( ) across the entire. 3,**2*

ranges of  and , SIGN( ) is +1. Hence, the '!"#$ℎ A!"#$ℎ 3,**2*

directions of capacitor controls shown in Fig. 6 and 8 are not 
definitive. This can be resolved by using the detected. 
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7

information on. the signs .of .the .matched susceptance 
SIGN(- ) and the matched reactance SIGN(- ), A!"#$ℎ '!"#$ℎ

respectively, as a secondary .control criterion. shown in Fig.9 
by dotted green blocks. The secondary feedback path allows 
the series and parallel control. loops. Criteria to be 
determined by the two detection. thresholds. for each loops 
of  =  and  = 0 (for series control. @!"#$ℎ &*,4,*,/$,-,*.,- A!"#$ℎ

loop shown in Fig.6) and  =  and  &!"#$ℎ &*,4,*,/$,)"*"++,+ '!"#$ℎ

= 0 (for parallel control loop. shown in Fig.8). Assuming. 
that detector. constants  and  are equated to 5-,*.,- 5)"*"++,+

one,.  is now represented by3,**2*

 = SIGN(- ) . 3,**2*-,*.,- A!"#$ℎ &*,4,*,/$,-,*.,- -&0,#,$#2*-,*.,-
(43)

 = SIGN(- ) .   3,**2*)"*"++,+ '!"#$ℎ &*,4,*,/$,)"*"++,+ -&0,#,$#2*)"*"++,+
(44)

As ,  and  are always positive, error &*,4,*,/$, &!"#$ℎ @!"#$ℎ

signal  becomes strongly negative when SIGN(- ) 3,**2* '!"#$ℎ

and SIGN(- ) are negative. Hence, SIGN( ) is now A!"#$ℎ 3,**2*

unambiguous, and the first and second loops converge 
.reliably .to .operating .over the .entire .range of  and A!"#$ℎ

.'!"#$ℎ

The impedance matching network characteristics are 
applied to create .an adaptive LC network. that comprises a 
pair of loops, as shown in Fig.9. Control loop#1 sets the real-
part of . The sensing inductor  consists of the &!"#$ℎ ?-,/-,

series LC network controlled by the both loops. The loop#2 
transforms the matched reactance  to . In '!"#$ℎ '*,4,*,/$,

fact, no information. on the real-part of the matched 
impedance is required. This makes.  surplus to &0,#,$#2*

requirement. If  is controlled iteratively the sign of '!"#$ℎ

 is significant. '0,#,$#2*

Fig.9. LC network implemented. An extra feedback path is shown in dotted ‘green’ blocks. This feedback ensures the first and second loops to function in their 
stable regions.

V. LC-NETWORK ADJUSTING ZONE

    The LC-network impedance adjusting zone is determined by 
the relationship between. the impedance correction and the 
required capacitor’s adjusting range for the LC network.in 
Fig.9. As the .impedance transformation needs to be done in 
two steps, the intermediate impedance  is first  ./#,*!,0."#,

defined that is .required to ..an arbitrary load-admittance 9+2"0
 to the required . = @+2"0 + 8A+2"0  !"#$ℎ = &!"#$ℎ + 8'!"#$ℎ

For. this reason the parallel section converts the  to a 9+2"0

transitional impedance, whose. real-part  should be &./#,*!,0."#,

.equal to the .matched .resistance . Using (34) and (39) &!"#$ℎ

and rewriting define  as&./#,*!,0."#,

 &./#,*!,0."#, = &!"#$ℎ =
(@+2"0)2 + (A+2"0 + A-,*.,- + A)"*"++,+)

2

@+2"0

(45)

Similarly, from Eqn. (42), the imaginary-part of. this 
intermediate.impedance.is given by

           (46)'./#,*!,0."#, = &!"#$ℎ
&!"#$ℎ +@+2"0

&!"#$ℎ@+2"0 + 1

and the corresponding intermediate susceptance is given by 

             (47)A./#,*!,0."#, = @+2"0
&!"#$ℎ +@+2"0

&!"#$ℎ@+2"0 + 1

From. Eqn. (34), the required. parallel capacitor.  is. ()"*"++,+

given. by.

