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Abstract

Glacial-interglacial cycles are global climatic changes which have charac-

terised the last 3 million years. The eight latest glacial-interglacial cycles rep-

resent changes in sea level over 100 m, and their average duration was around

100 000 years. There is a long tradition of modelling glacial-interglacial cy-

cles with low-order dynamical systems. In one view, the cyclic phenomenon is

caused by non-linear interactions between components of the climate system:

The dynamical system model which represents Earth dynamics has a limit

cycle. In another view, the variations in ice volume and ice sheet extent are

caused by changes in Earth’s orbit, possibly amplified by feedbacks. This re-

sponse and internal feedbacks need to be non-linear to explain the asymmetric

character of glacial-interglacial cycles and their duration. A third view sees

glacial-interglacial cycles as a limit cycle synchronised on the orbital forcing.

The purpose of the present contribution is to pay specific attention to the

effects of stochastic forcings. Indeed, the trajectories obtained in presence of

noise are not necessarily noised-up versions of the deterministic trajectories.

They may follow pathways which have no analogue in the deterministic ver-

sion of the model. Our purpose is to demonstrate the mechanisms by which

stochastic excitation may generate such large-scale oscillations and display in-

termittency. To this end, we consider a series of models previously introduced

in the literature, starting by autonomous models with two variables, and then

three variables. The properties of stochastic trajectories are understood by

reference to the bifurcation diagram, the vector field, and a method called

stochastic sensitivity analysis. We then introduce models accounting for the

orbital forcing, and distinguish forced and synchronised ice-age scenarios, and

show again how noise may generate trajectories which have no immediate ana-

logue in the deterministic model.

We conclude on a general reflexion on the interest of this research and its

potential applications on a wide range of climatic phenomena.
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Chapter 1

Introduction

1.1 The processes and natural phenomena in-

fluencing the Earth’s climate

The changes in temperature and circulation of the oceans that occurred over

Earth history left traces all over the globe. For example, foraminifera —

millimetre-size marine organisms — produce a calcite shell, of which the iso-

topic composition is influenced by temperature and salinity of the water in

which the foraminifera developed, and the amount of ice accumulated over the

continents. Foraminiferas accumulate in sediments, which can be recovered

in deep-sea cores, and then analysed with mass spectrometers. Gas bubbles

trapped in ice sheets, stalagmites, peat bogs containing pollen, and moraines

similarly provide palaeoclimate evidence at different time scales, which form

the basis for palaeoclimate reconstructions [1].

These reconstructions have revealed that climate varies on all time scales.

Among others, the slow cooling trend which characterises the latest 65 Ma
1. — this era is called the ”Cenozoic” — was punctuated by temperature

maxima (the Eocene thermal optimum, the Miocene optimum), somewhat

rapid transitions (such as the Eocene - Cenozoic transition marking the first

glaciation of Antarctica), and rapid excursions of surprisingly high amplitudes

[2, 3]. During the Palaeocene-Eocene Thermal Maximum (PETM), about 56

Ma BP (BP = before present), thousands of gigatons of carbon were released

in the atmosphere, causing a temperature surge of 5 to 8 ◦ [4, 5]. The carbon

release and the concomitant temperature increases happened over a duration

of the order of 10 to 20,000 years, and the whole event lasted about 200,000

years.

The amount and variety of data increase as we approach the present, mak-

ing it possible to identify and characterise events with increasing temporal

1throughout this manuscript we use the following convention: 1 ka = 1000 years; 1 Ma

= 1000 ka
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Figure 1.1: Reconstruction of the averaged isotopic ratio of oxygen sampled

in benthic foraminifera calcite, expressed as a measure called the δ18O [10],

and CO2 concentration sampled from Antarctic ice core records, expressed in

part per million in volume [11, 12]. These two records provide the classical

illustration of Late Pleistocene glacial-interglacial cycles. Bands and numbers

refer to interglacial periods, with number denoting so-called isotopic stages

following a scheme introduced by [13].

resolution. Throughout this review we will focus on the Pleistocene. This

period starts around 3 Ma ago. At this time, the Antarctic ice sheet already

covered the Antarctic continent, and ice sheets had started to episodically

appear and disappear in the northern hemisphere. Such cycles of ice accu-

mulation and melt are termed glacial-interglacial cycles. Their amplitude and

periodicity increased throughout the Pleistocene, with a step-change located

around an event called the Mid-Pleistocene Transition (MPT). This event oc-

curred between 800 ka and 1.2 Ma ago, depending on how exactly it is de-

fined [6–8]. Glacial-interglacial cycles, which until the MPT followed a cycle

of 40 ka, morphed into a saw-tooth pattern of an average period of 100,000

years. The amplitude of theses cycles has remained pretty stable since the

MPT, but their period and shape varied quite significantly from one cycle to

the next (Figure 1.1). Most cycles are terminated by a rapid transition towards

the interglacial regime, during which northern hemisphere ice sheets melt and

release the equivalent of 100 m of sea level in the oceans in about 10,000 years.

This last phase is often called the “termination” [9]

Further zooming within a glacial-interglacial cycle, one discovers rapid cli-

mate variations. Their signature is found all over the globe, but their origin

is located in the North Atlantic realm. The most spectacular ones, called the

Dansgaard-Oeschger events [14], occur when ice sheets have reached a mid-

size, before the mature stage that gives way to the deglaciation. Dansgaard-

Oeschger events were originally defined as isotopic excursions in the composi-
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tion of Greenland ice. It is known today that these events were produced by

jumps in temperature of the order of 10 ◦ or more [15]. They are associated

with atmospheric circulation which occurred over a few years, and tempera-

ture changes are completed within a few decades [16]. Although Greenland

ice older than the penultimate interglacial period is not available, indirect ev-

idence attest the existence of similar temperature jumps over the last 800,000

years at least [17,18]. Smaller events punctuated the early stages of the glacia-

tion [19–21].

The purpose of palaeoclimate dynamics theory is to explain these varia-

tions. The relevant mechanisms depend on the time scale under focus. At the

time scale of several million years, climate changes are associated with tectonic

drift and biological evolution. Tectonic drift affects the shape and orientation

of continents, and it also affects the rates of rock weathering, which determine

the fluxes of chemical compounds between the continents and the oceans. Bio-

logical evolution affects the rate and variety of biochemical reactions available

on Earth — photosynthesis, reduction and oxydation of nitrogen compounds

— as well as, among others, the texture and colour of soils.

The dynamics of glacial-interglacial cycles involve the hydrodynamics of

ice, atmosphere, and ocean circulation. Winter snow precipitations are needed

to grow ice sheets in the Northern Hemisphere, but, on the other hand, these

newborn ice sheets will persist only if polar climates are cold enough, espe-

cially in summer [22]. We know today that the configuration of Earth’s orbit

and the value of its obliquity are quite critical for meeting these conditions,

and this explains why the timing of glacial-interglacial cycles appear to be

controlled by variations in Earth eccentricity, obliquity, and the position of

perihelion. This is the basis of the Milankovitch theory [23]. As ice sheets

grow, they create conditions propitious to cool their own surface by reflect-

ing sunlight (albedo feedback) and reaching higher elevations. Their size may

then increase until they become limited by the geometry on the continent and,

since Milankovitch, we have learned that this can be a factor of instability that

explains the abruptness of deglaciation [24, 25]. However, theories of ice age

cycles also involve other important factors explaining the amplitude and size

of ice sheet cycles. The growth of ice causes changes the structure and depth

of ocean circulation, the extent and density of forests cover, and marine bio-

logical activity, which all affect the concentration of CO2 in the atmosphere.

Because of the greenhouse effect, CO2 changes impact climate, and thus ice

sheet growth. The dynamics of ice sheet and CO2 form a coupled system with,

as we will further develop below, may have non-trivial implications.

Ocean waves and instabilities also explain climatic variations over time

scales from a few years to several thousands of years [26]. The Dansgaard-

Oeschger events, in particular, are now believed to be associated with a form of
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instability in the North Atlantic circulation involving convection in the Nordic

Seas, and advection of salt and heat by western boundary currents. These

instabilities are also likely to interplay with the dynamics of ice sheets and

their marine platforms which, when melting, release icebergs and melt water

in the ocean [27].

Topping this scenery, volcanic eruptions and bolide events may have af-

fected the climate system with consequences ranging from benign to disrup-

tive. The bolide impact that caused or triggered the CretaceousPalaeogene

extinction [28] is a major and rare event, but every century is punctuated by

a number volcanic eruptions causing a short-lived negative temperature ex-

cursion of the order of a few tenths of degree. The Tombora 1815 eruption is

a well-studied example which has allowed climate scientists to conclude that

such an eruption can cause local temperature variations of the order of several

degrees, and a global temperature anomaly of the order of one degree, with a

life span of the order of 5 to 10 years [29].

1.2 The quest of dynamical behavior

The number of processes involved in the dynamics of Earth’s climate changes

is overwhelming. Hydrodynamic flows including ocean and atmospheric cir-

culation are the domain of geophysical fluid dynamics, in which equations

of motions involve partial derivatives in space and time. The combination

of rotation and Sun heating generate waves and instabilities of time scales

ranging from the second to several millennia. They explain, for example, the

inconstancy of extratropical weather. The underlying equations of fluid mo-

tion have no closed-form solution, because the convection term is non-linear.

Modelling heating terms is also a difficult problem, among others because wa-

ter exists under its three phases. Hence, for understanding atmospheric and

oceanic motion on Earth it is common to use numerical simulation methods,

which require truncating equations at a certain resolution. It is not practical

to truncate equations down to the viscosity scale because the required storage

and computing capacity would exceed by many orders of magnitude what com-

puting technology may offer in any foreseeable future. Consequently, adequate

theories and idealizations are needed to account for the effects of turbulence

and sub-grid-scale waves.

However, understanding climate dynamics involves much more than hy-

drodynamics. Modelling the flow of ice in ice sheets also requires dealing with

partial differential equations, along with a good understanding of ice rheology,

thermal diffusion, and ice dynamics near the bedrock. On the continents, the

roughness, colour and albedo of the surface are affected by the spatio-temporal

dynamics of vegetation, surface and subsurface water flows, which in turn de-
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pend on climatic conditions. Modelling sea-ice dynamics confronts one with

the movement of dense sea ice, the formation of leads, and their interaction

with the ocean water column. Last, but not least, biological activity controls

a significant fraction of the exchanges of gas and other chemical compounds

(including, among others, CO2 and organic carbon), which affect the radiation

balance of the Earth.

Climate scientists have attempted to combine their knowledge of all these

different processes into giant computer programs called ‘general circulation

models’ (GCM). The memory and computing capacity of the best commercial

computers are used to their maximum possibilities to solve the hydrodynamics

equations of motion with the maximum possible resolution. Processes consid-

ered to be important, but which are not explicitly simulated by these equations,

are said to be ”parameterized”.

What is the ”maximum possible resolution” depends on the computer time

one is willing to spend, and the time scale of interest. State-of-the-art GCMs

typically cited in scientific reports about climate change have a typical hor-

izontal resolution of the order of 1 degree in latitude and longitude in the

atmosphere, and the highest-resolution versions of these models go down to a

few tens of degrees [30].

Such models have obvious scientific and political interests, but there are

also many good reasons for willing models with a higher degree of idealization

and abstraction. Simulating longer time scales requires reducing the model

spatiotemporal resolution. The models which follow this strategy are some-

times called ”models of intermediate complexity” because they have fewer lines

of code than GCMs, but they remain much more complicated than dynami-

cal systems mathematicians usually deal with. Addressing longer time scales

generally requires increasing the range of relevant processes which enter in

consideration. For example, the climatic consequences of deep-sea sediment

dissolution are irrelevant at the decadal time scale, but they matter at the

millennial time scale. However, one can never study a time scale without some

regard for what happens at shorter and longer time scales. Non-linear dynam-

ics effective bridge small and large spatiotemporal scales. For example, the

stability of continental-size ice sheets may depend on local, small-scale phe-

nomena such as ice buttressing near marine ice shelves [31]. The continental

shelves, although they contribute to only 20% of the global ocean production,

possess characteristic features which make them particularly sensitive to the

global climate changes associated with glacial-interglacial cycles (sensitivity to

aeolian and riverine nutrient input and to variations in sea levels [32]. As we

see it, building a model that would adequately represent every process is an

overwhelming task.

As others have argued [33], large-scale simulators will therefore not, alone,
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provide scientists with a satisfactory understanding of climate variability and

predictability. We need concepts to identify fundamental limits of this pre-

dictability, and also provide foundations for the emerging domain of climate

control theory, which deals with the detection of early warning signals before

climatic transitions, and identify causes of uncertainty.

These objectives can be contributed to by using the language and tools of

dynamical systems theory. We need to be able to identify and justify possible

analogies between different climatic phenomenon, and perhaps also establish

analogies between climatic oscillations and other natural phenomena. To this

end, we need to adopt a different mindset than the one which underlies the

development of large climate prediction simulators.

Consider, for example, the energy-balance model. This model was famously

introduced the same year by Budyko [34] and Sellers [35]. These models are

based on partial differential equations representing the dynamics of the dis-

tribution of surface temperature across latitudes, and account for incoming

radiation and the effects of a change in surface albedo. The latter introduces

a non-linear term, which generates the possible coexistence of two stable fixed

points: a cold and a warm state [36, 37], arranged in such a way that number

of fixed points depends on a control parameter (the solar input). In spite of its

extreme idealization, this model turns out to have useful explanatory power.

It shows the possibility and emergence mechanism of a hysteresis dynamics

between ice-free and ice-full states. Highly idealized models generally describe

mechanisms which, a priori, are relevant over a reasonably narrow range of

time scales. Glacial-interglacial cycles, for example, are an oscillation involv-

ing time scales of 40 to 100 ka. The El Niño southern oscillation involves time

scales over a few years. Quite obviously, these different phenomena are cap-

tured with different models. Yet, the mathematical structure of these models

are sometimes strikingly similar, allowing for enlightening analogies (see [38]

and references therein).

1.3 What the reader can find in this review

The literature on low-order models of glacial-interglacial cycles is vast, with dif-

ferent traditions: low-order deterministic dynamical systems featuring limit cy-

cle behaviour [39], theories of stochastic resonance [40,41], quasi-linear, highly

idealized models of ice mass balance [42], and models address ice sheet flow

dynamics from physical principles [43]. These different traditions interacted

over forty years.

The present review is deliberately focused on the first tradition, already

partly addressed in [44]. However, compared to that review and the references

therein, we bring much more emphasis on the effects of stochastic parame-
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terizations and bifurcation scenarios. As we have already seen, dynamical

systems tend to focus on mechanisms relevant over a reasonably narrow range

of time scales, but they may, however, be influenced and interact with phe-

nomena associated with smaller, or greater time scales. Consider, again, the

latest glacial-interglacial cycles depicted on Figure 1.1. Every cycle is dis-

tinct, some variations are pretty rapid, especially in the CO2 concentration,

and it is not obviously clear how much of this behaviour is influenced or even

perhaps determined by climatic mechanisms operating at millennial or even

sub-millennial time scale. A typical strategy in climate modelling is to repre-

sent these phenomena with stochastic parameterizations, thereby generating a

random dynamical system [45, sect. 2.3]. The tradition was introduced with

the linear model of [46], and the design and justification of adequate stochas-

tic parameterizations is an active area of research, especially in the domain of

decadal variability and predictability [47,48]. Some of the non-trivial effects of

noise in deterministic models of ice ages were discussed early on, in particular

with the proposal that ice ages could be the manifestation of a phenomenon

of stochastic resonance in a Budyko-Sellers type model [40]. However, as we

will see, stochastic effects may have many other effects, and produce dynamics

which have no equivalent in the framework of deterministic dynamical systems

theory. Therefore, even though we will focus on models which have been pre-

sented as models of glacial-interglacial cycles, the analyses presented here may

have implication across a larger range of climatic phenomena.

Emphasis, in this review, is heavily put on dynamical system analysis.

To this end, we will start with autonomous oscillators in state space of two

(Chapter 2), and three dimensions (Chapter 3), and then introduce the as-

tronomical forcing (Chapter 4). The review is based on dynamical systems

which have been previously introduced and discussed in the literature, but

we have deepened the dynamical system analysis and introduced stochastic

parameterizations such as to produce analyses that have not been discussed

before.

In most cases, the authors of the reference studies on which we have based

ourselves have introduced and discussed their models as a plausible representa-

tion of a mechanism of glacial-interglacial cycles. For example, the Rombouts-

Ghil model [49] is presented as a representation of ocean-atmosphere-vegetation

dynamics, and introduce physical quantities such as albedo, heat flux and veg-

etation fraction. We should be clear upfront about the fact that many mod-

els can generate oscillations, and the different low-dimensional ice-age models

have been proposed over the latest forty years have sometimes emphasized

very different mechanisms. This may be admittedly troubling to the reader.

Observations and theory have made it clear that the physics of ice sheets and

of the carbon cycle constrain, at least in part, their amplitude and shape [50],
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but some of the models we discuss the carbon cycle and ice sheet physics alto-

gether, and focus on other mechanisms which may be quite disputable. From

a physical standpoint, these models are thus inadequate, but we nevertheless

introduce them because their dynamic properties are enlightening and useful

to construct of our understanding of stochastic effects in non-linear dynamics.

This will be the purpose of chapter 5 to synthesize our current understanding

of glacial-interglacial cycles and propose avenues of research.
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Chapter 2

Ice-temperature-vegetation 2D

models

The succession of glacial and interglacial periods evokes an oscillation. From

basic Lyapunov theory of stability, we know that a dynamical system must

have at least two ordinary differential equations to produce self-sustained os-

cillations [51]. We therefore start our review with models which display these

characteristics.

2.1 A simple auto-oscillatory climatic feedback

system

2.1.1 Definition

The first climatic oscillator suggested here was imagined by [52]. This model

describes the effect of isolation of the ocean surface by sea ice, which prevents

(reduces) the heat flux from the ocean to the Earth’s atmosphere. The extent

of sea ice depends on the average temperature of the ocean, and this generates

a non-linear feedback on land-ice growth. This model will provide us with

the basis to introduce and understand the effects of additive and multiplica-

tive noise parameterizations. More precisely, we will see that additive noise

produces fluctuations of large and small amplitudes (called mixed-mode os-

cillations), within the basin of attraction. This type of noise may also cause

transitions between a stable equilibrium and a limit cycle. Parametric noise

may either increase the dispersion of random trajectories, or concentrate them

near the unstable equilibrium, and bring the system from order to chaos.

The [52] model is illustrated on Fig. 2.1. Here ζ = sinϕ is the sine of the

marine-ice latitude ϕ (measured from the equator), η = ζ at the ice edge, Do

is the mean ocean depth, and θ is the mean ocean temperature.
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Figure 2.1: Idealized atmosphere–ocean–sea ice system (the mean ocean tem-

perature θ is given by averaging of the local ocean temperature T (ζ, z) over

coordinates ζ and z).

