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Abstract

This paper proposes a multiphysics computational framework coupling bio-mechanics and aerodynamics for
the simulation of bird flight. It features a bio-mechanical model based on the anatomy of a bird, that models the
bones and feathers of the wing. The aerodynamic solver relies on a vortex particle-mesh method and represents
the wing through an immersed lifting line, acting like a source of vorticity in the flow.

An application of the numerical tool is presented in the modeling of the flight of a Northern Bald Ibis
(Geronticus Eremita). The wing kinematics are imposed based on biological observations and controllers are
developed to enable stable flight in closed-loop. Their design is based on a linearized model of flapping flight
dynamics. The controller solves an under-determination in the control parameters through minimization. The
tool and the controllers are used in two simulations: a first where the bird has to trim itself at a given flight
speed, and another where it has to accelerate from a trimmed state to another at a higher speed.

The bird wake is accurately represented. It is analyzed and compared to the widespread frozen-wake as-
sumption, highlighting phenomena that the latter can not capture. The method also allows the computation
of the aerodynamic forces experienced by the flier, either through the lifting line method or through control-
volume analysis. The computed power requirements at several flight speeds exhibit an order of magnitude and
dependency on velocity in agreement with the literature.

1 Introduction

Bird flight has always been a source of inspiration for engineers. Recent advance in localisation technologies led
to the discovery of impressive avian behaviors, in particular regarding flight efficiency. The bar-tailed godwit has
been found to migrate from Alaska to New-Zealand in a 11000-kilometer long journey, neither stopping nor feeding
[1, 2]. It has also been discovered that some swifts remain airborne during up to ten months [3]. Despite a recent
boost in interest for the analysis of bird flight, thrived on new sensing and motion capture technologies, the details
of what makes such performance possible remain elusive.

Several methods have been developed to shed light on the mechanics of bird flight. The first and natural
one is observation and measurement of bird bio-mechanics, flapping gaits or aerodynamics. In this context, flight
kinematics have been reported for a few species, as well as gait variations as a function of the flight speed [4, 5, 6].
These work enable to understand how birds adapt their kinematics with respect to their flight speed but do not
provide a full understanding of why they do so. Other studies provided data about the power necessary for bird
flight [7, 8, 9]. These indicate that birds adapt their kinematics and wing shape in order to keep their power
consumption at low level across varying speeds [7]. Such data can be extracted from observations of the bird itself,
using high speed cameras or strain gauges.

We note that dynamics information can also be recovered from a bird’s wake: the air flow behind a bird can
be measured (using e.g. PIV), allowing to analyse its wake [10]. From these measurements, it is also possible to
estimate the aerodynamic forces acting on the bird, as done in [11, 12, 13, 14]. Such wake measurements are most
often limited to a single plane. Hence, they can not capture out-of-plane derivatives of the velocity. For example, in
[12, 13, 14], measurement are performed in a plane normal to the wind velocity and the spanwise vorticity cannot
be computed. These studies also rely on models to compute the aerodynamic forces from the measurements. These
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models imply that the wake is frozen downstream from the bird and are usually based on the identification of a
limited number of vortex pairs for the computation of lift. Both of these limitations could lead to imprecision or
incompleteness of the results. It has also been shown that commonly-used methods to compute the aerodynamic
forces from quantities measured in the wake give inconsistent results both through time and compared to each other
[15].

All these works provide precious insight on the flight and wake of a bird but a full understanding of bird flight
will more likely be based on a synthetic method. Thus the present work is part of a project aimed towards a
numerical model capable of simulating bird flight. The advantages of a detailed model of bird flight and its wake
are manifold. First, it allows capturing the continuum of gait variations that occur through varying flight speeds,
as simpler models are not sufficient to model the kinematics of birds across flight speeds [11]. It is also perfectly
reproducible and allows the analysis of the wake without measurement errors. The consistency of methods to
compute the aerodynamic forces from data in the wake at various times and locations can then be tested.

There exist a few numerical models of flapping fliers. Notably, Shim and Kim [16, 17] simulated evolved flying
creatures and experimented on various resulting wing shapes. This leads to interesting results but the tools used
in that work do not enable a high level of precision concerning the aerodynamic forces. Indeed, the aerodynamic
model used in [16, 17] only considers the effect of the instantaneous angle of attack on the lift and drag coefficients
and the wake is not taken into account. Another model has been developed by Parslew [18, 19], which predicted
different gaits with varying flight speed, as reported in [4]. This model uses blade elements theory, where the lift
and drag coefficients are also computed as a function of the local instantaneous angle of attack with a correction
accounting for the induced velocity. The wake is not modeled and the feathers are rigidly fixed to the wing bones.
Valuable contributions can also be found in the field of computer graphics [20, 21]. In [20], a simplified aerodynamic
model is coupled to a more developed bio-mechanical model. It features the same rigid segments as a bird wing
and the feathers are both flexible and articulated.

Literature does not propose any model of a flapping flier embodying both a faithful reproduction of bird bio-
mechanics and an accurate computation of the aerodynamics and wake. In this paper, we report the development
of a new methodology for the simulation of flapping flight. The bio-inspired mechanical model is made to resemble
the skeleton of birds. The wings are articulated with the same main degrees of freedom as those of real birds and
the plumage is modeled by a limited number of feathers representing the movement of all of them, similarly to
the model reported in [20]. The wing aerodynamics are modeled using an immersed lifting line method and the
wake is accurately modeled with a state-of-the-art vortex particle-mesh method. The combination of these two
methods has already proved to produce reference results, see [22]. Crucially, the vortex particle-mesh method is
computationnally efficient and able to capture the development of the wake over large distances [23, 24].

The model is applied to the simulation and control of a bio-mimetic flapping flier. In order to model the flight,
the wing kinematics of the flier are determined. Simple closed-loop controllers are implemented to stabilize the flight
and reach trim state. They are based on a linearized model of flapping flight aerodynamics that is also presented.
The controllers are able to get the flier through transients, such as transitioning between different flight speeds.

The first section of this paper describes the numerical model developed to simulate flapping flight. The flier
multi-body model and the aerodynamic solver are presented, as well as the coupling between them. The following
section provides a description of the bird that the model aims at representing. An application of the tool is presented
in the third section with a description of imposed wing kinematics, the development of a linearized model of flapping
flight aerodynamics, and the design of a closed-loop controller for the longitudinal stabilization and trim of the flight.
In the fourth section, results are presented for the application of this model to two different scenarios.

2 Methods

The main contribution of this paper is a numerical tool for the simulation of articulated flapping flight. This tool
consists in the coupling of a multi-body model and a flow solver, as shown in figure 1. The multi-body model,
further explained in section 2.1, takes as input the internal and external forces acting on a multi-body system
representing the articulated flier. It then computes its dynamics and provides its kinematics as output. The fluid
solver, further explained in section 2.2, requires the kinematics of a lifting line as an input, then computes the flow
around it and the aerodynamic forces acting on it. A coupling part, further explained in section 2.3 is required for
these two first parts to communicate. On the one hand, from the aerodynamic forces, it computes the resulting
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forces on the bodies composing the multi-body system. On the other hand, it computes the kinematics of a lifting
line starting from the kinematics of the flier’s bodies.

Throughout this paper, the frame used follows the usual conventions in aerodynamics: the X-axis is aligned
with the free-stream velocity and points in the forward direction of flight, the Y -axis points towards the right wing
and the Z-axis points down vertically.

Figure 1: Coupling scheme used between the two solvers

2.1 Articulated flapping flier multi-body model

The multi-body model is handled by an integrator named Robotran [25](www.robotran.be). This software uses
symbolic generation to establish the equations of motion of a multi-body system. It also provides an integrator
to solve these equations over time. The equations are formulated for a tree-like structure and based on the use of
relative joint coordinates. That is, a frame is attached to each body and the joint angles of the degree of freedom
of the next body in the tree-like structure is defined in the local frame. Consequently, all the angles presented in
the following sections are defined in a local frame. Robotran is able to handle both direct and inverse dynamics
but only the former is used in the present application.

