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Accelerated Distributed MPC of Linear
Discrete-Time Systems With

Coupled Constraints
Zheming Wang and Chong-Jin Ong , Senior Member, IEEE

Abstract—This paper proposes a distributed model pre-
dictive control (MPC) approach for a family of discrete-time
linear systems with local (uncoupled) and global (coupled)
constraints. The proposed approach is based on the dual
problem of an overall MPC optimization problem involv-
ing all systems, which is then solved distributively using
a modified distributed Nesterov-accelerated-gradient algo-
rithm. To further reduce the computational requirement, this
approach allows for early termination of the distributed gra-
dient algorithm. This is made possible via a consensus al-
gorithm that determines the satisfaction of the termination
condition and by appropriate tightening of the coupled con-
straints. Under reasonable assumptions, the approach is
able to produce a suboptimal solution as long as the net-
work of the systems is connected while ensuring recursive
feasibility and exponential stability of the closed-loop sys-
tem. The performance of the proposed approach is demon-
strated by a numerical example.

Index Terms—Consensus algorithm, coupled const-
raints, distributed model predictive control, Nesterov’s
method.

I. INTRODUCTION

THE problem of distributed model predictive control
(DMPC) of M discrete-time linear dynamical systems is

considered in this work. Each of the M system has the form

xi(t + 1) = Aixi(t) + Biui(t) (1)

xi(t) ∈ Xi, ui(t) ∈ Ui, i = 1, . . . , M (2)

and all of them have to satisfy a global constraint of the form

M∑

i=1

(
Ψi

xxi(t) + Ψi
uui(t)

) ≤ 111p , for all t (3)

where Xi ⊂ Rni , U i ⊂ Rmi are constraint sets of states and
controls of the ith system respectively, Ψi

x ∈ Rp×ni and Ψi
u ∈
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Rp×mi are matrices that define the coupled constraints with 111p

being the p-vector of all ones.
The study of DMPC has received considerable attention re-

cently [1]–[5]. However, the literature on approaches for (1)–(3)
is somewhat limited, possibly due to the presence of the global
constraint. When (3) is present, a popular approach [6]–[9] is
to optimize one system (or a group of systems) at a time while
holding all others constant; this is followed sequentially by an-
other system (another group) so that all M systems are opti-
mized once at every M sampling periods. When one system (or
a group of systems) is being optimized, the other systems (out-
side the group) will follow their predicted controls for the next
time step. While these approaches are reasonable, the optimality
of the overall system is unclear.

Approaches [10], [11] that address the optimality of the over-
all system rely on the dual problem of the Lagrangian function.
In this setting, dual variables associated with (3) are needed
and they are treated as consensus variables in a distributed con-
sensus optimization problem. Typically, consensus of the dual
variables is ensured (see [11, ch. 6]) using a central/master node
and such an approach is adopted in many decomposition meth-
ods [12]–[15]. However, the need of a central node can be a
strong requirement on the network. More recently, Wang and
Ong [16], [17] solve the dual problem of DMPC with consensus
variables in a distributed manner using the alternating direction
multiplier method (ADMM). It avoids the use of a central node
and allows for tolerable differences among the local copies of the
consensus variables. However, the ADMM algorithm converges
at a rate of O( 1

k ) where k is the number of iterations. Hence,
the convergence can be slow, especially when high accuracy
solutions are required.

This works proposes a faster convergence approach than that
of [17]. It uses a modified distributed implementation of the
standard stand-alone Nestrov gradient method [18], [19], which
is known to have O( 1

k 2 ) convergence. It requires more infor-
mation exchanges than [17] and hence, is most useful when
the systems are better connected. The use of Nestrov gradient
method for MPC is not new. It has been used for the control
of a single system [20], [21] as well as distributedly [22], [23]
for standard one-off optimization problems. But it has never
been used in a MPC setting where the optimization problem
is solved repeatedly with considerations for both stability and
performance.
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There are also other nontrivial differences. The proposed up-
date law for the consensus variable differs from those in [22],
[23]. In [22], a constant step-size is used but such a choice may
not converge to the optimal. The work of [23] solves an un-
constrained optimization problem using an inner loop for better
convergence of the consensus variables. However, the number
of steps in the inner loop grows with the index of the outer loop,
leading to a significant increase in the number of information
exchanges. Moreover, its applicability in the presence of con-
straints is unclear. Similar to [23], this paper uses several steps
in the inner-loop to achieve consensus of the local copies of the
consensus variable. However, the number of consensus steps is
fixed and does not grow with the outer-loop index. To further
reduce the computational requirement, premature termination
of the optimal solution at each iteration is allowed, a feature
that is not found in [22] or [23]. Another important difference
of this work to [17] is that the local copies of the dual variable
reach exact consensus. This, together with premature termina-
tion allows the proposed approach to have a simplified stopping
condition.

Convergence of the proposed approach under the premature
termination condition, together with recursive feasibility and
stability of the closed-loop system are proven. Consistent with
the O( 1

k 2 ) convergence rate of Nesterov method, the numerical
examples show that the proposed approach converges faster than
the approach of [17] for the same accuracy, with about 30% to
50% of the iterations needed by [17].

The rest of this paper is organized as follows. This section
ends with a description of the notations used. Section II reviews
some results of the standard stand-alone MPC for a single system
and discusses the formulation of the overall MPC problem.
This section is kept short as it is similar to the corresponding
section in [17] as the underlying problem is the same. Section III
presents the proposed approach, including the discussion of the
coupled constraint, its dual and the convergence of the proposed
distributed fast dual gradient algorithm. The recursive feasibility
and stability results are given in Section V. The performance of
the approach is illustrated by a numerical example in Section VI
with the conclusions given in Section VII. For presentation of
the main ideas, proofs of all Lemmas and Theorems are given
in the appendix.

The notations used in this paper are standard. The symbols
Rn , Rm×n , Z+

0 , and Z+ refer to the n-dimension Euclidean
space, space of m by n matrices with real entries, nonnegative
and positive integer sets, respectively. Let �, h ∈ Z+

0 with h ≥ �,
Z� := {1, 2, . . . , �} and Zh

� := {�, � + 1, . . . , h}. The identity
matrix in n dimension is In , the n-column vector of all ones is
111n (subscript omitted when the dimension is clear) and the cardi-
nality of an index set S is |S|. Given σ > 0, X ⊂ Rn containing
0 in its interior, σX = {σx : x ∈ X}. For a square matrix Q,
Q � (�)0 means Q is positive definite (semi-definite). The �p -
norm, p = 1, 2,∞, of x ∈ Rn is ‖x‖p while ‖x‖2Q = xT Qx for
Q � 0. Given a matrix H ∈ Rm×n , its (i, j) element is denoted
by Hi,j . Several representations of the states and controls are
needed: xi(t), ui(t) refer to the state and control of the ith sys-
tem at time t; xi

k , ui
k are the kth predicted state and control

of the ith system; x = (x1 , x2 , . . . , xM ), u = (u1 , u2 , . . . , uM )

are the collections of xi and ui over the M systems; bold-
face xxxi = (xi

1 , x
i
2 , . . . , x

i
N ), uuui = (ui

0 , u
i
1 , . . . , u

i
N−1) are re-

spectively the collections of the N predicted states and predicted
controls over the horizon (of length N ) for the ith system; in
situation where the reference to time is needed, xi

k , ui
k can be

written as xi
k |t and ui

k |t . Hence, xi
0|t = xi(t) and ui

0|t = ui(t).
Additional notations are introduced as required in the text.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a stand-alone single system represented by one
choice of i ∈ ZM in (1) with corresponding cost

min
uuui

Ji(xi,uuui) :=
N−1∑

�=0

(‖xi
�‖2Qi + ‖ui

�‖2Ri ) + ‖xi
N ‖2P i (4)

where N is the horizon length, uuui and xxxi are the predicted
controls and predicted states respectively satisfying xi

