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Abstract
In the well-known context of the population ageing and the need for pensions
funding, life annuity products occupy a very important place as natural hedging for
policyholders against longevity risk. In particular, the difficulties of pay-as-you-go
schemes and the need to provide funding for dependency of elderly are important
factors motivating the study of life annuity as solutions to these. However, these
products pose many actuarial and financial challenges, especially given their long-
term nature. A precise analysis of these products indeed requires taking into
account diverse risks such as interest rate, equity, longevity over periods of time
that can be counted in decades depending on the nature of the product.
The new European solvency regulations require financial operators to provide a
minimum capital upon their insurance commitments, called the solvency capital.
Determining this capital in an adequate way is particularly difficult for long-term
products. The objective of this thesis is on the one hand, to propose suitable
single-risk and multi-risks models, based on investment strategies for assessing
the solvency capital of an insurer selling annuities. This will thus ensures regular
payment of benefits to the policyholders while they are alive, in accordance with
both the regulation requirements and the type of annuity traded. We achieve this
for classical annuities such as lifetime, deferred and term annuities. On the other
hand, another objective is to study the valuation and actuarial design of life annuity
products and to propose new methods of risk sharing between policyholders and
insurers. To do so, risk-linked annuity products will be analysed, particularly the
group self-annuitization with a focus on interest rate, equity and longevity risks.
For that purpose, stochastic time continuous models of interest rate and mortality
will be developed and applied along with in deep numerical and sensitivity studies.
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Chapter 1

Introduction

During the past decade, pension funds and insurers have faced numerous problems
as consequences of the continuous increase of population life expectancy, commonly
called longevity risk. For pension funds and insurance companies, this is materia-
lized by the uncertain level of the future liability compared to the expected value.
Many authors have proposed models to assess and hedge the longevity risk and
its effect on pension funds or life insurance (Blake and Burrows, 2001; Fung et al.,
2019; Antolin, 2007). This thesis is all about annuity products for which we will
measure the risks, design new annuities and value these latter. In other words, we
focus on the insurer point of view through the solvency measurement and then on
the policyholders point of view through the design and valuation of new products.
In the actuarial jargon, annuity products refer to series of payments made at equal
interval of time as long as annuitants are alive (Fromenteau and Petauton, 2017).
Annuity contract is made of two periods : accumulation period going from contract
inception till retirement age and decumulation period going from the retirement
until the end of the contract. When the affiliation age is equal to the retirement
age, then the implied annuity is an immediate annuity. We consider three classical
annuities (which are the most popular products for which the (equity, interest rate,
longevity) risks are borne by the insurer) :

• The lifetime annuity provides annual benefits to the policyholder from her
or his retirement date and as long as she or he is alive.

• The deferred annuity refers to an annuity product for which the payment
stream starts few years (we denote it by d) after the retirement and until
the death of the policyholder. For instance, if the retirement time is given
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by T , the payment stream will start at time T + d, [T, T + d] represents the
deferred period.

• The term annuity provides a stream of payments for a predetermined number
of years (we denote it by d′) as long as the annuitant is alive.

The objective of this thesis is on the one hand, to propose suitable single-risk
and multi-risks models, based on investment strategies for assessing the SC of
an insurer selling annuities. This will thus ensures regular payment of benefits
to the policyholders while they are alive, in accordance with both the regulation
requirements and the type of annuity traded. We achieve this for classical annuities
because determining the SC in an adequate way is particularly difficult for such
long-term products. On the other hand, another objective is to study the valuation
and actuarial design of life annuity products and to propose new methods of risk
sharing between policyholders and insurers. To do so, risk-linked annuity products
will be analysed, particularly the group self-annuitization with a focus on interest
rate, equity and longevity risks. For that purpose, stochastic time continuous
models for interest rate and mortality will be developed and applied along with
in-deep numerical and sensitivity studies.

1.1 General perspective about solvency issue
Due to the longevity risk, insurers were obliged to increase the annuity prices in
order to be more confident with regard to their solvency towards the policyholders.
In order to protect the policyholders against such fluctuations of insurance pro-
duct prices, the legislator has settled regulatory rules called the Solvency II (SII)
(see EIOPA, 2014a; EIOPA, 2014b). The particularities of the SII framework are
based on its risk-sensitivity and its multi-risk factors; the latter means that it rec-
ognizes the fact that insurers face different kinds of risks, such as equity, longevity
and interest rate risks. SII is structured in three pillars respectively related to
the quantitative requirement, qualitative requirement and market transparency.
A quite important issue for pension funds and life insurances while fulfilling the
first pillar is to compute the so-called solvency capital (SC ) as defined in the SII
regulation. This issue is a consequence of the long term structure of life insur-
ance products such as annuities. By solvency capital, we refer to the amount the
insurance company or the insurer has to put aside in order to be solvent until
the end of the contract and in accordance with the SII regulation. Hence, high
SC could imply expensive life insurance products and could increase policyholders
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and insurer reluctance to respectively buy and sell life insurance products. There
is thus a need to find attractive products and/or strategies for both policymakers
and policyholders so as to enhance life insurance market in accordance with SII.
Motivated by the difficulties of pay-as-you-go schemes as well as the need to pro-
vide funding for dependency of elderly, we study in this thesis life annuity products
as solutions on both insurer and policyholder viewpoints. However, these prod-
ucts pose many actuarial and financial challenges, especially given their long-term
nature. A precise analysis of these products indeed requires taking into account
diverse risks such as interest rate, equity, longevity or even inflation risks (see
Brown et al., 2000) over periods of time that can be counted in decades depending
on the nature of the product.
In the first part of this work we base on the SII framework in order to value the
SC on an insurer selling a classical annuity first with respect to longevity risk
and with respect to equity, interest rate and longevity risks. In the literature,
few authors have proposed substantiated mathematical definitions of the solvency
capital requirement (SCR) (see Liebwein, 2006, Kochanski and Karnarski, 2011;
Barrieu et al., 2012; Devineau and Loisel, 2009; Ohlsson and Lauzeningks, 2009).
Christiansen and Niemeyer, 2014 presented some similarities and differences of the
various interpretations and definitions of the SCR. Pfeifer and Strassburger, 2008a
showed that some SCR methods proposed and discussed in the literature have sta-
bility problems. Devolder, 2011, has proposed an alternative way to estimate the
SC based on a maturity approach for long term guarantees in life insurance. The
latter is characterized by the long term horizon used to value the capital instead
of the one year maturity as stated by SII. This methodology has the advantage of
taking into account in the solvency level the duration of the benefits. This idea
has been developed afterwards by Devolder and Lebègue (Devolder and Lebègue,
2016; Devolder and Lebègue, 2016; Devolder and Lebègue, 2017) for the case of
a single cash flow as in a pure endowment insurance product, within a Brownian
motion driven market. One of the purpose of this thesis is to extend this approach
for classical annuities products with multiple cash flows. In other words, in the
maturity approach applied to annuities, the SC is assessed upon the very last ben-
efit (at the end of the contract); i.e by assuming the solvency of the insurer during
the passed years. This will allow us to measure the risks borne by an insurer selling
such products. In this regard, equity risk is represented by the random outcome or
return on a risky investment and the interest rate risk is represented by a stochastic
short rate. Therefore bad investment returns as well as mortality improvements
are borne by the insurer which implies a high SC. For the sake of mitigating these
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risks, insurers tend to increase annuity prices and/or reducing benefit payout of
the annuitants. A way of coping with the high level of SC, high annuity prices
and low annual benefits could be to build suitable investment strategies of both
the premiums and SC or to consider risk sharing annuities, or natural hedging
(see Luciano et al., 2017). Several authors and insurance companies focus on the
issue of SC assessment for life annuity products. Hari et al., 2008 analysed the im-
portance of longevity risk for the solvency of portfolios of pension annuities; they
distinguished two types of mortality risk: the micro-longevity risk, which quanti-
fies the risk related to uncertainty of the time of death, and the macro-longevity
risk, which is due to uncertain future survival probabilities. Olivieri and Pitacco,
2008 investigated rules for evaluating the SC by a portfolio of life annuity to meet
longevity risk. We consider in this thesis the macro-longevity risk in order to mea-
sure the risks borne by an insurer selling annuities as well as to design and value
risk sharing annuities.

1.2 General perspective about annuities’ design
and their valuation

In the policyholder point of view, even though annuities can guarantee they won’t
outlive their resources, people are still reluctant to buy these products. Economists
refer to this problem as the “annuity puzzle”. In this regard, researchers have been
paying attention to solve this puzzle. So far, some explanations have been given
to justify the annuity puzzle such as:

(i) most people prefer to invest their savings in business or account that would
be accessible by their relative in case they die and buying annuity might be
a bad deal for the heirs;

(ii) the fear of not living longer;

(iii) psychology reasons, in fact some retirees don’t understand that annuities is
a guarantee in case they live longer. Retirees seem to consider purchasing
annuity as a gamble where they can die at any time and lose their premium.

Richard H. Thaler demonstrated that the explanation (i) is not always true as a
retiree can decide not to annuitize all his savings and to leave aside a proportion to
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his heirs. The heirs could receive that legacy either immediately or at a later date1.
Explanations (ii) and (iii) seem to be more logical and they implicitly involve the
longevity risk in the sense that they raise the question of how to predict how long
a person will live?
An attempt to solve the annuity puzzle could be to motivating people to purchase
annuities through the design of adequate annuity products for policyholders so
as to mitigate the longevity risk and other inherent risks (such as the equity or
interest rate risks) they might borne. In this regard, we do not focus on the com-
putation of optimal retirement plans (made of annuities and financial assets) as
proposed by Yaari, 1965. We rather consider the annuity part in order to look
for the best annuities for policyholders. Policymakers and researchers have thus
far devoted substantial efforts on the longevity risk issue throughout valuing and
designing risk-linked annuities, in order to protect policyholders against outliving
their resources and protect insurer against possible insolvency or high SC. Even
though risk-linked annuities expose the policyholder to risks, they also attempt
to generate higher benefits than classical annuities. A range of such risk-linked
annuities currently exists and can further be built so as to cope with the risks in
both the insurer and policyholders point of view.
Basically, risk-linked annuities are obtained based on the idea of the classical annu-
ity with benefits contingent on financial and/or mortality risks. Further annuities
can be derived from the risk-linked annuities by including death benefits and/or
some fixed guarantee features. In the second part of this thesis, we propose a way
to design a range of financial-longevity linked annuities as well as their valuation.
Among risk-contingent annuities we have inflation-linked annuities (Gong and
Webb, 2010); mortality-indexed annuities (Richter and Weber, 2011); longevity-
linked annuities (Denuit et al., 2011). Several annuities were developed for hetero-
geneous and/or homogeneous group annuitants called pooled annuities (e.g Don-
nelly et al., 2014). The main idea behind the pooled annuities is to mitigate the
diversifiable risk within the pool. These pooled annuities are designed based on
the common idea of tontines which consists of a group of annuitants providing
their premiums in a pool administrated by an insurer (see Milevsky, 2014). Fol-
lowing the pooling mechanism, the method and products proposed in this work is
designed for pool of annuitants and allow for risk sharing between the pool and
insurer. These products are obtained by transferring a different proportions of
both the financial and longevity risks to the policyholders. Many authors have

1Richard H. Thaler, The Annuity Puzzle, Economic View June 4, 2011. https://www.
nytimes.com/2011/06/05/business/economy/05view.html accessed on November 21, 2019.

https://www.nytimes.com/2011/06/05/business/economy/05view.html
https://www.nytimes.com/2011/06/05/business/economy/05view.html
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developed products in which the risks are either fully borne by a group of annu-
itants (see Milevsky, 2014; Piggott et al., 2005; Qiao and Sherris, 2013; Boyle et
al., 2015) or shared between these latter and the insurer. Concerning risk sharing
products, Chen et al., 2019 have developed a product for which the whole risk is
borne by the group of annuitants during the first years following the retirement
and the insurer bears the whole risk afterwards. They referred to their product
as tonuity which is in fact a combination of tontine and classical annuity. Denuit
et al., 2015 revisited the problem of sharing the longevity risk between a pool of
annuitants and the policymakers while focusing on the deferred annuity. Denuit
et al., 2011 designed longevity-index annuities allowing for longevity risk sharing
between a group of annuitants and the insurer. Using an approach contrary to
that of the group self-annuitization (GSA) (see Piggott et al., 2005), they pro-
posed annuities where annuitants only bear the non-diversifiable mortality risk
and the insurer bears remaining risks. Hanbali et al., 2019 focused on the sys-
tematic longevity risk in long-term insurance businesses where they proposed a
framework for risk sharing between insurer and annuitants using dynamic equiv-
alence principle. They proposed viable risk-sharing conditions that improve the
trade-off between the solvency of the insurer and a fair price for policyholders for
a pure endowment contract.
We proposed more general risk sharing methods that can be applied on deferred
annuities. They can also be used to designed a longevity-linked, financial-linked
as well as the financial-longevity-linked annuities. Our products are inspired by
the group self-annuitization (GSA) introduced by Piggott et al., 2005 where they
developed a formal analysis of the payout of the GSA which can be seen as a
financial-longevity risk-pooling fund. The GSA is a scheme which allows annu-
itants to pool a part or their whole retirement fund with other annuitants with
a view to afford benefits during retirement through a risk sharing arrangement
within the pool. They proposed a detailed procedure of assessing the payout while
considering the mortality changes of the pool. They expressed the payouts re-
cursively and depending on the adjustment factor which depends on the ratios of
survivorship. The main feature of the GSA is that unlike the classical annuity, the
whole risk is borne by the group of annuitants whereas the insurer bears no risk.
Some authors have proposed modified version of the GSA and developed detailed
analysis of particular cases of GSA (see Qiao and Sherris, 2013; Boyle et al., 2015).
Since GSA shifts the whole risk to the group of annuitants, whereas the insurer
selling classical annuity borne the whole risks; then these two products can then be
seen as extreme cases. One of the question we address in Part 2 is what happens in
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between these two extreme annuities. Hence, we design and value a set of annuities
moving from the classical annuity to the GSA and we refer to the obtained set of
annuities as the (complete) risk-sharing GSA. Our motivation of using the GSA
comes from its recursive structure and from the fact that financial risk is separated
from longevity risk. Following the approaches of Chen et al., 2019 and Chen and
Hieber, 2016, we compare the (complete) risk-sharing GSAs with both classical
annuity and GSA using the expected discounted lifetime (constant relative risk
aversion) utility.
The question following the design of a product is how to value the said designed
product? To answer this question, we need the following three ingredients2

(a) The net interest rate used to discount the annuity benefit. This could be
given by the current interest rate available on the market or an interest rate
guaranteed by the insurer. In the literature, it is common to do a sensitivity
study with respect to the net interest rate;

(b) The base mortality table representing the company or the insurer’s estima-
tion of the population’s mortality. It can be given by the best estimate of
the real mortality, a mortality table proposed by the regulator or a table
constructed by the company and in line with the regulator requirements;

(c) The mortality improvement assumption or the assumed trend of the real
mortality of the population which represents the mortality model adopted
by the insurer or the company. The mortality model is given by any existing
model such as Vasicek, Hull-White, Lee-Carter, CIR model and so on.

Many authors have proposed pricing methods and formulae for annuity prod-
ucts. In this regard, the pricing aspects of equity-indexed annuities was explored
by Tiong, 2000. Using the Esscher transform, Tiong developed a closed pricing
formula of equity-indexed annuities. Bacinello et al., 2011 proposed a unifying
framework for the valuation of the variable annuities using least squares Monte
Carlo methods. They used three pricing approaches : the static or passive, the
dynamic or active and the mixed approaches (see Milevsky and Salisbury, 2006).
We proposed in the second part of this work the valuation formulae of the (com-
plete) risk-sharing GSAs using the risk-neutral approach. Valuing these contracts
allows us to value the GSA as this have not yet been valued in the literature.

2source: The Messenger Risk Management Newsletter written by Matthew
Daitch, http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/
Pricing-a-Single-Premium-Immediate-Annuity.aspx (accessed on 24 March 2020).

http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/Pricing-a-Single-Premium-Immediate-Annuity.aspx
http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/Pricing-a-Single-Premium-Immediate-Annuity.aspx
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A common difficulty usually encountered in practice or in research while dealing
with long-term contracts such as annuities is the numerical aspect; i.e. the sim-
ulation methods. Several authors have proposed efficient and robust simulation
methods in this regards (see Bauer et al., 2010; Bauer et al., 2012; Hainaut et
al., 2007). The simulation method used in this work is the nested Monte carlo
simulations.

1.3 Summary of the main contribution and
structure of the thesis

Our contribution to the literature is to measure the solvency of an insurer selling
classical life annuity products using maturity approach. In Part I, we propose a
profitable attractive investment strategy used to assess the SC of an insurer for
a classical annuity with respect to the equity, interest rate and longevity risks.
Our investment strategy comes as a modified version of those proposed by Bauer
and Weber, 2008. In fact, in their paper they assessed the risk of an annuity
given an investment strategy. The investment strategy they used is a fully lia-
bility hedging strategy whereas we propose here a partial (or temporal) liability
hedging strategy that we called the m guaranteed cash flows strategy. The at-
tractiveness of our strategy goes on the one hand toward the policyholder as it
guarantees with a hundred percent a given number (m) of benefits. Notice that
the attractiveness (for the policyholder) in terms of consumption has been studied
by Hanewald et al., 2013, where they used the optimal consumption to find the
optimal retirement plan in a portfolio made of zero-coupon bond (ZCB), life an-
nuity, longevity bond and group self-annuitization. On the other hand toward the
insurer in the sense that it shows that adding a SC could be seen as great invest-
ment as it gives a considerable IRR even though the SC is high. We compare the
IRR using the mean-variance analysis. In line with Bauer & Weber, we find that
the more benefits we guarantee the low SC we have for some annuities. We also
find that there exits at least one number of guaranteed benefit that gives a lower
SC as compare to the no-guaranteed (i.e m = 0) and fully guaranteed benefits
(i.e m is equal to the total number of payouts). We further find that our strategy
gives a better IRR as compare to that of Bauer & Weber in the sense that ours
gives a concave IRR with respect to the number of guaranteed benefits. In the
second part, our contribution is to proposed novel risk-sharing products defined as
family of annuities moving from classical annuity to GSA. Furthermore, by valuing
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our products, we value at the same time the GSA which has not been valued yet.
As result, we find that there exist (complete) risk-sharing GSA yielding better
expected lifetime utility and lower value compared to both GSA and classical an-
nuity. We further find conditions that guarantee the fair valuation of our products.

The structure of this work is as follows: the first part concerns the SC valuation
and the second part concerns the valuation and design of risk-sharing annuities.
In Part I, Chapter 2 present the valuation of the SC of an insurer selling one of
the three classical annuities defined above, with respect to the longevity risk. We
refer to the obtained model as the longevity model. A more complete model is
developed in Chapter 3 where we consider equity, longevity and interest rate risks.
In Part II, we design a novel risk-sharing annuities and compare it with both GSA
and classical annuity in Chapter 4. The actuarial valuation of the obtained risk-
sharing annuities is proposed in Chapter 5 and the conclusion follows in Chapter
6.





Part I

Solvency measurement





Chapter 2

Longevity Risk Measurement of
Life Annuity Products1

2.1 Introduction

The main goal of this chapter is to measure the impact of the continuous increase
of population life expectancy (called longevity risk) borne by an insurer selling a
classical annuity (see Ngugnie Diffouo and Devolder, 2020). The longevity risk,
materialized by the uncertain survival probabilities of insurer compared to the ex-
pected value is nowadays a major issue for pension funds and insurance companies.
Many authors have proposed tractable stochastic mortality models with age de-
pendent drift and volatility (see Fung et al., 2019). In this chapter we consider the
macrolongevity risk, which is due to uncertain future survival probabilities which
was analysed by Hari et al., 2008. This longevity risk will then be measured on the
point of view of an insurer selling one of the three annuities. This longevity risk
will be captured by force of mortality following the Hull–White model for which
we assume a Gompertz model mean reversion level. The measurement method
use consists of computing the amount an insurer has to put aside in order to be
solvent until the end of the contract in accordance with the SII regulation (called
SC) using the maturity approach introduced by Devolder and Lebègue, 2016. This
will allow us to compare the three annuities using numerical analysis on both the
insurer and the policyholders point of view. To do so, we consider a market fully
hedged against any other risks differently from the longevity risk; this is called
the longevity model. As there is no investment or financial risk considered in this

1Published in Risks
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chapter, we assume the SC and initial premium are invested in a risk-free asset,
say the discount bond with constant short rate. A common difficulty usually en-
countered both in practice or in research while dealing with such a problem is the
numerical results; i.e., the simulation methods. The simulation method used in
this thesis is the nested Monte carlo simulations and in order to be consistent with
SII framework, we used the VaR as the risk measurement and considered both
constant and variable confidence levels.
The goal of this chapter is to propose a deep comparative analysis of the three
annuities with respect to the longevity risk generated by each, first from the pol-
icyholders point of view, and secondly from the insurer’s viewpoint. From the
policyholders viewpoint, we compare both the values of benefit payouts and the
single premium, whereas from the insurer’s viewpoint we compare the SC obtained
for each product. Furthermore, we show by computing the IRR that adding a SC
could be seen as an investment for shareholders, and we compare the three annu-
ities through their IRR, based on the mean-variance approach.
In the following sections, we present the detail features of our model in Section 2.2;
the theoretical results are presented in Section 2.3 where we develop the formulas
of the SC for a deferred annuity. Section 2.4 presents the numerical results and
the comparative remarks drawn from numerical results. These comparisons are
made from the insurer, shareholder and policyholder viewpoints, with respect to
the annuities, the confidence levels and the values of the IRR. Finally, Section 2.5
gives a brief conclusion.

2.2 The Model’s Features

In this section, we focus on the general framework for our model. Before discussing
the used products and the mortality model, we provide an overview of the financial
market and the assumptions needed subsequently. In this chapter, we assume that
the insurance company is fully hedged against any other risks except the longevity
risk: the implied model is called the longevity model. We assume that the only
asset available in the market is a risk-free asset: a discount bond Pf (t, n), t ≤ n;
that is, the value at time t of a financial instrument that pays a unit of currency
at maturity time n. Therefore, in order to focus (or measure) only the longevity
risk, we consider the discount bond to be defined using a deterministic short rate
process {rt}; i.e., Pf (t, n) = e−

∫ n
t
rsds (see Vasicek and Fong, 1982).
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2.2.1 Mortality Model
This subsection presents in detail the mortality model used to capture the poli-
cyholders’ real survival probabilities. We develop the theory behind the chosen
model; this allows us to explicitly express both the liability of the insurer and the
annual benefit received by the policyholders.
As extension of the approach presented in Devolder and Lebègue, 2016 (where the
force of mortality is modelled using the Ornstein–Uhlenbeck process), and following
Zeddouk and Devolder, 2019, we model the force of mortality of the cohort by the
Hull–White process. Note that our approach can be extended to other continuous
mortality models. The dynamic of the force of mortality is then defined by (see
Lichters et al., 2015)

dµx0
t = (θ(t)− aµx0

t )dt+ σdW µ
t , for all t ≥ 0, (2.1)

where a > 0 is the mean reversion rate; σ > 0 is the absolute volatility of µx0
t ∈ R;

{W µ
t } is a Brownian motion; x0 is the affiliation age; and θ(t) represents the mean

reversion level function. We suppose that θ(t) is given by the Gompertz mortality
model (see Gompertz, 1825)

θ(t) = AeBt,

where A > 0 is the baseline mortality and B > 0 is the senescent component.
Using an arbitrary starting time t ≤ s, from short calculations we get

µx0
s = µx0

t e
−a(s−t) + A

a+B

(
eBs − eBt−a(s−t)

)
+ σe−as

∫ s

t
eaudW µ

u ; (2.2)

this represents in fact the force of mortality at time s of an individual initially of
age x0 and alive at time t (i.e., age x0 + t). Let us now consider the survival index
at time s of an individual initially of age x0, alive at time t and surviving s − t
more years defined by the random variable

Ix0+t
s−t = e−

∫ s
t
µ
x0
u du = eX(t,s) = em

x0 (t,s)+σx0 (t,s)Z ,

with Z being a normally distributed random variable with mean zero and variance
one denoted by Z → N (0, 1). One now can show that

X(t, s) = −
∫ s

t
µx0
u du = mx0(t, s)− σ

a

∫ s

t

(
1− e−a(s−u)

)
dW µ

u (2.3)

X(t, s) → N
(
mx0(t, s), (σx0(t, s))2

)
⇒ X(t, s)−mx0(t, s)

σx0(t, s) → N (0, 1),
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where

mx0(t, s) = µx0
t (e−a(s−t) − 1)

a
− AeBt

B(a+B)
(
eB(s−t) − 1

)
− AeBt

a(a+B)
(
e−a(s−t) − 1

)
and

(σx0(t, s))2 = σ2

a2

s− t− 1− e−a(s−t)

a
−

(
1− e−a(s−t)

)2

2a

 .
We will measure only the longevity risk borne by the insurer; to that end we
consider a cohort of N0 retirees; i.e., x0 = 65. Hence, the number of survivors at
any time t ∈ [0, n] is given by

Nt = N0I
65
t ,

Note that n is the duration of the contract. Let us denote by p65(t, s) the (physical)
probability for a policyholder of age 65 and alive at age 65 + t, to survive until age
65 + s for s ≥ t

p65(t, s) = E
[
I65
s

I65
t

|Ft
]

= A65(t, s)e−B65(t,s)µ65
t , (2.4)

where Ft is the sigma algebra at time t, it encodes the information available at t.

