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mon comité d’accompagnement, les professeurs Philippe Ruelle, Marino

Gran et Christophe Ringeval.
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scientifique, pédagogique que humain. Je les salue tous et toutes, ainsi

que les professeurs Jean Bricmont, Hugues Goosse avec lesquels j’ai eu

le plaisir de collaborer. Je remercie l’école polytechnique de Louvain de
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Si cette thèse a finalement abouti, c’est aussi grâce au soutien et aux
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Introduction

Statistical physics aims to study macroscopic systems from the micro-

scopic properties of its constituents. It originates from the kinetic theory

of gases, a theory that was born in the nineteenth century and has

explained the thermodynamic properties of gases (at equilibrium) from

the movement of its constituting atoms.

One of the goals of statistical physics is to understand the magnetic

properties of the matter from the atomic properties and interactions.

However, classical mechanics alone cannot account for all macroscopic

magnetic effects. This result is usually referred to as the Bohr-van

Leeuwen theorem (which treats the case of diamagnetism) [6]. Hence,

one must consider quantum effects to explain the macroscopic magnetism.

Quantum mechanics was developed in the twentieth century. This theory

describes the phenomena of nature at the scale of the atom, where

Newton’s laws are no longer valid. One purely quantum property of

a particle is its intrinsic angular momentum, called spin. The goal of

this dissertation is to study specific models of spins in interactions on a

lattice.

The Heisenberg model

Among the quantum models of interacting spins, the Heisenberg model

is arguably the most important and studied one. It is a model aiming to

describe the magnetism in the matter due to the electrons that interact

via the so-called exchange interaction [7]. (We refer the reader to [8, 9]

for a derivation of the model from first principles.) It is a lattice model,

1



2 Introduction

meaning that its degrees of freedoms, the spins, are located on the sites

of a given lattice. The system is described by a Hamiltonian.

In this dissertation, we are interested in spin-1/2 chains that are general-

isations of the Heisenberg model defined on a one-dimensional lattice. In

the models that we consider, the spins on the lattice only interact with

their nearest neighbours, and interactions with spins that are further

away are neglected.

For the sake of concreteness, let us introduce the XYZ spin-chain Hamil-

tonian with periodic boundary conditions:

HXYZ = −1

2

L∑
j=1

(
J1σ

1
jσ

1
j+1 + J2σ

2
jσ

2
j+1 + J3σ

3
jσ

3
j+1

)
. (0.1)

Here, J1, J2 and J3 are the anisotropy parameters. (We postpone the

precise definition of all the involved objects to subsequent chapters.) The

XYZ spin chain is a generalisation of the Heisenberg model, in which

J1 = J2 = J3 = J . The latter is also called the XXX model. Moreover,

if J1 = J2 6= J3, then the model is referred to as an XXZ spin chain and

one usually normalises J1 = J2 = 1, J3 = ∆.

The Bethe ansatz

The Heisenberg model is related to a variety of physically interesting

problems, most notably the theory of quantum magnetism [10, 11].

Additionally, it has inspired the development of many modern techniques

of mathematical physics.

In the history of the resolution of Heisenberg spin chains and other

models of statistical physics, the work of Hans Bethe is seminal. In 1931,

he proposed an ansatz, (i.e. educated guess) to find the exact eigenvalues

and eigenvectors of the XXX spin chain [12]. Nowadays referred to as

the coordinate Bethe ansatz, this solution provides the eigenvectors in

terms of a linear combination of plane waves built upon a reference state.

Furthermore, the Bethe equations are a set of coupled equations that fix

the ratios of coefficients. We refer to the monograph of Gaudin for an

overview of Bethe’s method [13].
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In 1966, Yang and Yang successfully applied the coordinate Bethe ansatz

to solve the XXZ model with periodic boundary conditions. They fur-

thermore analysed the properties of the ground state energy in the large

system size limit [14, 15, 16].

One can modify the Hamiltonian (0.1) so that the boundary conditions

are not periodic. In this case, we replace the last term in the sum

by so-called boundary fields, and we say that the spin chain has open

boundary conditions. The first application of the Bethe ansatz to an

open system is due to Gaudin who solved the XXZ spin chain with

vanishing boundary fields [13]. Non-vanishing boundary fields were later

considered by Alcaraz et al. [17].

Vertex models and integrability

In the late sixties, a relation between one-dimensional quantum systems

and two-dimensional statistical models was found. Specifically, let us

consider the six- and eight-vertex models on a square lattice (their origin

and precise definition are given later). They are classical, i.e. non-

quantum, lattice models in which each vertex of the lattice is in one

configuration among the six or eight admissible ones [18].

Their resolution relies on the transfer-matrix method, which reduces the

evaluation of the partition function for large systems to the computation

of an eigenvalue of this matrix [19, 20, 21]. The first link between vertex

models and spin chains was found by Lieb. He observed that the relations

satisfied by the transfer-matrix eigenvectors were the Bethe equations of

an XXZ spin chain [22].

The next milestone was reached by Baxter. In 1971, he announced that

he had obtained equations for the eigenvalues of the transfer matrix of

the eight-vertex model, and the XYZ Hamiltonian [23, 24]. This latter

result follows from his observation that one can extract the Hamiltonian

(0.1) from the transfer matrix. Baxter’s results are based on the T −Q
equation, a matrix relation which contains the Bethe ansatz equations

[25, 26]. Moreover, Baxter found expressions for the transfer-matrix

eigenvectors, which are also spin-chain eigenstates [27, 28, 29].
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A crucial point in Baxter’s analysis is the requirement that the family

of transfer matrices depending on a spectral parameter is mutually

commuting. This is a consequence of the building blocks of the transfer

matrices, the R-matrices, satisfying the nowadays famous Yang-Baxter

equation. We refer to models where such a relation holds as integrable.

The work of Baxter was reformulated into an algebraic framework, the

quantum-inverse scattering method, developed in the late seventies by the

Leningrad school [30, 31]. (We refer the reader to the surveys [32, 33, 34]

and references therein.) This method is nowadays known as the algebraic

Bethe ansatz. It provides a construction of the eigenvectors by means of

the action of matrices on a reference state and allows for the evaluation

of correlation functions [34]. Sklyanin has extended the method to

encompass models with boundaries using the so-called K-matrices [35].

Up to this day, Bethe’s methods are still widely used in mathematical

physics and are powerful tools allowing one to solve a variety of mod-

els. To provide an overview, let us discuss the different Bethe ansatz’s

generalisations and their respective utility.

The thermodynamic Bethe ansatz treats the Bethe equations and their

solutions in the large system size limit [36]. It is the natural framework

to extract thermodynamic properties of a model, such as the specific heat

or the magnetic susceptibility. The asymptotic Bethe ansatz allows for

the treatment of long-range potentials. It was introduced by Sutherland

[37, 38]. The nested algebraic Bethe ansatz provides a recursion formula

for Bethe vectors for higher spin models [39].

In some models, such as in the XXZ spin chain with generic boundary

fields, there may not exist a reference state (for spin chains, this usually

is a consequence of the total magnetisation not being conserved). The

off-diagonal Bethe ansatz circumvents this absence and allows one to

retrieve Bethe states by adding a term in the Bethe equations [40, 41].

Likewise, the modified algebraic Bethe ansatz developed by Crampé

et Belliard provides a way to construct Bethe vectors, even when the

magnetisation is not conserved [42, 43].

Finally, the functional Bethe ansatz is a method created by Sklyanin

[44]. It amounts to separate the spectral problem of the transfer matrix

into one-dimensional equations. For this reason, it is known today as the
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method of the quantum separation of variables. It has been applied to

many models by the Lyon group and is still an active field of research

(see [45, 46, 47] and references therein).

At this point, the reader may think that these problems are entirely

resolved. In fact, solving a model may have different meanings. Usually,

a model is said to be solved if there exists a technique to generate

the spectrum and the eigenvectors that does not require the explicit

diagonalisation of the Hamiltonian. While the Bethe ansatz (and its

descendants) are useful to analyse the spectrum and extract large-system-

size properties, these methods are not meant for the explicit computation

of the ground states’ components, which are in some cases, related to

enumerative combinatorics problems.

Spin chains and combinatorics

The study of the XXZ and XYZ spin chains received a new impetus

at the turn of the century. In a series of articles, Stroganov and Razu-

mov discovered a tight relationship between these quantum models and

apparently unrelated combinatorial problems.

To be precise, they studied the spectrum and eigenvectors of the XXZ

Hamiltonian with periodic boundary conditions, an odd number of sites

and the anisotropy parameter set to the value ∆ = −1/2. Among other

observations, they pointed out that the ratio of the maximal component

of the ground state of a chain of length 2n+ 1 by the smallest non-zero

one was equal to An, with

An = 1, 2, 7, 42, 429, 7436, 218348 . . . (0.2)

for n = 1, 2, 3 . . . [48]. The sequence of numbers An is well-known in

the mathematics literature as it enumerates alternating sign matrices

(ASMs): An counts the number of n×n matrices whose entries are 0 or ±1

such that the sum of each row and column is 1 and the signs of the entries

alternate along each row and each column. Mills, Robbins and Rumsey

invented these combinatorial objects in a generalisation of the Dodgson’s

condensation formula, a method developed by Charles Dodgson (better

known as Lewis Carroll) to compute determinants [49, 50]. The same

authors conjectured an exact formula for the enumeration of the ASMs.
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The proof of the alternating sign matrices conjecture was achieved by

Zeilberger in an 84-page-long tour de force [51]. A few years later,

Kuperberg provided a shorter and simpler proof, using a relation between

ASMs and six-vertex models with specific boundary conditions [52]. The

genesis of ASMs and the story of their enumeration are narrated in the

book of Bressoud [53].

Razumov and Stroganov did not restrict their investigations to the XXZ

spin chain with periodic boundary condition but also conjectured similar

results for open or XYZ spin chains [54, 55, 56, 57]. Following their

discoveries, a variety of conjectures à la Razumov and Stroganov were

formulated for the XXZ spin chains and the related O(1) loop model;

some of which have already been proved [58, 59, 60, 61, 62].

Supersymmetry

The combinatorial properties of the XXZ and XYZ spin chain ground

states arise when their parameters take a precise value, for example,

∆ = −1/2 for the XXZ model. In this dissertation, we investigate a

feature of spin chains (and their related vertex models) that arises for

the same specific value of their parameter: supersymmetry. To be more

specific, we study these models in the framework of supersymmetric

quantum mechanics.

The concept of supersymmetry originates from the particle physics com-

munity. It appeared in the early seventies as a solution to combine

external (space-time) symmetries and internal (gauge) symmetries of

elementary particles [63, 64]. It has received massive interest in high-

energy physics as supersymmetry theories beyond the standard model

of particles may give an answer to unsolved problems (for example, pro-

vide particle candidates for dark matter or solve the so-called hierarchy

problem) [65].

The main property of a supersymmetric theory is the existence of a sym-

metry between two types of degree of freedom (usually called bosons and

fermions). The generators of this symmetry are called the supercharges.

A consequence of this in particle physics is that every particle possesses

a superpartner, its supersymmetric image [65].
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We will not discuss further the supersymmetry from the point of view

of high-energy or nuclear physics. Instead, we focus on supersymmetric

quantum mechanics. The essential feature of this framework is that the

Hamiltonian can be written in terms of the supercharges.

The first application of the supersymmetric techniques to spin systems is

due to Nicolai, through the eponymous lattice model [66]. It contains two

nilpotent supercharges whose anticommutator is a spin chain Hamiltonian.

A few years later, Witten popularised the concept and techniques of

supersymmetric quantum mechanics, invented the so-called Witten index,

and investigated the phenomenon of supersymmetry breaking [67].

Due to the extra requirement that is the existence of this additional sym-

metry, supersymmetric quantum mechanics may appear as uncommon

and as of limited use. This is not the case. In fact, one can recast various

well-known models into the supersymmetric formalism, among which the

notorious harmonic oscillator [68] and the Coulomb Hamiltonian of the

non-relativistic hydrogen atom [69].

Outline

The main goal of this dissertation is to study XXZ and XYZ spin chains

that possess a lattice supersymmetry and related supersymmetric models.

In Chapter 1, we introduce some fundamental objects pertaining to

supersymmetric quantum mechanics that we use in subsequent chapters.

In particular, we define the supersymmetry singlets, and their relations

with, on the one hand, the ground-state eigenvectors of the model and,

on the other hand, the (co)homology of the supersymmetry generator.

We present the first spin model that we investigate, the XYZ spin chain

with periodic boundary conditions in Chapter 2. We exhibit a dynamic

supersymmetry and construct the corresponding cohomology. Chapter 3

is devoted to the supersymmetric eight vertex domain with periodic

boundary conditions along the horizontal direction. We introduce this

model, its transfer matrix and show its relation with the XYZ spin chain.

We use the supersymmetry singlets to compute a remarkable transfer-

matrix eigenvalue, therefore proving a twenty-year-old conjecture by

Stroganov.
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The layout of Chapters 4 and 5 is similar to the two preceding ones.

In the former, we introduce the XYZ spin chain with open boundary

conditions and treat the existence of supersymmetry singlets in the case

where the Hamiltonian is supersymmetric. In the latter, we focus on the

supersymmetric eight-vertex model on a strip. As for the periodic case,

we manage to prove the existence of a remarkably simple eigenvalue of

the corresponding transfer matrix.

From Chapter 6, we only focus on XXZ spin chains. We characterise the

space of the ground states and find representatives of supersymmetry

singlets for both the open and periodic spin chains. The simplicity of the

scalar products between supersymmetry singlets, which is a consequence

of supersymmetry, allows us to define and compute multipartite fidelities.

We compute various cases of fidelities and evaluate their large-system-size

behaviour in Chapter 7.

The content of the last two chapters is different as we do not treat

supersymmetric spin models. We focus on a generalisation of the open

spin chain of Chapter 6 with different boundary conditions depending

on a parameter x. To this end, we find in Chapter 8 a solution to the

so-called boundary quantum Knizhnik-Zamolodchikov equations. This

solution is given in terms of multiple contour integrals and depends on

inhomogeneity parameters as well as a deformation parameter, q. We

show that the solution, with q = e2iπ/3, is an eigenvector of the transfer

matrix of the six-vertex model on a strip and that the homogeneous limit

is, for x > 0, a ground-state of the corresponding Hamiltonian.

In Chapter 9, we use the homogeneous limit found in the preceding

chapter to prove combinatorial identities satisfied by the ground-state

(similar to the ones found by Razumov and Stroganov). Furthermore, we

provide new conjectures on the enumeration of alternating sign matrices

with all the symmetries of the square.

Finally, in the conclusion chapter, we give a summary of the results

obtained. For each chapter, we point out a few problems that remain

open, highlight the conjectures that are still to be proven, give possible

ways to pursue those tasks and discuss interesting generalisations.



Chapter 1

Supersymmetry

In this first chapter, we recall the concept and formalism of supersym-

metry for quantum-mechanical systems. Our objective is to introduce

concepts, set notation, recall some general definitions, and state the

results that we use in subsequent chapters.

The layout of this chapter is as follows: in Section 1.1, we review the

basic definition of a quantum system as well as the generic setting of

supersymmetric quantum mechanics. We focus on the case of N = 2

supersymmetric systems in Section 1.2. We investigate the structure of

the spectrum and the set of eigenvectors of a supersymmetric Hamiltonian

in Section 1.3. The existence of zero-energy ground states is related to a

(co)homological problem that we define in Section 1.4.

1.1 Supersymmetric quantum mechanics

In this section, we recall standard definitions of quantum mechanics and

introduce the concepts of supersymmetric quantum mechanics.

Quantum Mechanics. A quantum-mechanical system is given by

(H , H). Here, H is a complex Hilbert space, i.e. a vector space on C
endowed with a Hermitian inner product:

〈 · | · 〉 : H ×H → C, (1.1)

9



10 Chapter 1. Supersymmetry

also called scalar product. The vector space is complete for this scalar

product. The latter justifies the so-called bra-ket notation: we denote by

|ψ〉 the elements of H . We call them interchangeably vector or states.

We write 〈ψ|φ〉 for the scalar product between two states |ψ〉 and |φ〉.

The dynamics of the system is determined by the Hamiltonian H which

is an operator on the Hilbert space, H : H → H . The Hamiltonian

is Hermitian, H† = H. Hence, it is a diagonalisable operator and its

eigenvalues, called energies, are real numbers.

A symmetry operator of the model is an operator S that is Hermitian

and commutes with the Hamiltonian,

[H,S] = HS − SH = 0. (1.2)

We now introduce the supercharges. They are symmetry operators that

furthermore allow one to compute the Hamiltonian of the model. This

defines the supersymmetric quantum mechanics [67].

Supersymmetry. The general setting for a supersymmetric model

is an Hilbert space H , as well as N operators Q(i), i = 1, . . . ,N that

we call supercharges and which obey the following algebraic relations

(Q(i))
† = Q(i), {Q(i),Q(j)} = 2δij ·H (1.3)

for each i, j = 1, . . . ,N . The first set of equations states that the

supercharges are Hermitian operators. The second allows one to compute

the Hamiltonian through the anticommutator of the supercharges:

{Q(i),Q(j)} = Q(i)Q(j) + Q(j)Q(i). (1.4)

In this setting, (H , H) is a supersymmetric quantum-mechanical system

and we simply say that the Hamiltonian H is supersymmetric.

A direct consequence of the equations (1.3) is that the operators Q(i), i =

1, . . . ,N , are symmetry operators as

[Q(i), H] = 0, for all i = 1, . . . ,N , (1.5)

hence the name supercharge.
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Parity and Grading. We complete this algebraic picture by the addi-

tion of a parity operator, W , also called Witten operator. It is a Hermitian

involution that anticommutes with the supercharges and therefore com-

mutes with the Hamiltonian:

{W,Q(i)} = 0, [W,H] = 0, W 2 = 1, (1.6)

for each i = 1, . . . ,N . Here, 1 is the identity operator on H . The name

parity operator of W comes from its involutive nature: its eigenvalues are

±1. The parity operator was initially introduced by Witten [67], in the

form of (−1)F . Here, F has integer eigenvalues and is called the grading

operator or fermion number operator. According to this denomination,

the eigenstates of W with eigenvalue 1 are called bosons, while those

with eigenvalue −1 are referred to as fermions [70, 71].

However, this nomenclature of fermion-boson is a remnant of the history

of the supersymmetry and can be misleading. In particular, one should

not consider the bosons and fermions as particles (or states) with integer

and half-integer spin, respectively, but as a name given to the states

pertaining to the eigenspaces of W .

1.2 N = 2 supersymmetry

In the remainder of this dissertation, we focus on the case N = 2.

Instead of the general setting given in the previous section, we define the

supercharge Q and its adjoint Q† as

Q =
1√
2

(
Q(1) + iQ(2)

)
, Q† =

1√
2

(
Q(1) − iQ(2)

)
. (1.7)

The supercharge and its adjoint are nilpotent operators,

Q2 = 0, (Q†)2 = 0, (1.8)

and generate the Hamiltonian through their anticommutator:

QQ† + Q†Q = H. (1.9)

As a consequence of the two preceding formulas, the supercharge and its

adjoint commute with the Hamiltonian: [H,Q] = [H,Q†] = 0. We stress

that the supercharge is not a Hermitian operator.
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N = 2 superalgebra. We further assume that there exists a grading

operator F satisfying the algebraic relations1

[F,Q] = Q, [F,Q†] = −Q†, [F,H] = 0. (1.10)

Defining the operator W = (−1)F leads to the following relations:

{W,Q} = 0, {W,Q†} = 0, [W,H] = 0. (1.11)

In order for W to be a parity operator, F must have integer eigenvalues,

that we denote by f : F |ψ〉 = f |ψ〉.

We denote the spectrum of F by F. Without loss of generality, there are

three possible cases for F. First, we say that F is unbounded if F = Z.

Second if F is bounded from below but has no maximal value, we can

shift F in order to its spectrum be F = N. The opposite case, F bounded

from above, is similar to the previous one, up to the redefinition of the

grading operator by −F and the interchange of the supercharge and

its adjoint. Third, if the spectrum of F is bounded, then we can map

it to {0, . . . , fmax}. Slightly abusing the denomination, we say that, in

these three cases, F is unbounded, bounded from below, and bounded,

respectively.

Grading. As F and the Hamiltonian commute, they are simultaneously

diagonalisable, and we can decompose the Hilbert space H into the

eigenspaces of F :

H =
⊕
f∈F

H f . (1.12)

We make here an important remark. We defined the Hamiltonian, the

supercharge and its adjoint as endomorphisms in H . Due to the com-

mutation relations with the grading operator (1.10), we can introduce

the restrictions of these operators on the eigenspaces of F . Starting with

H, we have

H =
⊕
f∈F

Hf , (1.13)

1Written in terms of the initial supercharges Q(1), Q(2), these relations read

[F,Q(1)] = iQ(2), [F,Q(2)] = −iQ(1). This is one of the reasons to work with non-

Hermitian supercharges.



1.3. Spectrum and structure of eigenvectors 13

where each Hf : H f →H f is an endomorphism. The supercharge and

its adjoint do not commute with F . We nevertheless define for each f ∈ F
the set of operators Qf and their adjoint. We keep the denomination

supercharge and adjoint supercharge for each Qf and Q†f , respectively.

They are operators that map an eigenspace of F , H f , into another

eigenspace whose index differs by one:

Qf : H f →H f+1, Q†f : H f →H f−1. (1.14)

We need to take some precautions if f + 1 (or f − 1) does not belong to

the spectrum of F , in which case we set Qf |ψ〉 = 0 (or Q†f |ψ〉 = 0) for

all |ψ〉 ∈H f .

In this framework, the nilpotency condition (1.8) and the supersymmetry

of the Hamiltonian (1.9) read

Qf+1Qf = 0, Q†f−1Q
†
f = 0, (1.15a)

Qf−1Q
†
f + Q†f+1Qf = Hf . (1.15b)

Here both relation holds for each f ∈ F. Accordingly, the commutation

relation between the supercharge and the Hamiltonian is, for each f ∈ F,

Hf+1Qf −QfHf = 0 (1.16)

and similarly for its adjoint.

The supercharge Qf and its adjoint are not endomorphisms [72]. Nev-

ertheless, we say that each Hamiltonian Hf is supersymmetric if there

exist Qf and Q†f such that the relations (1.15) are satisfied.

To lighten the notation, we omit in the following the subscript indicating

the space each operator is acting on. Hence, we write H = Hf ,Q = Qf

and Q† = Q†f , and similarly for other operators. If necessary, we explicitly

indicate which space the operator acts on. Furthermore, unless stated

explicitly, we prove each result for each f ∈ F.

1.3 Spectrum and structure of eigenvectors

The supersymmetry of the Hamiltonian leads to special properties of its

eigenvalues and its eigenvectors.
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Spectrum. The construction of the Hamiltonian (1.9) implies that its

spectrum is real and non-negative. To see this, let |ψ〉 be a solution to

the Schrödinger equation

H|ψ〉 = E|ψ〉. (1.17)

The projection of this equation on 〈ψ| yields

‖Q|ψ〉‖2 + ‖Q†|ψ〉‖2 = E‖|ψ〉‖2, (1.18)

hence E > 0. We call the solutions of the Schrödinger equation with E >

0 and E = 0 positive-energy states and zero-energy states, respectively.

The supersymmetry fixes the structure of the eigenvectors of the Hamil-

tonian. As we shall see, the positive-energy states are organised in

supersymmetry doublets, whereas the zero-energy states are so-called

supersymmetry singlets.

Supersymmetry doublets. Let |ψ1〉 be a non-zero positive-energy

state H|ψ1〉 = E|ψ1〉, E > 0; we define a supersymmetry doublet as the

couple of states (|ψ1〉, |ψ2〉) satisfying

Q|ψ1〉 = 0, Q†|ψ1〉 =
√
E|ψ2〉, (1.19)

Q|ψ2〉 =
√
E|ψ1〉, Q†|ψ2〉 = 0. (1.20)

As the supercharge commutes with the Hamiltonian, |ψ2〉 is also eigen-

state of H with the same energy.

Given a non-zero eigenstate |ψ〉 with E > 0, we can generate through

the action of the supercharge the states |ψ〉, Q|ψ〉, Q†|ψ〉 and QQ†|ψ〉.
Further applications of the supercharge or its adjoint yield linear combina-

tions of these four states. The members of this multiplet are eigenvectors

of H with the same energy. It decomposes into two independent pairs of

states:

Proposition 1.3.1. Let |ψ〉 be a non-zero positive-energy state with

parity ε = ±1: W |ψ〉 = ε|ψ〉. We define the linear combinations

|ψ′〉 =
1

E
QQ†|ψ〉, |ψ′′〉 =

1

E
Q†Q|ψ〉. (1.21)
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Then the two couples of states

(|ψ′〉, 1√
E
Q†|ψ′〉), (

1√
E
Q|ψ′′〉, |ψ′′〉) (1.22)

are two supersymmetry doublets. The subspaces that they span are or-

thogonal to each other. Furthermore, they do not both identically vanish.

Proof. First, it is straightforward to verify that (|ψ′〉, 1√
E
Q†|ψ′〉) forms a

doublet. The second equation of (1.19) is satisfied by construction. We

verify that

Q|ψ′〉 = Q

(
1

E
QQ†|ψ〉

)
= 0, Q†

(
1√
E
Q†|ψ′〉

)
= 0 (1.23)

by the nilpotency of the supercharge; and we use the definition of H to

find

Q

(
1√
E
Q†|ψ′〉

)
=

1√
E

(H −Q†Q)|ψ′〉 =
√
E|ψ′〉. (1.24)

The proof for the second couple is similar.

Second, we check that the vectors spaces spanned by the two couples

are orthogonal. Indeed, we show that the four possible scalar products

between different states of each couple vanish. Two of them are readily

computed as a consequence of the nilpotency,

〈ψ′|ψ′′〉 =
1

E2
〈ψ|QQ† Q†Q|ψ〉 = 0,

1

E
〈ψ′|QQ|ψ′′〉 = 0. (1.25)

It remains to prove that 〈ψ′|Q|ψ′′〉 vanishes. We verify that the states

|ψ′〉 and |ψ′′〉 have the parity ε. We then check, using the commutation

relations (1.11), that

〈ψ′|Q|ψ′′〉 = 〈ψ′|W 2Q|ψ′′〉 = −ε〈ψ′|QW |ψ′′〉 = −〈ψ′|Q|ψ′′〉, (1.26)

hence 〈ψ′|Q|ψ′′〉 = 0 =
(
〈ψ′′|Q†|ψ′〉

)∗
.

Finally, we note that the two couples cannot identically vanish as |ψ′〉+

|ψ′′〉 = |ψ〉, which is non-zero by assumption.