�+1 =
Aixi

� + Biui
� with xi

0 = xi , and Ji(xi,uuui) is the standard
quadratic costs parameterized by (xi,uuui) defined by (4). Let
P i be the solution to the discrete-time algebraic Riccatti equa-
tion (DARE) with weights Qi � 0, Ri � 0 and Ki = −(Ri +
(Bi)T P iBi)−1(Bi)T P iAi . Define

U i
T (xi) :=

{
uuui ∈ Rmi N : xi

�+1 = Aixi
� + Biui

� , x
i
0 = xi

xi
� ∈ Xi, ui

� ∈ Ui, xi
N ∈ T i

f , � ∈ ZN−1
0

}
(5)

where T i
f is some appropriate terminal set satisfying

Ai
K xi ∈ T i

f , Kixi ∈ Ui for all xi ∈ T i
f (6)

where Ai
K := Ai + BiKi . Using the above, the overall MPC

optimization problem over the M systems incorporating (3) at
state x = {x1 , . . . , xM } is given by

P (x) : V (x) := min
{uuui ,i∈ZM }

M∑

i=1

Ji(xi,uuui) (7a)

s.t. uuui ∈ U i
T (xi), ∀i ∈ ZM (7b)

M∑

i=1

Ψi
xxi

� + Ψi
uui

� ≤ 111p ,∀� ∈ ZN−1
0 (7c)

where (7c) refers to the satisfaction of the coupled constraints
at each predicted time step of the horizon. The conditions of
(6) do not include the effect of the coupled constraint. As
(3) has to be satisfied at all time, T i

f has to satisfy additional
constraints of

M∑

i=1

Ψ̄ixi :=
M∑

i=1

(Ψi
x + Ψi

uKi)xi ≤ 111p (8)

for all xi ∈ T i
f and i ∈ ZM .

A. Tightening the Constraints

It is well known that little benefit is gained in obtaining ac-
curate solution of the MPC optimization problem when the cur-
rent iterate is far from the optimal. An approach to avoid these
unnecessary computations is to allow early termination of the
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optimization problem. However, early termination may lead to
errors or infeasibility in the subsequent optimization problems.
To avoid such issues, constraints (7) and (8) have to be tightened
to account for errors arising from this premature termination, in
the form of

M∑

i=1

Ψi
xxi

� + Ψi
uui

� ≤ (1− εM(� + 1))111p ∀� ∈ ZN−1
0 (9)

M∑

i=1

Ψ̄ixi ≤ (1−MNε)111p ,∀xi ∈ T i
f (10)

where ε is a user-defined acceptable tolerance to the violation
of the constraint in question arising from the premature termi-
nation. This is similar to the tightening technique used in [21].
Correspondingly, the tightened DMPC formulation is

min
{uuui ,i∈ZM }

{
M∑

i=1

Ji(xi,uuui) : (7b) and (9)

}
. (11a)

For some appropriate T i
f that satisfy (6) and (10). To char-

acterize T i
f , suppose the following assumptions hold for all

i ∈ ZM :
(A1): (Ai,Bi) is stabilizable and xi(t) is measurable, and
(A2): Xi, Ui are polytopes containing the origins in their

respective interiors.
Then, T i

f = σi
εX i

f , ∀i ∈ ZM where X i
f is the maximal con-

straint admissible invariant set [24] for the stand-alone ith sys-
tem without the global constraints (3). The effect of (3) or (10)
is then accounted for by the values of σi

ε . Let Ψ̄i
r be the rth row

of matrix Ψ̄i . Then, (10) holds if

M∑

i=1

max
xi ∈σ iX i

f

Ψ̄i
rx

i =
M∑

i=1

hσiX i
f
(Ψ̄i

r ) ≤ 1−MNε,∀r ∈ Zp

(12)

where hS (v) := max{vT x : x ∈ S} is the support function of
set S along the direction of v. Since hσiX i

f
(Ψ̄i

r ) = σihX i
f
(Ψ̄i

r ),
condition (12) is equivalent to

M∑

i=1

σihX i
f
(Ψ̄i

r ) ≤ (1−MNε),∀r ∈ Zp . (13)

Using (13), an obvious choice of σ to enforce (12) is
(σ1

ε , . . . , σM
ε ) = arg min0≤σ i≤1{

∑M
i=1(1− σi)2 : (13)}. This

quadratic programming problem can be solved in a distributed
manner using the proposed algorithm in this paper with σi as
a variable of the ith system and (13) being the global con-
straint. If this is done at t = 0, the ensuing individual opti-
mization problem requires only knowledge of X i

f for system i.
Further reduction in conservatism can also be obtained by mak-
ing (σ1

ε , . . . , σM
ε ) as variables to be solved at each time step.

However, doing so incurs additional communication overhead
and is not discussed here as the focus is on issues associated
with distributed implementation of the accelerated gradient ap-
proach. Let

U i(xi) := U i
T (xi) when T i

f = σi
εX

i
f (14)

and express (9) in terms of (xi,uuui) for each i ∈ ZM . The tight-
ened DMPC formulation can be represented as

Pε(x) : Vε(x) := min
{uuui ,i∈ZM }

M∑

i=1

Ji(xi,uuui) (15a)

s.t. uuui ∈ U i(xi) i ∈ ZM (15b)

M∑

i=1

fi(xi,uuui) ≤ b(ε) (15c)

where bT (ε) := [(1−Mε)111T
p , (1 − 2Mε)111T

p , . . . , (1 −N

Mε)111T
p ]T and

fi(xi,uuui) := F iuuui + Hixi (16)

with F i ∈ RN p×N mi and Hi ∈ RN p×ni being appropriate ma-
trices from (9) by rewriting xi

� in terms of xi and uuui using
knowledge of Ψi

x and Ψi
u only.

B. Network Description

The connectivity of the M systems in this work is de-
scribed by an undirected graph G = (V, E) with vertex set
V = {1, 2, . . . ,M} and edge set E ⊂ V × V . The adjacency
matrix A of G is the M ×M matrix whose (i, j) and (j, i)
entries are 1 if (i, j) ∈ E and 0 otherwise. The set of neigh-
bors of the ith system is Ni := {j ∈ V : (i, j) ∈ E , i �= j} with
di = |Ni | and D = diag{d1 , d2 , . . . , dM }. It is assumed that
(A3) G is connected.

III. THE MAIN RESULTS

A. The Dual Form

The Lagrangian of (15) is L({uuui}, λ) =
∑M

i=1 Ji(xi,uuui) +
λT (

∑M
i=1 fi(xi,uuui)− b(ε)) for all uuui ∈ U i(xi), i ∈ ZM where

λ ∈ RN p is the dual variable of (15c). Its dual problem is

max
λ≥0

Φ(x, λ) (17)

where Φ(x, λ) = min{uuui ∈U i (xi ),i∈ZM } L({uuui}, λ). This dual
problem is also equivalent to

min
λ≥0

max
{uuui ∈U i (xi ),i∈ZM }

−L({uuui}, λ) = min
λ≥0

M∑

i=1

gi(λ) (18)

where

gi(λ) := max
uuui ∈U i (xi )

−Ji(xi,uuui)− λT

(
fi(xi,uuui)− b(ε)

M

)
.