η̇ = φ1θ − φ2η +Xη,

θ̇ = −ψ1η + ψ2θ − ψ3η
2θ +Xθ,

(2.1)

We use Newton’s notation for differentiation: η̇ = dη/dτ , θ̇ = dθ/dτ , and τ is

the time. The equation of η (0 ≤ η ≤ 1), and hence, ϕ (0 ≤ ϕ ≤ π/2) param-

eterize the process of ice melting when the mean ocean temperature increases.

Parameters Xη and Xθ determine the growth rates of sea ice and temperature

at points (η∗, θ∗) and (η∗, θ∗) where θ∗ = φ2η
∗/φ1 and θ∗ = ψ1η∗/(ψ2 − ψ3η

2
∗),

respectively. The equilibrium points of the system (2.1) are described by means

of zero parameters Xη and Xθ.

The positive parameters φ1 and φ2 describe the upward heat flux at the

ice edge and the transmitted radiation absorbed at the surface [52]. Moreover,

the denominators of φ1 and φ2 contain the contributions proportional to the

latent heat of fusion and the ice mass inertia. Parameter ψ1 defines the sensible,

latent heat and longwave radiative fluxes. Parameter ψ2 quantifies the effect

of changes in the atmospheric carbon dioxide concentration. The nonlinear

contribution containing ψ3 describes the vertical heat flux at the surface (see,

for details, [52, 53]).

This system was studied and discussed by [53–57]. We reproduce this

analysis here. Let us introduce the departures η′ and θ′ of η and θ from their

equilibrium (steady-state) values η0 and θ0 as

η′ = η − η0, θ
′ = θ − θ0, |η′| � η0, |θ′| � θ0, (2.2)

13



where η0 and θ0 are chosen on the basis of recent observations (η0 ≈ 0.941,

ϕ ≈ 70oN and θ0 = 276.68K [58,59]).

Substituting variables (2.2) into equations (2.1) and keeping the small de-

partures η′ and θ′, we obtain

η̇′ = φ1θ
′ − φ2η

′,

θ̇′ = −ψ1η
′ + ψ2θ

′ − ψ3η
′2θ′.

(2.3)

The coupled autonomous system (2.3) describes the following nonlinear mech-

anisms [53]: (i) the “ice-insulator” effect leading to a damped harmonic oscil-

lation (contributions containing φ1, φ2 and ψ1), (ii) a feedback between the

atmospheric carbon dioxide concentration and the mean temperature in the

ocean leading to a linear destabilizing tendency (contribution containing ψ2),

and (iii) when the dynamical system is far from its equilibrium the negative

feedback operated by the nonlinear term (containing ψ3) becomes dominant.

At this point, it is convenient to rescale variables and parameters as follows:

x =
η′

γ1

, y =
θ′

γ2

, t = φ2τ, a =
φ1ψ1

φ2
2

, b =
ψ2

φ2

,
γ1

γ2

=
φ1

φ2

, (2.4)

where a and b are positive coefficients, and t is the dimensionless time.

Rewriting the dynamical system (2.3) in dimensionless variables (2.4), we

have:

ẋ = y − x,
ẏ = −ax+ by − x2y.

(2.5)

We explore the different regimes exhibited by this deterministic dynamical

system (2.5).

2.1.2 Identification of different dynamical regimes

First of all, observe that the system (2.5) has a trivial equilibrium point

M0(0, 0) for all values of coefficients a and b. This equilibrium is stable in

the parametric region b < a and b < 1 (region D in Fig. 2.2)). A phase

trajectory going in region D is attracted to the equilibrium point M0.

A stable limit cycle appears when the model parameters a and b cross the

boundary between D and C. This boundary is defined by the line b = 1 at

a > 1 and corresponds to the Andronov-Hopf bifurcation (the point M0 loses

its stability). Hence, in region C, the system displays stable auto-oscillations

(2.5). Saltzman and co-authors analysed the global climate oscillations for

fixed parameters a = 6.4 and b = 4 [53]. [54] studied the system dynamics in

the vicinity of its Andronov-Hopf bifurcation boundary by means of the normal

form technique. [55] further investigated the behaviour near the homoclinic
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Figure 2.2: A scheme of parametric regions of the dynamical system (2.5).

bifurcation point. Finally, [57] carried a detailed parametric analysis of these

equations.

Two nontrivial symmetric points of equilibrium M1(x̄1, ȳ1) and M1(x̄2, ȳ2)

exist in the phase plane in the parametric region b > a (x̄1 = ȳ1 =
√
b− a

and x̄2 = ȳ2 = −
√
b− a). These equilibrium points are stable in the region

A (a < 1 at b > a). When b < 1, to two types of possible phase diagrams

are possible (no cycles), (i) if 0 < a < b, M0 is unstable while M1 and M2 are

stable, and (ii) if a > b, M0 is the only stable point.

Let us now to describe the deterministic dynamics at b > 1 various values

of the parameter a in the regions A, B, and C. To this end, we analyse the

system behaviour for b = 2 by means of the bifurcation diagram shown in Fig.

2.3, where the y-coordinates of attractors and repellers are plotted against

parameter a. Parameter a goes through four bifurcation points: a1 ≈ 0.714,

a2 ≈ 0.775, a3 = 1, and a4 = 2. These points characterize the regions of

different dynamic behaviour, namely A (0 < a < a1), B (a1 < a < a2), C

(a2 < a < a3), D (a3 < a < a4), and E (a > a4). The corresponding phase

portraits are shown in Fig. 2.4.

The equilibrium point M0 is an unstable node at a > a4, and a saddle

point at a < a4. In region A, the stable equilibrium points M1 and M2, and

the unstable equilibrium M0, completely determine the nonlinear behaviour.

When a crosses a1, a saddle-node bifurcation occurs and a new attractor ap-

pears. It is represented by a stable cycle surrounding all equilibrium points.

An unstable cycle (red-dotted curve) isolates the equilibrium points from the

attractors. There is a second bifurcation point at a2, where the unstable cycle

splits into two unstable cycles, and which defines region C. Each of these two

unstable cycles surrounds the corresponding stable equilibrium. A subcritical

point of Hopf bifurcation appears at a = a3 where the unstable cycles col-

lapse on their respective fixed points, M1 and M2, giving rise to unstable fixed
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Figure 2.3: Bifurcation diagram at b = 2. The thin solid, dashed, thick solid,

and dash-dotted lines show the y-coordinates of stable equilibria, unstable

equilibria, extrema of stable cycles, and extrema of unstable cycles.

points. This defines a region D, characterized by three unstable equilibria,

surrounded by a stable limit cycle. Finally, a pitchfork bifurcation arises at

a = a4, where the phase points M1, M2 and M0 merge. This leads to a single

unstable equilibrium point surrounded by the stable cycle in region E.

In summary, this simple climate model may have two stable, non-trivial

equilibrium points (warm and cold attractors), as well as a stable limit cycle

depending on the values of system parameters. Both attractors have their own

“basins of attraction”. Trajectories may therefore be attracted towards one or

the other, depending on initial conditions.

2.1.3 Noise-induced phenomena and transition to chaos

in the stochastic model

For convenience we assume that the ocean temperature is the variable which is

most sensitive to random disturbances. We therefore inject uncorrelated white

Gaussian noise ξ(t) in the second equation (2.5) as follows:

ẋ = y − x,
ẏ = −ax+ by − x2y + εξ(t),

(2.6)

where ε stands for the intensity of fluctuations. The last contribution describes

fluctuations of the ocean temperature. Numerical simulations of stochastic

dynamics presented below are obtained with the Euler-Maruyama scheme [60].

We use the standard Box-Muller transform to model the stochastic components

of the Gaussian fluctuations.

Fig. 2.5 illustrates different stochastic regimes in parametric domains A,

B, C, and D, with phase trajectories (left), corresponding time series (middle),

16



a = 0.7 a = 0.76 a = 0.86 a = 1.5

Figure 2.4: Different dynamical regimes for b = 2. The blue and red circles

illustrate stable and unstable equilibria, while the blue solid, red dotted and

black lines show the stable cycles, unstable cycles and phase trajectories.

ε = 0.1

A a = 0.7

ε = 0.3

ε = 0.1

B a = 0.76

ε = 0.2
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ε = 0.1

C a = 0.86

ε = 0.2

ε = 0.2

D a = 1.1

ε = 1

Figure 2.5: Random trajectories (left column), time series (middle column),

and pdf (right column) in the presence of additive noise. The black and blue

colours illustrate the phase trajectories starting from the stable equilibrium

and stable cycle, respectively.
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Figure 2.6: Dependencies k versus ε for the phase regions A (left) and D

(right).

and stationary probability density functions (pdf, right). Random trajectories

leave the deterministic attractors (stable equilibrium points or cycles) and

determine a pdf under the influence of noise. Below we discuss some important

features of the noise-induced dynamics in regions A, B, C and D which we

defined above.

Region A. The phase trajectories in the presence of weak noise (ε = 0.1) re-

main in the vicinity of stable equilibrium points. They are termed some small

amplitude stochastic oscillations (SASO) near equilibria, which are organized

to form a pdf characterized by two sharp peaks, corresponding to the stable

fixed points in the deterministic system. When the noise intensity increases

(ε = 0.3 in panel A), trajectories occasionally escape their attractor and cross

the separatrix. These trajectories form so-called large amplitude stochastic os-

cillations (LASO). In this case, LASO, and SASO coexist, and this coexistence

generates a regime called mixed-mode amplitude fluctuations.

The pdf shown under higher noise intensity (panel A, right-hand side)

shows an intriguing closed ridge, surrounding two peaks. This phenomenon

is not associated with the corresponding deterministic dynamics (limit cycle),

but we can understand its presence by considering the details of the transient

trajectories. Deterministic trajectories (panel A in Fig. 2.4) running to the

point of stable equilibrium go through a region, where the trajectories are

temporally localized. The addition of noise generates a stochastic cycle, with

the ratio of LASO trajectories over SASO ones increasing with noise intensity

ε. The frequency of LASO can be quantified with the ratio k = n(T )/T , where

n(T ) is the number of intersections of the mixed-mode oscillations x(t) with

the axis x = 0 on the interval [0, T ], and T represents the analysis time, which

must be large enough for good statistics. Fig. 2.6 shows how k(ε) varies with

noise intensity ε, for different values of a.

Region B. We showed that in region B, M1 and M2 are isolated from the

stable limit cycle by an unstable cycle (Fig. 2.4). This structure influences
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the dynamics of stochastic trajectories. Weak noise generates SASO near both

equilibria. Larger noise intensity (ε = 0.1) authorizes transitions between

the climate attractors. Specifically, trajectories around the cycle may leave

their basin of attraction and become slowly attracted (after a few rotations)

to one of the equilibrium points. This is a stochastically-induced transition

“cycle-equilibrium”. The inverse transition is possible as well. The transition

“equilibrium-cycle” becomes more frequent under increasing the noise inten-

sity (ε = 0.2). Transitions between attractors form LASO. Their coexistence

with SASO produces a form of intermittency that characterizes individual tra-

jectories (see the lower panel B in Fig. 2.5).

Region C. The deterministic phase portrait contains a stable cycle and a

couple of stable equilibrium points divided by two unstable cycles. Here the

stochastically-generated transition “equilibrium-cycle” happens at small noise

and the intermittency of SASO and LASO regimes takes place with increasing

ε (LASO predominates, the lower panel C in Fig. 2.5).

Region D. If the noise intensity ε is small enough, a random trajectory goes

around the deterministic cycle in its basin of attraction (LASO, see the upper

panel D in Fig. 2.5). An oscillating mode originates in the vicinities of stable

equilibrium points (ε = 1, see the lower panel D in Fig. 2.5). The frequency

of LASO in this mode of stochastic fluctuations is shown in the right panel in

Fig. 2.6. The period 1/k(ε) slowly increases (decreasing k) and converges to

half of the period of the limit cycle found in the deterministic model.

Is summary, additive noise changes the system dynamics but the struc-

ture of trajectories can be explained by reference to the underlying attractors.

LASO, SASO, and mixed mode oscillations appear around the stable equilib-

rium points and stable cycles. In the second place, LASO are associated with

two-way transitions between them. In other words, additive noise generates

climatic transitions between regimes considered as stable in the deterministic

system.

Perturbing parameters with a noisy process can be justified as a way to

account for possible random disturbances in the physical mechanisms and pro-

cesses parameterised by the model coefficients a and b. To this end, we rewrite

the model equations (2.5) in the presence of simultaneous additive and para-

metric noises as

ẋ = y − x,
ẏ = − (a+ εaξa(t))x+ (b+ εbξb(t)) y − x2y + εξ(t),

(2.7)

where ξa(t), ξb(t) and ξ(t) represent the uncorrelated white Gaussian zero-mean

noises, εa and εb stand for the intensities of a- and b- parametric noises (as

before, ε designates the intensity of additive noise). In numerical simulations,

we consider this stochastic system in Ito sense.
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a-noise

b-noise

Figure 2.7: Stochastic dynamics in the presence of a parametric a-noise (top

panel) and b-noise (bottom panel) for a = 0.7 and ε = 0.01. The upper panel

is plotted for εb = 0 and εa = 0.1 (left), εa = 0.5 (middle), εa = 2 (right). The

lower panel is shown for εa = 0 and εb = 0.1 (left), εb = 0.5 (middle), εb = 2

(right).

We adopt reference values for coefficients a = 0.7, and b = 2. The inten-

sity of additive noise is fixed ε = 0.01. These parameters correspond to the

following coordinates of the phase points: M1(1.14, 1.14), M2(−1.14,−1.14),

and M0(0, 0) (region A). We consider the role of a-noise (εa 6= 0 and εb = 0)

and b-noise (εa = 0 and εb 6= 0) in turn.

Fig. 2.7 illustrates the noise-induced dynamics of equations (2.7) at differ-

ent values of noise intensities. Phase trajectories start from the equilibrium

point M1. With weak intensity, the trajectories remain near equilibrium M1

(fluctuations in SASO regime, left column). This mode of oscillations changes

with increasing noise intensity increases (fluctuations in LASO regime, middle

column). So far, the dynamics are very similar to the aforesaid fluctuations in

the case of additive noise.

However, this behaviour changes significantly when the noise intensity is

increases further. The larger values of a-noise lead to larger amplitude and

dispersion of fluctuations. The growth of b-noise localizes the phase trajectories

in the vicinity of unstable equilibrium point M0.

The left columns plotted in Fig. 2.8 show that the time dependencies of

reduced marine-ice latitude x and the corresponding pdf look very similar for

a- and b-noises. With increasing a-noise, the pdf takes the shape of a crater

(compare the left and right column in the upper panel, Fig. 2.8), surrounded

by two peaks corresponding to the stable equilibrium points M1 and M2. The

effect b-noise is quite different: the pdf takes one a sharp peak with high noise
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a-noise

b-noise

Figure 2.8: Time series and pdf in the presence of a parametric a-noise (upper

panel) and b-noise (lower panel) for a = 0.7 and ε = 0.01. The upper panel

is illustrated for εb = 0 and εa = 0.5 (left), εa = 2 (right). The lower panel is

presented for εa = 0 and εb = 0.5 (left), εb = 2 (right).
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Figure 2.9: The largest Lyapunov exponents as functions of noise intensities

calculated for the stochastic model (2.7) in the presence of a parametric noise

for a = 0.7 and ε = 0.01 (εb = 0 (left) and εa = 0 (right)).

intensity: phase trajectories remain in the vicinity of the unstable equilibrium

point. This is typical for parametric noise.

The effect of noise may be further characterized by considering the largest

Lyapunov exponent Λ, shown in Fig. 2.9, for a- and b-noises. Note that these

calculations are based on the standard Benettin method [61]. The Lyapunov

exponent is negative for small amounts of a- and b-noises. The exponent Λ

becomes positive for increasing noise levels, marking the transition to chaos.

Λ keeps increasing monotonously with increasing b-noise intensity, while it be-

comes negative again with a-noise (compare the left and right panels in Fig.

2.9; a-noise and b-noise intensities are denoted with εa and εb, respectively).

This can be explained as follows. Generally speaking, random phase trajec-

tories go through the regions of local convergence and divergence; the sign of

Λ is then determined by the balance of time spent between these regions. If

the convergence regions dominate the total distribution, then Λ < 0; otherwise

Λ > 0. With small noise, the phase trajectories run in the vicinity of stable

equilibrium point M1, which is a region of convergence. Consequently, Λ < 0.

a-noise ejects phase trajectories towards the vicinity of unstable equilibrium

M0, which explains the transition towards positive Λ (chaos). However, even

further a-noise levels eject trajectories well outside the limit cycle, which is a

region of convergence, and explains why Λ becomes negative again. b−noise

does not do this. It concentrates random states in M0, and this is a divergence

region. Hence, Λ > 0.

In summary, in the analysis of parametric noises (in the presence of addi-

tive noise) let us highlight that the dispersion of random trajectories and the

amplitude of random oscillations may grow (a-noise), or shrink to the vicin-

ity of the unstable equilibrium (b-noise). Parametric noise may also induce a

transition to chaos. In absence of parametric noise, the stochastic system does
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Figure 2.10: Random states (grey) of stochastic attractors and confidence

domains (dashed lines): a) confidence ellipse around the equilibrium M2 for

a = 0.5, ε = 0.01, b) confidence band around the limit cycle for a = 1.1, ε =

0.05.

Figure 2.11: Stochastic sensitivity of attractors: a) plots m(t) for cycles; b)

plots λ1(a), λ2(a) for equilibria and M(a) for cycles.

not exhibit the transition to chaos.

2.1.4 Stochastic sensitivity analysis of equilibrium and

oscillatory regimes

The analysis above is based on numerical simulation of random trajectories.

Another approach is possible, based on stochastic sensitivity functions and

confidence domains techniques can be used. Mathematical details are given in

Appendices A and B.

We however illustrate here the key ideas of this approach in the stochastic

model with additive noise (2.6). The deterministic model (2.5) exhibits attrac-

tors in the form of equilibria or limit cycles. Under stochastic disturbances,

a random solution of the stochastic system (2.6) leaves the deterministic at-

tractor and produces a probability distribution (stochastic attractor) around

it.
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The dispersion of random states on such stochastic attractors can be esti-

mated by the so-called stochastic sensitivity functions of initial deterministic

attractors. They allow us to describe this dispersion geometrically, with the

help of corresponding confidence domains. In the 2D-case, these domains are

confidence ellipses around the equilibria, and confidence bands over limit cy-

cles. These domains are assigned a fiducial probability, which quantifies the

chances of finding the random states within the domain.

