
1218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

Hardware-Compliant Compressive Image Sensor
Architecture Based on Random Modulations
and Permutations for Embedded Inference

Wissam Benjilali , William Guicquero, Laurent Jacques , and Gilles Sicard

Abstract— This work presents a compact CMOS Image Sensor
(CIS) architecture enabling embedded object recognition facili-
tated by a dedicated end-of-column Compressive Sensing (CS),
reducing on-chip memory needs. Our sensing scheme is based on
a combination of random modulations and permutations leading
to an implementation with very limited hardware impacts. It is
designed to meet both theoretical (i.e., stable embedding, mea-
surements incoherence) and practical requirements (i.e., silicon
footprint, power consumption). The only additional hardware
compared to a standard CIS architecture using first order incre-
mental Sigma-Delta (��) Analog to Digital Converter (ADC) are
a pseudo-random data mixing circuit, an in-�� ±1 modulator
and a small Digital Signal Processor (DSP). On the algorithmic
side, three variants are presented to perform the inference on
compressed measurements with a tunable complexity (i.e., one-
vs.-all SVM, hierarchical SVM and small ANN with 1-D max-
pooling). An object recognition accuracy of � 98.8% is reached
on the COIL database (COIL, 100 classes) using our dedicated
Neural Network classifier. We stress that the signal-independent
dimensionality reduction performed by our dedicated CS scheme
(1/480 in 480 × 640 VGA resolution case) allows to dramatically
reduce memory requirements mainly related to the remotely
learned coefficients used for the inference stage.

Index Terms— Image sensor, embedded object recognition,
compressive sensing, random permutations, random modulations,
Sigma-Delta, machine learning, SVM, neural networks.

I. INTRODUCTION

THE last decade has witnessed a wide spread of connected
nodes (IoT) [1] and data-specific processing units [2],

[3]. As a consequence, the amount of data to sense, store
and process has grown in leaps and bounds. To deal with
the algorithm-hardware complexity due to data dimensionality,
compression techniques are typically involved in the signal
processing pipeline [4]. A wide range of algorithms have been
developed to tackle this issue, namely transform coding for
lossy compression (e.g., Discrete Cosine Transform in JPEG
format). Mathematically speaking, a transform encoder first
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projects the acquired signal into an orthonormal basis that
concentrates the data to few coefficients (sparsity property),
and then performs entropy coding with quantization, in order
to efficiently compress the resulting data. Let a signal x ∈ R

n

be an image with n pixels, the concept of sparse representation
means that x can be represented by a relatively small number
k of non-zeros coefficients (i.e., if � ∈ R

n×n is the sparsity
basis, x = �α, with k = ��α

��
0 = | supp (α)| the degree of

sparsity of x in �).
Since the emergence of Moore’s law, several works

have focused on implementing near-sensor compression
techniques [5]. However, these implementations bring high
computational and memory costs that are related to the
transform patterns storage and a high algorithmic complexity
due to high-end adaptive entropy coders. On the other hand,
Compressive Sensing (CS) [6] has emerged as a powerful
hardware-friendly framework for signal acquisition and sensor
design thanks to random measurements without the need of
entropy coding. The underlying concept of CS is that a sparse
signal can be efficiently acquired from a small set of uncorre-
lated measurements whose projection vector patterns exhibit
incoherence with sparsity basis. In other words, a sensing
matrix � ∈ R

m×n performs a signal-independent dimension-
ality reduction mapping the signal x ∈ R

n to a measurement
vector y = �x ∈ R

m (m � n). CS also allows to alleviate
some hardware design constraints by taking advantage of
Pseudo-Random Generators (PRG) to generate on-the-fly the
sensing matrix as a deterministic and reproducible process
(e.g., using Linear Feedback Shift Register (LFSR) [7]–[9],
Cellular Automaton [10], [11]). However, recovering the
original signal from its CS measurements generally involves a
costly reconstruction process. The canonical CS approach to
decompress signals is as follows: under the sparsity hypothesis
of the signal x in �, the goal is to find the sparsest signal x̂
such that y is close to �x̂. To this end, assuming an Additive
Gaussian White Noise on the compressive measurements y,
we can solve the so-called Basis Pursuit Denoising problem:

x̂ = arg minx ���x
��

1 s.t. �y − �x�2
2 ≤ �. (1)

In the context of low-power sensor nodes, the proposed
architecture aims at enabling a CS acquisition mode with-
out deeply modifying a canonical imager.This mode almost
directly involves a reduction of the power consumption that
is proportional to the compression rate while neglecting static
power consumption. In addition, it allows to make embed-
ded inference relevant because of the reduction of in-sensor
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memory cuts needed for Machine Learning algorithms. In this
section, we present first CS theoretical key concepts and then
state-of-the-art of imagers with either CS or decision-making
capabilities.

A. Mathematical Concepts Related to CS

In CS theory, we distinguish the decompression from the
compression stage. Decompression also known as reconstruc-
tion (remotely performed) refers to the recovery of x̂ given
a specific sparsity basis �, from the measurements y pro-
vided by the sensor (cf., equation (1)). To provide guarantees
of a proper reconstruction of the observed signal, we can
theoretically study the properties of the sensing matrix �,
i.e., independence of measurement vectors and embedding
stability. For this purpose some useful metrics have been
defined, namely the coherence which evaluates the cross-
correlations between any two columns of �. The smaller the
coherence the better the sensing. In other words, the coherence
estimates how much, at least, each measurement contributes
to the actual signal sensing.

Definition 1: Let � ∈ R
m×n be a matrix with �2 normalized

columns �1, . . . ,�n , i.e.,
���i

��2
2 = 1 for all i ∈ [n]. The

coherence μ (�) of the matrix � is defined as:

μ(�) = max
1≤i �= j≤n

|��i ,� j 	|. (2)

The lower bound of the coherence is known as the Welsh
bound [12], and for m � n the lower bound is 
 1√

m
.

In addition, the coherence of �� for any � can be used
to study the universality of the sensing matrix �, i.e., its
capability to sense any signal in its original domain without
the need of additional a priori on the sparsity basis.

Another well-studied metric in CS theory is the Restricted
Isometry Property (RIP) [13], a concentration property.

Definition 2: A matrix � is said to satisfy the Restricted
Isometry Property (RIP) of order k if, for all k-sparse vectors
α, there exists a δk ∈ (0, 1) such that:

(1 − δk)
��α

��2
2 ≤ ���α

��2
2 ≤ (1 + δk)

��α
��2

2. (3)

As for the coherence, small restricted isometry constants δk
are preferred because of meaning Euclidean distance conser-
vation. Indeed, when respecting the RIP, the linear mapping
� preserves the energy of the sensed signal and is said to be
a stable embedding. Consequently, respecting the RIP over all
2k-sparse vectors implies to preserve the pairwise distances
between any two k-sparse vectors. Moreover, it has been
proven that RIP-compliant matrices allow an accurate recovery
of compressively sensed signals. These matrices can be either
deterministic [14] or randomly generated [15]. For example,
the sensing matrix � can be generated as the realization of a
normalized Gaussian random variable [16], as a random vector
selection of an orthonormal basis [17], or as a subsampling of
the convolution with a random pulse [18].