(19)

Let uuui(λ) = arg maxuuui ∈U i (xi ) gi(λ). Then, it can be verified
that gi(λ) is convex and the gradient of gi(λ) is ∇gi(λ) =
−(fi(xi,uuui(λ))− b(ε)

M ) (see Danskin’s Theorem of [11]). In
addition,∇gi(λ) is Lipschitz continuous with Lipschitz constant
‖F i ‖2

μi , where μi > 0 is such that∇2
uuui Ji(xi,uuui) ≥ μiI for all xi

and uuui (see [25]). Let Lg = maxi∈ZM {‖F i ‖2
μi }, existence of

which is guaranteed by Qi,Ri � 0. Note that while the optimal
solution of (15) is unique as Ji(xi,uuui) is stictly convex in uuui ,
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the optimal λ of (18) may not be [20], [26] as the constraints
may be degenerate at the optimal uuui . Let

Λ(x) = {λ : λ is an optimal solution of (17)} (20)

be the collection of all possible optimal λ. Despite the
nonuniqueness of λ, the proposed algorithm (Algorithm 1) will
converge to an unique solution of (15), see Theorem 1.

B. Finite-Time Average Consensus

The proposed approach requires a finite-time consensus algo-
rithm as a substep. This algorithm is now discussed. Consider the
case of a consensus variable zzz = (z1 , z2 , . . . , zM ) ∈ RM over
the network G satisfying (A3) with zi being the scalar variable
associated with the ith system. Let L be the Laplacian matrix of
network G: Li,i = di , the degree of node i; Li,j = Lj,i = −1
if (i, j) ∈ E and 0 otherwise such that the row sum of L is zero.
The discrete-time consensus algorithm can be obtained from L
by letting W = I − γL for some 0 < γ ≤ 1

maxi {di } in the form
of

zzz(� + 1) = Wzzz(�) (21)

This choice of W can be shown to be a doubly stochastic matrix
with 1 being a simple eigenvalue and its spectral radius. The
corresponding eigenvector (both left and right) for eigenvalue
of 1 is 1√

M
111. Then

lim
�→∞

zzz(�) =
1
M

111111T zzz(0) =
1
M

111
M∑

i=1

zi(0) (22)

The first equality of (22) holds because zzz(�) =
∑M

i=1 vi
�

ξiζ
T
i zzz(0) [27] is the solution of (21) where vi is the ith eigen-

value of W and ξi(ζi) is the corresponding right (left) eigen-
vector. Since |v1 | = 1, ξ1 = ζ1 = 1√

M
1,1,1, and |vi | < 1 for all

i = 2, . . . , M , lim�→∞ zzz(�) = 1
M 111111T zzz(0). The expression of

(22) can be further simplified using (21) as

lim
�→∞

zzz(�) = lim
�→∞

W�zzz(0) =
(

lim
�→∞

W�

)
zzz(0) (23)

=

(
T −1∑

�=0

τ�W
�

)
zzz(0) =

T −1∑

�=0

τ�zzz(�) (24)

for some T ≤M . Here, the first equality of (24) follows
from the closure property of W∞ via the minimal polynomial
of W (tT + π0t

T −1 + · · ·+ πT −1t
0 = 0) with the coefficients

{τ0 , . . . , τT −1} obtained from {π0 , . . . , πT −1} using standard
results from functions of square matrices [27], or as a special
case from the solution of a Vandermonde matrix [28]. Such a
representation is guaranteed to exist since, in the worst case,
the characteristic polynomial becomes the minimal polynomial
with T = M and the closure property follows from the well-
known Caley-Hamilton principle.

Combining (22), (23), and (24) means that 1
M 111

∑M
i=1 zi(0) =∑T −1

�=0 τ�zzz(�), or, considering each element of this vector

equation,

1
M

M∑

i=1

zi(0) =
T −1∑

�=0

τ�z
i(�). (25)

This equation shows that the ith system can obtain the value
of 1

M

∑M
i=1 zi(0) by computing its consensus state zi(�) for

� = 0, . . . , T − 1 and evaluating the right hand side of (25).
Note that this T steps of zi is obtained in a distributed manner
using the ith row of (21), or

zi(� + 1) = Wiizi(�) +
∑

j∈Ni

W ij zj (�), i ∈ ZM . (26)

The above development is for the case where zi is a scalar. In
the case where zi ∈ Rη is a vector with zzz ∈ RM η , the devel-
opment from (22) till (26) holds with W replaced by W ⊗ Iη

where ⊗ refers the Kronecker product of two matrices. The
above development is also for the case where L (hence W ) is
the standard Laplacian matrix. It is possible to obtain a lower
order minimum polynomial for the same network by consider-
ing weighted Laplacian matrix (Li,j are not necessary −1 for
(i, j) ∈ E) [28].

C. Distributed Fast Dual Gradient Algorithm

The standard stand-alone Nesterov gradient algorithm [18]–
[20] for minλ≥0

∑M
i=1 gi(λ) of (18) consists of the following

iterates:

λ̃k = λk + θk ((θk−1)−1 − 1)(λk − λk−1) (27a)

λk+1 =

[
λ̃k − 1

Lg

M∑

i=1

∇gi(λ̃k )

]

+

(27b)

θk+1 =
(√

(θk )4 + 4(θk )2 − (θk )2
)

/2 (27c)

where [x]+ = max{0, x}, λ−1 = λ0 = 0, and θ−1 = θ0 = 1 are
the needed initializations. From (27c), the sequence {θk} has to
satisfy [20]

1− θk+1

(θk+1)2 =
1

(θk )2 ,
1

(θk )2 =
k∑

�=0

(θ�)−1 , θk ≤ 2
k + 2

(28)

Note that (27b) requires the gradients from all M systems. In
order to implement a fully distributed computation, each system
i makes a local copy of λ, λi . Correspondingly, (27a) and (27b)
are replaced by, ∀i ∈ ZM

λ̃i,k = λi,k + θk ((θk−1)−1 − 1)(λi,k − λi,k−1) (29a)

λi,k+1 =

[
1
M

M∑

i=1

(
λ̃i,k − 1

Lg
∇gi(λ̃i,k )

)]

+

(29b)

where ∇gi(λ̃i,k ) = −(fi(xi, ũuui,k )− b
M ) with

ũuui,k = arg min
uuui ∈U i (xi )

Ji(xi,uuui) + (λ̃i,k )T

(
fi(xi,uuui)− b

M

)
.