The flier model consists of a main body, and two wings. The body is linked to the inertial frame through three
translations and three rotations, so that it can be left free in the six degrees of freedom or be blocked in whichever
degree of freedom. A wing structure is shown in figure 2. The representation of the wing is inspired from the work
of Wu and Popović [20]. It consists of three rigid bodies corresponding to the arm, the forearm and the hand.

The bodies are articulated like follows: the first rigid segment, i.e. the arm, is articulated to the body with
three rotations at the shoulder, consequently along the Y , X and Z axes, respectively noted qs,Y (t), qs,X(t) and
qs,Z(t). The forearm segment is then articulated to the arm segment at the elbow with a single rotation along the
Z axis noted qe,Z(t). The hand segment is articulated to the forearm segment at the wrist through two rotations
along the Y and Z axes, noted qw,Y (t) and qw,Z(t). All the rotations occur in single points except the Y rotation
of the wrist (qw,Y ). This rotation (pronation/supination of the forearm) is uniformly spread over the forearm and
leads to twist in the wing.

Following an interpolation ansatz, a reduced set of control-feathers represents the plumage and models its
deformations. The control-feathers are attached to the bones directly. This representation of feathers is simpler
than the one used in [20]. In the present work and in [20], the feathers have the same degrees of freedom (i.e. Z and
Y rotations, for spreading and cambering, respectively). However, while the feathers remain straight in this work,
they have bending compliance in [20]. The rationale behind this simplification is that we lack an accurate model
or data for the feather bending. Still, compliance is captured to a lesser extent by the Y rotation at the root of
the feather, which involves a rotational spring in the present work and was locked in [20]. Only the third primary
feather (the outermost feather) is rigidly attached to the hand segment.

To ensure a smooth spreading of the feathers as the wing folds and expands, the feathers are coupled to each
other with spring-like components, effectively connecting each control-feather to its two neighbors. This emulates
the function of the tendons spanning across the roots of adjacent feathers both for body covert feathers [26, 27] and
for the remiges (flight feathers) [28]. The elastic nature of the tendon led to a representation by a spring component.
Other interactions between bird feathers ensure that they form a continuous surface and do not cross [29]. For the
sake of simplicity, the springs representing the tendons are placed at the tip of the feathers, rather than close to
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Figure 2: Top view of the multi-body model of the flier’s wing. The lengths la, lf and lh represent respectively the
lengths of the arm, forearm and hand segments. The lengths lp3, lp2, lp1, ls1, ls2, ls3 and ls4 represent the lengths
of the three primary and four secondary feathers, respectively.

the root, as seen in actual birds [26, 27, 28]. This provides a realistic model of these interactions and guarantees
that the feathers do not cross.

Additionally, the insertion points of the feathers on the bones also behave like rotational springs, essentially
generating reaction forces on the plumage when it is experiencing aerodynamic forces. The tip feathers, however,
are attached rigidly and remain aligned with their respective hand segment, as it was reported for rock pigeons in
[28]. More detail on the forces and moments produced by the springs is given in appendix A.

The mass of the flier is entirely located in the body and the wing bones. The wings are set to constitute 10%
of the total mass. This mass is distributed among the bones and they are considered as cylinders of mass for the
computation of their inertia matrix. The inertia matrix of the body is computed as the one of an ellipsoid. The
feathers are assumed to be massless.

2.2 Flow solver

This work relies on a vortex particle-mesh method combined with lifting lines to solve the aerodynamics and the
wake of the bird. This method is based on the vorticity-velocity ω − u formulation of the Navier-Stokes equations
for incompressible flows. The vorticity is the curl of the velocity ω = ∇× u. An incompressible flow translates to
a divergence-free velocity field ∇ · u = 0 and the Navier-Stokes equations can be formulated as:

Dω

Dt
= (∇u) · ω + ν∇2ω (1)

where D

Dt
=
(
∂

∂t
+ u · ∇

)
is the Lagrangian derivative operator and ν is the kinematic viscosity.

The vorticity field is discretized using particles characterized by a position xp and a strength αp =
∫
Vp
ωdx,

Vp being the material volume assigned to the particle. The convection of the particles and the evolution of their
strength are governed by the following equations :

dxp
dt

= u(xp) (2)
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dαp
dt

=
∫
Vp

((∇u) · ω + ν∇2ω)dx , (3)

which are solved using a third order Runge-Kutta scheme. The velocity field, required to solve the above equations,
is recovered by solving the following Poisson equation :

∇2u = −∇× ω . (4)

The vortex particle-mesh method uses a hybrid discretization: the spatial derivatives in the right-hand side of
equation 3 are computed on a grid, using fourth order centered finite differences. The grid is also used to solve
the Poisson equation 4, using a solver operating in the Fourier space. This allows to use unbounded directions
simultaneously with inlet-outlet boundaries [30].

High order schemes are used to pass the information back and forth between the particles and the grid at each
time step. The mesh is also used to reset the particles on grid points every few time steps. This operation prevents
the clustering or depletion of particles in some areas of the flow. Additionally, this particle discretization does
not guarantee the solenoidal property of the vorticity (as it is the curl of velocity). A reprojection operation is
thus performed every few timesteps to ensure this condition (20 in the presented simulations). Both operations are
further explained in [24]. This method is implemented for massively parallel architectures, using the PPM library
[31].

In this method, the flier is represented as a source of vorticity, through an Immersed Lifting Line (ILL) method
[32]. This is possible using the assumption that the wings are slender and that the flow around the airfoil is
essentially two-dimensional. In this method, the instantaneous lift and drag coefficients CL and CD are obtained
from the local flow conditions, i.e. local instantaneous angle of attack and Reynolds number, using data from an
aerodynamic polar. This application uses an AS6092 airfoil [33]. It is a bird-like airfoil and its polar is available
in [33], where it has been computed using XFOIL [34]. This ILL method sheds the vortical structures related to
the production of lift. Note that the airfoil drag (i.e. viscous and pressure drag) is captured through the look-up
of the drag coefficient CD and the local flow condition but its vortical signature is not shed in the wake. It has a
marginal effect on the local flow along the line but rather only affects the vortex smearing further in the wake, see
[32] for more details. The bound circulation Γ is related to the lift vector L using the Kutta-Joukowski theorem :

L = ρV× Γ

where ρ is the air density and V the local relative velocity vector of the flow with respect to the airfoil. The wing
is then represented by a lifting line with bound vortex particles accounting for the circulation. The lifting line also
sheds new vortex particles, according to the variations of the circulation, which merge with the existing particles
in the flow.

The Kutta–Joukowski theorem is classically derived for a steady two-dimensional potential flow. By using this
relationship, we assume that the flow around the airfoil is steady and unseparated. Therefore, the presented method
is limited to flight regimes where the unsteady and stall effects can be neglected. While it has not been done in
the present study, the evaluation of the lift coefficient can also be performed with lifting line using dynamic stall
models, as in [35].

In the present application, the lifting line has the particularity of deforming during the simulation. Even more
than deforming, its length will also vary. This implies that the discretization of the lifting lines varies over time.
While this is not part of the usual ILL methods, it can be shown that the same method can still be applied with
arbitrary time-varying discretization and that the resulting forces and the wake are not affected. Mathematical
proof of this statement is presented in appendix B.

An additional force accounting for the body drag is applied at the center of gravity of the body. This force is
aligned with the instantaneous velocity of the body and its magnitude is computed as:

Dbody = CD,body ·
1
2ρU

2Sb (5)

where CD,body is the drag coefficient of the body, ρ the air density, U the instantaneous relative air velocity with
respect to the body and Sb the frontal surface of the body. The values of the frontal surface and the drag coefficient
are evaluated following the method proposed by Pennycuick in [36].
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2.3 Coupling

The coupling between the multi-body model and the flow solver plays two roles (see figure 1). The first is to provide
the multi-body model with the resultant of the aerodynamic forces on each feather. The second is to provide the
flow solver with the kinematics of the lifting line, which have to be computed from the position and velocities of
the bodies in the multi-body model. This second function captures the morphing of the wing.