In Fig. 2.10, the confidence ellipse and confidence band with fiducial prob-

ability P = 0.99 are plotted by dashed lines and random states are shown in

grey. As one can see, the confidence domains provide an adequate description

of the spatial arrangement of random states in stochastic attractors.

The stochastic sensitivity of the equilibria M1,2 is defined by the corre-

sponding stochastic matrices W1,2. In the considered system, W1 = W2 = W .

The semi-axes of the confidence ellipse are determined by the eigenvalues λ1, λ2

of the matrix W , the noise intensity ε, and the fiducial probability (see Ap-

pendix B).

The stochastic sensitivity of the T -periodic limit cycle in two-dimensional

case is defined by the scalar T -periodic function m(t). The values of the

function m(t) determine the width of the stochastic bundle in the direction or-

thogonal to the deterministic limit cycle. To estimate the stochastic sensitivity

of the limit cycle as a whole, it is convenient to use the stochastic sensitivity

factor M = maxm(t), t ∈ [0, T ].

In Fig. 2.11a), plots of the function m(t) are shown for different values of a.

As can be seen, the stochastic sensitivity along the limit cycles is non-uniform.

Moreover, with the parameter a variation, one can observe changes not only

in the height of the peaks for m(t) but also in their quantity.

In Fig. 2.11b), the eigenvalues λ1, λ2, associated with the equilibria and

stochastic sensitivity factor M of cycles, are plotted as functions of the param-

eter a. The stochastic sensitivity depends indeed mainly on the parameter a,

and it increases unlimitedly to infinity near bifurcation points a1 and a3.

Near a1, the cycle is more sensitive to noise than equilibria. Conversely,

near a3, the equilibria are more sensitive than the cycle. This difference in the

sensitivity defines the direction of noise-induced transitions between the cycle

and equilibria. Close to a1, due to higher stochastic sensitivity of cycles, noise-

induced transition occurs first from the cycles to equilibria; the other direction

being possible at higher noise levels, only (see Fig. 2.5, panel B for ε = 0.1, a =

0.76). Even when both transitions occur, the low-amplitude oscillations near

equilibria still dominate (see Fig. 2.5, panel B for ε = 0.2). Then, near a3,

the noise-induced transition occurs predominantly from equilibria to cycles (see

Fig. 2.5, panel C for ε = 0.1, a = 0.86), and dominates mixed-mode oscillations

at higher noise levels (see Fig. 2.5, panel C for ε = 0.2).
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2.2 A mean temperature-vegetation model

Changes in albedo — the fraction of incident shortwave radiation reflected at

the surface, or at the top of the atmosphere — play an important role in climate

dynamics theory, because they constitute a potentially important feedback on

climate change. Changes in surface albedo may be caused by changes in sea

ice, snow and ice-sheet extent, and changes in area and structure of vegetation

cover.

Changes in vegetation cover are interesting because they constitute one

facet of the numerous mechanisms associated living organisms, and which,

together, constitute an important internal force driving earth dynamics. There

is, again, a fairly long history of works on vegetation-climate feedbacks, with

some pioneering studies focusing on semi-arid areas [62], and others in the high-

latitudes [63]. As in the preceding section, our choice is to focus on perhaps an

outrageously simple model, with the purpose of outlining non-trivial effects of

ramp effects, which characterise the dependency between climate and albedo.

The case study is here provided by Rombouts and Gill [49]. The underlying

principle of this model is that lighter areas of the Earth’s surface covered by

snow or ice cool the planet whereas darker areas covered by the vegetated

landscapes warm the Earth. The principle is encoded with two differential

equations: one for the evolution of globally averaged temperature T , and one

for the evolution of the fraction of land A covered by vegetation. The incoming

and outgoing energy fluxes determine the temperature variations in time as

CT
dT

dt
= (1− α(T,A))Q0 −R0(T ), (2.8)

where CT and Q are the heat capacity and the incoming solar energy, and

functions α(T,A) and R0(T ) describe the Earth’s albedo and the outgoing

energy flux, respectively.

Fig. 2.12 illustrates the simple model under consideration: the Earth’s

surface is covered by the fraction p of land and 1 − p of ocean. In this case,

one can use the following dependence

α(T,A) = (1− p)αo(T ) + p (αvA+ αg(1− A)) . (2.9)

Here αv and αg stand for the albedo of vegetation and ground (αv < αg due

to the fact that forests are darker, absorbing more energy than bare ground).

Rombouts and Ghil further define temperatures Tα,` and Tα,u below and

above which the ocean is ice-covered and ice-free, respectively. Ocean albedo
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Figure 2.12: Partition of the Earth’s surface used to derive equation (2.9).

Ocean is divided into sea ice and ice-free fractions, and, land is separated into

vegetation and bare soil.

αo is then modelled with a ramp function [36,64]

αo(T ) =



αmax, T ≤ Tα,`

αmax + f(T ), Tα,` < T < Tα,u

αmin, T > Tα,u,

(2.10)

f(T ) =
αmin − αmax

Tα,u − Tα,`
(T − Tα,`) ,

and αmax and αmin represent the albedos of ice-covered and ice-free ocean.

The dependency of outgoing longwave radiation on temperature is lin-

earized [49,65]:

R0(T ) = B0 +B1 (T − Topt) , (2.11)

where B0 and B1 represent the model parameters and Topt is a reference tem-

perature which, without loss of generality, is chosen to be the optimal tem-

perature for vegetation growth. The parameterization is mainly justified as a

linearization of the Stefan-Boltzmann law linking black-body temperature to

longwave radiation emission, but it implicitly captures feedbacks associated

with the dependency of water-vapour and CO2 concentration, which both act

as greenhouse gases, on temperature changes.

Vegetation cover dynamics are then be described by a logistic equation:

dA

dt
= β(T )A(1− A)− γA, (2.12)

where γ is the vegetation death rate and

β(T ) = max
{

0, 1− k (T − Topt)
2}

27



a) b)

c) d)

e) f)

Figure 2.13: Deterministic phase trajectories of the climate-vegetation model:

a) γ = 0.001, b) γ = 0.01, c) γ = 0.02, d) γ = 0.025, e) γ = 0.1, f) γ = 0.35

(model parameters are listed in Table 2.1).

represents the temperature-dependent growth rate: the dependency on tem-

perature is parabolic with a maximum at T = Topt (k is the growth curve

thickness).

The two-dimensional nonlinear model (2.8)-(2.12) describes the evolution

of this climate-vegetation system in the temperature-vegetation cover phase

plane, where the variables T and A evolve at a fixed set of system parameters

(Table 2.1) under the influence of various external processes and phenomena

(stochastic forcing).
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Table 2.1: Model parameters of the climate-vegetation system [49].

Parameter Value

Heat capacity, CT 500 W yr K−1 m−2

Incoming solar energy, Q0 342.5 W m−2

Fraction of land, p 0.3

Albedo of vegetation, αv 0.1

Albedo of ground, αg 0.4

Albedo of ice-covered ocean, αmax 0.85

Albedo of ice-free ocean, αmin 0.25

Temperature below which ocean is ice-covered, Tα,` 263 K

Temperature above which ocean is ice-free, Tα,u 300 K

Constant in outgoing radiation, B0 200 W m−2

Constant in outgoing radiation, B1 2.5 W K−1 m−2

Optimal growth temperature, Topt 283 K

Growth curve thickness, k 0.004 yr−1 K−2

Death rate of vegetation, γ 0.1 yr−1

2.2.1 Vegetation or Snowball Earth: bistability in the

deterministic model

Fig. 2.13 shows different deterministic phase trajectories, depending on the

value chosen for vegetation death rate γ. This model has two equilibria corre-

sponding to the cold (blue) and warm (red) state.

For low death rates (a), phase trajectories started from a middle-point

temperature are attracted towards either a warm limit cycle (300 K, with high

vegetation), or a cold fixed point (no vegetation, A = 0). The warm limit cycle

surrounds an unstable fixed point represented by an open circle.

As the death rate is increased (see panels (b), (c), (d)), the warm limit

cycle becomes narrower — temperature oscillations are smaller — until the

system meets a supercritical Andronov-Hopf bifurcation (panel (f)). At this

point the stable cycle and unstable equilibrium merge (red spot in panel (f)).

This implies that any initial condition will end up with the system stabilising

in one of both fixed points, which one is reached depending on which side

of the separatrix the system started. There is no possibility of crossing the

separatrix. The time series shown in Fig. 2.14 reveal also that the period

of warm-climate oscillations decreases as one approaches the Andronov-Hopf

bifurcation.
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Figure 2.14: Average temperature (a) and fraction of land A covered by vege-

tation versus time in the case of deterministic dynamics.

2.2.2 Equilibrium and oscillatory vegetation: noise-induced

dynamics

We now describe the effect of introducing noise perturbing the temperature

forcing vegetation. The rationale being that T is a slowly-evolving (ocean)

temperature subject to radiative balance, while vegetation experiences fluctu-

ating “weather”: 
CT

dT

dt
= (1− α(T,A))Q0 −R0(T ),

dA

dt
= (β(T ) + εξ(t))A(1− A)− γA.

(2.13)

Again ξ(t) represents a standard Gaussian white noise, 〈ξ(t)〉 = 0, 〈ξ(t)ξ(τ)〉 =

δ(t− τ), and ε stands for the noise intensity (note that we omit its dimension

below). This model is considered in Ito sense.

As before, we use the Euler-Maruyama scheme to implement the stochastic

integration (the time step is 0.01 yr). Simulated trajectories are shown on

Fig. 2.15, in which panels (a), (b) and (c) corresponding to different regimes

determined by γ. At low noise intensity (green), the fraction of land A covered

by vegetation oscillates near the deterministic cycle (panel (a)) or the stable

points of equilibria (panels (b) and (c)).

As the noise intensity is further increased, the global temperature leaves

the warm attractor and freezes to a “Snowball Earth”, with global temperature

around 242 K. The critical intensity threshold depends on γ, and it increases

with increasing γ.

The dependency on γ may be understood as follows. With low death rates,

the warm stage undergoes, as we have seen, a limit cycle. Climate trajectories

therefore approach, periodically, the separatrix isolating the warm region from

the cold attractor. At this time, climate is at risk of being ejected to a Snowball

Earth stage by a stochastic perturbation. As γ increases, the amplitude of the
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a) b) c)

Figure 2.15: Stochastically-induced evolution of the climate-vegetation system

for γ = 0.02 (a), γ = 0.1 (b), and γ = 0.35 (c).

limit cycle decreases and the warm state is increasingly protected from fatal

ejections to the cold attractor. A transition therefore requires a higher level

of noise, and when this happens, the transition itself is steeper. The fraction

of land A therewith drops to zero (red curves in the lower panel in Fig. 2.15).

With further experimentation, we observe that the value at stepwise transition

occurs for a limited interval of noise intensity, which depends on γ (see Fig.

2.16): it occurs for 0.15 . ε . 0.2 for γ = 0.01 (panel (a)) and 0.35 . ε . 0.55

for γ = 0.1 (panel (b)).

The dynamics of the transition is further illustrated on 2.17, this time with

γ = 0.35. We take this higher value of γ, more robust to noise, to emphasise

what happens before the transition. Expectedly, higher noise intensities cause

more dispersion around the warm equilibrium (pdfs are wider with higher

noise levels), until the trajectories have enough momentum to escape the warm

attractor (ε = 0.7) and lock into the frozen stage.

2.2.3 Could noise freeze the Earth?

There is geological evidence of global glaciations called Snowball Earth episodes

during the late Proterozoic (600 to 800 Ma ago). Ice sheets are thought to

have reached the Equator [66–69]. Snowball Earth episodes ended thanks to

volcanic outgassing, which may have pushed atmospheric CO2 concentration

levels to 350 times the modern level [70].

The simple dynamical model features such an transition to a Snowball

Earth, triggered by a noise fluctuation, but made more likely by a limit cycle
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a)

b)

Figure 2.16: Random states of the climate-vegetation model for γ = 0.01 (a)

and γ = 0.1 (b).

a) b)

Figure 2.17: Stochastically-produced shift in the global temperature and pdf

for γ = 0.35.
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of the vegetation-climate system which periodically brings the climate danger-

ously close to the separatrix between cold and ward stages. Again, we have to

bear in mind the caveats introduced earlier in this section. Variable “A” should

not literally be interpreted as a vegetation state. Paleoclimate scientists are

not aware of a ’global vegetation’ oscillation. Yet, limit cycle dynamics, at the

global scale, are plausible, even if they certainly involve much more complexity

than a homogeneous vegetation cover. Mills et al. [71], for example, discov-

ered in a dynamical system including a dozen of equation describing silicate

weathering, respiration processes, and climate feedbacks, a slow limit cycle.

They suggest to explain Snow-Ball earth glaciations as a phase of this cycle.

Here, we show the possibility that a smaller cycle, around the warm state,

would actually suffice to create the conditions propitious for precipitating a

snow-ball Earth, if a deep-cold state exists and if enough stochastic forcing

is present. This is speculative, but shows the heuristic value of associating

stochastic forcing with deterministic forcing: this combination can offer new,

previously overlooked explanations to known phenomena.
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Chapter 3

Ice - temperature - carbon

dioxide 3D feedback models

In this section, we continue to acquaint the reader with intriguing features

emerging from the nonlinear dynamics observed in models of Earths climate

changes at Quaternary time scales. Following the principle “from simple to

complex processes”, we explain the possible effects a third prognostic vari-

able on the deterministic and stochastically-induced dynamic scenarios. The

key phenomena considered below in more detail are the formation of irregular

multimodal fluctuations consisting of the intermittency of large- and small-

amplitude stochastic oscillations and possible chaotization of the Earth’s cli-

mate following the introduction of stochastic forcing.

3.1 Continental ice - marine ice - mean tem-

perature model

Following their earlier attempts with a 2-D model [53], Saltzman and Sutera

included a third variable in their theory of glacial-interglacial cycles [39]. The

state vector included a “mean temperature” (θ), continental (ζ), and marine

(χ) ice masses (the marine mass is implicitly an aggregation of ice shelves and

sea ice). A schematic diagram is presented in Fig. 3.1).

Let ζ̂, χ̂ and θ̂ describe the equilibrium values of dynamical variables ζ, χ

and θ. Introducing the corresponding deviations from this equilibrium state

as (x, y, z) = (ζ, χ, θ)− (ζ̂ , χ̂, θ̂), we come the following dynamical system after

Saltzman and Sutera [39]

ẋ = a0x+ a1(1− a2y)y − a3z,

ẏ = b0x+ b1(1− b2y − b3y
2 − b4x

2)y − b5z,

ż = c0x+ c1y − µz,

(3.1)
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Figure 3.1: Idealized three-dimensional atmosphere–ocean–sea ice system: ζ -

total continental ice mass (extended to the grounding line), χ - total marine

ice mass (shelves, icebergs, and pack ice beyond the grounding line), and θ -

mean ocean temperature.

where ẋ = dx/dt, t is time, and x, y, and z are the deviations of the continental

and marine ice masses, and of the mean temperature from their equilibrium

values. All the parameters are positive. The first contribution on the right-

hand side (r.h.s.) of the first equation (3.1) describes the positive and negative

feedbacks going to ζ, the second term containing the coefficient a1 describes

the effects of buttressing, ice albedo, and the feedback between continental

ice mass and poleward heat transport. The last term on the r.h.s. involving

the coefficient a3 parameterises the positive influence of low latitude warming

on the poleward atmospheric heat flux towards the sea-ice covered regions.

The flux of continental ice directed to the ice shelves and the ice stream flow

are defined by the term involving b0. The positive feedbacks associated with

the sea level changes, ice albedo and the feedback between marine ice and

heat transport are parameterised by the term involving b1. Melting and freez-

ing of ice shelves and sea-ice are parameterised with the coefficient b5. The

first contributions on the r.h.s. of the third equation describe the “sea-ice in-

sulator” effect (sea-ice reduces ocean cooling), and a quite speculative effect

positing that continental ice, which releases meltwater, reduces ocean mixing

and, thereby, effectively warms the ocean. The effect of thermal damping of

deep ocean caused by the diffusive phenomenon is described by the term with

the coefficient µ.

It turns out that in this nonlinear system, stable equilibria coexist with

limit cycles. As we shall see, this configuration generates conditions of high

noise sensitivity: noise-induced transitions between the basins of attraction of

the different attractors are prone to induce chaos.
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3.1.1 Attractors and bifurcations in the deterministic

model

It is convenient to introduce the following dynamical variables:

u = kxx, v = kyy, w = kzz, (3.2)

where kx = 0.29 · 10−19 kg−1, ky = 0.75 · 10−17 kg−1, and kz = 0.32 K−1 [39].

Setting ẋ = ż = 0 in equations (3.1), we find the system equilibria

x(y) =
a3c1y − µa1(1− a2y)y

µa0 − a3c0

, z(y) =
c0x(y) + c1y

µ
.

Substituting now these expressions into the third equilibrium condition ẏ = 0,

we arrive at g(y) = 0, where

g(y) = b0x(y) + b1

(
1− b2y − b3y

2 − b4x
2(y)

)
y − b5z(y).

This function g(v) is shown in Fig. 3.2 for different parameters µ. Panel (a)

focuses on µ ≥ 10−4 y−1, which may be judged as more physically realistic if we

view the ocean as a heat reservoir, but in (b) we nevertheless examine µ > 10−4

y−1 because as we will soon discover, this yields interesting behaviours. Taking

some freedom with respect to the physical interpretation of a dynamical system

is not unusual in the climate literature as it may serve some heuristic purpose

towards understanding climate phenomena (think of the celebrated Lorenz-

Saltzman model [72]), but we will need to keep limitations in mind when

drafting conclusions.

a) b)

Figure 3.2: Plots of g(v) for various values of the parameter µ: (a) µ = 1 ·10−4

y−1 (green), µ = µ0 = 1.9073 · 10−4 y−1 (blue), and µ = 3 · 10−4 y−1 red); (b)

µ = 0.1 ·10−4 y−1 (green), µ = µ∗ = 0.1903 ·10−4 y−1 (blue), and µ = 0.3 ·10−4

y−1 (red). The other system parameters are [39, 73]: a0 = 0, a1 = 0.145 y−1,

a2 = 1.86·10−17 kg−1, a3 = 1.265·1014 y−1, b0 = 0.276·10−6 y−1, b1 = 3.77·10−4

y−1, b2 = 1.58 · 10−18 kg−1, b3 = 3.77 · 10−34 kg−2, b4 = 0.7152 · 10−38 kg−2,

b5 = 0.697 · 1013 y−1, c0 = 0.792 · 10−23 y−1, c1 = 28.65 · 10−23 y−1.
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The function g(v) contains a single root for µ ≤ µ0 = 1.9073 · 10−4 y−1,

corresponding to the trivial equilibrium M0(0, 0, 0). For µ > µ0 (thus, smaller

ocean temperature relaxation time), the system has two roots corresponding to

two equilibrium points M1(ū1, v̄1, w̄1) and M2(ū2, v̄2, w̄2), where ū2 < 0 < ū1.