B65(t, s) = 1
a

(
1− e−a(s−t)

)
and

A65(t, s) = exp
(
H(t, s)− σ2

2a2 (B65(t, s)− (s− t))− σ2

4aB65(t, s)2
)

;

where
H(t, s) = AeBt

a+B

[
1− eB(s−t)

B
+B65(t, s)

]
.

p65(t, s) is a measurable at time t. Moreover, we assume that p65(0, t) represents
the mortality table guaranteed by the insurer at the contract inception; that is the
best estimate of the survival index (from t = 0); note that I65

0 = p65(0, 0) = 1.
From this, we can then value the liability of the insurer at any time of the con-
tract. Note that if n ≥ 0 is the duration of the contract, then a d < n-year
deferred annuity can be seen as a generalization of both the lifetime and the term
annuities. Indeed, setting d = 0, we obtained a lifetime annuity and for a fixed
d′ < n, substituting n by d′ and setting d = 0 we obtained a d′ term annuity.
Hence, we develop in this chapter a detailed analysis for d-year deferred annuity
for which we can deduce the cases of both lifetime and term annuities using the
given transformations.
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Remark 1. Note that alternative mortality model could be considered as well. We
would expect similar results if we consider a different continuous mortality model
calibrated with the same mortality data whereas considering a discrete mortality
model (e.g Lee-Carter model) could change the results we obtained with the HW
model described above.

2.2.2 Insurer’s Liability
The contract consists of an initial cohort of N0 individuals paying each an amount
A0 to an insurer at inception t = 0 in order to receive an annual amount of R during
a period depending of the annuity purchased. We then denote the cohort’s single
premium by A0 = N0A0 and the cohort (random) annual benefit by Rt = NtR;
note that the cohort initial benefit is denoted by R = N0R.
It is important to stress that throughout this chapter in order to design the mor-
tality model, we consider an initial cohort of retirees at inception t = 0 for which
we model the longevity risk by a stochastic mortality model (the HW model). In
other words, we measure the longevity risk only on the decumulation period (i.e.,
the period after the retirement) and we do not consider the accumulation period
(i.e., period before retirement). The parameters of the HW mortality model are
supposed to be known from inception and they are valid only for the initial co-
hort from which they have been computed. This statement is equivalent to the
hypothesis of no model and parameter risks considered all along this chapter.
The value of the cohort’s annual benefit for a d-year deferred annuity is defined
based on an initially guaranteed life table p65(0, t) assumed to describe the cohort’s
mortality on the decumulation period. Moreover, we assume the value of the
cohort’s premium invested on the discount bond until time t = d to be equal to
the value at time t = d of the discounted annual benefits. The insurer total liability
at time d with respect to the initially guaranteed life table p65(0, t) for a deferred
annuity is given by the expected value of the liability of the insurer. That is

E
[
Ld
]

= E
 n∑
j=d

RNjPf (d, j)
 =

n∑
j=d

RN0p65(0, j)Pf (d, j), (2.5)

Ld represents in fact the value at time d of the overall benefits invested in a discount
bond that the insurer has to pay to the policyholders alive at each payment time
according to the initially guaranteed survival probability p65(0, j), j = 1, ..., n in
the case of a deferred annuity, and n is the duration of the contract. Therefore,
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we assume the single premium A0 to be defined as A0 = Pf (0, d)E
[
Ld
]
, where

E
[
Ld
]
is given by Formula (2.5); this implies that E

[
Ld
]

= A0
Pf (0,d) , and hence the

individual annual benefit R is given by

R = A0/Pf (0, d)∑n
j=d p65(0, j)Pf (d, j)

. (2.6)

The formula of the annual benefit of a d′ < n-year-term annuity is obtained just
by substituting n by d′ and setting d = 0; for a lifetime annuity we only set
d = 0. Next we compute the SC at any time t ∈ [0, n] of the contract for the three
annuities (lifetime, deferred and term annuities) in order to compare the obtained
numerical results. To this end, we develop the formulae of the SC in the next
section for d-year deferred annuity. As mentioned previously, we consider a cohort
of N0 retirees initially of age x0 = 65.

2.3 Solvency Capital Valuation

In this section, we present the formulae of the SC for a d-year deferred annuity
form which we can deduce the formulae of a d′-year term and lifetime annuities.
As reminder, both the initial premium and the SC are invested in a discount bond.
In order to measure the SC, we adopt in this chapter a more general view than
the standard approach proposed by the SII. Taking into account the very long
term horizon of this kind of product, we use a maturity approach and not a one
year measure, as stated by the SII. We value the SC by the use of a risk measure
applied to the final surplus so as to measure the global longevity risk borne by the
insurer. This method has been used for other products, as proposed by Devolder
and Lebègue, 2016. More precisely, in order to take into account the multi period
character of the product, we consider the static risk measure VaR as our risk
measurement tool with an annual confidence level of α = 99.5% as stated by SII
(see EIOPA, 2014a, EIOPA, 2014b). Then, we assume the temporal independence
of events and we consider constant and equal yearly confidence level such that for
a n-maturity contract, the overall confidence level is αn = (99.5%)n. We further
consider a fixed constant confidence level of α = 99.5%. These two values of the
confidence level are used for simulation purposes in order to highlight the impact
of the confidence level considered on the level of SC.
The use of VaR in this chapter and in Chapter 3 is mostly motivated by the fact
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that it is recommanded in the SII regulation 2. Even though some other showed
stability problems within the general setup while computing the SC using the VaR
(see Pfeifer and Strassburger, 2008b), this risk measurement remains widely used
both in the literature (see Hejazi and Jackson, 2017; Karam and Planchet, 2013)
and in practice.

We consider a policyholder buying a 0 < d < 45-year deferred annuity at inception
time t = 0. We will value the SC of the insurer within the deferred and the
payment intervals . It is important to stress that the payment stream of a given
policyholder begins if and only if he or she is alive at time t = d; i.e., at age 65+d.
Additionally, the individual annual benefit for a d-year deferred annuity is given
by Formula (2.6). Note that we have two computational intervals: the deferred
period [0, d) and the payment period [d, n).

2.3.1 Deferred Period
Our approach of assessing the SC consists of measuring the risk of having a negative
final surplus at time t = n. By final surplus, we refer to the amount of assets that
exceeds the liability of the insurer at the end of the contract. Mathematically, let

- A(t, n) = At
Pf (t,n) be the fund value at the end of the contract, where the

available asset at time t is defined as

At = A(0, t) = A0P
−1
f (0, t); (2.7)

- L(t, n, d) = ∑n
j=dRNjP

−1
f (j, n) be the value at time n of the liability of the

insurer;

- FS(t, n, d) = A(t, n)− L(n, d) is then the final surplus of the contract.

Therefore, it follows from our maturity approach for the valuation of the SC that
at the computational time t, the SC satisfies the following condition.

Pt
[
FS(t, n, d) + SC(t, n)

Pf (t, n) < 0
]
≤ 1− αn−t. (2.8)

One can show that in this period, for any t ∈ [0, d) the definition of the SC given
by Formula (2.8) is equivalent to

Pt
[(
At + SC(t, n)

)
P−1
f (t, n) < L(t, n, d)

]
≤ 1− αn−t,

2Article 101 stipulates that the SCR corresponds to the Value-at-Risk with a confidence level
of 99.5%.
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where At is given by (2.7) and the value at term of the liability is given by

L(t, n, d) =
n∑
j=d

RNjP
−1
f (j, n) =

n∑
j=d

RNd I
65+d
j−d P−1

f (j, n)

=
n∑
j=d

RNt I
65+t
d−t I65+d

j−d P−1
f (j, n),

where for any t ∈ [0, d)

- Nt is the real number of survivors at time t;

- I65+t
d−t is the survival index of an annuitant initially aged 65, alive at age 65+t
and living at least up to age 65+d. This term guarantees that a policyholder
in the cohort must be alive at the end of the deferred period;

- I65+d
j−d guarantees that benefits are paid if the annuitant is alive at each pay-
ment time on the payment period.

2.3.2 Payment Period
On this other interval the SC is valued with respect to the remaining liabilities at
term which are the unpaid benefits yearly deduced from the asset and evaluated
at term. Moreover, we have to take into account the already paid benefits; i.e., the
benefits paid up to time t. This is achieved using the fact that information up to
time t is known, meaning that the number of survivors at t Nt is known. Hence,
the SC satisfies the following

Pt
[
AtP

−1
f (t, n) + SC(t, n)P−1

f (t, n) < L′(t, n, d)
]
≤ 1− αn−t, (2.9)

where L′(t, n, d) represents the total unpaid benefits at n and it is given by

L′(t, n, d) =
n∑

j=t+1
RNjP

−1
f (j, n) =

n∑
j=t+1

RNt I
65+t
j−t P−1

f (j, n).

Note that for j ≤ t, Nj is known as the realized number of survivors; moreover,
the asset is given by

At = A0P
−1
f (0, t)−

t∑
j=d

RNjP
−1
f (j, t).

The second term of the right hand side represents the value at t of the benefits
paid up to time t.
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Note that concerning a d′-year-term annuity, the payment stream begins at in-
ception, i.e., age x0 = 65, and ends after d′ years, with d′ < n. Therefore, the
formulae of a d′-year-term annuity can be obtained from the previous formulae
by setting n = d′ and d = 0. For a lifetime annuity, we only set d = 0 in the
previous formulae, and for both a term and a lifetime annuities, we have only one
computational period: the decumulation period, which is equal to the payment
period.

2.4 Numerical Results
Some graphical representations and some numerical values of the SC with respect
to the computational time t, the length of the deferred period d and the term d′

in the case of lifetime, deferred and term annuities, are presented in this section.

2.4.1 Simulation Framework
The simulation of the longevity SC is made in two steps: we first calibrate the
HW model (see Lichters et al., 2015), and secondly, we make use of the Monte
Carlo (MC) simulations of the VaR (see Glasserman, 2013). For the calibration
of the Hull–White model (2.1), we need some real data and a calibration method.
To do so, we consider the unisex projected generational life table of an individual
aged 65 in 2015 for an ultimate age of 110 in 2060 available on the IA|BE life table
proposed by Antonio et al., 2015. Using this data, we calibrate the HW model
(2.1) by the use of the mean squared error (MSE); and we obtain the following
parameters in Table 2.1.

Table 2.1: Calibration parameters of the HW model using MSE.

µ65
0 A B a σ MSE

0.0105677 0.0005749505 0.1304207503 0.0014965354 0.0083530153 0.000303644

The obtained calibration parameters of the force of mortality fit the IA|BE data
well, since the MSE= 0.000303644.
As for the MC simulations, we use the nested MC simulations (see Bauer et al.,
2012). We consider a cohort of size N0 = 1000 all aged 65 at the affiliation date
t0 = 2015. Each participant pays A0 = 1000$ to the insurer at t0 in order to receive
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a constant amount R depending on the annuity bought. We further consider the
following parameters

α = 0.995; A0 = 1000$; d = 16; d′ = 15
N0 = 1000; n = 45; αT = αn = 0.995n; r = 0.01

where n represents the duration of the contract, and assuming n = 45 means we
consider an ultimate age of 110. As for the term annuity, we suppose d′ = 15; this
means the contract will end when the policyholder is aged 80 with a maximum of
16 possible benefits. For the deferred annuity, we take d = 16; i.e., the payments
start when the annuitants are aged 65 + d and ends when they are aged 110.
Moreover, as the force of mortality at a time t depends on the force of mortality
at time t − 1, we consider for simulation purposes the correlation between two
consecutive survival indexes I65

j and I65
j+1, j ∈ [0, n − 1]; this implies that the

liability at time n for a d-year deferred annuity computed at inception takes the
form

L(n) =
n∑
j=d

R em
x0 (0,d)+σx0 (0,d)Z(d)

em
x0 (d,j)+σx0 (d,j)Z(j)

P−1
f (j, n),

where by the use of Cholesky decomposition (see Cheuk-Yin and Siu-Hang, 2011),
we have

Z(j) = ρ(j − 1)Z(j−1) +
√

1− ρ2(j − 1)Zj;
where the Zj’s are normally distributed random variables with mean zero and
variance one. Note that Zj is independent of Z(j−1); Z0 = 0; Z(1) = Z1 and
ρ(j) = corr[X(0, j), X(0, j + 1)] where X(t, s) is given by Formula (2.3).

2.4.2 Results and Comparative Remarks
In order to guide their decision making, we provide the insurer as well as the
shareholders with information about the impact of the longevity risk on each of
the three annuities. Moreover, for annuitants, we provide a comparative study
on both the benefits and the initial premium for the three annuities with respect
to some parameters. This could help annuitants decide which product to buy,
depending on their risk aversion. This comparison is made based on both the
level of the annual benefit (for a fixed single premium) and the level of the single
premium (for constant annual benefits), which are different from one annuity to
another. From the insurer’s viewpoint, the comparison is made using the level
of the SC of each annuity and the internal rate of return on the SC invested by
shareholders.
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Regarding the policyholders on the one hand, considering a fixed single premium
A0 = 106$ for each of the annuities, we obtained from some computations that the
amount of annual benefit R differs from one annuity to another annuity following
the relations

R(lifetime annuity) < R(term annuity)
R(lifetime annuity) < R(deferred annuity).

In fact, this can be seen in Figure 2.1 and can be justified as follows.

• R(lifetime) < R(term): This comes from the fact that n > d′, where A0

is shared for the n+ 1 benefits for the lifetime annuity, whereas A0 is shared
for the d′ + 1 ≤ n benefits for term annuity.

• R(lifetime) < R(deferred): Similarly, the unique premium A0 is dis-
tributed into n + 1 benefits for a lifetime annuity, whereas it is distributed
into n+ 1− d < n benefits for the deferred annuity.

Moreover, one can show that R(term annuity) = R(deferred annuity) if and
only if

d′∑
j=0

p65(0, j)Pf(0, j) =
n∑
j=d

p65(0, j)Pf(0, j). (2.10)

Using the fact that
n∑
j=0

=
d′∑
j=0

+
n∑

j=d′+1
=

d−1∑
j=0

+
n∑
j=d
,

one can show that relation (2.10) can be rewritten as

n∑
j=d′+1

p65(0, j)Pf(0, j) =
d−1∑
j=0

p65(0, j)Pf(0, j).

This is shown in Figure 2.1 where we observe that there exit some values of d
and d′ such that the benefits of deferred and term annuities are equal. Note that
the comparison of R(deferred) and R(term) depends on the values of d and d′
respectively. In fact R(deferred) increases with d, whereas R(term) decreases
when d′ increases.
On the other hand, we consider constant annual benefits for each of the annuities
assumed to be

R = A0
L∑n

j=0 p65(0, j)Pf (0, j)
= 49875.62$,
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where A0
L = 10002$ and n = 45. The comparison will follow from Figure 2.1

which represents both the annual benefit per unit of initial premium with respect
to d and d′, and the variation of the single premium of a term annuity (A0

T ) and
the deferred annuity (A0

D) for fixed benefit R = 49875.62$ with respect to d and
d′.

Comparison of benefits Comparison of the single premiums

Figure 2.1: Annual benefits for equal premiums and premiums for equal annual
benefits.

We observe on the right graph of Figure 2.1 that A0
T and A0

D have opposite
behaviors; in fact A0

T converges to A0
L, whereas A0

D converges to 0, and they
coincide at d = d′ = 9.886453. In particular, for d′ = 15 and d = 16 we have
A0

T (15) = 669377.1$ and A0
D(16) = 171054.4$; it follows that for equal level of

annual benefits, a 16-year deferred annuity is cheaper than a 15-year immediate-
term annuity, which in turn is cheaper that an immediate lifetime annuity.
Concerning the insurer’s viewpoint, the behavior of the SC is presented in the
following graphs

• Lifetime annuity: Figure 2.2 shows how the SC changes with respect to the
computational time t > 0 for different values of the confidence level and the
short rate. We observe that the SC decreases when the short rate increases.
We can also see that the SC decreases as t increases. Moreover the values of
SC obtained with a variable confidence level are smaller than those obtained
with a constant confidence level.
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Note that a negative value of SC means no additional capital is required
from the insurer; that is, SC = 0. In other words, SC ≤ 0 means that the
insurer is solvent with the considered confidence level without any additional
capital. Moreover, the almost negative curves in Figure 2.2 comes from the
assumption on the number of survivors at computational time t. In fact,
before and up to the computational time t, we assumed the best estimate of
the number of survivors and this assumption underestimates the longevity
risk at each time t.

Figure 2.2: Lifetime annuity; SC(t)/At for different values of the short rate r and
α.

• Deferred annuity: Below are presented the graphs of the SC with respect
to t; to d on the deferred period in Figure 2.3, and with respect to d on the
payment period in Figure 2.4 respectively.

From Figure 2.3 it comes out that the SC decreases for both values of α and
slightly decreases with respect to r. Furthermore, for a constant confidence
level we obtain a higher value of SC; it decreases for smaller values of d and
increases for larger values of t. Moreover, the SC have a convex form with
respect to d and with respect to t. This implies that there exist optimal
values of d and t that minimize the SC of the insurer.

The convexity observed in Figure 2.3, comes from two facts. (1) We take
advantage of the investment during the deferred period and the low longevity
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risk for small values of the deferred time, which allow the SC to decreases
(as the longevity risk is less important at younger ages). (2) We have high
longevity risk at old ages, thus high deferred time implies high risk and high
benefit; these increase the SC. Consequently, when (1) is important, the
SC starts to decrease and when (2) is important, SC increases. Therefore,
there exists a deferred time d for which we have a better balance between
the longevity risk at old ages and the investment return during the deferred
period.

Regarding Figure 2.4, it can be seen how the SC decreases with d in the
payment period. Moreover, we find that the SC is strictly negative with
respect to t > d and for any value of r and α.

SC(t)/At: for d=16 SC(d)/At: at t=0

Figure 2.3: Deferred annuity; SC(t) and SC(d) respectively for different values of
the short rate r and α on the deferred period.
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Figure 2.4: Deferred annuity; SC(d)/At at t=d for different values of the short
rate r and α on the payment period.

• Term annuity: Figure 2.5 below shows the SC with respect to t and to
both d′.
It comes out that the SC decreases with t > 0 and r. Moreover, the SC
is strictly positive and increases with d′ for constant α and takes a concave
form when d′ increases for variable values of α.

SC(t)/At: for d’=15 SC(d′)/At: at t=0

Figure 2.5: Term annuity; SC(t) and SC(d’) respectively for different values of the
short rate r and α.
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From these figures, one could infer that the product requiring the lower amount
of SC does depend on the time at which the said SC is computed. For example,
for variable α and t = 7, SC/At worth zero for the lifetime annuity, it is worth
2% for the term annuity and it is zero for the deferred annuity. Hence, one might
say that the term annuity requires the most SC at that computational time. Thus
it will be harsh to point a particular product to be the best for an insurer, as the
comparison has to be made at same points in time. Table 2.2 below shows the
values of the SC at inception (i.e., at t = 0) for d = 16 d′ = 15 and r = 1%.

Table 2.2: Comparison of the annuities at t = 0.

SC/A0 Constant α Variable αn

Lifetime annuity 0.1403933 0.03822095
Term annuity 0.08871471 0.04748606

Deferred annuity 0.1467654 −0.01588651

It follows that the constant confidence level gives higher SC compared to the
variable confidence level. This can be explained by the fact that the required
probability of default with a constant α is larger than that of the variable α.
Moreover Table 2.2 also shows that for variable α, the deferred annuity requires
the lesser SC followed by the lifetime annuity. For constant α, the deferred annuity
requires the most SC followed by the lifetime annuity. Note that the negative SC
obtained for the deferred annuity means that the insurer has no additional capital
to put aside in order to guarantee his solvency; i.e., SC = 0. Values of SC/A0 for
immediate annuity are present in Table A.1 in Appendix A.1.
Note that an alternative way to compare these products could be from the share-
holder point of view: one could assess the ability of a given annuity to generate
benefit from the SC invested on it. This ability can be assessed by the internal rate
of return (IRR) on the SC (see Gronchi, 1986). Hence, having this rate greater
than the short rate indicates an advantageous investment for shareholders, whereas
a IRR less than the short rate implies an investment with loss compared to the
risk-free investment. Moreover, for IRR = 0, the shareholder will just take back
the initial capital invested at t = 0, and the worst case (i.e., loosing the whole
initial capital) would be when IRR= −1. By definition, the SC satisfies

Pt
[(
At + SC(t, n)

)
P−1
f (t, n) < L(t)

]
≤ 1− αn−t.
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The possible benefit at the end of the contract t = n called the final surplus is a
random variable given by

χ(w) = At + SC(t, n)
Pf (t, n) − L(t). (2.11)

It follows that the IRR, denoted by τ(w) is a random variable satisfying the fol-
lowing

SC(t, n) (1 + τ(w))n−t = χ(w); (2.12)

thus, the IRR on the SC is given by

τ(w) =
(

(χ(w))+

SC(t, n)

) 1
n−t

− 1, (2.13)

where (x)+ = max(x, 0).

It is important to stress that the IRR is computed if and only if the SC is strictly
positive. For comparison purpose, Figure 2.6 and Table 2.3 respectively show the
density and the numerical values of mean and variance of the IRR for the three
annuities computed at t = 0, for d = 16 and d′ = 15.

Based on the mean-variance criterion, it follows from Table 2.3 that at inception
the deferred annuity using constant α could yield higher IRR. But considering
the variable α, the comparison will depend on the level of the shareholder’s risk
aversion, since he could decide not to invest an SC (referring to a deferred annuity)
or to invest his SC on a lifetime annuity. As regards the term annuity, it seems
to be less profitable, since it has the lower mean and the highest variance for a
constant α. Note that the values of the IRR for a deferred annuity using a variable
confidence level cannot be computed, since the SC in this case is strictly negative.
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Figure 2.6: Density of the internal rate of return for α = 99.5% and r = 1%.

Table 2.3: Mean and Variance of the internal rates of return (IRRs) for the three
annuities.

Constant α Variable α

Mean Variance Mean Variance

Lifetime annuity 0.008855 9.5191× 10−5 0.00980413 0.00036868
Term annuity 0.00554107 0.00088871 0.0040751 0.0022854

Deferred annuity 0.0182561 0.000117404 / /

From the observations on both the level of the annual benefits and the level of the
SC, we can draw the following concluding remarks.

(i) On the policyholder side, buying a term annuity will provide the annuitant
with a good level of annual benefits but he will not be fully hedged against
the longevity risk, whereas buying a deferred annuity will give a better level
of annual benefits until death. In these cases, the longevity risk will partly
be borne by the policyholders. The lifetime annuity gives the smallest level
of annual benefits and fully hedges the annuitants against the longevity risk.
Furthermore, for a fixed unique premium (respectively annual benefit), we
can always find a pair of deferred time and term time such that the deferred
and the term annuities provide the same annual benefits (respectively, the
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same unique premium). Note that combining successive term annuities could
be a way to fully protect the annuitant against longevity risk, but in this
case, the policyholder will face a pricing risk. The latter refers to the risk of
rising annuity prices as a consequence of a high survival probability.

(ii) On the insurer side, we can see that a positive SC is not always bad for
an insurer, since it could yield a return even greater than a simple risk-free
investment. Thus, the choice of the product to invest in depends on the risk
aversion of the shareholders. Furthermore, identifying the product with the
higher SC is subject to the computational time.

Even though we cannot draw up a strict comparison of these products by pointing
out the best from both insurer and annuitant viewpoints, the results obtained here
can be seen as a backing on which the two parties can base their choices.

2.4.3 Simulation performance
To obtain the numerical results (i.e figures and tables) in this chapter, we per-
formed MC method with 500000 simulations.

• Figure 2.2 representing the case of lifetime annuity took approximatively 36
minutes.

• Concerning deferred annuity, the first graph of Figures 2.3 took 35 minutes
whereas the second graph and 2.4 took 5 minutes to be completed.

• For the term annuity, the first graph of Figure 2.5 took approximatively 23
minutes and the second graph took 3 minutes whereas each value of Table
2.2 took less than 1 minute same as the values of Table 2.3.

2.5 Conclusions
The main goal of this chapter was first to evaluate the level of the SC of an insurer
with respect to some significant parameters for three different annuities (lifetime,
deferred and term annuities), and secondly to draw up some comparative remarks
from the obtained numerical results. The single (longevity) risk model proposed
in this chapter is characterised by the HW uncertainty.
From numerical analysis, we found that when the short rate increases, the SC
decreases and the convex form obtained for the deferred annuity implies that there
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exists a computational time and a deferred time that minimize the SC of the
insurer. These results are some extensions of those obtained by Devolder and
Lebègue, 2016 wherein they considered a lump sum at retirement instead of series
of payments. From the obtained results, we found that the choice of a product on
the annuitant’s side strongly depends on annuitant’s expectations about their life
time as well as on the level of benefit they could need. On the insurer side, the
choice could depend on the level of the SC, but we also showed that providing a
SC could yield quite good returns. The latter has been explained based on the
mean-variance criterion of the IRR of the three products. We also found that the
SC computed with a constant confidence level of 99.5% is larger than the result
obtained with a time-dependent confidence level. Moreover we observed that the
term annuity does not fully hedge the annuitant against longevity risk, as the
annuitant could still be alive after the end of the contract. In order to protect the
policyholders against the longevity risk using term annuities, we could consider
successive term annuities in future research.
In the following chapter, we develop a multi-risks model where we consider equity,
interest rate and longevity risks. We will then value the SC of the insurer with
respect to these risks and for the three annuities.