This proposition tells us that the positive-energy states are organised in

doublets of states. The two states in the doublet are called supersymmetry
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partners [67]. However, Proposition 1.3.1 does not imply that all positive-

energy levels are four times degenerate. Indeed, the states |ψ′〉 and |ψ′′〉
defined in (1.21), and their corresponding partners, may vanish.

As for the states with energy zero, they do not form doublets but instead

so-called supersymmetry singlets.

Supersymmetry singlets. According to the relation (1.18), an eigen-

state |ψ〉 of energy E = 0 is a solution to the equations

Q|ψ〉 = 0, Q†|ψ〉 = 0. (1.27)

We call it a supersymmetry singlet as we cannot create another E = 0

eigenvector through the action of the supercharge nor its adjoint. If such

a state exists, it is a ground state of the Hamiltonian. In the following, we

interchangeably use the terms “zero-energy state” and “supersymmetry

singlet”.

The eigenstates of the Hamiltonian are organised in supersymmetry

doublets or singlets. We would like to characterise the state themselves.

The following result gives a decomposition of any state in terms of

supersymmetry singlets and vectors in the image of the supercharge and

its adjoint. It will be of great importance in the following.

Proposition 1.3.2 (Hodge decomposition). Any vector |ψ〉 ∈H f can

be written as

|ψ〉 = |ψ0〉+ Q|ψ1〉+ Q†|ψ2〉, (1.28)

for certain states |ψ1〉 ∈ H f−1, |ψ2〉 ∈ H f+1 and |ψ0〉 ∈ H f a zero-

energy state.

Proof. First, let G be a subspace of the vector space H f , G ⊆ H f .

Then for each |ψ〉 ∈H f , there exists a unique |φ〉 ∈ G that minimises

the function

m : G → R : |φ〉 7→ ‖|ψ〉 − |φ〉‖2. (1.29)

Indeed, let {|ui〉} be an orthonormal basis of G , we construct |φ〉 as the

orthogonal projection of |ψ〉 into G :

|φ〉 =
∑
i

〈ui|ψ〉|ui〉. (1.30)



1.3. Spectrum and structure of eigenvectors 17

This construction ensures the existence and uniqueness of the state |φ〉.

Second, we consider the space

G = im{Q : H f−1 →H f} ⊕ im{Q† : H f+1 →H f}, (1.31)

where the two terms in the direct sum have a trivial intersection. As G is

a subspace of H f , there exist |ψ1〉 and |ψ2〉 that minimise ‖|ψ0〉‖2, with

|ψ0〉 = |ψ〉 −Q|ψ1〉 −Q†|ψ2〉. (1.32)

This implies that the function

F (ε1, ε2) = ‖|ψ0〉 − ε1Q|φ1〉 − ε2Q
†|φ2〉‖2, (1.33)

of real variables ε1, ε2, has a minimum at ε1 = ε2 = 0 for arbitrary

vectors |φ1〉, |φ2〉. The calculation of the partial derivatives of F with

respect to ε1, ε2 leads to

Re〈ψ0|Q|φ1〉 = 0, Re〈ψ0|Q†|φ2〉 = 0. (1.34)

Replacing |φ1〉 with i|φ1〉 and |φ2〉 with i|φ2〉, we obtain

Im〈ψ0|Q|φ1〉 = 0, Im〈ψ0|Q†|φ2〉 = 0, (1.35)

and thus

〈ψ0|Q|φ1〉 = 0, 〈ψ0|Q†|φ2〉 = 0. (1.36)

As |φ1〉 and |φ2〉 are arbitrary states, |ψ0〉 is a supersymmetry singlet:

Q|ψ0〉 = 0, Q†|ψ0〉 = 0. (1.37)

We conclude that we can decompose any vector as (1.28) with |ψ0〉 a

zero-energy state.

This proposition allows us to decompose any state |ψ〉 uniquely as

|ψ〉 = |ψ0〉+ Q|ψ1〉+ Q†|ψ2〉, (1.38)

with |ψ0〉 a zero-energy state. Despite this decomposition being unique,

the vectors |ψ1〉 and |ψ2〉 are not. Indeed, we can replace |ψ1〉 by |ψ1〉+

Q|φ1〉, for any |φ1〉 and this does not affect the decomposition (1.38) as

the supercharge is nilpotent. Similarly, modifying |ψ2〉 to |ψ2〉+ Q†|φ2〉
leaves (1.38) unchanged.
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1.4 Zero-energy states and cohomology

In this section, we focus on the eigenstates of the Hamiltonian with zero

energy. As we shall see, their existence is related to a cohomological

problem.

The first equation that defines a supersymmetry singlet (1.27) requires

that a zero-energy state be in the kernel of the supercharge. We call its

elements cocycles. Since Q2 = 0, the kernel contains all states that are in

the image of Q. We call the elements of the image of Q coboundaries. The

second equation of (1.27) leads to the following property of zero-energy

states [67]:

Lemma 1.4.1. A non-zero zero-energy state is not a coboundary.

Proof. Suppose that we have a zero-energy state |ψ〉 6= 0 written as

|ψ〉 = Q|φ〉 for some vector |φ〉. Then Q†|ψ〉 = Q†Q|φ〉 = 0, and we have

0 = 〈φ|Q†Q|φ〉 = ‖Q|φ〉‖2. (1.39)

Hence, |ψ〉 = Q|φ〉 = 0, which is a contradiction.

A zero-energy state is a cocycle which is not in the image of Q. This

suggests that the space of supersymmetry singlets could be related to

the quotient of the kernel of the supercharge by its image. This is indeed

the case. We introduce a few concepts from cohomology theory in order

to explain this relation [73, 74].

The sequence of vector spaces H f together with the set of supercharges

Q : H f →H f+1 defines a cochain complex, or ascending complex :

· · · −→H f−1 Q−→H f Q−→H f+1 Q−→H f+2 −→ · · · , (1.40)

where each f takes its value in F, the spectrum of F. We denote the

cochain complex by (H •,Q). If F is bounded from below, then the

vector spaces below f = 0 are 0, and the cochain complex is bounded

from below:

0 −→H 0 Q−→H 1 Q−→ · · · Q−→H f Q−→H f+1 Q−→ · · · . (1.41)
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If F is bounded, then the cochain complex terminates: the vector spaces

are 0 when their index is larger than fmax:

0 −→H 0 Q−→ . . .
Q−→H f Q−→H f+1 Q−→ · · · Q−→H fmax −→ 0.

(1.42)

The cochain complex is said to be bounded.

Quotient space. We define for each f the quotient space

Hf =
ker{Q : H f →H f+1}
im{Q : H f−1 →H f}

. (1.43)

If F is bounded from below, this definition holds for f > 1 and we define

H0 = ker{Q : H 0 →H 1}. (1.44)

We note that if F is bounded, Hfmax is well defined, as we imposed

Q : H fmax → H fmax+1 = 0. The cohomology of the cochain complex

(H •,Q) is the direct sum

H• =
⊕
f∈F
Hf . (1.45)

The elements of Hf (Q) are equivalence classes of states belonging to

the kernel of Q. We denote the equivalence class of |ψ〉 ∈ ker(Q) by

[|ψ〉], the state |ψ〉 is called a representative of [|ψ〉]. Two vectors are

in the same equivalence class if they differ by a coboundary: we have

[|ψ〉] = [|ψ′〉] if and only if the relation

|ψ〉 = |ψ′〉+ Q|φ〉 (1.46)

holds for a state |φ〉.

These definitions allow us to elucidate the relation between the subspace

of H f spanned by the supersymmetry singlets and the quotient space

Hf .

Proposition 1.4.2. The space of zero-energy states of H f is isomorphic

to the quotient space Hf .
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Proof. We consider the quotient map restricted to the subspace of zero-

energy states

[ · ] : {|ψ〉 ∈H f |H|ψ〉 = 0} → Hf , |ψ〉 7→ [|ψ〉]. (1.47)

First, we observe that this map is surjective by construction. Indeed,

for each equivalence class [|ψ〉], there exists a pre-image |ψ〉 which is a

zero-energy state.

Second, we prove that it is injective. Let |ψ〉 be a zero-energy state that

is in the kernel of the mapping:

[|ψ〉] = [0]. (1.48)

Then there exists a state |φ〉 such that |ψ〉 = Q|φ〉. Since |ψ〉 is a

zero-energy state, we have a contradiction due to Lemma 1.4.1, unless

|ψ〉 = 0.

The mapping is thus a bijection.

This proposition teaches us that linearly independent singlets have dis-

tinct equivalence classes. As a direct corollary, the degeneracy of the

zero eigenvalue of the Hamiltonian acting on H f is the dimension of

the quotient space Hf . We use the Hodge decomposition to give a

representation of a zero-energy state:

Proposition 1.4.3. If the state |ψ〉 is a representative of a non-trivial

element of Hf , then there exists a state |φ〉 such that

|ψ0〉 = |ψ〉+ Q|φ〉 (1.49)

is a zero-energy state.

Proof. The proof follows from the Hodge decomposition of |ψ〉:

|ψ〉 = |ψ0〉+ Q|ψ1〉+ Q†|ψ2〉, (1.50)

with |ψ0〉 a zero-energy state. As |ψ〉 is a representative of a non-trivial

element of Hf , it is in the kernel of the supercharge. The application of

Q on |ψ〉 leads to

0 = Q|ψ〉 = QQ†|ψ2〉. (1.51)

Hence, by projection on 〈ψ2|, we obtain ‖Q†|ψ2〉‖ = 0 and |ψ0〉 =

|ψ〉+ Q(−|ψ1〉) is a zero-energy state.
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In the following, we refer to (1.49) as a cohomology decomposition of a

zero-energy state. It means that if a zero-energy state exists, then we

can write it as the sum of a representative of its equivalence class and a

element in the image of the supercharge. We recall that the representative

is an state which is in the kernel of the supercharge, but does not belong

to its image. It is clear that the cohomology decomposition is not unique

as it depends on the representative. Furthermore one can replace, for

a given representative |ψ〉, the state |φ〉 by |φ〉 + Q|φ′〉 and leave the

decomposition unchanged.

Conjugation. If we have two cochain complexes denoted by (H •,Q)

and (H̃ •, Q̃) and a set of invertible transformations, C : H f → H̃ f

such that the relation

CQ = Q̃C, (1.52)

holds on H f for each f , then we say that Q and Q̃ are conjugate. The

map C is called a conjugation or a morphism of cochain complexes.

Two conjugate supercharges have isomorphic cohomologies that we write

Hf (Q) and Hf (Q̃) in order to stress their dependence on the supercharge

[67]:

Proposition 1.4.4. Let Q and Q̃ be two conjugate supercharges, then

Hf (Q) is isomorphic to Hf (Q̃). The conjugation C induces the isomor-

phism C]:

C] : Hf (Q)→ Hf (Q̃), C][|ψ〉] = [C|ψ〉] (1.53)

Proof. Let |ψ〉 ∈ H f be a representative of a zero-energy state. Then

C|ψ〉 is a representative of a zero-energy state for Q̃: it is annihilated

by Q̃. Furthermore, it cannot be in the image of Q̃. Otherwise, we have

Q̃|φ〉 = C|ψ〉 for a certain |φ〉, implying |ψ〉 = QC−1|φ〉. This contradicts

the fact that |ψ〉 is a representative of a zero-energy state.

If C is a Hermitian involution C† = C = C−1 then the conjugation of

the supercharge and its adjoint form a new set of supercharges

Q̄ = C−1QC, Q̄† = C−1Q†C

generating the Hamiltonian {Q̄, Q̄†} = H̄ = C−1HC. If C is a symmetry

of the model, [H,C] = 0, then the two generated Hamiltonian are

identical, H̄ = H.
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Homology. In the definition of a supersymmetric Hamiltonian (1.9),

there is an apparent symmetry between the supercharge and its adjoint.

It suggests that we can reformulate the results of this section using Q†

instead of Q.

Starting from the equations satisfied by a supersymmetry singlet (1.27),

we prove the following lemma similarly to Lemma 1.4.1.

Lemma 1.4.5. A non-zero zero-energy state is not in the image of Q†.

The preceding lemma suggests that the space of zero-energy states is

related to the quotient of the kernel of Q by its image. This observation

naturally leads us to introduce concepts from homology theory. We

define the chain complex or descending complex, (H•,Q†) as given by

the sequence of vector spaces H f and the set of adjoint supercharges

Q† : H f →H f−1,

· · · ←−H f−2 Q†←−H f−1 Q†←−H f Q†←−H f+1 ←− · · · , (1.54)

with f ∈ F. Similarly to the cochain complex case, if F is bounded from

below, then the vector spaces below f = 0 are 0, and the chain complex

is also said to be bounded from below:

0←−H 0 Q†←−H 1 Q†←− . . . Q†←−H f−1 Q†←−H f Q†←− · · · . (1.55)

If F is bounded, the chain complex is also bounded, the vector spaces

are 0 when their index is lower than 0 or larger than fmax:

0←−H 0 Q†←− . . . Q†←−H f−1 Q†←−H f Q†←− · · · Q†←−H fmax ←− 0.

(1.56)

We define for each f the quotient space

Hf =
ker{Q† : H f →H f−1}
im{Q† : H f+1 →H f}

. (1.57)

With this definition, if F is bounded from below, H0 is given by

H0 = H 0/im{Q† : H 1 →H 0} (1.58)

whereas if F is bounded above, we define

Hfmax = ker{Q† : H fmax →H fmax−1}. (1.59)
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We call homology of the chain complex (H•,Q†) the direct sum

H• =
⊕
f∈F
Hf . (1.60)

The elements of Hf are equivalence classes of states belonging to the

kernel of Q†. They are represented by states |ψ〉 ∈ ker(Q†). We keep the

same notation for the elements of Hf and Hf and denote by [|ψ〉] the

equivalence class of such a state. Two vectors are in the same equivalence

class if they differ by an element of the image of Q†: [|ψ〉+Q†|φ〉] = [|ψ〉].

As above, the space of supersymmetry singlets is isomorphic to the

equivalence classes with respect to the image of the adjoint supercharge.

We omit the proof, which is similar to the case for Hf .

Proposition 1.4.6. For each f , the space of zero-energy states of H f

is isomorphic to the quotient space Hf .

Corollary 1.4.7. For each f , Hf is isomorphic to Hf .

We obtain a second representation of a zero-energy state, in terms of a

representative of its equivalence class with respect to the image of Q†:

Proposition 1.4.8. If the state |ψ〉 is a representative of a non-trivial

element of Hf , then there exists a state |φ〉 such that

|ψ0〉 = |ψ〉+ Q†|φ〉 (1.61)

is a zero-energy state.

Proof. The proof follows from the Hodge decomposition of |ψ〉:

|ψ〉 = |ψ0〉+ Q|ψ1〉+ Q†|ψ2〉, (1.62)

with |ψ0〉 a zero-energy state. As |ψ〉 is a representative of a non-trivial

element of Hf , it is in the kernel of the adjoint supercharge. The

application of Q† on |ψ〉 leads to

0 = Q†|ψ〉 = Q†Q|ψ1〉. (1.63)

Hence, by projection on 〈ψ1|, we obtain ‖Q|ψ1〉‖ = 0 and |ψ0〉 = |ψ〉+

Q†(−|ψ2〉) is a zero-energy state.
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We refer to (1.61) as the homology decomposition. As mentioned pre-

viously, this decomposition is not unique. In the following, we use the

(co)homology decompositions to characterise the ground states and in-

vestigate their properties. In essence, the following proposition states

that the knowledge of homology and cohomology representatives of a

supersymmetry singlet allows us to compute its matrix elements with

respect to operators with which the supercharge commutes:

Proposition 1.4.9. Let B be an endomorphism of H f , for each f that

commutes with the supercharge according to

BQ = λQB, (1.64)

where λ is a non-zero complex number. Furthermore, let |ψ0〉 be a zero-

energy state whose decompositions (1.49) and (1.61) are |ψ0〉 = |ψ〉+Q|φ〉
and |ψ0〉 = |ψ′〉+ Q†|φ′〉, respectively. Then we have

〈ψ0|B|ψ0〉 = 〈ψ′|B|ψ〉. (1.65)

Proof. The proof consists of a straightforward computation. First, we

use (1.61) to write

〈ψ0|B|ψ0〉 = 〈ψ′|B|ψ0〉+ (〈φ′|Q)B|ψ0〉 = 〈ψ′|B|ψ0〉+ λ−1〈φ′|B(Q|ψ0〉).
(1.66)

The last term on the right-hand side vanishes, as |ψ0〉 is annihilated by

the supercharge.

Second, with the help of (1.49), we find

〈ψ0|B|ψ0〉 = 〈ψ′|B|ψ0〉 = 〈ψ′|B|ψ〉+ 〈ψ′|BQ|φ〉 (1.67)

= 〈ψ′|B|ψ〉+ λ
(
〈ψ′|QB

)
|φ〉. (1.68)

Because of Q†|ψ′〉 = 0, we conclude that the second term on the right-

hand side equals zero. This leads to (1.65).



Chapter 2

XYZ spin chain: periodic

boundary conditions

In this chapter, we consider the XYZ spin chain Hamiltonian with periodic

boundary conditions. As explained in the introduction, it is a model of

spins interacting on a one-dimensional lattice that we call a chain. This

model is characterised by three so-called anisotropy parameters, denoted

J1, J2 and J3. We focus on the case where they obey the relation

J1J2 + J2J3 + J1J3 = 0. (2.1)

The XYZ model with anisotropy parameter satisfying (2.1) has been

studied because of the remarkable combinatorial properties of its ground

state [54, 56, 57, 75]. Furthermore, for this choice of parameters, the

Hamiltonian possesses a lattice supersymmetry [76]. We revisit this

supersymmetry and apply the (co)homology methods presented in Chap-

ter 1 to characterise the space of the ground state of this Hamiltonian

[77].

The layout of this chapter is as follows. In Section 2.1, we introduce the

XYZ spin-chain Hamiltonian and recall a few of its symmetries. We show

in Section 2.2 that, for a specific choice of anisotropy parameters, this

Hamiltonian is supersymmetric and provide the construction of the cor-

responding supercharges. We discuss the existence of the supersymmetry

singlets of the Hamiltonian in Section 2.3 by analysing the (co)homology

of the supercharges. In Section 2.4, we characterise the supersymmetry

25
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singlets and prove that they span the space of the spin chain’s ground

states.

2.1 The XYZ Hamiltonian and its symmetries

Hilbert Space. The XYZ spin chain that we describe is a model of

interacting spins 1/2. We use the notation V = C2 for the Hilbert space

of a single spin. The Hilbert space of the spin chain with L sites is given

by

V L = V1 ⊗ V2 ⊗ · · · ⊗ VL, (2.2)

where Vj = V is a copy of the single-spin Hilbert space associated to the

site j. We refer to the number of sites of the chain, L, as the length of

the chain. In the vocabulary of Chapter 1, the length of the chain plays

the role of the grading operator eigenvalue that we denoted by f . It is

bounded from below, with minimal value L = 1.

A basis of the Hilbert space V is

|↑〉 =

(
1

0

)
, |↓〉 =

(
0

1

)
. (2.3)

The canonical orthonormal basis of V L is given by the set of all states

|s1s2 · · · sL〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉, (2.4)

where each sj is either ↑ (spin up) or ↓ (spin down).

The spin operators on V 2 are given by the standard Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.5)

We denote by σαj , α = 1, 2, 3 and j = 1, . . . , L, the matrix σα acting on

the j-th factor of the tensor product (2.2):

σαj = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ σα ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−j

. (2.6)
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XYZ Hamiltonian. For L > 2 sites and periodic boundary conditions,

the spin chain Hamiltonian is given by

HXYZ =
L∑
j=1

hXYZ
jj+1, (2.7a)

where hXYZ
jj+1 is the local XYZ Hamiltonian, defined by

hXYZ
jj+1 = −1

2

(
J1σ

1
jσ

1
j+1 + J2σ

2
jσ

2
j+1 + J3σ

3
jσ

3
j+1

)
. (2.7b)

The periodic boundary conditions impose

σαL+1 = σα1 , α = 1, 2, 3. (2.8)

The real constants J1, J2, J3 are the spin chain’s anisotropy parameters.

This Hamiltonian is Hermitian and therefore, diagonalisable. Below, we

focus on certain special eigenstates. The analysis of these eigenstates

uses a few simple symmetries of the Hamiltonian that we discuss now.

Symmetry operators. We start this discussion by considering its

invariance under translations. The translation operator S acts on the

basis of V L according to

S|s1 · · · sL−1sL〉 = |sLs1 · · · sL−1〉. (2.9)

The translation invariance of the Hamiltonian is expressed through the

commutation relation

[HXYZ,S] = 0. (2.10)

This follows from the relation

hXYZ
jj+1 = ShXYZ

j−1jS−1, (2.11)

which holds for each j = 2, . . . , L. The operator S is unitary. Therefore,

it is diagonalisable. The Hilbert space V L is the direct sum of the

corresponding eigenspaces. In the following, we will be particularly

interested in the eigenstates of S with eigenvalue (−1)L+1. We follow

the terminology of [78] and call them alternate-cyclic states. We denote

by WL the corresponding eigenspace.
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Furthermore, we note that the Hamiltonian preserves the spin parity:

[HXYZ,P] = 0, P = (−1)Lσ3
1σ

3
2 · · ·σ3

L. (2.12)

Each basis state (2.4) is an eigenstate of the spin-parity operator P.

The corresponding eigenvalue is the parity of the number of spins up.

The spin-parity invariance of the Hamiltonian allows one to look for

eigenstates of HXYZ in sectors of V L where this parity is fixed to +1 or

−1.

Finally, the Hamiltonian is invariant under spin reversal:

[HXYZ,R] = 0, R = σ1
1σ

1
2 · · ·σ1

L. (2.13)

The spin-parity and spin-reversal operators have the commutation rela-

tion RP = (−1)LPR. For odd L, this anticommutation relation implies

that each eigenvalue of HXYZ has an even degeneracy. Indeed, if |ψ〉
satisfies HXYZ|ψ〉 = E|ψ〉 and is of parity +1, P|ψ〉 = |ψ〉, then the state

R|ψ〉 is also an eigenstate of HXYZ with the same eigenvalue E but has

parity (−1)L = −1 if L is odd. As they pertain to eigenspaces of R with

different eigenvalue, they are orthogonal to each other.

2.2 Lattice supersymmetry

From now on, we focus on the case where the anisotropy parameters are

given by

J1 = 1 + ζ, J2 = 1− ζ, J3 =
1

2
(ζ2 − 1), (2.14)

where ζ is a non-zero real parameter. Up to an irrelevant multiplicative

factor, this is the most general solution to the relation (2.1). We show

that for this choice, the XYZ Hamiltonian possesses a lattice supersym-

metry on the subspace of alternate-cyclic states [76, 77]. We denote the

corresponding supercharges and its adjoint by Q and Q†, respectively.

Supercharges. We construct the supercharge Q from an operator q

that we call the local supercharge. Its action on the basis states of the

single-spin Hilbert space is given by [76]

q|↑〉 = 0, q|↓〉 = |↑↑〉 − ζ|↓↓〉. (2.15)
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Using q, we define local operators q0, q1, . . . , qL that map the Hilbert

space of a chain of length L to the Hilbert space of a chain of length

L+ 1. For j = 1, . . . , L, we set

qj = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ q⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−j

. (2.16a)

Furthermore, we define

q0 = S−1q1S = SqL. (2.16b)

Notice that in S−1q1S, the translation operators to the right and the

left of q1 act on V L and V L+1, respectively.

The supercharge Q is a length-increasing operator that maps V L to V L+1

for each L > 1. We define it through its action on the eigenspaces of

the translation operator S in V L. On the eigenspace of alternate-cyclic

states WL, the supercharge acts as the alternating sum

Q =

√
L

L+ 1

L∑
j=0

(−1)jqj . (2.17)

On every other eigenspace of the translation operator, we define the

supercharge to be zero. One checks [77] that the supercharge maps WL

to WL+1 as the following anticommutation relation holds:

SQ = −QS. (2.18)

We define the adjoint of the supercharge Q† by means of the scalar

product of the spin-chain Hilbert space. It satisfies

〈ψ|Q†|φ〉 = 〈φ|Q|ψ〉∗ (2.19)

for all |φ〉 ∈ V L, |ψ〉 ∈ V L−1, L > 2. It follows from this definition that

the action of the adjoint supercharge on the eigenspaces of the translation

operator S in V L is non-zero only on WL. Furthermore, Q† maps WL

to WL−1.

The key feature of this supersymmetry is that Q and Q† map V L into

V L+1 and V L−1, respectively. As it does not preserve the length of the

chain L, the supersymmetry is sometimes referred to as dynamic [79, 77].
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Nilpotency. One can show that the supercharge and its adjoint are

nilpotent operators [76]:

Proposition 2.2.1. The supercharge and its adjoint satisfy

Q2 = 0, (Q†)2 = 0. (2.20)

This means that the operators Q2 : V L → V L+2, L > 1, and (Q†)2 :

V L → V L−2, L > 3, yield zero on every state of V L.

Proof. From the definition of the adjoint, it is sufficient to prove the

statement for the supercharge. The nilpotency is trivial on the subspace

of V L spanned by the states that are not alternate-cyclic. Hence, we focus

on the action of Q2 on WL. From the action of the local supercharge qj
(2.16), we have

qiqj = qj+1qi (2.21)

for each 0 6 i < j 6 N , apart from the case i = 0, j = N . This

observation leads to√
L+ 2

L
Q2 = (q0 − q1)q0 +

L∑
j=1

(qj − qj+1)qj + (−1)L(q0qL − qL+1q0).

(2.22)

We rewrite the third term in the right-hand side of the equation using

the definition of q0 (2.16):

(−1)L(q0qL − qL+1q0) = (−1)L+1S(qL − qL+1)qL. (2.23)

We observe that the local supercharge has the following property: for

each |ψ〉 ∈ V ,

(q⊗ 1− 1⊗ q)q|ψ〉 = |χ〉 ⊗ |ψ〉 − |ψ〉 ⊗ |χ〉, (2.24)

where |χ〉 = −ζ|↑↑〉 belongs to V 2. We now apply (2.22) on a state

|Ψ〉 ∈ WL. We separately consider the action of each term in the

right-hand side of (2.22) on |Ψ〉 and find

(q0 − q1)q0|Ψ〉 = (−1)L+1S−1 (|χ〉 ⊗ |Ψ〉)− |χ〉 ⊗ |Ψ〉,
L∑
j=1

(qj − qj+1)qj |Ψ〉 = |χ〉 ⊗ |Ψ〉 − |Ψ〉 ⊗ |χ〉,

(−1)L+1S(qL − qL+1)qL|Ψ〉 = |Ψ〉 ⊗ |χ〉 − (−1)L+1S (|Ψ〉 ⊗ |χ〉) .
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Here, the second equation follows from a telescopic cancellation, and we

used S|Ψ〉 = (−1)L+1|Ψ〉 to simplify the first and third equations. The

sum of these three contributions is zero. This proves the nilpotency of

Q.