The methodology used to pass the forces from the points of the lifting line to the feathers is represented in
figure 3. It is a substantial simplification of a continuous distribution of forces and torques on a wing to a set of
discrete forces acting on specific bodies (i.e. the feathers represented in the bio-mechanical model). For each point
of the lifting line, the closest feather is found. This decomposes the line in a set of sections each corresponding to
a single feather. The force acting on the center of each feather is then computed by summing the contributions of
the points in its corresponding section as:

Ff =
∑

dFl
where Ff is the total force acting on a feather and dFl is the contribution of a single point of the lifting line. Since
the application points of the forces are displaced, an additional torque Mf is added to the feather. It is computed
as:

Mf =
∑

dMf =
∑

∆xl × dFl
where ∆xl is the vector connecting the center of the feather to the point of the lifting line.

Figure 3: Free-body diagram capturing the equivalence between a force acting at the level of the lifting line to a
force an moment acting at the level of one feather.

The instantaneous shape of the lifting line is computed from the positions of the bones and control-feathers
composing the multi-body model. This process starts by drawing the contour of the wing. The leading edge first
follows the propatagial tendon in a straight line between the shoulder and the wrist. This tendon is part of a muscle
spanning from the torso to the hand of the bird. It forms a triangle of skin with the wing bones that is part of
the lifting surface. It then goes along the "hand" segment and the outermost feather to the tip of the wing. The
trailing edge links the tip of each control-feather from the innermost to the outermost and meets the leading edge
at the tip of the wing. The leading and trailing edge are continuous lines that together form the wing surface, from
which the lifting line is extracted.

The ILL method requires the lifting line to (i) pass through the quarter of the chord of the wing and (ii) be
orthogonal to that chord at each of its points. Condition (i) is generally part of the formulation of the lifting line
methods, where the line is the locus of the aerodynamic center of the wing [37, 38]. Furthermore, in aerodynamic
polars, the aerodynamic moment is typically defined about the quarter of the chord, since the aerodynamic forces
produce a constant moment about this point in the case of a symmetric airfoil. Condition (ii) is mandatory to avoid
miscalculations of the surface of the wing.

A first guess for the quarter-chord line can be obtained from a sampling of the leading and trailing edges with a
same number of points: it is taken as the line linking the points at the quarter of the distance between corresponding
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points of the leading and trailing edges. This first guess is however not orthogonal to the chord. Therefore, it is
iteratively updated to enforce the orthogonality condition (ii). This iterative process is described in appendix C.

3 Embodiment: the Northern Bald Ibis

While the model presented in this document can be adapted to represent any flapping flier, its main application in
this paper will be to model bird flight, and in particular the flight of the Northern Bald Ibis (Geronticus eremita).
This particular bird has been chosen for its high aspect ratio wing. This improves the validity of the representation
of the wing with lifting lines (see section 2.2). It also relies on a non-stop flapping flight mode which is modeled in
this work. Finally, this bird is known to migrate in formations where its wake is exploited by followers [39] and the
analysis of this phenomenon is one of the motivations for the development of this model. The bones and feather
lengths used in the multi-body model are summarized in appendix A. The total mass of the bird is set to 1.2 kg.
The body mass is 1.1 kg and 0.05 kg is distributed in the bones of each wing. An example of wing kinematics that
the model can output for the ibis is pictured in figure 4.

Figure 4: Snapshots of a representative wing kinematics over a flapping cycle. The three rigid segments and the
seven control-feathers are represented in blue. The green lines represent the leading and trailing edges. Note that
the feathers do not start at the leading edge near the root of the wing. In this region, the leading edge is situated
at the level of the propatagial tendon and the feathers are still attached to the wing bones. The red line represents
the lifting line along which the wing’s aerodynamics are computed.

In order to simulate the flight of the flier, the flapping frequency and the flight velocity need to be determined.
For the frequency, a value of 4 wingbeats per second (4 Hz) is chosen. It is approximately the flapping frequency
observed for the Geronticus Eremita and is a close value to the flapping frequency of birds similar to it [40, 41]. A
flight speed of 15ms−1 is selected as a target, i.e. a typical value for this particular bird [39].

The body drag is evaluated for this particular bird following the method presented in [36]. Considering a mass
of 1.2 kg – the average mass of the Geronticus Eremita – a Reynolds number Re = 1.37 105 and a frontal surface
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Sb = 9.19 10−3 m2 are obtained. From the Reynolds, [36] gives a value for the drag coefficient CD,body = 0.291.
For a target velocity U = 15ms−1, following equation 5, the body drag is estimated to D = 0.369 N.

4 Closed-loop control of a bio-mimetic flapping flier

In this section, the model described in section 2 is used for the control of longitudinal flapping flight. First, in section
4.1, imposed kinematics are defined for the actuation of the multi-body model. Section 4.2 identifies an open-loop
model for the flight dynamics. A linearization of the flight dynamics is performed around an equilibrium identified
by minimizing the energy consumption of the bird. Then, in section 4.3 a closed-loop controller is designed based
on the identified linear model.

4.1 Wing kinematics

This section is dedicated to the description of the wing kinematics. In particular, the kinematics for the right wing
will be described. The ones of the left wing are chosen to be symmetric. Since the kinematics of the skeleton are
imposed, the joint torques are ignored in the computations of the motions of the multi-body model. The kinematics
are imposed in order to create a flapping motion similar to that of a real bird wing. All the notations for the names
of the joint rotations are described in section 2.1.

A first constraint comes from mechanisms in bird wings that couple the rotation of the wrist joint to the one
of the elbow joint, effectively maintaining a constant angle between the humerus (i.e. the first rigid segment of
the wing) and the carpometacarpus (i.e. the hand segment) [42]. Both bones constituting the forearm (ulna and
radius) remain parallel and form a parallelogram with the arm (humerus) and hand (carpometacarpus) bones.
This results in a maintained parallelism between the latter two bones, and in the biologically-imposed constraint
qw,Z(t) = −qe,Z(t) at any time t, as represented in figure 5. This reduces to five the amount of joint angles that
follow an independent kinematic trajectory.

Figure 5: Simplified representation of the mechanical constraint on the wrist rotation

To reduce the dimensionality of the parameter space, each joint angle i is considered to follow an harmonic
trajectory qi(t), with its own amplitude Ai, mean value q0,i and phase φ0,i:

qi(t) = q0,i +Ai · sin (ωt+ φ0,i) (6)

with ω = 2πf and f being the flapping frequency, identical for each joint. For the five remaining unconstrained joint
rotations of the model shown in figure 2, this makes a total of 15 gait parameters to be defined for characterizing
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a particular kinematic pattern. Table 1 summarizes the explanation for the determination of each kinematic
parameter. Throughout this section, each paragraph will explain how some of the parameters are fixed. The word
"parallelism" in table 1 refers to the kinematic relationship described in the previous paragraph.

Shoulder X Shoulder Y Shoulder Z Elbow Z Wrist Y Wrist Z
Mean (q0) adjusted independent independent adjusted adjusted parallelism

Amplitude (A) independent independent adjusted extension adjusted parallelism
Phase (φ0) reference follow flow extension extension follow flow parallelism

Table 1: Summary of the determination of each kinematic parameter.

Since the phases φ0,i are relative to each other, one of them can be arbitrarily placed, without any consequence
on the resulting gaits. Here, we took φ0,s,X = 0 so that t = 0 corresponds to the middle of the downstroke. This
choice is referred to as "reference" in table 1.