                  (48)()"*"++,+ =
4=4

2=4(A./#,*!,0."#,― A+2"0 + A?)"*"++,+)

Eqns. (45) and (46) define  that. .is. needed to realise a ()"*"++,+

desired .correction .from .a .load  to a .matched @+2"0 + 8A+2"0

resistance  at frequency. f and parallel inductor &!"#$ℎ

susceptance . Eqn. (24) can be rewritten to give the A?)"*"++,+

required magnitude of capacitance expressed as 

(49)(-,*.,- = 2=4('./#,*!,0."#, + '!"#$ℎ + '?-,*.,-)

Eqns. (45) and (46).define the .series .capacitance  that. (-,*.,-

is. required to correct from a load  to. a matched. @+2"0 + 8A+2"0

resistance  and. a matched reactance  at a &!"#$ℎ '!"#$ℎ

frequency f and known inductor reactance . It should be '?-,*.,-

noted that  is independent of load susceptance. (-,*.,-

Furthermore, to realise a physically realizable solution, these 
two formulations are valid when.the series and parallel 
capacitors and the.square-root argument are positive. The last 
one is met for

                           (50)&!"#$ℎ < 1 @+2"0

which. represents the impedance down-converting properties. 
of this LC network. For real-to-real impedance conversion, this 
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8

transformation can only be descending, which outlines the 
impedance adjusting zone. The boundary condition for the up-
converting LC network in Fig.10 is obtained when

(51)A?)"*"++,+ < A./#,*!,0."#, + A+2"0

and. (52)'?-,*.,- < './#,*!,0."#,― '!"#$ℎ

     Impedance adjusting range is bounded by fixed inductors 
 and . Susceptance of the parallel inductor sets ?)"*"++,+ ?-,*.,-

the correction limit of the capacitive mismatch, and the 
reactance of the series inductor sets the correction limit of the 
capacitive intermediate impedances.

Capacitance ratios to transform an arbitrary load admittance 

 to a required matched impedance  9+2"0 = @+2"0 + 8A+2"0  !"#$ℎ

needs to be determined. To do this the network should be able 

to adjust load admittance  to match 9+2"01 = @+2"01 + 8A+2"01

with impedance  with a real-part , at a given  !"#$ℎ1 &!"#$ℎ1

frequency f1, by a .parallel capacitance  and a. series. ()"*"++,+1

capacitance . Furthermore, the same network must be (-,*.,-1

able to tune a load admittance.  to. 9+2"02 = @+2"02 + 8A+2"02

 with resistance. , at a frequency f2, by  !"#$ℎ2 &!"#$ℎ2

capacitance  and a series. capacitance . From ()"*"++,+2 (-,*.,-2

Eqn. (46), the required capacitance adjusting zone of , ( ()"*"++,+

given. by the capacitor ratio, can be expressed as

    (53)  ( ()"*"++,+
=

41

42{
A./#,*!,0."#,2 + A+2"02 + A?)"*"++,+2

A./#,*!,0."#,1 ― A+2"01 ― A?)"*"++,+1
}

and, similarly, from Eqn. (47), for the series capacitor as

          (54)( (-,*.,-
=

41

42{
'./#,*!,0."#,1 + '!"#$ℎ1 + '?-,*.,-1

'./#,*!,0."#,2 ― '!"#$ℎ2 ― '?-,*.,-2
}

The above equations yield four solutions at the two frequencies 
(f1 and f2). This is because we can realise matching by 
transforming. the inductive. or capacitive intermediate. 
impedance. In addition, the equations reveal the capacitance 
ratio. is proportional to the frequency range of operation. 

VI. INSERTION LOSS

     The improvement in output power resulting from adaptive 
impedance matching is eroded by the insertion-loss of the 
matching network. In the case of parallel elements in the LC-
network the loss is equivalent to the ratio between its loss and 
load conductance; and in the case for series elements, the loss 
is equivalent to the ratio between its loss and load resistance. A 
more accurate expression of loss is given by [2]

B? = 10.log (1 + @+2"0(
C()"*"++,+

|A()"*"++,+|
+

C?)"*"++,+

|A?)"*"++,+|
) + &!"#$ℎ

(55)(
C(-,*.,-

|'(-,*.,-|
+

C?-,*.,-

|'?-,*.,-|
))

The above expressions reveal the insertion-loss is a function of 
the impedance transformation step, as well as the component. 
values. used. to realise the transformation. To achieve a 

minimum loss, the susceptance of the parallel elements. and 
the reactance. of the series. elements must be small.