(30)
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For all i ∈ ZM , let

ūuui,k := (θk )2
k∑

�=0

(θ�)−1ũuui,� = (1− θk )ūuui,k−1 + θkũuui,k (31)

where ūuui,−1 = 0 and ũuui,k is obtained from (30). Note that (29b)
requires the quantity (λ̃i,k − 1

Lg
∇gi(λ̃i,k )) from all i ∈ ZM

and, hence, is not fully distributed. To handle this problem, the
finite-time consensus algorithm mentioned in Section III-B is
used to compute the quantity 1

M

∑M
i=1(λ̃

i,k − 1
Lg
∇gi(λ̃i,k )) in

(29b). Specifically, for each i ∈ ZM and � ∈ ZT −2
0 , introduce

variable yi(�, k) with

yi(0, k) := λ̃i,k − 1
Lg
∇gi(λ̃i,k ) (32)

yi(� + 1, k) = Wiiyi(�, k) +
∑

j∈Ni

W ij yj (�, k) (33)

where T is the order of the minimal polynomial of W and (33)
is the ith component of the consensus dynamics given by (21).
From (25),

∑T −1
�=0 τ�y

i(�, k) = 1
M

∑M
i=1(λ̃

i,k − 1
Lg
∇gi(λ̃i,k ))

for all i ∈ ZM . With this property, (29b) is replaced by

λi,k+1 =

[
T −1∑

�=0

τ�y
i(�, k)

]

+

, i ∈ ZM . (34)

This process is then repeated by incrementing k. The stop-
ping criterion of this distributed fast dual gradient algorithm
is discussed in Section IV and suppose it terminates at it-
eration k̄. Then, the solution from this algorithm is ūuui,k̄ :=
{ūi,k̄

0 , ūi,k̄
1 , . . . , ūi,k̄

N−1}, as defined by (31), i ∈ ZM . Corre-
spondingly, the MPC control law applied on the ith system
is

κi(x) = ūi,k̄
0 , i ∈ ZM . (35)

D. Convergence Analysis

The convergence results of the distributed fast dual gradient
algorithm are discussed in this section. Let the feasible domain
of Pε(x) be

Dε := {x ∈ Rn : Pε(x) is feasible}. (36)

The convergence to an optimal dual solution is stated as follows.
Lemma 1: For any x ∈ Dε , let {λi,k , λ̃i,k}Mi=1 be generated

from (29a) and (29b) with λi,−1 = λi,0 = 0. Then, for any λ∗ ∈
Λ(x), the following results hold.

(i) For any k ≥ 0, the objective
∑M

i=1 gi(λi,k+1) is bounded
by

0 ≤
M∑

i=1

gi(λi,k+1)−
M∑

i=1

gi(λ∗) ≤ LgM(θk )2

2
‖λ∗‖2

≤ 2LgM

(k + 2)2 ‖λ∗‖2 . (37)

(ii) Let λ̄i,k := λi,k−1 + (θk−1)−1(λi,k − λi,k−1) for all k ≥ 0
and i ∈ ZM . The sequence {λ̄i,k} satisfies

M∑

i=1

‖λ̄i,k+1 − λ∗‖2 ≤M‖λ∗‖2 . (38)

(iii) Consider the sequences {ũuui,k}Mi=1 and {ūuui,k}Mi=1 generated
from (30) and (31), respectively. For any k ≥ 0, the coupled
constraint using {ūuui,k}Mi=1 satisfies the inequality

M∑

i=1

fi(xi, ūuui,k )− b ≤ L̄g‖λ∗‖
(k + 2)2 111N p (39)

where L̄g = 4M(
√

M + 1)Lg .
Property (iii) of Lemma 1 provides the decreasing upper

bound on the violation of the coupled constraint. On the basis of
the convergence of the dual variable, the primal fast convergence
result is stated in the following theorem, which is a modification
of [20, Th. 5].

Theorem 1: For any x ∈ Dε , suppose {uuui∗}Mi=1 is the optimal
solution of Pε(x). Then, for any k ≥ 0 and λ∗ ∈ Λ(x), it holds
that

− L̄g‖λ∗‖2
(k + 2)2 ≤

M∑

i=1

Ji(xi, ūuui,k )−
M∑

i=1

Ji(xi,uuui∗) ≤ 0. (40)

E. Primal Suboptimality and Feasibility

As mentioned before, a premature termination condition is
used to reduce the computational load for the solution of (17).
For this purpose, the relaxed solution of (15) is defined as fol-
lows.

Definition 1: Given any ε > 0, the set {xi,uuui}Mi=1 is a ε-
relaxed solution of (15) if, ∀i ∈ ZM ,

uuui ∈ U i(xi),
M∑

i=1

fi(xi,uuui)− b(ε) ≤ εM111pN (41)

where {uuui∗}Mi=1 is the optimal solution of (15). In addition, for
any ε, δ > 0, the set {xi,uuui}Mi=1 is a (ε, δ)-suboptimal solution
of (15) if it is a ε-relaxed solution and

M∑

i=1

(
(Ji(xi,uuui)− Ji(xi,uuui∗)

) ≤ δ. (42)

The following lemma discusses the existence of the subopti-
mal solution.

Lemma 2: For any x ∈ Dε , let {ũuui,k}Mi=1 and {ūuui,k}Mi=1 be
generated from (30) and (31), respectively. Then, it holds that:

1) there exists a finite k such that {xi, ūuui,k}Mi=1 is a (ε, 0)-
suboptimal solution of (15);

2) {xi, ūuui,k}Mi=1 is a (ε, 0)-suboptimal if and only if it is a
ε-relaxed solution.

The next theorem shows the existence of a ε-relaxed solution
ensures the recursive feasibility of (15).

Theorem 2: Suppose {xi,uuui}Mi=1 is a ε-relaxed solution of
(15) as defined by Definition 1 with uuui = {ui

0 , u
i
1 , . . . , u

i
N−1}

for all i ∈ ZM . Let the state sequence associated with this so-
lution be {xi

0 , x
i
1 , . . . , x

i
N }, xi+ = Aixi + Biui

0 , and uuui+ =
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Algorithm 1: Distributed Fast Dual Gradient Algorithm.

Input: xi , i ∈ ZM

Output: ūuui,k̄ , i ∈ ZM

Initialization: set k = 0, ūuui,−1 = 0, λi,−1 = λi,0 = 0,
and θ−1 = θ0 = 1, for all i ∈ ZM ;

1: repeat
2: for all i ∈ ZM (in parallel) do
3: Obtain λ̃i,k and ũuui,k from (29a) and (30),

respectively;
4: Perform the finite-consensus steps in (33) with

yi(0, k) being given in (32);
5: Obtain λi,k+1 from (34);
6: end for
7: Set up zi(0, k) using ūuui,k which is defined in (31),

i ∈ ZM

8: for all i ∈ ZM (in parallel) do
9: Obtain zi(1, k), . . . , zi(T − 1, k) using (43)

and(44);
10: end for
11: θk+1 = (

√
(θk )4 + 4(θk )2 − (θk )2)/2;

12: k ← k + 1
13: until

∑T −1
�=0 τ�z

i(�, k) ≤ ε

{ui
1 , . . . , u

i
N−1 ,K

ixi
N } for all i ∈ ZM . Then, the following re-

sults hold.
1) {uuui+}Mi=1 is a feasible solution to Pε(x+).
2) Consider the solution of Pε(x+) and let {ūuui,k}Mi=1 be

generated from (30) and (31) with the states {xi+}Mi=1 .
Then, there exists a finite k such that {xi+ , ūuui,k}Mi=1 is a
ε-relaxed solution of (15).