It has been reported that a bird wing will be at its largest span halfway through the downstroke and at its
shortest in the middle of the upstroke [4]. This impacts the Z rotation of the shoulder and elbow joints. Since the
midpoint of the downstroke corresponds to ωt = 2kπ, with k being any integer, it implies that the sine function
in equation 6 is at an extremum at ωt = 2kπ, i.e. φ0,i,Z = ±π/2 where the subscript i refers to the shoulder or
elbow joint. Since the shoulder folds when qs,Z(t) > 0 and the elbow when qe,Z(t) < 0, and since qw,Z = −qe,Z , one
obtains φ0,s,Z = −π/2, φ0,e,Z = π/2 and φ0,w,Z = −π/2.

The maximum span will be reached when the wing is fully extended and the joint angles of the elbow and wrist
along the Z axis equal zero. This means that qi,Z(t = 0) = 0 for these joints, which implies Ae,Z = −q0,e,Z =
Aw,Z = q0,w,Z . The parameters determined using this reasoning are reported as "extension" in table 1.

Another assumption is that the phases of the shoulder and wrist Y rotations are such that the wing will follow
the flow. This translates for both of these joints to φ0,i,Y = −π/2, since a negative value is desired during the
downstroke and a positive one during the upstroke. For the shoulder joint, it means that the wing pitches up during
the upstroke and down during the downstroke, thereby reducing the amplitude of the variations of the angle of
attack through the flapping period. Regarding the wrist joint, it means that the wing twists during the flapping
motion in order to reduce the variations of angle of attack along the span. This assumption is referred to as "follow
flow" in table 1.

The remaining parameters are obtained by fitting the wingtip and wrist trajectories to the ones observed in
wind tunnel for the pigeon at 14ms−1 in [4]. For the model to be comparable with the reference, a secondary
embodiment is performed, using bones and feather lengths representative of a pigeon, i.e. la = 4.54 cm, lf = 5.49
cm, lh = 3.36 cm and lp,3 = 20 cm. The values of the remaining parameters are adjusted so that the trajectories
roughly agree with the ones of [4].

Figure 6 compares the obtained trajectories of the wingtip and wrist to the reference ones. The difference in the
trajectories of the side view of figure 6 comes from some inconsistency in [4]: in the top view, the wingtip passes at
the level of the shoulder during the downstroke, while it stays further behind in the side view. Since the wing has
a larger span when the tip is at the shoulder level, it appears more optimal to follow the trajectory shown in the
top view. This results in the side view in a broader trajectory than the ones described in [4].

Based on the fitted trajectories of figure 6, relationships have been established between the remaining gait
parameters. Four of these parameters are kept independent to allow the control of the flier. The main one is the
amplitude of the flapping motion As,X and three others are the mean value and amplitude of the pitching motion
and the mean value of the sweeping motion of the shoulder joint: q0,s,Y , As,Y and q0,s,Z . Taking the previously
stated constraints and these biologically-based observations into account, the following relationships are established
for the remaining parameters:

q0,s,X = 0
As,Z = 0.5As,X
q0,e,Z = −0.75As,X
Ae,Z = 0.75As,X

q0,w,Y = 0
Aw,Y = 0.083As,X
q0,w,Z = 0.75As,X
Aw,Z = 0.75As,X

These relationships will be used in the rest of this paper. The parameters determined by these equations are referred
to as "adjusted" in table 1. The independent parameters are referred to as "independent". We acknowledge that
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these relations are partly arbitrary, since they are based on the trajectories of two points of the wing for kinematics
of a single species at a single flight speed. As a consequence, they likely only hold over a limited range of flight
regimes. We do not claim that they accurately represent the very actual kinematics of a bird, but we still consider
that they produce realistic gaits.

Figure 6: Comparison of the wingtip and wrist trajectories over a flapping cycle obtained from [4] (solid red)
and the constrained kinematics obtained in this section (dashed blue). These trajectories are obtained using the
following values of the independent gait parameters: q0,s,Y = 5◦, As,Y = 2◦, As,X = 60◦ and q0,s,Z = 30◦. The
body represented has roughly the dimensions of a pigeon but is only shown for illustrative purposes.

4.2 Identification of an open-loop model of flapping flight

In section 4.1, we identified four parameters that remained independent to specify the wing kinematics. These
parameters can be used as outputs of controllers in order to stabilize the flight of a bio-mimetic flier. In order
to understand how the values of these parameters can be computed, one needs to identify an open-loop model
of flapping flight. This model relates the longitudinal flight dynamics to the values of these four independent
parameters. In longitudinal flight, three degrees of freedom have to be considered: the vertical position (along Z),
the horizontal, streamwise position (along X) and the pitch angle (rotation around Y ).

Since flapping flight is intrinsically periodic and oscillatory, so must be the velocities and pitch angle. However,
in order to simplify the open-loop model, this oscillatory behavior will be ignored. This is achieved by averaging
the measured quantities over the last flapping period. That is, in place of any measured variable f(t), its mean
value over the last flapping period f̄(t) is considered and computed at any time t as:

f̄(t) =
∫ t

t−T
f(t′)dt′ (7)

where T is the flapping period. The variable f can represent a force, a torque, a velocity or an angle. The open-
loop model thus relates the period-averaged values of the forces and velocities of the flier to the independent gait
parameters, while ignoring the oscillations around the average.

For linear control to be applicable, the flight dynamics need to be linearized around an equilibrium. This
equilibrium regime has been chosen as the one that minimizes power consumption. To find it, several values of
one of the four gait parameters are tested, and for each of these values, the other three are adapted so as to get a
force equilibrium. The power consumption is computed at each of these equilibrium points by multiplying the joint
torque of each actuated joint (i.e. the elbow, the shoulder and the joint) by its angular velocity, and averaging the
power over a flapping cycle according to equation 7. During a flapping cycle, there are short periods of time where
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the instantaneous power is negative. These contributions to the energy consumption are also included. While this
may differ from other bio-locomotion works where the positive part of the instantaneous power is used (see e.g.
[19, 43]), it is reported in [44] that the main wing muscles store and release up to 9 % of their net mechanical work.
In our case, it is equivalent to considering that energy can be stored as elastic energy and released without any
losses. The search for minimum power is represented in figure 7. The equilibrium point is chosen with a value of 5
degrees for the parameter As,Y and the corresponding values for the remaining three.
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Figure 7: Power consumption of the flier at various equilibrium states. In panel (a) are represented the values of
the equilibrium gait parameters for a varying value of As,Y . For each value of As,Y , the corresponding values of
q0,s,Y , As,X and q0,s,Z leading to the equilibrium are represented. The period-averaged power is presented in panel
(b).

The open-loop model for longitudinal flight around the chosen equilibrium point relates the values of the inde-
pendent kinematic parameters to the average forces and moment in the longitudinal plane through a 3×4 sensitivity
matrix noted S. That is, if the forces and moment are represented by a vector F̄ =

[
F̄Z , F̄X , M̄Y

]T and the gait
parameters by a vector q = [q0,s,Y , As,Y , As,X , q0,s,Z ]T , we have that:

F̄ = S · q . (8)

The outputs of the model are the vertical and horizontal velocities vZ and vX and the pitch angle θ of the
flier. To obtain these, it is assumed that there is a separation of timescales between the rate of change of the
period-averaged forces and the flapping period. In this case, the averaging of equation 7 can be neglected and the
following equations can be written: 

˙̄vZ = F̄Z
m

˙̄vX = F̄X
m

¨̄θ = M̄Y

IY

(9)

where m and IY are respectively the mass of the flier and its moment of inertia along the Y axis.
Additionally, the contribution to the forces of the mean pitch angle θ̄ is considered. This angle is the only degree

of freedom to have a significant impact on the dynamics. Since the body force does not depend on its inclination
in this model, and the pitching rotation of the body causes an equal rotation of the shoulder, the influence of θ̄
is equivalent to that of q0,s,Y (i.e. the mean value of the pitching rotation of the shoulder joint). As a result,
equation 8 is modified into:

F̄ = S ·

q +


θ̄
0
0
0


 (10)
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where the relative rotation of the wing with respect to the body (q0,s,Y ) is replaced by its absolute rotation with
respect to a fixed frame (q0,s,Y + θ̄).