B. Signal Processing in the CS Domain

Leveraging the heavy cost of signal recovery, compressive
signal processing [19] allows to perform signal processing

(e.g., filtering, detection and inference) directly in the CS
domain thanks to the intrinsic properties of the sensing
matrix. Moreover, from an inference point of view [20], [21],
the RIP property guarantees to preserve distances between
low-complexity signals (e.g., k-sparse) in the CS domain [22].
This allows to perform decision-making algorithms directly in
the CS domain since pairwise distance is a primitive operation
in numerous machine learning algorithms. For instance, when
dealing with linearly separable inference problems (repre-
sented geometrically as convex sets), [23] and [24] provide
a lower bound of the number of measurements m required to
preserve the two-class separability in the compressed domain.

C. Related Prior Works

To extract a set of CS measurements, several devices
have implemented a pseudo-random sensing scheme either
in the optical domain or on-chip. The Single-Pixel Camera
(SPC) [25] was the first device implementing optical CS
imaging. Based on a single photodiode, the SPC uses a Digital
Micromirror Device (DMD) to sequentially modulate the
focal image. Here, the pseudo-random projections result from
various DMD commands, each involving different reflections
of the incident light towards the photodiode. Despite the
interest of a SPC (silicon hardware costs), it suffers from a
limited parallelization of the measurements, involving a large
amount of sequential pixel readouts needed to guaranty a
faithful reconstruction. This approach also has the drawback
of implying bulky optical elements which can be a limitation
for embedded systems implying possible non-perfect charac-
terization and nonlinear issues.

Inspired by the potential of CS, various CMOS Image Sen-
sor (CIS) presented in prior works have implemented on-chip
CS to deal with either hardware (A/D conversion, fill-factor,
silicon footprint) or algorithm constraints (fast and efficient
recovery) for image rendering. As one of the earlier CIS imple-
mentations, [7], [26] exploit pseudo-random convolutions per-
formed in the focal plan as proposed in [18], to extract CS
measurements. This sensing scheme gives the priority to a fast
and efficient image reconstruction but involving a relatively
high on-chip complexity. Indeed, the random convolution in
the Fourrier domain largely simplifies the matrix-to-vector
multiplication at the reconstruction stage. However, [26] uses
a per-pixel flip-flop resulting in a lower fill-factor (percent-
age of area occupied by the photodiode in the pixel) and
larger pixel sizes. To alleviate on-chip complexity to readout
random combinations of pixels values, parallel processing
has been investigated while reducing the support size of
CS measurements. In [9], the concept of incremental ��
is introduced to perform the summation/averaging operation
during A/D conversion to extract per-block CS measurements.
This sensor has the great advantage of using an optimized 4T
pixel architecture while performing end-of-column CS without
major modification of a canonical sensor design. On the
other hand, two implementations have proposed per-column
random projections to extract CS measurements. First, [8]
that uses two separate column lines to readout pixels charges
modulated by a Rademacher sequence generated by a LFSR.
In this work, in order to reach a low-power consumption
target, a specific end-of-column circuitry has been designed
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to perform a signed charge summation using a Comparator-
Based Switched-Capacitor. It yet comes with several issues in
terms of technological dispersions. Finally, [27] describes a
scalable and low-complexity column-based CS scheme using
standard pixels where the in-pixel source follower transistor
is used as a current source during readout. In this work,
the commonly used shift register rolling shutter command has
been replaced by a Cellular Automaton (CA) that generates
the sensing matrix, activating simultaneously multiple pixels
to apply CS projections patterns.

To meet decision-making applications, analog pre-
processing as well as dedicated System-on-Chip (SoC)
have been investigated to deal with inference problems
in the context of low-power CIS. For example, [2], [28]
propose a CIS with embedded always-on face detector based
on Haar-like filtering and a Convolutional Neural Network
(CNN) processor for face recognition. On the other hand, [29]
deals with memory requirements related to a face recognition
processor. This processor performs first face detection using
a cascaded Viola-Jones Haar feature cascaded detectors
and then a Principal Component Analysis (PCA) to extract
features of reduced dimensionality combined with a nonlinear
Support Vector Machine (SVM) for face recognition. Finally,
several CNN processors have been proposed in the literature
addressing the challenge of low-power and accurate embedded
decision-making tasks [30]–[32]. We note, however, that these
works focus on optimizing circuit design to achieve low-power
processing; they do not address design constraints related
to image acquisition such as the data dimensionality or the
number of ADC clock cycles. In this work, we propose
to take the challenge of smart CIS a step further and take
advantage of CS to reduce hardware-algorithm constraint to
implement near focal plan, on-chip image classification.

D. Contributions

This paper proposes a compact VGA-format (Video Graph-
ics Array) CIS architecture ,yet without neither fabricated
chip nor electrical simulations. This architecture addresses the
embedded object recognition task in the context of smart low
power vision systems. This work presents generic algorithmic-
hardware enablers for possible imager implementations. The
main contributions of this work can be listed as follows:

1) a new CS sensing scheme highly suitable for
image sensors applications addressing both image ren-
dering and embedded decision making tasks [33]
(section II-A),

2) a CS theoretical study that evaluates the robustness of
the proposed model (section II-B),

3) a new imager architecture based on independently gen-
erated per-row permutations and modulations allowing
the reuse of a standard rolling shutter acquisition scheme
as well as an array of optimized pixels (section III),

4) three inference algorithmic approaches, with different
complexities, compliant with the proposed architecture,
well adapted to the context of very limited hardware
implementation (section IV),

5) a set of possible hardware optimizations to reduce the
number of clock cycles in an incremental ADC, lower

measurements resolution and memory needs with a Dig-
ital Signal Processing architecture adapted to address the
first stage of various inference algorithms (section V).

Our architecture successfully recognizes a set of VGA
images from only a single snapshot readout (i.e., only
640 measurements) based on high-level simulations of the
whole architecture on MATLAB. This intrinsically caps
memory requirements related to the ex-situ learned patterns
(i.e., machine learning algorithm parameters), by a factor of
the compression ratio (here 1/480). Note that in this context,
on-chip decision-making is dedicated to highly-constrained
applications because of limiting the use of high-end inference
algorithms.