IV. THE OVERALL DMPC SCHEME

The overall DMPC scheme is now presented in this section.
First, a proper stopping criterion for the distributed fast dual
gradient algorithm is needed. This condition is based on the
results of Lemma 2. Specifically, the algorithm terminates at the
first k, denoted as k̄, such that a ε-relaxed solution is achieved.
Following Definition 1, the stopping criterion corresponds to∑M

i=1 fi(xi, ūuui,k )− b(ε) ≤ εM111pN . This condition should be
checked in a fully distributed manner. Again, the finite-time
consensus algorithm in Section III-B is used. For each i ∈ ZM ,
introduce the variable zi(�, k) with, ∀� ∈ ZT −2

0 ,

zi(0, k) := fi(xi, ūuui,k )− b(ε)
M

(43)

zi(� + 1, k) = Wiizi(�, k) +
∑

j∈Ni

W ij zj (�, k). (44)

The stopping criterion is satisfied if
∑T −1

�=0 τ�z
i(�, k) ≤ ε as∑T −1

�=0 τ�z
i(�, k) = 1

M (
∑M

i=1 fi(xi, ūuui,k )− b(ε)) for all i ∈
ZM . The distributed fast dual gradient algorithm with the finite-
time consensus is summarized in Algorithm 1.

The overall procedure of the DMPC algorithm is summarized
in Algorithm 2.

Algorithm 2: The Overall DMPC Algorithm.

1: At time t, every system i measures it own state xi(t);
2: Every system i calls Algorithm 1 with xi(t) and obtain

ūuui,k̄(t) as its output.
3: Every system obtains κi(x(t)) from ūuui,k̄(t) via (35) and

apply κi(x(t)) to the ith system.
4: Wait for next sampling time, let t = t + 1 and go to

step 1.

V. RECURSIVE FEASIBILITY AND STABILITY

This section discusses the recursive feasibility and stability
results of the proposed DMPC formulation. The next lemma
pertains to a property of the terminal set of the overall system
and is needed for stability of the closed-loop MPC system.

Lemma 3: Let

σ̄i := min
{

σi
ε ,

1
M

min
�∈ZN p

{b�(ε)/hX i
f
(F̄ i

� )}
}

(45)

where hX i
f
(·) is the support function of Xi

f , b�(ε) denotes the

�th element of b(ε), F̄ i := F iKi
A + Hi from (16) with Ki

A

defined by (46) below, and F̄ i
� denotes the �th row of F̄ i . For

any xi ∈ σ̄iXi
f , the optimal solution to Algorithm 1 for the ith

system is

ūuui,k̄ = {ūi,k̄
0 , . . . , ūi,k̄

N−1}
= {Kixi,KiAi

K xi, . . . , Ki(Ai
K )N−1xi} := Ki

Axi

(46)

with k̄ = 0.
The recursive feasible and stability results of the proposed

DMPC approach are stated in the following theorem.
Theorem 3: Suppose (A1)–(A3) hold and Pε(x(t)) of (15)

has a feasible solution at time t and that the MPC law of (35)
is applied to the ith system of (2) for all i ∈ ZM . Then, the
following results hold.

1) Pε(x(t + 1)) has a feasible solution at time t + 1.
2) For all t ≥ 0,

∑M
i=1(J

i(xi(t), ūuui,k̄(t))− Ji(xi(t),uuui∗
t ))

≤ 0, where {uuui∗
t }Mi=1 is the optimal solution of (15).

3) The closed-loop system (1) with the MPC law (35) is
exponentially stable.

Remark 1: It can be shown that the true linear quadratic (LQ)
cost is upper bounded by the predicted cost of the initial state.
For any x ∈ Dε , let the infinite true LQ cost associated with the
control law (35) be

J∞ε (x) =
∞∑

t=0

M∑

i=1

(‖xi(t)‖2Qi + ‖κi(x(t))‖2Ri ) (47)

where x(0) = x and xi(t + 1) = Aixi(t) + Biκi(x(t)) for all
i ∈ ZM . From (71),

Vε(x(t + 1)) ≤ Vε(x(t))−
M∑

i=1

(
‖xi(t)‖iQi + ‖κi(x(t))‖2Ri

)

(48)
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Fig. 1. Water tanks system.

which, when summed up from t = 0 to∞, implies that J∞ε (x) ≤
Vε(x). This gives a performance bound for the infinite LQ cost
of the closed-loop system.

VI. NUMERICAL RESULTS

The numerical example used to demonstrate the approach is a
four-agent system where every agent is a coupled double-water
tank system [29]. The objective is to regulate the water levels
to some given references with a constraint on the total input
flow rate. As shown in Fig. 1, qi is the input flow and hi

1 and
hi

2 are the water levels for system i. Suppose the desired water
levels are h̃i

1 and h̃i
2 and the steady-state input flow rate is q̃i for

system i. Let xi
1 = hi

1 − h̃i
1 , xi

2 = hi
2 − h̃i

2 and ui = qi − q̃i for
i ∈ Z4 .

Given the parameters: h̃i
1 = 1, h̃i

2 = 0.64, q̃i = 0.3, i ∈ Z4 ,
the linearized and discretized model for each agent is

xi(t + 1) =

(
0.8750 0.1250
0.1250 0.8047

)
xi(t) +

(
0.3
0

)
ui(t).

All agents have the same local constraints of Xi := {xi ∈
R2 : |xi

1 | ≤ 1, |xi
2 | ≤ 0.64} and Ui := {ui ∈ R : |ui | ≤ 0.3}.

Suppose the maximal total input flow rate is 2, the cou-
pled constraint can be given by

∑4
i=1 qi ≤ 2, which implies

that
∑4

i=1 ui ≤ 2−∑4
i=1 q̃i = 0.8. The values of Ki and P i

obtained from the discrete-time Algebraic Riccatti Equation
(ARE), with Qi = 10I2 and Ri = 1, i ∈ Z4 , are

Ki =
(−1.7916 −0.7337

)
, P i =

(
31.7459 9.8300
9.8300 56.3415

)

for all i ∈ Z4 . Consider the network connection of a ring
and W = I − 0.1L(G). The minimal polynomial of W is
t3 − 2.4t2 + 1.88t− 0.48 = 0. Hence, value of T of (25) is 3
and the finite-time consensus in (25) can be obtained 2 steps. The
initial conditions are: x1(0) = [−0.3241 − 0.5977]T , x2(0) =
[0.4390 − 0.4667]T , x3(0) = [−0.4391 − 0.5818]T , x4(0) =
[−0.5337 − 0.4347]T and the horizon length N = 8. The per-
formance of the proposed DMPC approach is presented for sev-
eral choices of ε and comparisons are made between the results
of the proposed approach and that obtained by solving (15) with
ε = 0 using a single centralized computer, known as the cen-
tralized MPC (CMPC) solution. The terminal sets {σi

sX
i
f }Mi=1

in CMPC are obtained from min{∑M
i=1(1− σi)2 : (13)} with

ε = 0: σi
s = 0.6667, i ∈ Z4 . Consider the case of ε = 0.01 in

DMPC. The overall input is shown in Fig. 2. The MPC problems
are solved by MOSEK [30] under the MATLAB interface. All

Fig. 2. Overall input trajectories: DMPC (ε = 0.01) and CMPC.

