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Abstract
Template and Preprocessor Metaprogramming are both well-
known in the C++ community to have much in common with
Functional Programming (FP). Recently, very few research threads
on underpinning these commonalities have emerged to empower
cross-development of C++ Metaprogramming (C++MP) and FP. In
this paper, we program a self-contained real-world example in a
side-by-side fashion to explore the usefulness of a few mainstream
FP languages for this purpose: We develop a compile-time abstract
datatype for Rational Numbers in C++. We then present the run-
time equivalent in HASKELL, F#, and Scala to discuss some FP
parallels across the languages. Here, we consider semi-automatic
translation between C++MP and FP languages, for earlier stud-
ies on these parallels have already obviated the impracticability of
fully automatic translations. Our study also shows the superiority
of multiparadigm FP languages over single-paradigm ones. In par-
ticular, we conclude Scala to currently be the most promising FP
language for facilitating C++MP.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

Keywords C++ Metaprogramming, Functional Programming,
Scala, F#, HASKELL, Cross-Lingual Development

1. Introduction
In 1994, Unruh wrote a C++ program which was designed to emit
some prime numbers as error messages [32]. These prime numbers
were calculated at compile time using techniques which are well-
known in today’s template metaprogramming. A year later, Veld-
huizen introduced expression templates to the world of C++MP
[34]. Austern’s book [4] exemplified some commonalities between
STL (the Generic Programming part of the C++ Standard [1, 2] li-
brary) and FP. Alexandrescu’s book presented a tour de force of
C++MP and was the first to explain some similarities between that
and FP. Fast growth of the Boost C++ libraries catered a handful of
metaprogramming libraries so well that Abrahams and Gurtovoy
devoted their book [3] to that.

Recently, a new trend of FP-injection has started to emerge
in the C++ community. All that is based on the common belief
that C++MP is essentially FP but at the metaprogramming level.
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Yet, the limited references in support of that belief used to fit into
two groups, neither of which suits a new C++ programmer want-
ing to delve into the topic: ones which hardly scratch the surface
by providing examples on say how to implement simple compile-
time functions such as factorial; or, sizeable manuals of the rele-
vant Boost libraries such as MPL[11], Fusion[12], Proto[21], and
Preprocessor[15]. Functional programmers approaching C++ to ex-
amine that belief face the same difficulty.

Our earlier work [27] fills this gap. We offered a self-contained
real-world explanation of the FP techniques used in C++MP, which
was short and approachable on the one hand, and inclusive on the
other. In this paper too, we show the important bits of a compile-
time abstract datatype representing Rational Numbers (Q)1 in C++.
We build on [27] by developing that side-by-side in HASKELL,
F#, and Scala. We, furthermore, augment our thread on how FP
languages can facilitate C++MP – which is well-known to demand
a plethora of domain expertise.

1.1 Motivation
Support for Q is so important that Rational is already a built-in
type in HASKELL. For F# too a similar support ships automatically
as a part of the Microsoft Solver Foundation [18]. Furthermore, in
C++, Boost has libraries for both runtime and compile-time Ra-
tional arithmetic. Boost.Rational[22] (for runtime Q support) is a
relatively old hand member of the Boost library. Boost.Ratio[35]
has also recently been added to the Boost library to support Ratio-
nal arithmetics at compile-time. That is all to demonstrate that our
use-case here is real-world enough.

However, we do not aim to provide the most efficient or most
facilitating implementation. In fact, both Rational of HASKELL
and Boost.Ratio outperform our solution from several standpoints.
None of the techniques we present are new either. We leverage our
compile-time presentation for Q to demonstrate the FP techniques
commonly used in C++MP. So, we go as deep into the technical
details as required by a minimalist comparison.

On the other hand, with FP becoming more popular in the C++
community, attempts on automatic translation from HASKELL
to C++ are also gaining gravity. For reasons we explained in
[27], fully automatic solutions are, however, not realistic. Hence,
[27] discusses the nuances of a bidirectional translation for semi-
automatic cross-lingual development. We build on our previous
detailed comparison by showing how hybrid FP languages, espe-
cially Scala, can facilitate C++MP much more naturally.

This paper serves as a compact real-world tutorial for two
groups: the FP programmers wanting to learn C++MP; as well
as the C++MP developers who want to learn FP. Not all the prac-

1 For simplicity, in this paper, we do not distinguish between the Set-
Theoretical notion of Rational Numbers and our codes representing that
for programming purposes.
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tical bonus of this paper is this, however. The C++ community is
currently looking for ways to reduce the extraordinary develop-
ment cost of C++MP. To that end, the neat FP syntax/semantics has
shown great promise so far. This is the main reason why this paper
studies cross-lingual development cycles between C++MP and FP.

Once such cross-lingual development cycles gain enough indus-
trial gravity, a transfer of research ideas from the FP world into
C++MP will begin. Such a transfer will only start after a delib-
erate study of the commonalities and differences between the two
sides. A research value of this paper is to provide such an insight.
We anticipate that, when the C++MP problems that FP can solve
are well-identified, new research threads will emerge for simulat-
ing the FP solutions in C++. Our other research aim here is to pave
that way.

A note on laziness is relevant here: C++ templates are lazy from
many viewpoints. For example, nested entities are left unevaluated
until instantiation. This is the basis of how Sipos et al. [31] man-
aged to implement compile-time infinite sequences in C++. How-
ever, as also alluded to by Sinkovics [28], although C++MP is a
lazy FP language with selective strictness, eager template evalua-
tion is often enforced predominantly. Namely, in practice, one can
consider C++MP a strict FP language with selective laziness. So,
as also shown throughout this paper, cross-lingual development be-
tween C++MP and the latter sort of languages (such as F# and
Scala) works much better than HASKELL.

1.2 Scope
The Concept Check library is an old member of Boost with no
enough use even in Boost itself. Furthermore, although rigorous
studies [7, 14, 17] show the excess of commonalities between
C++ Concepts and HASKELL Type Classes, the former failed to
make it to the C++11 standard [2]. Recent endeavours on revisiting
Concepts focus on categoric rewrite of the matter for Boost [6].
In current C++MP, constraints on types are usually enforced using
the mpl::if family or enable_if/disable_if [13]. Describing
more complicated constraints like Functional Dependencies needs
more diligence (even in presence of Concepts) [8], hence they
are not widely used. On the other hand, the recent proposals for
the addition of a static if to C++ [5, 36] has raised interest
in current C++MP. This is mainly because arbitrary compile-time
expressions can form static if conditions.

All in all, despite their technical and theoretical benefits, Con-
cepts have never received enough attention in the practise of
C++MP. More to the point is that even with FP growing popularity
in C++, and despite the rich record of Type Classes in FP, today
there is no evidence in Concepts gaining more weight in C++MP.
As a result, this paper neglects Concepts for it aims to facilitate
C++MP as it is widely practised.

Given that no full implementation is ever provided for the entire
semantics of any mainstream FP language, not much can be gained
from comparing the informal semantics of C++MP against the
(partly less) informal semantics of FP languages in a rigorous
mathematical way. Instead, we believe comparing the languages in
practice can be more constructive, especially once thinking about
facilitating C++MP. Therefore, we do not follow [24] and [37] that
carve formal specifications for parts of C++MP as a means, and,
those papers fall out of scope for us.