II. PROPOSED CS SCHEME

Several sensing strategies have been proposed to perform
CS in the CIS focal plan. These works yet all suffer from
numerous drawbacks, as the hardware complexity in terms of
memory needs in [7], [26], and restricted measurements sup-
ports in [8], [9], [27]. In this section, we present a hardware-
friendly CS sensing scheme to provide more independent
measurements by extending the measurements support while
addressing highly-constrained hardware design (e.g., ultra-low
power image sensor). The proposed framework is mathemati-
cally defined as a combination of a random modulation matrix
and random permutation matrices. In the rest of this section,
we first describe the mathematical model of the proposed
sensing scheme and then analyze its robustness based on its
mutual coherence and stable embedding.

A. Mathematical Model

Let U = (u1, · · · , unr )
� ∈ R

nr ×nc be the observed image
in the CIS focal plan (Fig. 2), with ui ∈ R

nc its i th row for
i ∈ {1, · · · , nr }. We denote by u = (u1

�, · · · , u�
nr

)� ∈ R
nr nc

the per-row vectorized k-sparse image where nr and nc are the
numbers of rows and columns respectively.

For a set of nc CS measurements performed during
a single snapshot (i.e., entire focal plan readout), our
acquisition scheme (Fig. 1) based on the sensing matrix �

corresponds to applying per-pixel modulation and per-row
column-permutation. In other words, we first apply a random
multiplication of each pixel by a ±1 weight generated by a
Bernoulli distribution (0.5 probability of success) and then
apply an horizontal concatenation of nr permutation matrices
in order to accumulate randomly-selected pixels from each
row. As a result, nc measurements are therefore extracted.

To extract more measurements, s different snapshots can
be performed, each using a different set of permutations
and ±1 weights realizations. Let P (i) =

�
p(i)

1 , · · · , p(i)
nr

�
∈

{0, 1}nc×ncnr be an horizontal concatenation of nr permutation
matrices, where p(i)

j ∈ {0, 1}nc×nc is a random permuta-
tion matrix applied to the j th row of U at snapshot i
(1 ≤ i ≤ s). In addition, each p(i)

j is picked up independently
and uniformly at random among the nc ! possible permutations
of {1, . . . , nc}. Let also M (i) = diag

�
ϕ

(i)
1 , · · · ,ϕ

(i)
nr

�
∈

R
nr nc×nr nc be a random modulation diagonal matrix, where

ϕ
(i)
j ∈ {±1}nc is the vector applied to the j th row of U at
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Fig. 1. Matrix representation of the proposed CS sensing scheme for a single snapshot.

snapshot i . The overall sensing matrix � thus corresponds to
the vertical concatenation of s P(i) modulated by a random
diagonal matrix M(i). We finally have � ∈ R

snc×nr nc with a
normalization factor 1√

s
:

� = 1√
s

��
P (1)M(1)

��
, · · · ,

�
P(s)M(s)

����
. (4)

We stress that for i �= j , with probability
close to 1, P (i) �= P ( j ) and M(i) �= M ( j );
and for k �= l, p(i)

k �= p(i)
l and ϕ

(i)
k �= ϕ

(i)
l .

We note n = nr nc and m = snc.

Lemma 1: Given � in equation (4), then with probability
at least 1 − δ, the coherence μ (�) of � is upper bounded by

O
��

log( snc
δ )

s

�
.

Proof 1: Note φi j = ��i ,� j 	. φi j can be then expressed
as follows:

φi j =
s�

k=1

nc�
l=1

1

s
P(k)

li M(k)
ii P(k)

l j M(k)
j j

=
s�

k=1

Zk

with Zk = 	nc
l=1

1
s P(k)

li M(k)
ii P(k)

l j M(k)
j j . By independence of

M(k)
ii and M(k)

j j , Zk are independent too. Moreover, Zk is
bounded in absolute value by 1

s (for a snapshot s, there is
only one �1� per-column, i.e.,

	nc
l=1

1
s P(k)

li M(k)
ii P(k)

l j M(k)
j j =

{0,± 1
s }). By Hoeffding’s inequality in Appendix:

P

|φi j | ≥ t

� ≤ 2 exp

�
− t2	s

k=1


 1
s

�2



≤ 2 exp

�
− st2

2

�
.

By union bound (Appendix) we also have:

P

�
max

1≤i �= j≤snc
|φi j | ≥ t

�
≤

snc�
i=1

snc�
j=1

2 exp

�
− st2

2

�

≤ 2 s2 n2
c exp

�
− st2

2

�
.

We choose δ = 2 s2 n2
c exp

�
− st2

2

�
, thus t =

�
2 log

�
2s2n2

c
δ

�
s ,

leading to the following:

P

⎛
⎜⎜⎝ max

1≤i �= j≤snc
|φi j | ≤

����2 log
�

2s2n2
c

δ

�
s

⎞
⎟⎟⎠ ≥ 1 − δ.

Therefore, with probability at least 1−δ the mutual coherence

of � (i.e., μm) is upper bounded by O
��

log( snc
δ )

s

�
.

Except, the log factor, the coherence of our sensing scheme
is not sufficiently small compared to the Welsh bound
(i.e., 1√

m
). This could be easily explained by the fact that

the proposed model is not suitable for images sparse in the
canonical basis. It is also related to the measurement support
reduction (which is a good thing for implementation issues).
However, the estimated lower bound can give a better idea of
the required measurements to guaranty an exact recovery of
the acquired image.

On the other hand, as for different structured CS matri-
ces, the universality can not be achieved, i.e., the robust-
ness of the CS matrix can be studied only for spe-
cific sparsity basis. To show that, let’s consider our
model � for one snapshot, i.e., � = P M, with
P = 


p1, · · · , pnr

�
, M = diag



ϕ1, · · · ,ϕnr

�
, and

M i = diag


ϕi

�
. Let consider

U = 


M1 p�

1 a
�
,


M2 p�

2 b
�
, 0, . . . , 0

�� ∈ R
nr ×nc and

V = 


M1 p�

1 b
�
,


M2 p�

2 a
�
, 0, . . . , 0

�� ∈ R
nr ×nc , with a

and b ∈ R
nc sparse vectors in the canonical basis. Considering

u and v, the per-row vectorization of U and V respectively,
it’s clear that �u = �v = a + b. Thus � is not universal,
at least for one snapshot. It is not an issue in practice since
we can reasonably expect that natural images are not sparse
in their original domain (except astronomical pictures ?) but
rather sparse in specific wavelet and frequency domains. More-
over, the nature of this sensing scheme seems well adapted
for images that exhibit a 2D-separable sparsity allowing an
appropriate theoretical analysis as shown in [34].