TABLE I
THE VALUES OF J∞ε (x(0)) FOR DIFFERENT CHOICES OF ε

ε 0.01 0.005 0.001

σi
ε , i ∈ Z4 0.4533 0.56 0.6453

Vε (x(0)) 61.87 61.26 60.95
J∞ε (x(0)) 60.99 60.91 60.89

TABLE II
THE NUMBER OF ITERATIONS ALONG THE TRAJECTORIES STARTING FROM

x(0) FOR DIFFERENT CHOICES OF ε

ε t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

k̄F (t) 0.01 23 21 19 16 13 9 1 1
0.005 24 25 23 20 17 12 1 1
0.001 49 50 48 46 42 30 6 1

k̄A (t) 0.01 88 88 72 67 71 74 94 1
0.005 96 96 80 79 79 83 105 1
0.001 120 120 112 106 108 115 131 1

numerical experiments are done on a Windows 7 PC with an
Intel Xeon E5-1630 processor and 16 GB memory.

The following table gives the real LQ cost J∞ε (x(0)) (as
defined in Remark 1) for different choices of ε. The values of
{σi

ε}i∈Z4 , obtained from min0≤σ i≤1{
∑M

i=1(1− σi)2 : (13)},
are also shown in Table I. It can be seen that the performance
of the DMPC approach is close to that of CMPC because they
have similar overall input trajectories and the degradation in
cost is less than 0.2% even in the case of ε = 0.01. The fact that
J∞ε (x(0)) is upper bounded by Vε(x(0)) can also be verified in
Table I.

A comparison between the proposed approach and the
ADMM-based approach in [17] is presented next. The num-
ber of iterations of the proposed approach at each t along the
trajectories is denoted by k̄F (t) := k̄(t) + 1, whose values are
shown in Table II together with k̄A (t), the number of iterations
of the ADMM-based approach. Notice that k̄(t) = 0 for t ≥ 7
because the global constraints are no longer active. It can be
seen values of k̄F (t) and k̄A (t) of Table II that the number
of iterations needed to reach the same accuracy by the pro-
posed approach is about 30% to 50% of that needed by the
ADMM-based approach with comparable numbers of commu-
nications: 2(T − 1)k̄F (t) for this approach and (T − 1)k̄A (t)
for the ADMM-based approach.
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Fig. 3. Convergence curves of different distributed algorithms.

Fig. 4. Relative computational time difference between the local
and centralized problems for different sizes of M and initial states
with ε = 10−3 : [x(0)]a = 111M ⊗ [−0.1178 0.005355]T , [x(0)]b = 111M ⊗
[−0.1863 0.1383]T , [x(0)]c = 111M ⊗ [−0.1220 − 0.07678]T , [x(0)]d =
111M ⊗ [−0.1296 − 0.2391]T .

This section also compares results of the proposed approach
for problem (18) as a one-off (nonrecursive) optimization prob-
lem not in the context of MPC. The comparison is made with
two other distributed algorithms in the literature: the distributed
subgradient (D-SG) algorithm of [31] and the distributed Nes-
terov gradient (D-NG) algorithm of [22], [23]. As the step size
affects the performance of D-SG and D-NG, reasonable step
sizes are chosen after a few trials: 0.2 and 7

k+1 for D-SG; 0.1
and 5

k+1 for D-NG. The parameter ε = 0.01 and xi of (18) are
those used in the earlier example. The plots of the convergence
of these algorithms are shown in Fig. 3 and they show the faster
convergence of the proposed approach, a result that is consis-
tent with the theoretical convergence rate of D-SG and D-NG
(O(1/

√
k) and O(log k/k), respectively, for the diminishing

stepsize) and the proposed approach.
The rest of this section discusses the computational times of

the proposed approach and compares them with those obtained
from the CMPC approach of (15). Let To be the computational
time of the CMPC problem. It is easy to see that the overall com-
putational time of Algorithm 1 is Ta + Tc where Tc is the total
time for information exchange via communication and Ta is the
total computational time for Steps 3 and 4 of Algorithm 1. In
addition, Ta = k̄F maxi{T i

s : i ∈ ZM }where T i
s is the average

computational time for Steps 3 and 4 of Algorithm 1 since these
steps are run in parallel in each system and Tc = 2k̄F (T − 1)τc

where τc is the communication time for each information ex-
change with the neighbors of each agent. Hence, as M increases,
To = Ta + Tc is the break even condition between CMPC and
the proposed approach. Equivalently, the proposed approach is
better than the CMPC when τc < (To − Ta)/(2k̄F (T − 1)). To
appreciate this effect, the ratio of (To − Ta)/To := RT is plot-
ted for various starting point and different values of M as given
in Fig. 4. Hence, for small values of τc , the proposed distributed
approach will eventually outperform the CMPC as M increases.
This is not unexpected because the complexity of the centralized
problem grows with M while the size of the local problems does
not change if the communication time is reasonably small.

VII. CONCLUSION

A novel DMPC approach is proposed for a group of linear sys-
tems with local and global constraints. The proposed approach
relies on the dual problem of the overall MPC problem and uses
a distributed fast dual gradient algorithm for its solution. This is
made possible by introducing local copies of the dual variables
in individual system and enforcing all the local copies to achieve
consensus at each iteration. Provision for computational expe-
diency is made via early termination of the proposed algorithm
where the inaccuracy depends on the user-defined allowable
violation of the coupled constraint. Termination condition is
checked using a finite-time consensus algorithm. Under mild
assumptions, a suboptimal solution of the overall MPC problem
can be obtained so long as the network of systems are connected.
Recursive feasibility and exponential stability of the closed-loop
system are ensured. The performance of the proposed approach
is demonstrated by a four-tank networked system with a limited
total input flow rate. Compared to the ADMM-based approach of
the same problem, this approach achieves convergence of about
2 to 3 times faster and invokes fewer quadratic optimization
solvers, but may require more communications among systems.
This communication issue is minimized by the use of a finite-
time consensus based on the minimal polynomial extracted from
the network. Comparisons of convergence results are also made
with the distributed subgradient algorithm and distributed Nes-
terov gradient algorithm. In both cases, the proposed method
has faster convergence.

APPENDIX

A. Proof of Lemma 1

1) The problem (18) can be rewritten as

min
λi≥0,i∈ZM

M∑

i=1

gi(λi) s.t. λ1 = λ2 = · · · = λM (49)

which is equivalent to minλλλ∈Ω g(λλλ), where g(λλλ) :=∑M
i=1 gi(λi), λλλ = (λ1 , λ2 , . . . , λM ) and Ω = {λλλ ≥ 0 :

λ1 = λ2 = · · · = λM }. Then, (29a)–(29b) can be writ-
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ten in a compact form

λ̃λλ
k

= λλλk + θk ((θk−1)−1 − 1)(λλλk − λλλk−1) (50a)

λλλk+1 = PΩ

[
λ̃λλ

k − 1
Lg
∇g(λλλk )

]
. (50b)

It can be easily verified that ∇g(λλλ) is Lipschitz continuous
with the constant Lg . For any λ ≥ 0, from Proposition 6.9.2 in
[19] and the fact that 111M ⊗ λ ∈ Ω, it holds that

M∑

i=1

gi(λi,k+1)−
M∑

i=1

gi(λ) +
Lg (θk )2

2

×
M∑

i=1

‖λ̄i,k+1 − λ‖2 + (θk )2
k∑

�=0

(θ�)−1

×
M∑

i=1

(gi(λ)−Δi(λ, λ̃i,�)) ≤ LgM(θk )2

2
‖λ‖2 (51)

where

λ̄i,k := λi,k−1 + (θk−1)−1(λi,k − λi,k−1) (52)

Δi(λ, λ̃) := gi(λ̃) + (∇gi(λ̃))T (λ− λ̃). (53)

Let λ in (51) be any λ∗ ∈ Λ(x). The first inequality of (37) holds
because λ∗ is a minimizer of (18) and the second inequality
(37) holds due to the fact that Δi(λ∗, λ̃i,k ) ≤ gi(λ∗) from the
convexity of gi(·). The last inequality holds because θk ≤ 2

k+2
from (28).