Hamiltonian. The supercharge and its adjoint allow us to define the

Hamiltonian

H = QQ† + Q†Q. (2.25)

This Hamiltonian is a length-preserving operator, unlike Q and Q†.

It follows from their definition that the action of H yields zero on all

eigenspaces of the translation operator in V L that are not equal to the

subspace of alternate-cyclic states WL. However, the restriction of H to

WL is non-trivial [76].

Using the supercharge (2.17) we find that the Hamiltonian (2.25) is a

sum of terms describing nearest-neighbour interactions:

H =
L∑
j=1

hjj+1. (2.26)

Here, hjj+1 denotes the Hamiltonian density h : V 2 → V 2, acting on the

sites j and j + 1. In terms of the local supercharge q it is given by

h = −(1⊗ q†)(q⊗ 1)− (q† ⊗ 1)(1⊗ q) + qq† +
1

2

(
q†q⊗ 1 + 1⊗ q†q

)
.

(2.27)

Up to a multiple of the identity matrix, the anticommutator (2.25) is

equal to the Hamiltonian of the XYZ spin chain (2.7) with particular

anisotropy parameters.

Proposition 2.2.2. For each L > 2, we have

H = HXYZ − E0 on WL, (2.28)

provided that J1, J2, J3 are given by (2.14) and E0 is set to

E0 = −L
4

(3 + ζ2). (2.29)



32 Chapter 2. Periodic XYZ spin chain

Proof. The proof follows from the calculation of the Hamiltonian density

h. On the subspace WL, we have

h = hXYZ +
3 + ζ2

4
, (2.30)

where J1, J2, J3 satisfy (2.14). We perform the sum (2.26) and obtain

(2.28).

The relation (2.28) between H and the XYZ Hamiltonian implies that

H commutes with the spin-parity and spin-reversal operators [H,P] =

[H,R] = 0. Because of (2.28), we conclude that the restriction of the

XYZ Hamiltonian to WL with the anisotropy parameters (2.14) has a

dynamic lattice supersymmetry.1

2.3 (Co)homology and conjugation

In the following, we are interested in the supersymmetry singlets of the

Hamiltonian (2.25). As seen in Chapter 1, they are the solutions of the

two equations:

Q|Ψ〉 = 0, Q†|Ψ〉 = 0. (2.31)

It follows from the definition of Q and Q† that these equations have

many trivial solutions. Indeed, all eigenstates of the translation operator

S that are not alternate-cyclic are zero-energy states. In the following,

we focus on the alternate-cyclic zero-energy states. If they exist, then

they are the ground states of the XYZ Hamiltonian with the anisotropy

parameters (2.14), restricted to WL. The corresponding eigenvalue is

E0 = −L(3 + ζ2)/4.

Proving the absence or the existence of alternate-cyclic zero-energy

states is a non-trivial problem except for a few special values of the

parameter ζ. One such special value is ζ = 1, where the Hamiltonian

reduces to

H =
L∑
j=1

(1− σ1
jσ

1
j+1) on WL. (2.32)

1Previous numerical investigations and a Bethe-ansatz analysis [76, 78] suggest

that there is no other eigenspace of the translation operator on which the spin-chain

Hamiltonian is supersymmetric.
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Its diagonalisation is elementary. It reveals that H possesses no alter-

nate-cyclic zero-energy states for even L = 2n. For odd L = 2n + 1,

however, the subspace of zero-energy states in WL is two-dimensional.

One basis of this eigenspace is given by

|Φn〉 =
1

2
(1 + P)

∑
s1=↑,↓

· · ·
∑

s2n+1=↑,↓
|s1 · · · s2n+1〉, (2.33a)

|Φ̄n〉 =
1

2
(1− P)

∑
s1=↑,↓

· · ·
∑

s2n+1=↑,↓
|s1 · · · s2n+1〉. (2.33b)

These basis states have a definite spin parity and can be mapped onto

each other through spin reversal:

P|Φn〉 = |Φn〉, P|Φ̄n〉 = −|Φ̄n〉, R|Φn〉 = |Φ̄n〉. (2.34)

For generic values of ζ, the explicit diagonalisation of the Hamiltonian

H is non-trivial. Nonetheless, it is possible to prove the absence or

the existence of alternate-cyclic zero-energy states by means of the

supersymmetry. A proof was already given in [77]. For completeness, we

revisit this proof and extend it here below.

(Co)homology. As we have seen in Chapter 1, the zero-energy states

are in bijection with the elements of the kernel of the supercharge or

its adjoint modulo their respective image. The quotient space (1.43) is

defined for each L > 2, by

HL(ζ) =
ker{Q(ζ) : WL →WL+1}
im{Q(ζ) : WL−1 →WL}

, (2.35)

where we wrote Q(ζ),HL(ζ) for the supercharge and the quotient space

in order to stress their dependence on the parameter ζ. We recall that the

elements of HL(ζ) are equivalence classes that we denote by [|ψ〉], with

|ψ〉 ∈ ker{Q(ζ) : WL →WL+1} a representative, [|ψ〉+ Q(ζ)|φ〉] = [|ψ〉].
Accordingly, the quotient space (1.57) is

HL(ζ) =
ker{Q(ζ)† : WL →WL−1}
im{Q(ζ)† : WL+1 →WL}

(2.36)

for each L > 2. A state |ψ〉 ∈ ker{Q(ζ)† : WL →WL−1} is a representa-

tive of the equivalence class [|ψ〉].
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To prove the (non-)existence of alternate-cyclic zero-energy states of the

Hamiltonian H for L sites, it is sufficient to find HL(ζ) or HL(ζ). We

now compute these spaces for each L > 2.

Let us consider the case where ζ = 1. The explicit diagonalisation of the

Hamiltonian shows that

H2n(1) = 0, H2n+1(1) = C[|Φn〉]⊕ C[|Φ̄n〉], (2.37a)

H2n(1) = 0, H2n+1(1) = C[|Φn〉]⊕ C[|Φ̄n〉], (2.37b)

for each n > 1, where |Φn〉, |Φ̄n〉 are the states defined in (2.33).

Conjugation. The corresponding results for non-zero values of ζ can

be inferred from (2.37). To this end, we introduce an operator m(λ)

whose action on the basis states of the single-spin Hilbert space is given

by

m(λ)|↑〉 = λ|↑〉, m(λ)|↓〉 = λ2|↓〉. (2.38)

The operator m(λ) and the local supercharge q = q(ζ) satisfy the relation

(m(λ)⊗m(λ)) q(λ−2ζ) = q(ζ)m(λ). (2.39)

On V L, we define the operator M(λ) = m1(λ)m2(λ) · · ·mL(λ) where

mj(λ) is m(λ) acting on the j-th factor of the tensor product (2.4).

M(λ) preserves WL and is invertible for λ 6= 0: M(λ)−1 = M(λ−1).

For non-zero λ, the operator M(λ) is a conjugation between Q(ζ) and

Q(λ−2ζ). Indeed, it follows from (2.39) that

M(λ)Q(λ−2ζ) = Q(ζ)M(λ), (2.40a)

M(λ−1)Q(λ−2ζ)† = Q(ζ)†M(λ−1). (2.40b)

By Proposition 1.4.4, this conjugation property implies that the following

mappings are bijections:

M](λ) : HL(λ−2ζ)→ HL(ζ), M](λ)[|Φ〉] = [M(λ)|Φ〉], (2.41a)

M](λ) : HL(λ−2ζ)→ HL(ζ), M](λ)[|Φ′〉] = [M(λ−1)|Φ′〉]. (2.41b)

The existence of these bijections was observed in [77]. It implies that

dimHL(ζ) = dimHL(λ−2ζ) and dimHL(ζ) = dimHL(λ−2ζ) for each

L > 1. This allows one to compute the dimension of the space of
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alternate-cyclic zero-energy states as a function of the number of sites.

Here, we extend the work of [77] and use the bijections to explicitly

compute a basis of HL(ζ) and HL(ζ) for non-zero ζ. For ζ > 0, we

introduce the states

|Φn(ζ)〉 = ζ−(n+1)M(ζ1/2)|Φn〉, |Φ̄n(ζ)〉 = ζ−(n+1/2)M(ζ1/2)|Φ̄n〉.
(2.42)

These states are polynomials in ζ. Furthermore, we infer from (2.40)

that they satisfy

Q(ζ)|Φn(ζ)〉 = 0, Q(ζ)|Φ̄n(ζ)〉 = 0, (2.43a)

Q†(ζ)|Φn(ζ−1)〉 = 0, Q†(ζ)|Φ̄n(ζ−1)〉 = 0. (2.43b)

It follows from (2.41) that for ζ > 0 we have

H2n(ζ) = 0, H2n+1(ζ) = C[|Φn(ζ)〉]⊕ C[|Φ̄n(ζ)〉], (2.44a)

H2n(ζ) = 0, H2n+1(ζ) = C[|Φn(ζ−1)〉]⊕ C[|Φ̄n(ζ−1)〉]. (2.44b)

The polynomiality of the states defined in (2.42) allows us to extend

these relations to non-zero values of ζ.

Our construction of HL(ζ) and HL(ζ) clearly fails if ζ = 0 (which is

the reason for requiring that ζ be non-zero). Indeed, in this case, the

conjugation relation (2.40) implies that the supercharges commute with

the operator M(λ) for any λ. However, the commutation relation does

not allow us to establish a relation between HL(0) and HL(1), nor

between HL(0) and HL(1). We discuss the case ζ = 0 at the end of this

chapter.

2.4 Zero-energy states

We now use (2.44) in order to characterise the space of alternate-cyclic

zero-energy states of the Hamiltonian H.

Theorem 2.4.1. For each n > 1, the Hamiltonian (2.25) with L = 2n

does not possess alternate-cyclic zero-energy states. If L = 2n+ 1, then

the space of alternate-cyclic zero-energy states is spanned by

|Ψn〉 = |Φn(ζ)〉+ Q|αn〉, |Ψ̄n〉 = |Φ̄n(ζ)〉+ Q|ᾱn〉, (2.45)

where |αn〉, |ᾱn〉 ∈W 2n.
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Proof. The absence and existence of the alternate-cyclic zero-energy

states in W 2n and W 2n+1, respectively, follow from (2.44). If L = 2n+ 1,

then the decompositions (2.45) are a consequence of the cohomology

decomposition (1.49) of a supersymmetry singlet.

In the following, whenever we write |Ψn〉 and |Ψ̄n〉, we refer to the two

states defined in (2.45). We now show that for non-zero ζ these states

have the same spin parity and transformation behaviour under spin

reversal (2.34) as for ζ = 1.

Proposition 2.4.2. For each n > 1, the alternate-cyclic zero-energy

states defined in (2.45) satisfy

P|Ψn〉 = +|Ψn〉, P|Ψ̄n〉 = −|Ψ̄n〉. (2.46)

Furthermore, there exists a non-zero complex number ρn such that the

relation R|Ψn〉 = ρn|Ψ̄n〉 holds.

Proof. First, we consider the action of the spin-parity operator on the

zero-energy states. To this end, we notice that this operator anticommutes

with the supercharge

QP + PQ = 0. (2.47)

This follows from the definition of the local supercharge (2.15). We use

this relation to show that P|Ψn〉 = +|Ψn〉. A short calculation leads to

P|Ψn〉 − |Ψn〉 = −Q(P + 1)|αn〉, (2.48)

where we used that P|Φn(ζ)〉 = +|Φn(ζ)〉. Since the Hamiltonian H

commutes with the spin-parity operator P, the left-hand side of this

equality is a zero-energy state. If it does not vanish, then it is a non-zero

zero-energy state which is in the image of Q. Lemma 1.4.1 states that

this is not possible. Hence, both sides have to vanish. This leads to the

desired result. The proof of P|Ψ̄n〉 = −|Ψ̄n〉 is similar.

Second, the states |Ψn〉, |Ψ̄n〉 have thus opposite spin parity and span

a two-dimensional eigenspace of the Hamiltonian. The Hamiltonian

commutes with the spin-reversal operator. We conclude that R|Ψn〉 =

ρn|Ψ̄n〉 and R|Ψ̄n〉 = ρ−1
n |Ψn〉 for a non-vanishing complex number

ρn.
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Theorem 2.4.3. For each n > 1, the alternate-cyclic zero-energy states

|Ψn〉 and |Ψ̄n〉 can be written as

|Ψn〉 = µn|Φn(ζ−1)〉+ Q†|βn〉, |Ψ̄n〉 = µ̄n|Φ̄n(ζ−1)〉+ Q†|β̄n〉, (2.49)

where |βn〉, |β̄n〉 ∈W 2(n+1). The constants µn and µ̄n are non-zero and

given by

µn =
1

4n
〈Φn(ζ)|Ψn〉, µ̄n =

1

4n
〈Φ̄n(ζ)|Ψ̄n〉. (2.50)

Proof. We focus on the state |Ψn〉. It follows from the homology decom-

position (1.61) and from (2.44) that there are constants µn, νn and a

state |βn〉 ∈W 2(n+1) such that

|Ψn〉 = µn|Φn(ζ−1)〉+ νn|Φ̄n(ζ−1)〉+ Q†|βn〉. (2.51)

We act on both sides of this equality with the spin-parity operator and

find

|Ψn〉 = µn|Φn(ζ−1)〉 − νn|Φ̄n(ζ−1)〉 −Q†P|βn〉. (2.52)

The difference of these two equalities leads to

2νn|Φ̄n(ζ−1)〉 = −Q†(1 + P)|βn〉. (2.53)

We take the scalar product of both sides of this equality with |Φ̄n(ζ)〉.
The scalar product with the right-hand side vanishes because of (2.43).

On the left-hand side, we find 22n+1νn and therefore have νn = 0. Finally,

we determine the value of µn by taking the scalar product of both sides

of (2.51) with |Φn(ζ)〉.

The reasoning for |Ψ̄n〉 is similar.

As stated in Chapter 1, the (co)homology decomposition of a zero-

energy state is not unique. We now determine an alternative cohomology

decomposition for |Ψ̄n〉, which will be useful in Chapter 3.

Proposition 2.4.4. For each n > 1, the state |Ψ̄n〉 can be written

|Ψ̄n〉 = 4n|↑ · · · ↑〉+ Q|γn〉 (2.54)

for some state |γn〉 ∈W 2n.
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Proof. We show that for each n > 1, there is a linear combination of

|↑ · · · ↑〉 ∈W 2n+1 and |Φn(ζ)〉 that is in the image of the supercharge.

To see this, we notice that for each n > 1 the state |↑ · · · ↑〉 ∈ W 2n+1

is annihilated by Q. This can be seen from the definition of the local

supercharge (2.15). It follows from (2.44) that there are constants ηn, η̄n
and a state |δn〉 ∈W 2n such that

|↑ · · · ↑〉 = ηn|Φn(ζ)〉+ η̄n|Φ̄n(ζ)〉+ Q|δn〉. (2.55)

We act on both sides of this equality with the spin-parity operator P,

which leads to

− |↑ · · · ↑〉 = ηn|Φn(ζ)〉 − η̄n|Φ̄n(ζ)〉 −QP|δn〉. (2.56)

We take the sum of (2.55) and (2.56) and find

2ηn|Φn(ζ)〉+ Q(1− P)|δn〉 = 0. (2.57)

The projection of this equality onto the state |Φn(ζ−1)〉 leads to ηn = 0

(and therefore Q(1− P)|δn〉 = 0). Hence, (2.55) becomes

|↑ · · · ↑〉 = η̄n|Φ̄n(ζ)〉+ Q|δn〉. (2.58)

We take the scalar product of both sides of this equality with |Φ̄n(ζ−1)〉
and find η̄n = 1

4n .

Finally, we combine this result with (2.45) and find

|Ψ̄n〉 = 4n|↑ · · · ↑〉+ Q(|ᾱn〉 − 4n|δn〉). (2.59)

This leads to (2.54) with |γn〉 = |ᾱn〉 − 4n|δn〉.

As was pointed out above, the states |Ψn〉 and |Ψ̄n〉 span the space of

the ground states of HXYZ with L = 2n + 1 sites and the anisotropy

parameters (2.14), restricted to W 2n+1. The next theorem shows that

they are in fact the ground states on the full Hilbert space V 2n+1. This

follows from a generalisation of a classical result [14] by Yang and Yang

on the ground state of the XXZ chain and an argument by Yang and

Fendley [80].
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Theorem 2.4.5. For each L = 2n + 1, n > 1, and non-zero ζ, the

states |Ψn〉 and |Ψ̄n〉 span the space of the ground states of HXYZ with the

anisotropy parameters defined in (2.14). The corresponding ground-state

eigenvalue is E0 = −(2n+ 1)(3 + ζ2)/4.

Proof. We divide the proof into four steps.

First, we notice that it is sufficient to prove the statement for ζ > 0. The

reason is that the Hamiltonians for ζ > 0 and ζ < 0 can be related by a

unitary transformation. Indeed, writing HXYZ = HXYZ(ζ), we have

HXYZ(−ζ) =M(i)HXYZ(ζ)M(i)†, (2.60)

where M(i) is the operator introduced in Section 2.3. Furthermore,

let us write |Ψn(ζ)〉 and |Ψ̄n(ζ)〉 for the alternate-cyclic zero-energy

states. Using Theorem 2.4.1 and Proposition 2.4.2, one can show that

M(i)|Ψn(ζ)〉 = γn|Ψn(−ζ)〉 and M(i)|Ψ̄n(ζ)〉 = γ̄n|Ψ̄n(−ζ)〉 where γn,

γ̄n are non-zero complex numbers. Hence, if |Ψn(ζ)〉 and |Ψ̄n(ζ)〉 span

the space of the ground states of HXYZ(ζ), then |Ψn(−ζ)〉 and |Ψ̄n(−ζ)〉
will span the space of ground states of HXYZ(−ζ) as well.

Second, for ζ > 0 the off-diagonal entries of HXYZ are zero or negative.

Hence, there is a constant λ such that λ − HXYZ is a non-negative

matrix with positive diagonal entries. We consider the restriction H±
of λ−HXYZ to the eigenspace of the spin-parity operator P associated

to the eigenvalue ±1. The matrix H± is Hermitian and thus has real

eigenvalues. Furthermore, the repeated action of H± on any basis state

|s1s2 · · · sL〉 with spin parity ±1 leads to linear combinations of basis

states that have the same spin parity. The coefficients of these linear

combinations are positive. Any other basis state |s′1s′2 · · · s′L〉 with this

spin parity can be found in one of these linear combinations. Following

[14], we conclude that there exists an integer m > 1 such that Hm
±

is a positive matrix. Hence, H± is irreducible and non-negative [81].

We may thus apply the Perron-Frobenius theorem for irreducible non-

negative matrices. It implies that the largest eigenvalue λ± of H± is

non-degenerate. Furthermore, there is a unique state |Ψ±〉 with positive

components and norm one such that

H±|Ψ±〉 = λ±|Ψ±〉. (2.61)
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Considered as a vector of V 2n+1, |Ψ±〉 has non-negative components.

It spans the one-dimensional space of the ground states of HXYZ in the

subsector where the spin parity is fixed to ±1.

Third, following [80] we prove that |Ψ±〉 is invariant under translations.

Indeed, because of [HXYZ,S] = 0 and [P,S] = 0, we have

S|Ψ±〉 = t±|Ψ±〉, with tL± = 1. (2.62)

We now take the complex conjugate of this equation. Since the compo-

nents of |Ψ±〉 are real, we immediately find t∗± = t−1
± = t±. Hence, as

L = 2n+ 1 is odd, t± = 1. The state |Ψ±〉 is therefore alternate-cyclic.

Finally, it follows from Theorem 2.4.1 and Proposition 2.4.2 that |Ψ+〉 and

|Ψ−〉 are proportional to |Ψn〉 and |Ψ̄n〉, respectively. The ground-state

eigenvalue follows from (2.28) and therefore is doubly degenerate.

Before turning to the next chapter, we briefly discuss the case ζ = 0

that we did not address. If ζ = 0, then the XYZ Hamiltonian (2.7) with

anisotropy parameters (2.14) becomes a XXZ Hamiltonian as J1 = J2 = 1.

This system has been treated extensively in the literature. In particular,

its ground state energy is doubly degenerate, and we can compute the

components of the corresponding eigenvector explicitly [61]. However, to

gain new insight into the characterisation of this state, it is interesting

to find simple (co)homology representatives as we obtained for generic

ζ. We postpone this discussion to Chapter 6 devoted to the XXZ spin

chains.



Chapter 3

The supersymmetric

eight-vertex model with

periodic boundary

conditions

In this chapter, we introduce the eight-vertex model. It is a generalisa-

tion of the six-vertex model, a two-dimensional classical vertex model

developped by Pauling in 1935 [18]. As stated in the introduction, one

can extract some properties of the system from the so-called transfer

matrix, that we investigate. As we shall see, this two-dimensional model

is closely related to a one-dimensional quantum spin chain. Specifically,

it was understood by Lieb that the transfer matrix of eight-vertex model

possesses the same eigenvectors as an XXZ Hamiltonian [22].

We study the eight-vertex model with specifically chosen parameters,

that we give later, so that the corresponding Hamiltonian is the super-

symmetric Hamiltonian discussed in the preceding chapter. Because of

this relation, we follow Rosengren [82] and refer to this special case as the

supersymmetric eight-vertex model. It is connected to a variety of topics

such as families of solutions to the Lamé and Painlevé III equations [83],

the Painlevé VI equation [84, 85, 86, 87, 82] as well as combinatorics

[57, 75, 88].

41
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Many of the results on the supersymmetric eight-vertex model rely on

a conjecture made by Stroganov [54, 56] in 2001. He conjectured that

the transfer matrix of the supersymmetric eight-vertex model possesses

a remarkably simple eigenvalue Θn, that we specify later. The goal of

this chapter is to prove Stroganov’s conjecture.

The layout of this chapter is as follows: in Section 3.1, we define the

eight-vertex model. We recall the relation between its transfer matrix

and the XYZ Hamiltonian in Section 3.2. In Section 3.3, we focus on the

supersymmetric eight-vertex model and prove a commutation relation

between the supercharge and the transfer matrix. We use it to compute

the action of the transfer matrix on the space of alternate-cyclic zero-

energy states. This result allows us to prove Stroganov’s conjecture,

which reduces the computation of Θn to a combinatorial problem, done

in Section 3.4. Finally, we show that Θn is the largest eigenvalue of the

transfer matrix if the weights are positive.

3.1 Lattice formulation

The eight-vertex model is a generalisation of the six-vertex model devel-

opped by Pauling in 1935 to calculate the residual entropy of ice water

[18]. In ice Ih, the ordinary type of frozen water, the oxygen atoms of

the water molecules arrange themselves on a (nearly perfect) hexagonal

crystal.

Each oxygen atom is covalently bound to two hydrogen atoms, these

bonds are strong and the hydrogen atoms are close to the oxygen. Fur-

thermore, each hydrogen lies on the segment between two oxygen atoms,

creating a hydrogen bond. The crystalline structure being tetravalent,

there is exactly one hydrogen atom on each oxygen-oxygen axis. This

hydrogen is strongly bound to one oxygen (and is close to it), and weakly

bound to the other one (and is further away from it). This is the ice rule,

as formulated by Pauling [18].

We now consider a vertex model, which reproduces the main features of

the physical crystal.
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Domain and configurations. The domain of the model consists of a

square lattice with L columns and N rows. We call vertex the intersection

of two lines on the square lattice and edge the segment connecting two

adjacent vertices. On each edge resides an arrow. In the ice water

picture, this arrow points towards the vertex where lies the oxygen atom

from which the hydrogen atom is the closest. The ice-rule is thus recast

as follows: at each vertex there must be exactly two in-going and two

out-going arrows. There are six admissible configurations of arrows at a

vertex, hence the name six-vertex model. The allowed configurations are

depicted in the Figure 3.1.

The model admits a generalisation to the case where the ice-rule is relaxed:

the permitted number of in-going and out-going arrows at each vertex

is even. The model thus allows for the configurations with four arrows

pointing inward or outward, as represented in the last two configurations

of Figure 3.1, and is called the eight-vertex model.

1 2 3 4 5 6 7 8

w1 w2 w3 w4 w5 w6 w7 w8

Figure 3.1: The admissible configurations of the vertices in the eight-

vertex model, labeled by 1, . . . , 8. The configurations 7 and 8 violate the

ice-rule and are forbidden in the six-vertex model. To the configuration

i is associated the weight wi.

Boundary conditions. The boundary conditions, which are the

permitted arrows configurations on the extremal edges of the domain

have to be specified. In the following, we consider the eight-vertex

model on a cylinder, hence with periodic boundary conditions along the

horizontal direction. In later chapters, we revisit the model with so-called

open boundary conditions.

If each edge carries an arrow such that all the vertices are in one of the

eight vertex configurations, we say that the system is in a admissible

configuration. An example of such a configuration of the eight-vertex

model with periodic boundary conditions is given in Figure 3.2.
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Figure 3.2: An example of an admissible configuration of the eight-vertex

model with periodic boundary conditions along the horizontal direction

with L = 5, N = 3.

Weights and partition function. To the i-th configuration, as

ordered on Figure 3.1 is assigned a (Boltzmann) weight wi. We call

partition function the weigthed sum of all admissible configurations of

the lattice. It is denoted by Z and is given by

Z =
∑
σ

8∏
i=1

w
ni(σ)
i , (3.1)

where ni(σ) counts the number of vertex of type i in the configuration σ.

The partition function is a fundamental object in statistical mechanics

as it allows for the computation of thermodynamic state functions [89].

As an example, the logarithm of the partition function yields the free

energy per site for large systems:

f = − lim
L,N→∞

1

LN
ln(Z). (3.2)

In the following, we assume that the vertex weights are invariant under

the simultaneous reversal of all the arrows. This condition is referred to

as the zero-field assumption. It allows one to denote the weights by

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c, w7 = w8 = d. (3.3)

Transfer matrix. A proven method to obtain the partition function

is the transfer matrix method [89]. It consists in rewriting the partition

function as specific matrix elements of a product of operators, the so-

called transfer matrices. In essence, the transfer matrix contains the
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weights of the vertices of a row of the lattice. Its construction is based

on the R-matrix, which encodes the possible weights of a vertex in a spin

basis. Let us now translate the arrows configurations formalism into the

spin language.