B. Compressive Embedding

Compressive embedding refers to a stable embedding prop-
erty allowing to preserve distances between samples once
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Fig. 2. Schematic 2D representation of the proposed CS sensing scheme
for one snapshot. In particular, all the pixels sharing the same color are
readout through to the same colorized end-of-column circuitry. Each pixel
of the matrix U is also being modulated by the factor ±1 displayed on top.

compressed. As preserving pairwise distances is a primitive
operation in different machine learning tasks, let us consider
the following Johnson-Lindenstrauss Lemma (JLL) [35]:

Lemma 2: Given 0 < t < 1, a set X of k points in R
n , and

a certain number of measurements m > 8 ln(k)/t2, the linear
mapping f (u) = �u such that

(1 − t)�u − v�2 ≤ � f (u) − f (v)�2 ≤ (1 + t)�u − v�2, (5)

holds for all u, v ∈ X with probability at least
1 − k2 exp


−c̃mt2
�
.

To show that our CS model � in equation (4) respects
the JLL in equation (5), we will first find a concentration
property of the proposed model, i.e., showing that

���u
��2

2 is

highly concentrated around
��u

��2
2. Second, the concentration

property can be extended to show that the JLL holds with
high probability. We have:

���u
��2

2 = 1

s

s�
i=1

��P (i) M(i)u
��2

2

= 1

s

s�
i=1

�� nr�
j=1

p(i)
j diag

�
ϕ

(i)
j

�
u j

��2
2

= 1

s

s�
i=1

�� nr�
j=1

p(i)
j M (i)

j u j
��2

2

= 1

s

s�
i=1

nr�
j k

� p(i)
j M(i)

j u j , p(i)
k M(i)

k uk	

= ��u
��2

2 + 1

s

s�
i=1

nr�
j �=k

� p(i)
j M (i)

j u j , p(i)
k M (i)

k uk	

Thus,

���u
��2

2 − ��u
��2

2 =
s�

i=1

Zi ,

with Zi = 1
s

	nr
j �=k� p(i)

j M(i)
j u j , p(i)

k M(i)
k uk	.

To find a concentration property of
���u

��2
2−��u

��2
2 around 0,

we can use the Hoeffding’s inequality in Appendix. To do
that, we have to show that Zi ’s are zero-mean and bounded
in absolute value.

First, because the main diagonal entries of M (i)
j are

Bernoulli variables with E

�
diag M(i)

j

�
= 0, with M(i)

j and

M(k)
l independent if i �= k and j �= l, we can show that

E (Zi ) = 0.
On the other hand, by Cauchy-Schwarz we have

Zi = 1

s

nr�
j �=k

� p(i)
j M (i)

j u j , p(i)
k M (i)

k uk	

≤ 1

s

nr�
j �=k

�� p(i)
j M (i)

j u j
���� p(i)

k M (i)
k uk

��.

Because p(i)
j M(i)

j is orthonormal,
�� p(i)

j M (i)
j u j

�� = ��u j
��.

Thus,

Zi ≤ 1

s

nr�
j �=k

��u j
����uk

��

≤ 1

s

⎛
⎝ nr�

j=1

��u j
��
⎞
⎠

2

≤ 1

s
α2

��u
��2

with α =
	nr

j=1

��u j

����u
�� .

Suppose that U is composed by r non-zero rows, in this
case α2 = O (r) and Zi is bounded by 1

s r
��u

��2.
Finally we can apply Hoeffding’s inequality in Appendix to

find the following concentration property:

P

�
|���u

��2
2 − ��u

��2
2| ≤ t

��u
��2

2

�
≥ 1 − 2 exp

�
−c̃st2

�
, (6)

with c̃ = 1
2r2 .

To show that our model � in equation (4) respects the
Johnson-Lindenstrauss Lemma (JLL) in equation (5), we now
consider the set: E = {ui − u j : 1 ≤ i < j ≤ k}.

For any fixed v ∈ E our model � respects the concen-
tration inequality in equation (6). Thus, by union bound,
equation (5) holds for all v ∈ E with probability at least
1 − k2 exp


−c̃mt2
�
.

Based on the aforementioned theoretical results, in the next
section, we present a hardware implementation of the proposed
CS sensing scheme (Fig. 2) to reduce hardware constraints in
order to perform near image sensor decision making based on
various algorithms with tunable complexity.

III. PROPOSED IMAGE SENSOR ARCHITECTURE

The proposed image sensor architecture (Fig. 3) extracts CS
measurements by performing operations during A/D conver-
sions and via basic analog routing before the ADC. It takes
advantage of specifically designed circuits to perform pseudo-
random permutations and modulations as presented in the
previous section. The proposed architecture mainly com-
prises a (nr = 480) × (nc = 640) pixel array combined
with a Shift Register (SR) for rolling shutter, a Pseudo
Random-Permutations (PRP) circuit, a column parallel dedi-
cated pseudo-Random Modulation first order incremental ��
(RM��), and an optimized DSP for embedded classification

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on January 22,2021 at 16:35:40 UTC from IEEE Xplore.  Restrictions apply. 



BENJILALI et al.: HARDWARE-COMPLIANT COMPRESSIVE IMAGE SENSOR ARCHITECTURE 1223

Fig. 3. Image sensor top-level architecture.

on CS measurements (using pseudo-random realization of P
and M). We notice that the additional circuitry to achieve
CS have limited impact on the overall CIS design as will be
detailed in the next sections. Thus, in a rolling (or global)
shutter acquisition mode with a rolling shutter readout (i.e.,
sequential readout of one CIS row at each SR clock cycle),
the object recognition can be efficiently performed thanks to
the following steps.

A. PRP

At the end of the integration time, collected charges are
readout as voltage values. As depicted in Fig. 4(a), a pseudo-
random columns permutation of the selected row is accom-
plished using a multi-level permutation process composed
by a fixed pseudo-random scrambling and a 9-stages Benes̃
network [36]. The proposed Benes̃ network [37] is a concate-
nation of a butterfly network and an inverse butterfly network
allowing to generate permutations of the nc input voltage
values. For each Benes̃ stage, voltage values are partitioned
into blocks and swapped -or not- via a series of 2 : 1
mux-based circuits (i.e., Btfly_64…Ibtfly_16 in Fig. 4(b)).
Block sizes vary from 64 (Btfly_64) to 2 (Btfly_2) for the
butterfly network; and from 4 (Ibtfly_4) to 16 (Ibtfly_16) for
the inverse butterfly network. In our case, for silicon foot-
print savings, each layer of this Benes̃ network is controlled
by an unique binary signal, leading to a 9-bit input code
(9 = �
log2(480)

��). Each code value thus implies a specific
permutation pattern.