Figure 8: Open-loop model used to capture the flapping flight dynamics. To the left, the independent gait parameters
are taken as inputs, and to the right, the outputs are the horizontal and vertical velocities and the pitch angle.

Figure 8 represents equations 9 and 10 in a block diagram. In order to complete the identification of the open-
loop model, the sensitivity S of the system to the gait parameters has to be quantified. For this, simulations are
carried out with discrete values of the gait parameters around the equilibrium. In each of these simulations, the
flier’s body is maintained fixed and horizontal. Vertical and horizontal forces and pitching moment are measured
and averaged over the fourth flapping period as in equation 7. At that point, the average force has reached its
final value, after the wake has finished developing. The average forces and moment are related to the varying
gait parameters and linear regressions are extracted from the data to complete the linear model. The matrix S
then contains the slopes of these linear regressions. Figure 9 illustrates this method by representing the forces and
moment as a function of the four gait parameters in the case of the northern bald ibis (see section 3), although the
same method would remain valid for any flier.

4.3 Closed-loop stabilization of longitudinal flight

Closed-loop controllers are designed to compute the values of the independent gait parameters leading to longitudinal
stabilization the flight. A separate controller is assigned to each degree of freedom of the flight so that their gains
can be computed independently. Each of these controllers outputs the force or moment that the flier has to produce
in the corresponding degree of freedom. The value of the gait parameters leading to the desired force needs to be
computed. This is equivalent to solving the system S · q = F̄, with F̄ being the (period-averaged) forces vector
prescribed by the controllers.

Since S is a 3×4 matrix, multiple solutions exist to this system. One of them is given by using the pseudo-inverse
S+ of S [45]. In the present case, since S is a full rank matrix, we obtain S+ = ST

(
SST

)−1, and S · S+ = I. A
property of the pseudo-inverse matrix is that it ensures the norm of the solution to be minimal. That is, for a given
target force F̄ from the controllers, we have that S·q = S·S+F̄ = F̄ and that |q| =

√
q2
0,s,Y +A2

s,Y +A2
s,X + q2

0,s,Z is
minimum. This means that the controller will use the smallest possible departures from the equilibrium parameters.
Since the equilibrium is chosen at a minimum of power consumption, it makes sense that the controller outputs
values of the gait parameters that are the closest possible to the ones at the equilibrium.

Additionally, the value obtained for q0,s,Y is modified to cancel the contribution of the pitch angle shown in
equation 10. This is simply done by subtracting the value θ̄, giving that to obtain a target force F̄, the gait
parameters q are computed as:

q = S+ · F̄−


θ̄
0
0
0

 (11)
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Figure 9: Influence of the independent gait parameters on the longitudinal dynamics. The red dots represent the
discrete values extracted from the simulations and the blue line represents linear regressions of these data. The
forces are adimentionalized using 1

2ρU
2S and the moment using 1

2ρU
2Sc̄ where ρ is the density of air, U is the

flight velocity (15ms−1), S and c̄ are the wing surface and mean aerodynamic chord mid-downstroke. CW is the
adimentionalization of the weight, and CD,body is the body drag coefficient.

Figure 10: Closed-loop control scheme used to stabilize the flier in all three degrees of freedom. The block G(s)
represents the open-loop model that is detailed in figure 8.

The resulting global control scheme is represented in figure 10. The controllers take as input their corresponding
error, i.e. eZ , eX or eθ obtained by subtracting the period-averaged values of the velocities and pitch angle to the
reference values. They output the reference forces to be achieved using variations of the gait parameters. These
variations are computed by a multiplication with the pseudo-inverse S+ of the sensitivity matrix. The pitch angle

13



is finally subtracted following equation 11 to cancel its contribution to the dynamics.

Putting together the open-loop model of figure 8 and the closed-loop scheme of figure 10, and knowing that
S · S+ = I, the following transfer functions can be written:

v̄Z/X(s) =
CZ/X(s) 1

m

s+ CZ/X(s) 1
m

vZ/X,ref (s), (12)

θ̄(s) =
Cθ(s) 1

IY

s2 + Cθ(s) 1
IY

θref (s) (13)

For the two translation degrees of freedom (with transfer function shown in equation 12), a PI controller is used
as closed-loop controller, i.e.

CZ/X(s) = kI
s

+ kP

An integral term is mandatory here to compensate the errors due to the linearization of the model and the propor-
tional term allows a faster response. The denominator of the transfer function is then:

DenZ/X(s) = s2 + s kP
1
m

+ kI
1
m

(14)

Critical damping is synthesized as a closed-loop behavior. Therefore, the denominator should have the form:

Den(s) = s2 + 2as+ a2 (15)

where a is the double pole of the transfer function and has yet to be determined. Putting together equations 14
and 15, the closed-loop gains are obtained as:

kP = 2am
and

kI = a2m

For the pitch controller to have a single closed-loop pole like both other controllers, together with no steady-
state error, it requires the use of a PID controller rather than a PI. Indeed, only an integral term can ensure a zero
steady-state error and since the denominator of the transfer function of equation 13 has a second order term, it
becomes a third degree polynomial such that a controller with three gains is required to place the three poles in
closed-loop, i.e.

Cθ(s) = s kD + kP + kI
s

The denominator of the closed-loop transfer function from equation 13 is then:

Denθ(s) = s3 + s2 kD
1
IY

+ s kP
1
IY

+ kI
1
IY

(16)

To impose critical damping, the coefficients are obtained by identifying equations 16 to the expression (s+ a)3 =
s3 + 3as2 + 3a2s+ a3, i.e.

kD = 3aIY ,

kP = 3a2IY and
kI = a3IY .

The value of the pole a of the transfer functions has yet to be chosen. For the hypotheses underlying the open-
loop model to remain valid, there needs to be a separation of time scales between the response time of the transfer
functions (∼ 1

a ) and the flapping period T . Furthermore, since the feedback only uses the mean value of the state
variables over the last flapping period, the control schemes are only valid if the time scales are properly separated.
To satisfy this condition, a value of a = 1

5T = 0.8 s−1 is chosen for both translations. For the pitch, however, a
higher value of a = 1

3T = 1.3 s−1 is chosen in order to increase the authority of the controller. The rationale behind
this synthesis is that the pitching motion is unstable in open-loop, and the flier experiences difficulties to stabilize
with less pitching authority.
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5 Results

In this section, the articulated flapping flier model and its controller will be tested in two different situations. In
section 5.1, the flier is flying in a trimmed state and its aerodynamics and wake can be analyzed. In section 5.2,
the flier is tasked to follow a step of reference velocity and accelerate from a velocity below the design point of the
controller to one above that point. The power consumption of the flier in both of these scenarios is computed and
compared with values from the literature in section 5.3.

In both simulations, the computational domain encompasses the flier and its wake. It moves at a constant
horizontal velocity of 15ms−1. It is thus an inertial frame with a flow imposed through it at Uinflow = −15ms−1 in
theX direction in both scenarios. The fluid properties are that of air at sea level, i.e. the density is ρ = 1.225 kgm−3,
and the kinematic viscosity is ν = 1.48 10−5 m2 s−1. Considering the mean aerodynamic chord of the bird’s wing
at the middle of the downstroke1, c ' 0.18m, the chord Reynolds number is Re = Uc

ν ' 1.8 105. In both scenarios,
the bird uses a controller designed to operate around a forward velocity of 15ms−1.

5.1 Stable trimmed flight

In a first simulation, the flier is tasked with finding an equilibrium, i.e. trimming its flight regime, based on averaged
diagnostics as explained earlier. At the start of the simulation, the CG of the flier is artificially maintained in a fixed
position for four flapping periods, in order to allow the wake to be settled. During this time, it uses kinematics that
produce a zero average force on a period. This initial gait is found using another dedicated controller tasked with
finding the required kinematic parameters. After the flier is set loose, the forces are expected to change because it
oscillates and this impacts the dynamics. Thus the flier undergoes a transient. During this transient, the controllers
modify the kinematics in order to ensure that the average velocities tend to zero (which is not equivalent to the
average force being equal to zero). After the transient, the flier reaches trimmed flight.