We would finally remind that, by the time of this writing, C++11
is not yet widely-supported by compiler vendors. The features of
C++11 which facilitate C++MP have, accordingly, not yet gained
enough gravity in practice and we do not study them here.

1.3 Structure
In our implementation, we call our C++ datatype Rational.
The HASKELL, F#, and Scala datatypes are named FractionH,

FractionF, and FractionS, respectively. This is all to give less
grounds for name confusion. In this paper, we do not use the so-
called 0x features of C++11. In particular, as opposed to the C++11
parameter pack token, ellipsis here is our informal representation
of unimportant details. We drop namespace qualifiers (i.e., std::
and boost::) throughout our C++ codes for brevity reasons. The
parts of our C++MP code which are not considered in the text can
be found in Appendix A. We assume enough familiarity with all
the above languages.

On the matter of coding, this paper starts by discussing how
to implement the auxiliary functions needed. It then explains how
to represent Q itself in the four languages of discourse. Finally,
it explores the implementation techniques we use for operations
on Q in each language. Meanwhile, we run a comparative study
of the implementation techniques used across the four languages.
With this study of commonalities and differences, we discuss the
impediments to automatic cross-lingual development as well as the
relative ease of semi-automating this procedure.

This paper starts by discussing related work in Section 2. We
briefly explore the preliminaries in Section 3. Our technical work
starts in Section 4 where we compare the FP nature of C++MP with
the three FP languages. We then discuss how to representQ in Sec-
tion 5. Section 6.1 discusses how to reduce code repetition solely
in C++MP. Next, Sections 6.2 and 6.3 discuss how to implement
comparatives and arithmetics. Detailed discussion, finally, follows
in the conclusion.

2. Related Work
Golodotz [10] offers a tour on the FP nature of C++MP by show-
ing how to implement certain metaprograms by mimicking the re-
spective HASKELL programs. Sipos et al. [31] start by enumerat-
ing some similarities between template metaprogramming and FP.
They then informally describe a method for systematically produc-
ing metafunctions out of functions written in the pure FP language
CLEAN [23]. They advertise that their Eval<> metafunction eval-
uates the produced metaprograms according to the operational se-
mantics of CLEAN. As also discussed in [27], whilst they do not
formally present their operational semantics, their informal expla-
nation suggests remarkable differences between the operational se-
mantics of CLEAN and that of theirs.

CLEAN inherits the (app) of Launchbury for lazy evaluation
[16]. Function application in the suggested operational semantics
of Sipos et al. takes several forms as depicted in Figure 1. Their
(@) is essentially the (app) rule of Launchbury. They also add
( ) for strict application. This mere addition makes equivalence of
their operational semantics and that of CLEAN questionable. It is
noteworthy that the operational semantics of van Eekelen and de
Mol [33] suffers from increase of expressiveness upon evaluation
of let-expressions [26]. Counter-intuitively enough, in such an op-
erational semantics, e x is not proven to be observationally equiv-
alent to x seq e x. Finally, their (bind) rule is simply to optionally
postpone function application.

Sinkovics [28] offers certain solutions for improving the FP sup-
port in Boost.MPL and discusses why they are needed. Sinkovics
and Porkoláb [30] advertise implementation of a λ-library on top of
the operational semantics of Sipos et al. for embedded FP in C++.
They also later advertise [38] extension of their λ-library to full
support for HASKELL. No complete release of their works is unfor-
tunately available online for experimentation. We can therefore not
evaluate their works any further. 2 Sinkovics [29] offers a restricted
solution for emulating let-bindings in template metaprogramming.

2 Through personal email exchange, we were informed that they are elabo-
rating on their developments. The result is to be placed online for experi-
mentation.
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{f, x} ⊆ dom(Γ)
(bind)

Γ : f x ⇓ Γ : f#x

Γ : f x ⇓ ∆ : v
(β@)

Γ : f#x ⇓ ∆ : v

Γ : f x ⇓ ∆ : v
(β )

Γ : f#x ⇓ ∆ : v

Γ : f ⇓ Θ : λy.e Θ : e[x/y] ⇓ ∆ : v
(@)

Γ : f x ⇓ ∆ : v

Γ : f ⇓ Θ1 : λy.e Γ : x ⇓ Θ2 : vx Θ1 ./ Θ2 : e[vx/y] ⇓ ∆ : v
( )

Γ : f x ⇓ ∆ : v

Figure 1. Function Application of Sipos et al.

In our earlier work [27], we were the first to provide a real-
world stand-alone exemplification of C++MP being Functional in
nature. We explored impediments against fully-automatic cross-
lingual development between C++MP and HASKELL. Armed with
that, we suggested the approachability of a semi-automatic cross-
lingual development between C++MP and hybrid FP languages.

Milewski [19] has a number of posts on his personal blog
that speak about Monads [20], their benefits for C++, and how to
implement Monadic entities in C++. In a later post, he explains how
Monads in HASKELL can help the understanding of Boost.Proto
– one of the most complicated C++MP libraries. He also has a
post on how template metaprogramming with the newly added C++
construct variadic templates is similar to lazy list processing in
HASKELL. Finally, Sankel [25] shows how to implement algebraic
datatypes in C++.

3. Preliminaries
Templates were originally to enable compile-time genericity by
type [9, §2.2] in C++, which, in crude terms, is compile-time code
reuse for every type. The struct S (line 2 below), for example, is
meant to work for every type T1 and T2. Likewise, function f (line
4 below) is meant to work for every type T:

1 template <typename T1, typename T2>
2 struct S {typedef ... type;};
3

4 template <typename T> void f(T) {...}
5

6 template<typename T> struct S<T, int> {...};
7 template<> void f(float) {...}
8

9 template<int n>
10 class C
11 {
12 typedef typename S<...>::type type
13 };

Templates can be specialised for types implementations of
which may differ from the general one. (See the above lines 6
and 7 for the syntax.) Pattern matching is used to choose between
the available implementations. Yet, C++ always chooses the best
match in pattern matching, whereas in many FP languages includ-
ing HASKELL, the earliest match is always chosen. Templatisation
can be over compile-time integral constants too (such as class C
above) for which specialisation is also allowed.

Templates can have nested types/values. For example, the struc-
ture S above defines type as a nested type. When a compiler fails
to infer whether a token is a nested type or other sorts of nested
entity, use of the keyword typename informs the compiler that a
nested type is the intention. (See line 12 above for example.)

MPL [11] is the main metaprogramming component of the
Boost C++ library. We use the following items from MPL, which
we explain very briefly:

• integral_c<T, n> is a type representation for a compile-time
constant n of integral type T.

• bool_<b> is a type representation for the compile-time Boolean
constant b. bool_<> uses true_ and false_ as its compile-
time equivalents for true and false.

• not_<T>::type is a type representing the Boolean comple-
ment of the one represented by T.

• if_c<b, T1, T2>::type is equivalent to T1 if b is true, and
to T2 otherwise.

An FP language which does not allow side effects is called a
pure FP language. When an argument is only evaluated if needed
and the result of evaluation is shared thereafter in the scope, the
argument is said to be evaluated lazily [16].