Chapter 3

Financial-Longevity risk
measurement of annuity products

In this chapter we measure the SC of an insurer within a multi risks market. In
fact we combine the risk measure in Chapter 2 along with the interest rate and
equity risks; the obtained model is called financial-longevity model. In this case
the single premiums paid by the policyholders (in order to purchase an annuity)
along with the SC are invested in a financial market. The equity risk is then
represented by the uncertain return on a risky investment and the interest rate
risk is represented by a stochastic short rate. In order to mitigate the financial
risks, insurers could think of building suitable investment strategies. Herein we
assume that the premium is invested on risky assets and for simplicity purpose, we
assumed the SC to be invested on a stochastic discount bond. As in the previous
chapters, we follow the maturity approach proposed by Devolder and Lebègue,
2016 so as to value both SC and IRR. Concerning the longevity risk we use the
mortality model defined in Section 2.2. Note that the models developed in this
chapter is very helpful not only for annuity trading, but also for investment decision
making of insurers. Meaning that in this work we provide the insurer with enough
information regarding his risks while selling a given annuity, so as to facilitate his
choice on the most solvency capital consuming product.
Our model is based on a profitable attractive investment strategy used to assess
the SC of an insure for a given annuity product regarding the equity, interest rate
and longevity risks. This investment strategy comes as a modified version of the
one proposed by Bauer and Weber, 2008. In fact, in their paper they assessed
the risk of annuity given an investment strategy. The investment strategy they
used is a fully liability hedging strategy whereas we propose here a partial (or
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temporal) liability hedging strategy. The attractiveness of our strategy goes on
the one hand toward the policyholder as it guarantees with a hundred percent
a given number of benefits; the attractiveness (for the policyholder) in terms of
consumption has been studied by Hanewald et al., 2013. On the other hand toward
the insurer in the sense that it gives great IRR even though the SC is high. The
goal of this chapter is then to point out the most solvency capital consuming
product between the three annuities, within our investment strategy. This chapter
proposes a general model from which one could derived the longevity model (i.e
Chapter 2), the equity model, as well as models with strategy moving from the
zero to the fully guaranteed strategies.
The structure of this chapter is the following. In Section 3.1 we present the features
of the equity-(interest)rate-longevity model as well as the model’s settings and
hypothesis. In other words we present the financial market and the investment
strategy. We use the mortality model defined in Section 2.2.1 and the liability is
defined in Section 2.2.2. In section 3.2, our main theoretical results are presented,
i.e the formulas of the SC for a deferred annuity. Finally in Section 3.3 we compare
the obtained numerical results and we draw up some remarks and the conclusion
follows in the last section.

3.1 Model’s features
We base our work on the Black-Scholes setting (see Black and Scholes, 1973
and Merton, 1973) with stochastic short rate within a filtered probability space
(Ω,F ,P,F). In this chapter, we assume the insurance company is exposed to the
equity, interest rate and longevity risks.
In order to be consistent with the SII regulation, we consider the static risk measure
VaR as the risk measurement tool . In this context, the safety level recommended
by SII on a one year horizon is α = 99.5% 1. Taking into account the long-term
aspect of annuity products, here we will measure the risk directly at maturity
and not on a one-year time. Therefore, we have also to adapt the safety level,
based now on T years instead of one year. In order to define this new confidence
level function, we start with the natural overall confidence α = (99.5%)T ( see for
instance Devolder and Lebègue, 2016, Devolder, 2011). Moreover, we avoid having
too low confidence level (which arises when T is large) by defining a minimum

1Article 101 stipulates that the SCR corresponds to the Value-at-Risk with a confidence level
of 99.5%
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confidence level α0 such that the confidence level function never goes below α0.
Hence the confidence level function is given by

α(T ) = max
(
αT , α0

)
, (3.1)

where α = 99.5% and T is the length of the risky period. Note that if α0 = α

then we obtained the SII safety level of α(T ) = 99.5%. We assume independence
between the equity and the longevity risks; between the interest rate and the
longevity risks but dependence between the equity and the interest rate risks.
In the following subsections, we present respectively in detail the financial market
framework, the mortality model, the liability of the insurer as well as the invest-
ment strategy.

3.1.1 Financial market
We assume that the financial market is made of a money market account B, a stock
S and discount bonds P . We assume that there are no dividends, no transaction
costs and no taxes. Following the Black-Scholes model, we define the stock by a
constant drift (µ ∈ R), constant volatility (σs ∈ R∗+); regarding the money market
account and the discount bonds we consider a stochastic interest rate {rt}. As we
are now facing negative interest rates and since this is a practical study, we consider
a famous interest rate model: the Vasicek model. In other words, we define the
interest rate as an Ornstein-Uhlenbeck process with the following dynamic under
the real measure P

drt = b(c− rt)dt+ σrdW
r
t , (3.2)

where b, c, σr, rt ∈ R with b, σr > 0 and W r
t being a Brownian motion on the

physical probability space. Note that alternative models could be considered as
well. The dynamic of the money market account is then given by

dB(t) = rtB(t) dt ,

for t ≥ 0 and with B(0) = 1.
Denote by Fr = (F rt )t≥0 the natural filtration of W r

t and for a fix maturity T , we
denote by Q the risk-neutral measure of F rT and following the Girsanov theorem
(Girsanov, 1960) we have

dQ
dP

= exp
(
λrW

r
T −

1
2λ

2
rT
)
, (3.3)
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where λr ∈ R represents the market price of interest rate risk. Notice that Formula
(3.3) only describes the risk neutral measure with respect to the short rate and it
is used to value the coupon bond. We do not consider the market price of risk for
the stock as in this chapter, the used model is defined within the physical measure.

One can show that the value at time t ≥ 0 of a zero-coupon bond (ZCB) that pays
a unit of currency at maturity time s ≥ 0 with s ≥ t (i.e the discount bond) is a
random variable given by (see Vasicek and Fong, 1982)

P (t, s) = EQ
[
B(t)
B(s) |F

r
t

]
= Ar(t, s)e−Br(t,s)rt , (3.4)

where EQ is the expectation under measure Q, with

Ar(t, s) = exp
[(
c− λrσr

b
− σ2

r

2b2

)
(Br(t, s)− (s− t))− σ2

r

4bBr(t, s)2
]

and
Br(t, s) = 1

b

(
1− e−b(s−t)

)
.

From the Ito formula, we obtain the following dynamic of the discount bond

dP (t, s) = (rt − λrσrBr(t, s))P (t, s)dt− σrBr(t, s)P (t, s)dW r
t . (3.5)

As for the stock, let {W s
t }t∈N be a Brownian motion under the physical probability

measure P; the stock satisfies the following stochastic differential equation (SDE)

dSt = µStdt+ σsStdW
s
t ,

with S0 = 1. One can show that the value at a given time t ∈ R+ of a unit invested
on such stock is given by

St = S0e

(
µ−σ

2
s

2

)
t+σsW s

t .

We assume dependence between the stock and the interest rate, i.eW s
t is correlated

with W r
t with ρ = corr(W s

t ,W
r
t ) being the correlation parameter.

3.1.2 Investment strategy
We consider that the premium received by the insurer from the policyholders is
invested in the financial market described above. Our model consists of different
investment strategies depending on the level of hedging. We consider two invest-
ment strategies. These strategies have no effect on the level of the benefits, but
rather have effect on the assets.
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Constant proportion proportion strategy without guaranteed

Denote by A0 the single premium paid by a policyholder, then following our de-
scribed financial market a constant proportion xs ∈ [0, 1] of A0 is assume to be
invested in the stock St, a proportion xp ∈ [0, 1] invested in the long term bond
P (t, T ) with maturity T > 0 and the remaining proportion (1 − xs − xp) is in-
vested in the money market account B(t) as defined in Section 3.1.1. The case of
time-depending proportions and proportional rebalancing was partly studied by
Devolder and Lebègue, 2016 and can be extended to our setting. Denote by At
the value at time t ≥ 0 of the portfolio made of xs amount of the single premium
A0 in the stock, xp amount in the P (t, T ) and (1− xs − xp) in the money market
account, it follows that the dynamic of At is given by

dAt = xs
dSt
St
At + xp

dP (t, t+ T )
P (t, t+ T ) At + (1− xs − xp)

dB(t)
B(t) At

= ((1− xs)rt + xsµ+ xpλrσrBr(t, t+ T ))Atdt+ xsσsAtdW
s
t

−xpσrBr(t, t+ T )AtdW r
t .

For simplification purpose, let

Br(T ) = Br(t, t+ T ) = 1
b

(
1− e−bT

)
,

one can show that the value at a given time v (v ≥ t ≥ 0) of an investment of the
portfolio during [t, v] is given by

A(t, v) = At exp
[(
xsµ+ xpλrσrBr(T )− 1

2 Y (T )
)

(v − t)
]

× exp
[
(1− xs)

∫ v

t
rudu+ xsσsW

s
v−t − xpσrBr(T )W r

v−t

]
; (3.6)

where
Y (T ) = x2

sσ
2
s + x2

pσ
2
rB

2
r (T )− 2ρxsxpσsσrBr(T ). (3.7)

This constant proportion allocation strategy will be used in the deferred period
and we will use the notation At = A(0, t).

Constant proportion strategy with guaranteed : the m guaranteed
cash flows (mG-cf) strategy

This strategy is the combination of the constant proportion allocation strategy
and a zero-coupon (ZC) strategy.
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Our motivation for this strategy comes from our desire to increase the attractive-
ness of annuity products for the insurer, so as to obtain a product that consumes
less solvency capital for the insurer or gainful for the shareholders as we will show
in Section 4. Following the strategies proposed by Bauer and Weber, 2008 who
considered two strategies : the constant proportion allocation strategy and the lia-
bility hedging strategy, we based on the latter to define a periodic liability hedging
strategy. In fact, instead of considering the liability hedging strategy on the con-
tract duration as they did, we consider it only at the beginning of the contract
and we refer to the obtained strategy as the m guaranteed cash flows. The term
guaranteed here refers to the fact that the first m benefits are not subject to any
risk as they are invested on a risk-free asset and depends on a deterministic life
table. In order to make our strategy understandable, we propose the following de-
tailed strategy for the lifetime annuity that we generalise later on to the deferred
annuity.
To this end, we first remind the structure of the contract considered in this chapter.
As in the previous chapter, the contract considered here consists of a homogeneous
group of retired policyholders buying either a lifetime, deferred or term annuity.
The liability of the insurer is defined as in Section 2.2.2 with the cohort initial
benefit denoted by R = N0R; where the individual benefit R for a d years deferred
annuity is given by Formula (2.6) and

R = A0/Pf (0, d)∑n
j=d p65(0, j) Pf (d, j)

.

Note that Pf (t, s) is the risk-free discount bond defined in Chapter 2 whereas
P (t, s) is the risky bond described by the Vasicek short rate (3.2).

a) Lifetime annuity

Consider an homogeneous initial cohort of N0 policyholders paying a total single
premium of A0 in order to purchase an immediate lifetime annuity for which the
payment stream ends at most at time t = n (in case the policyholder is alive).
Our strategy on the payment period consists of investing the first m benefits (with
0 ≤ m < n) per survivors in a risk-free asset during the period [0,m) and the
remainder last m0 = n + 1 −m benefits are subject to a risky investment during
the whole contract duration [0, n). This strategy is called the m guaranteed cash
flows (mG-cf) strategy. Notice that those m first benefits are assumed to be
equity, interest rate guaranteed and conditionally longevity-guaranteed. In this
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case we have two sub-periods : the guaranteed period [0,m) where the insurer
is conditionally hedged against the risks and the non-guaranteed period [m,n)
where he is exposed to the risks. The difference between these two sub-periods is
that in the guaranteed period the mortality is considered and the benefit payout
does not affect the risky investment whereas on the non-guaranteed period the
mortality is considered and the benefit payout does affect the risky investment.
By equity, interest rate-guaranteed benefits, we mean the benefits which are fully
hedged against both the equity and the interest rate risks; whereas by conditionally
longevity-guaranteed benefits we refer to the benefits fully hedged against longevity
risk under some predefined conditions. This implies that, if the longevity condition
is satisfied, then the insurance company will be 100% solvent for the firstm benefits
(i.e from time t = 0 to time t = m−1) and 0.5% uncertain for the remaining period
[m,n) according to the SII.
The mentioned condition depends on both the policyholders and the insurer; it
is stated at the contract inception and could be for example a given life table,
a given trend such as the average trend of the mortality or the average trend of
the survival and so on. In our case, we consider the best estimate of the survival
index denoted by S65(0, t), where x0 = 65 represents the retirement age of the
policyholders. In other words, for all t ∈ [0,m − 1) the number of survivors at
time t is

Nt = N0S
65(0, t) = N0 E

[
I65
t

]
,

where S65(0, t) is the survival probability of an individual initially aged 65, of
living at least up to age 65 + t following the best estimate of the survival index.
Note that S65(0, ·) = p65(0, ·) and we use different notations just to emphasise that
both could be different. Therefore, the m conditionally guaranteed benefits for a
lifetime annuity evaluated at inception t = 0 is given by

L
(m)
0 =

m−1∑
j=0

R E[Nj] P (0, j) =
m−1∑
j=0

R S65(0, j) P (0, j). (3.8)

This amount of benefits will then be deduced from the unique premium and the
remaining asset will be

C0 = A0 − L(m)
0 , (3.9)

where A0 = A(0, t) is defined by Formula (3.6).

b) Generalization to the deferred annuity
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Here we generalize the mG-cf strategy to a d years deferred annuity as follows.
Considering the same initial cohort as previously, paying the same single premium
for a d years deferred annuity hence we have three sub-periods :

• the deferred period [0, d) where no benefit payout is made but the mortality
is considered;

• the guaranteed period [d, d + m) where the mortality is considered and the
benefit payout does not affect the risky investment: the insurer is hedged
against the financial risks in this period.

• and the non-guaranteed period [d+m,n) where the mortality is considered
and the benefit payout affects the risky investment: the insurer is exposed
to both the financial and mortality risks in this period.

The strategy consists of assessing at time t = 0 the first m benefits (with 0 ≤ m <

n + 1 − d) per survivor invested in a risk-free asset during the guaranteed period
[d, d + m), let’s denote it by L(m)

0 . Note that the remaining m0 = n + 1 − d −m
benefits will be subject to a risky investment (cf. 3.1.2) during the contract duration
[0, n). L(m)

0 will then be deduced from the unique premium A0 and the remaining
premium denoted by C0 will be invested on the portfolio during [0, n] in order to
pay the non-guaranteed benefits. It follows that the m conditionally guaranteed
benefits for a d years deferred annuity evaluated at time t = 0 is given by

L
(m)
0 =

d+m−1∑
j=d

R E[Nj P (0, j)] =
d+m−1∑
j=d

R S65(0, j) P (0, j). (3.10)

The remaining asset at time t = 0 will be

C0 = A0 − L(m)
0 . (3.11)

Figure 3.1 represents the mG-cf strategy for a d years deferred annuity
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Figure 3.1: Illustration mG-cf for deferred annuity.

We observe that for m = 0, the mG-cf strategy is equivalent to the constant
allocation strategy (cf. 3.1.2) since there is no benefit guaranteed. Whereas for
m = n we obtain the liability hedging strategy proposed by Bauer and Weber,
2008.
This formulation of the mG-cf strategy leads to the following question : what to
do if the cohort’s survival does not follow the average trend of the survival during
the guaranteed period? In other words, how would the insurer pay the benefits of
the gap of survivors during the guaranteed period? To answer to this question, we
need to take into account the risk generated by a possible gap of survivors during
the guaranteed period. This risk is evaluated yearly and given by the difference
between the survivors under the real mortality trend (i.e using the survival index)
and the survivors under the best estimate of the survival index (i.e using the
guaranteed mortality table).
In the next section, we present the formulae used to measure the risk borne by an
insurer selling a d years deferred annuity within the mG-cf strategy by computing
the insurer SC.

3.2 Insurer’s solvency Capital
This section shows the main formulae of our model, i.e the formulae of the SC. Re-
call that the first m guaranteed cash flows are evaluated at inception and deduced
from the single premium, the remaining premium is invested on a portfolio and the
SC is invested on a long term bond from the current time t till the supposed end



42 Chapter 3. Financial-Longevity risk measurement of annuity products

of the contract n. Moreover, we value the SC by the use of the static risk measure
VaR with respect to the final surplus for a given annuity. The theoretical analysis
below corresponds to the computation of the SC for a d years deferred annuity of
length n. The corresponding analysis for a lifetime annuity will be obtained by
setting d = 0 and that of a d′ years term annuity by setting both d = 0 and n = d′.
It is important to stress that the parameters of the HW mortality model of a given
cohort are supposed to be known at inception, as they are calibrated from the
cohort life table and these parameters are valid only for the cohort from which
they have been calibrated.
We consider a d < n years deferred annuity for which we have three computational
intervals as described in Section 3.1.2, i.e the deferred period [0, d), the guaranteed
period [d, d + m) and non-guaranteed [d + m,n) period. Note that the following
conditions should be satisfied

0 < m < n+ 1− d;

meaning the number of guaranteed benefits m should be less or equals to the
maximum number of benefits n + 1 − d. Below is given the formula of the SC of
an insurer selling a deferred annuity in each period.

3.2.1 SC during the deferred period
In the deferred period [0, d), the value at inception t = 0 of the m guaranteed
benefits L(m)

0 is given by

L
(m)
0 =

d+m−1∑
j=d

R E[Nj] P (0, j) =
d+m−1∑
j=d

R S65(0, j) P (0, j), (3.12)

where R is the cohort initial benefit given by Formula (2.6) and S65(0, j) is the
best estimate of the survival index. For simplification purpose, let’s denote the
portfolio return by

Asset(t, v) = exp
[(
xsµ+ xpλrσrBr(T )− 1

2 Y (T )
)

(v − t)
]

× exp
[
(1− xs)

∫ v

t
rudu+ xsσsWv−t − xpσrBr(T )W r

v−t

]
; (3.13)

where Y (T ) is given by Formula (3.7). The value at the computational time
t ∈ [0, d) of the remaining asset available for the non-guaranteed benefits is given
by

Ct = C0 Assetobs(0, t) (3.14)
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which is known at time t and where C0 is given by Formula (3.11) and Assetobs(0, t)
is the realised or observed return on the portfolio at time t. In the sequel of this
work, variables with ‘obs’ subscript represent the observed variables.
The value at time n of the remaining m0 = n+ 1− d−m non-guaranteed benefits
deduced yearly from the asset value between time d+m and time n is given by

L′(t, n, d,m) =
n∑

j=m+d
R Nj Asset(j, n)

=
n∑

j=m+d
R Nd+m I65+d+m

j−d−m Asset(j, n)

=
n∑

j=m+d
R Nd I

65+d
m I65+d+m

j−d−m Asset(j, n)

=
n∑

j=m+d
R Nt I

65+t
d−t I65+d

m I65+d+m
j−d−m Asset(j, n).

Note that N obs
t is the observed number of survivors at time t, in other words N obs

j

is known for j ≤ t and Nj is random for j > t. It follows that the risk of possible
gap on survival during the guaranteed period is captured by

L′r(d,m) =
d+m−1∑
j=d

R
(
Nj −N0 S

65(0, j)
)
Asset(j, d+m), (3.15)

where Nj = Nt I
65+t
d−t I65+d

j−d . Hence at any time t ∈ [0, d), the SC satisfies the
following solvency condition at maturity

Pt
[
C(t, n)−Benef2 + SC(t, n)P−1(t, n) < L′(t, n, d,m)

]
≤ 1− α(n− t),

where

a) C(t, n) is the value at n of Ct (i.e Formula (3.14)) and it is given by

C(t, n) = Ct Asset(t, n);

b) Benef2 is the value at n of the benefit gap occurred on the guaranteed
period and added or deduced on the remaining asset. It is computed as

Benef2 = L′r(d,m) Asset(d+m,n),

where L′r(d,m) is given by Equation(3.15);

c) L′(t, n, d,m) is the value at n of the non-guaranteed benefits computed above.
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3.2.2 SC during the guaranteed period
The difference between this period [d, d + m) and the previous period is that
this is a payment guaranteed period as the payments are made but not from the
risky investment; whereas the previous period is just the deferred period where no
payments are made. Hence for a given computational time t ∈ [d, d+m) the value
at n of the non-guaranteed benefits denoted by L′′(t, n, d,m) has to be adjusted
based on the information obtained at time t; we have

L′′(t, n, d,m) =
n∑

j=d+m
R Nj Asset(j, n)

=
n∑

j=d+m
R Nd+m I65+d+m

j−d−m Asset(j, n)

=
n∑

j=d+m
R N obs

t I65+t
d+m−t I

65+d+m
j−d−m Asset(j, n)

where Asset(j, n) is given by Formula (3.13). In this period the possible benefits
gap that might occur during the remaining guaranteed period i.e during the period
[t, d+m), is obtained according to the actual number of survivors. Therefore the
future benefits gap is

L′′r(t, d,m) =
d+m−1∑
j=t+1

R
(
Nj −N0 S

65(0, j)
)
Asset(j, d+m),

where Nj = N obs
t I65+t

j−t with N obs
t observed. The asset value at time t Ct is obtained

based on both the past gaps of survival and the past investment experience and it
is equal to

Ct = C0 Assetobs(0, t)−
t∑

j=d
R
(
I65
obs(j)− S65(0, j)

)
Assetobs(j, t), (3.16)

where I65
obs(j) represents the observed survival proportion at time j ≤ t. Note that

the second term of the right hand side (RHS) for (3.16) is observed and represents
the benefit gap observed before and up to the computational time t. Hence the
SC satisfies the solvency condition

Pt
[
C(t, n)−Benef3 + SC(t, n)P−1(t, n) < L′′(t, n, d,m)

]
≤ 1− α(n− t),

where
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a) C(t, n) is the value at n of Ct (given by Equation(3.16)), i.e

C(t, n) = Ct Asset(t, n),

b) Benef3 is the value at n of the future gap occurring on the remaining guar-
anteed period. It is given by

Benef3 = L′′r(t, d,m) Asset(d+m,n);

c) L′′(t, n, d,m) is the value at n of the non-guaranteed benefits computed
above.

3.2.3 SC during the non-guaranteed period
In the non-guaranteed period [d + m,n), for a given computational time t ∈ [d +
m,n), the SC satisfies the following solvency condition

Pt
[
C(t, n) + SC(t, n)P−1(t, n) < L′′′(t, n)

]
≤ 1− α(n− t), (3.17)

where

a) C(t, n) is the value at n of the asset t Ct. The latter is obtained based
on the gap of survivors during the guaranteed period, the past investment
experience as well as the non-guaranteed benefits paid from time d + m up
to time t. More explicitly, since the information up to time t is known, it
follows that Ct and Nt are known. The value at time d+m of the asset used
for the n− d−m+ 1 non-guaranteed benefits is known and given by

C ′d+m = C0 Assetobs(0, d+m)−
d+m−1∑
j=d

R
(
I65
obs(j)− S65(0, j)

)
Assetobs(j, d+m),

where the second term of the RHS represents the gap of benefits observed
and deduced from the asset during the guaranteed period. It follows that
the asset at time t is given by

Ct = C ′d+m Assetobs(d+m, t)−
t∑

j=d+m
R I65

obs(j) Assetobs(j, t),

where the second term of the RHS represents the non-guaranteed benefits
paid from time d+m up to the computational time t. Therefore we have

C(t, n) = Ct Asset(t, n).
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b) L′′′(t, n) is the value at n of the remaining non-guaranteed benefits yearly
deduced from the asset and it is given by

L′′′(t, n) =
n∑

j=t+1
R Nj Asset(j, n)

=
n∑

j=t+1
R N obs

t I65+t
j−t Asset(j, n).

Note that for m = 0, the mG-cf strategy defined in 3.1.2 becomes the constant
proportion strategy defined in 3.1.2 and in this case the Subsection 3.2.2 does not
exist any more.

3.3 Comparative discussions from numerical
results

For this chapter, we study the effect of some parameters on the SC. For instance,
we make a sensitivity study with respect to deferred time, term time, number
of guaranteed benefits, confidence level as well as ageing. Concerning the ageing
effect, we consider two different cohorts initially aged 65 and 75 respectively.

3.3.1 Simulation framework
To obtain the numerical results of the SC we first calibrate both HW and Vasicek
models given by Formula (2.1) and (3.2). For the HW model, we consider two
generations, i.e an unisex projected generational life table of individual aged x0 =
65 and x0 = 75 with an ultimate age of 110 (available on the IA|BE life table
proposed by Antonio et al., 2015). From this we calibrate the model using mean
square error (MSE); and we obtain the following parameters

µ65
0 and µ75

0 A B a σµ MSE

0.0105677 0.0005749505 0.1304207503 0.0014965354 0.0083530153 0.000303644

0.02633591 0.009698091 0.115573842 0.310552836 0.051888992 0.000145998

Table 3.1: Calibration parameters of the HW model using MSE. Second and third
rows represent the parameters for x0 = 65 and x0 = 75 respectively.
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Concerning the Vasicek models, we estimate the parameters from the European
Central Bank overnight rates 2 using the MLE and we obtain

b c σr

0.6587 0.01039 0.0122

Table 3.2: Parameters of the Vasicek interest rate model.

The market price of interest rate risk is obtained from the 30 years maturity AAA-
rated Euro area central government bonds in September 30, 2019 using the MSE
and we have λr = 0.0897.

Secondly, we use the Monte Carlo (MC) simulations of the VaR (see Bauer et al.,
2012). For this purpose we consider two cohorts of N0 = 1000 annuitants respec-
tively aged x0 = 65 and x0 = 75 at the affiliation time t = 0. Each participant
pays A0 = 1000$ to the insurer at inception in order to receive an amount R dur-
ing the payment period, then A0 = N0A0 = 1000 ∗ 1000$. Moreover, we assume
n = 45, r = 1% and a 15 years term annuity i.e d′ = 15. For the deferred annuity
we assume that the payment starts once the annuitant is aged xd = 81 (called the
deferred age). In other words for the cohort initially aged x0 = 65 we consider a
d = 16 years deferred annuity and for the cohort with x0 = 75 we consider a d = 6
years deferred annuity.