Another bifurcation appears for lower values of µ (Fig. 3.2b and c). There

are two positive roots for µ < µ∗ = 0.1903 · 10−4 y−1, associated with two

equilibrium points M1(ū1, v̄1, w̄1) and M2(ū2, v̄2, w̄2). M1 is unstable and M2 is

stable. The two positive roots of the function g(v) merge at the point µ = µ∗,

above which only the trivial equilibrium M0 persists. The boundary point µ∗

is thus a bifurcation point, which we will characterise later.

a)

b) c)

Figure 3.3: The points of extrema of u- and v-coordinates of attractors and

repellers for the deterministic system (3.2) are shown as functions of the pa-

rameter µ. The stable equilibria (blue), stable limit cycles (black) and unstable

equilibria are respectively illustrated by the blue, black and red lines.

Before doing so, consider again the range 10−4 y−1 < µ < 3 ·10−4 y−1. Fig.

3.3a shows how u depends on µ (an enlarged fragment is shown on the right).

In this range, the trivial equilibrium point M0 is always unstable (dashed line)

while the equilibrium point M1 is unstable for µ0 < µ < µ1 = 2.0436 · 10−4

y−1, and stable for µ > µ1 (upper blue solid line in Fig. 3.3a). The second

equilibrium point M2 is unstable for µ0 < µ < µ2 = 2.0445 · 10−4 y−1, and

stable for µ > µ2 (lower blue solid line). The boundary parameter value µ0,

which is defined by the intersection of the red dashed lines, corresponds to a

pitchfork bifurcation. In addition, a stable limit cycle exists for 1 · 10−4 y−1

≤ µ < µ3 = 2.049 · 10−4 y−1; the limits of this cycle in the u−space are shown
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by the two black solid lines. The cycle disappears at a saddle-node bifurcation

µ = µ3. In summary, the system is monostable for 1 · 10−4 y−1 ≤ µ < µ1 (the

single attractor is a limit cycle), has two stable equilibria for µ3 < µ ≤ 3 · 10−4

y−1, and for µ1 < µ < µ3, the stable limit cycle coexists with two stable

equilibrium points. Above µ3, the two stable points M1,2 constitute the only

attractors.

Fig. 3.3b and c allow us to explore the range µ < 1 · 10−4. We already

identified the bifurcation point µ∗ at which the two non-trivial fixed points

disappear. They give way to the limit cycle already described and for µ <

1 · 10−4. This type of bifurcation is called a saddle-node bifurcation on an

invariant cycle (SNIC).

Figure 3.4: The phase trajectories of the deterministic system (3.1) shown in

the u − w plane for µ = 0.18 · 10−4 y−1. The point M2 of stable equilibrium

is illustrated with the black circle while the points M0 and M1 of unstable

equilibria shown by the open circles.

Fig. 3.4 gives the phase diagram for µ = 0.18 · 10−4 y−1. The unstable

equilibrium M1 lies on a surface separating long and short migrations of phase

trajectories towards the stable equilibrium M2. Trajectories starting above M1

follows a long path to M2 via the upper route. Trajectories starting below M1

reach M2 via the short, lower route.

Fig. 3.5 then shows the oscillations associated with the limit cycle for dif-

ferent values of µ, just above the bifurcation point. As µ increases, the u-

and v-oscillations change little, but those of w decrease, which is intuitively

reasonable given that the relaxation time of ocean temperature decreases.

Figure 3.6 shows time series for different values of µ, below and above

µ = 1 · 10−4 y. Remember that in this model, marine and continental ice

masses cause ocean warming. This is certainly speculative but consider this

mechanism as instant. The parameter µ defines the response time of the ocean,

which may either be very low (cases (a) or (b)) or more faster (cases (c) and

(d)). The phases lag is the one which creates the possibility of a catastrophic

and, admittedly, unrealistically abrupt deglaciations separated by long phases
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Figure 3.5: The phase portraits of the deterministic model.

a) b)

c) d)

Figure 3.6: The time series illustrated for various µ: a) µ = 0.2 · 10−4 y−1, b)

µ = 0.5 · 10−4 y−1, c) µ = 1 · 10−4 y−1, and d) µ = 1.5 · 10−4 y−1.

of latency (in (a)) and, for higher values of µ, back-and-through in the vicinity

of what will become fixed points M1 and M2.

The period of the oscillation is reasonably constant for a wide range of µ,

but increases near µ∗, which is characteristic for a saddle-node bifurcation of

invariant cycle.
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Figure 3.7: The period T of self-oscillations (in y) as a function of µ (in y−1).

3.1.2 Mixed-mode oscillations and noise-induced chaos

Similar to the method followed in section 2, we consider the effects of stochas-

tic forcing. Additive noise is introduced this time in the equation for ocean

temperature, which, we considered, is physically the most reasonable option.

Following [46], this may be seen as a way to represent the internal forcing due

to atmospheric fluctuations. Consider a system

ẋ = a0x+ a1(1− a2y)y − a3z,

ẏ = b0x+ b1(1− b2y − b3y
2 − b4x

2)y − b5z,

ż = c0x+ c1y − µz + εξ(t),

(3.3)

where ε parameterises the noise intensity and ξ(t) stands for an uncorrelated

white Gaussian noise.

Consider, first, the regime µ > µ3 (short ocean relaxation time, two fixed

points Figs. 3.8 and 3.9). Phase trajectories of the deterministic system reach-

ing M1 and M2 are in blue and red, respectively. A saddle surface, also called

separatrix, divides the corresponding basins of attraction. It contains the un-

stable equilibrium point M0. Consider, first, the noisy trajectories reaching

M1. At small noise intensity, they remain within the vicinity of the attractor

(Fig. 3.8b,c ε = 0.0002, green colour), thereby describing small-amplitude

stochastic oscillations, which we already introduced with the acronym SASO.

The dispersion radius increases with noise intensity. At some point, trajecto-

ries cross the separatrix, thus moving into the basin of attraction of M2, from

where they may return to the basin of M1, again provided enough stochas-

tic forcing. Such back-and-through between the two basins of attraction are

large-amplitude stochastic oscillations (LASO), akin of stochastic jumps be-

tween two potential wells (Fig. 3.8). How much stochastic forcing in needed

to excite LASO depends on µ. Less noise is needed when µ is near the bifur-

cation µ3. At this point, the two fixed points merge, and the potential barrier

vanishes.
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a)

b)

c)

Figure 3.8: The phase portraits and time series with µ = 2.1 · 10−4 y−1:

a) projections for the deterministic model; b) stochastic trajectories for ε =

0.0002 (green), ε = 0.0005 (blue), and c) time evolution (t measured in years).

Away from this bifurcation point, however, we do not necessarily expect

transition probabilities to be symmetric. They will be determined by the

structure of the deterministic vector field. This is what we address now, with

a method called “stochastic sensitivity analysis”.

The theoretical background of the technique applied here is available in

Appendices A and B.
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Figure 3.9: The phase portraits and time series with µ = 2.5 · 10−4 y−1: a)

projections for the deterministic model; b) stochastic trajectories for ε = 0.003

(green), ε = 0.01 (blue), and c) time evolution (t measured in years).

Consider the 3× 3-matrix W , defined as the solution

FW +W F> + S = 0,
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Figure 3.10: Stochastic sensitivity of the equilibrium point M1.

where for system (3.3)

F =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 , S =


0 0 0

0 0 0

0 0 1

 ,

f11 = a0, f12 = a1 − 2a1a2y, f13 = −a3,

f21 = b0 − 2b1b4xy, f22 = b1(1− 2b2y − 3b3y
2 − b4x

2), f23 = −b5,

f31 = c0, f32 = c1, f33 = −c2.

The object W is called the stochastic sensitivity matrix. Let its eigenvalues

(ranked in decreasing amplitudes) be λ1, λ2, λ3, associated with the orthonor-

mal eigenvectors h1, h2, and h3. The eigenvalue λi quantifies the dispersion

of random states x = (v, u, w)> near the equilibrium point x̄ = (v̄, ū, w̄)>, in

the the directions hi : E(x− x̄, hi)
2 ≈ ε2λi. Eigenvalues for M1 are shown on

Fig. 3.10, for different values of µ. One can see that the stochastic sensitivity

of equilibrium M1 decreases in all directions as µ increases. The dispersion is

heavily directional, with λ3 � λ1 and λ3 � λ2.

The probabilistic distribution of random states near M1 can be estimated

with unit spheres in Mahalanobis metrics (see Appendix B for details), defined

by the

(x− x̄,W−1(x− x̄)) = 1.

The sphere corresponds to ellipsoids in the Euclid metrics, defined with:

β2
1

λ1

+
β2

2

λ2

+
β2

3

λ3

= 1, (3.4)

where βi = (x− x̄, hi). The coordinates βi of the ellipsoid are determined with

the following two-parametric expressions

β1 =
√
λ1 sinϕ sinψ, β2 =

√
λ2 cosϕ sinψ,
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β3 =
√
λ3 cosψ, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 2π.

a) b)

c) d)

Figure 3.11: The ellipsoids associated with the unit spheres in Mahalanobis

metrics for a) µ = 2.1 · 10−4 y−1, b) µ = 2.2 · 10−4 y−1, c) µ = 2.3 · 10−4 y−1,

and d) µ = 3 · 10−4 y−1.

Fig. 3.11 shows the ellipsoids for different parameters µ (
√
λi are the semi-

axes), and, again, their size decreases with increasing the parameter µ.

The dispersion of random states in the 3D-space may now be visualised

with 2-D sections. Let Πij be a plane defined by the equilibrium M1 and

eigenvectors hi, hj. The confidence ellipse in the plane Πij is defined as:

β2
i

λi
+
β2
j

λj
= 2ε2 ln

1

1− P
, (3.5)

where P stands for a fiducial probability. The plane Πij may be thought of

as a Poincaré section, with sections Π12 and Π13 shown on 3.12. The ellipses

capture nicely the random trajectories simulated by integrating the stochastic

dynamical system, giving us confidence in the approach. Again, the dispersions

in the direction h1 are greatest, thus a priori most likely to trigger LASO. For

this reason we concentrate in the following in the Π12 and Π13 sections.

The effects of noise now be understood by considering how the confidence

ellipses fit in the vector field (Fig. 3.13). Consider the fixed point M1. At low

noise, the confidence ellipse lies in the basin of attraction of the equilibrium

point. Only SASO are produced. With increasing noise intensity, it outgrows

the basin of attraction and allows the excitation of LASO: trajectories leave

the basin of attraction of M1 and reach the domain of M2. Again, more noise

is needed to produce LASO away from the bifurcation point.
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a) b)

Figure 3.12: The random states (red) and confidence ellipses (blue) in the

sections Π12 (left) and Π13 (right) for µ = 2.1 ·10−4 y−1, P = 0.99, ε = 0.0001.

(a) (b)

Figure 3.13: The phase trajectories and confidence ellipses for P = 0.99 and

a) µ = 2.1 · 10−4 y−1, ε = 0.0002 (small ellipse), ε = 0.0005 (large ellipse);

b) µ = 2.5 · 10−4 y−1, ε = 0.003 (small ellipse), ε = 0.01 (large ellipse). The

confidence ellipses for fiducial probabilities P = 0.99 are shown by the blue

lines and the trajectories going to M1 and M2 are shown by the red and green

lines, respectively.

In the parametric region 10−4 ≤ µ < µ1, the deterministic model has one

limit cycle attractor. With low noise intensity, the phase trajectories remain

around the deterministic cycle (Fig. 3.14 and Fig. 3.15). The stochastically-

forced climate model has thus noisy, but nearly periodic oscillations which can

be qualified as LASO. The thickness of stochastic bundle around the deter-

ministic cycle grows with increasing noise intensity. The stochastic forcing

therefore causes small oscillations within one cycle, so that one can say that

SASO appear along the LASO. The response at higher noise levels slightly dif-

fers whether µ < µ0 (one unstable equilibrium M0, Fig. 3.14) or µ0 < µ < µ1

(three unstable equilibria, Fig. 3.15).

For the higher value of µ, trajectories tend to spend more time around the

unstable equilibria, creating more opportunities for SASO. Furthermore, these

small oscillations tend to hasten the transition between the regions around
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Figure 3.14: The stochastic trajectories for µ = 1.0 · 10−4 y−1, ε = 0.001 (red),

ε = 0.01 (green) and corresponding time series (t measured in years).

the two unstable points M1 and M2 and reduce the duration of the LASO,

compared to the duration of limit cycle of the corresponding deterministic

system. This is well seen by considering the mean value T of time intervals

between successive intersections of a phase trajectory with the Poincare plane

u = 0 (from minus to plus, Fig. 3.16). With no noise, T is the period of

the deterministic limit cycle, which increases to infinity as µ approaches µ3,

the point at which the deterministic limit cycle vanishes. Around this critical

value, the stochastic forcing effectively decreases the period of the cycle, the

more strongly that noise intensity is high, and it also allows the persistence of

LASO beyond the bifurcation point.

Let us now focus on the region µ < µ∗, where the deterministic equations

have one point of stable equilibrium. We have acknowledged that this regime

no longer realistically describes glacial-interglacial cycles, but it may still be

insightful for thinking about climate phenomena involving rapid dynamics sep-

arated by latency periods.

With small enough noise, SASO appear in the vicinity the stable equilib-

rium M2 (green lines in Fig. 3.17 for µ = 0.18 · 10−4 and µ = 0.19 · 10−4 y−1).

LASO appear at larger intensities (blue and red lines), which originate in the
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Figure 3.15: The stochastic trajectories for µ = 2.0 · 10−4 y−1, ε = 0.0005

(red), ε = 0.005 (green) and corresponding time series (t measured in years).

Figure 3.16: The mean value of time intervals between intersections of a phase

trajectory with the Poincare plane u = 0 (from minus to plus) for ε = 0

(black), ε = 0.01 (red), ε = 0.02 (green), ε = 0.03 (blue).

region of stable equilibrium.

Small deviations from the stable equilibrium relax monotonically to this

point (SASO). Large deviations bring the system state beyond M1, from which

it is forced to take the long route towards M2. This long route (Fig. 3.18) is in

fact similar to the limit cycle, which exists on the other side of the bifurcation

point µ∗. Hence, the form of the LASO excitation is related to the limit cycle,

which appears at bifurcation, and the threshold for the excitation of LASO is
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a) b)

Figure 3.17: u-time series for a) µ = 0.18 · 10−4 y−1 and ε = 0.001 (green),

ε = 0.003 (blue), ε = 0.01 (red); b) µ = 0.19 ·10−4 y−1 and ε = 0.0001 (green),

ε = 0.001 (blue), ε = 0.01 (red).

a) b)

Figure 3.18: The phase trajectories (black thin lines) for the deterministic

system with a) µ = 0.18 · 10−4 y−1 and b) µ = 0.19 · 10−4 y−1. The stable

equilibrium point M2 is illustrated by the black circle and unstable equilibrium

point M1 is shown by the red circle. The blue thick closed lines represent the

u− w-projections of the limit cycle for µ = 0.191 · 10−4 y−1.

determined by the distance between M1 and M2. This distance vanishes at

the bifurcation point µ∗, where the deterministic limit cycle appears.

The SASO regime, at low noise, is thus the one obtained where the “long

route” is never excited. The LASO regime, at high noise, consists in a perpet-

ual excitation of the limit cycle, and is therefore qualitatively similar to the

deterministic regime found beyond the bifurcation point. The mixed-mode

regime occurs in between. The limit cycle is not-so-frequently excited, thereby

yielding intermittency (Fig. 3.17). The LASO are rare spikes interrupting

SASO phases. The length of the SASO phases decreases with increasing noise

intensity (Fig. 3.20).

For characterising this intermittency further, we define the time points

tk of the intersection of the surface u = 0 as random spike intervals, and

define the sequence τk = tk− tk−1 as the interspike intervals (ISI). The mixed-

mode scenario containing the intermittency of SASO and LASO can now be

described by the mean value m = Eτ and dispersion D = E(τ − m)2 of

interspike intervals (Fig. 3.20). The mean value of ISI reduces and approaches
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a) b)

c) d)

Figure 3.19: Transition mechanism between SASO and LASO at small µ: the

green and black lines illustrate the stochastic and deterministic phase trajecto-

ries, the stable and unstable equilibria, M2 and M1 are shown by the black and

red circles, respectively, µ = 0.18 · 10−4 y−1 (upper panel) and µ = 0.19 · 10−4

y−1 (lower panel). The noise intensities are a) ε = 0.001, b) ε = 0.003, c)

ε = 0.0001, and d) ε = 0.001.

Figure 3.20: The mean value m and dispersion D of interspike intervals for

µ = 0.1 · 10−4 y−1 (blue) and µ = 0.18 · 10−4 y−1 (red) as functions of noise

intensity.

2 · 105 y (close to the period of deterministic fluctuations for µ > µ∗) as a

result of noise-induced forcing at µ = 0.18 · 10−4 y−1. ISI increases at lower

noise levels, because the limit cycle is less and less frequently excited, leading

to more rare LASO excursions. The minimum in dispersion D (Fig. 3.20)

corresponds to the phenomenon of coherence resonance [74], which happens as

a result of LASO-mode formation.

Let us now pay our attention to the parametric region µ > µ∗ where the

deterministic model contains the limit cycle, but still for high relaxation time.
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a) b)

Figure 3.21: Stochastically-induced fluctuations (blue) for µ = 0.2 · 10−4 y−1

with a) ε = 0.005, and b) ε = 0.02 (deterministic fluctuations are shown by

the red colour).

Figure 3.22: The mean value m and dispersion D of interspike intervals for

µ = 0.2 · 10−4 y−1 (red) and µ = 1 · 10−4 y−1 (blue) as functions of noise

intensity.

Thus, we are in this regime where catastrophic outbreaks are separated by

latency episodes. Fig. 3.21 illustrates the evolutionary behavior of deviations

in the continental ice mass (function u(t)) for various noise intensities. As

we have already observed, the spike episodes which exist in the deterministic

model are randomly shifted by noise, and the latency intervals are replaced

by the noise-induced fluctuations. Some inter-spike intervals are surprisingly

small. Near the bifurcation point (red on Fig. 3.22), even a small amount

of noise decreases the mean value of ISI, and increases its variance, which

indeed suggests extreme sensitivity. This is expected, if we consider the phase

portrait which we examined on the other side of the bifurcation (Fig. 3.19a).

In this regime, one stable and unstable fixed point were close to each other,

permitting either slow and long excursions when the system was exited by

noise. At µ slightly above µ∗, the two points have disappeared, but the system

has remained highly sensitive to noise in this region of the phase space. As

the noise intensity increases, the variance decreases and the mean value of ISI

stabilises. Signs of this extreme sensitivity are also revealed by the analysis

of the Lyapunov exponent (Fig. 3.23). A transition to chaos (negative to

positive Lyapunov exponent) occurs as ε grows and, again, this transition
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occurs at smaller values when µ is close to the bifurcation point.