4. Greatest Common Divisor
Fraction cancellation is the cornerstone of any arithmetic on Q –
that is, dividing the numerator and denominator by their greatest
common divisor (gcd). The metafunction implementation of gcd
using Euclid’s famous algorithm is a straightforward pattern match-
ing – the first FP technique used in C++MP that we present:

1 template<long unsigned a, long unsigned b>
2 struct GCD
3 {
4 const static long unsigned value =
5 GCD<b, a % b>::value;
6 };
7

8 template<long unsigned a>
9 struct GCD<a, 0>

10 {const static long unsigned value = a;};

This is one of the very few examples where the mathematical
definition of an operation is not far from its C++ metafunction
implementation. The HASKELL implementation is even better and
is virtually identical to Euclid’s algorithm. Both implementations
use tail recursion, obviously on immutable data:

1 gcd a 0 = a
2 gcd a b = gcd b (a ‘mod‘ b)

The F# version also uses pattern matching, and is more verbose
in this case – although not as verbose as the C++ one. We postpone
the Scala version until Section 5 where we discuss how to represent
the abstract datatype.

1 let rec gcd a b =
2 match b with | 0u -> a | b -> gcd b (a % b)

An important difference between C++ and FP languages here
is that, in C++, the general definition of a template needs to be
introduced first. Only then can the specialisations come but their
relevant order of definition is not significant so long as they are
in scope. In FP languages, however, the order of pattern matches
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is significant and that does include the general case. Here, for in-
stance, the general case needs to come after the case for gcd(a, 0),
or the recursion will never end.

We use the following example to demonstrate the significance
of this difference in action when considering automatic translation.
Let us suppose – for the sake of argument – that gcd(0, a) = 0.
In order to accommodate that, one would need to also provide the
following two specialisations for the C++ metafunction:

1 template<long unsigned a> struct GCD<0, a>
2 {const static long unsigned value = 0;};
3

4 template<> struct GCD<0, 0>
5 {const static long unsigned value = 0;};

and the order of the template specialisations is not relevant because
all the in-scope specialisations will be equally visible at the instan-
tiation time. On the other hand, for the HASKELL counterpart, the
following two cases would have needed to be added before the gen-
eral case, for HASKELL always goes for the first pattern match:

1 gcd 0 0 = 0
2 gcd 0 a = 0

As discussed in Section 6.2, this subtle difference can under
certain circumstances cause compilation failures upon automatic
translation from HASKELL to C++. However, as far as the relative
order of definitions is the concern, the real notoriety faced for
such a translation is right here. Consider a translation from C++
to HASKELL which naı̈vely adds the two new gcd cases after
the existing cases, and in particular, after the general case: No
error/warning messages may be emitted in either language; both
implementations are furthermore logically correct; yet, the subtle
difference between languages entails observing different results.
The reason will be arduous to spot and is likely to cater a full
genre of implementation bugs. Automatic translation from C++ to
HASKELL will be even trickier for the correct order of patterns
needs to be figured out.

As a final remark, note that, due to the specific nature of gcd, the
first line of code above is in fact optional in HASKELL. The second
line would automatically perform the same job in the absence of
the first. In C++, on the other hand, the second specialisation is
necessary, or GCD<0,0> would be ambiguous.

5. Representing Rational Numbers
For a compile-time representation ofQ, the numerator and denom-
inator need to be stored as template parameters. Note that C++
template metaprograms are pure functional entities. As a result,
the passed template arguments cannot be mutated, and the can-
celled numerator and denominator have to be stored as nested val-
ues/types. We choose to represent those using types to avoid possi-
ble linkage failures:

1 template
2 <
3 long unsigned p,
4 long unsigned q = 1,
5 bool negative = false
6 >
7 struct Rational
8 {
9 BOOST_STATIC_ASSERT((q != 0));

10 const static long unsigned gcd = GCD<p, q>::value;
11 typedef mpl::integral_c<long unsigned, p / gcd> num_t;
12 typedef mpl::integral_c<long unsigned, q / gcd> den_t;
13

14 static string to_string()
15 {
16 return p? (
17 (negative? "-": "") +

18 lexical_cast<string>(num_t::value) +
19 (den_t::value == 1?
20 "": "/" + lexical_cast<string>(den_t::value))
21 ): "0";
22 }
23 };

In order to give equal range to the numerator and denominator,
we use unsigned types for both. That entails storing the sign of a
fraction in a separate Boolean template parameter (negative). The
Scala version closely takes after its C++ counterpart:

1 case class FractionS(p: Char,
2 q: Char = 1,
3 neg: Boolean = false){
4 require(q != 0)
5 private val g = gcd(p, q)
6 val num: Char = (p / g).toChar
7 val den: Char = (q / g).toChar
8

9 override def toString() =
10 (if (neg) "-" else "") +
11 num.toByte +
12 (if (den == 1) "" else "/" + den.toByte)
13

14 private def gcd (a: Char, b: Char): Char =
15 if (b == 0) a else gcd(b, (a % b).toChar)
16 }

It is noteworthy that the only unsigned integral type in Scala
is Char, which is only two bytes wide – not scaling at all to its
C++ counterpart. Developing new types with near native support
is relatively easy in Scala. Yet, we employ this example here to
remind that whether types get mapped correctly over translation
is an important question in the checklist. Not enough scrutiny can
give birth to very subtle bugs here.

Had we chosen the numerator to carry the sign of the fraction
by making it signed, the numerator’s maximum absolute value was
enforced to be half that of the denominator. Our original intention
for this design was the pervasiveness of such considerations in
C++MP. However, as seen above, this becomes significant in cross-
lingual development between C++MP and Scala.

The fact that gcd is a private member function here is remark-
able. With OOP being one of the major C++ paradigms, the same
encapsulation is most likely to be practised in C++MP. Yet, we
chose not to discuss that in Section 4 to stay focused.

The F# version is not as close to C++ as Scala. Local let-
bindings are only internally available. Hence, getters Num, Den, and
Neg are needed for outside queries. Furthermore, because function
arguments cannot have default values in F#, one needs to add
two constructor overloads which relegate the task to the main one
(lines 9 and 10 below). Finally, static safety nets such as the Boost
assertion or Scala’s require are not available in F#, and one
resorts to (runtime) exceptions thrown in constructors (line 6).

1 type FractionF (p: uint32, q: uint32, n: bool) =
2 let gcd = gcd p q
3 let num = p / gcd
4 let den =
5 if q = 0u
6 then failwith "division by zero"
7 else q / gcd
8

9 new (p: uint32, q: uint32) = FractionF(p, q, false)
10 new (p: uint32) = FractionF(p, 1u, false)
11

12 member this.Num = num
13 member this.Den = den
14 member this.Neg = n
15

16 override this.ToString() =
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17 if p <> 0u then
18 (if this.Neg then "-" else "") +
19 (sprintf "%i" this.Num) +
20 (if this.Den = 1u then "" else "/" +
21 sprintf "%i" this.Den)
22 else
23 "0"

The state of affairs is categorically different in HASKELL. This
is because, in HASKELL, data structures are represented using pure
algebraic datatypes:

1 data FractionH = FractionH Word Word Bool
2 FractionH _ 0 _ = undefined

The first important difference between the C++ version and
the HASKELL one is right in how they deal with partially defined
datatypes. In C++, one usually employs static assertion to outlaw
undefined instantiations. (See the use of BOOST_STATIC_ASSERT
at line 9 in the definition of Rational.) Such a mechanism is not
present in HASKELL, so, the second part of Fraction’s definition
will not prevent its use with 0 as the denominator. HASKELL
however does support partial definition of functions. Thus, one way
to circumvent this problem is to encapsulate the outlawing in a
pivotal function:

1 cancel (FractionH p 0 _) = undefined
2 cancel (FractionH p q n) =
3 FractionH (p ‘div‘ g) (q ‘div‘ g) n
4 where g = gcd p q

Note that, unlike C++, Scala, and F#, there is no way to pro-
vide default values for the denominator and sign parameters in
HASKELL. Furthermore, because HASKELL does not support OOP,
there is no way to store the cancelled numerators and denominators
in the body of the type Fraction. Likewise, in HASKELL, one may
go about string representation of a fraction as follows – again, not
encapsulated in Fraction:

1 instance Show FractionH where
2 show = show’ . cancel where
3 show’ (FractionH 0 _ _) = "0"
4 show’ (FractionH p q n) =
5 (if n then "-" else "") ++ show p ++
6 (if q == 1 then "" else "/" ++ show q)

The routine string representation is similar across the languages:
A 0-numerator fraction is always written as “0” with no sign; when
the denominator of a fraction is “1”, only the numerator is written;
the sign is only written if the fraction is negative.

Due to the lack of local storage in HASKELL, the pattern of
cancelling fractions before arithmetic operations will occur repeat-
edly. Obviously, this on-the-fly cancellation is unacceptable in C++
where efficiency is critical. Cancellation is an example of when, in
the translation from HASKELL to C++, one would need to encapsu-
late the functionality in a (data) member for efficiency reasons. We
anticipate that figuring out when similar encapsulations are needed
is a highly non-trivial task for automatic translation, let alone the
correct encapsulation.

In order to automate cancellation, a HASKELL programmer
might hide the FractionH constructor behind a function

1 fraction p q n = FractionH (p ‘div‘ g) (q ‘div‘ g) n
2 where ...

in a module that only exports the function fraction. Firstly, this
does not nicely map to C++MP. Secondly, it will not eliminate the
on-the-fly cancellation and will, therefore, not facilitate C++MP at
all.

In C++, the detachment of the string representation from the
Rational class is considered inappropriate because that would be
unreasonably scattered. Therefore, an automatic translation from
HASKELL to C++ would need to be able to infer when to encap-

sulate such a function in the class. Likewise, because this encap-
sulation is not directly possible in HASKELL, one needs to detach
similar member functions upon an automatic translation from C++
to HASKELL.

We end this subsection by two basic HASKELL functions which
will be handy later:

1 num (FractionH p _ _) = p
2 den (FractionH _ q _) = q

6. Operations
C++ was never specifically designed to be a language for metapro-
gramming. A consequence is that metafunctions do not come with
a built-in return mechanism. Hence, one needs to specify the de-
liverables using named nested types/values that are to be queried
later. We did already see the use of nested values for returning the
value of a gcd. Here, we are going to use a type to represent the
result of an operation on Q:

1 template<...> struct Plus{typedef Rational<...> type;};

An automatic translation from FP languages to C++ needs to
be particularly careful on whether to map a given value to a nested
value or a nested type.

6.1 Reducing Repetition Using Preprocessor
Metaprogramming

Having to specify deliverables using nested entities makes dealing
with expression combination very labouring. For example, if we
choose to implement plus like

1 template
2 <
3 long unsigned p1, long unsigned q1, bool n1,
4 long unsigned p2, long unsigned q2, bool n2
5 >
6 struct Plus {...};

there will be no way to perform operations like Plus<Plus<...>,
...>. The reason is that Plus<...> is not a Rational itself –
its type nested type is. To circumvent this problem, one would
provide a general case where both template parameters are arbitrary
types (with particular nested types). One would then amend that by
the appropriate number of template specialisations.

In our case, for example, one would provide a general template<
typename T1, typename T2> struct Plus in addition to spe-
cialisations for Plus<T1, Rational<p2, q2, n2> >, Plus<
Rational<p1, q1, n1>, T2>, and Plus<Rational<...>,
Rational<...> >. The trick is that, for all cases, when the tem-
plate parameter is not a Rational, one forwards the operation
to the respective type nested type. The real calculation happens
only in the Plus<Rational<...>, Rational<...> > case.
This repetitive nested-entity forwarding will occur for all the Q
operations. C++ programmers evade similar manual implementa-
tions using preprocessor metaprogramming, as we explain next.

We start by providing the list of operation names (RATIONAL_OPS)
that is constructed in exactly the same way as one employs cons in
FP to construct lists.

1 #define RATIONAL_OPS\
2 (Less, (EqualTo, (Multiplies,\
3 (Plus, (Minus, BOOST_PP_NIL)))))

The legwork is done using BOOST_PP_LIST_FOR_EACH that is,
in fact, the preprocessor equivalent of the famous map function in
FP.

1 BOOST_PP_LIST_FOR_EACH(OP_INIT_TEMPLATES,
2 type,
3 RATIONAL_OPS)
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For each operation name n in RATIONAL_OPS, this generates
a copy of OP_INIT_TEMPLATES in the body of which OpName is
replaced by n and NestedType is replaced by type. The final piece
of this puzzle is OP_INIT_TEMPLATES, which is defined below.
Obviously, OP_INIT_TEMPLATES needs to be defined before its use
by BOOST_PP_LIST_FOR_EACH, or the compiler might not find it.

1 #define OP_INIT_TEMPLATES(r, NestedType, OpName) \
2 template<typename T1, typename T2> \
3 struct OpName \
4 { \
5 typedef typename OpName \
6 < \
7 typename T1::NestedType, \
8 typename T2::NestedType \
9 >::NestedType NestedType; \

10 }; \
11 \
12 template \
13 < \
14 typename T1, long unsigned p2, \
15 long unsigned q2, bool n2 \
16 > \
17 struct OpName<T1, Rational<p2, q2, n2> > \
18 { \
19 typedef typename OpName \
20 < \
21 typename T1::NestedType, \
22 Rational<p2, q2, n2> \
23 >::NestedType NestedType; \
24 }; \
25 \
26 template \
27 < \
28 long unsigned p1, \
29 long unsigned q1, \
30 bool n1, \
31 typename T2 \
32 > \
33 struct OpName<Rational<p1, q1, n1>, T2> \
34 { \
35 typedef typename OpName \
36 < \
37 Rational<p1, q1, n1>, \
38 typename T2::NestedType \
39 >::NestedType NestedType; \
40 };

Given that FP functions do already have built-in support for
specifying deliverables, this entire code bloat is redundant when
it comes to translation from C++MP to an FP language. Figuring
that out does not seem to be an easy task for automatic translation.
The other translation direction is in fact not needed to generate the
preprocessor portion because a machine programmatically gener-
ates all the classes without getting bored. Yet, the translator needs
to know that this code bloat is indeed needed for metafunctions to
enforce nested-entity forwarding.

In sizeable industrial projects where C++MP is needed, a care-
ful mixture of template and preprocessor metaprogramming is of-
ten unavoidable. In such cases, deciding on how to deal with each
part of the mixture is yet another non-trivial task for automatic
translation. See Section 7 for more.