We study the sensitivity of the SC with respect to the confidence level defined in
Section 3.1 and for that purpose we consider the following values of the minimal
confidence level α0 ∈ {85%, 90%, 95%, 99%, 99.5%}. For this values of α0, the
confidence level function (3.1) looks like

2https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_
rates/html/index.en.html, downloaded on the 02/09/2019

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/key_ecb_interest_rates/html/index.en.html
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Figure 3.2: Confidence level function with respect to t and α0.

Concerning the parameter of the stock, we consider the parameters of the geo-
metric Brownian motion calibrated with the MLE (Phillips and Yu, 2009) using
the S&P500 indexes3 from 1871 to 2018. Hence we obtained the drift equals to
µ = 0.058702, the volatility equals to σs = 0.204172 and the correlation between
the stock and the discount bond is ρ = −60%.

3.3.2 Results
In this section some numerical results for each annuity are given in order to provide
sufficient information to insurer so as to guide his trading decision making.

Basic case : lifetime annuity

Table 3.3 shows the sensitivity of SC for a lifetime annuity with respect to ageing,
m and α0. We observe a decreasing trend with the number of guaranteed benefits
m. In others words, for a lifetime annuity, the more benefits we guarantee the
less SC we have. As expected, the less minimum safety level we use, the less SC
we have. Furthermore, unlike the fully guaranteed strategy (i.e m = n), younger
cohort of annuitants leads to a higher SC. Note that when m = n, the obtained
SC reflects both longevity and interest rate risk borne by the insurer.

3http://www.multpl.com/s-p-500-historical-prices/table/by-year, March 7 2019

http://www.multpl.com/s-p-500-historical-prices/table/by-year
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x0 = 65 x0 = 75

m = 0 m = 5 m = n m = 0 m = 5 m = n

α0 = 85% 0.267 0.132 0.0282 0.261 0.115 0.0638

α0 = 90% 0.361 0.198 0.0443 0.344 0.167 0.08624

α0 = 95% 0.5067 0.2987 0.067 0.471 0.241 0.121

α0 = 99.5% 0.893 0.571 0.1384 0.818 0.453 0.2235

Table 3.3: Values of SC/A0 at t = 0 for a lifetime annuity, with xs = 15% and
xp = 25%.

For Comparison purpose, we consider the standard case where m = 0 and α0 =
90%. We choose the non-guaranteed cash flow strategy (i.e m = 0) because it is a
common strategy in the literature and in practice. The choice of α0 = 90% comes
from the fact that the time t for which (99.5%)t = α0 is the most closer to n/2 for
both lifetime and deferred annuities as shown in Figure 3.2.

Deferred analysis

x0 = 65 x0 = 75

m = 0 m = 5 m = n− d m = 0 m = 5 m = n− d

α0 = 85% 0.0282 −0.0432 0.09373 0.1674 0.0551 0.106

α0 = 90% 0.1071 0.00553 0.1344 0.2456 0.0983 0.1425

α0 = 95% 0.228 0.0747 0.2035 0.365 0.1632 0.2011

α0 = 99.5% 0.544 0.2435 0.4015 0.681 0.337 0.3683

Table 3.4: Values of SC/A0 at t = 0 for a d = 16 years deferred annuity, with
xs = 15% and xp = 25%.
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x0 = 65 x0 = 75

Figure 3.3: SC(d)/A0 at t = 0 with m = 5.

Figure 3.3 illustrates the effect of the deferred time d on the SC for both cohorts
with five benefits guaranteed.

• We observe for both cohorts that, the SC has a convex behaviour with respect
to d; meaning that in this case there exists an optimal value of d that min-
imised the SC. This comes from the same justification provides in Chapter
2.

• Moreover, ageing effect increases with d and we have high SC for the older
cohort than for the younger for large values of d. This comes from the fact
that, the longevity risk is more important at advanced ages as also shown
in Table 3.4 where we can observe that the mG-cf strategy yields lower SC
compared to both non-guaranteed (m = 0) and fully guaranteed (m = n−d)
strategies.

• The increasing effect with the safety level is also observed in the table and fig-
ure. Note that the negative SC obtained in Table 3.4 means that the insurer
needs no extra capital to guarantee his solvency with the used confidence
level, i.e SC = 0.

• We see that when m = n, lifetime annuity yields lower SC compared to the
deferred annuity. This comes from the fact that when m = n, the value of
the m guaranteed cash flows

(
L

(m)
0

)
of the lifetime annuity is equal to the
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value of the m guaranteed cash flows of the deferred annuity and they are
both equal to the initial premium as we assumed S65(0, j) = p65(0, j), for
j ∈ [0, n]. Moreover, benefits payments of a lifetime annuity begin before
those of deferred annuity; hence insurer deals early with low unexpected
survivors for lifetime annuity whereas he suddenly faces high gaps (between
expected and realized survivors) at the beginning of the payment period for
the deferred annuity. This highly decreases his reserve and increases his SC
for the deferred annuity. In other words, this can be seen as if the insurer
was spreading some benefit gaps over several years into low payments for
the lifetime annuity whereas he suddenly pays high benefit gaps after the
deferred period for the deferred annuity.

• From the standard case (i.e values in bold), we observe that lifetime annuity
yields higher SC compared to term and deferred annuities. Deferred annu-
ity yields higher SC than term annuity for older cohort, unlike for younger
cohort.

Term analysis

x0 = 65 x0 = 75

m = 0 m = 5 m = d′ m = 0 m = 5 m = d′

α0 = 85% 0.1844 0.0825 0.031 0.2133 0.0899 0.0923

α0 = 90% 0.185 0.0822 0.0313 0.2132 0.08914 0.0924

α0 = 95% 0.216 0.1008 0.0374 0.2496 0.1097 0.1083

α0 = 99.5% 0.3697 0.1876 0.0731 0.4302 0.211 0.1937

Table 3.5: Values of SC/A0 at t = 0 for a d′ = 15 years term annuity, with
xs = 15% and xp = 25%.

For a d′ years term annuity, let’s assume m = [3 + d′−5
8 ], where [x] represents the

integer part of x.

• Figure 3.4 shows that long maturity yields high SC and ageing increases the
SC as shown in Table 3.5. The non-smooth curves reflect the impact of the
parameter m which changes with d′.
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• Note that SC obtained for the 15 years term annuity with the older cohort
in Table 3.5 are close to that of the lifetime annuity, since in that case we
have an ultimate age of 90 years old.

• From Table 3.5, we observe that the values of the SC obtained for the older
cohort are almost equivalent (or stable) with respect to the number of guar-
anteed benefits m (with m > 1). This is a consequence of the ageing effect in
the sense that the number (or the duration) of the guarantee is less important
at advanced ages, unlike younger ages.

x0 = 65 x0 = 75

Figure 3.4: SC(d′)/A0 at t = 0 with m = [3 + d′−5
8 ].

Guarantee effect

Below, we present changes of the SC with respect to number of guaranteed benefits
m for lifetime and d = 16 years deferred annuities. First row of Figure 3.5 shows
that for a 16 years deferred annuity, minimum SC depends on the minimum con-
fidence level α0. For instance, small α0 and m = 1 produce the lower SC whereas
for high α0, we can find values of m > 1 that minimises the SC for both cohorts.
Furthermore, the safety level does increase the SC of both lifetime and deferred
annuities. Older cohort yields higher SC for a d years deferred annuity, unlike the
lifetime annuity. For the latter annuity one can find a parameter m 6= {0, n} that
gives lower SC for both cohorts.
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x0 = 65 x0 = 75

Figure 3.5: SC(m)/A0 at t = 0, first row represents a 16 years deferred annuity
and the second row is a lifetime annuity.
A sensitivity analysis of the SC with respect to the volatility of the force of mor-
tality σµ is given in Appendix A.2.

3.4 The internal rate of return of shareholders
In this section, we discuss the possible profitability of the annuity’s trading on the
shareholder point of view by computing their IRR following the approach described
in Section 2.4.2. We remind that the shareholder will lose all his initial capital (i.e
the SC) if IRR= −1 and when IRR= 0 then the exact amount of the SC will be
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recovered at the end of the contract. For a strictly positive IRR, the shareholder
will make a profit upon the IRR. Moreover a shareholder can define his minimum
rate of return, says π, in such a way that he will invest on the annuity with an
expected IRR strictly greater than π. The minimum rate π can be for example
the risk-free rate available on the market at the contract inception or an expected
rate of return of a given risky asset, etc. Remind that by definition, using our
investment strategy the SC satisfies the following solvency condition

Pt
[
C(t, n)−Benef + SC(t+ n)P−1(t, n) < L′(t, n, d)

]
≤ 1− α(n− t),

from this we define the total final surplus of the contract as follows

χ(x, d,m;w) := C(t, n)−Benef + SC(t, n)
P (t, n) − L

′(t, n, d), (3.18)

where Benef represents the benefit’s gap as defined in the previous section. One
can show that the IRR is given by

τ(x, d,m;w) =
(

(χ(x, d,m;w))+

SC(t, n)

) 1
n−t

− 1; (3.19)

where (x+) = max(x, 0). Note that the IRR is computed if and only if the SC is
strictly positive.
Tables 3.6 and 3.7 present the mean and variance of the IRR for both cohorts with
a sensitive analysis on parameters m and α0.

Lifetime annuity Deferred annuity Term annuity

α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5%

m = 0 1.7262%
(0.04253%)

1.5327%
(0.03636%)

1.327%
(0.01206%)

6.1262%
(0.11%)

3.793%
(0.0536%)

2.086%
(0.014%)

2.3311%
(0.2745%)

2.3209%
(0.2739%)

1.703%
(0.11285%)

m = 5 2.48504%
(0.04968%)

2.0794%
(0.04%)

1.5596%
(0.01274%)

�
NOV ALUE

9.454%
(0.1425%)

2.61%
(0.0152%)

4.1294%
(0.3031%)

4.1521%
(0.3018%)

2.6331%
(0.1227%)

m = n 2.299%
(0.04357%)

1.932%
(0.0349%)

1.4501%
(9.557e−5)

1.888%
(0.0392%)

1.63%
(0.0323%)

1.33%
(0.009%)

3.382%
(0.261%)

3.3382%
(0.261%)

2.1655%
(0.09755%)

Table 3.6: Mean and variance (values in brackets) of the IRR at t = 0 for d′ = 15,
xs = 15%, xp = 25% and a deferred age of xd = 81 for cohort with x0 = 65.
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Lifetime annuity Deferred annuity Term annuity

α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5%

m = 0 1.642%
(0.064%)

1.407%
(0.0574%)

1.245%
(0.01952%)

2.065%
(0.074%)

2.191%
(0.06135%)

1.582%
(0.0199%)

2.02%
(0.2632%)

2.003%
(0.26495%)

1.5333%
(0.1071%)

m = 5 2.521%
(0.07183%)

2.103%
(0.061%)

1.45%
(0.02025%)

4.08%
(0.0945%)

3.126%
(0.0697%)

1.942%
(0.0216%)

4.0997%
(0.29023%)

4.117%
(0.2896%)

2.5613%
(0.11204%)

m = n 2.502%
(0.0734%)

2.0971%
(0.06084%)

1.552%
(0.02011%)

1.557%
(0.05825%)

1.336%
(0.04998%)

1.1977%
(0.01496%)

1.5311%
(0.2287%)

1.5311%
(0.2287%)

1.234%
(0.08425%)

Table 3.7: Mean and variance (values in brackets) of the IRR at t = 0 for d′ = 15,
xs = 15%, xp = 25% and a deferred age of xd = 81 for cohort with x0 = 75.

• It comes from Tables 3.6 and 3.7 that the expected IRR is higher for the
younger cohort for both deferred and term annuities. We have similar ob-
servations for the lifetime annuity except for small values of the safety level
and m > 0.

• The IRR of a lifetime annuity decreases when α0 increases, it decreases as
well for deferred annuity with respect to α0 except for older cohort within the
non-guaranteed strategy where we observe a concave behaviour with respect
to α0. Concerning the term annuity, for both cohorts the IRR decreases with
α0 within the non-guaranteed strategy whereas it has a concave behaviour
for m = 5 and within the fully guaranteed strategy the IRR is constant for
small values of the safety level and decreases with higher α0.

• Furthermore, the obtained values have a concave behaviour with respect to
m in the sense that the expected IRR increases with smaller values of m and
decreases with larger values of m except for the older cohort with high safety
level where the IRR increases with m. This implies that there exists optimal
value of m that maximises the expected IRR.

• The d = 16 years deferred annuity gives the better values of the expected
IRR for the younger cohort with small values of m, whereas the d′ = 15 years
term annuity performs better for younger cohort within the fully guaranteed
strategy as well as for m = 5 with higher value of α0.
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• For the older cohort, the deferred annuity gives higher IRR with the non-
guaranteed strategy whereas the term annuity better performs form = 5 and
the lifetime annuity gives higher IRR within the fully guaranteed strategy.

• It is important to stress that in some cases, we obtain high expected IRR
and high variance as well; meaning that the IRR is subject to an important
volatility (or risk).

The sensitivity of the IRR with respect to the volatility of the force of mortality
is presented in Appendix A.3.

Remark 2. We have considered the SC as required by the SII regulation. It could be
interesting (for internal models) to consider other risk measurements more linked
to the tail of the distribution (extreme risk) such as the Tail VaR (TVaR) also
called Average VaR by Föllmer and Schied, 2011. Hence, for comparison purposes
we compute both the SC and the IRR of each product using the TVaR and the
obtained results are presented in Appendix A.4.

3.4.1 Simulation performance
To obtain the numerical results (i.e figures and tables) of this chapter, we per-
formed MC method with 500000 simulations.

• Table 3.3 representing the case of lifetime annuity took approximatively 1
minute for each value.

• Concerning deferred annuity, each graph of Figures 3.3 and 3.5 took 17 min-
utes whereas each value of Table 3.4 took approximatively 40 seconds.

• For the term annuity, each value of Table 3.5 was obtained after 20 seconds
and each graph of Figure 3.4 took approximatively 7 minutes.

• The values of IRR given in Tables 3.6 and 3.7 took approximatively 1 minutes
for each value.

Remark 3. Alternatively to the method used to value the number of survivors in
this chapter and Chapter 2, we could consider the approximation method proposed
by Gbari and Denuit, 2014. In their paper they provide accurate approximations
for the present value of benefits paid by the insurer so as to avoid the problem of
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simulations within simulations (in SII calculations for instance) regardless the size
of the portfolio.
In order to apply their approach in this chapter and Chapter 2, we need to consider
a Lee–Carter force of mortality that we use to define the number of survivors by a
family of Binomial distributions and making this family of distributions perfectly
conditionally dependent leads to the approximation of the number of survivors.

3.5 Conclusion
In this chapter we proposed a triple-risk model, used to measure the equity,

interest rate and longevity risks borne by an insurer selling a given classical annuity.
From our model, we can deduce the equity risk-free model obtained by not investing
on the risky asset, as developed in Chapter 2. We proposed a profitable investment
strategy called the mG-cf strategy following the strategy proposed by Bauer and
Weber, 2008 called the fully liability hedging strategy. Our proposed strategy
moves from the non-guaranteed liability strategy to the fully guaranteed liability
strategy, depending on the number of cash flows guaranteed. In other words, the
mG-cf strategy contains (i) the constant proportion allocation strategy, obtained
when no benefits are guaranteed; (ii) the fully guaranteed cash flows (or liability
hedging) strategy, obtained when all the benefits are guaranteed and (iii) the
alternative strategies, obtained when the number of guaranteed benefits is between
one and the maximum number of benefits.
The risk measurement approach used consists of valuing insurer’s SC for the three
annuities within the mG-cf strategy using the maturity approach. Following SII
framework with a bounded time-dependent confidence level we studied the sensi-
tivity of SC with respect to some significant parameters.
The theoretical studies are made for a d years deferred annuity within the proposed
strategy used to find numerical results for two different cohort from which we drawn
up comparative observations. Numerical studies has been made for the minimum
confidence level α0 and the number of guaranteed benefits m so as to see how
sensitive the SC is with respect to α0 and m. We also studied the sensitivity of
the SC with respect to the deferred period d and the term time d′.
We found a significant increase of the SC from younger to the older cohort as well
as with respect to the minimal confidence level. Another finding is that the mG-
cf reduces the SC of the insurer as compare to the constant proportion strategy
where no benefit is guaranteed. Furthermore, the concave behaviours of the IRR
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as well as convex behaviours of the SC (for a deferred annuity) show that the
mG-cf strategy improves the strategy proposed by Bauer & Weber. For a 15 years
term annuity, the obtained SC is less volatile with respect to ageing. Moreover,
we found that the mG-cf strategy we proposed yields higher expected IRR as
compare to the fully liability hedging strategy proposed by Bauer & Weber in the
sense that ours gives a concave IRR with respect to the number of guaranteed
benefits. Even though the ageing effect affects less the expected IRR of a term
annuity, we notice that the expected IRR is higher for the younger cohort for
each of the annuities. Overall, we found that the more benefits we guarantee the
low SC we have for both the lifetime and term annuities (which is in line with
Bauer & Weber) whereas for the deferred annuity, there exits at least one number
of guaranteed benefit that gives a lower SC as compare to the non-guaranteed
(i.e m = 0) and fully guaranteed benefits (i.e m is equal to the total number of
payouts).
Further research could consist of focusing on the policyholder side by considering

variable annual benefits so as to find the optimal parameters that maximise the
benefit payouts of the policyholders. We present in the next chapter an approach
to design risk-linked annuities (i.e with random benefits) allowing for risk sharing.



Part II

Risk-sharing annuities





Chapter 4

Design of risk sharing for
risk-linked annuities

In the previous chapter, the classical annuities used are famous both in research
and in practice. The mean features of these annuities is that the (financial and
longevity) risks are borne by the insurer. Hence, an increase of these risks will
force the insurer to increase the annuity price or to be reluctant to sell annuities.
A way to solve this concern and to convince the retirees to buy annuities could
be to design adequate annuity products so as to mitigate the risks linked to such
products. Policymakers and researchers have thus far developed risk-linked annu-
ities so as to protect policyholders against outliving their resources and protect
insurer against possible insolvency or high solvency capital. There exits inflation;
equity, morality, or multiple risk-linked annuities. In this chapter we focus on the
financial-longevity risk-linked annuities.
The main product we base our work on is the GSA proposed by Piggott et al., 2005
where the authors developed a formal analysis of the payout of the GSA which can
be seen as a longevity risk-pooling fund. In fact, the GSA is a scheme which allows
annuitants to pool a part or their whole retirement fund with other annuitants with
a view to afford benefits in retirement through a risk sharing arrangement. The
results obtained in this chapter can be extend to the modified version of the GSA
proposed by Qiao and Sherris, 2013 where they use the multiple-factor stochastic
mortality model to show how efficient pooling can be and to quantify the limita-
tion of pooling scheme with respect to the longevity risk. The VPA proposed by
Boyle et al., 2015 is special case of the GSA, hence our model works for that as
well.
Unlike the classical annuities where the financial and longevity risks are borne by
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the insurer, for the GSA these risks are borne by a group of annuitants. Hence,
the goal in this chapter is to propose alternatives products where these risks are
shared between the insurer and annuitants. In other words, we design in this chap-
ter a new equity-mortality linked annuity that allows for the risk sharing between
a group of policyholders and the insurer based on the GSA proposed by Piggott
et al., 2005. One of our main result is the design of a set of annuities moving from
the classical annuity to the GSA; we refer to the obtained set of annuities as the
(complete) risk-sharing GSA. Our motivation of using the GSA comes from its
recursive structure and from the fact that the financial risk is separated from the
longevity risk.
Below, we give in Section 4.1 a brief recall on the GSA. The risk-sharing techniques
are developed in Section 4.2, the obtained annuity is called the risk-sharing GSA.
Section 4.3 presents the complete risk-sharing GSA which is in fact a set of annu-
ities moving from the classical annuity to the GSA and allowing a risk-based initial
benefit. Numerical analysis follows in Section 4.4 as well as a brief conclusion in
Section 4.5.

4.1 Recalls on the GSA
GSA basically operates like a classical life annuity for which both the expected
investment return and the policyholder’s expected future mortality are captured
by the benefit payout. Piggott et al., 2005 proposed a flat yield curve in order
to capture the expected rate of return on the investment. It follows that if both
investment and mortality actually follow these expectations, then the benefit pay-
out stays constant.
Considering at time t = 0 a group ofNx policyholders aged x paying a total amount
of F0; we assume the cohort to be homogeneous (i.e annuitants with same initial
age x and same initial premium F0/Nx). The individual initial benefit payout is
then given by

B0 = F0

Nxäx
, (4.1)

with äx = ∑∞
t=0 v

t Nx+t
Nx

and v = (1 + R)−1 where R is the interest rate and Nx+t

is the expected number of survivors at age x + t for t ≥ 0. Note that the benefit
payout of a conventional annuity, (where the whole risk is borne by the insurer) is
constant and is given by Formula (4.1), i.e Bt = B0 for all t > 0.
Assuming actual survivors are different from expected number of survivors, let
N∗x+1, N

∗
x+2, ..., N

∗
x+t, ... denote the yearly actual number of survivors. With a
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constant and fixed interest rate, they found that the benefit payout at any time
t > 0 is given by

Bt = Bt−1
px+t−1

p∗x+t−1
, (4.2)

where px+t is a deterministic one year survival probability of an individual aged
x+ t, for t ≥ 0; the variables with the superscript ‘*’ denote the real values of the
variables and p∗x+t = N∗x+t

N∗x
. Similarly, considering different actual annual rate of

return R∗1, R∗2, ... the implied benefit at t > 0 is

Bt = Bt−1
px+t−1

p∗x+t−1

1 +R∗t
1 +R

. (4.3)

The two last term of the RHS respectively represent (from the right to left) the
investment rate adjustment at t (IRAt) and the mortality experience adjustment at
t (MEAt). Note that IRAt represents the financial risk whereas MEAt represents
the longevity risk. From Formula (4.3) they derived the formulae of the benefit
payout from an heterogeneous cohort (i.e different ages and different premiums)
with identical annuity factor as well as different annuity factors with different entry
time. For this latter case the formula of benefit paid at time t to the ith annuitant
entering the pool at age x, k period of time ago is given by

k
xBi,t =

k
xF̂
∗
i,t

äx+k,t
= k−1

x Bi,t−1 MEAt CEAt IRAt, (4.4)

where k
xF̂
∗
i,t is the fund value at t for the ith policyholder including the inheritance

of those who died during the period [t− 1, t]; IRAt is defined as previously, MEAt

is given by
MEAt = F ∗t∑

k≥1

∑
x

p−1
x+k−1,t−1

∑
At

k
xF
∗
i,t

(4.5)

and CEAt = äx+k,t−1
äx+k,t

represents the change expectation adjustment at time t. We
refer the reader to Appendix A.5 for more details. CEAt is used to capture the
new mortality information available at t. k

xF
∗
i,t is the fund value at time t of the

ith policyholder who entered the pool at age x, k period ago; F ∗t is the total fund
at time t; px,t is the expected survival probability of an annuitant aged x at time
t of living one more year and p∗x,t is the corresponding actual survival probability.
At is the set of annuitants alive at time t. In this general case, the longevity
risk is represented by the product of MEAt and CEAt whereas IRAt represents the
financial risk. Note that Formula (4.4) is not valid for annuitants entering the pool
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at time t but for those who entered before time t. The benefit of those entering
the pool at time t is given by

0
xBi,t =

0
xFi,t
äx,t

. (4.6)

In the GSA, the financial and the longevity risks are borne by the pool whereas the
insurer borne no risk. Moreover, these two risks are separated from each other in
the formula of the benefit payout. The next section proposes two ways of sharing
financial and longevity risks between both insurer and policyholders using the
GSA.

4.2 Risk sharing techniques
Here we present two techniques which allow the policyholder to get rid of a pro-
portion of risks (total or partial); the obtained product is called risk-sharing GSA.
We first consider a sharing method based on the lower bound of the benefit pay-
outs, secondly we present a more direct sharing method that can be viewed as a
proportional sharing. These methods are used to define the annual benefits for a
risk-sharing GSA.

4.2.1 Risk sharing by the mean of a lower bound
threshold on benefits

Defining a lower bound threshold of the benefits, we hedge policyholders against
drastic mortality or investment changes. This means they can see their benefits
increase or decrease but not below a set threshold level. Let us now denote by
εt ∈ [0, 1] the proportion at time t of the total risk (longevity and financial risks)
borne by the insurer, such that the lower bound threshold of benefit is given by
B = εtB0. Hence we suggest that the benefit at a given time t > 0 satisfies

Bt ≥ B = εtB0. (4.7)

Therefore for εt = 1, the whole risk is shifted to the insurer and for εt = 0 is the
case described in the previous section, i.e where the risk is borne by the pool. One
could also think of an alternative situation where for all t > 0 the benefits rather
satisfy the condition

Bt ≥ εt Bt−1. (4.8)
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Such case would be non-realistic as compared to the previous case because it could
tend to zero in the case of continuously drastic mortality or investment changes.
Both cases (Formulae (4.7) and (4.8)) can be roughly illustrated for a constant
proportion ε ∈ (0, 1) in Figure 4.1.