VII. STATE-OF-THE-ART IMNS COMPARISON

   In this section, the characteristics of the proposed impedance 
matching network (IMN) has been mentioned and compared 
with the recent State-of-the-Art literature. The results are 
summarized in Table I, which illustrates that, the novelty of the 
propose work is: (i) automated tuning of LC impedance 
matching network to compensate for antenna mismatch with 
the RF-front-end; (ii) use of a tuning algorithm that converges 
to a matching point without the need of complex mathematical 
modeling of the system and nonlinear control components 
(varactor-diode) are taken into account to realise rapid 
convergence of impedance matching; (iii) varactor-diodes with 
any range of capacitance are applicable, (iv) employs digital 
circuitry for timing generation and simple analogue 
components; (v) reliable convergence is realized inside the 
tuning range of the LC network; (vi) reduces insertion-loss by 
using matching network elements to monitor voltage/current 
signals; and, (vii) enables autonomous control of adaptive 
antenna matching networks for optimum power transfer.

VIII. CONCLUSIONS

    Adaptive impedance matching technique is proposed that 
controls reactive elements in an LC network for automatic 
compensation of fluctuations in antenna impedance. By 
cascading the two control loops we can achieve independent 
control of the real. and the imaginary-parts of the antenna 
impedance for fast convergence. Appropriate range of the 
capacitances was investigated for the varactor diodes as well as 
a useful way to realise improvement. in the mismatch by 
employing available varactor diodes. Prior to integration of the 
proposed technique in mobile wireless systems consideration 
will need to be given on how the impedance matching 
improvement is offset by loss introduced by its 
implementation. 
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9

TABLE I. STATE-OF-THE-ART IMNS COMPARISON

Refs. Methodology Impedance Type Structure Implementation Bandwidth Notes

[2] Numerical Insertion Loss Flexible Combination Narrow
Complex control system, automated tuning, 
simple analogue components, complex 
mathematical modeling

[4] Analytical Single Flexible Combination Wide alleviated method, linear control components, 
simple analogue components, automated tuning

[15] Numerical Single Fixed Passive Narrow
Complex mathematical modeling, alleviated 
method, complex control system

[16] Numerical Single Fixed Passive Narrow
Transformers used, complex control system, 
expensive transformers, nonlinear control 
components

[17] Analytical Insertion Loss Fixed Combination Narrow Complex control system, nonlinear control 
components, transformers used

[18] Analytical Insertion Loss Fixed Passive Wide Alleviated method, complex mathematical 
modeling, heavy and expensive transformers

[19] Analytical Single Fixed Combination Narrow Transformers used, alleviated method

[20] Analytical Insertion Loss Fixed Passive Narrow Bulky, heavy and expensive transformers
[21] Numerical Single Flexible Passive Wide Complex control system, nonlinear control 

components
[22] Analytical Single Flexible Combination Narrow Control system not discussed

[23] Analytical Single Flexible Combination Narrow/Wide
Transformers used, Complex control system, 
nonlinear control components

[24] Analytical Single Fixed Combination Narrow Complex control system, alleviated method

[25] Analytical Insertion Loss Fixed Passive Narrow Bulky, heavy and expensive transformers

[26] Numerical Insertion Loss Fixed Passive Narrow
Transformers used, complex control system, 
expensive transformers, nonlinear control 
components

[27] Analytical Insertion Loss Fixed Passive Narrow Alleviated method, complex control system, 
expensive transformers

[28] Analytical Insertion Loss Fixed Combination Narrow Transformers used, bulky, complex control 
system, expensive transformers

[29] Numerical Insertion Loss Fixed Combination Narrow Alleviated method, complex mathematical 
modeling, expensive transformers

[30] Numerical Insertion Loss Flexible Passive Narrow Complex control system, nonlinear control 
components, transformers used

[31] Analytical Insertion Loss Fixed Passive Wide Alleviated method, transformers used, nonlinear 
control components, complex control system

[32] Analytical Single Fixed Combination Wide Fully integrated, tuning for load (antenna) 
matching, nonlinear control components

[33] Analytical Insertion Loss Fixed Passive Narrow Alleviated method, complex control system, fast 
operating speed, low development cost

[34] Analytical Insertion Loss Fixed Passive Narrow Transformers used, alleviated method, complex 
control system, nonlinear control components