6.2 Comparatives
The general idea to examine equality of two fractions is to examine
the respective cancelled numerators and denominators whilst also
taking the sign into account. Special cases can be handled quicker.
Two fractions can obviously not be equal when they have different
signs. However, our cancellation algorithm does not change the

original sign of a Fraction. There comes a subtle consequence:
Although the following two equations hold for every non-zero q

1 Rational<0, q, false>::num_t::value ==
2 Rational<0, q, true>::num_t::value
3 Rational<0, q, false>::den_t::value ==
4 Rational<0, q, true>::den_t::value

the fractions would still have different signs. A pointwise equality
test will therefore not quite work. The case for two 0 fractions with
different signs needs special care. Let us examine the HASKELL
implementation first:

1 instance Eq FractionH where
2 (FractionH 0 _ _) == (FractionH 0 _ _) = True
3 (FractionH _ _ n1) ==
4 (FractionH _ _ n2) | (n1 /= n2) = False
5 f1 == f2 = (num f1’ == num f2’ && den f1’ == den f2’)
6 where
7 f1’ = cancel f1
8 f2’ = cancel f2

Because HASKELL always chooses the first successful pattern
match, no conflict happens between the first two cases. The story
is different in C++ though for, in C++, there is no relative ordering
between the in-scope specialisations. Hence, the following attempt
will fail because neither specialisation is a better fit for equality be-
tween Rational<0, q, true> and Rational<0, q, false>.
An ambiguity compile error will be emitted for such a compari-
son attempt. It is noteworthy that an automatic translation from the
HASKELL version to C++ is also most likely to produce something
like:

1 template
2 <
3 long unsigned q1, bool n1,
4 long unsigned q2, bool n2
5 >
6 struct EqualTo
7 <
8 Rational<0, q1, n1>,
9 Rational<0, q2, n2>

10 >
11 {typedef mpl::true_ type;};
12

13 template
14 <
15 long unsigned p1, long unsigned q1,
16 long unsigned p2, long unsigned q2, bool n
17 >
18 struct EqualTo
19 <
20 Rational<p1, q1, n>,
21 Rational<p2, q2, !n>
22 >
23 {typedef mpl::false_ type;};

The solution is to merge the two specialisations into one. Ex-
pecting an automatic translation from HASKELL to C++ to manage
this merging technique is not realistic. It would be even less ex-
pectable for the other direction of automatic translation to sort the
correct HASKELL ordering out. The case when the two fractions
have the same sign is routine and we will present all that together:

1 template
2 <
3 long unsigned p1, long unsigned q1,
4 long unsigned p2, long unsigned q2, bool n
5 >
6 struct EqualTo
7 <
8 Rational<p1, q1, n>,
9 Rational<p2, q2, !n>

10 >
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11 {typedef typename mpl::bool_<p1 == 0 && p2 == 0> type;};
12 template
13 <
14 long unsigned p1, long unsigned q1,
15 long unsigned p2, long unsigned q2, bool n
16 >
17 struct EqualTo
18 <
19 Rational<p1, q1, n>,
20 Rational<p2, q2, n>
21 >
22 {
23 typedef typename Rational<p1, q1, n>::num_t num1_t;
24 typedef typename Rational<p2, q2, n>::num_t num2_t;
25 typedef typename Rational<p1, q1, n>::den_t den1_t;
26 typedef typename Rational<p2, q2, n>::den_t den2_t;
27

28 typedef typename mpl::bool_
29 <
30 num1_t::value == num2_t::value &&
31 den1_t::value == den2_t::value
32 > type;
33 };

In F#, classes with multiple constructors cannot be used for pat-
tern matching. F# programmers circumvent this problem in differ-
ent ways. Here, we present one of them, which turns out to be even
terser than the HASKELL version:

1 let equal_to (f1: FractionF) (f2: FractionF) =
2 match (f1.Num, f1.Den, f1.Neg),
3 (f2.Num, f2.Den, f2.Neg) with
4 | (p1, _, n1), (p2, _, n2) when n1 <> n2 ->
5 p1 = 0u && p2 = 0u
6 | (p1, q1, n1), (p2, q2, n2) when n1 = n2 ->
7 p1 = p2 && q1 = q2

The simple use of the Scala keyword case in front of FractionS
makes it a case class. The particular benefit of that, which is sig-
nificant here, is legislating patterns matching based on its values.
Despite that, there is a subtlety here that makes the Scala code
closer to the C++ one: For each branch, one only queries the can-
celled values respective to the given branch. (Note that, e.g., no
such value was needed for the first branch.)

1 def equal_to: (FractionS, FractionS) => Boolean = {
2 case (FractionS(p1, _, n1), FractionS(p2, _, n2))
3 if n1 != n2 =>
4 p1 == 0 && p2 == 0
5 case (r1 @ FractionS(_, _, n1),
6 r2 @ FractionS(_, _, n2)) if n1 == n2 =>
7 val num1 = r1.num; val den1 = r1.den;
8 val num2 = r2.num; val den2 = r2.den;
9 num1 == num2 && den1 == den2

10 }

The main difference between Scala and C++ here is that,
like any other FP language, the first pattern match is chosen
in Scala. There is one minor difference too: Note the repeti-
tion of Rational<p1, q1, n> and Rational<p2, q2, n> for
querying den1/num1_type and den2/num2_type in C++. This
is avoided in Scala by binding Rational(p1, q1, n1) and
Rational(p2, q2, n2) to variables r1 and r2, respectively.

In HASKELL where Type Classes are available, our definition
of == also implements /= automatically. Was our Rational class a
runtime one, C++ Concepts could have likewise been used. Given
that Rational is for compile-time use, we would need to define
a new Concept to be the compile-time counterpart of Equality-
Comparable. We would like to remind that EqualityComparable
defines the types and (runtime) functions each of its instantiations
need to provide. In other words, EqualityComparable does not
constrain the respective metafunctions of its instantiations. Were

we about to go for the metaprogramming counterpart of the Eq Type
Class of HASKELL, we needed to first define the Concept for types
with metafunctions providing a type nested-type. Next, we had
to define a Concept like MetaEqualityComparable, which states
the names of the relevant equality metafunctions. We would need
to implement NotEqualTo in terms of EqualTo in MetaEquality-
Comparable and state that Rational models it too. The definition
of EqualTo for Rational would then suffice to get NotEqualTo
automatically. It is also noteworthy that the same discussion ap-
plied when one uses traits as Type Classes in Scala. We drop the
Scala version for its similarity to the HASKELL one. 3

Alternatively, we can manually define operations in terms of
each other without resorting to Concepts. Here, we only present
how to do that for NotEqualTo in terms of EqualTo. Note that in
the implementation of Less, similar merge techniques to the ones
used for EqualTo are needed to avoid ambiguity between template
specialisations. See Appendix A for more.

1 template<typename T1, typename T2>
2 struct NotEqualTo
3 {
4 typedef typename mpl::not_
5 <
6 typename EqualTo<T1, T2>::type
7 >::type type;
8 };

A note on laziness seems suitable here: We could have chosen
to implement the operations lazily, say using techniques presented
in [3]. For example, we could have chosen NotEqualTo to be
implemented as:

1 template<typename T1, typename T2>
2 struct NotEqualTo
3 {
4 struct apply
5 {
6 typedef typename mpl::not_<...>::type type;
7 };
8 };

The benefit of this technique is that the mere instantiation of
NotEqualTo<T1, T2> will not trigger the computation. Instead,
NotEqualTo<T1, T2> can be freely passed around with the com-
putation only taking place the first time that NotEqualTo<T1,
T2>::apply::type is queried. Whether an automatic translation
from HASKELL to C++ should by default choose the lazy metapro-
gramming or the strict one can be controversial. See Section 7 for
more.