Figure 4.1: Example of benefit variation

In fact, in the first graph of Figure 4.1, we consider a volatile scenario of the GSA
(green balled line) and we obtained a threshold risk-sharing GSA (blue line) which
is always above the guaranteed minimum benefit (red squared line). Whereas on
the second graph, we consider an extreme (strictly decreasing) scenario of the GSA
(green balled line), it yields a decreasing threshold risk-sharing GSA (blue line)
which goes below the guaranteed benefit (red squared line) and tends to zero.
We define the benefit payout Bt at time t of a policyholder buying a lower bound
threshold risk-sharing GSA by

Bt = max
(
Bt−1 Lriskt Eriskt, εtB0

)
, (4.9)

where Lriskt and Eriskt are respectively the longevity and the financial risk as
defined in the GSA in Section 4.1. For example, considering the simple case of a
close homogeneous cohort where benefit is given by Formula (4.3), we defined the
benefit at t > 0 by

Bt = max
(
Bt−1

px+t−1

p∗x+t−1

1 +R∗t
1 +R

, εtB0

)
. (4.10)

In the more general case of an open heterogeneous cohort purchasing such a risk-
sharing GSA (RS-GSA), we defined the lower bound threshold is

xBi(t) = εt
0
xBi,t = εt

0
xFi,t
äx,t

.
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Thus the benefit of an annuitant having survived at time t is given by

k
xBi,t = max

(
k−1
x Bi,t−1 Riskt, xBi(t)

)
, (4.11)

with Riskt being the (financial and the longevity) risks generated by the GSA of
Formula (4.4).
Note that in this case, the benefit at time t is obtained from the maximum value
of the previous maximums (compared to the threshold). An alternative way could
consist of choosing between the threshold and the real benefit payout at t denoted
by k

xBi,t. The new annual benefit is then given by

k
xBi,t = max

(
k
xBi,t, xBi(t)

)
, (4.12)

where k
xBi,t is given by Formula (4.4). For instance, the simple case of Formula

(4.10) leads to
Bt = max (Bt, εtB0) ,

where
Bt = Bt−1

px+t−1

p∗x+t−1

1 +R∗t
1 +R

. (4.13)

Note that considering constant benefit thresholds will be more safe for annuitants
as they won’t face uncertain or decreasing benefit threshold.
This sharing method allows us to share the whole (financial + longevity) risk
generated by the GSA. In what follows we proposed a way of sharing different
proportions of each risk.

4.2.2 Proportional risk sharing
A more straightforward risk sharing mechanism consists of proportional or direct
sharing. In other words, we consider at time t a proportion βt ∈ [0, 1] of the risk to
be borne by a group of annuitants and the remaining proportion (1− βt) is borne
by the insurer.
Considering the same annuity benefit k

xBi,t defined by Formula (4.4), we obtain
the following mathematical definition of the proportional risk sharing GSA

k
xBi,t(βt) = k

xBi,t−1(βt) [βt Riskt + (1− βt)] , (4.14)

where Riskt = MEAt × CEAt × IRAt.
Note that since βt is the proportion of the risk borne by a group of policyholders
at time t, it could represent either a proportion of the whole risk (i.e both the



4.3. On the complete risk-sharing GSA 67

longevity and the financial risks as in Formula (4.14) or a proportion of a partial
risk. By partial risk, we mean either the longevity risk or the financial risk. More
generally, we could think of sharing at time t different proportion of longevity and
financial risks. Let βt ∈ [0, 1] be the proportion of the longevity risk borne by the
policyholder and β′t ∈ [0, 1] be the proportion of financial risk borne by the same
group. The general formula of the risk sharing GSA (with different proportions)
is given by

k
xBi,t(βt, β′t) = k

xBi,t−1(βt, β′t) [βt Lriskt + (1− βt)] [β′t Eriskt + (1− β′t)] .

For example, in this case Formula (4.14) becomes

k
xBi,t(βt, β′t) = k−1

x Bi,t−1(βt, β′) [βt MEAt CEAt + (1− βt)] [β′t IRAt + (1− β′t)] .
(4.15)

Note that defining the proportional RS-GSA allows us to define a set of annuities
moving from the GSA (when βt = β′t = 100%) to the classical annuity (when
βt = β′t = 0%). We observe that in both the GSA and the risk-sharing GSA, the
policyholders and the insurer are not rewarded for the risk they agree to bear at the
beginning of the contract. In other words, the first benefit does not depends on the
risk proportions, it is equal to the benefit of a classical annuity. In the next section
we propose what we called the complete risk-sharing GSA which defines the initial
benefit depending on the risk proportions. This is done using the proportional
risk-sharing method because it includes both the GSA and the classical annuity
whereas the lower bound threshold method does not include the classical annuity.

4.3 On the complete risk-sharing GSA
In the Section 4.1, the individual benefit payout for a GSA is defined recursively
as follows

Bt = Bt−1 × Lriskt × Eriskt, (4.16)

where Lriskt = MEAt×CEAt and Eriskt = (1 +Rt)/(1 +R) are respectively the
longevity and financial risks at time t. In what follows, let’s denote by β, β′ ∈ [0, 1]
respectively the proportion of the longevity and the financial risk borne by the
pool and we denote the annuity factor depending of these risk proportions by
äx(β, β′). Our objective here is to introduce a discount rate that depends on the
pool proportion of financial and longevity risks denoted by Rγ(β, β′) called risk
adjusted discount rate; where γ is the policyholder’s risk aversion parameter as
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defined in Formula (4.20). R(β, β′) is defined such that the risk adjusted annuity
factor given by

äx(β, β′) =
∞∑
s=0

(
1

(1 +Rγ(β, β′))

)s
× spx

could be used to annuitize individual premium. Therefore in this case the initial
benefit payout of an individual aged x with an individual premium of F0/Nx will
be

B0(β, β′) = F0

Nx äx(β, β′)
. (4.17)

Using the proportional risk-sharing method, the individual annual benefit of a
complete risk-sharing GSA is defined for t > 0 by

Bt(β, β′) = Bt−1(β, β′)×[βLriskt + (1− β)]×[β′Eriskt(β, β′) + (1− β′)] , (4.18)

The obtained annuity is referred to as the complete risk-sharing GSA. Let’s com-
pare this annuity with the classical annuity where the individual benefits is defined
for all t ≥ 0 by

Bt = F0

Nx
∑∞
s=0

(
1

1+R

)s
spx

= F0

Nx äx
. (4.19)

We use the utility approach on the policyholder point of view and we consider his
risk preference; namely following Chen et al., 2019 and Chen and Hieber, 2016,
we value the expected discounted lifetime utility of the policyholders. In other
words, we assume that a policyholder would choose the product with a benefit Bt

that maximizes the expected discounted lifetime utility as stated by Yaari, 1965.
In line with the literature, we capture the policyholder’s risk preferences using the
constant relative risk aversion (CRRA) utility function given by

U(x) =



x1−γ

1−γ for γ 6= 1

log(x) for γ = 1

(4.20)

where γ ≥ 0 is the relative risk aversion parameter. Our choice of the CRRA
utility is motivated by the fact that it is widely used for risk aversion modelling in
many domains (economic, psychology, health) (see Wakker, 2008). In particular
the CRRA utility is widely used for consumption analysis (see Chen et al., 2019;
Charupat and Milevsky, 2002; Vigna et al., 2009; Boyle et al., 2015). For com-
parison purpose, we further consider the constant absolute risk-aversion (CARA)
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utility following Chang and Chang, 2017 and Vigna et al., 2009.

The objective here is to find the values of Rγ(β, β′) such that the expected dis-
counted lifetime utility of the complete risk-sharing GSA (CRS-GSA) is at least
equal to the expected discounted lifetime utility of the classical annuity. It is im-
portant to stress that the values of R(β, β′) which give the same expected utility
as the classical annuity can be seen as the indifference discount rate.
Concerning the utility of the classical annuity, let’s consider a cohort of Nx poli-
cyholders paying a total premium of F0 to purchase (classical) immediate lifetime
annuity and denote by n + 1 the maximum number of benefit payout. It follows
that the policyholder’s expected discounted lifetime utility for such a product is
given by

Ucla =
n∑
t=0

U(B0)vtδ tp
0
x; (4.21)

where vδ = 1
1+δ is the policyholder’s subjective discount factor, with δ being the

subjective discount rate, B0 is given by Formula (4.19) and tp
0
x is a deterministic

survival probability of the policyholder. In fact, tp0
x represents the policyholder

expected survival probability on the policyholder’s view.
In what follows, we first consider single risk settings where we share only the
financial risk (called the complete financial risk-sharing GSA), then the longevity
risk (called the complete longevity risk-sharing GSA). Afterwards we combine the
two cases to obtain the complete financial-longevity risk-sharing GSA.

4.3.1 The complete financial risk-sharing GSA
(CFRS-GSA)

Let us consider a given mortality table describing the survival probability of a
pool of policyholders buying an immediate lifetime annuity for a pool’s premium
of F0 and let β′ ∈ [0, 1] be the proportion of financial risk borne by the pool. We
assume that there is no longevity risk occurring in this contract, in other words the
proportion of the longevity risk shifted to the pool is β = 0. Therefore Rγ(β′) =
Rγ(0, β′) only reflects the investment uncertainty and the benefit payout in this
case is given by Formulae (4.17)–(4.18) where β = 0. The expected discounted
lifetime utility of the CFRS-GSA is given by

Ucfrs(β′) = E
[
n∑
t=0

U(Bt(β′)) vtδ tp
0
x

]
. (4.22)
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Using the Equation (4.18) with β = 0, one can show that for all t > 0

Bt(β′) = B0(β′)
t∏

j=1
[β′Eriskj(β′) + (1− β′)] , (4.23)

with
B0(β′) = F0

Nxäx(β′)
= F0

Nx
∑∞
j=0 v

j
R(β′) jpx

,

and vjR(β′) =
(

1
1+Rγ(β′)

)j
. It follows that Formula (4.22) becomes

Ucfrs(β′) =



∑n

t=0
E
[(
B0(β′)

∏t

j=1[β′Eriskj(β′)+(1−β′)]
)1−γ

]
vtδ tp

0
x

1−γ , for γ 6= 1

∑n
t=0 E

[
log
(
B0(β′)

∏t
j=1 [β′Eriskj(β′) + (1− β′)]

)]
vtδ tp

0
x, for γ = 1.

(4.24)

For illustration, one can show that in the simplest case of a closed homogeneous
pool where the benefit payout is given by Formula (4.3), the expected utility of a
policyholder buying a CFRS-GSA is given by

Ucfrs(β′) =


1

1−γ
∑n
t=0 E

[(
B0(β′)

∏t
j=1

[
β′

1+Rj
1+Rγ(β′) + (1− β′)

])1−γ
]
vtδ tp

0
x, for γ 6= 1

∑n
t=0 E

[
log
(
B0(β′)

∏t
j=1

[
β′

1+Rj
1+Rγ(β′) + (1− β′)

])]
vtδ tp

0
x, for γ = 1.

The task is then to find the set of Rγ(β′) such that

Ucfrs(β′) ≥ Ucla, (4.25)

where Ucla is given by Formula (4.21). We cannot find an explicit formula of the
risk adjusted discount rate Rγ(β′) satisfying the Inequality (4.25), but this can be
solved numerically using for example the Newton-Raphson method.

4.3.2 The complete longevity risk-sharing GSA
(CLRS-GSA)

In this case we consider a financial risk-free market made of a risk-free asset (the
money market account), then the proportion of financial risk shifted to the pool
is β′ = 0. In this case the risk adjusted discount rate given by Rγ(β) = Rγ(β, 0)
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captures the longevity risk. It follows that the benefit payout of the CLRS-GSA is
given by Formulae (4.17)–(4.18) where β′ = 0 and the expected discounted lifetime
utility of an annuitant buying a CLRS-GSA is

Uclrs(β) = E
[
n∑
t=0

U(Bt(β)) vtδ tp
0
x

]
. (4.26)

Using the Equation (4.18) with β′ = 0, one obtains for all t > 0

Bt(β) = B0(β)
t∏

j=1
[βLriskj + (1− β)] , (4.27)

with
B0(β) = F0

Nx äx(β) = F0

Nx
∑∞
j=0 v

j
R(β) jpx

,

where vjR(β) =
(

1
1+Rγ(β)

)j
. Formula (4.26) becomes

Uclrs(β) =



1
1−γ

∑n
t=0 E

[(
B0(β)

∏t
j=1 [βLriskj + (1− β)]

)1−γ
]
vtδ tp

0
x, for γ 6= 1

∑n
t=0 E

[
log
(
B0(β)

∏t
j=1 [βLriskj + (1− β)]

)]
vtδ tp

0
x, for γ = 1.

(4.28)

In the case of a closed homogeneous pool, we find

Uclrs(β) =



1
1−γ

∑n
t=0 E

[(
B0(β)

∏t
j=1

[
β

px+j−1
p∗
x+j−1

+ (1− β)
])1−γ

]
vtδ tp

0
x, for γ 6= 1

∑n
t=0 E

[
log
(
B0(β)

∏t
j=1

[
β

px+j−1
p∗
x+j−1

+ (1− β)
])]

vtδ tp
0
x, for γ = 1.

(4.29)

Numerical methods can be used to find the set of Rγ(β) for which

Uclrs(β) ≥ Ucla, (4.30)

where Ucla is given by Formula (4.21).
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4.3.3 The complete financial-longevity risk-sharing GSA
(CFLRS-GSA)

The idea here is to combine the previews two single-risk products into a double-
risk one. Both the financial and the longevity risks are shared with different
proportions, respectively β, β′ ∈ [0, 1]. One can show from Formula (4.18), that
we obtain for any t > 0

Bt(β, β′) = B0(β, β′)
t∏

j=1
[βLriskj + (1− β)]×[β′Eriskj(β, β′) + (1− β′)] , (4.31)

where B0(β, β′) is given by Formula (4.17). It follows that the expected utility of
an annuitant buying a CFLRS-GSA is

Ucflrs(β, β′) =
n∑
t=0
E

U
B0(β, β′)

t∏
j=1

Lsharej(β)× Esharej(β, β′)

 vtδ tp0
x,

(4.32)

where
Lsharej(β) = [β Lriskj + (1− β)]

and
Esharej(β, β′) = [β′ Eriskj(β, β′) + (1− β′)] ,

with
Eriskj(β, β′) = 1 +Rj

1 +Rγ(β, β′)
.

Note that the financial risk component depends on both the financial and longevity
risk, as the risk adjusted discount rate depends on them. In particular, for a closed
homogeneous group of annuitants, the longevity risk component is

Lriskj = px+j−1

p∗x+j−1
.

The problem here is to find a set of risk adjusted discount rates Rγ(β, β′) such
that

Ucflrs(β, β′) ≥ Ucla, (4.33)

where Ucla is given by Formula (4.21). Below we solve Problem (4.33) using
numerical method, for this purpose we assume tp

0
x = tpx.

Note that the (complete) RS-GSA we proposed could also be designed based on
the extended version of the GSA proposed by Qiao and Sherris, 2013 as well as on
the VPA proposed by Boyle et al., 2015.
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4.4 Numerical solutions
In this section we compute some numerical solutions for both the risk-sharing GSA
and the complete risk-sharing GSA. First of all, we need detailed informations
about the investment strategy and the mortality model.

4.4.1 Assumptions
Let’s consider the filtered probability space (Ω,F ,P,F) defined in Chapter 3 made
of a stock (St as defined in Section 3.1.1) and a money market account (B(t) with
constant rate short r ∈ R∗+) with a constant proportion allocation strategy with
dynamic rebalancing, i.e a constant proportion xs ∈ [0, 1] of the initial fund is
invested on the stock and the remaining proportion invested on the money market
account. One can show that the value at time T of an investment on such mixed
asset during the period [t, T ] is A(t, T ) = At Asset(t, T ), where

Asset(t, T ) = e

(
µxs+(1−xs)r−

x2σ2
s

2

)
(T−t)+σsxs(W s

T−W
s
t )
, (4.34)

with W s
t being a Brownian motion under the physical measure P, describing the

stock’s uncertainty. It follows that the investment return is given by 1 + Rt =
Asset(t− 1, t).
Note that Asset(t−1, t) used in the chapter and in Chapter 5 is just a notation and
refers to the investment return of the reference fund used to index the liabilities
of the insurer.

We model the mortality of the policyholder using the HW model defined in Section
2.2.1. The contract consists of an homogeneous group of Nx = 1000 initially aged
x = 65 and paying each a unique premium F 0 = 1000$ for an immediate lifetime
annuity; F0 = NxF

0. The parameters of the HW model are given in Table 2.1
whereas the parameters of the risky asset is calibrated using the S&P500 indexes1

from 1871 to 2018. Using the MLE, we get µ = 5.8702% and σs = 20.4172%.
Moreover, for sensitivity analysis we consider two additional values of the drift, i.e
µ = 2% and µ = 4%. Further sensitivity analysis are made for the risk aversion
parameter by considering γ = 0.5, 1 and we assume δ = r = R0 = 2%.
Note that an increase in the values of the risk adjusted discount rate Rγ(β, β′)
implies an increase of the initial benefit given by Formula (4.17), which could also

1http://www.multpl.com/s-p-500-historical-prices/table/by-year, March 7 2019

http://www.multpl.com/s-p-500-historical-prices/table/by-year
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increase the upcoming benefits depending on both the investment and mortality
experiences.

4.4.2 The risk-sharing GSA

Here we show how the expected utility of the FLRS-GSA changes with the annu-
itant’s risk proportions β and β′ when β = β′.

γ = 0.5 γ = 1
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γ = 0.5 γ = 1

Figure 4.2: Expected utility of the FLRS-GSA for β = β′ — First row represents
the case of µ = 2%; the second row represents the case of µ = 4% and the third
row is for µ = 5.8702%.

Moreover a sensitivity analysis is made with respect to µ, γ and xs. Note that
in this case, β = β′ = 0% represents the classical annuity and β = β′ = 100%
represents the GSA. The case of a FRS-GSA is shown in Figure A.4 of Appendix
A.6.
From Figure 4.2 we have the following observations

• The expected utility of a FLRS-GSA increases with the drift;

• When γ increases the expected utility of the classical annuity increases. In
other words, for small risk aversion the GSA gives the best expected utility
whereas for larger risk aversion the classical annuity gives the better expected
utility compared to the GSA. Hence the concave form shown in second col-
umn of Figure 4.2 for γ = 1 implies that there exist pairs (β, xs) for which
RS-GSA gives better expected utility compared to both GSA and classical
annuity;

• When the proportion invested on the risky asset xs increases, the expected
utility increases for large values of µ and decreases for small µ.
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The obtained concave form (for instance when γ = 1) shows that the there exists
β and x that maximise the expected utility of the policyholder. When the risk
aversion increases, the product with the best expected utility moves from the GSA
to RS-GSA and classical annuity. Note that in Figure 4.2 the pink lines represented
the LRS-GSA.

4.4.3 The complete risk-sharing GSA
The CFRS-GSA

Similarly to the RS-GSA, Figure 4.3 illustrates changes of the expected utility of
a CFRS-GSA with respect to Rγ(β′) for which we make a sensitivity analysis with
respect to β′, γ and xs.

γ = 0.5 γ = 1
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γ = 0.5 γ = 1

Figure 4.3: Expected utility of the CFRS-GSA for µ = 5.8702% — First row
represents the case of xs = 25%; the second row represents the case of xs = 50%
and the third row is for xs = 75%.

From this figure, we observe that there always exists pairs (β′, Rγ(β′)) that im-
proves the expected utility of a policyholder buying a CFRS-GSA compared to
both GSA and classical annuity. Moreover, for all β′, we can always find a Rγ(β′)
such that GSA and CFRS-GSA give the same expected utility, unlike the classical
annuity. We also find that GSA and RS-GSA do not improve only the expected
utility of the consumption (as concluded by Boyle et al., 2015 for the GSA), but
also the expected utility of the present value of the benefits on the policyholder
viewpoint. For instance, when Rγ(β′) = 2%, the expected utility of a CRS-GSA
is greater than that of a classical annuity whereas for Rγ(β′) < 1.5% the expected
utility of some CRS-GSA is less than or equal to the expected utility of a classical
annuity.
We further find that for γ = 0 and for all β′ the expected utilities coincide at the
same Rγ(β′); in fact we have the following proposition.

Proposition 1. Within the financial market defined above, for a risk-neutral util-
ity function, distinct CFRS-GSAs (with different risk proportions β′s) give the
same expected utilities (on the policyholder point of view) if and only if their risk
adjusted discount rates are equal to the expected rate of return on the risky portfolio.
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Mathematically, for γ = 0 and for any β′1 6= β′2 6= 0 with Rγ(β′) := R(β′1) = R(β′2),
Ucers(β′1) = Ucers(β′2) if and only if Rγ(β′) = log (E[1 +Rt]) = µxs + (1− xs)r.

We refer the reader to Appendix A.7 for a detailed proof.

The CFLRS-GSA

The figure below illustrates the expected utility of a policyholder buying a CFLRS-
GSA, for which me make a sensitivity study with respect to β, β′ and R(β, β′).

γ = 0.5 γ = 1
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γ = 0.5 γ = 1

Figure 4.4: Expected utility of the CFLRS-GSA for µ = 5.8702%, xs = 15% —
First row represents the case of β = β′ and the second row represents the case of
β = 40% and last row the case β′ = 40%.

We have the following observations from Figure 4.4,

• there exists some values of R(β, β′) that give better expected utility than
classical annuity and GSA. In other words, one can always find triples
(β, β′, R(β, β′)) that yield better expected utility than both GSA and clas-
sical annuity. These are represented by the values of β, β′ and R(β, β′) for
which the expected utility is above that of the classical annuity and GSA.

• We further observe that the expected utility of the CFLRS-GSA increases
with the risk adjusted rate except for β = β′ where the utility decreases for
high values of β with γ = 0.5. The utility of the GSA decreases with respect
to R(β, β′) except for the case β = 40% where it increases.

It is important to stress that for any risk adjusted rate obtained with pair (β, β′),
the corresponding CRS-GSA behaves like the RS-GSA with interest rate given
by the risk adjusted rate; i.e with R = R(β, β′). In this case we have almost
similar observations and conclusions as the RS-GSA for the expected utilities.
Thus the only difference will be the level of the corresponding expected utility
which increases with the interest rate R. Moreover, form Figures 4.2 and 4.4, we
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see that for larger risk proportions (β, β′) and proportion xs invested on the stock,
RS-GSA yields better expected utility than CRS-GSA whereas we have other way
round for smaller proportions of risks and stock’s proportion.
Note that the pool or size effect is taken into account in both RS-GSA and the
CRS-GSA, because it is taken into account in the definition of the GSA as shown
in the literature (see Piggott et al., 2005; Qiao and Sherris, 2013; Boyle et al.,
2015).
For comparison purpose, we consider different utility function, namely the constant
absolute risk-aversion (CARA) utility function. Following Chang and Chang, 2017,
we give in Appendix A.8 the numerical results obtained with the CARA utility
function from which we draw comparison with respect to the CRRA utility func-
tion.

Remark 4. Note that the obtained risk-sharing GSA and complete risk-sharing
GSA allow us to define rage of annuities moving from classical annuity to GSA.
The GSA is obtained when setting both proportions of longevity and financial risks
to 100%. Therefore, our numerical studies illustrate the comparison of our pro-
posed (complete) risk-sharing GSAs with the GSA proposed by Piggott et al., 2005
within our framework. I could be interesting as well to make such comparison
within Piggott et al., 2005’s framework so as to highlight the impact of the consid-
ered framework.

4.4.4 Simulation performance

To obtain the numerical results (i.e figures) for this chapter, we performed MC
method with 500000 simulations.

• For the financial-longevity RS-GSA represented in Figure 4.2, we ran the
code for approximatively 53 minutes for each graph, whereas the financial
RS-GSA represented in Figure A.4 took approximatively 30 minutes for each
graph.

• Concerning the complete financial RS-GSA represented in Figure 4.3, the
simulations took approximatively 47 minutes per graph whereas the complete
financial-longevity RS-GSA presented in Figure 4.4 we spent 96 minutes per
graph.
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4.5 Conclusion

Aiming to design a risk-sharing annuity, we proposed in this chapter different risk-
sharing methods and different products based on the GSA as defined by Piggott
et al., 2005. Our motivation of using the GSA comes from its nice structure where
the financial and the longevity risks are separated from each other; this allowed
us to share different proportions of each of this risk between the insurer and the
annuitants.
Our approach consisted of defining a modified GSA called the risk-sharing GSA
aiming to share different proportions of financial and / or longevity (partial or
whole) risk between the insurer and the annuitants. The two proposed sharing
methods are the lower bound threshold risk sharing and the proportional risk
sharing. The first consists of preventing the benefit payouts to go below a prede-
fined threshold; in this case only the whole risk sharing is possible. For the second,
we proposed the proportional risk sharing method, which is more straightforward
and intuitive as it consists of splitting the (partial or whole) risk in two parts –
one part in charge of the insurer and the second in charge of the policyholders.
This allowed us to define not only the risk-sharing GSA but also a rage of an-
nuity products moving from the classical annuity (where the whole risk is borne
by the insurer) to the GSA (where the whole risk is borne by the annuitants)
depending of the proportions of risk shifted to the annuitants. From the propor-
tional risk-sharing GSA, we defined what we called the complete risk-sharing GSA
(CRS-GSA). The CRS-GSA is obtained by defining an annuity discount rate in
terms of the proportions of financial and longevity risks borne by the annuitants
called the risk adjusted discount rate. We used the CRRA utility approach (on the
policyholder viewpoint) in order to find sets of the risk adjusted discount rate and
probability such that the CRRA expected utility of a CRS-GSA is at least equal
to that of the classical annuity, for different values of the risk aversion parameter
and different values of the drift.
The numerical analysis showed the classical annuity never improve the expected
utility of the annuitant and depending on the level of risk aversion, we can find
proportions of risk such that the PFLRS-GSA gives higher expected utility as com-
pare to the GSA. Moreover, we found that a policyholder with low risk aversion
will prefer the GSA whereas a policyholder with high risk aversion will go for a RS-
GSA. This comes from the obtained concave behaviours of the RS-GSA’s expected
utility which implies the existence of optimal risk proportions; i.e the risk propor-
tions of the annuitants in (0, 1) that maximise their CRRA expected utility. In line
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with the results obtained by Boyle et al. (in term of the utility of consumption),
we found that the RS-GSA have a CRRA expected utility higher than that of a
classical annuity and for a highly risk aversion policyholder, the RS-GSA improves
his expected utility compared to the GSA. Additionally, we observed that there
exists some values of the risk aversion, the drift and the annuitant’s risk propor-
tions such that the classical annuity gives a better expected utility than the GSA.
Numerical analysis also showed that the benefit payout of a proportional RS-GSA
increases with the drift, the time and the annuitant’s risk proportions. Concerning
the CRS-GSA, we found that there always exists some pairs (β′, Rγ(β′)) (for the
CFRS-GSA) ; (β, Yγ(β)) (for the CLRS-GSA) and (β′, β, Rγ(β′), Yγ(β)) (for the
CFLRS-GSA) that improve the expected utility of a policyholder as compare to
both the classical annuity and the GSA.
Our contribution in the literature comes from the definition of a large range of
annuity products moving from the classical annuity to the GSA which in some
cases improve the expected utility of a policyholder. Hence, one can think of the
value of such products depending on the risk proportions.