The vortex method provides a representation of the wake of the flier in trimmed state. It is represented in
figures 11 and 12. In figure 11, the wake shows well-defined wing tip vortices as well as root vortices. The latter
have been observed in both bird [12, 13, 14, 46] and bat [14] flight. They are due to a decrease or increase of the
lift distribution in the body or in the tail. Since the vorticity only forms closed contours, any spanwise variation
of circulation results in the shedding of vorticity in the wake. In reality, the body and the tail of a bird form a
streamlined body that produces lift and has a circulation. In the present simulations, in the absence of body, the
circulation is forced to drop to zero at the root of the wings. Hence stronger vortices are shed than if the circulation
could keep a non-zero value at the wing-body junction. Recent work [46] even observed that the body-tail ensemble
has a circulation larger than the one at the root of the wing for a gliding bird, resulting in vortices of opposite sign
to the ones shed in our simulations. The root vortices present in the simulations are thus stronger than they should
and do not accurately represent the physics of a real flapping flier.

Figure 12 compares the wake of the flier obtained in the simulation with the one that would be predicted using
frozen-wake assumption. The "frozen" wake is obtained by taking snapshots of the near wake (i.e. the wake in the
region close to the flier) at various instants and concatenating them. This produces a wake in a frozen state, that
does not evolve through time. This representation, while not quantitative, allows a qualitative evaluation of the
frozen-wake assumption. The overall shape of the wake remains the same in both cases but 3D effects corresponding
to the time variation of the wing circulation occur in the actual wake and are not visible in the frozen one. Such
an effect is depicted in figure 13. In the regions of the wake that correspond to periods of lower lift, the tip vortices
tend to rise because of vertical velocity induced by the spanwise vorticity. The root vortices have a very different
behavior in the actual wake than in the frozen one. Since they constitute a pair of strong vortices at a close
distance, they induce high velocities on each other, which causes them to raise in the simulation, while they remain
at the same altitude in the frozen wake. However, as their intensity is larger than it should, this specific behavior
of the root vortices should not be used to invalidate the frozen wake assumption. One should rather examine the
differences in the tip vortices.

Figure 14 shows the total aerodynamic forces and moment during a flapping period. As expected, these forces
are periodic. The averaged dynamics show that the flier is at equilibrium. That is, the vertical force FZ averages
to minus the weight of the flier (since it is defined as pointing downwards) and both the horizontal force FX and

1Since this value changes constantly during the flapping motion as the wing deforms, the choice of taking it at the middle of the
downstroke is arbitrary but it is still representative.
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Figure 11: Volume rendering of the vorticity magnitude in the wake of a flapping flier at various instants of its
flight. From top to bottom, the snapshots correspond to t/T = 0, 0.25, 0.5, 0.75 and 1.

Figure 12: Comparison of the vorticity magnitude in the wake of the flapping flier (lower panel) versus what the
frozen-wake assumption would predict (upper panel).
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Figure 13: Effect of spanwise vorticity on the tip vortices produced in periods of lower lift. The full lines represent
the position of the wingtip vortices that the frozen-wake assumption would predict. The dashed lines represent
the deformation of these vortices under the influence of velocities induced by the spanwise vorticity shed during
transitions between high and low lift fractions of the flapping period.

the pitching moment M average to zero. Lift is always positive, reaches a maximum around the middle of the
downstroke (t/T ' 0) and gets close to zero during the upstroke (0.25 < t/T < 0.75). Net thrust is exclusively
produced in the downstroke (t/T < 0.25 and t/T > 0.75).
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Figure 14: Total aerodynamic forces and moment over a flapping period. In blue are the forces from the lifting line
method, in red are the forces recomputed from the wake structures and in yellow are the target forces (weight for
the vertical force, body drag for the horizontal force, zero for the pitching moment). CZ = FZ/(q ·S) is the vertical
force coefficient. CX = FX/(q · S) is the horizontal force coefficient. CM = M/(q · S · c̄) is the pitching moment
coefficient. The dynamic pressure q = 1

2ρV
2, the wing surface S and the mean aerodynamic chord mid-downstroke

c̄ are used for the adimensionalisation.
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Figure 14 compares two techniques to compute the unsteady forces produced by the flier. A first one relies on
the integral of aerodynamic forces along the ILL, and a second one uses a control volume approach. The latter uses
conservation of momentum in a control volume around a flying object, and vector analysis to provide a formulation
easily applicable for vortex methods. This formula is reported in [47] and provided in appendix D for the sake of
completeness. The match between the results of both techniques is an indicator that all the exchanges of momentum
between the wing and the flow have been accurately computed. The difference between the curves for the horizontal
force (CX) is due to the absence of aerodynamic signature for the drag in our simulations. This leads to a higher
value for the thrust in the forces measured in the wake, especially during the upstroke where the airfoil drag is at
its highest. The vortex signature of drag has recently been added in the flow solver [32] and will be included in
future work. The fact that the model allows to accurately capture the momentum in the wake of the flier means
that the simulation tool can be used to test experimental methods used to measure the aerodynamic forces acting
on a flying bird.

The kinematics are also periodic and the flier follows an oscillating motion. Since the amplitude of the oscillations
is relatively small with respect to its velocity, the trajectory appears leveled for a stationary observer. But if the
average velocity of the center of gravity is substracted, the resulting trajectory exhibits a loop as in figure 15a.
Still, the amplitude of the oscillations is small compared to the size of the flier (the mean aerodynamic chord at
mid-downstroke is about 0.18 m). The pitch angle oscillations are also small as it can be seen in figure 15b.
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Figure 15: Trajectory over one flapping period (a), and position and pitch angle (b). The red lines in the trajectory
represent the pitch angle of the bird. The X axis pointing towards the front of the bird, the figure represents a
trajectory for a flier going from left to right.

5.2 Step of target flight speed

This section presents a simulation where the flier is tasked with changing its flight speed. In this simulation, it first
flies at a velocity of −1ms−1 in the domain in the X direction. Since a flow is imposed through the computational
domain at a velocity of −15ms−1 as in section 5.1, this is equivalent to flying at 14ms−1. For 20 seconds, it is
tasked to remain stable at a velocity of −1ms−1 in the domain. After 20 seconds, the reference velocity goes from
−1ms−1 to 1ms−1 over 2 seconds, which is equivalent to flying at 16ms−1. After this transition, the flier is tasked
to remain stable at a velocity of 1ms−1.

For the first second of the simulation, the flier is artificially constrained to fly straight at −1ms−1 to ease the
stabilization at that flight speed while the wake develops. It is then set free and quickly settles to a trimmed flight.
At 20 seconds, it starts to accelerate. Although the controller has been designed to achieve independent control for
all three degrees of freedom, this stands true only if the flier is in stable horizontal flight at the design velocity of
15ms−1. Since the flier is not flying at this design velocity at the time it has to accelerate, coupling between the
degrees of freedom are expected. The change of kinematics imposed by the controller in response to the change of
reference velocity thus also disturbs the equilibrium in the vertical direction and in rotation. As a result, the flier’s
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vertical velocity turns positive. Its pitch angle also varies. After the transient, the flier settles back to a trimmed
flight at 1ms−1.

Figure 16a shows a perturbation of around 1ms−1 for the vertical velocity vZ . It also shows a large perturbation
of around −30◦ for the pitch angle. The step is clearly visible for the vX part, where it starts at -1 and ends at +1,
as tasked. The value of the vertical velocity vZ varies with the same time scale as vX .
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Figure 16: Evolution of the kinematic variables (a) and the control parameters of the controller (b). Panel (a)
reports the instantaneous value of the objectives in blue and their mean value over the previous period in red. The
reference horizontal velocity is represented in black. Panel (b) pictures the gait control parameters through the
whole simulation.