We label the edge at the left, below, at the right and above a vertex

with 1, 2, 3 and 4, respectively. Furthermore, we assign a spin up (↑) to

an edge carrying an arrow pointing towards the north or the east and

similarly a spin down (↓) to each edge on which sits an arrow that points

to the south or the west. The R-matrix of the eight-vertex model is an

operator R : V ⊗ V → V ⊗ V such that a configuration with spin si on

the i-th edge has the weight given by the matrix element 〈s3s4|R|s1s2〉,
as depicted on the Figure 3.3. In the standard basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉
of V ⊗ V it is given by

R =


a 0 0 d

0 b c 0

0 c b 0

d 0 0 a

 . (3.4)

Expressed in terms of the Pauli matrices, the R-matrix reads

R =
1

2

3∑
α=0

rασ
α ⊗ σα (3.5a)

where we used the notation σ0 = 1. The coefficients rα are given by

r0 = a+ b, r1 = c+ d, r2 = c− d, r3 = a− b. (3.5b)

The transfer matrix of the eight-vertex model on the square lattice with

L vertical lines with periodic boundary conditions along the horizontal

s1 s3

s2

s4

= 〈s3s4|R|s1s2〉

Figure 3.3: The vertex configurations are encoded in the R matrix. For

a veretx configuration si ∈ {↑, ↓}, i = 1, . . . , 4, the corresponding weight

is given by 〈s3s4|R|s1s2〉.
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direction is an operator T : V L → V L, defined as

T = tr0 (R0L · · ·R01) . (3.6)

Here Rij is the R-matrix acting non-trivially only the factors Vi and Vj
in the product space V0 ⊗ V L = V0 ⊗ V1 ⊗ · · · ⊗ VL, where V0 = V is

referred to as the auxiliary space. The trace in (3.6) is taken over the

space V0.

The partition function for a L×N lattice is obtained by taking the N -th

power of T . Finding the spectrum of T is of physical importance, in

particular the highest eigenvalue, as it allows for the computation of the

free energy. As an example, let us apply periodic boundary conditions in

the vertical direction. The partition function is

Z = tr(T N ) = d(λ0)λN0 + d(λ1)λN1 + · · · , (3.7)

where the λi are the distinct eigenvalues of T with respective degeneracy

d(λi), in decreasing order: λi > λi+1. We have

f = − lim
L,N→∞

1

LN
ln(Z) = − lim

L→∞

1

L
ln(λ0) (3.8)

and the free energy per site is extracted from the largest eigenvalue of

the transfer matrix.

3.2 The transfer matrix and XYZ spin chain

In this section, we rederive known results about the transfer matrix of

the eight-vertex model and its relation with the XYZ spin-chain Hamil-

tonian. First we reproduce the result and proof of Sutherland [90] on

the commutation of the T with HXYZ. Second,we use a parameterisation

of the weights to investigate in more details the properties of T .

The transfer matrix is invariant under translations, spin reversal and

preserves the spin parity [89]. This is expressed by the following commu-

tation relations

[T ,S] = [T ,R] = [T ,P] = 0. (3.9)

Furthermore, one can show [89] that T commutes with its transpose

[T , T t] = 0. Hence it is a real normal matrix and therefore diagonalisable

by means of a unitary transformation.
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Sutherland [90] showed that the transfer matrix with generic weights

a, b, c, d commutes with the Hamiltonian HXYZ for a certain choice of

anisotropy parameters. The proof of this proposition is based on the exis-

tence of operator A. This operator allows one to find a local commutation

relation of the R-matrices with the operators hjj+1.

Proposition 3.2.1. The transfer matrix T commutes with the Hamilto-

nian of the XYZ spin chain,

[T , HXYZ] = 0, (3.10)

if the anisotropy parameters are given by

J1 = 1 +
cd

ab
, J2 = 1− cd

ab
, J3 =

a2 + b2 − c2 − d2

2ab
. (3.11)

Proof. To compute the commutator of T with the Hamiltonian, we first

establish a commutation relation between the transfer matrix and h12.

To this end, we introduce the operator A : V ⊗ V → V ⊗ V , given by

A = κ
3∑

α=0

1

rα
σα ⊗ σα (3.12)

where the rα, α = 0, 1, 2, 3 are the coefficients in the R-matrix (3.5b) and

κ = (c2 − d2)(a2 − b2)/(4ab). We further define A01, A02 : V0 ⊗ V L →
V0 ⊗ V L by

A01 = A⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−1

, A02 = SA01S−1. (3.13)

Here, the translation operator leaves V0 unchanged and only acts on V L.

The operator A0j only acts non-trivially on V0 and Vj in the product

space V0 ⊗ V L. If the anisotropy parameters obey (3.11), then we have

the following commutation relation between the R-matrix and operator

h12, which is shown by a straightforward computation:

[R02R01, h12] = R02A01 −A02R01. (3.14)

Multiplying this equation on the left by R0L · · ·R03, and taking the trace

with respect to the space V0, we obtain

[T , h12] = A− SAS−1 (3.15)
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with A : V L → V L defined by A = tr0(R0L · · ·R02A01). We conjugate

this relation by Sj−1 and find, using the translation property of the local

hamiltonian (2.11),

[T , hjj+1] = Sj−1AS−(j−1) − SjAS−j . (3.16)

The sum of these equalities yields the telescopic cancellation

[T ,
L∑
j=1

hjj+1] = A− SLAS−L. (3.17)

The right-hand side of this equality vanishes on V L as SL = 1, hence the

transfer matrix and the Hamiltonian with anisotropy parameters (3.11)

commute.

It follows from [T , HXYZ] = 0 that the transfer matrix and the Hamilto-

nian with (2.14) can be simultaneously diagonalised.

Parameterisation. The commutation relation found by Sutherland

is in fact a consequence of a stronger relation between the Hamiltonian

and the transfer matrix. In order to establish this relation and other

properties of the transfer matrix, it is convenient to use an explicit

parameterisation of the vertex weights [24, 26]. We write the vertex

weights of the model in terms of Jacobi theta functions [91]:

a(u) = ρϑ4(2η, p2)ϑ1(u+ 2η, p2)ϑ4(u, p2), (3.18a)

b(u) = ρϑ4(2η, p2)ϑ4(u+ 2η, p2)ϑ1(u, p2), (3.18b)

c(u) = ρϑ1(2η, p2)ϑ4(u+ 2η, p2)ϑ4(u, p2), (3.18c)

d(u) = ρϑ1(2η, p2)ϑ1(u+ 2η, p2)ϑ1(u, p2). (3.18d)

Here, ρ is a normalisation constant, η the so-called crossing parameter,

p the elliptic nome and u the spectral parameter. With this parameteri-

sation, the R-matrix R = R(u) satisfies the Yang-Baxter equation:

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (3.19)

for all u, v. It follows from the Yang-Baxter equation that transfer

matrices with different spectral parameters commute [89, 25]:
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Proposition 3.2.2. Writing T = T (u), we have

[T (u), T (v)] = 0, for all u, v. (3.20)

Proof. The proof follows from the unitary relation

R(u)R(−u) = a(u)a(−u) + d(u)d(−u) (3.21)

and the Yang-Baxter relation: we have, for each j,

R00̄(w)R0j(u)R0̄j(v) = R0̄j(v)R0j(u)R00̄(w), (3.22)

where we abbreviated w = u− v. Denoting by C the term a(w)a(−w) +

d(w)d(−w), we have

T (u)T (v) =
1

C
tr00̄ (R00̄(−w)R00̄(w)R0L(u)R0̄L(v) · · ·R01(u)R0̄1(v)) .

In the left-hand side, tr00̄ indicates that the trace is taken over the

auxilliary spaces V0 and V0̄. We apply the Yang-Baxter equation (3.22)

for each j = L, . . . , 1 and get

T (u)T (v) =
1

C
tr00̄ (R0̄L(v)R0L(u) · · ·R0̄1(v)R01(u)R00̄(w)R00̄(−w))

= T (v)T (u),

where we used the cyclicity of the trace to obtain the last equality. This

proves the commutation relation (3.20).

As a consequence T (u) possesses an eigenbasis that is independent of the

spectral parameter u. This commutation relation also provides a second

proof of the commutation relation (3.10) between the Hamiltonian of

the XYZ spin chain with anisotropy parameters (3.11) and the transfer

matrix. This is a consequence of an observation by Baxter that the XYZ

spin-chain Hamiltonian is proportional to the logarithmic derivative of

the transfer matrix [24, 25].

Indeed, a standard calculation of the transfer matrix and its logarithmic

derivative with respect to the parameter u, evaluated at u = 0, leads to

T (0) = a(0)LS, T (0)−1T ′(0) =
L(a′(0) + c′(0))

2a(0)
− b′(0)

a(0)
HXYZ. (3.23)
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Here, the anisotropy parameters of the spin-chain Hamiltonian are

J1 = 1 +
d′(0)

b′(0)
, J2 = 1− d′(0)

b′(0)
, J3 =

a′(0)− c′(0)

b′(0)
. (3.24)

Using the theta function parameterisation (3.18) (and a few identities

between the Jacobi theta functions [91]) one finds J1 = 1 + ζ and

J2 = 1− ζ with

ζ =

(
ϑ1(2η, p2)

ϑ4(2η, p2)

)2

=
c(u)d(u)

a(u)b(u)
, (3.25)

and

J3 =
ϑ2(2η, p2)ϑ3(2η, p2)ϑ4(0, p2)2

ϑ2(0, p2)ϑ3(0, p2)ϑ4(2η, p2)2
=
a(u)2 + b(u)2 − c(u)2 − d(u)2

2a(u)b(u)
.

(3.26)

As expected, it follows from (3.23) that [T (u), HXYZ] = 0. We note that

for real 0 < p < 1, the parameter ζ given in (3.25) is real and verifies

0 < ζ < 1.

3.3 The transfer matrix and supersymmetry

From now on, we consider the case where the anisotropy parameters

of the XYZ chain are parameterised according to (2.14) and yield an

Hamiltonian that possesses supersymmetry. It follows from (3.11) that

this is equivalent to

ζ =
cd

ab
, (3.27)

and to the relation

(a2 + ab)(b2 + ab) = (c2 + ab)(d2 + ab) (3.28)

with non-zero vertex weights. (Furthermore, it corresponds to the value

η = π/3 of the crossing parameter.) The eight-vertex model with the

weights satisfying (3.28) is the supersymmetric eight-vertex model.

It was conjectured in [76] that the transfer matrix of the supersymmetric

eight-vertex model and the supercharges of the XYZ Hamiltonian with

ζ = cd/ab have a simple commutation relation. In this section, we prove

this conjecture. The proof relies on a relation between the R-matrix of
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the supersymmetric eight-vertex model and the local supercharge, akin

to the relation that appears in Sutherland’s proof that we reproduced

in Proposition 3.2.1. This sheds some light on the connection between

integrability and supersymmetry.

We introduce an operator a : V → V ⊗ V . Its action on the basis states

|↑〉 and |↓〉 is

a|↑〉 = d
(
− c
a
|↑↓〉+ |↓↑〉

)
, a|↓〉 = c

(
|↑↑〉 − d

b
|↓↓〉

)
. (3.29)

We define a1
0, a2

0 : V0 ⊗ V L → V0 ⊗ V L+1 by

a1
0 = a⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

L

, a2
0 = Sa1

0S−1. (3.30)

Here, as in (3.13), the translation operator leaves V0 unchanged and only

acts on V L. The operators a1
0 and a2

0 allow us to establish a relation

between the R-matrix of the eight-vertex model and the local supercharge

whose proof is a straightforward computation.

Lemma 3.3.1. We have the equality

R02R01(1⊗ q1) + (a+ b)(1⊗ q1)R01 = a2
0R01 +R02a

1
0 (3.31)

if and only if the relations (3.28) hold.

By means of this lemma, we prove the following commutation relation

between the supercharge and the transfer matrix of the eight-vertex

model:

Proposition 3.3.2. The transfer matrix of the supersymmetric eight-

vertex model obeys the commutation relation

T Q + (a+ b)QT = 0 (3.32)

on V L for each L > 1.

Proof. We notice that this relation trivially holds on any eigenspace of

the translation operator that is not equal to the space of alternate-cyclic

states.
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It is therefore sufficient to prove the relation on WL. To this end, we

multiply the relation (3.31) on the left by the product of R-matrices

R0L+1 · · ·R03 and take the trace over the space V0. Using the identity

R0jq1 = q1R0j−1 for each j = 3, . . . , L+ 1, we obtain

T q1 +(a+b)q1T = tr0

(
R0L+1 · · ·R03a

2
0R01

)
+tr0

(
R0L+1 · · ·R03R02a

1
0

)
.

(3.33)

We define the operator A : V L → V L+1 as

A = tr0

(
R0L+1 · · ·R03R02a

1
0

)
, (3.34)

and rewrite (3.33) in terms of A and the translation operator S. Using

the definition Sa1
0S−1 = a2

0 and the cyclic property of the trace operation,

we find

T q1 + (a+ b)q1T = SAS−1 + A. (3.35)

By conjugation with Sj−1 this equality generalises to

T qj + (a+ b)qjT = SjAS−j + Sj−1AS−(j−1), j = 0, . . . , L. (3.36)

Here, we used the definition of q (2.16) and the commutation relation

(3.9) between the transfer matrix and the translation operator. We take

an alternating sum of these equalities and obtain

T

 L∑
j=0

(−1)jqj

+(a+b)

 L∑
j=0

(−1)jqj

 T = (−1)LSLAS−L+S−1AS.

(3.37)

The expression on the right-hand side can be simplified. Indeed, we have

SL = 1 on V L and SL+1 = 1 on V L+1. Hence, we obtain SLAS−L =

S−1SL+1AS−L = S−1A. We thus find

T

 L∑
j=0

(−1)jqj

+ (a+ b)

 L∑
j=0

(−1)jqj

 T = S−1A
(
(−1)L + S

)
.

(3.38)

On WL the left-hand side is, up to a factor, equal to T Q + (a+ b)QT .

The right-hand side vanishes on WL. This proves that the commutation

relation (3.32) holds on the subspace of alternate-cyclic states.
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3.4 The transfer-matrix eigenvalue

As stated in the introduction, the supersymmetric eight-vertex model

has been studied for its connection with solutions to Painlevé equations

and combinatorics. Many of these investigations rely on the existence

of a remarkably simple eigenvalue of its transfer matrix. Stroganov

conjectured in 2001 that for odd L = 2n + 1, n > 0, the spectrum of

the transfer matrix contains the doubly degenerate eigenvalue Θn =

(a+ b)2n+1 [54, 56]. In this section, we prove Stroganov’s conjecture for

n > 1. (The case n = 0 is trivial.) We summarise our main results in

the following theorem:

Theorem 3.4.1. For each L = 2n + 1, n > 1, and non-zero vertex

weights, the transfer matrix of the supersymmetric eight-vertex model

possesses the doubly degenerate eigenvalue Θn = (a+ b)2n+1. Its eigen-

space is spanned by the ground states of the XYZ Hamiltonian (2.7) with

L = 2n+ 1 sites and the anisotropy parameters (2.14) where ζ = cd/ab.

Moreover, we show that if the vertex weights are positive then Θn is the

largest eigenvalue of the transfer matrix.

In the next proposition, we show that if the transfer matrix possesses

the eigenvalue Θn, then the corresponding eigenvectors are necessarly

alternate-cyclic zero-energy states of the Hamiltonian H. This is a direct

consequence of (3.23).

Proposition 3.4.2. Let n > 1 and suppose that |Ψ〉 ∈ V 2n+1 is a

non-zero solution of the eigenvalue equation

T |Ψ〉 = (a+ b)2n+1|Ψ〉, (3.39)

then we have

S|Ψ〉 = |Ψ〉, HXYZ|Ψ〉 = E0|Ψ〉 (3.40)

with E0 = −(2n+ 1)(3 + ζ2)/4 where ζ = cd/ab.

Proof. We use the parameterisation (3.18) and thus consider the eigen-

value problem

T (u)|Ψ〉 = (a(u) + b(u))2n+1|Ψ〉 (3.41)
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for fixed n > 1. Let us suppose that this equation has a non-zero

solution |Ψ〉 ∈ V 2n+1. Because of (3.20) we may suppose without loss of

generality that it is independent of the spectral parameter u. For u = 0,

we have T (0)|Ψ〉 = a(0)2n+1|Ψ〉 with a(0) 6= 0. It follows from (3.23)

that S|Ψ〉 = |Ψ〉. Next, we differentiate both sides of (3.41) with respect

to u and set u = 0. Using (3.23) we obtain

HXYZ|Ψ〉 = −(2n+ 1)

(
1 +

a′(0)− c′(0)

2b′(0)

)
|Ψ〉. (3.42)

On the right-hand side, we recognise the expression of J3 given in (3.24).

Since J3 = (ζ2 − 1)/2 we find HXYZ|Ψ〉 = E0|Ψ〉.

In order to demonstrate Theorem 3.4.1, we need to prove the reciprocal

of the previous proposition: an alternate-cyclic zero-energy state is an

eigenvector of the transfer matrix T (u) with eigenvalue Θn.

Since [T , HXYZ] = [T , H] = 0, the space of alternate-cyclic zero-energy

states is stable under the action of T . Hence, we may deduce its action

from the evaluation of the matrix elements of T between the states |Ψn〉
and |Ψ̄n〉. From Proposition 2.4.2 and (3.9) we infer that

〈Ψn|T |Ψ̄n〉 = 〈Ψ̄n|T |Ψn〉 = 0. (3.43)

It immediately follows that both |Ψn〉 and |Ψ̄n〉 are eigenstates of the

transfer matrix. To find the corresponding eigenvalues, we consider the

diagonal matrix elements

Θn =
〈Ψ̄n|T |Ψ̄n〉
〈Ψ̄n|Ψ̄n〉

=
〈Ψn|T |Ψn〉
〈Ψn|Ψn〉

. (3.44)

Here, the equality of the matrix elements for |Ψn〉 and |Ψ̄n〉 is again a

consequence of Proposition 2.4.2 and (3.9).

We now utilise the Proposition 1.4.9 that allows us to calculate expec-

tation values of operators with respect to supersymmetry singlets to

evaluate Θn. We use its expression in terms of |Ψ̄n〉. For a+ b 6= 0, we

compute the numerator 〈Ψ̄n|T |Ψ̄n〉 by means of Proposition 1.4.9 with

B = T , λ = −(a + b) and the decompositions given in Theorem 2.4.3

and Proposition 2.4.4. Similarly, we obtain the denominator 〈Ψ̄n|Ψ̄n〉
with B = 1, λ = 1 and the same decompositions. This leads to

Θn =
〈Φ̄n(ζ−1)|T |↑ · · · ↑〉
〈Φ̄n(ζ−1)|↑ · · · ↑〉

= 〈Φ̄n(ζ−1)|T |↑ · · · ↑〉, (3.45)
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where |Φ̄n(ζ)〉 is the state defined in (2.42). Here, we used (2.33) to

compute 〈Φ̄n(ζ−1)|↑ · · · ↑〉 = 1. The case where a+ b = 0 can be treated

as a suitable limit of this result. The resulting matrix element can be

explicitly computed:

Proposition 3.4.3. For each n > 1, we have Θn = (a+ b)2n+1.

Proof. We write |Φ̄n(ζ−1)〉 as a linear combination of the canonical basis

states (2.4). To this end, we introduce the notation

||x1, . . . , xk〉〉 = |↑ · · · ↑ ↓
x1

↑ · · · ↑ ↓
x2

↑ · · ·
...
↑ ↓
xk

↑ · · · ↑〉, (3.46)

where k = 1, . . . , L. Using (2.42), we find

|Φ̄n(ζ−1)〉 = |↑ · · · ↑〉+
n∑

m=1

ζ−m
∑

16x1<···<x2m62n+1

||x1, . . . , x2m〉〉. (3.47)

Hence, we obtain

Θn = 〈↑ · · · ↑|T |↑ · · · ↑〉

+

n∑
m=1

ζ−m
∑

16x1<···<x2m62n+1

〈〈x1, . . . , x2m||T |↑ · · · ↑〉. (3.48)

The matrix elements on the right-hand side of this equality are readily

evaluated. We have

〈↑ · · · ↑|T |↑ · · · ↑〉 = a2n+1 + b2n+1. (3.49a)

Furthermore, for m = 1, . . . , n we obtain

〈〈x1, . . . , x2m||T |↑ · · · ↑〉 = ζm (α(x1, . . . , x2m) + δ(x1, . . . , x2m)) ,

(3.49b)

with ζ = cd/ab and

α(x1, . . . , x2m) = ax2−x1bx3−x2 · · · ax2m−x2m−1b2n+1−(x2m−x1), (3.49c)

δ(x1, . . . , x2m) = bx2−x1ax3−x2 · · · bx2m−x2m−1a2n+1−(x2m−x1). (3.49d)

We substitute these expressions into (3.48) and find

Θn = a2n+1 + b2n+1

+
n∑

m=1

∑
16x1<···<x2m62n+1

(α(x1, . . . , x2m) + δ(x1, . . . , x2m)). (3.50)
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The evaluation of this sum reduces to a combinatorial problem. To see

this, we consider the set of all words γ = (γ1, . . . , γ2n+1) of length 2n+ 1

with letters γj ∈ {a, b}. We assign a weight ω(γ) = γ1γ2 · · · γ2n+1 to each

word γ. Two simple examples are γ = (a, a, . . . , a) and γ = (b, b, . . . , b)

whose weights are ω(γ) = a2n+1 and ω(γ) = b2n+1, respectively. Every

other word contains both letters a and b. For each such word there is

an integer m = 1, . . . , n and a sequence of integers 1 6 x1 < x2 < · · · <
x2m 6 2n+ 1 such that either

γ = (b, . . . , b, a
x1

, . . . , a, b
x2

, . . . , b, . . . , a
x2m−1

, . . . , a, b
x2m

, . . . , b),

and ω(γ) = α(x1, . . . , x2m) or

γ = (a, . . . , a, b
x1

, . . . , b, a
x2

, . . . , a, . . . , b
x2m−1

, . . . , b, a
x2m

, . . . , a),

in which case ω(γ) = δ(x1, . . . , x2m). We conclude that the sum (3.50)

can be written as a sum over all words γ. The terms to sum up are their

corresponding weights ω(γ). Hence we find

Θn =
∑
γ1=a,b

· · ·
∑

γ2n+1=a,b

γ1 · · · γ2n+1 = (a+ b)2n+1. (3.51)

This concludes the proof.

Proof of Theorem 3.4.1. According to Proposition 3.4.2 every eigenstate

of the transfer matrix of the supersymmetric eight-vertex model with

the eigenvalue Θn = (a+ b)2n+1 is an alternate-cyclic zero-energy state

of the Hamiltonian H. It follows from Theorem 2.4.1 that the space of

these states is spanned by |Ψn〉 and |Ψ̄n〉. According to Proposition 3.4.3,

we have

T |Ψn〉 = (a+ b)2n+1|Ψn〉, T |Ψ̄n〉 = (a+ b)2n+1|Ψ̄n〉. (3.52)

Hence, the eigenspace of Θn is two-dimensional and spanned by |Ψn〉
and |Ψ̄n〉. Furthermore, according to Theorem 2.4.5 it is the space of

ground states of the XYZ Hamiltonian with the anisotropy parameters

(2.14). The ground-state eigenvalue is E0 = −(2n+ 1)(3 + ζ2)/4.



3.4. The transfer-matrix eigenvalue 57

Largest eigenvalue We now prove that Θn is the largest eigenvalue

of T if the vertex weights are positive:

Theorem 3.4.4. If the vertex weights are positive, a, b, c, d > 0, then

for each L = 2n+ 1, n > 1, Θn = (a+ b)2n+1 is the largest eigenvalue of

the transfer matrix of the supersymmetric eight-vertex model.

Proof. We denote by T± the restriction of the transfer matrix to the

eigenspace of the spin-parity operator with eigenvalue ±1. The matrix

elements of T± with respect to the canonical basis of this eigenspace can

be explicitly computed [89]. If a, b, c, d > 0 then these matrix elements

are positive and thus T± is a positive matrix. It follows from the Perron-

Frobenius theorem [81] that T± has a largest positive eigenvalue Θ±
which is non-degenerate. There is a unique vector |Φ±〉 with positive

components and norm 1 such that

T±|Φ±〉 = Θ±|Φ±〉. (3.53)

Furthermore, except for positive multiples of |Φ±〉, the matrix T± has no

other eigenstate with positive components.

Let us consider the state |Ψ±〉 defined in the proof of Theorem 2.4.5.

It has positive components and norm one. Furthermore, according to

Theorem 3.4.1 it is an eigenstate of T±:

T±|Ψ±〉 = Θn|Ψ±〉. (3.54)

By the uniqueness of |Φ±〉, we conclude that |Φ±〉 = |Ψ±〉 and conse-

quently, Θ± = Θn.

We notice that this result immediately implies that for positive vertex

weights the free energy per site of the supersymmetric eight-vertex model

is given by

f = − lim
n→∞

1

2n+ 1
ln Θn = − ln(a+ b), (3.55)

as follows from (3.8). As expected, this agrees with Baxter’s result for

the free energy per site of the eight-vertex model [89], if specialised to

the supersymmetric case.

Throughout this chapter, we have considered non-zero vertex weights.

However, for L = 2n+ 1 the transfer matrix still possesses the eigenvalue
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Θn if some of the vertex weights are zero. The reason is that the

eigenvalues are continuous functions of the entries of T . Hence, they

are continuous with respect to a, b, c, d. Furthermore, Θn is still the

largest transfer-matrix eigenvalue for a, b, c > 0 and d→ 0. In this limit,

the supersymmetric eight-vertex model reduces to the six-vertex model

(corresponding to the spin chain with anisotropy parameter ∆ = −1/2).

In that case, the existence of the eigenvalue can be proven by other

techniques [61].



Chapter 4

XYZ spin chain: open

boundary conditions

In the preceding chapters, we have dealt with spin and vertex models with

periodic boundary conditions. We considered the sites at the extremities

of the system as neighbours and thus in interaction.

From now on, we consider systems in which the first and last sites do

not interact directly with each other. We refer to this type of boundary

conditions as open boundary conditions.

For a spin chain with L > 1 sites and open boundary conditions, the

XYZ Hamiltonian is given by

HXYZ =
L−1∑
j=1

hXYZ
jj+1 + (h−B )1 + (h+

B )L, (4.1a)

where hXYZ is the Hamiltonian density (2.7b), which involves the spin

chain’s anisotropy parameters J1, J2, J3. The terms h±B describe the

interactions of the first and last spins with boundary magnetic fields.

By convention, for L = 1, the bulk interaction term is absent and the

Hamiltonian is given by the sum HXYZ = h+
B + h−B .

Open spin chains and Bethe ansatz. One of the first appearances

of open spin chains is the XY Hamiltonian, given by (4.1a) with J3 = 0

59
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and h±B = 0. This Hamiltonian was solved using a Jordan-Wigner trans-

formation [92]. Gaudin was the first to apply the coordinate Bethe ansatz

to solve a XXZ model with open boundary conditions. He considered

the Hamiltonian (4.1a) with J1 = J2 and h±B = 0 [93, 13]. This result

was generalised to the case of diagonal boundary fields in [17].

The study of open spin chains in the framework of the algebraic Bethe

ansatz relies on the boundary Yang-Baxter equation (sometimes referred

to as reflection equation), introduced by Cherednik and formalised by

Sklyanin [94, 35]. This method allows for the computation of correlation

functions of the XXZ chain with diagonal boundary fields [95, 96].