Chapter 5

Valuation of risk-sharing group
self-annitizarion

5.1 Introduction

In this chapter we will value the two contracts designed in Chapter 4. The two
contracts consist of a group of policyholder buying either a proportional risk-
sharing GSA defined in Section 4.2.2 or a complete risk-sharing GSA defined in
Section 4.3. The question we will address in this chapter is how is the value of
these contracts compared to the those of a classical annuity, GSA and the unique
premium paid by annuitants? To answer this question, we need the following three
ingredients1

(i) The net interest rate used to discount the annuity benefit. This could be
given by the current interest rate available on the market or an interest rate
guaranteed by the insurer. In the literature, it is common to do a sensitivity
study with respect to the net interest rate;

(ii) The base mortality table representing the company or the insurer’s estima-
tion of the population’s mortality. It can be given by the best estimate of
the real mortality, a mortality table proposed by the regulator or a table
constructed by the company and in line with the regulator requirements;

1source: The Messenger Risk Management Newsletter written by Matthew
Daitch, http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/
Pricing-a-Single-Premium-Immediate-Annuity.aspx (accessed on 24 March 2020).

http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/Pricing-a-Single-Premium-Immediate-Annuity.aspx
http://www.scorgloballifeamericas.com/en-us/knowledgecenter/Pages/Pricing-a-Single-Premium-Immediate-Annuity.aspx
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(iii) The mortality improvement assumption or the assumed trend of the real
mortality of the population, this represents the mortality model adopted by
the insurer or the company. The mortality model is given by any existing
model such as Vasicek, Hull-White, Lee-Carter, CIR model and so on.

For our first contract, the net interest rate and the base mortality table are equiv-
alent to those of a classical annuity. For the second contract, the net interest rate
is given by a risk-adjusted discount rate depending on both financial and longevity
risks shared and the base mortality table is equal to that of a classical annuity.
Valuing these contracts allows us to value the GSA as this has not yet been valued
in the literature. Our valuation approach is based on the risk-neutral approach
(see Zaglauer and Bauer, 2008) and is developed within the financial market de-
veloped in Section 3.1.1 along with the mortality model developed in Section 2.2.1.
The risks considered in this work are the equity, interest rate and longevity risks
for which we assume dependence between the equity and interest rate risks.
Using Monte Carlo methods, we will compare the value of each of the contract
with annuitants’ unique premium as well as with the values of classical annuity
and GSA. This enables us to identify the product with lower value and to highlight
the sensitivity of the contracts values with respect to some parameters. We further
find the proportions of risks borne by annuitants as well as the investment strat-
egy and the risk adjusted rate (for the second contract) that guarantee the fair
valuation of each contract. Detailed analysis of these contracts with two periods
of time is also made.
The remainder of this chapter is structured as follows. In Section 5.2 we present
our valuation framework where the financial market, the investment strategy and
the mortality model are defined. Detailed about both contracts are given in Section
5.3 and the valuation formulae are developed in Section 5.4. Numerical analysis is
made in Section 5.5 using Monte Carlo method. In this section we make sensitivity
analysis with respect to some significant parameters and we draw up comparison
between the two contracts. Conclusion and general comments are given in Section
5.6.

5.2 Valuation framework

5.2.1 Financial setting
Within the financial market described in Section 3.1, we consider a money market
account B(t), a stock St and a long-term bond P (t, n) with fixed maturity n ≥ t.
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Following the approach of Barbarin and Devolder, 2005 we assume that the stock
follows a log-normal distribution with a constant drift µ ∈ R and constant volatility
σs ∈ R∗+; whereas the money market account and the long-term bonds are defined
with a stochastic interest rate {rt}. We consider a Ornstein-Uhlenbeck interest
rate model defined under the physical probability measure by Formula (3.2). Let
λr ∈ R be the market price of risk and Q be the risk-neutral measure such that
W r
t = W r

t + λrt is a Brownian motion under Q. The dynamic of rt under Q is
then

drt = b(c− λrσr
b
− rt)dt+ σrdW r

t |Q . (5.1)

One can show that the expression of rt under the measure Q is given by

rt = c0 + (r0 − c0)e−bt + σr

∫ t

0
eb(z−t)dW r

z ; (5.2)

where c0 = c− λrσr
b

. This implies that rt follow a normal distribution, i.e

rt  NQ

(
c0 + (r0 − c0)e−bt, σ

2
r

2b
(
1− e−2bt

))
.

For later convenience we shall introduce the process for the integral of the short
rate under Q

It =
∫ t

0
rzdz = c0t+

(r0 − c0)
(
1− e−bt

)
b

+ σr
b

∫ t

0

(
1− e−b(t−z)

)
dW r

z . (5.3)

Hence

It  NQ

c0t+
(r0 − c0)

(
1− e−bt

)
b

,
σ2
r

b2

t−
(
1− e−bt

)
b

−

(
1− e−bt

)2

2b


 .

From this, one can show that for all u > t,

Iu − It =
∫ u

t
rzdz = c0(u− t) +

(rt − c0)
(
1− e−b(u−t)

)
b

+ σr
b

∫ u

t

(
1− e−b(u−z)

)
dW r

z , (5.4)

which implies that

Iu−It NQ

(
c0(u−t)+

(rt−c0)(1−e−b(u−t))
b

,
σ2
r
b2

[
(u−t)−

(1−e−b(u−t))
b

−
(1−e−b(u−t))2

2b

])
. (5.5)
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The value at time t ≥ 0 of the long-term bond with maturity n ≥ t is given by
Formula (3.4) and it has the following dynamics

dP (t, n) = P (t, n) [(rt − λrσrBr(t, n)) dt− σrBr(t, n)dW r
t ] |P

= P (t, n)
[
rtdt− σrBr(t, n)dW r

t

]
|Q. (5.6)

The money market account follows the dynamic

dB(t) = rtB(t) dt,

with t ≥ 0 and B(0) = 1.
The dynamic of the stock under the physical measure P is defined as

dSt = µStdt+ σsStdW
s
t |P; (5.7)

where W s
t is a Brownian motion under P and we set S0 = 1. Assume dependence

between the stock and the interest rate, such that W s
t is correlated with W r

t i.e
ρ = corr(W s

t ,W
r
t ). The SDE (5.7) become

dSt = St

[
µdt+ σs ρ dW

r
t + σs

√
1− ρ2 dWt

]
|P

= St

[
rtdt+ σs ρ dW r

t + σs
√

1− ρ2 dWt

]
|Q; (5.8)

where Wt is a Brownian motion under P independent of W r
t and Wt is a Brownian

motion under the measure Q defined as

dWt = dWt + µ− rt − λr ρ σs
σs
√

1− ρ2 dt.

5.2.2 Investment strategy
We consider a portfolio At made of xs ∈ [0, 1] proportion of the capital invested on
the stock; xp ∈ [0, 1] proportion of the capital invested on the bond and (1−xp−xs)
proportion of the capital invested on the money market account with dynamic
rebalancing. At has the following dynamic

dAt
At

= xs
dSt
St

+ xp
dP (t, n)
P (t, n) + (1− xp − xs)

dB(t)
B(t)

= xsrtdt+ xsσs ρ dW r
t + xsσs

√
1− ρ2dWt + xprtdt

−xpσrBr(t, n)dW r
t + rtdt− xprtdt− xsrtdt|Q

= rtdt+ (xsσs ρ− xpσr Br(t, n)) dW r
t + xsσs

√
1− ρ2dWt|Q

= rtdt+ σ(t, n)dW r
t + σdWt|Q; (5.9)
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where
σ(t, n) = xsσs ρ− xpσr Br(t, n)

and
σ = xsσs

√
1− ρ2.

Let’s denote by Qn the n-forward measure, one can show that Qn is generated by
Ŵ r
t and Ŵt defined as

dŴ r
t = dW r

t + σrBr(t, n)dt; Ŵt = Wt. (5.10)

Formula (5.9) becomes
dAt
At

= [rt − σr σ(t, n)Br(t, n)] dt+ σ(t, n)dŴ r
t + σdŴt|Qn .

One can show that the value at time n > u > t ≥ 0 of this portfolio is given by

A(t, u) = AtAsset(t, u); (5.11)

where

Asset(t, u) =
exp

[∫ u
t (rz − σr σ(z, n)Br(z, n)) dz +

∫ u
t σ(z, n)dŴ r

z + σŴu−t
]

exp
[

1
2
∫ u
t (σ(z, n)2 + σ2) dz

]
= exp

[
−
∫ u

t

(
σr σ(z, n)Br(z, n) + 1

2
(
σ(z, n)2 + σ2

))
dz
]

× exp [G1 + (Iu − It) +G2] ; (5.12)

with
G1 =

∫ u

t
σ(z, n)dŴ r

z ; G2 = σŴu−t

and we also denote At := Asset(0, t). Using Formula (5.10), we have

dW r
t = dŴ r

t − σrBr(t, n)dt.

Substituting this latter in Formula (5.2) gives the following formula of (Iu − It)
under Qn

Iu − It = er + σr
b

∫ u

t

(
1− e−b(u−z)

)
dŴ r

z |Qn ; (5.13)

where

er := EQn [(Iu − It)] = c0(u− t) +
(rt − c0)

(
1− e−b(u−t)

)
b

− σ2
r

b

∫ u

t

(
1− e−b(u−z)

)
Br(z, n)dz. (5.14)
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From calculations, we obtain the following formulae and distributions of G1 and
G2 respectively 

G1 =
∫ u
t

(
Z + xpσr

b
e−b(n−z)

)
dŴ r

z

G1  NQn (0, σG1)

(5.15)


G2 = xsσs

√
1− ρ2Ŵu−t

G2  NQn (0, x2
sσ

2
s(1− ρ2)(u− t)) ;

(5.16)

where

σG1 = Z2(u− t) + 2xpσrZ
(
e−b(n−u) − e−b(n−t)

)
+

2x2
pσ

2
r

b

(
e−2b(n−u) − e−2b(n−t)

)
and

Z = xsσsρ−
xpσr
b
. (5.17)

Set E(t, u) := log(Asset(t, u)) which is normally distributed, let us find the dis-
tribution parameters (i.e the mean eA and the variance VA) of E(t, u) under Qn.
From Formula (5.12), we find that eA = EQn [E(t, u)] with

eA = −
∫ u

t

(
σr σ(z, n)Br(z, n) + 1

2

∫ u

t

(
σ(z, n)2 + σ2

))
dz + er; (5.18)

where er is given by Formula (5.14)

VA = V ar [E(t, u)] = EQn
[
((Iu − It) +G1 +G2 − er)2

]
. (5.19)

Setting Q := (Iu − It) +G1, we have

Q = er + σr
b

∫ u

t

(
1− e−b(u−z)

)
dŴ r

z +
∫ u

t
σ(z, n)dŴ r

z

= er + VQ; (5.20)

where
VQ = σr

b

∫ u

t

(
1− e−b(u−z)

)
dŴ r

z +
∫ u

t
σ(z, n)dŴ r

z .
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This implies that Formula (5.19) becomes

VA = EQn
[
Q2 +G2

2 + e2
r − 2erG2 + 2QG2 − 2Qer

]
= EQn

[
Q2
]

+ E
[
G2

2

]
+ e2

r − 2erE [er + VQ]

= EQn
[
V 2
Q

]
+ (u− t)σ2 − e2

r. (5.21)

From the Ito isometry, we have

EQn
[
V 2
Q

]
=

∫ u

t

[
σr
b

(
1− e−b(u−z)

)
+ σ(z, n)

]2
dz

= σ2
r

b2

∫ u

t

(
1− e−b(u−z)

)2
dz +

∫ u

t
σ(z, n)2dz

+2σr
b

∫ u

t

(
1− e−b(u−z)

)
σ(z, n)dz. (5.22)

Note that the first term of the RHS is equal to the variance of (Iu− It) defined in
Formula (5.5) and the second term of the RHS is equal to the variance of G1 defined
in Formula (5.15). Therefore, substituting Formula (5.22) in Formula (5.21) gives
the variance of E(t, u), such that

E(t, u) NQn (eA, VA) ;

where eA is given by Formula (5.18).
Let’s denote by Rt the rate of return of the portfolio At, with t > 0 such the return
of At is defined by

1 +Rt = Asset(t− 1, t). (5.23)

5.2.3 Mortality model
We consider the HW mortality model given in Section 2.2.1. The dynamic of the
policyholders’ force of mortality under the physical measure is given by Formula
(2.1). Let Qµ be a longevity risk-neutral measure such that the process W µ

t =
W µ
t + λµt is a Brownian motion under Qµ. The dynamic of the HW model under

the longevity risk-neutral measure is

dµx0
t = (θ(t)− λµσµ − aµx0

t )dt+ σµ dW
µ
t |Qµ ; (5.24)

where λµ > 0 is the market price of longevity risk. Assume independence be-
tween the interest rate and the longevity risks as well as independence between
the financial and longevity risks. In this case the survival index is defined as

Ix0+t
s−t = e−

∫ s
t
µ
x0
u du = eXq(t,s) = em

x0
q (t,s)+σx0

q (t,s)Z , (5.25)
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with Z being a standard normal random variable with mean zero and variance
one.
We can show that

Xq(t, s) = −
∫ s

t
µx0
u du = mx0

q (t, s) + σµ
a

∫ s

t

(
1− e−a(s−u)

)
dW µ

u . (5.26)

This implies that

Xq(t, s)  N
(
mx0
q (t, s),

(
σx0
q (t, s)

)2
)
⇒

Xq(t, s)−mx0
q (t, s)

σx0
q (t, s)  N (0, 1),

with

mx0
q (t, s) = µx0

t (e−a(s−t) − 1)
a

− AeBt

B(a+B)
(
eB(s−t) − 1

)
− AeBt

a(a+B)
(
e−a(s−t) − 1

)
+ λµ σµ

a

(
e−a(s−t) − 1 + (s− t)

)
(5.27)

and (
σx0
q (t, s)

)2
=
σ2
µ

a2

s− t− 1− e−a(s−t)

a
−

(
1− e−a(s−t)

)2

2a

 . (5.28)

Let ρq(s, l) be the correlation factor that captures the dependecy between two sur-
vival indexes, with 0 ≤ t < s < l. We define this correlation using the covariance
between the Xq(t, s)’s as follows : for 0 ≤ t < s < l, the covariance between
Xq(t, s) and X(t, l) is defined as

cov[Xq(t, s), Xq(t, l)] =
σ2
µ

a2

[
s− t− (e−al + e−as)(eas − eat)

a
+ e−a(s+l) (e2as − e2at)

2a

]
,

which implies that the correlation is given by

ρq(s, l) := corr[Xq(t, s), Xq(t, l)] = cov[Xq(t, s), Xq(t, l)]
σx0
q (t, s) σx0

q (t, l) ; (5.29)

where σx0
q (t, s) is given by Formula (5.28). It follows that the survival probability

of an individual initially aged x0, alive at age x0 + t of living at least up to age
x0 + s under the measure Qµ is given by

pqx0(t, s) = EQµ
[
Ix0
s

Ix0
t

|Fµt
]

= Aqx0(t, s)e−B
q
x0 (t,s)µx0

t ; (5.30)
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where
Bq
x0(t, s) = 1

a

(
1− e−a(s−t)

)
and

Aqx0(t, s) = exp
(
AeBt

a+B

[
1− eB(s−t)

B
+B(t, s)

]
− σ2

2a2

(
Bq
x0(t, s)− (s− t)

))

× exp
(
−σ

2

4aB
q
x0(t, s)2 + λµ σµ

(
(s− t)
a
−Bq

x0(t, s)
))

.

5.3 The annuity contracts
We consider two contracts : the proportional risk-sharing GSA defined in Section
4.2.2 and the complete risk-sharing GSA defined in Section 4.3.

5.3.1 Contract 1 : the proportional risk-sharing GSA
We assume an initial cohort of N0 policyholder paying a total single premium of
F0 to the insurer in order to buy a proportional risk-sharing GSA. The cohort is
assumed to be homogeneous i.e the group members have the same initial age and
the same single premium. Moreover we assume that the cohort is closed, meaning
that no one can joint the cohort after the establishment of the contract. Let
βt ∈ [0, 1] and β′t ∈ [0, 1] be respectively the proportions at time t of the longevity
and the financial risks borne by the group of policyholders. For simplification
purpose we assume constant risk proportions β and β′. The benefit payout of a
proportional risk-sharing GSA (PRS-GSA) is given by

Bt(β, β′) = Bt−1(β, β′) [β Lriskt + (1− β)] [β′ Eriskt + (1− β′)] ; (5.31)

where

Lriskt = px0+t−1

p∗x0+t−1
and Eriskt = 1 +Rt

1 +R
(5.32)

respectively represent the financial and the longevity risks at time t with px0+t =
1px0+t and p∗x0+t−1 = Ix0+t−1

1 , where Ix0+t−1
1 is obtained from Formula (5.25) and

with 1 + Rt defined from Formula (5.23). B0 is the initial individual benefit and
is defined by Formula (4.1), i.e

B0 = F0

N0äx0

; (5.33)
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where äx0 = ∑∞
t=0 v

t
tpx0 and v = (1 + R)−1, with R and tpx0 being respectively

the annuity technical rate and life table used by the insurer. Nt is the expected
number of survivors at age x0 + t for t ≥ 0 whereas N∗t is it real value. Note
that B0 is constant with respect to the risk proportions β and β′. Similarly, the
benefit payout of the PRS-GSA of an open heterogeneous cohort can be obtained
by respectively defining Eriskt and Lriskt as the mortality adjustment factor
and the financial adjustment factor proposed by Piggott et al., 2005 or Qiao and
Sherris, 2013. For a closed homogeneous cohort one can show that Formula (5.31)
takes the form

Bt(β, β′) = B0

t∏
j=1

[β Lriskj + (1− β)] [β′ Eriskj + (1− β′)] ; (5.34)

where Eriskt and Lriskt are given by 5.32. The annuitants will each receive
Bt(β, β′) at t ≥ 0 as long as they are alive.

5.3.2 Contract 2 : the complete risk-sharing GSA
We consider the same group of policyholders subscribed for Contract 1 in Section
5.3.1, buying a complete risk-sharing GSA (CRS-GSA). Let β, β′ ∈ [0, 1] be
the risk proportions defined previously. The initial benefit B0(β, β′) is defined
by the risk adjusted annuity factor denoted by äx0(β, β′) depending of the risk
adjusted discount rateR(β, β′) which encodes both the financial and longevity risks
shared. Hence this contract allows the insurer to propose different technical rated
depending on the proportions of risks borne by annuitants. The risk adjustment
annuity factor as is defined by

äx(β, β′) =
∞∑
s=0

(
1

(1 +R(β, β′))

)s
× spx,

in such a way that the initial benefit of each policyholder is given by

B0(β, β′) = F0

N0 äx(β, β′)
. (5.35)

For all t > 0 the benefit at t of each policyholder subscribing to this contract is
given by

Bt(β, β′) = B0(β, β′)
t∏

j=1
[βLriskj + (1− β)]×[β′Eriskj(β, β′) + (1− β′)] ; (5.36)
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where B0(β, β′) is given by Formula (5.35). The financial and longevity risks
shared at each time t ≥ 0 are respectively given by

Eriskj(β, β′) = 1 +Rj

1 +R(β, β′) and Lriskj = px+j−1

p∗x+j−1
. (5.37)

From these contracts, one can derive single risk sharing GSAs, for instance setting
β = 0 we have the (complete) financial risk-sharing GSA and by setting β′ = 0 we
have the (complete) longevity risk-sharing GSA as shown in Chapter 4.

5.4 Valuation of the annuity contracts
We remind that the maximum length of a contract bought by policyholders is
denoted by n ≥ 0 and we assume n is sufficiently large such that policyholders die
at very old age, say 111 years old. This mean that each policyholder could receive
at most n+ 1 cash flows as long as they are alive.

5.4.1 Contract 1
The final value (at time t = n) of the insurance Contract 1 defined in 5.3.1 is given
by

V (C1)
n (β, β′) =

n∑
t=0

Bt(β, β′) tp
∗
x0 e

∫ n
t
rs ds,

=
n∑
t=1

B0

t∏
j=1

[β Lriskj + (1− β)] [β′ Eriskj + (1− β′)] tp
∗
x0 e

∫ n
t
rs ds

+ B0 e
∫ n

0 rs ds. (5.38)

Hence the value at time t = 0 of a proportional RS-GSA is given by

V
(C1)

0 (β, β′)
P (0, n) = EQ0

[
V (C1)
n (β, β′)

]
; (5.39)

where EQ0 is the expectation under the probability measure Q0 such that

dQ0

dP
= dQn

dP
dQµ

dP
.

Note that Q0 is a product probability risk-neutral measure made of the longevity
risk-neutral measure Qµ and the forward financial risk-neutral measure Qn defined
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in Section 5.2.2. one can show that Formula (5.39) takes the form

V
(C1)

0 (β, β′) = B0 +
n∑
t=1

B0 P (0, n) EQµ

tp
∗
x0

t∏
j=1

[β Lriskj + (1− β)]


× EQn
P−1(t, n)

t∏
j=1

[β′ Eriskj + (1− β′)]
 ; (5.40)

where P (t, n) is given by Formula (3.4).

Let’s set

V
(C1)
L (β) := EQµ


tp
∗
x0

t∏
j=1

[β Lriskj + (1− β)]
 ; (5.41)

V
(C1)
E (β′) := EQn

P−1(t, n)
t∏

j=1
[β′ Eriskj + (1− β′)]

 . (5.42)

Using Formulae (5.27)–(5.28), we have

V
(C1)
L (β) = EQµ

emx0
q (0,t)+σx0

q (0,t)Z(t)
t∏

j=1

[
β px0+j−1 e

−mx0
q (j−1,j)−σx0

q (j−1,j)Z(j)
+ (1− β)

] ;

where Zj is a standard normally distributed random variable with mean zero and
variance one and is dependent of Zj−1. Let ρq(j − 1, j) be the correlation factor
that captures the dependency between two consecutive survival indexes and is
defined from Formula (5.29). From the Cholesky decomposition, we have


Z(j) = ρq(j − 1, j)Z(j−1) +

√
1− ρ2(j − 1, j)Zj

Z(0) = 0 & Z(1) = Z1,

(5.43)

with Z(j−1) is independent of Zj.
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5.4.2 Contract 2
Concerning Contract 2 defined in 5.3.2 the value at maturity t = n of such a
contract is defined as

V (C2)
n (β, β′) =

n∑
t=0

Bt(β, β′) tp
∗
x0 e

∫ n
t
rs ds,

=
n∑
t=1

B0(β, β′)
t∏

j=1
[β Lriskj + (1− β)]

[
β′j Eriskj(β, β′) + (1− β′)

]
× tp

∗
x0 e

∫ n
t
rs ds + B0(β, β′) e

∫ n
0 rs ds. (5.44)

It follows that the value at inception of a CRS-GSA is given by

V
(C2)

0 (β, β′) = P (0, n) EQ0
[
V (C2)
n (β, β′)

]
= B0(β, β′) +

n∑
t=1

B0(β, β′) P (0, n) EQµ

tp
∗
x0

t∏
j=1

[β Lriskj + (1− β)]


× EQn

P−1(t, n)
t∏

j=1
[β′ Eriskj(β, β′) + (1− β′)]

 . (5.45)

Let’s set

V
(C2)
L (β) := EQµ


tp
∗
x0

t∏
j=1

[β Lriskj + (1− β)]


= EQµ

tp
∗
x0

t∏
j=1

(
β
px0+j−1

p∗x0+j−1
+ (1− β)

) ; (5.46)

V
(C2)
E (β, β′) := EQn

P−1(t, n)
t∏

j=1
[β′ Eriskj(β, β′) + (1− β′)]


= EQn

P−1(t, n)
t∏

j=1

(
β′

1 +Rt

1 +R(β, β′) + (1− β′)
) . (5.47)

Formulae (5.27)–(5.28) imply that

V
(C2)
L (β) = EQµ

emx0
q (0,t)+σx0

q (0,t)Z(t)
t∏

j=1

[
β px0+j−1 e

−mx0
q (j−1,j)−σx0

q (j−1,j)Z(j)
+ (1− β)

] ,
with Zj’s given by 5.43.
Formulas (5.40) and (5.45) represent the values of Contract 1 and 2 respectively.
They are said to be fair if they are equal to the unique premium F0

N0
. Below we

present a detail study of a simple case of two period annuity.
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5.4.3 Special case of two periods of time
As we could not find closed valuation formulae for the two contract (with multiple
periods of time), here we make a detailed study of two period contracts; i.e when
n = 1. In this case, the annuitants receive two payments: the first is certain (i.e
risk-free) and paid right after the contract inception, whereas the second is paid if
the annuitant is alive, hence depends on both the financial and longevity risks.