Further away from the bifurcation points (blue curve), the effect of noise

consistently and monotonously increases the mean ISI and its variance, and

transition to chaos (Fig. 3.23) no longer occurs.

Figure 3.23: The largest Lyapunov exponent illustrating chaotization for µ =

0.1 · 10−4 y−1 (red), µ = 0.2 · 10−4 y−1 (green), µ = 0.3 · 10−4 y−1 (black), and

µ = 1 · 10−4 y−1 (blue).

3.2 Ice mass – carbon dioxide – mean temper-

ature model

3.2.1 Deterministic model containing a saddle-node bi-

furcation on an invariant cycle

As a follow-up to the above model, Saltzman and co-authors introduced an-

other model [75] which takes into account explicitly the role of CO2 as a green-

house gas forcing — an increase in CO2 causing a temperature increase, hence

ice loss. The equations governing CO2 is more speculative and Saltzman and

co-authors have consistently consider that the dynamics governing CO2 con-

centrations are highly linear (cf. [76]). This is controversial and other authors,

which acknowledging the greenhouse gas forcing exerted by CO2, consider that

the crucial non-linearity is to be found in other components of the climate sys-

tem, and specifically, in ice-sheet bedrock dynamics (e.g. [77]). Again, besides

the precise attribution of physical phenomena and mechanisms, we are here

interested in the possibilities which emerge out of exciting a ice age oscillator

with noise. In this spirit, the main interest of the [75] which we study now

is to contain a saddle-node bifurcation on an invariant cycle, as we will soon

discover.
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ẋ = −α1y − α2z − α3y
2,

ẏ = −β0x+ β1y + β2z − (x2 + κy2)y,

ż = x− γz,

(3.6)

where the dynamical variables x, y and z respectively describe the non-dimensional

deviations of the ice mass, atmospheric carbon dioxide concentration, and deep

ocean temperature from the equilibrium state.

The model parameters (coefficients entering in equations (3.6)) were em-

pirically determined to reproduce the observed sequence of glacial-interglacial

cycles over the last 400,000 years: α1 = 0.4, α2 = 0.1, α3 = 0.012, β0 =

10, β1 = 3.77, β2 = 20, γ = 1.45 and κ = 0.004. In the present analysis we

restrict the sensitivity analysis to the system to the parameter γ which, in this

model, expresses the reverse relaxation time of the bulk ocean temperature to

its mean value.

Figure 3.24: Bifurcation diagram of the nonlinear deterministic equations (3.6).

Let us consider the parametric interval 0.1 < γ < 1.5 containing the value

γ = 1.45 used by [75]. Fig. 3.24 illustrates the attractors and repellers of de-

terministic equations (3.6). An unstable equilibrium point M0(0, 0, 0) (black

dashed line) exists for all values of γ. In addition, the system has a stable equi-

librium M1 (black solid line) and an unstable equilibrium M2 (red dashed line)

for 0.1 < γ < γ∗ ≈ 0.2691. If γ goes to γ∗ from the left side, two points, M1

and M2, approach and merge at γ∗. As a consequence of this a homoclinic tra-

jectory arises. If γ > γ∗, the equilibrium point M1 = M2 vanishes and a stable

limit cycle originates. The extremal values of x-coordinates corresponding to

this cycle are illustrated in Fig. 3.24 by the blue colour. The shape of the cycle

under consideration is almost invariant for γ∗ < γ < 1.5. If we now focus our

attention on the parametric region 0.1 < γ < 1.5, we see that the deterministic

model (3.6) has two dynamical regimes. Namely the deviations x, y, and z

stabilize to their equilibrium values for 0.1 < γ < γ∗ (left subinterval), while

they undergo several periodic fluctuations with large amplitudes in the right

subinterval. The point γ∗ is a bifurcation on an invariante cycle [78], which
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a) b)

c)

Figure 3.25: A saddle-node bifurcation on an invariant cycle: the phase tra-

jectories are illustrated for a) γ = 0.26, b) γ = 0.2691, and c) γ = 1.

is to be different from the better-known Andronov-Hopf bifurcation. This is

a saddle-node bifurcation on an invariant cycle [78]. Some of the peculiarities

of this bifurcation are demonstrated in Fig. 3.25: just before the bifurcation,

one can find a heteroclinic phase trajectory going from M2 to M1 (3.25a), at

the bifurcation point, there is a homoclinic phase trajectory (Fig. 3.25b), and

beyond it, one finds a limit cycle (Fig. 3.25c). The point M2 of saddle equi-

librium contains a stable manifold connected with a separatrix dividing two

zones of the phase space with various dynamical behavior. So, for instance, if

an initial point slightly deviates from the point M1 of stable equilibrium, the

corresponding phase trajectory relaxes readily to the point M1. From the other

hand, if the initial point is beyond the system separatrix, the phase trajectory

it makes its way to M1 via a large-amplitude excursion. As the deterministic

solution goes to the stable equilibrium in the course of time, the system (3.6)

is not oscillatory but it is excitable in the parametric region γ < γ∗.

3.2.2 Stochastic excitability: from equilibria to oscilla-

tions

We introduce additive noise in the third equation, as a representation of

ẋ = −α1y − α2z − α3y
2,

ẏ = −β0x+ β1y + β2z − (x2 + κy2)y,

ż = x− γz − εzξ,

(3.7)
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where again ξ represents a standard Gaussian white noise with parameters

Eξ(t) = 0, Eξ(t)ξ(τ) = δ(t − τ) and ε stands for the noise intensity. The

system (3.7) can be derived from the deterministic system (3.6) by substituting

γ by γ+ εξ: it therefore describes the effects of a stochastic perturbation of γ.

We analyse the system for γ < γ∗, where the deterministic equations contain

the point M1 of stable equilibrium (single attractor).

Figure 3.26: Noise-induced evolution of system (3.7) for γ = 0.2 (left panel)

and γ = 0.26 (right panel). The left panel is plotted for ε = 0.1 (red), ε = 0.3

(blue), and the right panel is drawn for ε = 0.02 (red), ε = 0.1 (blue).

The characteristics of the noise-induced equations (3.7) depend on ε. If ε

is small enough, the random trajectories remain localised in the the vicinity of

M1. The reader is now able to anticipate what goes on for higher noise levels:

the random trajectories cross the system separatrix going through the saddle

M2, and reach the vicinity of point M1 only after a long excursion. Phase

portraits and time series or shown in Fig. 3.26 for γ = 0.2 and γ = 0.26. How
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Figure 3.27: A stochastic sensitivity of equilibria.

much noise is needed to excite the long excursion (blue in Fig. 3.26) depends

on γ: it is ε = 0.3 for γ = 0.2 and ε = 0.1 for γ = 0.26. SASO dominate below

this threshold (“sub-threshold regime”); LASO dominate above this threshold

(“super-threshold regime”). Near the threshold, LASO appear intermittently.

The threshold is smaller near the bifurcation point for at least two reasons.

First, the gap between M1 and M2 is reduced when γ → γ∗, and is therefore

easier to cross. The second reason is that the stochastic sensitivity of the equi-

librium M1, which determines the dispersion of random states in the vicinity

of M1 for a fixed value of ε, is largest near the bifurcation. We examine this

point now.

Figure 3.28: Random states and confidence ellipses for γ = 0.26, P = 0.99,

and ε = 0.01.

3.2.3 Prediction of the excitement via stochastic sensi-

tivity analysis

Let us consider the eigenvalues λ1(γ) > λ2(γ) > λ3(γ) of the stochastic sensi-

tivity matrix W for the equilibrium point M1 of equations (3.7) in Fig. 3.27

(λ1 grows to infinity as γ approaches the bifurcation parameter γ∗). The spa-

tial distribution of random states can be analyzed by means of the confidence

domains technique (see for details Appendix B) based on the eigenvalues λi,

and the corresponding eigenvectors hi of the matrix W . Fig. 3.28 shows the
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a)

b)

Figure 3.29: Confidence ellipses in the system (3.7) for a) γ = 0.2, ε = 0.1

(black), ε = 0.3(blue); b) γ = 0.26, ε = 0.02 (black), ε = 0.1 (blue).

random states and confidence ellipses in the plain sections Π12 and Π13 (Πij is

a plane determined by M1 and the coordinate eigenvectors hi, hj, and βi are

the corresponding coordinates in these planes). The λi differ by several orders

of magnitude. Specifically, the dispersion of random states along h1 and h2

exceeds the dispersion in the direction h3 because λ1 � λ3 and λ1 � λ2. We

may therefore safely concentrate on the Poincare section Π12. For analysing

the noise-induced transitions between SASO and LASO, we focus on the po-

sition of the unstable equilibrium point M2 with respect to the confidence

ellipses near the stable equilibrium point M1 (see Fig. 3.29a, obtained for

γ = 0.2). The confidence ellipse is concentrated in the subthreshold region if

ε is small enough (ε = 0.1). It then grows, crosses the unstable equilibrium

point M2 and reaches the superthreshold region around ε = 0.3: phase trajec-

tories under the influence of noise are thus highly likely to leave M1 and follow

a large-amplitude return path towards M1 by means of a large-amplitude re-

turn path to M1. A similar case is illustrated in Fig. 3.29b for γ = 0.26.

As can be seen, the closer γ to the bifurcation point the smaller noise causes

the transition to LASO. These theoretical considerations agree nicely with the

numerical simulations presented in Fig. 3.26, making us confident that the

stochastic sensitivity approach and confidence ellipses are adequate to predict

the stochastically-induced excitability in this model.

In summary, the model (3.7) under the influence of random disturbances

produces the large-amplitude spikes with sufficient noise excitation, and in-

termittency is most likely to occur near the saddle-node bifurcation of an

invariante cycle. Fig. 3.30 shows the probability density function p(x, y) of
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Figure 3.30: The probability density functions for γ = 0.26 and a) ε = 0.05,

b) ε = 0.6.

Figure 3.31: Probability of the residence for y-coordinates of random states

for the system (3.7) as a function of noise intensity ε.

(x, y)-coordinates for different noise intensities. In the subthreshold regime,

one can see a sharp peak above the stable equilibrium M1. This case describes

the SASO mode in the vicinity of M1. The peak decreases and a ridge arises

when the noise intensity ε increases. The ridge expresses the large-amplitude

trajectories produced by the influence of stochastic forcing. This ridge in-

creases with noise intensity, and the peak eventually vanishes (Fig. 3.30b). At

this point, LASO dominate in the in the regime of mixed-mode fluctuations.

This situation may further be described by the probability P (ε) of residence

of y-coordinates in the region y > −20 (region of spikes). Fig. 3.31 illustrates

the monotonically increasing function P (ε) for various γ. A sharp ascent of

P (ε) occurs when ε becomes greater than the threshold. Finally, the frequency
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of random spikes grows with increasing the noise intensity ε, a phenomenon

which we now explain.

To this end, let us define the series tk as the successive times of of random

spike times tk in the model (3.7). A random spike is said to occur when x

crosses the threshold x = 0. In this case, the random sequence of interspike

intervals (ISI) can be defined as τk = tk−tk−1. The intermittency of SASO and

LASO modes can be described with the help of mean value of ISI, i.e. m = Eτ .

Fig. 3.32 shows m(ε) for γ = 0.2, γ = 0.26 (to the left of the bifurcation point

γ∗) and γ = 0.3, γ = 1 (to the right of γ∗). For γ = 1 (the deterministic

model having a limit cycle attractor), m(ε) is almost constant. With no noise

(ε = 0), m is the period of the deterministic cycle, and this function grows

slightly monotonously as ε increases. For smaller values of γ the function m(ε)

changes regime. Indeed, as we have seen, m(0) (the period of deterministic

cycle) increases to infinity as the bifurcation point is approached, and remains

infinity for γ < γ∗ (stable attractor). The quantity m(ε) rapidly decreases and

stabilises with increasing ε for γ smaller or near γ∗. As the noise intensity

increases, the mean value of ISI becomes almost independent on γ as long as

0.2 < γ < 1. Hence, the presence of noise may be said to cause a structural

stabilization of stochastic fluctuations.

Figure 3.32: The mean value (left) and dispersion (right) of interspike intervals

for the stochastic system (3.7) versus the noise intensity ε.

Figure 3.33: The largest Lyapunov exponents for the system (3.7) versus the

noise intensity for different γ.
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In Fig. 3.33 we show the largest Lyapunov exponent Λ(ε) as a function of

the noise intensity. It grows with ε and becomes positive (transition to chaos)

for ε ≈ 0.3 with increasing ε, and this threshold is almost independent of γ.

3.3 Ice volume – carbon dioxide – ice sheet

area model

Paillard and Parrenin [79], hereafter PP, developed another climate model

containing the ice volume, the area of the Antarctic continental ice sheet, and

the atmospheric concentration of carbon dioxide as the prognostic variables.

This section provides a detailed description of it, in absence and presence

of stochastic forcing, but neglecting the astronomical forcing. To this end,

we introduce three variables x, y, and z denoting the global ice volume (x),

the extent of the Antarctic continental ice sheet (y), and the atmospheric

concentration in CO2 (z). The deterministic model takes the form [79]

ẋ = τ−1
V (−a1z − a2I65 + a3 − x) ,

ẏ = τ−1
A (x− y) ,

ż = τ−1
C (b1I65 − b2x+ b3Hev (−F ) + δ − z) ,

(3.8)

where ẋ = dx/dt, t is time, F = ax − by − cI60 + d expresses the effect

of the oceanic switch forced by the salty bottom waters (a, b, c, and d are

constant coefficients). Here F increases with the cooling of the Earth’s climate

(variable x) and decreases with decreasing the continental shelf areas (variable

y). What is more, if F < 0 the ocean undergoes the interglacial period and vice

versa. Parameters I60 and I65 stand for the daily insolations: I60 (60oS, 21st

February) and I65 (65oN, 21st June). Coefficients τV , τA, and τC represent the

time constants, Hev is the Heaviside function, a1, a2, a3, b1, b2, b3, and δ are

constants. A nonlinear behavior of system (3.8) arises through the contribution

of Hev (−F ) (the influence of carbon dioxide or interactions between the deep

stratification, bottom water formation, and thermohaline circulation [79]).

The model parameters and their ranges suggested by [79] are listed in Table

3.1 (here we consider the case I65 = I60 = 0).

3.3.1 Equilibrium and oscillatory behavior in the deter-

ministic model

Fig. 3.34 shows the bifurcation diagrams versus the parameter δ (it deter-

mines the precessional forcing) for the x, y, and z variables, on which one

can see a large parametric region of limit cycles. Fig. 3.35 provides an en-

largement around δ = 0.4. A subcritical Andronov-Hopf bifurcation occurs
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Table 3.1: Model parameters and their ranges [79].

Parameter Value Range

τV 15 kyr 13.11-18.1

τC 5 kyr 3.1-15

τA 12 kyr 9.5-26

a1 1.3 1.23-1.44

a2 0.5 0.4-0.64

a3 0.8 0.77-0.82

b1 0.15 0-0.35

b2 0.5 0.46-0.54

b3 0.5 0.37-0.6

δ 0.4 0.39-0.42

a 0.3 0.26-0.39

b 0.7 0.63-0.74

c 0.01 0-0.15

d 0.27 0.253-0.302

Figure 3.34: Bifurcation diagram: extremum values of x, y, and z coordinates

for attractors of system (3.8).

at δ1 = 0.4047, where the equilibrium (x̄, ȳ, z̄) loses stability. The value

δ2 = 0.4088 marks a saddle-node bifurcation of cycles. Between (δ1, δ2), the

stable equilibrium co-exists with a limit cycle.

Fig. 3.36 depicts phase portraits for three values of parameter δ lying

in the range of possible variations pointed out in Table 3.1. For δ = 0.4

(Fig. 3.36a), the limit cycle (red curve) is the only attractor. The model
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therefore exhibits large-amplitude self-oscillations. At δ = 0.407, the system

is, as we have seen, bi-stable. Phase trajectories tend either to the stable

equilibrium (black circle) or to the limit cycle (red curve) depending on the

initial condition (see Fig. 3.36b). For δ = 0.41, the system possesses has only

one stable equilibrium point. In this regime, the path from the initial value to

the attractor may either be direct if the initial point is close to the attractor,

or follow a large-amplitude loop if it comes from further away. Here again we

observe the phenomena associated with the existence of a sub-threshold and a

superthreshold zone. These peculiarities of the deterministic phase portraits

are important in understanding the stochastic phenomena taking into account

the random disturbances.

Figure 3.35: Bistability zone.

3.3.2 Analysis of the noise-induced mixed-mode oscilla-

tions

To study the stochastic phenomena in the Paillard-Parrenin model, we consider

the following system with stochastic forcing

ẋ =
1

τV
(−a1z − a2I65 + a3 − x),

ẏ =
1

τA
(x− y),

ż =
1

τC
(b1I65 − b2x+ b3Hev(−ax+ by + cI60 − d) + δ − z + εξ(t)).

(3.9)

Here, ξ(t) is a standard Gaussian white noise with parameters 〈ξ(t)〉 = 0

and 〈ξ(t)ξ(τ)〉 = δ(t − τ), and ε stands for the noise intensity. Physically it

means that we study the effect of additive stochastic forcing in the rate of

carbon dioxide variations. In the present analysis, the numerical simulations

of random solutions of the stochastic system (3.9) were carried out on the basis

of the Euler-Maruyama scheme with the time step 10−4.

We start from the case where the stable equilibrium (x̄, ȳ, z̄) is a single

attractor, near the bifurcation value δ2 = 0.4088. With weak noise, the system
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b)

c)

Figure 3.36: Phase portraits of the deterministic system (3.8) for a) δ = 0.4,

b) δ = 0.407, and c) δ = 0.41.

(3.9) exhibits the small-amplitude oscillations near its equilibrium. The dis-

persion of these oscillations increases as the noise intensity increases. A sharp

change in the dispersion occurs when stochastic trajectories are strong enough

to reach the superthreshold zone. This qualitative change of the dynamics is

illustrated in Fig. 3.37 for δ = 0.41 (compare blue trajectories, for ε = 0.01,

and green trajectories, for ε = 0.05, of which the behaviour is typical of mixed-

mode dynamics. As can be seen from the time series shown in Fig. 3.37, the

presence of noise causes a sharp spike-type decrease in the global (x) and

Antarctic (y) ice while the atmospheric carbon dioxide (z) sharply grows.