On the other hand, to generate low-correlated permutations,
a 9-bit Pseudo-Random Generator (PRG) is designed to
on-the-fly generate control codes with the longest cycle
length with the lowest circuit impacts. To this end, given a
9-bit pseudo-randomly generated seed, the proposed PRG
sequentially applies a pre-defined bits permutation (swap 2
LSB and MSB bits) followed by a gray coding to reinforce
bits permutation (Fig. 4(c)). Unlike the commonly used PRG
(e.g., Cellular Automata with limited cycle length [10]),
this implementation generates cyclic sequences leading

to independent per-row permutations (i.e., each per-row
permutation sequence is generated once and only once). Fig. 5,
shows the enumerations of selections for each input column
corresponding to an output one. We can observe that each
64-block of column outputs are therefore mapped to
64 randomly distributed input ones thanks to the fixed pseudo-
random scrambling (cf., Section V-B). This means that the
desired task, i.e., mixing non-uniform pixels zone, is achiev-
able with high probability. Moreover, if we want to build a
matrix full of ones, one can increases the size of the first
Benes̃ level at the expense of an additional hardware overload.

B. RM��

Inspired by the incremental �� [38]–[40]
that simultaneously performs both averaging and
quantization [9], [41], [42], a dedicated incremental RM�� is
proposed to perform pseudo-random modulations, per-column
summation and A/D conversion (Fig. 4(d)). Thus, each
column of the PRP is connected to one RM�� allowing a
column-parallel processing. However, the main advantage of
the proposed architecture is the ability to deal with pseudo-
random ±1 modulations, highly desirable in CS applications.
This is achieved thanks to a double-path integration (one
integrator for each sign) controlled by a nc-bit SR (each cell
control one RM��).

As depicted in Fig. 4(d), the proposed RM�� is composed
of two modulators-integrators that share the same analog
comparator and the 1-bit Digital-to-Analog Converter (DAC).
Thus, for a column i , the voltage outputs Vpi of the PRP
are sequentially applied to the input of the dedicated RM��.
Following the SRi bit control, Vpi is either integrated by the
first or second integrator. The output of the comparator is
then decimated using the up-and-down counter (Fig. 4(e)).
It enables incrementing or decrementing (for a +/− modu-
lation respectively) the ↑↓ counter, in order to obtain a digital
representation of the averaged Vpi ’s. Fig. 6 reports a schematic
time diagram for RM�� internal signals. After nr cycles of
the rolling shutter SR, 640 (i.e., 1/480 compression ratio)
9-bits (log2(nr )) CS measurements are produced with only
one clock cycle for each row. It thus means that the overall
power consumption of the ADC stage is dramatically reduced,
accordingly. For instance, Fig. 7 reports an illustration of
RM�� outputs after 64 clock cycles, this for two different
input signals (pixel outputs with the same mean).

C. Iterative Affine Projector (DSP)

A key operation in numerous inference strategies [43]–[45]
is affine projections of the extracted features. The main
goal of these projections is to map the high dimensional
features into a proper low dimensional space allowing the
inference to be performed with a lower complexity. In an
embedded application context, the weights and the offsets of
the affine projections are generally learned off-line, remotely
and stored locally for an on-chip use. Now consider the case
of a single projection, the nc extracted CS measurements are
first multiplied by the ex-situ learned weights. The weighted
measurements are then accumulated and added to the ex-situ
learned bias terms. With multiple projections, each projection
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Fig. 4. Schematic views of the components of the proposed architecture in Fig. 3: (a) Pseudo-Random Permutations (P R P) circuits for per-row pixel mixing;
(b) Butterfly network insights of different swapping levels; (c) Pseudo-Random Generator (PRG) enabling the generation of independent permutations;
(d) Modulated �� (RM��) for per-column averaging and A/D conversions; (e) Conditional signed counter allowing the extraction of modulated CS
measurements; (f) arg max circuit (arg max) (g) Dedicated DSP (DS P) to perform pipelined affine projections.

is applied independently to the extracted CS measurements
and produces one component of the mapping into the inference
space.

The key operation to implement an unique or multiple
projections is the multiply-accumulate (MAC) [46]. In order
to guarantee a certain agility to the proposed architecture,

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on January 22,2021 at 16:35:40 UTC from IEEE Xplore.  Restrictions apply. 



BENJILALI et al.: HARDWARE-COMPLIANT COMPRESSIVE IMAGE SENSOR ARCHITECTURE 1225

Fig. 5. Enumerations of each mapping input/output performed by the PRP
for a single snapshot.

Fig. 6. Example of internal signals of the proposed RM��.

a dedicated MAC is developed to deal with a tunable number
of projections depending on the inference algorithm strategy.
To this end, a multi-level precision MAC topology is proposed.
As depicted in Fig. 4(g), at the first level, the point-wise
multiplication is implemented. At the second one, weighted
CS measurements are partitioned into distinct blocks and accu-
mulated allowing parallel computing. A set of optimizations
of the bit-resolution of all the pipelined digital adders can be
done to cap the silicon footprint. It can consists in limiting the
binary dynamic range, keeping only relevant bits by removing
insignificant bits and thresholding under unreached highly
significant bits. Finally, as a last stage, the bias term is added
to the accumulated weighted CS measurements in order to
output a proper scalar value, being usable for decision-making.
This way, a single projection is performed at a time, with
highly limited hardware. This generic approach allows the
architecture to sequentially compute an adaptable number of
projections.

For more efficiency in terms of power consumption and sili-
con footprint, various optimizations of the proposed hardware
will be reported and discussed in Section V. The following
section yet presents three approaches to perform the inference
with different algorithmic complexity using the proposed
architecture, in particular, using this MAC block at variable
computational loads.

IV. INFERENCE WITH TUNABLE

ALGORITHMIC COMPLEXITY

Considering a multi-class image classification system based
on successive projections as it may be performed by the

Fig. 7. Evolution of RM�� counter output with respect to various types of
inputs demonstrating modulation-averaging operations.

proposed architecture, three popular strategies can be
customized as depicted in Fig. 8. The first one is called a one-
vs.-all and involves C distinct linear classifiers for a C classes
problem [47]. The second one called a hierarchical classifier
dynamically requires to run only O(log2 C) cascaded binary
linear classifiers [48]. These first two approaches are partic-
ularly relevant for embedded applications with highly con-
strained hardware since they involve only a very limited num-
ber of projections. In this paper, each linear classifier of those
strategies takes the form of a 2-class Support Vector Machine
(SVM) with a linear kernel. However, those two first strategies
show limited performances in terms of accuracy when dealing
with more inter-class and between-classes variability. Artificial
Neural Networks (ANN) with hidden-layers [49] now have
demonstrated good recognition accuracy for numerous object
recognition databases, for that specific reason. Note that in the
basic Multi-Layer Perceptron (MLP) case, the most memory
and MAC hungry layer is the first one. It motivates to propose
a third strategy based on a ANN description. Indeed, the first
layer, that basically performs multiple projections (here αC
with α > 1), fits within the definition of our DSP when
combined with nonlinear activation functions.