However, the application of the algebraic Bethe ansatz requires the

existence of a reference state, which is a trivial eigenvector of the Hamil-

tonian.

Such a state may not exist in the case of the XXZ chain with non-

diagonal boundary fields. Nevertheless, one can circumvent this absence

and solve the model by finding functional equations (see [97] for a review),

generalising the coordinate Bethe ansatz [98] or using the method of

separation of variables [99].

The same limitation occurs for the XYZ spin chain with open boundary

conditions. Hence, there are only a few existing results that analyse

the spectrum of the corresponding transfer matrix. Two examples of

these methods are the off-diagonal Bethe ansatz [40] and the quantum

separation of variables method [47].

In this chapter, we do not use the integrability of the model. We rather

exploit the supersymmetric structure of the Hamiltonian.

Supersymmetry. As in Chapter 2, we focus on the case where the

anisotropy parameters are given by

J1 = 1 + ζ, J2 = 1− ζ, J3 =
1

2
(ζ2 − 1), (4.1b)

with a real parameter ζ. We also consider the specific boundary terms

h+
B = h−B =

3∑
α=1

λασ
α, (4.1c)
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where

λ1 = −(1 + ζ) Re y

1 + |y|2
, λ2 = −(1− ζ) Im y

1 + |y|2
, λ3 =

ζ2 − 1

4

(
1− |y|2

1 + |y|2

)
,

(4.1d)

and y is a complex number.

We show that the Hamiltonian consisting of (4.1a) with anisotropy

parameters (4.1b) and boundary terms (4.1c),(4.1d) is supersymmetric by

constructing explicitly a corresponding supercharge and its adjoint. The

supersymmetry implies that the Hamiltonian may have supersymmetry

singlets. If they exist, then they are the Hamiltonian’s ground states. We

compute the (co)homology of the supercharge and its adjoint to analyse

the (non-)existence of supersymmetry singlets.

The layout of this chapter is as follows: in Section 4.1, we investigate

the supersymmetry for open spin chains. We construct the supercharge

that yields the Hamiltonian (4.1) in Section 4.2 and we restrict the

range of the parameters ζ and y. The theta function parameterisation of

Section 4.3 allows us to define a new basis of the Hilbert space in which

the action of the supercharge is simple. In Section 4.4, we characterise

the space of the ground states of the Hamiltonian using the relation

between supersymmetry and (co)homology.

4.1 Open spin chains and supersymmetry

In this section, we investigate the supersymmetry of systems with open

boundary conditions. We define a local supercharge that yields the XYZ

Hamiltonian (4.1).

Local supercharges and supercharges. The construction of the

supersymmetry for the XYZ spin chain is based on local supercharges

q′ : V → V ⊗ V .1 We consider local supercharges with the property

(2.24): for all |ψ〉 ∈ V ,

(q′ ⊗ 1− 1⊗ q′)q′|ψ〉 = |χ〉 ⊗ |ψ〉 − |ψ〉 ⊗ |χ〉. (4.2)

1The prime notation for open system supersymmetry generator is conventional in

the (co)homology literature [73, 74, 100], to differentiate it from the supercharge of

the periodic spin chain. In particular, it is not a derivative.
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Here |χ〉 ∈ V ⊗ V is a fixed state. If |χ〉 = 0 then (4.2) reduces to

(q′ ⊗ 1− 1⊗ q′)q′ = 0. (4.3)

We call a local supercharge with this property coassociative. Coassociative

local supercharges allow us to construct supercharges for open spin chains.

To see this, we consider the local operators q′j , j = 1, . . . , L, on V L that

are given by

q′j = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ q′ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−j

. (4.4)

They map V L to V L+1. Using these operators, we define for each L > 1

the supercharge Q′ : V L → V L+1 as the linear combination

Q′ =

L∑
j=1

(−1)jq′j . (4.5)

For each L > 2, the adjoint supercharge Q′† : V L → V L−1 is defined by

means of the scalar product of the spin-chain Hilbert space.

The following proposition ensures the nilpotency of the supercharge and

its adjoint. Its proof follows from the computation made in Proposi-

tion 2.2.1.

Proposition 4.1.1. The operators Q′ and Q′† are nilpotent,

(Q′)2 = 0, (Q′†)2 = 0, (4.6)

if and only if the local supercharge q′ is coassociative.

Proof. First, we suppose that the supercharge is nilpotent. In particular,

for L = 1, we have

0 = Q′2 = (q′1 − q′2)q′1. (4.7)

This implies that q′ is coassociative.

Second, we consider a coassociative local supercharge and show the

nilpotency of Q′. (The case of its adjoint is similar.) We have, for each

L > 1

(Q′)2 =
L∑
j=1

(q′j − q′j+1)q′j , (4.8)

which identically vanishes.
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Hamiltonian. We use Q′ and Q′† to define a Hamiltonian H for open

spin chains. For L = 1, it is given by H = Q′†Q′. For L > 2, it is the

anticommutator

H = Q′Q′† + Q′†Q′. (4.9)

We compute the Hamiltonian (4.9) using the specific supercharge (4.5).

It is the sum of a bulk part and boundary terms:

H =
L−1∑
j=1

hjj+1 + (hB)1 + (hB)L. (4.10)

Here, hjj+1 is the Hamiltonian density which can be expressed in terms

of the local supercharge (2.27). Furthermore, the operator hB : V → V

encodes the boundary interaction at the first and last site of the chain.

In terms of the local supercharge, we find

hB =
1

2
q′†q′. (4.11)

The Hamiltonian (4.10) has identical boundary interactions at both

extremities of the spin chain. We relax this constraint and allow dif-

ferent boundary terms in Chapter 6. This necessitates generalising the

construction (4.5) of Q′ from local supercharges.

4.2 Supercharge for the XYZ spin chain

We now construct a local supercharge that allows us to investigate the

Hamiltonian (4.1). To this end, we define three local supercharges that

satisfy (4.2).

First, we introduce the operator qφ that acts on |ψ〉 ∈ V according to

qφ|ψ〉 = |φ〉 ⊗ |ψ〉+ |ψ〉 ⊗ |φ〉. (4.12)

Here |φ〉 ∈ V is a fixed state. Indeed, qφ obeys (4.2) with |χ〉 = |φ〉⊗ |φ〉.
Hence, if |φ〉 is non-zero, then the local supercharge qφ is not coassociative.

We follow [77] and refer to qφ as a local gauge supercharge.
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Second, we define q↑ and q↓ through the following action on the basis

vectors of V [77]:

q↑|↑〉 = 0, q↑|↓〉 = |↑↑〉 − ζ|↓↓〉, (4.13a)

q↓|↓〉 = 0, q↓|↑〉 = |↓↓〉 − ζ|↑↑〉. (4.13b)

One checks that both q↑ and q↓ obey (4.2) with the vectors |χ〉 =

−ζ|↑↑〉 and |χ〉 = −ζ|↓↓〉, respectively. Hence, these operators are not

coassociative for non-zero ζ.

We define the local supercharge q′ as a linear combination of q↑, q↓ and

a local gauge supercharge:

q′ = (1− y2ζ)q↑ + y(y2 − ζ)q↓ + qφ. (4.14a)

Here |φ〉 is given by

|φ〉 = y(y2ζ − 1)|↑〉+ (ζ − y2)|↓〉, (4.14b)

and y is a complex number. In this expression, we adjusted the multi-

plicative factors and the gauge term in such a way that q′ is coassociative.

A straightforward calculation shows that this is indeed the case for all ζ

and y.

Hamiltonian. We prove that the Hamiltonian (4.1) of the XYZ spin

chain is supersymmetric, up to a rescaling and to adding a multiple of

the identity matrix.

Proposition 4.2.1. For each L > 1, the Hamiltonian (4.9) constructed

from the local supercharge (4.14) is

H = x

(
HXYZ +

(L− 1)(3 + ζ2)

4
+ 2λ0

)
, (4.15)

where HXYZ is defined in (4.1). We have

λ0 =
1 + 3ζ2

4
− (ζ2 − 1)((3 + ζ2)|y|2 − 4ζ Re(y2))

2(1 + |y|4 + (ζ2 − 1)|y|2 − 2ζ Re(y2))
, (4.16)

and

x = (1 + |y|2)(1 + |y|4 + (ζ2 − 1)|y|2 − 2ζ Re(y2)). (4.17)
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Proof. The proof consists in the calculation of the bulk and boundary

interactions of (4.10). The Hamiltonian density (2.27) yields

h = x

(
hXYZ +

3 + ζ2

4

)
, (4.18)

where the anisotropy parameters of hXYZ are defined by (4.1b) and x

is given by (4.17). This expression is similar to (2.30) found for the

XYZ Hamiltonian with periodic boundary conditions. Furthermore, it is

straightforward to verify that the boundary term (4.11) is

1

2
q′†q′ = x

(
3∑

α=1

λασ
α + λ0

)
. (4.19)

Here, λ0 and the three parameters λ1, λ2, λ3 are given by (4.16) and

(4.1d), respectively.

Transformation of the parameters. We analyse the transformation

behaviour of the Hamiltonian (4.1) under spin rotations. To this end, we

introduce the operators

Rα(θ) = exp

(
iθ

2
(σα1 + · · ·+ σαL)

)
, α = 1, 2, 3. (4.20)

We write HXYZ = HXYZ(ζ, y) to stress the dependence of the Hamiltonian

on ζ and y. For each L > 1, it transforms under rotations by the angle

θ = π/2 according to

R1(π/2)HXYZ(ζ, y)R1(−π/2) =

(
1 + ζ

2

)2

HXYZ

(
3− ζ
1 + ζ

,
y − i

1− iy

)
,

R2(π/2)HXYZ(ζ, y)R2(−π/2) =

(
1− ζ

2

)2

HXYZ

(
ζ + 3

ζ − 1
,
1 + y

1− y

)
,

R3(π/2)HXYZ(ζ, y)R3(−π/2) = HXYZ (−ζ,−iy) .

(4.21)

Two successive applications of (4.21) lead to the following transformations

under rotations by the angle θ = π:

R1(π)HXYZ(ζ, y)R1(−π) = HXYZ

(
ζ, y−1

)
,

R2(π)HXYZ(ζ, y)R2(−π) = HXYZ

(
ζ,−y−1

)
,

R3(π)HXYZ(ζ, y)R3(−π) = HXYZ(ζ,−y).

(4.22)
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The transformations (4.21) and (4.22) are unitary. Therefore, they do

not change the spectrum of the Hamiltonian. Moreover, they allow us

to transform a Hamiltonian with arbitrary parameters ζ and y to a

Hamiltonian whose parameters are restricted to a domain defined by the

inequalities

0 6 ζ 6 1, 0 6 |y| 6 1, Re y > 0. (4.23)

Limit cases. The case ζ = 1 is trivial. Indeed, in this case, the

Hamiltonian is

HXYZ(1, y) = −
L−1∑
j=1

σ1
jσ

1
j+1 −

2Re y

1 + |y|2
(
σ1

1 + σ1
L

)
(4.24)

and its ground states are easily found: for each L, the space of the ground

states is one-dimensional and is spanned by

|ΨL〉 =
∑
s1=↑,↓

· · ·
∑

s2n+1=↑,↓
|s1 · · · s2n+1〉. (4.25)

The corresponding eigenvalue is −(L− 1)− 4Re y
1+|y|2 .

If ζ = 0, then J1 = J2 and HXYZ becomes an XXZ Hamiltonian. Its

properties substantially differ from the case ζ > 0. As an example, this

Hamiltonian commutes with R3(θ) for each θ. This is a consequence of

the commutation relationHXYZ(0, y),
L∑
j=1

σ3
j

 = 0. (4.26)

This relation is akin to a conservation of magnetisation. It implies

that the Hamiltonian decomposes into a direct sum of Hamiltonians

acting on subspaces of the Hilbert space spanned by vectors with a

definite number of up (or down) spins. In this case, the following

treatment of the Hamiltonian’s ground states does not apply. Hence, we

postpone the investigation of the Hamiltonian (4.1a) with ζ = 0, and

some generalisations, to subsequent chapters.

Therefore, we focus in this chapter on 0 < ζ < 1, specifically on the case

where (ζ, y) belongs to the domain

D = {(ζ, y) : 0 < ζ < 1, 0 6 |y| 6 1, Re y > 0}. (4.27)
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4.3 Theta function parameterisation

In this section, we introduce a parameterisation of the points (ζ, y) ∈ D
in terms of Jacobi theta functions. We employ this theta-function

parameterisation to define a new basis of the spin Hilbert space. The

action of the local supercharge (4.14) on the basis states yields simple

results.

Parameterisation. We use the classical notation ϑj(u, p), 1 6 j 6 4

and definitions for the Jacobi theta functions [91]. We only consider a

real elliptic nome p with

0 < p < 1. (4.28)

Let us write p = e−s, s > 0. We define the rectangle Rp = {z ∈ C : 0 6
Re z 6 π/2, −s/2 6 Im z 6 s/2} and the domain

D̄ = {(p, t) : 0 < p < 1, t ∈ Rp}. (4.29)

The parameterisation of (ζ, y) ∈ D in terms of (p, t) ∈ D̄ is given by

ζ =

(
ϑ1(2π/3, p2)

ϑ4(2π/3, p2)

)2

, y =
ϑ1(t, p2)

ϑ4(t, p2)
. (4.30)

It has the following property:

Proposition 4.3.1. The parameterisation (4.30) defines a bijection

between D̄ and D.

Proof. We only sketch the proof. First, we note that ζ is a monotone

function of p. Second, as a function of t, y is the Jacobi elliptic function

sn, up to a rescaling of its argument and a constant factor. The bijectivity

can be established with the help of the monotonicity and the conformal

mapping properties of sn [101].

In the remainder of this section, we implicitly assume the parameterisa-

tion (4.30).
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Basis states. In addition to the parameterisation, we introduce the

states and dual states

|vε〉 = ϑ4(t+ επ/3, p2)|↑〉+ ϑ1(t+ επ/3, p2)|↓〉, (4.31)

〈wε| = ε
(
−ϑ1(t− επ/3, p2)〈↑|+ ϑ4(t− επ/3, p2)〈↓|

)
, (4.32)

where ε = ±. One checks that

〈wε|vε′〉 = ϑ1(π/3, p)ϑ2(t, p)δεε′ , (4.33)

for each ε, ε′ = ±. In the next five lemmas, we establish several properties

of these states.

Lemma 4.3.2. For all (p, t) ∈ D̄ with t 6= π/2, the states |v+〉 and |v−〉
form a basis of V .

Proof. The matrix

M =

(
ϑ4(t+ π/3, p2) ϑ4(t− π/3, p2)

ϑ1(t+ π/3, p2) ϑ1(t− π/3, p2)

)
, (4.34)

whose columns are given by |v+〉 and |v−〉, has the determinant

detM = −ϑ1(π/3, p)ϑ2(t, p). (4.35)

For t 6= π/2, this determinant is non-vanishing. Hence, the vectors are

linearly independent. Therefore, they form a basis of V .

If t = π/2, then |v+〉 and |v−〉 are not linearly independent: we have

|v−〉 = |v+〉. To find a suitable basis of V , we define

|v̇+〉 =
d

dt
|v+〉

∣∣∣∣
t=π/2

. (4.36)

Lemma 4.3.3. For all (p, t) ∈ D̄ with t = π/2, the states |v+〉 and |v̇+〉
form a basis of V .

Proof. The matrix whose columns are given by the states |v+〉, |v̇+〉 is

Ṁ =

(
ϑ3(π/3, p2) ϑ′3(π/3, p2)

ϑ2(π/3, p2) ϑ′2(π/3, p2)

)
. (4.37)

Its determinant is given by det Ṁ = −1
2ϑ
′
1(0, p)ϑ1(π/3, p), which is non-

zero. Hence, the vectors are linearly independent. Therefore, they form

a basis of V .
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Lemma 4.3.4. For each ε = ±, we have

q′|vε〉 = Λε|vε〉 ⊗ |vε〉, (4.38)

where

Λε =
2εϑ1(π/3, p2)ϑ4(0, p2)2

ϑ4(π/3, p2)ϑ2(0, p)

ϑ2(t+ επ/3, p)

ϑ4(t, p2)3
. (4.39)

Proof. The proof follows from a number of identities for Jacobi theta

functions.

Lemma 4.3.5. Let t = π/2, then

q′|v̇+〉 = Λ̇+|v+〉 ⊗ |v+〉+ Λ+(|v̇+〉 ⊗ |v+〉+ |v+〉 ⊗ |v̇+〉), (4.40)

where

Λ̇+ =
d

dt
Λ+

∣∣∣∣
t=π/2

. (4.41)

Proof. We differentiate (4.38) at t = π/2. We eliminate the terms that

involve the derivative of q with respect to t by observing that for t = π/2,

d

dt
Λ−

∣∣∣∣
t=π/2

= −Λ̇+ and
d

dt
|v−〉

∣∣∣∣
t=π/2

= −|v̇+〉. (4.42)

This leads to the action of q on |v̇+〉.

Lemma 4.3.6. For each ε, ε′ = ±, we have

(〈wε| ⊗ 〈wε′ |) q′ = ϑ1(π/3, p)ϑ2(t, p)Λεδεε′〈wε|. (4.43)

Proof. The proof is a straightforward calculation using standard identities

for the Jacobi theta functions.

4.4 Supersymmetry singlets and cohomology

The aim of this and the following section is to investigate the absence or

existence of supersymmetry singlets for the Hamiltonian H of Proposi-

tion 4.2.1 as a function of (p, t) ∈ D̄. To this end, we exploit the relation

between supersymmetry and (co)homology presented in the Chapter 1.
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Our goal is to compute the cohomology H• of the supercharge Q′ (1.45).

We recall that H• is the direct sum of spaces HL, L > 1. We defined

H1 = ker{Q′ : V → V 2} and

HL =
ker{Q′ : V L → V L+1}
im{Q′ : V L−1 → V L}

. (4.44)

Similarly, the homology of the adjoint supercharge is H• =
⊕

LHL. Here,

H1 = V/im{Q′† : V 2 → V } and

HL =
ker{Q′† : V L → V L−1}
im{Q′† : V L+1 → V L}

. (4.45)

We use the same notation as in Chapter 1 and denote by [|ψ〉] the

equivalence class of |ψ〉.

Auxiliary results. To compute the (co)homology for the supercharge

of the XYZ Hamiltonian, we establish three auxiliary results.

Lemma 4.4.1. Let |u+〉, |u−〉 be a basis of V and q′ a local supercharge

defined by

q′|u+〉 = |u+〉 ⊗ |u+〉, q′|u−〉 = |u−〉 ⊗ |u−〉, (4.46)

then HL = 0 for each L > 1.

Proof. For L = 1, the statement H1 = 0 is immediate since |u+〉 and

|u−〉 form a basis of V .

For L > 2, let |ψ〉 ∈ ker{Q′ : V L → V L+1}. We write |ψ〉 = |u+〉 ⊗
|ψ+〉 + |u−〉 ⊗ |ψ−〉 with unique states |ψ+〉, |ψ−〉 ∈ V L−1. It follows

from Q′|ψ〉 = 0 that

|u+〉⊗(|u+〉⊗|ψ+〉+Q′|ψ+〉)+|u−〉⊗(|u−〉⊗|ψ−〉+Q′|ψ−〉) = 0. (4.47)

Since |u+〉 and |u−〉 form a basis of V , we find |u±〉 ⊗ |ψ±〉 = −Q′|ψ±〉.
Therefore, we have

|ψ〉 = −Q′(|ψ+〉+ |ψ−〉) ∈ im{Q′ : V L−1 → V L}. (4.48)

This implies that HL = 0.
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Lemma 4.4.2. Let |u+〉, |u−〉 be a basis of V and q′ a local supercharge

defined by

q′|u+〉 = |u+〉 ⊗ |u+〉, q′|u−〉 = |u+〉 ⊗ |u−〉+ |u−〉 ⊗ |u+〉, (4.49)

then HL = 0 for each L > 1.

Proof. For L = 1, H1 = 0 follows immediately from the fact that

|u+〉, |u−〉 is a basis of V .

For L > 2, let |ψ〉 ∈ ker{Q′ : V L → V L+1}. Again, we write |ψ〉 =

|u+〉 ⊗ |ψ+〉 + |u−〉 ⊗ |ψ−〉 with unique states |ψ+〉, |ψ−〉 ∈ V L−1. The

condition Q′|ψ〉 = 0 yields

|u+〉 ⊗ (|ψ〉+ Q′|ψ+〉) + |u−〉 ⊗ (|u+〉 ⊗ |ψ−〉+ Q′|ψ−〉) = 0. (4.50)

Since |u+〉 and |u−〉 span V , we obtain

|ψ〉 = −Q′|ψ+〉 ∈ im{Q′ : V L−1 → V L}. (4.51)

Hence, HL = 0.

Lemma 4.4.3. Let |u+〉, |u−〉 be a basis of V and q′ a local supercharge

defined by

q′|u+〉 = 0, q′|u−〉 = |u−〉 ⊗ |u−〉, (4.52)

then HL = C[|u+〉⊗L] for each L > 1.

Here, and in the following, we use the notation

|u〉⊗L = |u〉 ⊗ · · · ⊗ |u〉 (4.53)

for the L-fold tensor product of |u〉 ∈ V .

Proof. For each L > 1, we define a mapping S : V L → V L+1 by

S|ψ〉 = |u+〉 ⊗ |ψ〉. (4.54)

It satisfies the commutation relation SQ′ = −Q′S on V L. Hence, the

mapping S] : HL → HL+1, given by

S][|ψ〉] = [|u+〉 ⊗ |ψ〉], (4.55)
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is well-defined [73]. We prove that S] is a bijection.

First, we show that S] is injective. This is straightforward for L = 1. For

L > 2, we show that the kernel of S] is zero in the cohomology. This is

equivalent to the statement that any state |ψ〉 ∈ ker{Q′ : V L → V L+1}
with

S|ψ〉 = Q′|φ〉, (4.56)

for some |φ〉 ∈ V L, belongs to im {Q′ : V L−1 → V L}. To see this, we

write |φ〉 = |u+〉⊗|φ+〉+|u−〉⊗|φ−〉 with unique states |φ+〉, |φ−〉 ∈ V L−1.

It follows that

|u+〉 ⊗ |ψ〉 = −|u+〉 ⊗Q′|φ+〉 − |u−〉 ⊗
(
|u−〉 ⊗ |φ−〉+ Q′|φ−〉

)
. (4.57)

Since |u+〉, |u−〉 form a basis of V , we infer |ψ〉 = −Q′|φ+〉, which proves

the injectivity.

Second, we show that S] is surjective. To this end, we fix L > 2 and

consider a representative |ψ〉 ∈ V L of an element of HL. As before, we

write |ψ〉 = |u+〉 ⊗ |ψ+〉 + |u−〉 ⊗ |ψ−〉 with unique states |ψ+〉, |ψ−〉 ∈
V L−1. The equation Q′|ψ〉 = 0 implies

Q′|ψ+〉 = 0, Q′|ψ−〉 = −|u−〉 ⊗ |ψ−〉, (4.58)

and therefore

|ψ〉 = |u+〉 ⊗ |ψ+〉 −Q′|ψ−〉. (4.59)

Hence, [|ψ〉] = [|u+〉 ⊗ |ψ+〉] = S][|ψ+〉] with |ψ+〉 ∈ ker{Q′ : V L−1 →
V L}. This proves the surjectivity.

Since S] is a bijection, it follows that HL = (S])L−1(H1) for each L > 2.

One checks that H1 = C[|u+〉]. Hence, HL = C[|u+〉⊗L].

Results for the XYZ supercharge. In the remainder of this section,

Q′ denotes the supercharge constructed from the local supercharge (4.14)

for the XYZ Hamiltonian. We apply the auxiliary results to this case.

Proposition 4.4.4. Let L > 1, and (p, t) ∈ D̄. We have

HL =

{
0, if t 6= π/6,

C[|v+〉⊗L], if t = π/6.
(4.60)
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Proof. We distinguish three cases.

First, we consider t 6= π/2, π/6. In this case, it follows from Lemma 4.3.2

that |v+〉 and |v−〉 form a basis of V . Furthermore, the constants Λ±,

defined in (4.39), are non-vanishing. Hence, the states

|u+〉 = Λ+|v+〉, |u−〉 = Λ−|v−〉 (4.61)

form a basis of V . We find from Lemma 4.3.4 that q′|u+〉 = |u+〉 ⊗ |u+〉,
q′|u−〉 = |u−〉 ⊗ |u−〉. Hence, we apply Lemma 4.4.1 and conclude that

HL = 0 for each L > 1.

Second, we suppose that t = π/2. It follows from Lemma 4.3.3 that the

states |v+〉 and |v̇+〉, defined in (4.36), form a basis of V . We define the

states

|u+〉 = Λ+|v+〉, |u−〉 = Λ̇+|v+〉+ Λ+|v̇+〉. (4.62)

These states form a basis of V because Λ+, Λ̇+ 6= 0 for t = π/2. Moreover,

we have q′|u+〉 = |u+〉⊗ |u+〉, q′|u−〉 = |u+〉⊗ |u−〉+ |u−〉⊗ |u+〉, thanks

to Lemma 4.3.5. Therefore, it follows from Lemma 4.4.2 that HL = 0

for each L > 1.

Third, we analyse the case where t = π/6. In this case, we have Λ+ = 0

and Λ− 6= 0. The states

|u+〉 = |v+〉, |u−〉 = Λ−|v−〉 (4.63)

constitute a basis of V . They obey the relations q′|u+〉 = 0 and q′|u−〉 =

|u−〉 ⊗ |u−〉. According to Lemma 4.4.3, we have

HL = C[|u+〉⊗L] = C[|v+〉⊗L], (4.64)

for each L > 1.

Proposition 4.4.5. Let L > 1 and (p, t) ∈ D̄. We have

HL =

{
0, if t 6= π/6,

C[|w+〉⊗L], if t = π/6.
(4.65)

Proof. First, we consider t 6= π/6. In this case, HL = 0 for each L > 1

follows immediately from Proposition 4.4.4 and the fact that HL and

HL are isomorphic.
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Second, we consider t = π/6 and compute HL. To this end, we note that

Lemma 4.3.6 implies

Q′† (|wε〉 ⊗ |wε′〉) = −ϑ1(π/3, p)2Λεδεε′ |wε〉, (4.66)

for each ε, ε′ = ±. Furthermore, we have Λ+ = 0 and Λ− 6= 0. For L = 1,

we find

H1 = V/im{Q′† : V 2 → V } = V/C|w−〉 = C[|w+〉]. (4.67)

For L > 2, Proposition 4.4.4 implies that HL is one-dimensional. Hence,

HL = C[|ω〉] for some |ω〉 ∈ V L that is in the kernel of Q′†, but not in

its image. We claim that |ω〉 = |w+〉⊗L is a valid choice. Indeed, on the

one hand, (4.66) implies Q′†|ω〉 = 0. On the other hand, we use (4.33)

to compute the scalar product

〈ω|
(
|v+〉⊗L

)
= 〈w+|v+〉L = ϑ1(π/3, p)2L, (4.68)

which is non-zero. If |ω〉 = Q′†|φ〉 for some state |φ〉 ∈ V L+1, then

〈ω|
(
|v+〉⊗L

)
= 〈φ|Q′

(
|v+〉⊗L

)
= 0. This is a contradiction and therefore

proves the claim.