6.3 Arithmetics
Arithmetic operations on types are expected to at least consist of
the four basic operations. The metaprogramming techniques used
for the implementation are mainly similar. So, we only present plus
here in which the main FP technique used is mutual recursion with
minus. Check Appendix A for the remaining operations.

1 template
2 <
3 long unsigned p1, long unsigned q1,
4 long unsigned p2, long unsigned q2, bool n
5 >
6 struct Plus<Rational<p1, q1, n>, Rational<p2, q2, n> >
7 {
8 typedef typename Rational<p1, q1, n>::num_t num1_t;
9 typedef typename Rational<p2, q2, n>::num_t num2_t;

10 typedef typename Rational<p1, q1, n>::den_t den1_t;

3 Due to space constraints, we also skip the F# idiomatic override of Equals
and GetHashCode that is used to update the standard collections with the
respective canonical equality rules.
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11 typedef typename Rational<p2, q2, n>::den_t den2_t;
12

13 typedef Rational
14 <
15 num1_t::value * den2_t::value +
16 num2_t::value * den1_t::value,
17 den1_t::value * den2_t::value,
18 n
19 > type;
20 };
21

22 template
23 <
24 long unsigned p1, long unsigned q1,
25 long unsigned p2, long unsigned q2, bool n
26 >
27 struct Plus<Rational<p1, q1, n>, Rational<p2, q2, !n> >
28 {
29 typedef typename mpl::if_c
30 <
31 n,
32 typename Minus<Rational<p2, q2, !n>,
33 Rational<p1, q1, !n> >::type,
34 typename Minus<Rational<p1, q1, n>,
35 Rational<p2, q2, n> >::type
36 >::type type;
37 };

with the help of elementary calculus, the reader is invited to
make their own sense out of the algorithm used above. we drop that
routine explanation to save more space.

Perhaps the only syntactic difference between the C++ metapro-
gram and the HASKELL program is the use of guards in the
HASKELL one in contrast to the use of inline operations. This is be-
cause, in HASKELL in order to test whether the two fractions have
the same sign or not, we cannot repeat the sign token in the pattern
– whereas this is fine in C++. So long as the guard conditions are
simple, an automatic translation should not face much difficulty.
Yet, complicated guards might need a separate treatment. Despite
all that, the two codes are so similar that one could simply rewrite
one with the other syntax to got to the other implementation.

1 plus :: FractionH -> FractionH -> FractionH
2 plus (FractionH p1 q1 n1)
3 (FractionH p2 q2 n2) | n1 == n2 =
4 cancel (FractionH (num1 * den2 + num2 * den1)
5 (den1 * den2) n1) where
6 f1 = cancel (FractionH p1 q1 n1)
7 f2 = cancel (FractionH p2 q2 n2)
8 num1 = num f1
9 num2 = num f2

10 den1 = den f1
11 den2 = den f2
12 plus (FractionH p1 q1 n1)
13 (FractionH p2 q2 n2) | n1 /= n2 =
14 cancel raw_result where
15 raw_result = if n1
16 then minus (FractionH p2 q2 n2)
17 (FractionH p1 q1 n2)
18 else minus (FractionH p1 q1 n1)
19 (FractionH p2 q2 n1)

The subtle difference is that, for better efficiency in the HASKELL
version, one would apply a final cancellation to raw_result when
n1 6= n2. However, this is not needed in the C++ version for
the cancelled numerators and denominators will be automatically
stored upon instantiation. In this very case, automatic translation
might not be expected to be able to handle this subtle difference. In
larger applications, however, real performance hits upon translation
can source from similar subtle differences.

Because Scala automatically stores the cancelled values in lo-
cal members, final cancellation is not needed. Roughly speaking,
the Scala version is the compact C++ except that, like most FP lan-
guages, Scala uses guard expressions when repetition is needed in
pattern matching. Furthermore, Scala also chooses the first pattern
match.

1 def plus: (FractionS, FractionS) => FractionS = {
2 case (r1 @ FractionS(_, _, n1),
3 r2 @ FractionS(_, _, n2))
4 if n1 == n2 =>
5 val num1 = r1.num
6 val den1 = r1.den
7 val num2 = r2.num
8 val den2 = r2.den
9 FractionS((num1 * den2 + num2 * den1).toChar,

10 (den1 * den2).toChar,
11 n1)
12 case (FractionS(p1, q1, n1), FractionS(p2, q2, n2))
13 if n1 != n2 =>
14 if(n1) minus(FractionS(p2, q2, n2),
15 FractionS(p1, q1, n2))
16 else minus(FractionS(p1, q1, n1),
17 FractionS(p2, q2, n1))
18 }

The F# version, although not as close to C++ as Scala, is
roughly of the same length. In F#, pattern matching on a class
in need of similar construction-point normalisations and assertions
is only emulated using queried fields. 4 But, pattern matching based
on Num, Den, and Neg in one branch makes them equally accessible
to other branch. Hence, the next branch uses the same constructs.
This contrasts the C++ and Scala version where branches only
query the constructs their respective part of algorithm entails.

1 let rec plus (f1: FractionF) (f2: FractionF) =
2 match (f1.Num, f1.Den, f1.Neg),
3 (f2.Num, f2.Den, f2.Neg) with
4 | (p1, q1, n1), (p2, q2, n2) when n1 = n2 ->
5 FractionF(p1 * q2 + p2 * q1, q1 * q2, n1)
6 | (p1, q1, n1), (p2, q2, n2) when n1 <> n2 ->
7 if n1
8 then minus (FractionF(p2, q2, n2))
9 (FractionF(p1, q1, n2))

10 else minus (FractionF(p1, q1, n1))
11 (FractionF(p2, q2, n1))
12 and minus f1 f2 = ...

Note the use of let rec ... and ... in F# for mutual recur-
sion. In C++, forward declaration enables this. No special treatment
is needed in HASKELL or Scala.

6.4 Samples
Complicated arithmetic expressions can now be evaluated using our
libraries.

1 typedef Rational<2, 3> r1t;
2 typedef Rational<1, 3, true> r2t;
3 typedef Rational<5, 3> r3t;
4 typedef Rational<10, 9, true> r4t;
5 typedef Rational<3, 5> r5t;
6

7 typedef LessEqual
8 <
9 Plus<Multiplies<r4t, r5t>, Negate<r2t> >,

10 Minus<Divides<Negate<r4t>, r1t>, r3t>
11 >::type result;

4 Note that our use of “class” here refers to the standard OOP piece of
terminology. That aside, active patterns might address similar needs more
naturally in F#. However, we will not consider them here for how they can
perhaps facilitate C++MP is currently not entirely obvious.
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Note that all computations are compile-time. The corresponding
runtime HASKELL is:

1 r1 = FractionH 2 3 False
2 r2 = FractionH 1 3 True
3 r3 = FractionH 5 3 False
4 r4 = FractionH 10 9 True
5 r5 = FractionH 3 5 False
6

7 result = (plus (multiplies r4 r5) (neg r2)) <
8 (minus (divides (neg r4) r1) r3)

7. Conclusion
In this paper, we show the FP nature of C++MP by demonstrating
its proximity to HASKELL, F#, and Scala. We implement a C++
compile-time abstract datatype for Q, which closely corresponds
to its FP runtime counterparts, especially Scala. We show that, al-
though the techniques are tightly close, syntax of the FP languages
outperforms by far. The proximity has misled earlier research to-
wards suggesting automatic translation between FP languages and
C++MP. Our earlier work demonstrated that to be unrealistic [27].
This work, however, suggests practicality of semi-automatic trans-
lation between C++MP and Scala.