A. Notations

Let us consider a database of m-length “vectors” in R
m

acquired using the proposed CS sensing scheme in equation (4)
and composed of C classes. This database is separated into
two databases: a “train” set X̃ ∈ R

m×n1 C , where each
class is composed of n1 samples, associated with labels l ∈
{1, · · · , C}n1 C ; and a “test” set Ỹ ∈ R

m×n2C with unknown
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Fig. 8. Three presented approaches, dashed lines represents projector-orthogonal hyperplanes: (a) SVM; (b) Hierarchical SVM; (c) First layer of the proposed
neural network.

labels and composed of n2 samples per class. We refer to
X̃

j = (X̃
j
1, · · · , X̃

j
n1

) ∈ R
m×n1 and Ỹ

j = (Ỹ
j
1, · · · , Ỹ

j
n2

) ∈
R

m×n2 for the train and the test sets restricted to the j th class,
respectively. The notation x̃ ∈ X̃ or x̃ ∈ X̃

j
, means that the

sample x̃ is an arbitrary column of X̃ or X̃
j
, respectively

(and similarly for Ỹ ). To perform our supervised embedded
inference, two-stages have to be considered: First, training the
patterns in an off-line system on the compressed training set X̃ .
Second, the embedded inference is performed on a compressed
test set Ỹ . Here, both the training and test sets are acquired
by the proposed architecture using the specific sensing matrix
� described in equation (4). Thus, the proposed inference
strategies are as follows.

B. One-vs.-all SVM

To learn a one-vs.-all SVM classifier [50] (Fig. 8(a)),
C binary soft margin classifiers are trained to construct a
boundary decision for each class versus the others. Using this
strategy, a positive label is assigned to the samples in a class
and a negative to the others, i.e., the label li

j equals 1 if the j th

sample belongs to class i , and −1 otherwise. Mathematically,
given X̃ , for each 1 ≤ i ≤ C , we estimate a normal vector
ŵi ∈ R

nc , an offset b̂i ∈ R and penalties ξ̂ ∈ R
n1 , where λ is

an inner regularization parameter:

{ŵi , b̂i , ξ̂ i } = arg min
w∈Rm ,b,ξ∈Rn1

�
1
2

��w
��2

2 + λ
��ξ

��
1

�
s.t. li

j (d� x̃i
j + b) ≥ 1 − ξ j ,

ξ j ≥ 0, 1 ≤ j ≤ n1. (7)

Let us define the gain matrix Ŵ := 

ŵ1, · · · , ŵC

��, i.e.,

the vertical concatenation of ŵi and b̂ :=
�

b̂1, · · · , b̂C

��
the

offset vector.
Once the C classifiers are off-line learned, W̃ and b̂ can

be stored on-chip. Thus, a winner-takes-all strategy allows to
assign a compressed sample ỹ ∈ R

nc to the class c maximizing
the margin, i.e.,

c = arg max1≤i≤C ŵ
�
i ỹ + b̂i . (8)

From a hardware point of view, the CS measurements
vector ỹ is successively multiplied by the weight matrices
ŵi and added to the offset scalars b̂i to iteratively extract

a vector of length C using the DSP presented in Section III.
Finally, as depicted in Fig. 4(f), the arg max operation can
be implemented following an iterative approach using a
single 2 : 1 multiplexer controlled by a bitwise compara-
tor [51]. At each iteration, the resulting outputs consist in the
current maximum value and its index (i.e., max and argmax).

C. Hierarchical SVM

As depicted in Fig. 8(b), the main idea of a hierarchi-
cal learning is to divide a set of classes into two subsets
at every hierarchical node in order to construct a binary
decision tree. Thus, using the balanced clustering method
in Algorithm 2 of [44], a decision tree is recursively con-
structed, training a binary SVM at each node, i.e., given
{(x̃1, l1) , . . . , (x̃k, lk) , . . . ,



x̃2n1, l2n1

�} ⊂ R
m ×{−1, 1} sam-

ples of two different classes in X̃ . The binary SVM optimiza-
tion problem between this two classes is written as:

{ŵ, b̂, ξ̂ } = arg min
w∈RN ,b,ξ∈R2n1

�
1
2

��w
��2

2 + λ
	2n1

k=1 ξk

�
s.t. lk(w

� x̃k + b) ≥ 1 − ξk, ξk ≥ 0,

1 ≤ k ≤ 2n1, (9)

Thus, for a test sample ỹ ∈ Ỹ the inferred class c is given by:

c = sign
�
w� ỹ + b

�
. (10)

Training the hierarchical tree allows to construct a binary
decision tree where each path from a root to a leaf is associated
to a decision rule defined by the binary test referred in
equation (10) and being learned by a binary SVM. Thus, for a
new test sample ỹ ∈ Ỹ , a decision rule is applied at every node
where the margin sign is used to decide to which next branch
the sample belongs to. Thus, the predicted class is provided
by the path indicated by the successive decisions running only
O(log2 C) projections.

At the hardware side, the CS measurements vector ỹ is first
multiplied by weights and then added to the bias of the first
decision rule (as in equation (10) at level 1 of the decision
tree). The margin sign (i.e., sign bit at the output of the DSP)
is then used to decide which weights and bias load from the
local memory in order to apply the second decision rule. This
is repeated until the last node to decide to which class the
sample ỹ belongs.
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Fig. 9. Topology of the proposed Neural Network.

D. Neural Network

When dealing with databases with higher inter-class and
between-classes variability, a Neural Network can advanta-
geously improve the recognition accuracy but using a higher
number of projections (αC with α > 1). In this section a
simple topology is proposed to perform parametric projections
combined with nonlinear functions. As depicted in Fig. 8(c),
the proposed topology (Fig. 9) is composed first by a fully-
connected layer to perform αC projections, where α > 1 is
an inner adjustable parameter. The second layer introduces
nonlinearity to enhance the separability between classes. Here,
a ReLU activation function ( f (x) = max (0, x)) is adopted
for the simplicity of its hardware implementation. A 1D max-
pooling function over each α projections is then introduced to
reduce the dimensionality of the extracted αC-length extracted
vector. Finally, a C full-connected layer extracts a C-length
vector allowing the decision making. We stress that the quan-
tization of weights and biases of the topology is performed at
the training stage [52], namely in order to alleviate over-sized
needs both in terms of memory and computing.