Some details of the transformation from small- to large-amplitude oscilla-

tions are shown in Fig. 3.38 for δ = 0.41 and in Fig. 3.39 for δ = 0.43. Here,

x, y and z-coordinates of the random solutions versus noise intensity ε are

plotted. As one can see, the intensity of noise corresponding to the onset of

large-amplitude stochastic oscillations depends on the parameter δ: the more δ,

the larger noise is necessary for the generation of large-amplitude oscillations.

A quantitative description of the changes in probabilistic distributions is given
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Figure 3.37: Stochastic excitability. WE NEED TIME UNITS TO SEE

WHETHER THIS IS REALISTIC OR NOT. THIS LEGEND MUST BE EX-

PANDED. THESE MUST BE THOUSAND OF YERAS ?

in Fig. 3.40. Here, we show how the mean value m = 〈x〉 of random states and

their mean square deviations D = 〈(x− x̄)2〉 from the equilibrium depend on

parameters δ and ε. An important point is that there are the parametric zones

where some abrupt changes in m and D occur. These zones mark the onset of

stochastic generation of the mixed-mode oscillations in the Paillard-Parrenin

model.

Results of the mathematical and numerical analyses presented above allow

us to conclude that in some cases, the deterministic model does not give an

adequate description of climate dynamics. Here, it is highly important to take

into account the presence of the inevitable random noise. In the model under

consideration, even a small background noise transforms the system dynamics

from the equilibrium to the mixed-mode large-amplitude oscillations.
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Figure 3.38: Random states of the stochastic system (3.9) for δ = 0.41 versus

noise intensity.

Figure 3.39: Random states of the stochastic system (3.9) for δ = 0.43 versus

noise intensity.

3.4 Some important peculiarities of 3D noise-

induced dynamics

Our analysis of different stochastically-induced three-dimensional climate mod-

els that contain various prognostic variables and coefficients lead us to the

following partial conclusions:
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Figure 3.40: Mean values m and mean square deviations D for solutions of

system (3.9).

i) The deterministic system may contain two stable equilibria and a limit

cycle (their arrangement and bifurcation diagram essentially depends on vari-

ations of system parameters). In most paleoclimate models, these equilibrium

phase points describe warm and cold phases of the Earth’s climate. Large

excursions from these extreme phases may be excited by noise.

ii) As the parameters approach a bifurcation point associated with the

creation of a limit cycle, small amount of noises become more likely to trigger

both small- and large-amplitude stochastic oscillations (SASO and LASO).

In this scenario, the LASO corresponds to the excitation of the limit cycle.

LASO may also be found in situations where a several fixed-points coexist, or

where a fixed-point coexists with a limit cycle, or, yet, when there is a single

fixed point attractor. In all theses scenarios, triggering a LASO depends both

on the amplitude of stochastic oscillations, but also of the direction of this

perturbation. Therefore, for certain amplitudes, the excitation of LASO may

only be intermittent, and coexist with frequent SASO oscillations. This regime

is characteristic of mixed-mode oscillations.

iii) The analysis of Lyapunov exponents carried out in this section statis-

tically confirms that the system may undergo a transition from order to chaos

due to the effect of noise-induced intermittency of LASO and SASO modes. In

other words, large amplitude stochastic oscillations may sharply increase the

dependence of system’s trajectories to initial conditions.

iv) Physically, the glaciation/deglaciation periods (100 ky saw-tooth type

climate fluctuations) become shorter, easier and faster with increasing the

noise intensity. An important outcome is that a transition between the warm

and cold climate states suddenly occurs when the climate system approaches

the parametric vicinity of its bifurcation point. In this case a potential pos-

sibility to an abrupt glaciation/deglaciation transition becomes greater with

the growth of stochastic forcing (this conclusion follows, for example, from the

analysis of interspike intervals).
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Chapter 4

Effects of the orbital forcing

4.1 Origin and computation of the astronom-

ical (orbital) forcing

So far we have considered models which represent causal relationships between

components of the climate system. We have been able to understand how

non-linear interactions, along with stochastic effects, provide a formal basis

to explain how climatic cycles, punctuated by intermittent behaviour, may

emerge in a constant environment.

We have voluntarily discarded the effect of external causes to the succession

of ice ages. Yet, such causes exist, and are even often considered as the most

important driver of glacial-interglacial cycles. It is therefore time to address

them.

Herschell [80] is quoted as having first formulated the hypothesis that “as-

tronomical causes” may influence “geological phenomena”. He pointed out

that because of the precession of the equinoxes, the Earth, at one point of the

year, may be either closer or further away to the Sun, which may “produce a

transition for one to the other species of climate”. Milankovitch [23] is best

known today for having provided theoretical foundations of such “astronomical

theory of palaeoclimates”. He connected the then state-of-the-art knowledge

of celestial mechanics, with a treatment of the energy budget of Earth radia-

tion across latitudes, accounting for the modulation of Earth’s albedo by snow

cover. Further historical context on the development of astronomical theories

is available in [81] and [82].

Before discussing the mechanisms of insolation forcing on climate, we re-

view briefly the basic elements which determine insolation changes. The semi-

major axis of Earth’s orbit does not change appreciably over ice ages [83, 84].

Because of this, the distribution of insolation over latitudes and seasons is fully

determined by three parameters [85]: Earth’s eccentricity e, measuring the de-

viation of the eccentric orbit from circularity, obliquity ε, which is the angle
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between the equator and the ecliptic, and the longitude of the perihelion, $

that is, the angle measured between the perihelion and the vernal point. The

literature is sometimes confusing about the choice of heliocentric or geocentric

coordinates to measure $, causing a shift of π in the definition of $, but this

is not a point we will further address here. The dynamics of e are immediately

related to the dynamics of the planetary system were first solved by a per-

turbation method due to Lagrange. Nowadays, the combination of accurate

observations, fast computing, and advanced symplectic integration schemes

allow for accurate computation of orbital elements over several tens of mil-

lions of years in the past and in the future [86]. However, solutions obtained

by perturbation method are still used in models of climate dynamics because

they present a nice advantage. Even though these solutions are nowadays less

accurate than state-of-the-art symplectic integration, the perturbation method

presents an advantage. It works by identifying resonance terms, so that the

angles which define the orbit are, in the end, expressed as a sum of harmonics.

For computing ε and $ one needs, in addition, to take care of the lunisolar

precession caused by Earth-Sun-Moon dynamics, which can also be solved by a

method of perturbations. Together, these elements provide the basis to obtain,

with a very good approximation, an expression of the astronomical forcing as

a sum of sines and cosines [85]:

• obliquity (ω) dynamics is dominated by periods around 40 ka and 54 ka.

• climatic precession, defined as e sin$ has periods around 19 and 23 ka.

• eccentricity e has periods around 404, 95, 124, 99 and 131 ka.

The effect of the variations of the different orbital parameters on insolation

at the top of the atmosphere are determined by geometry, and were largely es-

tablished in [23]. Obliquity controls the distribution of annual mean insolation

across latitudes: High latitudes get more radiation when obliquity is high, at

the expense of the equator, the pivot being located at 43◦. A higher obliquity

also causes a stronger seasonal contrast. The climatic precession controls the

amount of radiation received by the whole planet at a given month of the year.

Glaciologists interested in ice age dynamics have adopted since the 1980s

a dynamical system framework to model the effect of insolation on ice ages

[87,88].

At time of writing the most recent example of deterministic dynamical

system model along this line is provided by [77], and which we comment later

on in this chapter.

Insolation is distributed across latitudes and seasons, and a change in as-

tronomical forcing generally affects the amount of insolation received at any

time in the year and at any latitude, except, of course, during the polar night.
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One problem is therefore to estimate the integrated effects of a change in dis-

tribution on the mass balance of ice sheets.

Milankovitch considered that the radiation received over summer in high

northern latitudes determines the extent of glaciers. Hence, in Milankovitch’s

theory, ice sheets tend melt when obliquity is large, and when perihelion is

reached when it is summer in the northern hemisphere.

This assumption is still considered to be valid nowadays. One the one

hand, it is consistent with observations: it has now long been established that

sea level tends to rise, i.e., ice sheets melt, when summer insolation increases

[89]. On the other hand, it is consistent with computations with numerical

simulators, which integrate equations of motion of the atmosphere, ocean and

ice flows over a grid [25,90].

Hence, in a low-order dynamical system model of ice ages — which is the

approach we are interested in for the present review — the effect of astro-

nomical forcing on ice sheet mass balance may be adequately parameterised

using summer insolation, and not globally averaged insolation. This is impor-

tant, because the summer insolation is largely dependent on precession and

obliquity, while globally averaged insolation is only but slightly affected by

eccentricity.

Yet, there are different approaches to parameterise summer insolation. It

is common to use insolation received at 65◦N on the day of summer sol-

stice [42, 91], or in July [92]. These metrics differ from the original param-

eterization of [93], which integrated insolation over the half-year receiving the

largest amount of insolation. Huybers and Tziperman [94] advocated using

a metric more similar to the original Milankovitch one, which they argued is

more consistent with our knowledge of ice sheet mass balance. Statistical in-

ference gives them a further argument: a metric which gives more weight to

obliquity, as does summer-integrated insolation compared to mid-June insola-

tion, is more consistent with the benthic-foraminifera record [95, p.14].

4.2 The strong interpretation of the Milankovitch

theory

Milankovitch’s original view was that ice ages are caused by the astronomical

forcing. They would not occur if orbital elements and obliquity were constant.

We will refer to this view as the “strong interpretation” of Milankovitch’s

theory.

Letting aside, for a moment, what we can infer from our knowledge of ice

sheet physics and other elements of the climate system, what is a priori the

simplest dynamical system which would remain at rest in absence of forcing,
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Figure 4.1: (a) Reconstructed climate variations over the last 2 million years

(1˜ka stands for 1,000 years) inferred from deep-sea organisms, specifically ben-

thic foraminifera [10], along with (b) the variations in incoming solar radiation

at the summer solstice at 65◦ N (black), a classical measure of astronomical

forcing computed here following the BER90 algorithm [96]. The spectrum of

insolation is (c), with components arising from climatic precession and obliq-

uity computed following [85, 97]. Eccentricity (figure (b), brown) is the mod-

ulating envelope of precession, and its spectrum is given in (e) [85, 97]. (f)

multi-taper estimate of the LR04 spectrum (last million years only) estimated

using multi-taper method [98] obtained using the SSA-MTM toolkit [99] with

default parameters. Figure from [100].
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and display oscillations with forcing, is a forced, linear relaxation:

dx

dt
= −1

τ
(x− F (t)), (4.1)

where τ is a relaxation time, and F (t) is the insolation forcing. If F (t) is a sum

of harmonics, with frequencies νi, then the x(t) obtained with a deterministic

model 4.1 is a sum of harmonics with the same frequencies νi. However,

palaeoclimate reconstructions of the latest four ice ages show that they followed

a cycle of approximately of 100 ka, and their temporal structure presents a

distinctive saw-tooth shape, with glacial build-up slower than deglaciation —

a fact known since the pioneering Broecker and van Donck [9]. Neither the

100 ka period, nor the saw-tooth shape, appear in the forcing. This rules out

the deterministic linear relaxation model.

Yet, it has generally been recognised that a linear relaxation model may

still provide a good starting point because the variation rate of ice volume dur-

ing the phase of ice accumulation clearly respond to insolation. More precisely,

they appear to broadly follow changes in summer insolation [9, 89]. Consis-

tent with this observation, the power spectrum of climate records contains the

frequencies of obliquity and precession [101–103]. Hence, several authors sug-

gested that the climate dynamics deviate substantially from a linear response

regime only during the episodes of deglaciation, that is, when the ice volume

decreases rapidly towards interglacial conditions. For example, MacAyael [104]

expressed this suggestion to use a topological model inspired from imagery pro-

vided by the catastrophe theory of Ren Thom: the deglaciation would be the

manifestation of a fold catastrophe (Fig. 4.2, left). Paillard [91] (hereafter

P98) encoded a similar idea into a hybrid dynamical system (Fig. 4.2, right).

A hybrid dynamical system model combines a continuous variable (in this

case: a level of deglaciation, called v), with a discrete state that is, again in

this particular case, one of i (interglacial), g (semi-glaciated), and G (heavy

glaciation). The rules of transitions across discrete states are determined by

rules of threshold crossing by v, and by the astronomical forcing function F .

Within a same regime, that is, as long as the discrete state remains unchanged,

the variable v follows linear relaxation dynamics. However, both the relaxation

target and relaxation time depend on the discrete state. Therefore, when the

discrete state changes, the variation rate of v changes discontinuously. The

topology of system trajectories are constrained by rules establishing which

transitions may take place. Only three transitions are allowed: i→ g, g → G,

and G → i. The transition g → i is forbidden. Furthermore, the transition

G→ i is assumed to occur when the forcing function — insolation — exceeds

a threshold. These rules impose asymmetric ice age cycles, with deglaciation

occurring when insolation is high enough, consistently with the observation

record.
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Figure 4.2: Two historical, conceptual models formulating the hypothesis that

ice ages are the manifestation of astronomically-forced ice build-up, terminated

by a catastrophic deglaciation. MacAyael 1979 (left-hand side) is directly in-

spired by catastrophe theory and glaciological theory. Q is insolation, and α

a potential action increasing throughout the ice acclimation phase. In Pail-

lard (1998) (right-hand-side), the role of α is played by a discrete state, with

transitions from i, g and G determined by thresholds defined in the plane de-

fined by ice volume and insolation. In both models, the fully glaciated state is

intrinsically unstable, prone to collapsing

With these constraints, P98 provides a simple and easily understandable

mechanism explaining how the period of ice age cycles may double the period

of the forcing. Assume a harmonic forcing, of fixed amplitude. Starting from

an interglacial state i, a first forcing minimum — assuming it is large enough

— can force a transition from state i to g, where it is protected against the

following maximum phase of the forcing (because g → i it is forbidden, see

again Fig. 4.2). The second forcing minimum causes the system to switch

from g to G. G is postulated to be more fragile. At this point, the next

insolation maximum will generally suffice to precipitate the system into i, the

interglacial state. Hence, even though the ice age sequence is determined by

the forcing, the ice age duration may be a multiple of the forcing period. If, for

example, we assume that the forcing is caused by obliquity (40 ka), then the

ice-age cycle duration happens to be 80 ka. With the more complicated forcing

function obtained from the addition of the numerous harmonics, the model

generates non-periodic ice age cycles, which have roughly the allure of the

Late Pleistocene ice age cycles. The model satisfies the strong interpretation

of the Milankovitch theory, because in absence of forcing, the system lands

on a fixed point, and also accounts for the asymmetric shape and duration of

glacial-interglacial cycles.

Ditlevsen, 2009 [105] (hereafter, D09) re-expressed the ideas underlying P98

model in the form of a continuous dynamical system. The discrete regimes of

the P98 model appear in the form of attracting stable states, which fold bi-
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furcations arranged such that the trajectories generated by D09 reproduce

qualitatively the regime changes encoded in P98. This reformulation has al-

lowed this author to study the possibility of “noise assisted transitions” from

one branch to the next, making the model more sensitive to stochastic forcing

than P98. We will, however, not consider this model further here.

Both P08 and D09 provide an idealized realization of the strong interpre-

tation of Milankovitch’s theory (no ice ages without astronomical forcing),

and both suggest that long glacial cycles can be interpreted as a form of

period-doubling mechanism: the ice-age build-up phase survives one or two

insolation maxima before entering a regime more unstable, and vulnerable to

the subsequent insolation maximum. A qualitatively similar behaviour may

be obtained with other standard dynamical systems, such as the Duffing os-

cillator [106]. The period-doubling concept provides a plausible explanation

to the so-called Mid-Pleistocene transition, about 1 Ma ago, when the period

of ice ages shifted from 40 ka, to about 100 ka. It suffices to assume that

before the Mid-Pleistocene transition the ice sheets were vulnerable enough

to be hit by the first insolation maximum, which occur approximately every

40 ka [107]. The transition is the manifestation of an increased resilience of

this mid-glaciated state. It is often suggested that this increased resilience is

related to a decrease in the background levels of CO2 concentration, but this

is not entirely sure. Interglacial temperatures in the southern ocean seemed

to have remained stable since at least 1.5 Ma [8], which suggests that the

interglacial-level of CO2 concentration has remained reasonably constant as

well.

This hypothesis encoded in P98 is very schematic but reasonably compat-

ible with what glaciologists have known about ice sheet dynamics since the

1960s. Thick ice sheets cause significant strong lithospheric depletion (about a

third of the ice-sheet thickness is below the unperturbed bedrock level). Warm-

ing may cause enhanced ablation on the southern edge of the ice sheet, which,

given the lithospheric depression, may strongly enhance the southward flow of

ice, causing the ice sheet to lose altitude. With this mechanism, an increasing

fraction of its surface may end up below the equilibrium snow line, at which

point its melting becomes ineluctable. These basic elements were captured in

reasonably simple models about thirty years ago [22]. Other mechanisms may

contribute to destabilising the ice sheet. Ocean warming and sea-level increase

may conspire to break ice shelves, and as ice shelves somehow consolidate the

ice sheets via an effect called ice buttressing, their loss may further therefore

contribute to destabilising of the ice sheets and enhance the deglaciation [108].

Before the possibilities offered by supercomputers, the understanding of ice

sheet dynamics was based on scaling relationships linking ice sheet thickness,

extent, and ice flow, incorporated in conservation equations (e.g. [24,109,110])).
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This modelling approach remains, we argue, insightful because it allows us to

link basic properties associating with scaling and conservation laws, with what

observations about palaeoclimates. The VCV18 model [77] is a contribution

in that direction. This is a system of three ordinary differential equations ex-

pressing the dynamics of ice area S, temperature at the base of the ice sheet θ,

and a global climate state ω. The climate feedbacks which are not immediately

related to the large-scale ice flow (e.g., CO2 response) are parameterised as a

linear feedback. This model appears to support some of the intuitions explic-

itly encoded in P98. In absence of astronomical forcing, VCV18 presents one

fixed point. Furthermore, with adequate, and physically reasonable parame-

ter values, the model features a period-doubling mechanism similar to the one

outlined about P98: Starting from an interglacial, ice build-up is accelerated

by two positive feedbacks, one caused by the increase in areal extent of the

ice sheets, the other one related to the global climate cooling. These positive

feedbacks are, however, compensated for by basal-sliding, itself proportional

to basal temperature. The resultant of these feedbacks concur to produce a

stable, mid-glaciated state, which resists the following insolation maximum.

The following insolation minimum generates another thrust towards a higher

glaciation level. It this point, basal sliding grows non-linearly. A subsequent

insolation maximum produces a catastrophic meltdown that brings the system

back to its interglacial level.