Earlier research suggests starting from the FP programs as a
design phase and moving to C++MP as the implementation. The
idea is that working with the neat syntax of FP is much easier than
C++MP, especially for C++ templates are known to be notoriously
unapproachable when it comes to error/warning messages. Yet, it
is worth noting that software development typically entails several
iterations between design and implementation before each release.
The ability of going back and forth between the design (FP pro-
grams in this case) and the implementation (C++ metaprograms in
this case) here becomes vital. We argue therefore that any mechan-
ical translation across the two languages needs to be bidirectional.
Fortunately, as shown in this paper, Scala seems promising for this
purpose – although more extensive research is still required.

One needs to bear in mind that this cross-lingual development
does not eliminate every problem in C++MP. Instead, it is a pro-
posal for making C++MP a two-phase (design/implementation)
process. The outcoming benefit is reduction in the syntactic noise
due to the fact that FP languages are by-design easier to do FP in
– which, as we show in this paper, is the essence of C++MP too.
Further details about the mechanics of such a semi-automatic cross-
lingual development is subject for future research.

With this mindset, alongside the codes we present in this pa-
per, we consider translations both from FP languages to C++MP
and vice versa. We study commonalities which pave the way for
mechanical translations, as well as differences as the hindrances
on the way. We show how pattern matching, tail recursion, and
immutability is closely similar across FP languages and C++MP.
Figure 2 summarises the impediments caused by the differences
enumerated in this paper. Along with the section visited in, it com-
ments on the feasibility of overcoming each impediment. Here is a
row-by-row discussion:

1. The general case should be moved to the top from FP to C++,
and to the bottom in the opposite direction of translation. The
correct ordering for for the FP languages should be provided by
the user for the first time and should be retained for further back
and forth translation until the next update.

2. From C++ to HASKELL, one needs to resort to partially de-
fined functions with pivotal role, if any. The translation needs to
be instructed about the static assertion being artificially encapsu-
lated in a function in the HASKELL equivalent. Use the F# excep-
tion mechanism in constructors to emulate the error checking in
runtime. Built-in Scala support for static assertion corresponds per-

fectly. Unless for the exceptional situations for F# and Scala, thus,
the translation can be fully automatic.

3. From HASKELL to C++, the translation should be instructed
about the functions to be packed together in an abstract datatype.
In the other direction, each member function will be translated to a
stand-alone function. Both F# and Scala have built-in support here
that fit perfectly.

4. Even emulating this is currently not possible in HASKELL.
One needs to write as many auxiliary constructors in F# as it
takes to redirect the construction to the main one (with the default
values set through the redirection). Scala’s constructors can have
default values and no further intricacies needed. Whilst making the
F# translation might sometimes become slightly involved, one can
fully automate the Scala translation.

5. From C++ to HASKELL, functions which perform the stored
calculation should be contrived to be used on-the-fly every time
the compile-time data member is used in the C++ version. The
translator needs to be instructed about this correspondence between
the data members and functions for next translation iterations.
Given the good support of OOP in F# and Scala, the translation
can happen automatically for these languages.

6. Use named nested entities in C++, and leave them out in
translation to FP languages.

7. From FP languages to C++, the user needs to manually advise
the translator about each entity being translated into a nested value
or a nested type. For the other direction, every nested entity trans-
lates to a value.

8. If possible, from C++ to an FP language, the user is to manu-
ally instruct the parts of this mix to dismiss upon translation. From
an FP language to C++, the translator needs not to update the dis-
missed parts. N.B. In many cases, this dismissal might not be pos-
sible or very tricky to specify. See the supplementary notes below.

9. When upon the translation from an FP language to C++ a com-
pile error is emitted due this difference, use the merge technique
presented in this paper or similar ones in C++. Usages of these
techniques need to be marked for the translator to know not to touch
the manually corrected translations until there is a change in the FP
language. Refer to guideline 1 for retaining the order of specialisa-
tions. �

This paper makes it obvious that full mechanical translation be-
tween Functional programs and C++ metaprograms is not realistic.
Nevertheless, Figure 2 and the above discussion demonstrate that
semi-automatic translation between C++MP and hybrid FP lan-
guages is indeed promising, especially for Scala. On the other hand,
from a theoretical viewpoint, C++MP is a lazy FP language with
selective strictness. However, as also explained in [27], C++MP is
predominantly evaluated strictly as if it only had selective laziness.
F# and Scala are both strict FP languages with selective laziness,
whilst HASKELL is designed the opposite way around. This is yet
another reason to prefer the former two languages over HASKELL
(or like-minded languages) for this purpose.

One might here be intrigued to try simulating features of one
language in the other one. We would like to remind, however, that
the whole point of resorting to FP languages is to harness the spon-
taneity of C++MP’s syntax for FP purposes. In other words, the
syntax of C++MP is already exotic enough to make C++ program-
mers practice a variety of non-trivial indirections. Adding extra lay-
ers of indirection on top of that for emulating an FP language would
defeat the purpose by entailing extra syntactic chaos. Likewise, be-
cause HASKELL is designed to be uniparadigm, emulating say
OOP often produces very unnatural HASKELL codes. The story is
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C++MP HASKELL F# Scala Section
1 general case first, ordering of the rest irrelevant S(FPMC) S(FPMC) S(FPMC) 4
2 static assertion for partially defined ADTs C(#) G#  5
3 object encapsulation for compile-time ADTs S(#)   5
4 default values for template parameters N/A(#) G#  5
5 compile-time data members C(#)   5
6 named nested entities(G#) S(BSFD) S(BSFD) S(BSFD) 6
7 type representation for values vs S(#) S(#) S(#) 6

real nested values
8 mixed preprocessor/template C++MP S(#) S(#) S(#) 6
9 no relative ordering between specialisations S(FPMC) S(FPMC) S(FPMC) 6

# = No Direct Support,  = Direct Support Available, G# = Indirect Support Available, S = Semi-Automatically Possible, C = Circumventable, FPMC = first
pattern match chosen, BSFD = built-in support for specifying function deliverables

Figure 2. Mechanical Translation between FP Languages and C++MP

similar for F# and Scala; for instance, levering tricks to manipulate
the order in which patterns are matched is not likely to result in
natural-feeling code.