4.5 Spin-chain ground states

In this section, we examine if the Hamiltonian H possesses supersymme-

try singlets. To this end, we use the isomorphism provided by Proposi-

tion 1.4.2. If they exist, we establish multiple cohomology decompositions

(1.49) and homology decompositions (1.61) of those supersymmetry sin-

glets. Finally, we characterise the space of the ground states of the XYZ

Hamiltonian (4.1).

Theorem 4.5.1. Let L > 1 and (p, t) ∈ D̄. If t 6= π/6, then the

Hamiltonian H does not possess supersymmetry singlets. Conversely, if

t = π/6 then the space of supersymmetry singlets of H is one-dimensional,

and spanned by

|ΨL〉 =

{
|v+〉, L = 1,

|v+〉⊗L + Q′|γL〉, L > 2,
(4.69)

where |γL〉 ∈ V L−1.
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Proof. First, we consider t 6= π/6. In this case, it follows from Propo-

sition 4.4.4 that HL = 0. Hence, H does not possess supersymmetry

singlets.

Second, for t = π/6, the Proposition 4.4.4 states that HL = C[|v+〉⊗L].

Hence, the space of the supersymmetry singlets of H is one-dimensional.

In fact, the decomposition for L > 2 follows from (1.49).

Proposition 4.5.2. For t = π/6 and each L > 1, the state (4.69) can

be written as

|ΨL〉 = µL|w+〉⊗L + Q′†|γ′L〉, (4.70)

with |γ′L〉 ∈ V L+1. The constant µL is non-zero and given by

µL =

(
〈v+|⊗L

)
|ΨL〉

ϑ1(π/3, p)2L
. (4.71)

Proof. The decomposition (4.70) follows from HL = C[|w+〉⊗L] for t =

π/6, found in Proposition 4.4.5. To find the coefficient µL, it is sufficient

to compute the scalar product of both sides of (4.70) with |v+〉⊗L. It

has to be non-zero because otherwise, |ΨL〉 would be in the image of Q′†.

This would imply |ΨL〉 = 0 [1] and thus contradicts Proposition 4.4.5.

Alternative decompositions. We know from Chapter 1 that the

(co)homology decompositions are not unique. We exploit the non-

uniqueness to compute two alternative decompositions for the supersym-

metry singlet |ΨL〉. To this end, we define

|χ〉 = |v+〉 ⊗ |v+〉 − κ2|v−〉 ⊗ |v−〉,
|α〉 = |w+〉 ⊗ |w+〉+ κ−1|w−〉 ⊗ |w+〉,

(4.72)

where κ = ϑ3(π/3, p)/ϑ3(0, p).

Proposition 4.5.3. For t = π/6 and each L > 2, the supersymmetry

singlet |ΨL〉 can be written as

|ΨL〉 = |χ〉 ⊗ |v+〉⊗(L−2) + Q′|δL〉, (4.73)

for some state |δL〉 ∈ V L−1, and as

|ΨL〉 = µL|α〉 ⊗ |w+〉⊗(L−2) + Q′†|δ′L〉, (4.74)

for some state |δ′L〉 ∈ V L+1. Here, µL is the constant defined in (4.71).
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Proof. The proof consists of two simple calculations. We focus on (4.73).

Using q′|v+〉 = 0, q′|v−〉 = Λ−|v−〉 ⊗ |v−〉 with Λ− 6= 0 for t = π/6, we

obtain

|v+〉⊗L = |χ〉 ⊗ |v+〉⊗(L−2) −Q′
(
κ2Λ−1

− |v−〉 ⊗ |v+〉⊗(L−2)
)
. (4.75)

We use this in (4.69) and obtain (4.73) with

|δL〉 = |γL〉 − κ2Λ−1
− |v−〉 ⊗ |v+〉⊗(L−2). (4.76)

The proof of (4.74) is similar.

Finally, we point out that for t = π/6, the basis states |v±〉 and their

duals |w±〉, as well as |χ〉 and |α〉, can up to factor be written in terms

of polynomials in ζ and y. This property can be shown with the help of

identities between Jacobi theta functions.

Lemma 4.5.4. We have |v±〉 = C±|v̄±〉 and |w±〉 = C∓|w̄±〉, where

|v̄+〉 = y(1− ζy2)|↑〉+ (ζ − y2)|↓〉, |v̄−〉 = |↑〉 − y|↓〉,
|w̄−〉 = (ζ − y2)|↑〉 − y(1− ζy2)|↓〉, |w̄+〉 = y|↑〉+ |↓〉,

and C+ = (1− ζ2)−2/3y−1ϑ3(π/3, p2), C− = ϑ3(π/3, p2).

Lemma 4.5.5. We have |χ〉 = D+|χ̄〉 and |α〉 = D−|ᾱ〉 with

|χ̄〉 = y2(ζ − 2 + ζy2)|↑↑〉+ y(y2 − 1)(|↑↓〉+ |↓↑〉)− (ζ + (ζ − 2)y2)|↓↓〉,
|ᾱ〉 = y (|↑↑〉 − |↓↓〉) + |↑↓〉 − y2|↓↑〉,

where D+ = ζ(y2 − 1)C2
+ and D− = ζ(y2 − 1)y−1(ζ − 1)−1C2

−.

The XYZ ground states. We now return to the XYZ Hamiltonian

defined in (4.1). We introduce the polynomial

P (ζ, y) = ζ(1 + y4)− (3− ζ2)y2. (4.77)

It is straightforward to see that, given 0 < ζ < 1, the biquadratic equation

P (ζ, y) = 0 for y possesses four real solutions. They have particularly

simple expressions in the parameterisation by Jacobi theta functions.
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Lemma 4.5.6. Let 0 < ζ < 1 and y be parametrised according to (4.30)

with 0 < p < 1, then the solutions of P (ζ, y) = 0 are given by

y0 =
ϑ1(π/6, p2)

ϑ4(π/6, p2)
, y1 =

1

y0
, y2 = − 1

y0
, y3 = −y0. (4.78)

In particular, P (ζ, y) = 0 for (ζ, y) ∈ D if and only if y = y0.

Proof. First, we substitute the parameterisation (4.30) into the polyno-

mial P (ζ, y) and find

P (ζ, y) =
Cϑ1(π/6− t, p)ϑ1(π/6 + t, p)

ϑ4(t, p2)4
, (4.79)

where C = (ϑ1(π/3, p)ϑ4(0, p2)/ϑ4(π/3, p2))2. The right-hand side van-

ishes if and only if

t = ±π/6, t = ±π/6 + is mod π, 2is, (4.80)

where s > 0 is defined through p = e−s. The evaluations of y at these

values of t lead to the four roots given in (4.78).

Second, we conclude from (4.78) that (ζ, y0) ∈ D but (ζ, yα) /∈ D for

α = 1, 2, 3.

In terms of the parameterisation (4.30), this lemma implies that P (ζ, y)

vanishes for (p, t) ∈ D̄ if and only if t = π/6. We exploit this property in

the following proof.

Theorem 4.5.7. For each L > 1 and 0 < ζ < 1, the space of the ground

states of the Hamiltonian (4.1) is equal to the space of supersymmetry

singlets if and only if y is a solution of the polynomial equation

ζ(1 + y4)− (3− ζ2)y2 = 0. (4.81)

This space is one-dimensional, and the corresponding ground-state eigen-

value is given by

E0 = −(L− 1)(3 + ζ2)

4
− (1 + ζ)2

2
. (4.82)
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Proof of Theorem 4.5.7. First, we prove the theorem for (ζ, y) ∈ D. To

this end, we recall the relation (4.15) that expresses the Hamiltonian H

in terms of HXYZ for L > 1 sites:

H = x

(
HXYZ +

(L− 1)(3 + ζ2)

4
+ 2λ0

)
. (4.83)

The factor x in this relation is positive for all (ζ, y) ∈ D. Hence, the

spaces of the ground states of H and HXYZ are equal. We use the

parameterisation of (ζ, y) ∈ D by (p, t) ∈ D̄. According to Theorem 4.5.1,

the space of the ground states of H is spanned by the supersymmetry

singlet |ΨL〉 if and only if t = π/6. We use Lemma 4.5.6 to conclude

that the space of the ground states of HXYZ consists of supersymmetry

singlets if and only if y = y0. According to (4.15) the corresponding

ground-state eigenvalue of this Hamiltonian is

E0 = −(L− 1)(ζ2 + 3)

4
− 2λ0

∣∣∣∣
y=y0

= −(L− 1)(ζ2 + 3)

4
− (1 + ζ)2

2
.

(4.84)

Second, we consider 0 < ζ < 1 and (ζ, y) /∈ D. In this case, it follows

from (4.22) that there is an integer 1 6 α 6 3 such that

HXYZ(ζ, y) = Rα(−π)HXYZ(ζ, ȳ)Rα(π) (4.85)

with (ζ, ȳ) ∈ D. Since Rα(π) is a unitary operator, the two Hamiltonians

in this equality have the same spectrum. Furthermore, writing Q′ =

Q′(ζ, y) to indicate the dependence of the supercharge on ζ and y, we

have

Q′(ζ, yα) = Rα(−π)Q′(ζ, y0)Rα(π). (4.86)

The state |Ψα
L〉 = Rα(−π)|ΨL〉 is a supersymmetry singlet with respect to

the supercharge Q′(ζ, yα). We conclude from these two observations that

the space of the ground states of HXYZ(ζ, y) is a space of supersymmetry

singlets if and only if ȳ = y0, and hence y = yα. This space is one-

dimensional and spanned by the supersymmetry singlet |Ψα
L〉.



Chapter 5

The supersymmetric

eight-vertex model with

open boundary conditions

In this chapter, we revisit the eight-vertex model introduced in the

Chapter 3. We consider the model with open boundary conditions: the

geometry of the domain is a strip. The transfer matrix of the eight-vertex

model with open boundary conditions is built from R-matrices, containing

the weights of a bulk vertex, and so-called K-matrices, which encode the

boundary conditions. As in Chapter 3, we study the model by exploring

the relation between its transfer matrix and an XYZ Hamiltonian.

We proceed with the investigation of the supersymmetric eight-vertex

model, for which the weights a, b, c, d satisfy

(a2 + ab)(b2 + ab) = (c2 + ab)(d2 + ab). (5.1)

This choice is related to the Hamiltonian density of the supersymmetric

XYZ spin-chain Hamiltonian. We focus on the case where 0 < cd
ab < 1.

Furthermore, we choose the K-matrices in accordance with the boundary

terms h±B of the Hamiltonian (4.1). We specify those matrices later.

The main result of this chapter is to prove that the transfer matrix

possesses a remarkable eigenvalue. To be precise, if the space of the

ground states of the Hamiltonian (4.1) equals the space of supersymmetry

79
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singlets of the supercharge Q′; then the transfer matrix possesses the

eigenvalue ΛL given by

ΛL = (a+ b)2L tr(K+K−), (5.2)

where K± are specifically chosen K-matrices. The eigenvalue is non-

degenerate, and its eigenspace is spanned by the ground states of the

Hamiltonian (4.1) with ζ = cd
ab .

The layout of this chapter is similar to the one of Chapter 3. In Section 5.1,

we construct the transfer matrix of the eight-vertex model with open

boundary conditions and its relation to the Hamiltonian of the XYZ spin

chain. We focus on the supersymmetric case in Section 5.2: we establish

a commutation relation between the transfer matrix and the supercharge

of the spin chain. This relation allows us to prove the existence of the

eigenvalue ΛL in Section 5.3. Finally, we analyse the positivity of the

transfer matrix and use the Perron-Frobenius theorem to prove that ΛL
is the largest eigenvalue of the transfer matrix if the vertex weights are

positive.

5.1 Lattice formulation and transfer matrix

In this section, we consider the eight-vertex model with open boundary

conditions, introduce the K-matrices, and construct the corresponding

transfer matrix. We recall a few of its elementary properties and its

relation to the XYZ Hamiltonian with open boundary conditions.

Let us consider the eight-vertex model introduced in Chapter 3 on a

strip geometry. The domain of the model consists of a square lattice of

L vertical lines and N pairs of horizontal lines. We call each intersection

a bulk vertex. The boundaries are formed as follows: each of the N pairs

of consecutive rows merges at the extremities of the domain. Each of

these merging points creates a boundary vertex. As previously, we refer

to a segment between two adjacent vertices as an edge.

On each edge is present an arrow. A bulk vertex can be in one config-

uration amongst the eight admissible. Each boundary vertex connects

two edges that can be in two possible states. Hence, a boundary vertex
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•

•

•

•

Figure 5.1: An admissible configuration of the eight-vertex model on a

strip with L = 3, N = 4. The intersections of vertical and horizontal

lines are bulk vertices while the boundary vertices are indicated by black

dots.

has four admissible configurations. The Figure 5.1 gives an example of a

configuration of the eight-vertex model on a strip.

R and K matrices. The transfer matrix of the eight-vertex model on

the strip is constructed from the R-matrix. We use the same notation as

in Chapter 3: the R-matrix is given, in the canonical basis of V ⊗ V by

R =


a 0 0 d

0 b c 0

0 c b 0

d 0 0 a

 , (5.3)

where a, b, c, d are the vertex weights. We denote by Rij , 0 6 i < j 6 L,

the R-matrix acting non-trivially only on the factors Vi and Vj of the

tensor product V0 ⊗ V L = V0 ⊗ V1 ⊗ · · · ⊗ VL. For convenience, we

introduce the abbreviations

U0,[i,j] = R0jR0j−1 · · ·R0i, Ū0,[i,j] = R0iR0i+1 · · ·R0j , (5.4)

for 1 6 i 6 j 6 L. We also define U0,[j+1,j] = Ū0,[j+1,j] = 1 for

j = 0, . . . , L.

We encode the weights of the boundary vertex in the K-matrices. There

are two boundaries that we treat separately. We denote by K+ and K−

the matrix containing the weight of the vertex on the right and the left
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•

〈↑|K+|↑〉

•

〈↓|K+|↑〉

•

〈↑|K+|↓〉

•

〈↓|K+|↓〉

Figure 5.2: The four vertex configurations on the right boundary and

the corresponding weights given in the K+ matrix.

of the strip, respectively. Let us consider the K+ matrix. It connects two

edges on which are an arrow. As in Chapter 3, let us translate arrows

configurations into the spin language. To this end, we label the edge on

the top and the bottom of the boundary vertex with 1 and 2. We assign

a spin up to an edge if it carries an arrow pointing toward the north,

and a spin down if the arrow points to the south. The entry 〈s1|K+|s2〉
of the K+ matrix contains the weight of a configuration with spin si on

the i-th edge. The Figure 5.2 depicts the arrows configurations at the

right boundary vertex and the corresponding weights.

The definition of the K− matrix is similar. We consider the two edges

merging at a boundary vertex on the left of the domain and label them

from the bottom to the top with 1 and 2. We assign a spin up to an arrow

pointing south and, conversely, a spin down to an arrow that points to

the north. We write the weight of a configuration with spin si on the

i-th edge in the entry 〈s1|K+|s2〉 of the K− matrix. The Figure 5.3

represents generic spin configuration at the boundary vertex and their

corresponding weight in the K-matrices.

s1

•

s2

〈s1|K+|s2〉 = 〈s1|K−|s2〉 =

s2

•

s1

Figure 5.3: Generic spin configuration s1, s2 at a boundary vertex and

the corresponding weight 〈s1|K±|s2〉.

Transfer matrix. The transfer matrix of the eight-vertex model for a

strip with L vertical lines and open boundary conditions is an operator
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T : V L → V L defined as

T = tr0

(
K+

0 U0,[1,L]K
−
0 Ū0,[1,L]

)
. (5.5)

The trace is taken with respect to the auxiliary space V0. Moreover, K±0
are operators K± : V → V acting on the auxiliary space.

To investigate the properties of the transfer matrix, we use the parameter-

isation (3.18) of the vertex weights in terms of Jacobi theta functions. We

recall that with this parameterisation, the R-matrix of the eight-vertex

model obeys the Yang-Baxter equation (3.19). Furthermore, we choose

K− = K(u), K+ = K(u+ 2η), (5.6)

where the operator K = K(u) is a solution of the reflection equation: for

all u and v it obeys

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12(u+ v)K1(u)R12(u− v),

(5.7)

where R = R(u), and Ki(u) denotes the operator K(u) acting on Vi.

Let us write T = T (u) to stress the dependence of the transfer matrix on

the spectral parameter. The choice (5.6) implies that transfer matrices

with different spectral parameters commute: we have

T (u)T (v) = T (v)T (u), (5.8)

for all u and v [35]. The proof of this commutation relation is based on

the Yang-Baxter equation (3.19) and the reflection equation (5.7).

Transfer matrix and Hamiltonian. We now recall the relation be-

tween the transfer matrix and the Hamiltonian of the XYZ spin chain

[35]. To this end, we use the K-matrix

K(u) = 1 +
3∑

α=1

ϑ1(u, p)

ϑ5−α(u, p)
µασ

α. (5.9)

Here µ1, µ2, µ3 are arbitrary complex numbers. Up to an overall factor,

this K-matrix is the most general solution to the reflection equation (5.7)

of the eight-vertex model [102, 103, 104].
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Proposition 5.1.1. We have the logarithmic derivative

T (0)−1(T )′(0) = L

(
a′(0) + c′(0)

a(0)

)
− 2b′(0)

a(0)
HXYZ. (5.10)

Here, HXYZ is the Hamiltonian (4.1a) of the open XYZ spin chain with

the anisotropy parameters

J1 = 1 +
d′(0)

b′(0)
, J2 = 1− d′(0)

b′(0)
, J3 =

a′(0)− c′(0)

b′(0)
, (5.11)

and the boundary terms

h±B = −ϑ1(2η, p)

2

3∑
α=1

Jαµα
ϑ5−α(2η, p)

σα. (5.12)

Proof. We have R(0) = a(0)P , where P is the permutation operator

on V ⊗ V , trK(u) = 2, trK ′(u) = 0 and K(0) = 1. After a standard

calculation, we obtain the logarithmic derivative

T (0)−1(T )′(0) =
2

a(0)

L−1∑
j=1

Ř′jj+1(0) +K ′1(0) +
1

a(0)
tr0

(
K0(2η)Ř′0L(0)

)
,

(5.13)

where Ř(u) = PR(u). The Ř-matrix has the property

Ř′(0) =
a′(0) + c′(0)

2
+
b′(0)

2

3∑
α=1

Jασ
α ⊗ σα, (5.14)

where the anisotropy parameters J1, J2, J3 are given by (5.11). The

insertion of this expression into (5.13) leads to (5.10) with the boundary

terms

(h−B )1 = − a(0)

2b′(0)
K ′1(0), (h+

B )L = −1

4
tr0

(
K0(2η)

3∑
α=1

Jασ
α
0 ⊗ σαL

)
.

(5.15)

The evaluation of the partial trace for h+
B is straightforward and leads

to the expression given in (5.12). To see that h−B is given by the same

expression, we first note that the parameterisation (3.18) and (5.11) lead

to

Jα = J
ϑ5−α(2η, p)

ϑ5−α(0, p)
for α = 1, 2, 3, (5.16)
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where J = (ϑ4(0, p2)/ϑ4(2η, p2))2. Hence, we obtain

h−B = −a(0)ϑ′1(0, p)

2b′(0)

3∑
α=1

µα
ϑ5−α(0, p)

σα (5.17)

= −a(0)ϑ′1(0, p)

2Jb′(0)

3∑
α=1

Jαµα
ϑ5−α(2η, p)

σα. (5.18)

It remains to be shown that a(0)ϑ′1(0, p)/(Jb′(0)) = ϑ1(2η, p), which can

be accomplished with the help of identities for Jacobi theta functions

[91].

An immediate consequence of (5.8), (5.10) and T (0) = 2a(0)2L is:

Corollary 5.1.2. We have [HXYZ, T (u)] = 0 where the XYZ Hamiltonian

has the anisotropy parameters (5.11) and boundary terms (5.12).

5.2 The transfer matrix and supersymmetry

In this section, we focus on the supersymmetric eight-vertex model,

for which the weights satisfy (5.1) and determine the corresponding

K-matrices. We show that an eigenvector of the transfer matrix with

the eigenvalue ΛL (5.2) is a ground state of the supersymmetric XYZ

Hamiltonian that we investigate in the previous chapter. We establish a

commutation relation between the transfer matrix of the supersymmetric

eight-vertex model with open boundary conditions and the supercharge

of the supersymmetric open XYZ spin chain.

Supersymmetric eight-vertex model. The parameterisation (3.18)

of the vertex weights in terms of Jacobi theta functions depends on the

parameters u, ρ, η and p. From now, we consider the crossing parameter

η =
π

3
, (5.19)

real ρ, u and 0 < p < 1. For this choice, the weights a, b, c, d are real

and obey the relation (5.1) that defines the supersymmetric eight-vertex
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model. The spin chain’s anisotropy parameters (5.11) coincide with the

expressions given in (4.1), where 0 < ζ < 1 is defined by

ζ =
cd

ab
. (5.20)

It follows from Corollary 5.1.2 that the transfer matrix of the eight-

vertex model commutes with the Hamiltonian (4.1) provided that the

parameters of the K-matrix are given by

µ1 =
ϑ4(η, p)

ϑ1(η, p)

2 Re y

1 + |y|2
, µ2 =

ϑ3(η, p)

ϑ1(η, p)

2 Im y

1 + |y|2
, µ3 =

ϑ2(η, p)

ϑ1(η, p)

1− |y|2

1 + |y|2
.

(5.21)

We express the corresponding K-matrices K± in terms of the vertex

weights and the parameter y in the following proposition. Its proof relies

on a few identities for Jacobi theta functions.

Proposition 5.2.1. For the choice (5.21), the K-matrices K± are given

by

K−= 1 +
2 Re y

1 + |y|2
ab+ cd

ac+ bd
σ1 +

2 Im y

1 + |y|2
ab− cd
ac− bd

σ2

+
1− |y|2

1 + |y|2
b2 − d2

2ab+ b2 + d2
σ3,

(5.22)

K+ = 1 +
2 Re y

1 + |y|2
ab+ cd

ad+ bc
σ1 +

2 Im y

1 + |y|2
ab− cd
bc− ad

σ2

+
1− |y|2

1 + |y|2
b2 − c2

2ab+ b2 + c2
σ3.

(5.23)

In the next proposition, we consider the transfer matrix of the super-

symmetric eight-vertex model with these K-matrices and with y being a

solution of (4.81). This polynomial equation was given by:

ζ(1 + y4)− (3− ζ2)y2 = 0. (5.24)

For this case, we show that if ΛL, defined in (5.2), is a transfer-matrix

eigenvalue, then its eigenspace is contained in the space of the supersym-

metry singlet of the XYZ Hamiltonian.

Proposition 5.2.2. Let L > 1, 0 < ζ < 1 and y be a solution of (4.81).

If |ψ〉 ∈ V L obeys

T |ψ〉 = ΛL|ψ〉, (5.25)
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where ΛL is given in (5.2), then |ψ〉 is a supersymmetry singlet of the

XY Z Hamiltonian (4.1) with ζ given by (5.20).

Proof. We use the theta-function parameterisation of the eight-vertex

model. It follows from (5.10) that |ψ〉 is an eigenstate of the XYZ

Hamiltonian (4.1) for the eigenvalue

E = −L
(
a′(0)− c′(0)

2b′(0)
+ 1

)
− a(0)

4b′(0)
tr
(
K ′(0)K(2η)

)
. (5.26)

In the first term on the right-hand side of this equality, we recognise

the expression (5.11) for the anisotropy parameter J3 = 1
2(ζ2 − 1). To

compute the second term, we use the parameterisation (5.9) of the K-

matrix in terms of the parameters µ1, µ2, µ3 given by (5.21), as well as

the expression (5.16) for the anisotropy parameters. We have

a(0)

4b′(0)
tr
(
K ′(0)K(2η)

)
=

1

2

3∑
α=1

Jα
ϑ2

1(2η, p)

ϑ2
5−α(2η, p)

µ2
α = 2

3∑
α=1

λ2
α

Jα
. (5.27)

The constants λ1, λ2, λ3 are given in (4.1). We use their explicit expres-

sion and the relation (4.81) between ζ and y to compute
∑3

α=1 λ
2
α/Jα =

(ζ2 + 4ζ − 1)/8. This yields the eigenvalue

E = −L(3 + ζ2)

4
− ζ2 + 4ζ − 1

4
. (5.28)

We conclude that E is the ground-state eigenvalue E0, defined in (4.82).

It follows from Theorem 4.5.7 that |ψ〉 is a supersymmetry singlet.

Transformations of the transfer matrix. The transfer matrix of

the supersymmetric eight-vertex model with the K-matrices (5.22) has

a simple transformation behaviour under certain spin rotations. Let us

write T = T (a, b, c, d; y), to stress the dependence of the transfer matrix

on the vertex weights a, b, c, d and the parameter y. We have

R1(π)T (a, b, c, d; y)R1(−π) = T (a, b, c, d; y−1),

R2(π)T (a, b, c, d; y)R2(−π) = T (a, b, c, d;−y−1),

R3(π)T (a, b, c, d; y)R3(−π) = T (a, b, c, d;−y),

(5.29)

where Rα(θ) is the spin-rotation operator (4.20). These relations are

similar to (4.22). (It is possible to work out the transformation behaviour
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under rotations by the angle θ = π/2, but we will not use it.) We

note that since these transformations are unitary, the transfer matrices

on the right-hand side of these equalities have the same spectrum as

T (a, b, c, d; y).

We now establish a commutation relation between T and the supercharge

of the supersymmetric open XYZ spin chain. To this end, we first

establish local relations between the R-matrix of the eight-vertex model,

the K-matrices, the local supercharge of the XYZ Hamiltonian, and

certain auxiliary operators. Second, we combine these local relations

with the definition of the transfer matrix to obtain the commutation

relation.