The hardware implementation of this topology can take
advantage of the proposed DSP in Section III and the arg max
circuit (Fig. 4(f)). Indeed, the CS measurements vector ỹ is
successively multiplied by the weight matrices ŵi and added
to the offset scalars b̂i learned at the first layer to extract a
vector of length αC . With proper initializations and resets the
arg max structure can be used to perform 1D max pooling
sequentially outputting C values used as inputs for the second
(and output) layer.

E. Complexity Analysis

Table I stands for embedded resources requirements related
to a one-vs.-all inference strategy, a hierarchical SVM and
the proposed Neural Network for a m-dimensional C-classes
inference problem. In the context of an embedded system,
we only consider the case where first a supervised training
stage is performed outside the chip using a remote computer
station and then the sensor is programmed using those learned
patterns. This way, the sensor can be reprogrammed as wanted,
with a somehow generic hardware that could address various
image recognition tasks. Indeed, the computationally-intensive
operation that represents the learning, do not need to be

TABLE I

A COMPARISON OF EMBEDDED RESOURCES REQUIREMENTS
OF A ONE-VS.ALL SVM, HIERARCHICAL SVM AND

NEURAL NETWORK INFERENCE STRATEGIES

done by the sensor device itself. Therefore, here, we are
mainly interested into the requirements related to the inference
part, i.e., memory needs to store ex-situ learned patterns and
computational complexity related to the inference. In fact,
in the case of the one-vs.-all, C classifiers are learned and thus
have to be stored to perform C m-dimensional projections. For
a hierarchical approach, the number of classifiers to learn is
reduced to C − 1 to perform only �log2 C� m-dimensional
projections. However, when using our Neural Network, O(αC)
“SVM-equivalent” classifiers are learned and thus have to be
stored to perform O(αC) projections.

Table I exhibits the underlying motivations related to the
proposed DSP architecture. It demonstrates the interest of
hierarchical learning to reduce the amount of MAC operations
for highly limited hardware. Moreover, it also shows the ability
of the proposed architecture to deal with a higher number of
projections to fit within algorithmic needs (i.e., one-vs.-all and
Neural Network strategies) with respect to an increase of the
local memory budget required to store ex-situ learned patterns.

V. SIMULATIONS AND PERFORMANCE OPTIMIZATION

A. Background

To demonstrate the efficiency of the proposed architecture,
two object classification databases have been used for the hard-
ware top-level simulations: Georgia Tech database (GIT) [53]
(40 classes, 15 faces per class, n1 = 10 train samples, n2 = 5
test samples) and COIL-100 object recognition database [54]
(100 classes, 72 images per class, n1 = 42, n2 = 30). To fit
within specifications of the proposed architecture, each image
is resized to a VGA resolution via bicubic interpolation and
then subsampled using a simulated RGB Bayer filter. In this
section, we will first present a set of optimizations to reduce
silicon footprint, CS measurements and DSP resolutions, and
then summarize inference accuracy for the aforementioned
databases with different numbers of classes. For the sake of
clarity, the presented hardware optimizations have been done
based on C = 10 randomly selected classes of the GIT
database and for the one-vs.-all SVM inference strategy.

B. PRP Optimization

As mentioned in Section III, the proposed PRP is composed
by a fixed pseudo-random scrambling and a 9-stages Benes̃
network. The goal of the fixed scrambling is to reinforce
pseudo-random permutation before addressing the Benes̃ net-
work. Fig. 10(g) shows the inference accuracy achieved with
different scrambling block sizes for the GIT (C = 10)
database. The simulated sizes are 1 (i.e., without fixed scram-
bling) and 640 (i.e., scrambling over all the selected row).
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Fig. 10. Extracted plots of the simulated architecture: (a) Data distribution at the output of the column parallel Sigma-Delta; (b) The probability of error at
the output of each Sigma-Delta; (c) The probability of error vs. accuracy; (d) The classification accuracy in function of the number of measurements; (e) and
(f) represent an example of distribution for D̂ and b̂; (g) PRP fixed scrambling optimization (Figure 4 (a)); (h) DSP MAC optimization (Figure 4 (g)).

In addition, for each size, the fixed pseudo-random scrambling
is selected as the realization minimizing the cyclo-correlation
peak amongst 100 realizations generated using the randperm
Matlab function. Fig. 10(g), clearly exhibits the interest of
the fixed scrambling over all the selected row. This could be
explained by the fact that a larger support of mixing allows to
deal with uniform zones (i.e., low frequencies), and thus, a bet-
ter diversity of the extracted CS measurements. In terms of
circuit area, the proposed PRP dramatically reduces connection
lines (640 + 9 × 1280 
 12k) compared to a fully-connected
pseudo-random 640-to-640 multiplexer (640 × 640 
 409k
connections).

C. RM�� Optimization

As the proposed CIS is designed to meet requirements of
highly constrained hardware, its performance can typically
be optimized thanks to the prior knowledge on the distrib-
ution of the CS measurements (Fig. 10(a)), the entries of Ŵ
(Fig. 10(e)) and the components of b̂ (Fig. 10(f)). Thus, given
the distribution of CS measurements (range = [−20, 20]),
the resolution of the RM�� can advantageously be reduced
by saturating the ↑↓ counter in Fig. 4(d) to a lower number of

bits instead of 9-bits by benefiting of the intrinsic property of
the incremental �� (log2(nv )) [9]. Fig. 10(b), stands for the
probability of error at the output of the RM�� for different
resolutions (from 2-bit to 9-bit). Here, the error refers to the
difference between the original output without saturation and
the quantized one. Thus, as shown in Fig. 10(b), the probability
of error at the output of the RM�� tends to 0 for a resolution
of 5-bit of the CS measurements. Moreover, the trade-off
between CS measurements resolution and the classification
accuracy is also taken into account in Fig. 10(c). It shows
the classification error for different counter resolution, i.e., CS
measurements resolution. We clearly observe that the classifi-
cation error floors to 4% from a 5-bit resolution, i.e., we can
advantageously reduce the resolution of the CS measurement
to 5-bit without any loss in terms of the classification accuracy.

D. DSP Optimization

As mentioned above, to perform embedded inference,
the matrix Ŵ and the offset vector b̂ have to be stored
within an on-chip memory. Thus, as the histogram of the
matrix Ŵ have a centered, peaked, Gaussian-like distribution
(cf., Fig. 10(e)), we have chosen a uniform quantizer using
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TABLE II

GIT-10 SVM RECOGNITION ACCURACY FOR DIFFERENT LEVELS OF DESCRIPTION OF OUR ARCHITECTURE.
# MEASUREMENTS ARE REPORTED BETWEEN PARENTHESES

TABLE III

RECOGNITION ACCURACY FOR DIFFERENT DATASETS AND INFRENCE

STRATEGIES USING THE PROPOSED ARCHITECTURE

a dynamic range limited to 2/3 of the whole dynamic of
the matrix. However, as the offset vector b̂ has a flattened
distribution, the uniform quantizer is applied on the whole
range covered by the components b̂. Thus, regarding the
distribution and the dynamic range of Ŵ and b̂, we have
empirically chosen to set a signed 4-bit resolution for the
entries of Ŵ and a signed 14-bit for b̂. Finally, the memory
requirements to store the ex-situ learned weights and biases
in order to perform object recognition on the GIT database
(10 classes) is limited to 10×640×5+10×15 bits 
 32 kbit for
one snapshot readout while achieving a satisfactory accuracy
(
 97%, Tab. II).