5.3 Comparison of the power consumption with literature data

In this section, the power consumption of the bird in the two flight scenarios is compared to real values reported in the
literature. The only experimental result regarding the energy expenditure of the Northern Bald Ibis is found in the
work of Bairlein et al. [48]. It reports the total energy expenditure of ibises over a whole flight. Instantaneous power
consumption can also be extrapolated from data on other birds through allometric relationships. Such equations
are found in the work of Norberg [49] and Schmidt-Nielsen [50] (also reported by Butler [51]). Expressions for the
minimum power and minimum cost of transport (COT = P/(W · V )) can be found in [51]. These same values
as well as the velocities at which they are respectively achieved are given in [49]. The allometric relationships are
given in table 2.

Pmin [W] VPmin [m s−1] COTmin [–] VCOTmin [m s−1]
Norberg [49] 10.9 ·m1.19 8.9 ·m0.21 0.105 ·m−0.036 11.8 ·m0.21

Butler [51] 50.7 ·m0.72 – 0.2053 ·m−0.3 –

Table 2: Allometric relationships for the minimum power Pmin and cost of transport COTmin and their correspond-
ing flight speeds V taken from [49, 51]. The mass is expressed in kg.

In the simulations, the power is computed in the way described in section 4.2, i.e. by summing the product
of the joint torque and angular velocity for each driven joint, and averaging the sum over a flapping period. The
simulations provide data for three different forward velocities: 14, 15 and 16ms−1. The power is computed for
the trimmed flight at each flight speed and compared with the output of the expressions of table 2. The cost of
transport is obtained by dividing the power by the corresponding velocity and the weight of the bird. The values
are compared in table 3.

From a first look at table 3, we can see that the values for the power and COT are within the range of the values
provided by the allometric expressions. The range of values from [48] is higher but represents an average over a
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Norberg [49] Butler [51] Bairlein [48] Present work
14ms−1 15ms−1 16ms−1

P [W] 13.54 57.81 82.5 – 224.4 26.66 33.79 38.63
COT [–] 0.1043 0.1944 0.1618 0.1914 0.2051

Table 3: Power and cost of transport as obtained in the simulations, through allometric expressions [49, 51] and
from experimental data [48].

whole flight, and includes the costs of take-off and landing. Since the allometric values represent the minimum power
and COT, the ones from the simulations should be higher. However, since it was assumed that energy could be
stored during the flapping cycle as elastic energy, and that it could be released without any losses, our computation
of the power most probably underestimates the actual value. Nevertheless, the agreement, within the same order
of magnitude, is remarkable.

From [49], the velocities corresponding to the minimum power and COT are evaluated at 9.30 and 12.26ms−1,
respectively. Since the velocities in the simulations are higher than that, it is expected for both the power and the
cost of transport to increase with the velocity, which is indeed observed.

6 Conclusions and perspectives

The main contribution of this work is a numerical model for the simulation of flapping flight. This model is built
upon a skeletal model of birds, replicating its structure and degrees of freedom. The model is able to produce
realistic looking motions and compares favorably with captured gaits of real birds.

The flight aerodynamics are handled by a state-of-the-art vortex particle-mesh code, where the wings are rep-
resented by lifting lines. These can compute the aerodynamic forces precisely for slender wings, with much lower
computational costs than wing resolved CFD. An original method has been developed to extract a lifting line from
leading and trailing edges of a wing. Note that it is not trivial to enforce the defining properties of the lifting line
– i.e. that it has to be orthogonal to the chord and pass through the quarter of it at each of its points. If not, it
represents a wing different than the one desired. The vortex particle-mesh method allows to accurately represent
the wake of the flier over long distances, which is not the case in existing bird models. The aerodynamic forces can
also be extracted from the wake, and fit properly with the forces output by the lifting line model, thus validating
the exchanges of momentum between the wing and the fluid.

Controllers have been implemented to simulate trimmed flight. The flier is able to reach stable flight in the three
longitudinal degrees of freedom, at various flight speeds, and it is able to handle the transient states between two
flight speeds. Notably, stabilization of the flapping flight was achieved without the use of a tail, since we assigned
that task to wing kinematics and control strategies. While it certainly has an impact on the stability and the
maneuvering capability of the bird, this indicates that the tail is not strictly required for stable flapping flight, as
reported in [12].

Flight can be analyzed once trim state is reached. The vortex wake features the same structures as the ones
reported through measurements on birds in wind tunnel, i.e. essentially tip and root vortices, see e.g. [12, 13, 14, 46].
The tip vortices show differences in behavior compared to the frozen-wake assumption. Regarding the root vortices,
the absence of a body causes an abrupt decrease of circulation at the root of the wing, resulting in strong vortices
that induce strong velocities on each other.

To sum-up the implications of using a tail- and body-less model, one task of the tail – control and stabilize the
flight – can be performed by closed-loop controllers. But the body-tail ensemble also forms a streamlined body that
has a circulation and produces lift [46]. The absence of this ensemble between the wings creates vortices stronger
than the ones observed in reality.

The power consumption of the flier is computed in all three simulated trimmed states. The values for the power
consumption and the cost of transport are compared with values reported in the literature. The order of magnitude
is respected for both the power consumption and the cost of transport, and they further obey a similar dependency
as a function of the flight speed.
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This simulation tool opens up new possibilities. On the one hand, modeling the wake of a flapping flier allows
to further analyze the wake and maybe improve the measurements that can be done in wind tunnel. It also allows
to simulate formation flight – which migratory birds use at a great advantage to achieve long flights with minimal
energy expense – using of the kinetic energy of the wake, as reported in [39]. A faithful modelization of birds
wake such as the one presented here is mandatory to understand the details of formation flight, since the wake of a
flapping flier is strongly 3-dimensional and time-evolving, as it has been shown in section 5.1. The control-volume
analysis of the wake allows the accurate computation of the aerodynamic forces acting on the flier. While the
results were promising, they can be much improved by adding the signature of the profile drag in the flow. This
can be done using a new feature of the flow solver that has been recently developed [32]. We note that this control-
volume analysis could be used to improve the precision of the aerodynamic forces computation from experimental
measurements.

On the other hand, the faithful skeletal model can be improved to include a muscular or even neuro-muscular
model. Such a model, based on birds’ anatomy, enables a better quantification of the required power for flapping
flight. A campaign of simulations at various flight speeds would then produce power curves, which could in turn be
compared with measurements on actual birds [7, 8, 9]. A proper quantification of the required power can also be
used as an objective function for an optimization process leading to the identification of theoretically optimal gaits.
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A Properties of the Northern Bald Ibis model

The lengths of the bones and feathers used to represent the Northern Bald Ibis are reported in table 4. Subscripts a,
f and h refer to the arm, forearm and hand respectively. Subscripts p_ and s_ refer to the primary and secondary
feathers. The primary feathers are the ones attached to the hand and are numbered from the wrist to the tip. The
secondary feathers are the ones between the body and the wrist and are numbered from the wrist to the root of the
wing.

Symbol la lf lh lp3 lp2 lp1 ls1 ls2 ls3 ls4
Value [m] 0.134 0.162 0.084 0.25 0.275 0.25 0.225 0.2 0.175 0.15

Table 4: Lengths of the bones and of the feathers for the ibis.

The model uses two types of springs. The feathers are connected with their neighbors through spring-like
components. These springs are free to rotate around both their attach points, producing a force aligned with the
line passing through these points. The force for the ith link is purely elastic and its norm Fi is computed with the
equation:

Fi = Ki · (Li − L0,i)

where Li and L0,i are respectively the distance between the attach points and a reference length, and Ki is the
stiffness constant of the spring. The orientation of Fi is for each attach point in the direction of the other. The
values of L0,i are 0 for each spring, except for the one linking the last secondary feathers of the right and left wings.
For this spring, the value is L0,s4−s4 = 0.05 m. The value of Ki for each spring are given in table 5. The subscripts
of the values correspond to the feathers linked by the spring. The subscript s4 − s4 corresponds to the spring
connecting the last secondary feather of the right and left wings.