Local relations. We follow the strategy of the Chapter 3 and define

two operators a↑, a↓ : V → V ⊗ V . Their action on the basis states |↑〉
and |↓〉 is given by

a↑|↑〉 = d
(
− c
a
|↑↓〉+ |↓↑〉

)
, a↑|↓〉 = c

(
|↑↑〉 − d

b
|↓↓〉

)
, (5.30)

a↓|↑〉 = c

(
|↓↓〉 − d

b
|↑↑〉

)
, a↓|↓〉 = d

(
− c
a
|↓↑〉+ |↑↓〉

)
. (5.31)

We also define an operator aφ : V → V ⊗ V through the following action

on the basis states:

aφ| ↑〉 = (2a+ b)φ↑|↑↑〉+ (a+ 2b)φ↓|↑↓〉+ cφ↓|↓↑〉+ dφ↓|↓↓〉,
aφ| ↓〉 = (2a+ b)φ↓|↓↓〉+ (a+ 2b)φ↑|↓↑〉+ cφ↑|↑↓〉+ dφ↑|↑↑〉.

(5.32)

Here, φ↑ = y(y2ζ − 1) and φ↓ = ζ − y2 are the components of the state

|φ〉 defined in the local supercharge q′(4.14). We use the operators a↑, a↓,

and aφ to define the linear combination

a = (1− y2ζ)a↑ + y(y2 − ζ)a↓ + aφ. (5.33)

We also need an action of a, a↑, a↓ and aφ on the space V0 ⊗ V L. To this

end, we use a notation similar to the one we introduced in Chapter 3:

for each operator b : V → V ⊗ V we define bj0 : V0 ⊗ V L → V0 ⊗ V L+1,

j = 1, . . . , L+ 1 by

b1
0 = b⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

L

(5.34)
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and, recursively,

bj+1
0 = Pjj+1b

j
0, (5.35)

for each j = 1, . . . , L. Here, Pjj+1, j = 1, . . . , L denotes the permutation

operator acting on the factors Vj and Vj+1 of the tensor product V0 ⊗
V L+1.

In the next two lemmas, we establish several relations between the R-

matrix of the supersymmetric eight-vertex model, the K-matrices K±

defined in (5.22), the local supercharge q′ and the operator a.

Lemma 5.2.3. For each j = 1, . . . , L we have

R0jR0j+1(1⊗ q′j) + (a+ b)(1⊗ q′j)R0j = R0ja
j+1
0 + aj0R0j , (5.36a)

R0j+1R0j(1⊗ q′j) + (a+ b)(1⊗ q′j)R0j = R0j+1a
j
0 + aj+1

0 R0j , (5.36b)

if and only if (5.1) holds.

Proof. The multiplication of (5.36a) from the left by Pjj+1 yields (5.36b)

by virtue of Pjj+1qj = qj . Hence, it is sufficient to prove (5.36a).

The key observation is that each of the relations

R01R02(1⊗ (q↑)1) + (a+ b)(1⊗ (q↑)1)R01 = R01(a↑)2
0 + (a↑)1

0R01,

R01R02(1⊗ (q↓)1) + (a+ b)(1⊗ (q↓)1)R01 = R01(a↓)2
0 + (a↓)1

0R01,

R01R02(1⊗ (qφ)1) + (a+ b)(1⊗ (qφ)1)R01 = R01(aφ)2
0 + (aφ)1

0R01,

(5.37)

holds if and only if the vertex weights obey (5.1), as follows from a

straightforward calculation. We obtain (5.36a), for j = 1, using the

definition (5.33). Its generalisation to j = 2, . . . , L is readily obtained

through the conjugation with appropriate products of permutation oper-

ators.

Lemma 5.2.4. The K-matrices (5.22) obey

(a+ b)a1
0K
−
0 = R01K

−
0 a1

0, (5.38)

(a+ b)(a1
0)t0(K+

0 )t0 = (R01)t0(K+
0 )t0(a1

0)t0 , (5.39)

if and only (5.1) holds. Here, the superscript t0 denotes the transposition

with respect to the auxiliary space.

Proof. The proof is a straightforward calculation.
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The commutation relation. We now use the Lemmas 5.2.3 and 5.2.4

to compute a commutation relation between the transfer matrix and the

supercharge. This generalises a relation established by Weston and Yang

[105] for the six-vertex model, corresponding to d = 0 (hence ζ = 0) and

y = 0.

Proposition 5.2.5. If (5.1) holds and the K-matrices K± are given by

(5.22) then

T Q′ = (a+ b)2Q′T . (5.40)

Proof. First, we evaluate a commutator between the transfer matrix and

the local supercharge qj . To this end, we use

R0k(1⊗ q′j) = (1⊗ q′j)R0k, if 1 6 k < j 6 L, (5.41)

R0k(1⊗ q′j) = (1⊗ q′j)R0k−1, if 1 6 j < k − 1 6 L− 1. (5.42)

We apply them together with Lemma 5.2.3 to obtain

T q′j − (a+ b)2q′jT

= tr0

(
K+

0 U0,[1,L+1]K
−
0 Ū0,[1,j−1]

(
R0ja

j+1
0 + aj0R0j

)
Ū0,[j+1,L]

)
−(a+ b)tr0

(
K+

0 U0,[j+2,L+1]

(
R0j+1a

j
0 + aj+1

0 R0j

)
U0,[1,j−1]K

−
0 Ū0,[1,L]

)
,

for j = 1, . . . , L.

Second, we take an alternating sum of these equalities and find

T Q′− (a+ b)2Q′T
= tr0

(
K+

0 U0,[2,L+1]

(
(a+ b)a1

0K
−
0 −R01K

−
0 a1

0

)
Ū0,[1,L]

)
(5.43)

+ (−1)L
(

tr0

(
K+

0 R0L+1UaL+1
0

)
− (a+ b)tr0

(
K+

0 aL+1
0 U

))
,

where we used the shorthand notation U = U0,[1,L]K
−
0 Ū0,[1,L]. The

relation (5.38) implies that the first term on the right-hand side of (5.43)

vanishes. To evaluate the second term, we compute

tr0

(
K+

0 R0L+1UaL+1
0

)
= tr0

(
U t0(R0L+1)t0(K+

0 )t0(aL+1
0 )t0

)
= (a+ b)tr0

(
U t0(aL+1

0 )t0(K+
0 )t0

)
= (a+ b)tr0

(
K+

0 aL+1
0 U

)
.

(5.44)

To establish this equality, we used the invariance of the trace under

matrix transposition and applied the identity (R0L+1)t0(K+
0 )t0(aL+1

0 )t0 =
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(a + b)(aL+1
0 )t0(K+

0 )t0 , which follows from (5.39) after an appropriate

multiplication with permutation operators. Hence, we conclude that the

second term on the right-hand side of (5.43) vanishes, too.

5.3 The transfer-matrix eigenvalue

In this final section, we prove the result claimed at the beginning of the

chapter on the existence of the eigenvalue ΛL. We prepare its proof by

establishing a few auxiliary results. Below, we denote by T the transfer

matrix of the supersymmetric eight-vertex model on a strip with L > 1

vertical lines, the K-matrices K± defined in (5.22) and t = π/6.

We compute the action of this transfer matrix on the supersymmetry

singlet |ΨL〉 defined in (4.69). This singlet is an eigenstate of H, and

thus of HXYZ. Therefore, it is an eigenstate of T . The eigenvalue ΛL can

be obtained as

ΛL =
〈ΨL|T |ΨL〉
〈ΨL|ΨL〉

. (5.45)

We evaluate this quotient by using the Proposition 1.4.9 of Chapter 1

which allows for the evaluation of matrix element with respect to super-

symmetry singlets of operators that commute with the supercharge.

It follows from Proposition 5.2.5 that if a+ b 6= 0, then we may apply

Proposition 1.4.9 with A = T and λ = (a+ b)2 to evaluate the matrix

element 〈ΨL|T |ΨL〉. Furthermore, we compute the square norm 〈ΨL|ΨL〉
with the help of this proposition for A = 1 and λ = 1. The resulting

expressions depend on the choice of the decompositions of |ΨL〉. First,

using (4.69) and (4.70), we have

ΛL =

(
〈w+|⊗L

)
T
(
|v+〉⊗L

)
〈w+|v+〉L

, (5.46)

for each L > 1. Second, using the alternative representations (4.73) and

(4.74), we find

ΛL =

(
〈α| ⊗ 〈w+|⊗(L−2)

)
T
(
|χ〉 ⊗ |v+〉⊗(L−2)

)
〈α|χ〉〈w+|v+〉L−2

, (5.47)

for each L > 2. These two relations still hold if a+ b = 0. Indeed, the

eigenvalues of a matrix are continuous functions of its entries [81]. Hence,

ΛL is a continuous function of a, b, c, d.
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We exploit (5.46) and (5.47) to establish a recurrence relation for the

eigenvalue ΛL. To this end, we need the following two lemmas:

Lemma 5.3.1. For t = π/6, the K-matrices (5.22) obey

〈w+|tr0

(
K+

0 R01K
−
0 R01

)
|v+〉

〈w+|v+〉
= (a+ b)2tr(K+K−). (5.48)

Proof. By Lemma 4.5.4, it is sufficient to show that

I = 〈w̄+|tr0

(
K+

0 R01K
−
0 R01

)
|v̄+〉 − 〈w̄+|v̄+〉(a+ b)2tr(K+K−) (5.49)

vanishes. This difference is a rational expression of the vertex weights

a, b, c, d, ζ and the parameter y. Using the polynomial equation (4.81),

as well as the relations (5.1) and (5.20), we find after some algebra, that

is indeed zero.

Lemma 5.3.2. For t = π/6, the matrix K−, defined in (5.22), obeys

(1⊗ 〈α|)R02R01K
−
0 R01R02(1⊗ |χ〉)

〈α|χ〉
= (a+ b)4K−0 . (5.50)

Proof. By virtue of Lemma 4.5.5, the equality holds if the 2× 2 matrix

Ī = (1⊗ 〈ᾱ|)R02R01K
−
0 R01R02(1⊗ |χ̄〉)− (a+ b)4〈ᾱ|χ̄〉K−0 (5.51)

vanishes. Its entries are rational expressions of the vertex weights a, b, c,

d, ζ and the parameter y. As above, we use (4.81), (5.1) and (5.20) to

show that its entries are indeed zero.

We combine the previous lemmas to prove that the eigenvalue of the

transfer matrix with respect to the supersymmetry singlet |ΨL〉 is given

by (5.2).

Theorem 5.3.3. Let L > 1, 0 < ζ < 1 and y be a solution of (4.81),

then the transfer matrix of the supersymmetric eight-vertex model on

a strip with L vertical lines and the K-matrices (5.22) possesses the

non-degenerate eigenvalue ΛL.

The corresponding eigenspace is the space of the supersymmetry singlets

of the XYZ Hamiltonian (4.1) with ζ given by cd
ab .
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Proof. According to Proposition 5.2.2, if L > 1, 0 < ζ < 1, and if

y is a solution of (4.81), then any solution |ψ〉 of T |ψ〉 = ΛL|ψ〉 is a

supersymmetry singlet. This observation does, however, not guarantee

that ΛL is an eigenvalue of the transfer matrix because a solution of the

eigenvalue problem might not exist. To see that it is an eigenvalue, we

thus evaluate the action transfer matrix on |ΨL〉. To this end, we use

(5.45).

First, we consider t = π/6 and hence y = y0, where y0 is the unique

real solution of (4.81) with 0 < y < 1. We suppose L > 3, and use the

definition of the transfer matrix to rewrite (5.47) as

ΛL =
1

〈α|χ〉〈w+|v+〉L−2

(
〈α| ⊗ 〈w+|⊗(L−2)

)
·

tr0

(
K+

0 U0,[3,L]R02R01K
−
0 R01R02Ū0,[3,L]

) (
|χ〉 ⊗ |v+〉⊗(L−2)

)
.

We apply Lemma 5.3.2 on the right-hand side of this equality and obtain,

after a redefinition of labels, the expression

ΛL = (a+ b)4 〈w+|⊗(L−2)tr0

(
K+

0 U0,[1,L−2]K
−
0 Ū0,[1,L−2]

)
|v+〉⊗(L−2)

〈w+|v+〉L−2
.

(5.52)

Now, we use (5.46) to recognise on the right-hand side of this equality

ΛL−2. Therefore, we have the recurrence relation

ΛL = (a+ b)4ΛL−2. (5.53)

To solve this recurrence, we compute the eigenvalues ΛL for L = 1, 2.

They immediately follow from Lemmas 5.3.1 and 5.3.2. We find

Λ1 =
〈w+|tr0

(
K+

0 R01K
−
0 R01

)
|v+〉

〈w+|v+〉
= (a+ b)2tr(K+K−),

Λ2 =
〈α|tr0

(
K+

0 R02R01K
−
0 R01R02

)
|χ〉

〈α|χ〉
= (a+ b)4tr(K+K−).

(5.54)

The solution of the recurrence relation with these initial conditions

leads to the eigenvalue ΛL = (a+ b)2Ltr(K+K−), for each L > 1. The

eigenspace of ΛL is by construction the space spanned by the supersymme-

try singlet |ΨL〉. It is one-dimensional. Therefore, ΛL is non-degenerate.

Second, we consider the other real solutions y = yα, α = 1, 2, 3, of (4.81).

It follows from (5.29) that the corresponding transfer matrix has the
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property

T (a, b, c, d; yα) = Rα(−π)T (a, b, c, d; y0)Rα(π). (5.55)

The two transfer matrices in this equality are related by a unitary

transformation. Therefore, they have the same eigenvalues with the same

degeneracies. Hence, the transfer matrix possesses the eigenvalue ΛL in

this case, too. Its eigenspace is the span of the supersymmetry singlet

|Ψα
L〉, defined in the proof of Theorem 4.5.7.

Largest eigenvalue The relation (5.1) admits positive solutions. In-

deed, using the parameterisation (3.18), we have a, b, c, d > 0 if ρ >

0, η = π/3, 0 < u < π/3, and 0 < p < 1. We now prove that in

this case, ΛL is the largest eigenvalue of the transfer matrix T of the

supersymmetric eight-vertex model with the K-matrices (5.22) and y a

solution of (4.81).

The proof is based on the Perron-Frobenius theorem for positive matrices

and its variant for non-negative matrices. We use certain concepts from

Perron theory and refer to the book [81] for details. We only recall that

|ψ〉 ∈ V L is called a Perron vector if all its components are positive and

its norm is one.

Proposition 5.3.4. For each L > 1, there is a constant CL such that

|Ψ′L〉 = CL|ΨL〉 is a Perron vector.

Proof. First, we note that for all (p, t) ∈ D̄ with t = π/6, the off-diagonal

matrix elements of the Hamiltonian HXYZ are zero or negative. Hence,

there is a real number λ such that the matrix λ−HXYZ has a positive

diagonal and non-negative off-diagonal entries.

Second, we note that the action of λ−HXYZ on any basis state |s1 · · · sL〉
of V L leads to a linear combination of basis states that are obtained from

|s1 · · · sL〉 by (i) flipping pairs adjacent aligned spins, (ii) exchanging

pairs of adjacent anti-aligned spins, (iii) flipping the spin on the first

or last site or (iv) leaving the basis state unchanged. The coefficients

of this linear combination are positive. The repeated application of the

operations (i)-(iv) allows one to generate any basis state from |s1 · · · sL〉.
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We conclude that there is an integer m > 0 such that (λ−HXYZ)m has

positive entries. Hence, λ−HXYZ is a non-negative irreducible matrix.

Third, we apply the Perron-Frobenius theorem to the matrix λ−HXYZ.

It implies that its largest eigenvalue is non-degenerate and that the

corresponding eigenspace is spanned by a Perron vector |Ψ′L〉. By Theo-

rem 4.5.7, this largest eigenvalue is λ−E0, and the eigenspace spanned by

|ΨL〉. Hence, there must be a constant CL such that |Ψ′L〉 = CL|ΨL〉.

Proposition 5.3.5. For each L > 1, positive vertex weights a, b, c, d,

0 < ζ < 1 and real 0 < y < 1, the transfer matrix of the supersymmetric

eight-vertex model on a strip of length L with the K-matrices K± defined

in (5.22) is a positive matrix.

Proof. Let V0, V0̄ = V be two copies of the single-spin Hilbert space. For

each s, s̄ ∈ {↑, ↓}, we define an operator Css̄ : V0 ⊗ V0̄ → V0 ⊗ V0̄ by

Css̄ = (1⊗ 1⊗ 〈s̄|)R01(R0̄1)t0̄ (1⊗ 1⊗ |s〉) . (5.56)

Its entries are non-negative. A direct calculation shows that for all

s, s̄ ∈ {↑, ↓} and each |p〉 ∈ {|↑↑〉, |↑↓〉} there is a unique |p̄〉 ∈ {|↑↑〉, |↑↓〉},
depending on s, s̄, such that 〈p̄|Css̄|p〉 > 0. Moreover, we define two

states |k±〉 ∈ V0 ⊗ V0̄ through their components, given by

〈ss̄|k±〉 = 〈s̄|K±|s〉, (5.57)

for all s, s̄ ∈ {↑, ↓}. These components are positive.

For each pair of basis states |s1 · · · sL〉, |s̄1 · · · s̄L〉, we write the matrix

elements of the transfer matrix in terms of these operators and states:

〈s̄1 · · · s̄L|T |s1 · · · sL〉 = 〈k+|CsLs̄L · · ·Cs1s̄1 |k−〉. (5.58)

To investigate this matrix element, we use the identity∑
|w〉∈Ω

|w〉〈w| = 1, (5.59)

where Ω = {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} denotes the canonical basis of V 2. It

allows us to write

〈s̄1 . . . s̄L|T |s1 . . . sL〉 =
∑
|wi〉∈Ω
i=0,...,L

〈k+|wL〉

(
L∏
j=1

〈wj |Csj s̄j |wj−1〉

)
〈w0|k−〉.

(5.60)
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Each term inside the sum of the right-hand side is a product of non-

negative factors. To show that the sum is positive, it is therefore sufficient

to find a single choice for |w0〉, . . . , |wL〉 that yields a positive term. We

determine such a choice by iteration. First, we set |w0〉 = |p0〉 = |↑↑〉.
Second, we choose the unique state |w1〉 = |p1〉 ∈ {|↑↑〉, |↑↓〉} such

that 〈w1|Cs1s̄1 |w0〉 = 〈p1|Cs1s̄1 |p0〉 > 0. Next, we iterate this step and

determine for each i = 2, . . . , L the unique |wi〉 = |pi〉 ∈ {|↑↑〉, |↑↓〉} such

that 〈wi|Csis̄i |wi−1〉 = 〈pi|Csis̄i |pi−1〉 > 0. The term corresponding to

this choice is a lower boundary for the sum:

〈s̄1 . . . s̄L|T |s1 . . . sL〉 > 〈k+|pL〉

(
L∏
j=1

〈pj |Csj s̄j |pj−1〉

)
〈p0|k−〉. (5.61)

Each factor of the product on the right-hand side of this equality is

positive. Hence, the matrix element is positive.

We combine the results of the previous lemmas to prove the following:

Theorem 5.3.6. Let L > 1, 0 < ζ < 1 and y be a solution of (4.81). If

a, b, c, d > 0, then ΛL is the largest eigenvalue of the transfer matrix of

the supersymmetric eight-vertex model on a strip with L vertical lines

and K-matrices (5.22).

Proof. First, let y = y0 be the unique solution of the equation (4.81)

with 0 < y < 1. We denote by Λ′L the largest eigenvalue of the transfer

matrix T = T (a, b, c, d; y0) of the supersymmetric eight-vertex model

with the K-matrices (5.22) and positive vertex weights a, b, c, d > 0.

By Proposition 5.3.5, T is a positive matrix. The Perron-Frobenius

theorem states that the eigenspace of Λ′L is one-dimensional and spanned

by a Perron vector, and that no other eigenspace contains a Perron

vector. We have T |Ψ′L〉 = ΛL|Ψ′L〉, where |Ψ′L〉 is the Perron vector of

Proposition 5.3.4. Hence, Λ′L = ΛL.

Second, let y = yα, α = 1, 2, 3, be another solution of (4.81). We follow

the reasoning of the proof of Theorem 5.3.3. The transfer matrix has the

property

T (a, b, c, d; yα) = Rα(−π)T (a, b, c, d; y0)Rα(π). (5.62)
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The two transfer matrices in this equality are related by a unitary

transformation. Therefore, they have the same spectrum and, hence, the

same largest eigenvalue ΛL.

The free energy. Up to an irrelevant factor, the free energy per pair

of horizontal lines of the eight-vertex model on a strip is given by the

logarithm of the largest eigenvalue of its transfer matrix. For large L, it

is expected to take the form

− ln ΛL = 2Lf + fB +O(L−1), (5.63)

where f is the bulk free energy per site, and fB the boundary free energy.

The bulk free energy per site is known from Baxter’s work [89]. As for

fB, however, we are not aware of an explicit formula for general vertex

weights and boundary conditions in the literature.

In the case studied in this chapter, it is trivial to compute the expansion

(5.63), because we explicitly know ΛL for each L > 1. We obtain

f = − ln(a+ b), fB = − ln tr(K+K−). (5.64)

The finite-size corrections O(L−1) are absent. We note that f = − ln(a+

b) matches Baxter’s results [89].
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Chapter 6

The supersymmetric XXZ

spin chain

The XYZ Hamiltonians studied in Chapters 2 and 4 depend on a param-

eter that we called ζ. In our analysis, we did not address the case ζ = 0.

The goal of this chapter is to treat this specific case.

When we set the parameter ζ to zero, the anisotropy parameters of the

XYZ spin-chain become

J1 = 1, J2 = 1, J3 = −1

2
. (6.1)

As J1 = J2, the model is referred to as an XXZ spin-chain, in which case

the parameter J3 is usually denoted by ∆. With ∆ = −1/2, the XXZ

spin-chain Hamiltonian density reads

hXXZ
jj+1 = −1

2

(
σ1
jσ

1
j+1 + σ2

jσ
2
j+1 −

1

2
σ3
jσ

3
j+1

)
. (6.2)

We consider the spin-chain Hamiltonian with open boundary conditions

HXXZ =

L−1∑
j=1

hXXZ
jj+1 + (hB)1 + (hB)L . (6.3a)

Here, hB is a boundary interaction given by

hB =
3∑

α=1

λασ
α, (6.3b)

99
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where

λ1 = − Re y

1 + |y|2
, λ2 = − Im y

1 + |y|2
, λ3 = −1

4

(
1− |y|2

1 + |y|2

)
, (6.3c)

and y is a complex number. We further generalise this Hamiltonian by

allowing for different boundary terms on each end of the chain.

Periodic XXZ Hamiltonian and ∆ = −1/2. As for the XXZ spin

chain with periodic boundary conditions, its Hamiltonian is the sum

H (per)
XXZ =

L∑
j=1

hXXZ
jj+1, (6.4)

where we wrote the superscript to differentiate this Hamiltonian from

(6.3).

The Hamiltonian H (per)
XXZ acting on a chain with an odd finite number of

sites has been studied intensively since the seminal work of [54] on the

related transfer matrix.

Razumov and Stroganov observed that the components of the ground

state are, in the proper normalisation, integers and are moreover related

to the enumeration of combinatorial objects. As an example, if the least

component of the ground state of a chain of size L = 2n+ 1 is normalised

to one, then the largest one equals the number of n× n alternating sign

matrices [48]. (We postpone the precise definition of those objects to

Chapter 9 which is partially devoted to enumerative combinatorics.)

Following this discovery of a relation between spin chains and combi-

natorics, the beginning of the century saw several conjectures on the

∆ = −1/2 case and related models being made [48, 58, 55, 106, 107].

Some of these conjectures have already been proven or generalised

[61, 59, 60].

The XXZ Hamiltonian with ∆ = −1/2 and periodic boundary conditions

also possesses a supersymmetric structure [80, 108]. The supersymmetry

allowed for proving the existence of the ground state energy E0 = −3L
4

for each odd L [80].

In this chapter, we revisit this periodic spin-chain Hamiltonian, and we

compute (co)homology decomposition of the ground states, in the cases

where it possesses supersymmetry singlets.
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The layout of this chapter is as follows. In the first part of this chapter,

we investigate the supersymmetry of the open spin-chain’s Hamiltonian

HXXZ. In Section 6.1, we recall the definition of the local supercharge that

depends on a parameter y. We generalise the action of the supercharge

to obtain Hamiltonians that have unequal boundary terms at both ends

of the chain. We examine the existence of supersymmetry singlets of

the supercharges by computing their (co)homology. As we shall see, this

depends on whether the parameter y is non-zero or zero. We compute

the cohomology for y 6= 0 in Section 6.2. For y = 0, we show in

Section 6.3 that the supercharge possesses supersymmetry singlets. In

Section 6.4, we use the representatives of the (co)homology classes to

provide (co)homology decompositions of the zero-energy states.

In the second part of this chapter, we focus on the Hamiltonian with

periodic boundary conditions (6.4). In Section 6.5, we recall known

results related to the ground-state eigenvector and its properties. We

explain the relation between the supercharges corresponding to periodic

and open systems. The (co)homology decompositions of the ground

states of the periodic spin-chain Hamiltonian, given in Section 6.6, use

this relation.

6.1 Supersymmetry

We consider the local supercharge (4.14) with ζ = 0. We recall that it

reads

q′ = q↑ + y3q↓ + qφ, with |φ〉 = −y|↑〉 − y2|↓〉. (6.5)

The action of q′ on the canonical basis of V is

q′|↑〉 = y3|↓↓〉 − 2y|↑↑〉 − y2(|↑↓〉+ |↓↑〉), (6.6)

q′|↓〉 = |↑↑〉 − 2y2|↓↓〉 − y(|↑↓〉+ |↓↑〉). (6.7)

We construct the supercharge Q′ : V L → V L+1 as the alternating sum

of the local supercharge:

Q′ =
L∑
j=1

(−1)jq′j . (6.8)
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As previously, the subscript j indicates that the local supercharge acts

on the j-th factor of V L. The supercharge is nilpotent by virtue of

Proposition 4.1.1.

The supersymmetric Hamiltonian H = Q′Q′†+Q′†Q′ follows from Propo-

sition 4.2.1:

H = (1 + |y|6)

(
HXXZ +

3L− 1

4
+ 3

|y|2

1− |y|2 + |y|4

)
. (6.9)

For non-zero y, the off-diagonal terms of hB are non-zero and therefore

generalise the diagonal boundary interactions found by Yang and Fendley

[80].

Spatial parity. Before generalising HXXZ by allowing different bound-

ary terms on both ends of the chain, we examine the symmetries of the

Hamiltonian. The parity operator C on V L, L > 1, is the linear operator

defined by the following action on the canonical basis states:

C|s1s2 · · · sL〉 = |sLsL−1 · · · s1〉. (6.10)

The Hamiltonian (6.3) is invariant under the action of C:

[HXXZ, C] = 0. (6.11)

This parity-invariance is evident from the Hamiltonian density (6.3b)

and since the boundary interactions are identical at both extremities of

the chain.