Whilst, using an appropriate FP language, one can make semi-
automatic translation approachable, some impediments in Figure 2
would still need intensive care. For example, fully removing im-
pediment 8 on mixed template/preprocessor metaprogramming can
still be considerably demanding. Below is a simplified instance of
where in the industry one of the authors needed to use such a mix-
ture. Consider a C++ struct S templatised by an integer and with a
function call operator which, for every n, invokes a fixed function f
on the first n elements of an array a it is called with. It is currently
not clear what F# or Scala code can correspond this piece of C++
metaprogram:

1 #define DUMMY_INDEXER(z, n, data) data[n]
2 #define CALL_WRAPPER_MACRO(z, n, unused) \
3 template<> struct S<n>{ \
4 template<typename Array> \
5 double operator () (const Array& a) \
6 {return f(BOOST_PP_ENUM(n, DUMMY_INDEXER, a));} \
7 };

Our final remark is that a better option is perhaps a new front-
end DSL with built-in correspondent FP features as that of C++MP
itself. A terse syntax based on Scala but with more resemblance to
C++ can form a proper surface. A deliberate preprocessor support
is also needed for real-world C++ is often full of complex tem-
plate/preprocessor mixtures. Additionally, the semantics needs to
take it into consideration that: C++MP combines laziness and strict-
ness in unusual ways that do not fully correspond to any available
FP language; and, pattern matching in C++ uses the best match
strategy as opposed to the common first match of FP. A successful
such language can then eventually become a part of the C++ tool
chain.
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A. Our Remaining C++MP Code
In this section, we provide the parts of our C++MP code which are
not discussed in the text. The techniques used here are all discussed
enough in the previous sections, however.

1 template<typename T>
2 struct Negate
3 {
4 typedef typename Negate<typename T::type>::type type;
5 };

6 template<long unsigned p, long unsigned q, bool n>
7 struct Negate<Rational<p, q, n> >
8 {
9 typedef Rational<p, q, !n> type;

10 };
11

12 template<typename T>
13 struct Inverse
14 {
15 typedef typename Inverse<typename T::type>::type type;
16 };
17

18 template<long unsigned p, long unsigned q, bool n>
19 struct Inverse<Rational<p, q, n> >
20 {
21 typedef Rational<q, p, n> type;
22 };
23

24 template<typename T1, typename T2>
25 struct NotEqualTo
26 {
27 typedef typename mpl::not_
28 <
29 typename EqualTo<T1, T2>::type
30 >::type type;
31 };
32

33 template
34 <
35 long unsigned p1, long unsigned q1,
36 long unsigned p2, long unsigned q2, bool n
37 >
38 struct Less<Rational<p1, q1, n>, Rational<p2, q2, !n> >
39 {
40 typedef mpl::bool_
41 <
42 (p1 == 0 && p2 == 0)? false: n
43 > type;
44 };
45

46 template
47 <
48 long unsigned p1, long unsigned q1,
49 long unsigned p2, long unsigned q2, bool n
50 >
51 struct Less<Rational<p1, q1, n>, Rational<p2, q2, n> >
52 {
53 typedef typename Rational<p1, q1, n>::num_type
54 num1_type;
55 typedef typename Rational<p2, q2, n>::num_type
56 num2_type;
57 typedef typename Rational<p1, q1, n>::den_type
58 den1_type;
59 typedef typename Rational<p2, q2, n>::den_type
60 den2_type;
61

62 typedef typename mpl::bool_
63 <
64 (num1_type::value * den2_type::value <
65 num2_type::value * den1_type::value)
66 > raw_result;
67 typedef typename mpl::if_c
68 <
69 n && NotEqualTo
70 <
71 Rational<p1, q1, n>, Rational<p2, q2, n>
72 >::type::value,
73 typename mpl::not_<raw_result>::type,
74 raw_result
75 >::type type;
76 };
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77 template<typename T1, typename T2>
78 struct LessEqual
79 {
80 typedef typename mpl::or_
81 <
82 typename Less<T1, T2>::type,
83 typename EqualTo<T1, T2>::type
84 >::type type;
85 };
86

87 template<typename T1, typename T2>
88 struct Greater
89 {
90 typedef typename mpl::not_
91 <
92 typename LessEqual<T1, T2>::type
93 >::type type;
94 };
95

96 template<typename T1, typename T2>
97 struct GreaterEqual
98 {
99 typedef typename mpl::or_

100 <
101 typename Greater<T1, T2>::type,
102 typename EqualTo<T1, T2>::type
103 >::type type;
104 };
105

106 template
107 <
108 long unsigned p1, long unsigned q1,
109 long unsigned p2, long unsigned q2, bool n
110 >
111 struct Minus<Rational<p1, q1, n>, Rational<p2, q2, !n> >
112 {
113 typedef typename Plus
114 <
115 Rational<p1, q1, false>,
116 Rational<p2, q2, false>
117 >::type raw_result;
118 typedef typename mpl::if_c
119 <
120 n,
121 typename Negate<raw_result>::type,
122 raw_result
123 >::type type;
124 };
125

126 template
127 <
128 long unsigned p1, long unsigned q1,
129 long unsigned p2, long unsigned q2, bool n
130 >
131 struct Minus<Rational<p1, q1, n>, Rational<p2, q2, n> >
132 {
133 typedef typename Rational<p1, q1, n>::num_type
134 num1_type;
135 typedef typename Rational<p2, q2, n>::num_type
136 num2_type;
137 typedef typename Rational<p1, q1, n>::den_type
138 den1_type;
139 typedef typename Rational<p2, q2, n>::den_type
140 den2_type;
141

142 typedef mpl::bool_
143 <
144 (num1_type::value * den2_type::value <
145 num2_type::value * den1_type::value)
146 > swap_needed;

147 typedef typename mpl::if_
148 <
149 swap_needed,
150 mpl::integral_c
151 <
152 long unsigned,
153 num2_type::value * den1_type::value -
154 num1_type::value * den2_type::value
155 >,
156 mpl::integral_c
157 <
158 long unsigned,
159 num1_type::value * den2_type::value -
160 num2_type::value * den1_type::value
161 >
162 >::type raw_num;
163 typedef Rational
164 <
165 raw_num::value,
166 den1_type::value * den2_type::value,
167 n
168 > raw_result;
169 typedef typename mpl::if_<
170 swap_needed,
171 typename Negate<raw_result>::type,
172 raw_result
173 >::type type;
174 };
175

176 template
177 <
178 long unsigned p1, long unsigned q1, bool n1,
179 long unsigned p2, long unsigned q2, bool n2
180 >
181 struct Multiplies
182 <
183 Rational<p1, q1, n1>,
184 Rational<p2, q2, n2>
185 >
186 {
187 typedef typename Rational<p1, q1, n1>::num_type
188 num1_type;
189 typedef typename Rational<p2, q2, n2>::num_type
190 num2_type;
191 typedef typename Rational<p1, q1, n1>::den_type
192 den1_type;
193 typedef typename Rational<p2, q2, n2>::den_type
194 den2_type;
195

196 typedef Rational
197 <
198 num1_type::value * num2_type::value,
199 den1_type::value * den2_type::value,
200 false
201 > raw_result;
202 typedef typename mpl::if_c
203 <
204 n1 == n2,
205 raw_result,
206 typename Negate<raw_result>::type
207 >::type type;
208 };
209

210 template<typename T1, typename T2>
211 struct Divides
212 {
213 typedef typename Multiplies
214 <
215 T1, typename Inverse<T2>::type
216 >::type type;
217 };

44