The literature reporting simulations with models using finite difference

schemes for resolving the equations of ice sheet flow dynamics is fairly abun-

dant and cannot be fully reviewed here. Over the years, it has become common

to couple these ice sheet models with atmosphere-ocean models of increas-

ing level of detail and complexity, see, for example, the progression visible

from [25,90,111,112]. The course of CO2 concentration is difficult to simulate

and is often prescribed as a forcing. However, Ganopolski and Brovkin [113]

provide an example linking reasonably detailed ice sheet dynamics with carbon

cycle dynamics. The simulations made with these models are generally pre-

sented as a support compatible with the strong interpretation of Milankovitch’s

theory, and with the notion that CO2 changes constitute a feedback to ice-sheet

variations, essential to explain the amplitude of sea-level variations.

4.3 The weak interpretation of the Milankovitch

theory

As we have just seen, more detailed models resolving the ice sheet dynamics

tend to support the strong interpretation of the Milankovitch forcing. We will

now consider the possibility that an autonomous oscillation between glacial
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and interglacial cycles remains a plausible possibility. To make this argument,

we focus again our attention on CO2.

One of the best known and quantified mechanisms by which glaciations

affect CO2 is the effect of a decrease in sea-surface temperature on the solubility

of CO2 in seawater. However, this mechanism would only explain 25 ppmv

change between the last glacial maximum and the Holocene [114, 115], out of

the 80 to 100 ppm which characterise glacial-interglacial cycles. Among other

mechanisms, changes in ocean circulation — which may be rapid — may have

contributed substantially to CO2 concentration changes, but the amplitude and

dynamics of this contribution is more uncertain. Ocean circulation changes

may further impact the distribution of alkalinity in the deep ocean and affect

CO2 concentration via the growth or dissolution of biogenic calcite. Changes in

sea levels also affect the riverine input of calcite and further affect the chemical

balance and the pH of the ocean [114]. Photosynthesis, in the ocean, may

respond to changes in micronutrient input by dust, especially iron. Finally,

CO2 outgassing, especially around oceanic ridges, may be affected by changes

in hydrostatic pressures caused by the variations in sea level, and contribute

to glacial-interglacial CO2 variations [103].

The possibility that one or several of these mechanisms may contribute

to generating limit cycle dynamics is in part suggested by inspection of the

ice core records. For example, all interglacials of the last 800 ka — with

the notable exception of the Holocene — have a concentration of CO2 peaking

just after the deglaciation, and decreasing afterwards [116]. This decrease may

contribute to preparing the conditions for a subsequent glacial inception. Over

the two latest deglaciations, CO2 was observed to increase gently — though

modestly — before any substantial increase in sea level [117].

Taken together, we see the possibility — but not the certitude — that ice

sheet dynamics and carbon cycle dynamics interact in a way that gives rise

to an autonomous limit cycle — an oscillation between glacial and interglacial

cycles. Modelling the dynamics of the carbon cycle turns is arguably a more

challenging and speculative exercise than modelling ice sheet dynamics, be-

cause the mechanisms which may substantially affect CO2 concentration are

diverse and difficult to quantify. The modeller cannot use scaling and con-

servation laws in the same way as with ice sheet dynamics. Hence, a variety

of low-order models have been designed to present various mechanisms as a

possible cause of autonomous limit-cycle dynamics. For example, Paillard and

Parrenin [79] focus on southern ocean circulation and ventilation, Omta et

al. [118] on the alkalinity balance [118], and Huybers and Langmuir [103], on

mid-ocean ridge outgassing.

Milankovitch did not consider the possibility that glacial-interglacial cycles

could be an autonomous oscillation, but one might still speak of a ’weak in-
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Figure 4.3: Schematic time series and phase diagrams of an oscillator forced by

periodic and quasi-periodic forcings. (a) describes a periodic forcing (top) of a

system with state space (x, y). It is assumed that the system response is here

synchronised on the forcing with a 3 : 1 ratio. The stroboscopic view, taken

every forcing period, comprises three points. (b) represents the same system,

but with an additional weak periodic forcing, with a period incommensurate

to the main forcing component. Synchronization is maintained, so that the

stroboscopic view present three closed loops homeomorphic to circles (the at-

tractor is a torus in the forcing-state space). Further increasing the amplitude

of the second harmonic forcing may either cause a synchronization loss, or a

bifurcation towards a strange-non-chaotic attractor.

terpretation’ of Milankovitch’s theory if we consider the hypothesis that astro-

nomical forcing sets the timing of the glacial-interglacial transition. In math-

ematical terms, this hypothesis can be expressed by the claim that glacial-

interglacial cycles constitute a limit cycle synchronised on the astronomical

forcing. However, to give substance to this claim we need to specify what is

meant by synchronization. This is what we do now (the reader is referred

to [119] for a reference text on synchronization).

Synchronization is easiest to describe and define when the forcing is period.

Consider, specificity, a periodic forcing of amplitude A and period P .

The system is autonomous when A = 0. Suppose the system is observed

every time = n×P , to construct a stroboscopic view (Figure 4.3 (a), bottom).

As there is no forcing, the phase of the limit cycle is unrelated to the phase

of the forcing, and from repeated observations at different times n × P one

will generally recover the topology of the autonomous attractor, in this case, a

loop homeomorphic to the circle. Consider a weak positive A. In general, the

stroboscopic view will be affected by the forcing, but remain homeomorphic to
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Figure 4.4: These figures were obtained with a conceptual oscillator model

similar to a van der Pol model (see details in [120]), forced by a two periodic

forcings: one with period 41 ka (this period is referred to as O1, for obliq-

uity) and one of 23 ka (referred to as P1, for precession). The three rows,

denoted τ = 36 ka, 41 ka, and 44 ka, correspond to values in one of the model

parameters, which controls the period of the autonomous oscillation. The left-

hand-side column shows a “pullback section”. The middle- and right-hand-side

columns are stroboscopic views, that is, figures obtained by superimposition

of states found at t0 + kP , where P is either the period P1 or O1. See text for

further explanation and interpretation . Figure redrawn from [120].
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the circle. Phase locking is said to occur when this stroboscopic view changes

from a loop to a set of points. This situation is depicted on Fig. 4.3(b). The

underlying intuition is that the phase of the forcing controls the phase of the

system cycle. Phase locking is a form of synchronization.

Consider now that a second forcing component is introduced, but with an

amplitude significantly weaker than the main component. This case is illus-

trated on Fig. 4.3(c). The influence of this second harmonic will manifest

itself by disturbing the state of the system. The time series x(t) and y(t)

are no-longer periodic, but the system phase is still constrained by the domi-

nant forcing. The stroboscopic view (bottom) then shows three closed curves,

confirming that phase-locking is maintained. This is the signature of a quasi-

periodic attractor, which combines the synchronised period (in this example,

three times the period of the main forcing component), with the period of the

secondary forcing component.

We can now foresee that as the amplitude of the second harmonic is further

increased, the closed curves will connect, causing a bifurcation. At this point,

two scenarios are generally observed. The first possibility is a torus bifurca-

tion causing a loss of synchronization. The time series on both sides of the

bifurcation are quasi-periodic (a sum of periodic signals), but in the synchro-

nised regime, the time series are the sum of two periods, as we have just seen.

When synchronization is lost, the time series are the sum of three periodic

components (associated with the two forcings, plus the intrinsic period of the

system). The second possibility is a bifurcation towards a strange non-chaotic

attractor. In this case the time series become aperiodic, but, as we will see

shortly, it is a synchronization regime.

To see this, we consider the following continuous oscillator, almost identical

to the van der Pol oscillator. This was an attractive model to use because,

on the one hand, literature is available about the quasi-periodic forced van

der Pol oscillator, analysing the torus bifurcation [121] and the transition to

strange-non-chaotic attractor [122]. With an additional drift term β which we

introduced below, the forced van der Pol can be calibrated such as to reproduce

glacial-interglacial cycles fairly convincingly [120], making it a credible model

for our purpose. The model is defined as follows:
dx

dt
= (−y + β + F (t))/τ

dy

dt
= −α(y3/3− y − x)/τ

We adopt F (t) = γ[sin(2π/P1t + φP1)) + cos(2π/O1t + φO1)], with P1 =

23.716 ka, O1 = 41.000 ka and φP1 = 32.01◦ and φO1 = 251.09◦. P1 is the

first period in the development of precession, O1 is the first period in the

development of obliquity and φP1,φO1 the corresponding phases given by [85],

77



so that F (t) may already be viewed as a very rough representation of the

astronomical forcing. The forcing amplitude γ = 0.6, α = 30, and β = 0.7.

Stroboscopic views for different values of τ are shown on Figure 4.4. On

the middle column, the stroboscopic view is taken with respect to P1; on the

right-hand-side column, with respect to O1. Contrary to Figure 4.3, the forcing

amplitudes are constant, but the parameter τ varies. One therefore recognises

three regimes: phase-locking on P1 (obtained with τ = 36 ka), phase-locking

on O1 (with τ = 44 ka, third row), and strange-non-chaotic regime (with

τ = 41 ka, middle-row). The qualifier “strange” refers to the topology of

the attractors and repellers. In the quasi-periodic regime, the attractor and

repellers are well separated. In the strange regime, the repeller is embedded

in the attractor in a way that both may be arbitrarily close to each other.

This proximity of attractors and repellers implies that the strange regime is

more sensitive to fluctuations in the forcing phase. It is therefore possible to

recognise the strange regime by analysing the sensitivity of the state vector

to the forcing phase, which is quantified by the “phase-sensitivity exponent”

[123]. Mitsui and Aihara [100] confirmed, with this method, the existence

of a strange-non-chaotic regime in several models of ice ages displaying an

autonomous oscillation including, among others, the van der Pol-like model

introduced in (4.3), and the Paillard-Parennin model introduced in Chapter 3,

section 5.

So far, we defined the atractor as a transitive attracting invariant set,

which is defined in the space spanned by the state space and the forcing. If,

however, the forcing is aperiodic, we cannot rely on this definition. However,

synchronization may still be defined and characterised. To this end we need

to use the language of non-autonomous dynamical systems.

The intuition that a forced system may converge to a synchronised tra-

jectory after the dissipation of transient effects is captured by the notion of

pullback attractor [124]. Informally, the section of a pullback attractor at a

time t is the set of points that can be reached by the system at this time t if it

was started a long time ago (the definition involves the limit t0 → −∞). In an

system forced by a periodic forcing, the stroboscopic section and the pullback

section at a time t are homeomorphic. This follows from the property of system

invariance to a time shift by one forcing period. If further periodic forcings are

added, then the homeomorphism between pullback attractor and stroboscobic

view vanishes. As we have seen, the stroboscopic view may generate different

structures, including a strange geometry. However, if there is synchronization,

the pullback section still consists of a countable set of points. This is shown

on Figure 4.4, left-hand-side column: Starting from arbitrary initial conditions

and after dissipation of transient effects, the system reaches one of a countable

set of trajectories. The phase of the system is thus constrained by the forc-

78



ing, but there is no immediate relationship between a forcing phase and the

system’s phase. The phenomenon is called generalised synchronization.

Generalised synchronization may also be detected by considering the long-

term, greatest Lyapunov exponent of the forced system, already introduced in

chapter 2, section 5. It expresses the average rate of exponential growth of

first-order perturbations. A non-synchronised oscillator has a greatest Lypa-

ponov exponent equal to zero. A system whose greatest Lyapunov exponent is

negative converges to an attracting trajectory, and therefore can be understood

as being “synchronised”.

Phase locking, discussed above, is a particular case of generalised synchro-

nization. Consider once more the periodic-forcing case. The transition from

non-synchronization to synchronization is a bifurcation. We can therefore de-

fine a bifurcation diagram in the space spanned by the forcing parameters,

namely its amplitude A and period P . In oscillator models, the bifurcation

diagram defines a specific pattern called Arnold tongues. These ’tongues’

represent different synchronization regimes corresponding to different ratio-

nal ratios between the output period and forcing period. The reader is again

referred to [119] for an accessible textbook on this matter.

What happens to this diagram when several periodic forcing are combined

in the van der Pol and other ice age oscillator models is studied in [120]. Arnold

tongues corresponding to the different components of the forcing superimpose

each other, such as to creating a wide area of synchronization. Hence, the

quasi-periodic character of the astronomical forcing, which contains many har-

monics, turns out to make it more likely to induce synchronization of an ice-age

oscillator than if the forcing was periodic. However, as we will discuss in the

next paragraph, this synchronization is often less reliable than with a periodic

forcing.

4.4 Sensitivity to noise

In Chapters 2 and 3 we have seen that understanding the sensitivity of a

dynamical system to noise requires an understanding of the attractor as well

as a view of the configuration of the vector space around the attractor. For

example, if the basin of attraction of the attractor is narrow, stochastic forcing

is likely to propel the system state outside the basin of attraction and generate

large-amplitude stochastic oscillations.

The existence of astronomical forcing makes the picture more complicated,

but it is still possible to rely on the notions of attractor and repeller. The

Figure 4.5 shows the projections of the attractors of four glacial-interglacial

models, forced by a 3-component forcing. The state-forcing space is projected

onto a 3-D hyperplane spanned by one of the state-vectors, together with two
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Figure 4.5: Projections of the attractor of four models: P98 [91], CSW (the

name used in the original publication for the van der Pol-like oscillator defined

in (4.3)), SM90 [92], and HA02 [125]. All models are forced by astronom-

ical forcing, approximated as the as a sum of three periodic harmonics, at

frequencies of precession (θ1, θ3) and obliquity (θ4). Figure taken from [126]
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forcing phases. We now discuss these projections one by one.

The P98 model was introduced in subsection 3.3. It is a hybrid dynamical

system satisfying the strong interpretation of the Milankovitch theory. The

projection of the attractor suggests a piecewise continuous geometry. These

discontinuities in phase space are related to the regime changes i → g → G,

which cause discontinuous changes in the variation rate of v.

The model labelled “CSW” on Figure 4.5 actually refers to the van der Pol-

like oscillator defined in (4.3). The parameter configuration used here generates

a strange-non-chaotic attractor, which, as one can see, is qualitatively distinct

from the piecewise-continuous attractor of P98. The model SM90 model [92] is

another autonomous oscillator, which was introduced to support the hypothesis

that carbon cycle instabilities may generate a limit-cycle glacial-interglacial

cycle. With the parameters of the original publication, it also produces a

strange non-chaotic attractor.

The strange-non-chaotic regime can be a route towards chaos [127], and,

indeed, when the SM90 was recalibrated against observations by Hargreaves

and Annan, yielding the HA02 model [125], it developed chaos, with largest

Lyapunov exponent greater than zero. The qualitative difference between the

strange-non-chaotic and strange-chaotic attractors is visible on Figure 4.5, the

latter appearing more mixed than the former.

The three kinds of attractors (piece-wise continuous, strange non-chaotic,

strange chaotic) appear to represent an increased sensitivity to stochastic noise.

In P98, the trajectories remain stable (linear relaxation) as long as the system

is within a same regime, g, G, or i. It was found [126] that this configura-

tion makes P98 little sensitive to stochastic forcing: A reasonable amount of

noise (small enough to preserve the allure of glacial-interglacial cycles) does

not qualitatively affect the sequence of ice ages, nor the structure of the ice-

age cycle [126]. Hence, the model satisfies the intuition that the duration of

individual ice age cycles is strongly determined by the astronomical forcing.

Systems associated with strange non-chaotic attractors are known to dis-

play long, locally stable, transient orbits [128]. To evidence them, Mitsui and

Crucifix [100] integrated the model defined in (4.3) until a given time (here:

t = −400 ka). Starting from this point, they perturbed the system state, and

let the integration carry forward. The results of this experiment are shown

on Fig. 4.6(a). Even though the perturbation is quite small, the perturbed

trajectories (blue) take a long time, up to 1 Ma, to converge towards the pull-

back attractor (red). The time at which the perturbation was applied was

actually not taken at random: the authors experimented and found a time at

which these long transients could effectively be excited with a small pertur-

bation. Once they are produced, these long transients are locally stable most

of the time, in the sense that small perturbations around the long-transient
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decay exponentially. These long transients satisfy the definition of finite-time

attractiveness given by Rasmussen [129] (pp. 19–20). The locally-attracting

character may also be seen by considering the evolution of the greatest Lya-

punov exponent, averaged over a finite time (here, 200 ka, Fig. 4.6(a), bottom

graph). Long transient can be excited when the finite-time Lyapunov is posi-

tive, and remain stable as long as it is negative.

Consider now the model (4.3), but with an additive stochastic forcing in

the first equation: 
dx

dt
= (−y + β + F (t) + εξ(t))/τ

dy

dt
= −α(y3/3− y − x)/τ
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Figure 4.6: Transient orbits with a long lifetime in the van der Pol-like model

(4.3) and (4.4): (a) The trajectory corresponding to the attractor of the original

noiseless system (red) and some pieces of transient orbits with a long lifetime

(blue) (top), along with the finite-time Lyapunov exponent λ
200ka(t) (bottom).

(b) Twenty trajectories with stochastic forcing with ε = 0.002 (green points).

The red and blue lines are the same in the top panel in (a). Figure taken

from [100].

Sample trajectories are shown (in green) on Figure 4.6(b), superimposed
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on the long transients in red and blue. To read the graph more easily, we

zoomed over the sample of the time span displayed by 4.6(b). Observe that the

stochastic trajectories are distributed over the actual pullback attractor (the

trajectory obtained with deterministic model, integrated a long time before),

and over the long-transient. The space between the pullback attractor and the

long-transient is not populated. Intuitively, the stochastic forcing acts as a

photographic developer, which reveals the locally-stable transient trajectories.

Hence, if we run a large number of stochastic simulations, the simulated

states, at a time t, will appear organised around a number of clusters, which

correspond to the pullback attractors and the long-transient trajectories ex-

isting in the deterministic system. If the stochastic forcing is small, then the

clusters are neatly separated from each other. As the amplitude of the stochas-

tic forcing increases, trajectories may jump between leave their local attractors

and travel to another attractor or another long-transient. We now compare

ttwo versions of a same deterministic model, SM90, and HA02. Remember that

in SM90, the long-term Lyapuonov exponent (with astronomical forcing) is

negative, indicating that it satisfies the criteria of generalised synchronization.

HA02 is, again, the same model, but the parameters were adjusted to max-

imise the agreement with observations. In this case, the long-term Lyapunov

exponent is positive: it is chaotic. Both models have finite-time Lyapunov ex-

ponents varying between negative and positive values. We now consider 10000

stochastic simulations, with a small amount of noise and ask how many points

do not belong to a cluster (see method details and parameter values in [100]).

This number varies over time, therefore the authors have provided a frequency

histogram. As we see it (Figure 4.7), in SM90, most of the time, all stochastic

realizations belong to a cluster. There is little leakage from one cluster to the

next, suggesting that the system is very predictable because it is tightly con-

trolled by the astronomical forcing. In HA02, the chaotic system, we find most

of the time between 5 and 20 mavericks. It is not much (remember we have

10000 trajectories), but yet suggests that the synchronization is less reliable.