2) The inequality (38) follows from (51) because
∑M

i=1 gi

(λi,k+1)−∑M
i=1 gi(λ∗) ≥ 0 and Δi(λ∗, λ̃i,k ) ≤ gi(λ∗).

3) Some intermediate results are needed to prove
(39). Using the auxiliary variable λ̄i,k = λi,k−1 +
(θk−1)−1(λi,k − λi,k−1), λi,k+1 can be written as
λi,k+1 = θk (λ̄i,k+1 − λi,k ) + λi,k . This, together with
λ̃i,k = λi,k + θk ((θk−1)−1 − 1)(λi,k − λi,k−1), implies
that

λi,k+1 − λ̃i,k = θk (λ̄i,k+1 − λi,k )

− θk ((θk−1)−1 − 1)(λi,k − λi,k−1)

= θk (λ̄i,k+1 − λ̄i,k ). (54)

Now, we can prove (39). Consider that λ1,k+1 =
λ2,k+1 = · · · = λM,k+1 and λi,k+1 = [

∑T −1
�=0 τ�y

i

(�, k)]+ ≥
∑T −1

�=0 τ�y
i(�, k) = 1

M

∑M
i=1 yi(0, k), it implies

that

M∑

i=1

λi,k+1 ≥
M∑

i=1

λ̃i,k +
1
Lg

(
M∑

i=1

fi(xi, ũuui,k )− b(ε)

)
.

(55)

Using (54) and (55) can be rewritten as

M∑

i=1

λ̄i,k+1 ≥
M∑

i=1

λ̄i,k + (θk )−1 1
Lg

(
M∑

i=1

fi(xi, ũuui,k )− b(ε)

)

(56)

which implies that

M∑

i=1

λ̄i,k+1 ≥
k∑

�=1

(θ�)−1 1
Lg

(
M∑

i=1

fi(xi, ũuui,�)− b(ε)

)
. (57)

Using (28) and (31), the inequality above can be again rewritten

(θk )2
M∑

i=1

λ̄i,k+1 ≥ 1
Lg

(
M∑

i=1

fi(xi, ūuui,k )− b(ε)

)
. (58)

From (38), we can know that ‖λ̄i,k+1 − λ∗‖ ≤ √M‖λ∗‖
for all i ∈ ZM , which from ‖λ̄i,k+1 − λ∗‖ ≥ ‖λ̄i,k+1‖ −
‖λ∗‖ implies that ‖λ̄i,k+1‖ ≤ (

√
M + 1)‖λ∗‖. Consider that

‖∑M
i=1 λ̄i,k+1‖ ≤∑M

i=1 ‖λ̄i,k+1‖. Therefore, from (58), we
can get that

1
Lg

∥∥∥∥∥

[
M∑

i=1

fi(xi, ūuui,k )− b(ε)

]

+

∥∥∥∥∥ ≤ (θk )2

∥∥∥∥∥

M∑

i=1

λ̄i,k+1

∥∥∥∥∥

≤ (θk )2M
(√

M + 1
)
‖λ∗‖.

(59)

This, together with θk ≤ 2
k+2 and ‖[∑M

i=1 fi(xi, ūuui,k )−
b(ε)]+‖ ≥ ‖[

∑M
i=1 fi(xi, ūuui,k )− b(ε)]+‖∞, implies (39). �

B. Proof of Theorem 1

Consider gi(λ̃i,k ) = −Ji(xi, ũuui,k )− (λ̃i,k )T (fi(xi, ũuui,k )−
b(ε)
M ) and ∇gi(λ̃i,k ) = −(fi(xi, ũuui,k )− b(ε)

M ) for all i ∈ ZM

and k ≥ 0. For any λ ≥ 0 in (51), it can be shown that
Δi(λ, λ̃i,k ) = −Ji(xi, ũuui,k )− λT (fi(xi, ũuui,k )− b(ε)

M ) where
the notation Δi(·, ·) is given in (53). Substitute this into (51), it
yields

M∑

i=1

gi(λi,k+1) + (θk )2
k∑

�=0

(θ�)−1
M∑

i=1

(
Ji(xi, ũuui,�)

+λT

(
fi(xi, ũuui,�)− b(ε)

M

)))
≤ LgM(θk )2

2
‖λ‖2

(60)

by dropping the quadratic term on the right-hand side. Consider
(31) and the fact that (θk )2 ∑k

�=0(θ
�)−1 ∑M

i=1 Ji(xi, ũuui,�) ≥∑M
i=1 Ji(xi, ūuui,k ), (60) implies

M∑

i=1

gi(λi,k+1) +
M∑

i=1

(
Ji(xi, ūuui,k )

+λT

(
fi(xi, ūuui,k )− b(ε)

M

)))
≤ LgM(θk )2

2
‖λ‖2 . (61)

Let λ = 0 in (61). It holds that

M∑

i=1

gi(λi,k+1) +
M∑

i=1

Ji(xi, ūuui,k ) ≤ 0. (62)

From (17) and (18), it can be easily verify from the dual problem
(17) that

∑M
i=1 gi(λi,k+1) ≥ −Φ(x, λ∗) = −∑M

i=1 Ji(xi,uuui∗)
since λ1,k+1 = λ2,k+1 = · · · = λM,k+1 . Using θk ≤ 2

k+2 , the
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second inequality of (40) holds. Now let us consider the proof
of the first inequality of (40). Note that

M∑

i=1

Ji(xi, ūuui,k )

= L({ūuui,k}, λ∗)− (λ∗)T

(
M∑

i=1

fi(xi, ūuui,k )− b(ε)

)

≥ Φ(x, λ∗)− (λ∗)T

(
M∑

i=1

fi(xi, ūuui,k )− b(ε)

)

=
M∑

i=1

Ji(xi,uuui∗)− (λ∗)T

(
M∑

i=1

fi(xi, ūuui,k )− b(ε)

)
.

(63)

Consider the following inequalities

(λ∗)T

(
M∑

i=1

fi(xi, ūuui,k )− b

)
≤ (λ∗)T

[
M∑

i=1

fi(xi, ūuui,k )− b(ε)

]

+

≤ ‖λ∗‖
∥∥∥∥∥

[
M∑

i=1

fi(xi, ūuui,k )− b(ε)

]

+

∥∥∥∥∥

≤ (θk )2LgM
(√

M + 1
)
‖λ∗‖2

where the last inequality is from (59). This inequality, together
with (63), implies the first inequality of (40). �

C. Proof of Lemma 2

(i) Since ũuui,k ∈ U i(xi) for all i ∈ ZM and k from (30), it
holds that ūuui,k ∈ U i(xi) for all i ∈ ZM and k. From property
(iii) of Lemma 1, there always exits a k such that (41) is satisfied.