Symbol Kp3−p2 Kp2−p1 Kp1−s1 Ks1−s2 Ks2−s3 Ks3−s4 Ks4−s4
Value [N/m] 100 100 100 100 200 300 500

Table 5: Stiffness values of the springs connecting the feathers

Each feathers is also connected to the bone through two rotational springs, except the last primary that is fixed.
The torque TX,i of the ith joint along the local X axis is governed by the following equation:

TX,i = −KX · (φX,i − φX,0,i)− CX · φ̇X,i
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where KX is the stiffness constant, φX,i and φ̇X,i are the joint angle, expressed in radians, and its time derivative,
and CX is a dissipation constant. The values of KX and CX are KX = 8 Nm and CX = 0.04 Nms for each joint.
Only the attach point of the first secondary feather has a non-zero value for φX,0. For the rotation qw,Y to be
spread over the forearm, the reference rotation of this feather is equal to half of this rotation. Hence, we have that
φX,0,s1 = qw,Y /2.

The torque TY,i of the ith joint along the local Y axis is purely dissipative and is governed by the equation:

TY,i = −CY · φ̇Y,i

where CY is a dissipation constant and φ̇Y,i is the joint angular velocity along the Y axis expressed in radians per
second. For each joint, the value of CY is 0.04 Nms.

B Independence on the discretization of the lifting line

The wing is modeled using a lifting line method, where the wing is represented by a line and all the aerodynamic
forces are computed at that line’s location. However, usual applications of such a method imply the lifting line
being fixed, which is not the case here. Since the discretization of the lifting line will likely change during the
simulations (it is re-computed at each time step), proof needs to be given that changes in the discretization of a
lifting line does not alter the numerical solution yielded by the method. In this section, proof will be given that
a time-varying discretization of a lifting line has no impact on the numerical solution. The proof is given in this
section for a continuous mapping but generalization to a discrete line is straightforward.

Proposition The displacement of the control points of a lifting line has no impact on the wake produced by such
method, hence no impact on the aerodynamic forces.

The wake is characterized by the intensity of the circulation sheet γ(y, x), which is linked to the variations of
the circulation Γ(y, t) of the wing (in a straight, fixed wing) as :

γ(y, x) =

 −∂Γ
∂y

− 1
U
∂Γ
∂t

0

 =

 γx
γy
0


We consider a lifting line as shown in figure 17 with known circulation Γ(t, y). This line is parallel to the y axis

and has a velocity U parallel to the x axis. The position y along the line is mapped to another variable η through
a time-varying function :

y (t, η) : t ∈ <, η ∈ [0, 1]→ y ∈
[
− b2 ,

b

2

]
where b is the span of the wing. The wake will be independent of the (time-varying) mapping between the position
y and the variable η if and only if :

γ (t, η) = γ (t, y (t, η))

for any function y (t, η) and by computing γ only using variations of Γ with η.

Proof If the mapping is applied, the intensity of the circulation sheet has to be computed from fixed value of the
η parameter. The following derivatives will be used :

∂Γ
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η

= ∂Γ
∂y
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∣∣∣∣
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Figure 17: Representation of the lifting line used for the proof. The lifting line is the solid line and the thick dashed
line represents its position one time-step dt before. The area between is the wake that is shed during this time-step.

The time variations of Γ for a fixed value of η will contribute to the sheet like shown in figure 18. That is, the
Y component of the sheet’s intensity can be reduced to a linear circulation dΓy equal to :

dΓy = − ∂Γ
∂t

∣∣∣∣
η

dt

Since γy and dΓy are related like :
γydS = dΓydy

then, considering that dS = dydx and dx = Udt, one founds :

γy = − 1
U

∂Γ
∂t

∣∣∣∣
η

= − 1
U

(
∂Γ
∂y

∣∣∣∣
t

∂y

∂t

∣∣∣∣
η

+ ∂Γ
∂t

∣∣∣∣
y

)

Figure 18: Representation of the two components of the circulation sheet : the component related to the time-
variations of the circulation to the left and the one linked to the span-wise variations to the right

The component γx of the circulation sheet is related to the span-wise variations of the line’s circulation. Taking
the mapping into account, it can be reduced to a linear circulation dΓx like :

dΓx = − ∂Γ
∂y

∣∣∣∣
t

∂y

∂η

∣∣∣∣
t

dη

and, like before, it can be linked to the sheet’s intensity with :

γxdS = dΓxdL
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where dL is the distance the current point of the mapping has traveled during a time dt and dS is the surface of
the parallelogram with base dy = ∂y

∂ηdη and height dx = Udt, i.e. dS = dydx = U ∂y
∂ηdtdη.

This distance can be computed with the velocity vector for a given η that will have two components. The first
one is the velocity of the line in the x direction, that is vx = −U . The second one is the velocity of the current
point along the line and is caused by the changes in the mapping. This velocity will be along the y direction and
will be given by vy = ∂y

∂t

∣∣∣
η
.

Therefore, in a time dt, the point will have traveled a distance equal to :

dL =
√
v2
x + v2

y dt =

√√√√U2 +
(
∂y

∂t

∣∣∣∣
η

)2

dt

and the contribution to the intensity of the sheet will be :

γx = − 1
U
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t

√√√√U2 +
(
∂y

∂t

∣∣∣∣
η

)2

However, this contribution is not parallel to the x axis but parallel to the dL vector. So it has to multiply a
unit vector êdL along dL :

êdL = 1
dL

 U

− ∂y
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η
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The vectorial form of γx will then be :

γx = γxêdL = ∂Γ
∂y

∣∣∣∣
t

 −1
1
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∂y
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∣∣∣
η

0


and the sum of the two contributions γy and γx, considering that the direction of γy is purely along the y axis, will
then be :

γ = γy + γx = − 1
U
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which is the intensity that we expected to find. �

C Iterative process for the improvement of the lifting line

At each iteration, position and characteristics of each point of the quarter-chord line are updated. Starting from
the current position of a point and the one of its two neighbors (part 1 of figure 19), the chord vector is re-projected
so that it is orthogonal to the line passing through the two closest quart-chord line points (part 2 of figure 19). The
points of the leading and trailing edges that are the closest to this line are then computed (part 3 of figure 19).
Note that, since this is performed in 3D, the re-projected chord does not necessarily cross the leading and trailing
edges, hence the closest point is found instead of the intersection. From the new chord and its corresponding points
on the leading and trailing edges, the lifting line point is updated so that it properly stands at the quarter of the
chord (part 4 of figure 19).

The quarter-chord line and the corresponding points in the leading and trailing edges being found, the com-
putation of the chord and its orientation is straightforward for each point of the lifting line. For each point, the
"line" vector is computed as the one linking the two adjacent points and the "up" vector is the cross product of the
"chord" and "line" vectors. The velocity and angular velocity of each point of the lifting line is computed with first
order finite differences with the current position and the one of the previous time step.
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Figure 19: Steps followed for the improvement of each point of the lifting line

D Formula used for the control-volume computation of the forces

In [47], Noca presents a few equivalent formulations for the evaluation of aerodynamic forces on a body an incom-
pressible flow. In this work, we use a formulation derived from the "impulse equation" from [47]:

F = − 1
N − 1

d
dt

∫
V

x× ω dV +
∫
V

u× ω dV +
∮
S

n̂ · γimp dS (17)

where N = 3 is the number of dimensions in the current application and

γimp = − 1
N − 1 u (x× ω) + 1

N − 1 ω (x× u)

Note that, when adapting the "impulse equation" from [47], we could omit certain terms considering that the control
volume was not moving, and that the the integrals over the body surface were zero (since we use a lifting line and,
as a singular line, it has no surface). We also omitted the terms related to the integral of viscous terms on the
boundaries of the control volume, which produce negligible contributions.
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