Given the 5-bit CS measurements and the quantized on-chip
stored patterns, the DSP basically requires 640 10-bit multipli-
ers and one iterative 20-bit adder. As presented in Section III,
the proposed MAC performs multi-level processing allowing
low resolutions. Thus, at the first level, the pointwise operation
is implemented using 640 10-bit multipliers. At the second
one, weighted CS measurements are partitioned into blocks
and accumulated. Fig. 10(h), shows the optimized resolution
in function of the block size at the first and second adder
levels. It exhibits the interest of reducing the block size and
parallel processing to reduce the resolution related to MACs
operations at the expense of increasing the number of adders.

E. Simulation Results

Fig. 10(d) reports the classification accuracy as a function of
the number of measurements (equivalent to a ratio of a number
of snapshots) for C = 10 randomly selected classes of the
GIT database and for the one-vs.-all SVM inference strategy.
It shows that in this setup the accuracy equals to 
 97.2%
from 640 measurements (i.e., a single snapshot). We stress
that for only 64 measurements (i.e., randomly sub-sampling a
single snapshot acquisition at a 1/10 ratio), the accuracy still
reaches 
 80% for the 10-class inference problem.

Table III gathers the accuracy achieved by the proposed
architecture for two databases and the three inference strate-
gies. The accuracy reported here corresponds to the ratio of
correctly classified test samples over all test samples. All the
simulations have been performed using balanced databases
(i.e., the same number of samples per class for both the

training and the test sets). Those numerical results are obtained
by averaging 10 experimental draws from different sample
random sub-selections for the training set versus the test
set. As expected, One-vs.all SVM exhibits a better accuracy
than Hierarchical SVM for all the inference problem setups.
Note that in the case of COIL (C = 100) the Hierarchical
SVM approach is still competitive with 
 90.5% of accuracy
compared to the One-vs.all SVM (
 91.4%). On the other
hand, ANN provides a far better accuracy 
 98.8%, i.e.,
only 
 1.2% of error rate, 
 7 times less than the two
other techniques. Regarding ANN results, an important issue
is related to overfitting, the learning in the case of the GIT
database is indeed performed on a too small number of sam-
ples (especially for α ≥ 3). In practice, it leads to a 
 100%
accuracy over the training set reducing the efficiency of the
inference on the test set (even far below the Hierarchical SVM
approach). For further developments and tests, this problem
can be easily bypassed by extending the dataset using image
distortions for example to produce new synthetic samples to
increase training database diversity.

F. Sensor Characteristics and Performances

Even if our architecture (Figure 3) is detailed for a VGA
resolution, both sensing scheme (Figure 1) and hardware
(Figure 4) are compatible with other standards. Indeed, by con-
struction, the additional hardware compared to a conventional
imager needs is of limited impacts in terms of silicon footprint
and power consumption. To precisely quantify possible over-
costs and mostly figure-of-merit improvements, a finalized
design still needs to be done. Those overall considerations
will highly depends on the technological node and the targeted
inference problem (e.g., #classes, accuracy…). Note that, if the
number of required measurements consists of a single snapshot
(s = 1), it would rather tend to relax constraints on frame rate
and latency, especially thanks to the �� low OSR.

VI. DISCUSSION AND CONCLUSION

Three main circuit components have been presented for
on-chip inference using our novel sensing scheme. Although
being based on high-level simulations, key enablers have been
identified for hardware-friendly implementation:

1) PRP: to reduce the number of connection lines, a ded-
icated pseudo-random sequences generator combined
with a Benes̃ network is proposed as a compact imple-
mentation to perform per-row pixel mixing. However,
although the drastic reduction of the silicon footprint
achieved compared to a fully connected pseudo-random
MUX, some specific optimizations can still be per-
formed at the layout level at the CAD design stage,
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for further silicon saving taken into account the tech-
nological node and all the design rules, namely to
advantageously put the fixed scrambling on top of the
Benes̃ network.

2) RM��: in contrast to a standard �� ADC that needs
29 = 512 clock cycles per-row to extract 9-bit measure-
ments, the proposed incremental RM�� ADC needs
only one clock cycle per-row leading to a drastic power-
consumption saving related to the ADC [9], [40]. The
latter represents generally the most power hungry com-
ponent of a CIS core, in the absence of embedded digital
processing. Moreover, for further digital design relax-
ation, the resolution of the extracted CS measurements
is advantageously reduced to 5-bit by saturating the
RM�� counter thanks to the prior knowledge of the
data distribution at the training stage.

3) DSP: to enable on-chip inference, an optimized
resolution-scalable DSP architecture is proposed to
implement the first stage of each presented inference
algorithm (i.e., affine projections). Indeed, pipelined
MAC operations as well as reduced weights/biases
and computing unit (i.e., digital adders and multi-
pliers) resolutions have been identified as compact
enablers to reduce the memory needs and logical
gates needed to solve the inference problem on CS
measurements with negligible impact on the inference
accuracy [45].

This work therefore demonstrates how Compressive Sensing
can relax CIS hardware constraints to address embedded object
recognition tasks. Indeed, the signal-independent dimension-
ality reduction of CS (here reaching 1/480 compression ratio)
leads to an important memory reduction required to perform
the three algorithmic approaches depicted in this paper.
For example, a tiny ANN topology with 1-D max-pooling
achieves to reach 
 1.2% of classification error rate on the
COIL-100 database. In addition, the proposed architecture
can advantageously reuse a canonical rolling-shutter readout
scheme and a conventional well optimized 4T pixel
architecture (possibly tuned for global shutter acquisition).

APPENDIX

The union bound states for a collection of events Bl, l ∈ [n],

P

∪n

l=1 Bl
� ≤

n�
l=1

P (Bl) . (11)

Hoeffding’s Concentration Inequality: let X1, . . . , Xm be a
sequence of independent random variables such that EXl = 0
and |Xl | ≤ Bl almost surely, l ∈ [m], then for all t > 0,

P

�
|

m�
l=1

Xl | ≥ t


≤ 2 exp

�
− t2

2
	m

l=1 B2
l


. (12)
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