(ii) The equivalence between the (ε, 0)-suboptimal solu-
tion and the ε-relaxed solution follows from Definition 1 and
Theorem 1. �

D. Proof of Theorem 2

(i) Since {xi,uuui}Mi=1 is a ε-relaxed solution, it satisfies

uuui ∈ U i(xi), i ∈ ZM ,
M∑

i=1

fi(xi,uuui)− b(ε) ≤ εM111pN . (64)

Rewriting fi(xi,uuui) and b(ε) back in terms of {xi
0 , x

i
1 , . . . , x

i
N }

and {ui
0 , u

i
1 , . . . , u

i
N−1} (note that fi(xi,uuui)− b(ε) are simpli-

fied expression of (9)), (64) is equivalent to

M∑

i=1

Ψi
xxi

� + Ψi
uui

� ≤ (1− εM(� + 1))111p + εM111p

= (1− εM(� + 1))111p , ∀� ∈ ZN−1
0 . (65)

For all i ∈ ZM , let a feasible control to the ith system at next
time instant be chosen as

uuui+ := {ui+
0 , ui+

1 , . . . , ui+
N−1}

:= {ui
1 , u

i
2 , . . . , u

i
N−1 ,K

ixi
N } (66)

and the associated state sequence {xi+
0 , xi+

1 , . . . , xi+
N } :=

{xi
1 , x

i
2 , . . . , x

i
N , (Ai + BiKi)xi

N }. It follows from this choice
of uuui+ and (65) that, ∀� ∈ ZN−2

0 ,

M∑

i=1

Ψi
xxi+

� + Ψi
uui+

� =
M∑

i=1

Ψi
xxi

�+1 + Ψi
uui

�+1

≤ (1− εM(1 + �))111p (67)

and where� = N − 1,

M∑

i=1

(Ψi
xxi

N + Ψi
uKixi

N ) =
M∑

i=1

Ψ̄xi
N ≤ (1− εMN)111p (68)

where the last inequality follows the fact that xi
N ∈ σi

εX i
f and

(10) (with T i
f = σi

εX i
f ). In addition, ui+

� ∈ Ui for � ∈ ZN−2
0

since ui
�+1 ∈ Ui because of (64). The last control, ui+

N−1 =
Kixi

N ∈ Ui because xi
N ∈ σi

εX i
f and σi

εX i
f satisfies (6). The

constraints of xi+
� ∈ Xi, � ∈ ZN−1

0 and xi+
N ∈ σi

εX i
f follow

similar argument. These properties implies uuui+ ∈ U(xi+), i ∈
ZM and

∑M
i=1 fi(xi+ ,uuui+) ≤ b(ε).

(ii) This result follows from Lemma 2 since x+ ∈ Dε . �

E. Proof of Lemma 3

By definition of hσ̄ i X i
f

, F̄ i
� x

i ≤ maxy∈ σ̄ i X i
f
F̄ i

� y =
hσ̄ i X i

f
(F̄ i

� ) = σ̄ihX i
f
(F̄ i

� ) for any xi ∈ σ̄iXi
f and any

� ∈ ZN p . This fact, together with σ̄i ≤ 1
M b�(ε)/hX i

f
(F̄ i

� )

from the definition of {σ̄i}i∈ZM , implies b(ε)
M − F̄ ixi ≥ 0.

Since σ̄iXi
f ⊆ σi

εX
i
f , Ki

Axi ∈ U i(xi) from (5), (6), and
(14). Hence, when k = 0, Ki

Axi is a feasible solution to
minuuui ∈U i (xi ) Ji(xi,uuui), i ∈ ZM . Since Ki and P i are
obtained from ARE, Ki

Axi is the optimal solution to
minuuui Ji(xi,uuui). Therefore, the solution when k = 0 is
ũuui,0 = Ki

Axi for all i ∈ ZM . This suggests that ūuui,0 = Ki
Axi

and fi(xi,Ki
Axi)− b(ε)

M ≤ 0 for all i ∈ ZM , which means that
{xi, ūuui,0}Mi=1 is a ε-relaxed solution and Algorithm 1 terminates
at k = 0. �

F. Proof of Theorem 3

(i) Consider the ε-relaxed solution {xi(t), ūuui,k̄(t)}Mi=1 at time
t. Let uuui

t := {ui
0|t , u

i
1|t , . . . , u

i
N−1|t} = ūuui,k̄(t) with the asso-

ciated predictive state sequence xxxi
t := {xi

0|t , x
i
1|t , . . . , x

i
N |t}

for all i ∈ ZM . Define the shifted predicted sequence at
next time instant ûuui

t+1 = {ui
1|t , . . . , u

i
N−1|t ,K

ixi
N |t}, i ∈ ZM .

From property (i) of Theorem 2, it suggests that {ûuui
t+1}Mi=1

is a feasible solution to Pε(x(t + 1)) because xi(t + 1) =
Aixi(t) + Biui

0|t using the control law (35).

(ii) This result holds since {xi(t), ūuui,k̄(t)}Mi=1 is a (ε, 0)-upper-
relaxed solution of Pε(x(t)) for all t ≥ 1.

(iii) Let Vε(x(t)) =
∑M

i=1 Ji(xi(t),uuui∗
t ) (where {uuui∗

t }Mi=1 is
the optimal solution of (15)) be the Lyapunov function of the

closed-loop system of (1) with input ui(t) = ū
i,k̄(t)
0 given by
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(35). When Algorithm 1 terminates at time t, uuui,k̄(t) := uuui
t and

it follows property (iii) of Theorem 2

M∑

i=1

Ji(xi(t),uuui
t)− Vε(x(t)) ≤ 0. (69)

Using the same shifted control sequence ûuui
t+1 at time t + 1 as

defined in (i), it follows from the standard argument in MPC,

Ji(xi(t + 1), ûuui
t+1)− Ji(xi(t),uuui

t)

= −‖xi(t)‖iQi − ‖ui(t)‖2Ri + ‖xi
N |t‖2Qi

+ ‖Kixi
N |t‖2Ri + ‖Ai

K xi
N |t‖2P i − ‖xi

N |t‖2P i

= −‖xi(t)‖iQi − ‖ui(t)‖2Ri (70)

where the last equality is from the fact Ki, P i satisfy the
algebraic Riccatii equation of (Ai

K )T P iAi
K − P i = −(Qi +

KiRiKi). Since ûuui
t+1 may not be the optimal at t + 1,

Vε(x(t + 1)) ≤
M∑

i=1

Ji(xi(t + 1), ûuui
t+1)

=
M∑

i=1

(
Ji(xi(t),uuui

t)− ‖xi(t)‖iQi − ‖ui(t)‖2Ri

)

= Vε(x(t))−
M∑

i=1

(
‖xi(t)‖2Qi + ‖ui(t)‖2Ri

)

(71)

≤ Vε(x(t))−
M∑

i=1

‖xi(t)‖2Qi (72)

where the equality condition follows from (70) and the last in-
equality is due to (69). Therefore, xi(t) goes to 0 as t→∞
for all i ∈ ZM . This means that there exists a finite tf such
that xi(tf ) ∈ σ̄iXi

f for all i ∈ ZM . When this happens, it
follows from Lemma 3 that κi(x(tf )) = Kixi(tf ) and the
closed-loop system becomes xi(tf + 1) = Ai

K xi(tf ). Since
xi(tf + 1) ∈ σ̄iXi

f for any xi(tf ) ∈ σ̄iXi
f from (6). As a result,

xi(t + 1) = Ai
K xi(t) for all t ≥ tf and the closed-loop system

is exponentially stable. �
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