[35] Analytical Insertion Loss Flexible Combination Narrow
Fully integrated, complex control system, 
expensive transformers, nonlinear control 
components

[36] Analytical Insertion Loss Flexible Combination Wide
Transformers used, fully integrated, nonlinear 
control components, complex mathematical 
modeling 

This 

work Numerical Insertion Loss Flexible Combination Wide

Automated tuning, no need of complex 
mathematical modeling, linear control 
components, digital circuitry, simple analogue 
components, reliable convergence, reduction in 
insertion-loss, autonomous control of adaptive 
antenna matching networks, optimum power 
transfer, fully integrated 

Combination: Passive and Active
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passive devices, equivalent-circuit models have been developed for interacting 
discontinuities in microstrip, for typical MMIC passive components (MIM 
capacitors) and to waveguide/coplanar waveguide transitions analysis and 
design. For active devices, new methodologies have been developed for the 
noise characterisation and the subsequent modelling, and equivalent-circuit 
modelling strategies have been implemented both for small and large-signal 
operating regimes for GaAs, GaN, SiC, Si, InP MESFET/HEMT devices. The 
second line is related to design methodologies and characterisation methods for 
low noise circuits. The main focus is on cryogenic amplifiers and devices. 
Collaborations are currently ongoing with the major radioastronomy institutes 
all around Europe within the frame of FP6 and FP7 programmes (RadioNet). 
Finally, the third line is in the analysis methods for nonlinear microwave 
circuits. In this line, novel analysis methods (Spectral Balance) are developed, 
together with the stability analysis of the solutions making use of traditional 
(harmonic balance) approaches. The above research lines have produced more 
than 250 publications on refereed international journals and presentations 
within international conferences. Ernesto Limiti acts as a referee of 
international journals of the microwave and millimetre wave electronics sector 
and is in the steering committee of international conferences and workshops. 
He is actively involved in research activities with many research groups, both 
European and Italian, and he is in tight collaborations with high-tech italian 
(Selex - SI, Thales Alenia Space, Rheinmetall, Elettronica S.p.A., Space 
Engineering …) and foreign ( OMMIC, Siemens, UMS, …) companies. He 
contributed, as a researcher and/or as unit responsible, to several National 
(PRIN MIUR, Madess CNR, Agenzia Spaziale Italiana) and international 
(ESPRIT COSMIC, Manpower, Edge, Special Action MEPI, ESA, EUROPA, 
Korrigan, RadioNet FP6 and FP7 …) projects.
Regarding teaching activities, Ernesto Limiti teaches, over his istitutional 
duties in the frame of the Corso di Laurea Magistrale in Ingegneria Elettronica, 
“Elettronica per lo Spazio” within the Master Course in Sistemi Avanzati di 
Comunicazione e Navigazione Satellitare. He is a member of the committee of 
the PhD program in Telecommunications and Microelectronics at the 
University of Roma Tor Vergata, tutoring an average of four PhD candidates 
per year.
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Resubmission of Manuscript ID TMTT-2019-10-1185

While the topic of manuscript is of interest to TMTT, the paper does not put the submitted work in context with recent 

work and clearly articulate the new contribution.  In the references, there is only 1 TMTT reference after 2008, and that 

was in 2010 - 9 years ago. The manuscript should have recent references, in particular in this topic area as there are 

numerous works on this subject. In addition, the manuscript does not clearly state what is current state of the art and 

what specifically is the new contribution. The paper must contain clear information about what is current state of the art 

and what is the new specific contribution.

You may submit a new manuscript, however please address all of the concerns above. In particular, I encourage you to 

submit 3 related and recent (past 3 years) works.

Authors Reply: Dear Dr. David Ricketts, Thank you for your valuable time and providing us your constructive 

feedback. Regarding your comments, we have provided a comparison section before concluding the paper. We have 

listed several recent publications in Table 1 to comparing them with our proposed work. We wish it could be helpful to 

better evaluate our work and its achievements. 

We did a similarity check and unfortunately it seems that our manuscript text has been saved in the Turnitin database 

(similarity checker) as "London Metropolitan University", which is the affiliation of Prof. Bal S. Virdee. Please note, 

the paper or some part of that is not published anywhere. They told us they have deleted it. We just wanted to inform 

you. 

Best Regards,

Mohammad Alibakhshikenari, and on-behalf of co-authors
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