Contract 1

For n = 1, the valuation Formula (5.40) of this contract becomes

V
(C1)

0 (β, β′) = B0 +B0 P (0, 1) EQµ
[
p∗x0

(
β
px0

p∗x0

+ (1− β)
)]

EQ1

[
β′

1 +R1

1 +R
+ (1− β′)

]
= B0 +B0 P (0, 1)

(
β px0 + (1− β)pqx0

(0, 1)
) (

β′
EQ1 [Asset(0, 1)]

1 +R
+ (1− β′)

)
;

where pqx0(0, 1) = EQµ
[
p∗x0

]
and

B0 = F0

N0
(
1 + 1

1+R px0

) .
By definition of the forward measure, we have EQ1 [Asset(0, 1)] = 1

P (0,1) and it
follows that the value of this contract is given by

V
(C1)

0 (β, β′) = B0 +B0 P (0, 1)
(
β px0 + (1− β)pqx0

(0, 1)
) (

β′
P−1(0, 1)
(1 +R) + (1− β′)

)
= B0 +B0

(
β px0 + (1− β)pqx0

(0, 1)
) (

β′
1

(1 +R) + (1− β′)P (0, 1)
)
.

(5.48)

The value of a contract is said to be fair if its value is equal to the unique premium,
i.e if V

(C1)
0 (β,β′)
(F0/N0) = 1. Therefore, Formula (5.48) becomes

px0

1 +R
=

[
β
(
px0 − pqx0(0, 1)

)
+ pqx0(0, 1)

] [
β′
( 1

(1 +R) − P (0, 1)
)

+ P (0, 1)
]
.

(5.49)

Contract 2

Similarly to Contract 1 and with

B0(β, β′) = F0

N0
(
1 + 1

1+R(β,β′) px0

) ,
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one can show that the value of Contract 2 is given by

V
(C2)

0 (β, β′) = B0(β, β′) +B0(β, β′)
(
β px0 + (1− β)pqx0(0, 1)

)
×

(
β′

1
(1 +R(β, β′)) + (1− β′)P (0, 1)

)
. (5.50)

It follows that the fair valuation of this contract leads to[
β

(
1−

pqx0
(0, 1)
px0

)
+
pqx0

(0, 1)
px0

]
[β′ (1− (1 +R(β, β′))P (0, 1)) + (1 +R(β, β′))P (0, 1)] = 1.

(5.51)

Formula (5.51) can be rewritten as

px0

1 +R(β, β′) =
[
β
(
px0 − pqx0

(0, 1)
)

+ pqx0
(0, 1)

] [
β′
(

1
(1 +R(β, β′)) − P (0, 1)

)
+ P (0, 1)

]
.

(5.52)

Below we present the values of the proportion of financial risk borne by annuitants
and the risk adjusted rates that guarantee the fair valuation in some particular
cases.

a) Assume there is no longevity risk adjustment (i.e β = 0).

– If the risk adjusted rate R(β′) is known, one can show that the pro-
portion of financial risk borne by annuitants satisfying fair valuation is
given by

β′ =
px0

pqx0 (0,1) − (1 +R(β′))P (0, 1)
1− (1 +R(β′))P (0, 1) . (5.53)

Note that this is also valid for Contract 1 with R = R(β′). Formula
(5.53) shows that the fair valuation is guaranteed for a pure financial
GSA, i.e β′ = 100% arising when the life table consider by the insurer
is equal to te best estimate of survival index.

– If the proportion of financial risk borne by annuitants is known, then
the fair risk adjusted rate is given by

R(β′) =
px0

pqx0 (0,1) − β
′

P (0, 1)(1− β′) − 1. (5.54)

It follows that when px0 = pqx0(0, 1) and (1 + R(β′))−1 = P (0, 1), then
the contract is fair for any choice of β′.
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b) Assume equal proportions of financial and longevity risks adjust-
ment i.e β = β′. Hence one can show that for a given β, the fair risk
adjusted rate in this case is given by

R(β, β) =

1

β

(
1−

p
q
x0 (0,1)
px0

)
+
p
q
x0 (0,1)
px0

− β

P (0, 1)(1− β) − 1; (5.55)

and we have similar observation as for Formula (5.54).

Further observations from Cases a) and b) along with alternative case will be
studied numerically in Section 5.5.1.
It is important to stress that these observations made for contracts with two peri-
ods of time can not be generalized to n > 2 periods of time because in this latter
case the long term nature of the contracts as well as the dependencies strongly
affect the results as we will see below.

5.5 Numerical studies
As in the previous chapters, we consider a closed cohort made of N0 = 1000
policyholders initially aged x0 = 65 with an ultimate age of 110 and paying a total
unique premium of F0 = 10002$ for one of the two contracts. Using the mean
square error (MSE) method we obtain the following mortality parameters

µ65
0 A B a σµ λµ MSE

0.0105677 0.001179271 0.105780593 0.004861948 0.012706011 0.001561629 0.000170881

Table 5.1: Parameters of the mortality model using the MSE

We further assume two annuity life table used by the insurer. We first consider
the unisex Belgian table calculated by Statbel 2 and then the best estimate for the
real survival probabilities so as to highlight the effect of these tables on the values
of the contracts. In what follows we denote the Statbel table by PsB.
The parameters of the stock and the interest rate model are given in Section 3.3.1.
Below we make sensitivity analysis of each contract with respect to significant
parameters.

2https://data.gov.be/fr/dataset/72c1db031defb669a78ea81ddba786bc3238a78a (ac-
cessed on June 20, 2020)

https://data.gov.be/fr/dataset/72c1db031defb669a78ea81ddba786bc3238a78a
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5.5.1 Contract 2 with two periods of time
Figures 5.1 and 5.2 represent Formulas (5.54) and (5.55) respectively for different
annuity life table. These figures illustrate how the fair risk adjusted rate evolves
with the proportions of risks borne by annuitants as well as with the annuity life
table used by the insurer for case a) and b) described above.

With no longevity risk (β = 0)

Figure 5.1: R(β′) that guarantees fair valuation with pqx0(0, 1) = EQn [p∗x0 ] =
0.9885624 for β = 0.

It follows form Figure 5.1 that

• When the insurer overestimates the longevity i.e px0 = pqx0(0, 1) + y, with
y > 0, then the fair valuation will be satisfied if annuitants are granted with
higher risk adjusted rate. Moreover, we observe an increasing risk adjusted
rate with respect to the proportion of financial risk borne by annuitants.
This means that the higher financial risk annuitants borne, the higher will
be their risk adjusted rate hence higher benefits.

• When the insurer rather underestimates the longevity of the annuitants i.e
px0 = pqx0(0, 1)− y, with y < 0 we have opposite observations.

• When the life table used by the insurer is equal to the best estimate of the
survival index i.e px0 = pqx0(0, 1), we observe a constant risk adjusted rate
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equal to the technical rate of the one year bond i.e R(β′) = P−1(0, 1)− 1 =
1.005017%.

With equal financial and longevity risk shifted to annuitants (β = β′)

Figure 5.2: R(β, β) that guarantees fair valuation with pqx0(0, 1) = EQn [p∗x0 ] =
0.9885624 for β = β′.

Figure 5.2 shows that

• We observe a slightly decreasing risk adjusted rate with respect to propor-
tions of risks borne by annuitants, no matters the value of the annuity life
table px0 . This figure clearly shows the high effect of longevity risk on the
risk adjusted rate in the sense that we observe a compensation effect for high
proportions of risks compared to Figure 5.1.

• Similarly to Figure 5.1, the more the insurer overestimates (respectively un-
derestimates) the longevity of annuitants, the high (respectively low) risk
adjusted rate will be. In other words, annuitants are granted with high rate
if the insurer overestimates their longevity and they are penalised with low
rate if the insurer underestimates their longevity. Moreover, when the an-
nuity life table is equal to the best estimate of survival index, we have a
constant risk adjusted rate given by the technical rate of the one year bond
i.e R(β′) = P−1(0, 1)− 1 = 1.005017%.
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5.5.2 Contract 1 with n periods of time
For this contract, in Tables 5.2 and 5.3 we show the sensitivity study of the con-
tract’s value with respect to the proportions of risks borne by annuitants as well
as the proportions invested on each assets. The sensitivity study is made with
respect to xs, xp, β, β′ and tpx0 .

β′
100% 75% 50% 25%

xs xp

0% 0% 1.023416 1.053162 1.084109 1.116193

0% 50% 1.025175 1.054156 1.084268 1.11619

25% 25% 0.824781 0.891024 0.966411 1.051981

50% 0% 0.67675 0.761799 0.865673 0.993111

50% 50% 0.67417 0.759794 0.864043 0.991401

Table 5.2: Value of Contract 1 per unit of premium with R = 1.75% and tpx0 =
EQµ [tp∗x0 ].

β′
75% 50% 25% 100%

xs xp

0% 0% 1.059651 1.09835 1.140214 1.500616

0% 50% 1.060733 1.098695 1.139743 1.051663

25% 25% 0.89598 0.978157 1.07339 0.840644

50% 0% 0.765071 0.874212 1.011537 0.68556

50% 50% 0.76225 0.872307 1.010123 0.682931

β 25% 50% 75% 100%

Table 5.3: Value of Contract 1 per unit of premium with R = 1.75% for tpx0 =PsB.

Note that the value of a classical annuity withR = 1.75% is given by V (1)
0 (0, 0)/A0 =

1.1488996 (when tpx0 = EQn [tp∗x0 ]) and V (1)
0 (0, 0)/A0 = 0.766036 (when tpx0 =PsB).

It follows from Tables 5.2 and 5.3, that

• The less we invest in the money market account, the less will be the value of
Contract 1. rredMoreover, the value of the contract increases with proportion
of longevity risk borne by annuitants whereas it decreases with proportion
of financial risk as also shown in Table A.6;
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• When the annuity life table is equal to the best estimate of the survival
probability, we observe that the value of Contract 1 is independent from the
proportion of longevity risk borne by annuitants as obtained in the case of
two periods of time. Considering the annuity life table as the PsB table, we
find that the contract’s value increases with the annuitant’s proportion of
longevity risk;

• We see that the value of this contract is less sensitive with respect to the
proportion invested in the discount bond, whereas the investment in stock
highly decreases the value of the contact;

• Furthermore, considering the best estimate of survival yields lower contract’s
value compared to the PsB life table. This implies that the considered PsB
table overestimates the annuitant’s survival.

Overall, Tables 5.2 and 5.3 also show that there always exist couples
(β, β′) /∈ {(0%, 0%), (100%, 100%)} along with investment strategies for which
the value of this contract is lower than that of both GSA and classical annuity.
Meaning that insurer selling a risk-sharing GSA is exposed to low risk compared
to classical annuity and GSA. Furthermore, one could also find such parameters
for which the fair valuation is guaranteed.

5.5.3 Contract 2 with n periods of time
Similarly to Contract 1, Tables 5.4 and 5.5 illustrate the sensitivity analysis of the
value of this contract with respect to R(β, β′), xs, xp, β, β′ and tpx0 .

β′
100% 75% 50% 25% 0%

R(β, β′)

0.25% 0.888838 0.907651 0.926845 0.946633 0.967336

0.75% 0.891687 0.922509 0.955385 0.990435 1.026638

1.75% 0.897214 0.952145 1.01254 1.077193 1.151059

2.75% 0.902461 0.978842 1.065564 1.164301 1.277148

4% 0.909118 1.010171 1.129279 1.272126 1.442794

Table 5.4: Value of Contract 2 per unit of premium with xs = 15%, xp = 25% and
tpx0 = EQµ [tp∗x0 ].
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β′
75% 50% 25% 0% 100%

R(β, β′)

0.25% 0.913122 0.939877 0.967648 0.997007 0.91343

0.75% 0.928319 0.968268 1.011287 1.058081 0.914479

1.75% 0.957096 1.024093 1.099236 1.184534 0.917711

2.75% 0.983783 1.077507 1.187545 1.316763 0.919544

4% 1.104307 1.141776 1.296569 1.486658 0.923119

β 25% 50% 75% 100% 100%

Table 5.5: Value of Contract 2 per unit of premium with xs = 15% and xp = 25%
for tpx0 =PsB.

Tables 5.4 and 5.5 lead to the following observations

• An increasing contract value with the risk adjusted discount rate for both
values of tpx0 . When tpx0 = PsB, we found from simulations (presented
in Table A.7) that the value of Contract 2 increases with the proportion
of longevity risk borne by the annuitants whereas it is independent of this
latter for tpx0 = EQµ [tp∗x0 ]. Furthermore, the value of the contract increases
with respect to the policyholders’ proportion of financial when tpx0 is equal
to the best estimate of survival whereas it will depend on the proportion of
longevity considered when tpx0=PsB;

• We observe that when tpx0 = EQµ [tp∗x0 ], the pure financial GSA and GSA
produce lower value whereas the classical annuity yields the higher value.
When tpx0 =PsB, the pure financial GSA yields lower value whereas the
pure longevity GSA gives higher value;

• Similarly to Contract 1, this contract is less sensitive to xp and decreases
with xs for both values of tpx0 .

It also follows that one can always find triples (β, β′, R(β, β′)), with (β, β′) /∈
{(0%, 0%), (100%, 100%)} along with investment strategies such that the contract
value is lower than that of classical annuity and GSA. One can also find such
parameters that guarantee the fair valuation. Moreover, the more financial risk a
policyholder bears, the less value the contract yields and the more we invest on
the stock, the low value we obtain as well.
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The tables below give the values of risk-adjusted discount rates that guarantee the
fair valuation of Contract 2; we refer to the obtained risk adjusted discount rates as
the indifference discount rates. The tables further illustrate a sensitivity analysis
of these rates with respect to the investment strategies and the proportions of risks
borne by the group of policyholders.

β′
70% 50% 25% 5%

xs xp

0% 0% 0.02993% 0.31311% 0.45717% 0.51647%

0% 50% −0.0091 0.29949% 0.44876% 0.51939%

15% 25% 2.90933% 1.53715% 0.86178% 0.58577%

25% 25% 4.85138% 2.3727% 1.13723% 0.62947%

50% 0% 9.73647% 4.47219% 1.83977% 0.73658%

50% 50% 9.82728% 4.51253% 1.85373% 0.74221%

Table 5.6: Fair risk adjusted discount rate with tpx0 = EQµ [tp∗x0 ].

β′

25% 50% 70% 25% 50% 70% 25% 70%
xs xp

0% 0% 0.38105% 0.06383% −0.62103% 0.45854% 0.32522% 0.01372% 0.21938% −0.20232%

0% 50% 0.36929% 0.05577% −0.4226% 0.45526% 0.29488% −0.00705% 0.21551% −0.32666%

15% 25% 0.78617% 1.31096% 2.39714% 0.86395% 1.53597% 2.91161% 0.63847% 2.73353%

25% 25% 1.0678% 2.15967% 4.44575% 1.14975% 2.38712% 4.86953% 0.92458% 4.72293%

50% 0% 1.76701% 4.29861% 9.53948% 1.83832% 4.47326% 9.72065% 1.6262% 9.66195%

50% 50% 1.7775% 4.33695% 9.6338% 1.85629% 4.51441% 9.82002% 1.64615% 9.77035%

β 25% 50% 70% 0% 0% 0% 70% 25%

Table 5.7: Fair risk adjusted discount rate with tpx0 =PsB.

We found that there is no risk adjusted discount rate that guarantees a fair val-
uation when the whole financial risk is borne by annuitants (i.e for β′ = 100%).
Tables 5.6 and 5.7 show that
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• The indifference rates R(β, β′) increases with xs whereas it is less sensitive
with respect to xp. Note that the effect of annuitants’ proportions of risks
strongly depends on the investment strategy;

• The indifference rate of a pure longevity GSA is R(0, β′) = 0.2728% for
tpx0 = EQn [tp∗x0 ] and R(0, β′) = 0.53216% for tpx0 =PsB;

• As the contract value increases with the risk adjusted rate, then the higher
the indifference risk adjusted rate we obtain, the higher value the contract
will yield. Inversely, low or negative indifference rates mean that the in-
surer must penalise the annuitants with low rates in order to guarantee fair
valuation.

• As obtained in the case of two periods of time, considering the best estimate
of survival the obtained indifference rates are independent of annuitants’
proportion of longevity risk. Note that in this case of n periods of time,
these indifference rates strongly depend on the annuitants’ proportion of
financial risk along with the investment strategy.

Note that for both contracts and both annuity life tables, one can find proportions
of risks borne by annuitants as well as proportion invested on each asset and
risk adjusted rates (for Contract 2) that guarantee the fair valuation of these
contracts. Furthermore, we can always find such parameters for which the value
of each contract is lower than that of classical annuity, GSA and even lower than
the initial premium. Note that the tables above shown that the PsB life table
overestimates the expected survival probability as it gives higher contract values
and risk adjusted rates compared to those obtained with the best estimate of
survival. The effect of the proportion of longevity risk is highlighted in Figure A.8
of Appendix A.9.2.

Remark 5. Similarly to Remark 4, the numerical studies made in this chapter
illustrate the comparison of our proposed (complete) risk-sharing GSAs with the
GSA proposed by Piggott et al., 2005 within our framework. It could also be inter-
esting to make such comparison within Piggott et al., 2005’s framework so as to
highlight the impact of the considered framework.

5.5.4 Simulation performance
To obtain the numerical results (i.e figures and tables) for this chapter, we per-
formed MC method with 500000 simulations.
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• Figures 5.1 and 5.2 for the case of two periods of time took less than 10
seconds each.

• For the first contract represented in Tables 5.2, 5.3 and A.6, we ran the code
for approximatively 1.5 minutes for each value of the tables.

• Concerning Contract 2 represented by the tables in Section 5.5.3 and Ap-
pendix A.9.2, the simulations took approximatively 2 minutes per value in
the tables.

5.6 Conclusion
We proposed in this chapter the valuation analysis of two contracts of risk-linked
annuities : Contract 1 representing a risk-sharing GSA and Contract 2 being a
complete risk-sharing GSA. These products are derived from the GSA proposed by
Piggott et al., 2005 and allow for risk sharing between a group of policyholders and
the insurer. Based on the risk-neutral approach, we valued these contracts while
considering equity, interest rate and longevity risks. For comparison purpose, we
have presented an in deep numerical study of these products along with a detailed
sensitivity study with respect to the investment strategy, proportions of risks borne
by policyholders, the risk adjusted discount rate and the annuity life table.
We made a detailed study of contracts with two periods of time for which we de-
rived conditions that guarantee the fair valuation of both contracts. We found that
the obtained conditions were not always valid for contracts with n > 2 periods of
time because of their long-time nature and the various dependencies. Moreover,
numerical studies shown a significant effect of the proportion invested on the stock
and proportion of financial risk borne by policyholders on the value of both con-
tracts. As in the case of two periods of time we found that for n periods of time, the
value of both contracts and the risk adjusted rates (for Contract 2) are indepen-
dent of the annuitants’ proportion of longevity risk and increase with proportion
of financial risk borne by annuitants when the annuity is described by the best
estimate life table. The value of the contracts increases with both proportions
of longevity and financial risks when the annuity life table is given by the PsB
table. An interesting finding is that one can always find pairs of proportions of
risk borne by annuitants along with investment strategies such that the value of
the risk-sharing GSA is less than that of GSA, classical annuity and even less than
the unique premium. One can also find such parameters that guarantee the fair
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valuation.
Concerning Contract 2, we found that its value increases with the risk adjusted
rate. Similarly to Contract 1, we observed that one can always find a triples made
of proportions of financial and longevity risks and the risk adjusted rate along with
investment strategy such that the obtained complete risk-sharing GSAs yield lower
values than both GSA and classical annuity. We can also find such parameters
for which the value of Contract 2 is less than or equal to the unique premium.
We have further computed the values of the risk adjusted rates that guarantee the
fair valuation of this contract, we refer to these rates as the indifference discount
rates which increase with the proportion invested in the stock. Moreover, we have
showed that for some values of both proportions of risks, there is no risk adjusted
rates that guarantee fair valuation; meaning that in those cases the value of the
contract is always less than the unique premium. Note that we have higher (re-
ceptively lower) value of the contracts (respectively indifference rates) with the
PsB life table compared to the best estimate of survival. Overall, one can always
find risk-sharing and complete risk-sharing GSAs with a value lower than those of
GSA, classical annuity and even lower than the unique premium.
An extension of the analysis presented in this chapter could consist of analysing
the impact of the dependency between financial and longevity risks on the value
of each contract.





Chapter 6

Conclusion

In this dissertation, we have presented ways to enhance annuity trading on both
insurer and policyholders viewpoints so as to provide them with enough informa-
tion to facilitate their decision making while trading annuity products. First of
all, we proposed methods to assess the SC of an insurer selling a classical annu-
ity based on investment strategy within a Brownian driven market. Focusing on
equity, longevity and interest rate risks, we made a deep comparison of the SC
for lifetime, deferred and term annuities. Secondly, we have designed and val-
ued novel annuities allowing for risk sharing between insurer and policyholders.
The proposed risk-sharing annuities describes a family of products moving from
classical annuity to GSA.
In Chapter 2 we developed a single risk model used to measure the longevity risk
borne by an insurer selling a classical annuity following the maturity approach.
We further value the profitability of such product on the shareholders viewpoint
by studying the mean-variance trade-off of the corresponding IRR. We hence sug-
gested that insurer’s trading decision could be based either on the low SC or high
IRR. Numerical results have shown that one can find suitable annuity (between
lifetime, deferred and term annuities) that maximises the IRR or that minimises
the SC. We have also highlighted the effect of the confidence level and found that
a constant confidence level as required by SII strongly increases the SC. In order
to take advantage of the risky investment return, we have developed a complete
model in Chapter 3 taking into account interest rate, equity and longevity risks. It
came out that for each of the annuity, one could find an investment strategy that
minimises the SC or maximises the IRR. Our investment strategy is advantageous
and attractive for both insurer and policyholders as well as for shareholders. It
follows that adding a SC is not always a bad deal as it can be seen as a profitable



110 Chapter 6. Conclusion

investment depending on the annuity sold.
Focusing on policyholder’s point of view, we have presented in Chapter 4 some
methods to design risk-sharing annuities. These methods allow for single-risk
sharing as well as multi-risk sharing between a pool of policyholders and insurer.
These approaches are based on the GSA where group of policyholders bear the
whole risk. We have then developed a family of annuities moving from classical
annuity to the GSA, we refer to it as the (complete) risk-sharing GSA. We shown
that there exists proportions of risks borne by annuitants that give better expected
lifetime utility compared to both classical annuity and GSA. It follows that the
(complete) risk-sharing GSA do not only improve the utility of consumption but
also the lifetime utility of policyholders compared to classical annuity and GSA.
Having proposed these novel products, we then had to think about how much they
cost.
In Chapter 5 we valued the (complete) risk-sharing GSA using the risk-neutral
approach. Using in deep numerical studies, we found that for some proportions
of risks borne by annuitants, the (complete) risk-sharing GSA is cheaper than
both GSA and classical annuity. Moreover, one could find such proportions as
well as interest rate (called risk adjusted rate) that guarantee the fair valuation of
(complete) risk-sharing GSAs.
There are still several questions that can be addressed in future researches. A
direct extension of this thesis is to study the risk proportions effect on the SC of
an insurer selling a (complete) risk-sharing GSA.
As we only focused on homogeneous cohort (i.e same age, same premium and
same entering time) in this thesis, it could be interesting to study the cohort’s
diversification effect by considering heterogeneous cohort, i.e considering a group
of annuitants with different ages, different premium and different entering time.
Another extension could consist of using dynamic risk measurement such as iter-
ated VaR. One could move further by considering different mortality model such
as Lee-Carter or Cox-Ingersoll-Ross as well as a Lévy driven financial market with
dependency between financial and longevity risks.
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A.1 Solvency capital with respect to the
deferred and term times

The table below gives the values of the SC per unit of single premium for both
immediate term and deferred annuities when both the deferred and the term times
vary from 1 to 40. This is made using both constant and time-dependent confi-
dence levels and at t = 0. We then observe that for the term annuity the value
of the SC increases for small value of the term time d′ and decreases for largest
values of d′; this is observed for both values of the confidence level. As regard
the deferred annuity, for variable confidence level, the SC strictly decreases for
small values of the deferred time d and increases for larger value of d. Using
the constant confidence level, we observe that the SC increases when d increases.
Moreover, when the term time d′ approaches 45, the value of the SC converges to
the SC of a lifetime annuity (given by 0.1403933 for constant α and 0.03822095
for variable α). When the deferred time d goes to 0, the value of the SC converges
to the SC of a lifetime annuity.
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SC(d, d′)/A0 Term annuity Deferred annuity
Values of d and d′ Constant α Variable α Constant α Variable α

1 0.006156096 0.006153251 0.12403064 0.028944735
2 0.012352836 0.011125707 0.10912764 0.020232837
3 0.018453675 0.015353574 0.09544175 0.011929853
4 0.024303704 0.019543642 0.08413130 0.003968597
5 0.030369315 0.023229284 0.07259427 -0.002910031
6 0.036514168 0.026574362 0.06354518 -0.009368481
7 0.042701852 0.029546813 0.05693445 -0.015076207
8 0.049113252 0.032413929 0.05428510 -0.019060104
9 0.054907241 0.035345726 0.05368941 -0.022470205
10 0.061024635 0.037834998 0.05721433 -0.024729544
11 0.066085821 0.040194102 0.06270525 -0.027540167
12 0.071862367 0.042155518 0.07390130 -0.026949580
13 0.078535718 0.044084758 0.08444255 -0.025193941
14 0.081923754 0.045936822 0.10052367 -0.022804985
15 0.088126534 0.047274945 0.12330174 -0.020479482
16 0.094834232 0.048906110 0.14671319 -0.017047308
17 0.099364414 0.049970686 0.17094055 -0.008042942
18 0.104767967 0.051177807 0.20153683 -0.005249659
19 0.108327306 0.052016609 0.24425237 0.003488531
20 0.114894825 0.052853503 0.28521635 0.008879507
21 0.117501784 0.053364122 0.32288946 0.022371629
22 0.124528607 0.053879230 0.38329314 0.030489628
23 0.125890879 0.054244362 0.46111143 0.043680410
24 0.129962889 0.053597210 0.56054421 0.059427455
25 0.132918217 0.054048539 0.63835185 0.074547151
26 0.135450581 0.053696949 0.77494507 0.089206222
27 0.134558526 0.053324689 0.89920010 0.106217807
28 0.138901767 0.052551723 1.04882551 0.122351220
29 0.137323859 0.051922851 1.18591028 0.145081812
30 0.139340024 0.050700867 1.59980240 0.153899525
31 0.138424839 0.050212237 1.56913581 0.178013360
32 0.140725493 0.049092220 1.87843064 0.192808945
33 0.140501927 0.048290239 2.22641035 0.220370419
34 0.139830293 0.047356370 2.51850546 0.250856412
35 0.140390117 0.046204732 2.93846784 0.244808218
36 0.139532337 0.045694537 3.52777988 0.248769619
37 0.142093689 0.044263673 4.06141286 0.267697773
38 0.140524473 0.043942408 4.23378876 0.281096107
39 0.141067107 0.043023385 5.32838507 0.283869613
40 0.139819819 0.041877271 5.84001265 0.293670850

Table A.1: Comparison of annuities for t = 0 and d′, d = 1, ..., 40.
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A.2 Sensitivity of the SC with respect to the
volatility of the force of mortality

x0 = 65 x0 = 75

m = 0 m = 5 m = n m = 0 m = 5 m = n

Lifetime annuity

σµ − 0.2% 0.363 0.2136 0.0243 0.3447 0.1662 0.0822

σµ + 0.2% 0.362 0.1787 0.0663 0.3438 0.1635 0.0911

σµ + 0.5% 0.3592 0.1347 0.1101 0.3466 0.1634 0.0989

Deferred annuity

σµ − 0.2% 0.144 0.0298 0.0866 0.2468 0.0999 0.1365

σµ + 0.2% 0.0573 −0.0299 0.1912 0.2407 0.0972 0.1501

σµ + 0.5% −0.0398 −0.1048 0.2886 0.2410 0.0959 0.1615

Term annuity

σµ − 0.2% 0.184 0.0842 0.0194 0.2116 0.0888 0.0873

σµ + 0.2% 0.1864 0.08 0.043 0.2148 0.0902 0.0976

σµ + 0.5% 0.1914 0.0766 0.0624 0.2177 0.0908 0.1051

Table A.2: SC/A0 at t = 0, for xs = 15%, xp = 25% and α0 = 90%.