The qualitative change between the non-chaotic and the chaotic versions

of the model is thus not very dramatic. In both cases, the vast majority of

stochastic trajectories are grouped around a small (between 1 and 5) number

of clusters, implying that the sequence of ice ages is effectively controlled by

the astronomical forcing. However, the chaotic system has more leakage, and

it is therefore more unpredictable, even at small noise levels.
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Figure 4.7: Histogram of the number of “mavericks”, defined as states which do

not belong to clusters of trajectories similar to those shown on Figure 4.6(b),

in two dynamical systems: SM90 and HA02. Figure taken from [100].
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Chapter 5

Conclusions

In this review, a number of available deterministic conceptual models of climate

dynamics served as a basis to deepen our understanding of the mechanisms

which may generate the climate oscillations observed in palaeoclimate records.

As a rule, we considered the models with their original, published parameter

values, and studied how the regimes of oscillators may appear when some key

parameters vary, either in a deterministic or in a random manner, or when

a stochastic forcing is added. It was shown that even very small parameter

changes, or small amounts of stochastic forcing, may qualitatively deform the

dynamical modes. To analyse this phenomenon, it is necessary to understand

the types of bifurcations which may take place in these models.

We started with the model (2.5) (see Section ), which describes a nonlinear

feedback between the ocean temperature and sea ice extent [52]. This simple

2-dimensional model undergoes saddle-node and sub/supercritical Andronov-

Hopf bifurcations, and exhibits multistability with the coexistence of a limit

cycle and two equilibria. In the conditions of multistability, the presence of

noise further diversifies the dynamic scenarios. We showed how noise-induced

transitions between attractors can generate mixed-mode fluctuations with al-

ternations of small- and large-amplitude stochastic oscillations, and also cause

an order-to-chaos transition. A transition to chaos is expected to drastically

reduce the forecast horizon of the system.

Even in the framework of two-dimensional models, one can get a non-

trivial description of catastrophic climate changes. Here, a typical example

is the temperature-vegetation model [49] (see Section 2.2). The behaviour of

this model is caused by the association of an Andronov-Hopf bifurcation, with

the simultaneous existence of two attractors associated with opposite states

of climate: snowball Earth (stable equilibrium) and vegetated earth (stable

equilibrium or limit cycle). In the framework of the deterministic theory,

transitions between these climate states are not possible. However, noise of

increasing intensity leads to a systematic decrease of the average temperature

and, in the end, can cause a catastrophic shift of the climate system from the
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favourable state of vegetation to the snowball Earth mode.

Accounting for additional climatic variables and processes leads us mod-

els of higher dimension. One of the first 3-dimensional models of glacial-

interglacial cycles was proposed by Saltzman and Sutera [39] (see Section 3.1).

This system governs the dynamics of the continental and marine ice masses

and it introduces a variable called the mean ocean temperature. The pe-

culiar behaviour of this model is caused by a special type of bifurcation: a

so-called saddle-node bifurcation on an invariant cycle (SNIC), which was not

observed in 2-dimensional climate models considered above. We have shown

that near the SNIC bifurcation the equilibrium is extremely excitable: even

small random noise can cause large-amplitude spike oscillations. As a result,

the stochastic system exhibits a complex dynamic mode with the alternation

of SASO and LASO. This oscillatory regime is also followed by a transition

from order to chaos.

This scenario turns out not to be an exclusive feature of the model (3.1).

Indeed, the SNIC bifurcation associated with this scenario is also observed in

another 3-dimensional model (3.7) describing the interactions of CO2 concen-

tration, ice mass, and deep ocean temperature (see Section 3.2).

Note that proximity to SNIC bifurcation is not the only cause of stochas-

tic excitability. In the 3-dimensional climate models considered here, another

scenario of the stochastic excitability is possible near the saddle-node bifurca-

tion of limit cycles, in the zone, where the initial unforced deterministic model

exhibits the stable equilibrium regime only. Such a scenario was discussed in

Section using the example of the Paillard and Parrenin [79] climate model.

This model describes the dynamics of the global ice volume, the area of the

Antarctic continental ice sheet, and the atmospheric concentration of carbon

dioxide. For this model, we show a mechanism of the stochastic excitation

of LASO in the zone of stable equilibria when the parameter approaches the

saddle-node bifurcation point.

At the scale of glacial-interglacial cycles, it is also essential to take into

account the forcing caused by the oscillations in Earth’s orbital parameters

and obliquity. In the literature this forcing is commonly referred to as Mi-

lankovitch, orbital, or astronomical forcing. Concretely, the forcing can be

expressed as a series of harmonics. It can produce oscillations in ice volume in

models which, without forcing, have only one fixed point (strong interpretation

of Milankovitch theory), or it can synchronise oscillations in models which, in

absence of forcing, present a limit cycle (weak interpretation). Both cases may

be conducive to the emergence of strange non-chaotic attractors, though in

practice, they have mainly been observed in synchronization scenarios. The

strange non-chaotic attractor presents different specificities: it is associated

with aperiodic trajectories (even though the forcing is quasi-periodic), trajec-
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tories are generally stable, but the attractor and repellers may be arbitrarily

close to each other. Consequently, there are episodic moments when a very

small perturbation may produce a long transient orbit. The effect of even

a small amount of stochastic forcing is to excite these long transient orbits,

which produces a form of unpredictability. For these reasons, such systems are

said to have a regime which is intermediate between order and chaos.

Hence, the interaction of stochasticity and nonlinearity generates a great

diversity of possible behaviours, which can be decoded and understood by ref-

erence to the bifurcation structure. Some of the models that we have studied

may appear overly conceptual, and they may no longer appear to be an ade-

quate description of glacial-interglacial cycles. The key point, however, is that

they describe mechanisms which, at one point, have been considered to be rel-

evant (e.g., the relationship in sea ice and ocean temperature), and which may

still have some relevance at other time scales. For example, the Dansgaard-

Oeschger oscillations, which we briefly introduced in Chapter 1, involve the

ice sheets, the sea ice, and ocean circulation. Hence, we are confident that the

description of various possible modes of climate dynamics and mechanisms

of their occurrence obtained here will become a beachhead for understand-

ing higher-dimensional models, which take into account new physical factors

and more adequately reflect both available and newly obtained paleoclimate

records.

On this basis, we may formulate what we consider to be our main con-

clusion. The nonlinear dynamics is capable of describing a great variety of

evolutionary climate scenarios even in the framework of existing dynamical

models. However, it is more realistic to consider that stochastic effects will

inevitably affect several model parameters simultaneously. These stochastic

forcings are caused by various physical processes, which have different inten-

sities. We found that such effects may easily generate quite complex stochas-

tically induced phenomena, such as random walks of the phase trajectories,

abrupt transitions between attractors, formation of mixed-mode oscillations,

appearance of phantom attractors and chaotization. Of course, simulating

such complex dynamics could potentially require costly simulations on super-

computers. It is, in practice, impossible to investigate dynamic models taking

into account various noises in all coefficients of the equations. For this reason

we focus here on possible stochastic responses of the system to the presence of

noise in one of the coefficients (in a specific process). Yet, the results that we

obtained demonstrate the appearance of evolutionary climate scenarios that

have no analogues in the framework of the deterministic theory. We therefore

argue that the conceptual understanding of climate oscillations needs be ex-

panded to account for these stochastic scenarios. From this point of view, the

results obtained should not be taken as accurate prediction of the temporal
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behaviour of the main variables of the models under consideration. They show

possibilities associated with the existence of stochastic forcings.
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Appendix A. Stochastic

sensitivity technique

As a general dynamical model, consider the system of nonlinear Ito’s stochastic

differential equations

ẋ = f(x) + εσ(x)ξ(t), (5.1)

where x is an n-dimensional vector of the system state, f(x) is an n-vector

function, σ(x) is an n × m-matrix function, ξ(t) is an m-dimensional white

Gaussian noise with parameters Eξ(t) = 0, Eξ(t)ξ>(τ) = δ(t − τ)I, I is an

identity m×m-matrix, and ε is a scalar parameter of the noise intensity.

Let the corresponding deterministic system (5.1) with ε = 0 have an expo-

nentially stable attractor A. This means that for the small neighbourhood D

of the attractor A, there exist positive constants K and l such that for any so-

lution x(t) of the deterministic system with the initial condition x(0) = x0 ∈ D
the following inequality holds

||∆(x(t))|| ≤ Ke−lt||∆(x0)||

for t > 0. Here, ∆(x) = x− γ(x) is a vector of a deviation of the point x from

the attractor A, γ(x) is a point of the attractor A that is nearest to x.

Under stochastic disturbances, random solutions xε(t) of system (5.1) form

some flow. Dynamics of this flow is defined by the probability density function

ρ(t, x, ε). This function is governed by the following Kolmogorov–Fokker–

Planck equation [130,131]

∂ρ

∂t
= Lρ, Lρ =

ε2

2

n∑
i,j=1

∂2

∂xi∂xj
(aijρ)−

n∑
i=1

∂

∂xi
(fiρ), aij = [σσ>]ij.

In many cases, a character of the transient process is unessential and the

main interest of the study is focused on the stable stationary regime. In these

circumstances, in the stochastic analysis one should use the stationary density

function ρ(x, ε). This function is a solution of the stationary Kolmogorov–

Fokker–Planck equation

Lρ = 0.

The direct solution of this equation is very difficult from the technical point of

view even for the two-dimensional case. In these circumstances, asymptotics
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and approximations are actively used. In this range, an asymptotics based on

the quasipotential

v(x) = − lim
ε→0

ε2 ln ρ(x, ε)

is well known [132].

The quasipotential v(x) is related to some variational problem of the mini-

mization of the action potential and governed by the Hamilton–Jacobi equation(
f(x),

∂v

∂x

)
+

1

2

(
∂v

∂x
, σ(x)σ>(x)

∂v

∂x

)
= 0

with conditions v|A = 0 , v|D\A > 0.

An analytical solution of this equation is still difficult problem in general

case. However, main features of the behavior of the quasipotential v(x) near

the attractor A can be described by the following quadratic approximation

[133]

v(x) ≈ 1

2
(∆(x),Φ(γ(x))∆(x)), Φ(x) =

∂2v

∂x2
(x).

Let us discuss constructive methods of such approximations when equilibria

and cycles are attractors of the initial deterministic system.

Stochastic sensitivity of equilibria

Let the attractor of the deterministic system be an exponentially sta-

ble equilibrium x̄. In this case, the quadratic approximation v(x) ≈ 1
2
(x −

x̄,Φ(x̄)(x − x̄)) of the quasipotential gives an asymptotics of the probability

density function ρ(x, ε) in a neighbourhood of the equilibrium x̄ in the follow-

ing Gaussian form

ρ(x, ε) ≈ N exp

(
−(x− x̄,W−1(x− x̄))

2ε2

)
, W = Φ−1(x̄).

Here, parameters of the Gaussian distribution are defined by the mean value

x̄, the covariance matrix C = ε2W , and the normalization constant, N . The

matrix W is a solution of the equation

FW +WF> + S = 0, (5.2)

where F =
∂f

∂x
(x̄) is the Jacobi matrix of the deterministic system at the

equilibrium point x̄ and S = σ(x̄)σ>(x̄).

Because of the exponential stability of the equilibrium x̄, the eigenvalues

of the Jacobi matrix F have negative real parts, and the matrix equation (5.2)

has a unique solution W . The matrix W is called the stochastic sensitivity

matrix of the equilibrium x̄ in system (5.1) [134]. The stochastic sensitivity

matrix W allows us to approximate the mean-square variation of the stationary

distributed solution xε(t) of system (5.1) as follows

E(xε(t)− x̄)(xε(t)− x̄)> ≈ ε2W.
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Stochastic sensitivity of limit cycles

Consider now the case when the attractor of the deterministic system is an

exponentially stable limit cycle defined by a T -periodic solution x̄(t), x̄(t+T ) =

x̄(t). Denote by Πt a hyperplane which is orthogonal to the cycle at the point

x̄(t). For the Poincare section Πt in the neighbourhood of the point x̄(t), the

quadratic approximation

v(x)|Πt ≈
1

2
(x− x̄(t),Φ(x̄(t))(x− x̄(t)))

of the quasipotential gives the asymptotics ρt(x, ε) of the probability density

ρ(x, ε)|Πt in the following Gaussian form

ρt(x, ε) = N exp

(
−(x− x̄(t),W+(t)(x− x̄(t)))

2ε2

)
, W (t) = Φ+(x̄(t)).

Parameters of the Gaussian distribution are defined by the mean value x̄(t)

and covariance matrix C(t) = ε2W (t). Here, the sign ”+” means the pseu-

doinversion [135].

For the exponentially stable limit cycle, the matrix function W (t) is a

unique solution of the boundary problem [136]

Ẇ = F (t)W +WF>(t) + P (t)S(t)P (t)

W (0) = W (T )

W (t)r(t) ≡ 0.

(5.3)

Here,

F (t) =
∂f

∂x
(x̄(t)), S(t) = σ(x̄(t))σ>(x̄(t)), r(t) = f(x̄(t)), P (t) = Pr(t)),

and Pr = I − rr>/r>r is a projection matrix onto the hyperplane that is

orthogonal to the vector r.

The T -periodic matrix W (t) defines the stochastic sensitivity of the limit

cycle x̄(t), t ∈ [0, T ] in the stochastic system (5.1).

In two-dimensional case, the stochastic sensitivity matrix W (t) can be writ-

ten in the form

W (t) = m(t)p(t)p>(t),

where p(t) is a normalized vector that is orthogonal to f(x̄(t)).

The scalar function m(t) > 0 is a T -periodic stochastic sensitivity function

of the limit cycle. The function m(t) is a unique solution of the following

boundary problem [134]

ṁ = a(t)m+ b(t), m(0) = m(T ) (5.4)
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with the T -periodic coefficients

a(t) = p>(t)(F>(t) + F (t))p(t) , b(t) = p>(t)S(t)p(t).

Here, an explicit formula for the solution m(t) of the problem (5.4) can be

derived:

m(t) = g(t)(c+ h(t)),

where

g(t) = exp

 t∫
0

a(s)ds

 , h(t) =

t∫
0

b(s)

g(s)
ds, c =

g(T )h(T )

1− g(T )
.

The maximum value M = maxm(t), t ∈ [0, T ] can be used in the stochastic

analysis of the forced limit cycle as a whole. We callM the stochastic sensitivity

factor of the cycle.
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Appendix B. Mahalanobis

metrics and method of

confidence domains

The stochastic sensitivity matrix of the attractor is an asymptotics which al-

lows us to describe quantitatively a dispersion of random states around the

attractor in the stochastically forced system. To visualize this spatial prob-

abilistic distribution of random states around the attractor, the confidence

domains can be used.

First, consider a case when the stable equilibrium x̄ is an attractor of the

unforced n−dimensional deterministic model. LetW be a stochastic sensitivity

matrix of this equilibrium. Around the equilibrium x̄, one can construct a

confidence ellipsoid: (
x− x̄,W−1(x− x̄)

)
= ε2K(P ), (5.5)

where P is a fiducial probability. The function K(P ) is an inverse function to

P (K):

P (K) =
Φn(K)

Φn(∞)
, Φn(K) =

√
K∫

0

e−
t2

2 tn−1dt.

The equation (5.5) of the confidence ellipsoid can be rewritten as

d2
M(x, x̄) = ε2K(P ),

where

dM(x, x̄) =
√

(x− x̄,W−1(x− x̄)).

The function dM(x, x̄) can be considered as the Mahalanobis distance [137].

Surfaces on which dM(x, x̄) is constant are confidence ellipsoids that are cen-

tered about the mean x̄. So, the stochastic sensitivity matrix W defines a new

statistic metrics related to the randomly forced system (5.1).

In one-dimensional case (n = 1),

P (K) =

√
2

π

√
K∫

0

e−
t2

2 dt = erf

(√
K

2

)
, erf(x) =

2√
π

x∫
0

e−t
2

dt,
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and the corresponding confidence interval (x̄ − r, x̄ + r) is defined by r =

ε
√

2µ erf−1(P ), where the stochastic sensitivity µ can be found from the ex-

plicit formula:

µ = − σ2(x̄)

2f ′(x̄)
.

For the 3σ-rule, it holds that r = 3ε
√
µ.

In two-dimensional case (n = 2),

P (K) = 1− e−
K
2 , K(P ) = −2 ln(1− P ).

The equation of the confidence ellipse with x̄ as an origin can be written as

β2
1

λ1

+
β2

2

λ2

= ε2K(P ), β1 = (x− x̄, v1), β2 = (x− x̄, v2). (5.6)

Here, λ1, λ2 are the eigenvalues, v1, v2 are the normalized eigenvectors of the

stochastic sensitivity matrix W , and β1, β2 are coordinates of this ellipse in

the basis of the eigenvectors v1, v2. These eigenvectors define directions of the

confidence ellipse axis, and λ1, λ2 define the values of corresponding semi-axis.

In three-dimensional case (n = 3),

P (K) =

√
2

π


√
K∫

0

e−
t2

2 dt−
√
Ke−

K
2

 = erf

(√
K

2

)
−
√

2K

π
e−

K
2 .

The confidence ellipsoid can be written in the following form

β2
1

λ1

+
β2

2

λ2

+
β2

3

λ3

= ε2K(P ), (5.7)

where β1 = (x − x̄, v1), β2 = (x − x̄, v2), β3 = (x − x̄, v3) are coordinates

of this ellipse in the basis of the eigenvectors v1, v2, v3, and λ1, λ2, λ3 are the

eigenvalues of the stochastic sensitivity matrix W .

Consider now a case when the attractor of the deterministic system is an

exponentially stable limit cycle defined by a T -periodic solution x̄(t). Let W (t)

be the stochastic sensitivity matrix of this cycle in the randomly forced system

(5.1). In this case, the Mahalanobis distance is defined by the function

dM(x, x̄(t)) =
√

(x− x̄(t),W+(t)(x− x̄(t))).

In two-dimensional case, this Mahalanobis distance has a simple representation

dM(x, x̄(t)) =
‖x− x̄(t)‖√

m(t)
,

where m(t) is the solution of the boundary problem (5.4) and ‖·‖ is a standard

Euclid distance.
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Using the stochastic sensitivity function m(t), one can construct a confi-

dence band around the deterministic cycle in the following way. Let Πt be a

line that is orthogonal to the cycle at the point x̄(t). The boundaries x1,2(t) of

the confidence band on this line can be found in an explicit parametric form:

x1,2(t) = x̄(t)± ε
√

2m(t) erf−1(P )p(t). (5.8)

It is worth noting that confidence domains are sufficiently simple and evident

models for the spatial description of the distribution of random states near

the deterministic attractors. The method of confidence domains based on

the stochastic sensitivity functions technique was successfully applied to the

study of noise-induced effects in dynamical models from the various domains

of science [138–142].
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