We obtain nearly similar results as in Section 3.3.2. Moreover, when m = n,
deferred and lifetime annuities yield decreasing SC with respect to σµ whereas for
the term annuity, we have increasing SC except for younger cohort with m = 5.
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A.3 Sensitivity of the IRR with respect to the
volatility of the force of mortality

x0 = 65 x0 = 75

m = 0 m = 5 m = n m = 0 m = 5 m = n

Lifetime annuity

σµ − 0.2% 1.5258%
(0.036%)

2.933%
(0.0395%)

2.4312%
(0.039%)

1.4136%
(0.0569%)

2.0702%
(0.0621%)

1.3675%
(0.0504%)

σµ + 0.2% 1.541%
(0.0365%)

2.3059%
(0.041%)

1.6837%
(0.0323%)

1.4165%
(0.0564%)

2.1052%
(0.0603%)

1.3278%
(0.0498%)

σµ + 0.5% 1.5987%
(0.0363%)

2.8986%
(0.0452%)

1.5274%
(0.0287%)

1.4846%
(0.0560%)

2.1647%
(0.0615%)

1.3177%
(0.0498%)

Deferred annuity

σµ − 0.2% 3.1436%
(0.0479%)

5.3196%
(0.0712%)

1.8993%
(0.0343%)

2.1626%
(0.0619%)

3.0672%
(0.0699%)

1.3515%
(0.0499%)

σµ + 0.2% 5.1217%
(0.0671%)

/ 1.4865%
(0.0301%)

2.227%
(0.0617%)

3.1719
(0.0699%)

1.3275%
(0.0502%)

σµ + 0.5% / / 1.4148%
(0.0271%)

2.2864%
(0.0611%)

3.2816%
(0.0717%)

1.302%
(0.05%)

Term annuity

σµ − 0.2% 2.3591%
(0.2732%)

4.946%
(0.298%)

4.601%
(0.2848%)

2.0031%
(0.2639%)

4.078%
(0.29%)

1.5447%
(0.2369%)

σµ + 0.2% 2.3132%
(0.2743%)

4.3662%
(0.3063%)

2.7764%
(0.2495%)

2.0193%
(0.26%)

4.1412%
(0.2897%)

1.5006%
(0.2288%)

σµ + 0.5% 2.2753%
(0.2726%)

4.8629%
(0.3082%)

2.2174%
(0.236%)

1.9657%
(0.2696%)

4.2438%
(0.287%)

1.4405%
(0.2293%)

Table A.3: Mean and variance (values in brackets) of the IRR at t = 0, for
xs = 15%, xp = 25% and α0 = 90%.

Similarly to the observations of Section 3.4, we have a concave expected IRR with
respect to the number of guaranteed benefits and a decreasing IRR with ageing.
Similar conclusions are obtained regarding the comparison of the three annuities.
Moreover, the IRR increases with the volatility of the force of mortality model for
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both lifetime and deferred annuities m < n whereas we have opposite behaviours
for the term annuity except the case m = 5.

A.4 SC and IRR valuation using Tail-VaR

The Tail VaR (TVaR) is in fact the arithmetic average of the VaR and for a process
X ∈ L1, it is defined as

TV aRα(X) = 1
1− α

∫ 1

α
V aRϑ(X)dϑ.

Moreover, when X has a continuous distribution, then (see Trindade et al., 2007)

TV aRα(X) = CTEα(X) = E[X|X ≥ V aRα(X)].

Within our framework along with the investment strategies, we defined the SC at
any time t ∈ [0, n] using the TVaR and the confidence level function by

TV aRα(n−t)(Xt) = Et[Xt|Xt ≥ V aRα(n−t)(Xt)];

where

Xt =
[
C(t, n)−Benef2− L′(t, n, d,m)

]
P (t, n)

with V aRα(n−t)(Xt) defined in Section 3.2 (within each interval and for each an-
nuity) and α(n− t) given by Formula (3.1).

Within the simulation framework defined in Section 3.3.1, we give in the figures
and tables below the sensitivity analysis of both the SC and IRR for each product.
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A.4.1 SC sensitivity

x0 = 65 x0 = 75

Figure A.1: TVaR SC(d)/A0 at t = 0 for xs = 15% and xp = 25% — First
row represents SC(d)/A0 with m = 5 and the second row SC(d′)/A0 with m =
[3 + d′−5

8 ].
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x0 = 65 x0 = 75

Figure A.2: TVaR SC(m)/A0 at t = 0 for xs = 15% and xp = 25% — first row
represents a 16 years deferred annuity and the second row is a lifetime annuity.

Similarly to the results obtained with the VaR, we observe the convex behaviour
with respect to both deferred time d and number of guaranteed benefit m (for
lifetime and deferred annuity). We also obtain similar effect of the term time d′ as
well as the safety level α(n). The difference with the VaR results is on the level of
the SC; in fact, the TVaR gives higher SC except for small values of the deferred
time d.
In the figure below, we compare of the SC obtained using TVaR and VaR for
different values of the safety level.
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SC(d)/A0 SC(m)/A0

Figure A.3: SC/A0 at t = 0 for xs = 15%, xp = 25% and x0 = 65 — First
row represents the case VaR using α = 99.5%; the second row represents the case
TVaR using α = 99.5% and the third row is for TVaR using α = 98.75%.
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We remind that for a normally distributed random variable V  N (µV , σV ),
VaR99.5%(V ) = TVaR98.75%(V ), where

VaR99.5%(V ) = µV +σV Φ−1(99.5%) and TVaR98.75%(V ) = µV +σV
φ(Φ−1(98.75%))

(1− 98.75%) ;

(A.1)
where φ(·) and Φ(·) are respectively the probability density function and the cumula-
tive distribution functions of a standard normal random variable. This idea of using
TVaR98.75% could be interesting (for internal models) in the sense that it will allow in-
surer to consider extreme risk while computing their SC and to reduce their safety level
compared to the VaR99.5%.

Figure A.3 shows that the values of the SC obtained with the TVaRmax((98.75%)n,α0)
is lower than the values obtained with the TVaRmax((99.5%)n,α0) for high values of the
minimum safety level. Moreover, the comparison with VaRmax((99.5%)n,α0) depends on
the considered parameters (i.e α0, d and m). Therefore, as we are not dealing with
normal random variables, we cannot obtain Formula (A.1).

A.4.2 IRR sensitivity

Lifetime annuity Deferred annuity Term annuity

α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5%

m = 0 1.3762%
(0.0301%)

1.3282%
(0.0259%)

1.3131%
(0.0088%)

2.828%
(0.0369%)

2.5566%
(0.0306%)

1.9333%
(0.0103%)

1.9987%
(0.2052%)

1.793%
(0.2031%)

1.6544%
(0.0852%)

m = 5 1.7933%
(0.032%)

1.6869%
(0.0272%)

1.5124%
(0.0089%)

4.2683%
(0.0462%)

3.5954%
(0.0352%)

2.3631%
(0.0112%)

3.0167%
(0.2177%)

3.0432%
(0.2184%)

2.4303%
(0.0955%)

m = n 1.6872%
(0.0272%)

1.598%
(0.0227%)

1.4254%
(0.0065%)

1.459%
(0.0253%)

1.4005%
(0.0213%)

1.3237%
(0.006%)

2.575%
(0.1836%)

2.5629%
(0.1836%)

2.0707%
(0.0717%)

Table A.4: TVaR — Mean and variance (values in brackets) of the IRR at t = 0
for d′ = 15, xs = 15%, xp = 25% and a deferred age of xd = 81 for cohort with
x0 = 65.
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Lifetime annuity Deferred annuity Term annuity

α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5% α0 = 85% α0 = 90% α0 = 99.5%

m = 0 1.2586%
(0.0473%)

1.2236%
(0.0413%)

1.2502%
(0.0138%)

1.851%
(0.05%)

1.7287%
(0.0426%)

1.5342%
(0.0142%)

1.9662%
(0.1931%)

1.5448%
(0.194%)

1.493%
(0.0795%)

m = 5 1.7834%
(0.0498%)

1.669%
(0.0427%)

1.4001%
(0.0142%)

2.5141%
(0.0542%)

2.2894%
(0.0465%)

1.8279%
(0.0157%)

3.002%
(0.2053%)

2.998%
(0.2033%)

2.3763%
(0.0838%)

m = n 1.2305%
(0.0411%)

1.1863%
(0.0349%)

1.2209%
(0.0102%)

1.2139%
(0.0407%)

1.1772%
(0.0346%)

1.2135%
(0.0101%)

1.243%
(0.1623%)

1.2458%
(0.1604%)

1.2676%
(0.0597%)

Table A.5: TVaR — Mean and variance (values in brackets) of the IRR at t = 0
for d′ = 15, xs = 15%, xp = 25% and a deferred age of xd = 81 for cohort with
x0 = 75.

These tables show that the expected IRRs obtained with TVaR are lower than those
obtained with the VaR. Moreover, similarly to the results obtained with the VaR, younger
cohort yields higher expected IRR for both deferred and term annuities as well as lifetime
annuity. The concave behaviour with respect to m is also observed.

A.5 GSA
We propose here the proofs of the formulas of GSA’s benefit proposed by Piggott et al.,
2005 for different cohorts.

A.5.1 The case of close homogeneous cohort
For this case, let’s consider a closed homogeneous cohort of Nx annuitants, the cohort
fund satisfies F0 = Nx B0

∑∞
t=0

Nx+t
Nx

vt, the initial benefit B0 given by Formula (4.1)
follows from this.
Let N∗x+1, N

∗
x+2, ..., N

∗
x+t, ... and R∗1, R∗2, ..., R∗t , ... be respectively the realised number of

survivors and the actual investment return at corresponding time. The fund at t = 1 is
given by F1 = (F0 −Nx B0)(1 +R∗1), using Formula (4.1), it becomes

F1 = (Nx B0 äx −Nx B0)(1 +R∗1) = Nx B0 (äx − 1)(1 +R∗1). (A.2)

From Equation (4.1) and Formula (A.2), it follows that the benefit paid at t = 1 is given
by

B1 = F1
N∗x+1 äx+1

= Nx

N∗x+1

B0(äx − 1)(1 +R∗1)
äx+1

. (A.3)
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The recursive relationship between annuity factor (see Bowers and Hickman, 1986) states
that

äx+1 = (äx − 1)(1 +R)
px

; (A.4)

it follows that Formula (A.3) becomes

B1 = Nx

N∗x+1

B0 äx+1 px (1 +R∗1)
äx+1 (1 +R) = B0

px
p∗x

1 +R∗1
1 +R

.

Recursively, we obtain Formula (4.3) for all t ≥ 2 using p∗x = N∗x+1
Nx

.

A.5.2 The case of open heterogeneous cohort

We assume an open (i.e new entrants are allowed) heterogeneous (i.e different premium)
and we provide proofs for Formulae (4.5) and (4.4) as proposed by Piggott et al., 2005.
Then at any time t, they suggest that the fund of the ith survivor who entered the pool
k years ago is given by k

xF
∗
i,t/px+k−1 and the fund of the survivors (from t− 1 to t) is

SF∗t =
∑
k≥1

∑
x

∑
i∈At

k
xF
∗
i,t

px+k−1
.

The total pool fund at time t (F ∗t ) is given by

F ∗t =
∑
k≥1

∑
x

∑
i∈At

k
xF̂
∗
i,t,

where
k
xF̂
∗
i,t = k

xBi,t äx+k. (A.5)

GSA without information updates on mortality

We assume constant information about the annuity life table and in order to find the
formula of MEAt, Piggott et al., 2005 defined the benefit at time t in the form

k
xBi,t = k−1

x Bi,t−1 MEAt IRAt. (A.6)
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It follows that

F ∗t =
∑
k≥1

∑
x

∑
i∈At

k
xBi,t äx+k =

∑
k≥1

∑
x

∑
i∈At

k−1
x Bi,t−1 MEAt IRAt äx+k

= MEAt
∑
k≥1

∑
x

∑
i∈At

k−1
x Bi,t−1

1 +R∗t
1 +R

(äx+k−1 − 1) 1 +R

px+k−1

= MEAt
∑
k≥1

∑
x

∑
i∈At

(
k−1
x Bi,t−1 äx+k−1 − k−1

x Bi,t−1
) 1 +R∗t
px+k−1

= MEAt
∑
k≥1

∑
x

∑
i∈At

(
k−1
x F̂

∗
i,t−1 − k−1

x Bi,t−1
) 1 +R∗t
px+k−1

.

The ith annuitant’s fund is given by
k
xF
∗
i,t =

(
k−1
x F̂

∗
i,t−1 − k−1

x Bi,t−1
)

(1 +R∗t ), (A.7)

Formula (A.7) implies that

F ∗t = MEAt
∑
k≥1

∑
x

∑
i∈At

k
xF
∗
i,t

px+k−1
= MEAt SF∗t .

Then Equation (4.5) follows and we have

k
xBi,t = k−1

x Bi,t−1
F ∗t
SF∗t

1 +R∗t
1 +R

.

GSA with information updates on mortality

Additionally to the previous hypothesis, Piggott et al., 2005 assumed that at any time t
there are new updates about annuity table, hence a new annuity factor denoted by äx,t.
We provide here a proof for Formula (4.4) to do so, we consider an annuitant i joining
the pool at t > 0 with a benefit given by k

xBi,t =
k
xF̂
∗
i,t

äx+k,t
and we note that

k
xF̂
∗
i,t =

k
xF
∗
i,t

px+k−1,t−1
MEAt. (A.8)

Indeed, using Formulae (A.4) and (A.6), Formula (A.5) implies that
k
xF̂
∗
i,t = k

xBi,t äx+k,t = k−1
x Bi,t−1 MEAt IRAt äx+k,t

= k−1
x Bi,t−1 MEAt

1 +R∗t
1 +R

(äx+k−1,t−1 − 1)(1 +R)
px+k−1,t−1

= k−1
x Bi,t−1 MEAt (äx+k−1,t−1 − 1) (1 +R∗t )

px+k−1,t−1

= MEAt
(
k−1
x Bi,t−1 äx+k−1,t−1 − k−1

x Bi,t−1
) (1 +R∗t )
px+k−1,t−1

.
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Therefore Equation (A.8) follows from Formula (A.7).
With these Formulae (A.7) and (A.8), one can express the benefit at time t as

k
xBi,t =

k
xF
∗
i,t MEAt

px+k−1,t−1 äx+k,t
=

(
k−1
x F̂

∗
i,t−1 − k−1

x Bi,t−1
)

(1 +R∗t )
px+k−1,t−1 äx+k,t

MEAt

= k−1
x Bi,t−1

(äx+k−1,t−1 − 1) (1 +R∗t )
px+k−1,t−1 äx+k,t

MEAt

= k−1
x Bi,t−1 MEAt

1 +R∗t
1 +R

äx+k,t−1
äx+k,t

,

Formula (4.4) hence follows.

A.6 Expected utility of a FRS-GSA

γ = 0.5 γ = 1
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γ = 0.5 γ = 1

Figure A.4: Expected utility of the FRS-GSA for β = β′ — First row represents the
case of µ = 2%; the second row represents the case of µ = 4% and the third row is for
µ = 5.8702%.

A.7 Proof of Proposition 1

Proof. For γ = 0, we have a risk-neutral utility U(u) = u. Let β′1 6= β′2 and Rγ(β′) :=
R(β′1) = R(β′2); we want to show that Ucfrs(β′1) = Ucfrs(β′2) iffRγ(β′) = log (E[1 +Rt]) =
µx+ (1− x)r.

(i) Let assume that Ucfrs(β′1) = Ucfrs(β′2) and show that Rγ(β′) = log (E[1 +Rt]) =
µx+ (1− x)r.

Ucfrs(β′1) =
n∑
t=0
E

B0(β′1)
t∏

j=1

[
β′1

1 +Rj
1 +Rγ(β′) + (1− β′1)

] vtδ tp0
x

= B0(β′1) +B0(β′1)
n∑
t=1
E

 t∏
j=1

[
β′1

1 +Rj
1 +Rγ(β′) + (1− β′1)

] vtδ tp0
x

= B0(β′1) +B0(β′1)
n∑
t=1

t∏
j=1

[
β′1
E [1 +Rj ]
1 +Rγ(β′) + (1− β′1)

]
vtδ tp

0
x

= B0(β′1) +B0(β′1)
n∑
t=1

[
β′1
eµxs+(1−xs)r

1 +Rγ(β′) + (1− β′1)
]t
vtδ tp

0
x. (A.9)
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Note that the Taylor expansion of g(t) = ut of order l > 0, is given by

g(t) =
l∑

j=0

logj(u)
j! tj (A.10)

Set
z1 = β′1

eµxs+(1−xs)r

1 +Rγ(β′) + (1− β′1).

using (A.10), Formula (A.9) becomes

Ucfrs(β′1) = B0(β′1) +B0(β′1)
n∑
t=1

l∑
j=0

logj(z1) t
j

j! v
t
δ tp

0
x

= B0(β′1)
[

1 +
n∑
t=1

(
log0(z1)

0! t0 + log1(z1)
1! t1 + log2(z1)

2! t2 + ...+ logl(z1)
l! tl

)
vtδ tp

0
x

]

= B0(β′1) +B0(β′1)
n∑
t=1

log0(z1)
0! t0 vtδ tp

0
x +B0(β′1)

n∑
t=1

log1(z1)
1! t1 vtδ tp

0
x

+ B0(β′1)
n∑
t=1

log2(z1)
2! t2 vtδ tp

0
x + ...+B0(β′1)

n∑
t=1

logl(z1)
l! tl vtδ tp

0
x.

Hence for any distinct proportions β′1 and β′2, if R(β′1) = R(β′2) then B0(β′1) =
B0(β′2) and Ucfrs(β′1) = Ucfrs(β′2) implies that for all j = 0, ..., l

logj(z1)
n∑
t=1

tj

j! v
t
δ tp

0
x = logj(z2)

n∑
t=1

tj

j! v
t
δ tp

0
x;

Where
z2 = β′2

eµxs+(1−xs)r

1 +Rγ(β′)
+ (1− β′2).

This is equivalent to

log
[
β′1
eµxs+(1−xs)r

1 +Rγ(β′)
+ (1− β′1)

]
= log

[
β′2
eµxs+(1−xs)r

1 +Rγ(β′)
+ (1− β′2)

]
.

Hence
Rγ(β′) = eµxs+(1−xs)r − 1 (A.11)

Let h(u) = eu, for u > 0; one can show that eu − 1 =
∫ u

0 e
sds. For s ∈ [0, u], we

have
1 ≤ es ≤ eu.

Integrating this inequality yields∫ u

0
ds ≤

∫ u

0
esds ≤

∫ u

0
euds ⇔ 1 ≤ eu − 1

u
≤ eu.
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Applying squeeze theorem at zero to this latter inequality, implies that

eu − 1 = u. (A.12)

Applying (A.12) to Formula (A.11) yields

Rγ(β′) = µxs + (1− xs)r.

(ii) Now assume Rγ(β′) = log (E[1 +Rt]) = µx+ (1− x)r then it is easy to show
that Ucfrs(β′1) = Ucfrs(β′2).

Thus (i) and (ii) end the proof.

A.8 CARA utility function

Within the framework described in Chapter 4, instead of the CRRA we consider here
the CARA utility function defined by (see Chang and Chang, 2017; Gao, 2010; Babcock
et al., 1993)

UCARA(x) = −e
−ξx

ξ
,

where ξ > 0 it the coefficient of constant absolute risk-aversion. The formulas of the
expected lifetime utility of both risk-sharing GSA and complete risk-sharing GSA can
be obtained by substitution the CRRA utility by the CARA utility function. Figure A.5
below illustrates the CARA utility of (complete) RS-GSA for ξ = 0.5 and ξ = 1.
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ξ = 0.5 ξ = 1

Figure A.5: Expected CARA utility of the (C)RS-GSA for β = β′ — First row
represents the FLRS-GSA and the second row represents the CFLRS-GSA for
µ = 5.8702% and xs = 15%.

We observe that unlike the CRRA utility, the CARA utility of both RS-GSA and CRS-
GSA increase with respect to risks proportions and the risk adjusted rate as well as with
respect to the coefficient ξ. In his case, the GSA gives higher utility compared to both
classical annuity and (complete) risk-sharing GSA.
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A.9 Single risk effect

Here we make a sensitivity analysis of both the value of each contracts and the indiffer-
ence rates with respect to longevity risk using the PsB life table. Note that the effect of
the financial risk is similar to the case of best estimate of survival for annuities.

A.9.1 Contract 1

β
0% 10% 25% 50% 75% 100%

xs xp

0% 0% 1.134859 1.13798 1.143628 1.151947 1.161069 1.169955

0% 50% 1.135558 1.138468 1.143525 1.151823 1.1609 1.170149

25% 25% 1.108563 1.111448 1.116358 1.124135 1.13281 1.141224

50% 0% 1.082066 1.084442 1.089788 1.096917 1.104914 1.113625

50% 50% 1.081689 1.084058 1.088853 1.097145 1.105281 1.113052

Table A.6: Value of Contract 1 per unit of premium with R = 1.75% and tpx0 =
PsB for β′ = 10%.

A.9.2 Contract 2

β
0% 10% 25% 50% 75% 100%

R(β, β′)

0.25% 0.958285 0.961225 0.965506 0.972957 0.980287 0.988096

0.75% 1.0111 1.014511 1.018528 1.02639 1.033589 1.042082

1.75% 1.118986 1.122706 1.127041 1.13531 1.1437 1.153188

2.75% 1.229679 1.233189 1.238187 1.247143 1.256637 1.266458

4% 1.369878 1.37355 1.379324 1.389067 1.399927 1.40982

Table A.7: Value of Contract 2 per unit of premium with xs = 15%, xp = 25%
and tpx0 = PsB for β′ = 10%.
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β
0% 10% 25% 50% 75% 100%

xs xp

0% 0% 0.50781% 0.48104% 0.44059% 0.36497% 0.29792% 0.21883%

0% 50% 0.50438 0.47736% 0.43948% 0.36221% 0.29122% 0.21981%

15% 25% 0.64542% 0.62144% 0.57646% 0.50670% 0.43268% 0.36233%

25% 25% 0.73448% 0.71114% 0.66759% 0.60037% 0.52307% 0.45563%

50% 0% 0.96741% 0.94264% 0.90296% 0.83551% 0.76818% 69631%

50% 50% 0.97366% 0.94847% 0.90845% 0.83551% 0.77072% 0.69767%

Table A.8: Fair risk adjusted discount rate for tpx0 = PsB with β′ = 10%.
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