Magnetisation. We define the magnetisation operator as

M =
1

2

L∑
j=1

σ3
j . (6.12)

Its action on a basis state |s1s2 · · · sL〉 counts half of the number of up

spins (↑) amongst s1, . . . , sL minus half of the number of down spins (↓).
We call magnetisation of an eigenstate ofM the corresponding eigenvalue

and refer to the corresponding eigenspace as a sector of magnetisation.
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Using (6.2), we find that the Hamiltonian density satisfies [hXXZ
jj+1,M] = 0

for each j = 1, . . . , L− 1. Hence, the bulk part of the Hamiltonian HXXZ

conserves the magnetisation.

For y = 0, the boundary field hB given by (6.3b) has the property

[hB,M] = 0. This commutation relation implies that for y = 0, the full

Hamiltonian preserves the magnetisation: [HXXZ,M] = 0. Conversely,

for generic values of y this conservation law is broken by the boundary

terms. Indicating the dependence on the parameter y of hB, we have:

eiθMhB(y)e−iθM = hB(e−iθy). (6.13)

Boundary terms. In this subsection, we modify the action of Q′

defined in (6.8) on the first and last site of the spin chain. This generali-

sation allows us to show that the lattice supersymmetry can be present

for unequal boundary terms at both ends of the spin chain. Each bound-

ary term depends on the parameter y and is individually characterised

by an integer label j = −1, 0, 1.

The main ingredients of our construction are the vectors

|ξk〉 = |φ(y)〉 − |φ(qky)〉, k = −1, 0, 1, (6.14)

where q = e2iπ/3 is a third root of unity, and |φ(y)〉 is defined in (6.5).

We trivially have |ξ0〉 = 0. The action of q′ on these vectors is very

simple. Indeed, using (6.5), it is not difficult to show that

q′|ξk〉 = |ξk〉 ⊗ |ξk〉, k = −1, 0, 1. (6.15)

For any pair −1 6 `, k 6 1, we consider an operator Q′`,k that acts on

any |ψ〉 ∈ V L according to

Q′`,k|ψ〉 = |ξ`〉 ⊗ |ψ〉+ (−1)L−1|ψ〉 ⊗ |ξk〉+ Q′|ψ〉. (6.16)

We note that the case ` = k = 0 corresponds to unmodified boundary

interactions: Q′0,0 = Q′. Using Q′2 = 0 and (6.15), one checks that(
Q′`,k

)2
= 0. (6.17)

The corresponding Hamiltonian H`,k = {Q′`,k, (Q′`,k)†} is readily evalu-

ated. It is given by a sum of nearest-neighbour interactions and boundary
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terms that depend on ` and k:

H`,k = x

L−1∑
j=1

hXXZ
jj+1 + (h

(`)
B )1 + (h

(k)
B )L +

3L− 1

4
+ 3

|y|2

1− |y|2 + |y|4

 ,

(6.18)

where we used the shorthand notation x = (1 + |y|6). Here, hXXZ
jj+1 is the

Hamiltonian density (6.2) and the boundary terms are given by

h
(k)
B = hB(qky), (6.19)

where we explicitly wrote the dependence of hB on y.

We conclude that all boundary conditions that result from a modification

of the action of the supercharge on the first and last site of the spin

chain are parameterised by two integers −1 6 `, k 6 1. However, not all

choices of these parameters lead to unequal spectra.

To see this, let us write H`,k = H`,k(y) to stress the dependence of this

Hamiltonian on the parameter y. We note that the spectrum of H`,k(y)

is the same as the spectrum of eiθMH`,k(y)e−iθM = H`,k(e−iθy) (for any

real value of θ) and (H`,k(y))∗ = H−`,−k(y
∗). An appropriate choice for

θ allows us to conclude that it is sufficient to restrict the parameters to

real values for y and the two distinct cases ` = 1, k = 0 and ` = k = 0.

We have constructed a family of Hamiltonians H`,k that are supersym-

metric. In the following two sections, we analyse whether they possess

supersymmetry singlets. To this end, we exploit the relation between

zero-energy states and the cohomology of the supercharge, explained in

Chapter 1. The structure of the cohomology depends on whether the

parameter y is non-zero or zero. Hence, we treat each case independently.

6.2 Zero-energy states: the case y 6= 0

In this and the following section, we explicitly compute HL for the

supercharge Q′`,k. The computation allows us to characterise the space of

zero-energy states of the Hamiltonian H`,k as a function of the parameter

y, the integer labels `, k and the system size L.

Here, we consider the case y 6= 0. We prove the following theorem:
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Theorem 6.2.1. For y 6= 0 and each `, k = −1, 0, 1, the cohomology H•

of the supercharge Q′`,k is trivial.

This theorem implies that for y 6= 0 and any length of the chain L, the

Hamiltonian H`,k does not possess zero-energy states. Thus, its spectrum

is strictly positive.

The proof is based on two lemmas. The first lemma deals with a mapping

s that is akin to a so-called contracting homotopy [74].

Lemma 6.2.2. Let Q′ be an arbitrary supercharge. Suppose that for

each L > 2 there is a mapping s : V L → V L−1 such that

sQ′ + Q′s = 1. (6.20)

Then for each L > 2, we have HL = 0.

Proof. We show that any cocycle |ψ〉 ∈ V L is a coboundary. Indeed,

applying (6.20) to |ψ〉, we obtain

|ψ〉 = (sQ′ + Q′s)|ψ〉 = Q′(s|ψ〉). (6.21)

Hence, HL = 0.

We aim to construct such a mapping s for the supercharge Q′`,k(y). To

this end, we use the vectors |ξ±1〉 defined in (6.14). The second lemma

needed for our proof of Theorem 6.2.1 establishes that for non-vanishing

y these vectors span the Hilbert space V of a single spin:

Lemma 6.2.3. For y 6= 0, the vectors |ξ−1〉 and |ξ1〉 constitute a basis

of V .

Proof. The matrix whose columns are given by |ξ1〉 and |ξ−1〉 in the

canonical basis of V is

Ξ =

(
−y(1− q) −y(1− q−1)

−y2(1− q2) −y2(1− q−2)

)
. (6.22)

To prove the lemma, it is sufficient to show that the matrix Ξ has a

non-zero determinant. This is indeed the case as det Ξ = 3y3(q2 − q1) is

non-vanishing for y 6= 0.
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Proof of Theorem 6.2.1. We now prove that if y 6= 0 then the quotient

space HL of the supercharge Q′`,k is zero for each L > 1 and each

`, k = −1, 0, 1. For L = 1, the proof is trivial: one readily checks that

ker{Q′`,k : V → V 2} = 0, using Lemma 6.2.3. Hence, we focus on L > 2.

The proof is based on the construction of a mapping s` that obeys (6.20)

for each ` = −1, 0, 1. We separately consider the cases ` = ±1 and ` = 0.

Let us first consider ` = ±1. It follows from Lemma 6.2.3 that for y 6= 0,

every vector |ψ〉 ∈ V L can be written as

|ψ〉 = |ξ−1〉 ⊗ |ψ−1〉+ |ξ1〉 ⊗ |ψ1〉, (6.23)

with unique vectors |ψ−1〉, |ψ1〉 ∈ V L−1. We define the mapping s` by

s`|ψ〉 = |ψ`〉. (6.24)

Using the action (6.15) of the local supercharge on the basis vectors |ξ1〉
and |ξ−1〉, it is easy to see that

(s`Q
′ + Q′s`)|ψ〉 = −|ξ`〉 ⊗ |ψ`〉 = −|ξ`〉 ⊗ s`|ψ〉. (6.25)

We combine this identity with the definition of the supercharge (6.16)

and find that

s`Q
′
`,k + Q′`,ks` = 1 (6.26)

for each ` = ±1 and k = −1, 0, 1.

Second, for ` = 0, we define

s0 = −s−1 − s1. (6.27)

Using the definition of s±1, it is easy to see that (6.26) holds for ` = 0

and k = −1, 0, 1, too.

In both cases, it follows from Lemma 6.2.2 that the quotient space HL

corresponding to the supercharge Q′`,k equals zero for any L > 2 and

each `, k = −1, 0, 1. This ends the proof of the theorem.

We notice that the proof only relies on the existence of a basis |ξ−1〉, |ξ1〉
of V with the property q′|ξk〉 = |ξk〉 ⊗ |ξk〉 for each k = ±1. This

property, observed in a variety of other physically-relevant spin chains

[77], is similar to the one presented and used in Chapter 4.
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6.3 Zero-energy states: the case y = 0

The proof of Theorem 6.2.1 is not generalisable to the case y = 0. For

this value of y, the local supercharge reduces to q↑, and its action on the

basis of V is

q′|↑〉 = 0, q′|↓〉 = |↑↑〉. (6.28)

It follows that the adjoint supercharge q′† acts on the basis vectors of

V 2 according to

q′†|↑↑〉 = |↓〉, q′†|↑↓〉 = q′†|↓↑〉 = q′†|↓↓〉 = 0. (6.29)

We mention that the supercharge (6.28) is locally equivalent to the one of

the so-called M1 model. This model describes supersymmetric fermions

on a one-dimensional lattice with an exclusion constraint that forbid the

fermions to have neighbours. Hence, each fermion forms a cluster of size

one. The supercharge splits a cluster of size one into a pair of adjacent

clusters of size zero [109].

The M1 model belongs to a family of Mk models of Fendley, Nienhuis

and Schoutens [110], which allows k fermions to be adjacent in a given

cluster. The Mk model is locally equivalent to a spin chain with spin k/2

[77]. The corresponding ground-state eigenspaces have been investigated

through the characterisation of the (co)homology [1].

As for the local supercharge (6.28), it was found in the spin language

by Fendley and Yang [80]. The corresponding supercharge Q′`,k is inde-

pendent of the indices `, k if y = 0, and we simply denote it by Q′. Its

cohomology is non-trivial.

The main result of this section is the following theorem:

Theorem 6.3.1. The space HL is spanned by the cohomology class of

the state

|χ · · ·χ︸ ︷︷ ︸
n times

〉 if L = 2n, (6.30a)

and

|↑〉 ⊗ |χ · · ·χ︸ ︷︷ ︸
n−1 times

〉 if L = 2n− 1, (6.30b)

where |χ〉 = |↑↓〉+ |↓↑〉 ∈ V 2, and n is a positive integer.
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Here, we abbreviate the tensor product |χ〉 ⊗ · · · ⊗ |χ〉 by |χ · · ·χ〉 in

order to simplify the notation.

This theorem implies that for y = 0 the spin-chain Hamiltonian H

possesses a zero-energy state for each length L. The state is unique up

to normalisation.

The proof of Theorem 6.3.1 is based on several lemmas. They establish

the existence of an explicit bijection between HL and HL+2 for each

L > 1. Hence, we may construct HL from H1 and H2. We explicitly

compute them in the following lemma:

Lemma 6.3.2. H1 and H2 are spanned by the cohomology classes of

the states |↑〉 and |χ〉, respectively.

Proof. For L = 1, recall that H1 = ker{Q′ : V 1 → V 2}. According to

(6.28), the only solution to q′|ψ〉 = 0 is |ψ〉 = |↑〉, up to a factor.

For L = 2, we consider a cocycle |ψ〉 ∈ V 2. We write ψs1s2 = 〈s1s2|ψ〉 for

its components with respect to the canonical basis of the Hilbert space

V . From Q′|ψ〉 = 0, it follows that

ψ↓↓ = 0, ψ↑↓ = ψ↓↑. (6.31)

The state |ψ〉 thus reads

|ψ〉 = ψ↑↓|χ〉+ Q′ (−ψ↑↑|↓〉) . (6.32)

Hence [|ψ〉] = ψ↑↓[|χ〉] with an arbitrary coefficient ψ↑↓. The cohomology

class of |χ〉 cannot be zero since this state is a linear combination of basis

states of V 2 that are clearly not in the image of q′.

The preceding lemma gives us simple representatives of H1 and H2. In

particular, we note that they satisfy

Q′|↑〉 = 0, Q′|χ〉 = 0. (6.33)

Our next aim is to study HL for L > 3. In the following technical lemma,

we determine a convenient choice of their representatives.
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Lemma 6.3.3. For each L > 3 any element in HL can be represented

by a cocycle |ψ〉 ∈ V L with

|ψ〉 = |ψ↑〉 ⊗ |↑〉+ |ψ↓〉 ⊗ |↓〉 (6.34)

such that |ψ↑〉 = |ψ↓,↑〉 ⊗ |↓〉 for some vector |ψ↓,↑〉 ∈ V L−2.

Proof. Let us consider the cocycle |ψ′〉 representing an element of HL.

Then for any |φ〉 ∈ V L−1 the vector |ψ〉 = |ψ′〉+ Q′|φ〉 is also a cocycle,

representing the same element of HL. We write the vector |ψ〉 (and

likewise |ψ′〉, |φ〉) as a superposition

|ψ〉 = |ψ↑〉 ⊗ |↑〉+ |ψ↓〉 ⊗ |↓〉, (6.35)

where |ψ↑〉, |ψ↓〉 ∈ V L−1. The equality |ψ〉 = |ψ′〉+ Q′|φ〉 leads to

|ψ↑〉 = |ψ′↑〉+ Q′|φ↑〉+ (−1)L|φ↓〉 ⊗ |↑〉, (6.36)

|ψ↓〉 = |ψ′↓〉+ Q′|φ↓〉. (6.37)

We decompose the vector |ψ′↑〉 as follows: |ψ′↑〉 = |ψ′↑,↑〉⊗ |↑〉+ |ψ′↓,↑〉⊗ |↓〉
and substitute this decomposition in the first of these equations. We

obtain

|ψ↑〉 = |ψ′↑,↑〉 ⊗ |↑〉+ |ψ′↓,↑〉 ⊗ |↓〉+ Q′|φ↑〉+ (−1)L|φ↓〉 ⊗ |↑〉. (6.38)

In order to prove the lemma, we choose

|φ↑〉 = 0, |φ↓〉 = (−1)L+1|ψ′↑,↑〉. (6.39)

This choice leads to |ψ↑〉 = |ψ′↓,↑〉 ⊗ |↓〉 and ends the proof.

For the next two lemmas, we introduce the operator S which acts on

any vector |ψ〉 ∈ V L, L > 1, according to

S|ψ〉 = |ψ〉 ⊗ |χ〉. (6.40)

One checks that it commutes with the supercharge Q′,

SQ′ = Q′S, (6.41)

because |χ〉 is annihilated by the supercharge. It follows that we can

extend S to a mapping S] defined on the cohomology [74, 73]: S] : HL →
HL+2. Its action on the cohomology classes is given by S][|ψ〉] = [S|ψ〉].
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Lemma 6.3.4. For each L > 1 the mapping S] : HL → HL+2 is

surjective.

Proof. Let |ψ〉 be a cocycle representing an element of HL+2. We decom-

pose it as in (6.35) with respect to the last site. The equation Q′|ψ〉 = 0

leads to

Q′|ψ↑〉 = (−1)L+1|ψ↓〉 ⊗ |↑〉, (6.42)

Q′|ψ↓〉 = 0. (6.43)

Let us consider the first equation. From Lemma 6.3.3 it follows that we

may choose |ψ↑〉 = |ψ↓,↑〉 ⊗ |↓〉, for some state |ψ↓,↑〉 ∈ V L, without loss

of generality. This choice leads to

Q′|ψ↓,↑〉 ⊗ |↓〉+ (−1)L+1|ψ↓,↑〉 ⊗ |↑↑〉 = (−1)L+1|ψ↓〉 ⊗ |↑〉. (6.44)

Comparing both sides, we obtain

Q′|ψ↓,↑〉 = 0, and |ψ↓〉 = |ψ↓,↑〉 ⊗ |↑〉. (6.45)

According to (6.28) and the definition of |χ〉, we find

|ψ〉 = |ψ↓,↑〉 ⊗ |↓↑〉+ |ψ↓〉 ⊗ |↓〉 = |ψ↓,↑〉 ⊗ |χ〉 = S|ψ↓,↑〉 (6.46)

with a cocycle |ψ↓,↑〉 ∈ V L. For the corresponding cohomology classes,

we find thus [|ψ〉] = S][|ψ↓,↑〉].

Lemma 6.3.5. For each L > 1 the mapping S] : HL → HL+2 is

injective.

Proof. Consider an element of ker{S] : HL → HL+2}. It can be repre-

sented by a cocycle |ψ〉 ∈ V L such that S|ψ〉 = Q′|φ〉 for some vector

|φ〉 ∈ V L+1. As before, it is useful to decompose the state with respect

to the last site: |φ〉 = |φ↑〉 ⊗ |↑〉+ |φ↓〉 ⊗ |↓〉. We find

S|ψ〉 = |ψ〉⊗|χ〉 = Q′|φ↑〉⊗|↑〉+Q′|φ↓〉⊗|↓〉+(−1)L+1|φ↓〉⊗|↑↑〉. (6.47)

We select on both sides the terms corresponding to |↑〉 on the last site

and find

|ψ〉 ⊗ |↓〉 = Q′|φ↑〉+ (−1)L+1|φ↓〉 ⊗ |↑〉. (6.48)
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We decompose once again |φ↑〉 = |φ↓,↑〉 ⊗ |↓〉+ |φ↑,↑〉 ⊗ |↑〉. The action of

the supercharge to this decomposition leads to

|ψ〉 ⊗ |↓〉 = Q′|φ↓,↑〉 ⊗ |↓〉
+
(
(−1)L|φ↓,↑〉 ⊗ |↑〉+ Q′|φ↑,↑〉+ (−1)L+1|φ↓〉

)
⊗ |↑〉. (6.49)

This equality implies |ψ〉 = Q′|φ↓,↑〉. Hence, |ψ〉 is a coboundary. We

conclude that ker{S] : HL → HL+2} = 0, which proves the claim.

We are now ready to prove the main result of this section.

Proof of Theorem 6.3.1. From Lemmas 6.3.4 and 6.3.5 we conclude that

for each L > 1 the mapping S] : HL → HL+2 is both surjective and

injective. Hence HL+2 is isomorphic to HL. By transitivity, we obtain

H2n−1 = (S])n−1H1, H2n = (S])n−1H2 (6.50)

for each n > 1. We computed H1 and H2 in Lemma 6.3.2. This allows

us to compute representatives of the elements of HL for odd and even L

from the repeated action of S on |↑〉 and |χ〉, respectively, which leads

to (6.30).

We note that the state |χ · · ·χ〉 can be seen as the limit case of the

alternative decomposition of the supersymmetry singlet of the XYZ chain

given in (4.73) when ζ and y tend to zero. This decomposition involves

the state |χ(y, ζ)〉, where we write the dependence in the parameters ζ, y.

We have, using Lemma 4.5.5,

lim
y,ζ→0

−y
ζ
|χ(y, ζ)〉 = |↑↓〉+ |↓↑〉. (6.51)

Hence, in a properly normalised limit, one retrieves the state |χ〉 of

Theorem 6.3.1.

6.4 Decomposition of zero-energy states

In this section, we analyse the zero-energy states of the spin-chain

Hamiltonians H with y = 0, which correspond to the ground states of
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HXXZ. Our main goal is to unveil some of their properties with the help of

Theorem 6.3.1. We discuss two decompositions of the zero-energy states

arising from the representatives of the (co)homology. We deduce from

these decompositions their magnetisation, parity and relations between

specific components.

Cohomology decomposition. It follows from Proposition 1.4.3 that

a spin-chain ground state can be written as the sum of a representative

of HL and an element of the image of the supercharge. Specifically, we

have:

Proposition 6.4.1. For each L > 1, the space of the ground states of

the Hamiltonian (6.3) is one dimensional. For L = 2n, it is spanned by

|Ψ′2n〉 = |χ · · ·χ〉+ Q′|φ′2n〉 (6.52)

with |φ′2n〉 ∈ V 2n−1. For L = 2n− 1, it is spanned by

|Ψ′2n−1〉 = |↑〉 ⊗ |χ · · ·χ〉+ Q′|φ′2n−1〉 (6.53)

with |φ′2n−1〉 ∈ V 2(n−1).

Proof. The proof is a direct consequence of Theorem 6.3.1 and the

cohomology decomposition of a supersymmetry singlet (1.49).

From now, we write |Ψ′L〉 for the state defined in (6.52) and (6.53) for

even and odd L, respectively. Furthermore, we write

(Ψ′L)s1s2...sL = 〈s1s2 · · · sL|Ψ′L〉, (6.54)

with si ∈ {↑, ↓} for its components with respect to the canonical basis of

V L.

The decompositions of the zero-energy states given in (6.52) and (6.53)

allow us to derive several simple properties of |Ψ′L〉. Two immediate

consequences are:

Corollary 6.4.2. For each n > 1, we have

(Ψ′2n)↑↓···↑↓ = 1 = (Ψ′2n)↓↑···↓↑ (6.55)

and

(Ψ′2n−1)↑↓···↑↓↑ = 1. (6.56)
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Proof. We consider L = 2n and project both sides of the equality (6.52)

onto the state |ω〉 = |↑↓ · · · ↑↓〉. We compute 〈ω|χ · · ·χ〉 = 1 from the

definition of |χ〉. Furthermore, |ω〉 is annihilated by the adjoint super-

charge, as follows from the action (6.29) of the adjoint local supercharge

q′†.

The proof of (Ψ′2n)↓↑···↓↑ = 1 is similar and uses the vector |ω〉 =

|↓↑ · · · ↓↑〉. Finally, the case L = 2n − 1 is shown similarly with

|ω〉 = |↑↓ · · · ↑↓↑〉.

Corollary 6.4.3. We have M|Ψ′2n〉 = 0 and M|Ψ′2n−1〉 = 1/2|Ψ′2n−1〉.

Proof. The E = 0 eigenspace of H is one-dimensional. Furthermore, the

Hamiltonian conserves the magnetisation [H,M] = 0. Hence, we must

have M|Ψ′L〉 = mL|Ψ′L〉 for any L > 1. To find mL, it is sufficient to

project this equality onto simple basis vectors. For L = 2n, we find

0 = 〈↑↓ · · · ↑↓|M|Ψ′2n〉 = m2n〈↑↓ · · · ↑↓|Ψ′2n〉. (6.57)

According to Corollary 6.4.2, (Ψ′2n)↑↓···↑↓ = 1 and therefore m2n = 0. For

L = 2n− 1, the proof is similar.

The Proposition 6.4.1 implies that |Ψ′L〉 is even under the action of the

parity operator.

Corollary 6.4.4. For any L > 1 we have C|Ψ′L〉 = |Ψ′L〉.

Proof. The proof follows the lines of Corollary 6.4.3: since the E = 0

eigenspace of H has dimension one and [H, C] = 0, we must have C|Ψ′L〉 =

cL|Ψ′L〉 for any L > 1. To fix cL we project this equation onto simple

basis states.

For L = 2n − 1, we consider the projection onto the parity-invariant

state |↑↓ · · · ↑↓↑〉:

〈↑↓ · · · ↑↓↑|Ψ′2n−1〉 = 〈↑↓ · · · ↑↓↑|C|Ψ′2n−1〉 = c2n−1〈↑↓ · · · ↑↓↑|Ψ′2n−1〉.
(6.58)

According to Corollary 6.4.2, 〈↑↓ · · · ↑↓↑|Ψ′2n−1〉 = (Ψ′2n−1)↑↓···↑↓↑ = 1

and therefore c2n−1 = 1.
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For L = 2n, the projection onto the state |↑↓ · · · ↑↓〉 leads to

〈↓↑ · · · ↓↑|Ψ′2n〉 = 〈↑↓ · · · ↑↓|C|Ψ′2n〉 = c2n〈↑↓ · · · ↑↓|Ψ′2n〉. (6.59)

The Corollary 6.4.2 directly implies c2n = 1.

We notice in this proof that a zero-energy state can be parity-invariant

even though its representative is not.

Homology decomposition. Up to now, we have focused on the co-

homology of the supercharge Q′ and the resulting decomposition of the

zero-energy states given in Proposition 6.4.1. We know from Chapter 1

that we could as well have considered the adjoint supercharge Q′† and its

homology, which is the direct sum of quotient spaces HL, L > 1, where

H1 = V/im{Q′† : V 2 → V } and

HL =
ker{Q′† : V L → V L−1}
im{Q′† : V L+1 → V L}

, for L > 2. (6.60)

The Corollary 1.4.7 states that the cohomology and homology are iso-

morphic:

HL ' HL for each L > 1. (6.61)

We now determine an alternative decomposition of the zero-energy states

|Ψ′L〉 using this property.

Proposition 6.4.5. For each L > 1, we have

|Ψ′L〉 = µL|↑↓↑↓ · · ·〉+ Q′†|ϕ′L〉 (6.62)

with |ϕ′L〉 ∈ V L+1. The constants µL are given by

µ2n = 〈χ · · ·χ|Ψ′2n〉, µ2n−1 = (〈↑| ⊗ 〈χ · · ·χ|) |Ψ′2n−1〉 (6.63)

for each n > 1.

Proof. We focus on the case L = 2n. Since H2n is one-dimensional, each

of its non-zero elements can be represented by a non-zero multiple of a

fixed vector in V 2n. This vector must be in the kernel (but not in the

image) of Q′†. We claim that such a vector is given by

|ω〉 = |↑↓ · · · ↑↓〉. (6.64)
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Using (6.29), one readily checks that the adjoint supercharge Q′† an-

nihilates |ω〉. Furthermore, it cannot be in the image of Q′†. Oth-

erwise, if |ω〉 = Q′†|ω̃〉 for some |ω̃〉 ∈ V 2n+1 then it follows that

(Ψ′2n)↑↓···↑↓ = 〈ω|Ψ′2n〉 = 〈ω̃|Q′|Ψ′2n〉 = 0. This contradicts Corol-

lary 6.4.2.

It follows that the zero-energy states for L = 2n have the decomposition

|Ψ′2n〉 = µ2n|↑↓ · · · ↑↓〉+ Q′†|ϕ′2n〉 (6.65)

for some non-zero scalar µ2n and |ϕ′2n〉 ∈ V 2n+1. The vector |ϕ′2n〉 cannot

be determined from homological arguments. The factor µ2n, however,

can be found by computing the scalar product of the zero-energy state

with suitable states |γ〉 that are annihilated by the supercharge Q′ and

have a non-zero scalar product with the representative. In the present

case, the choice |γ〉 = |χ · · ·χ〉 leads to

µ2n = 〈χ · · ·χ|Ψ′2n〉. (6.66)

The argument for L = 2n − 1 is similar, with the choice |γ〉 = |↑〉 ⊗
|χ · · ·χ〉.

A consequence of the (co)homology decompositions of the zero-energy

states given in Proposition 6.4.1 and Proposition 6.4.5 is:

Proposition 6.4.6. For each n > 1, we have

‖Ψ′2n‖2 = (Ψ′2n)↑↓···↑↓〈χ · · ·χ|Ψ′2n〉 (6.67a)

‖Ψ′2n−1‖2 = (Ψ′2n−1)↑↓···↑↓↑ (〈↑| ⊗ 〈χ · · ·χ|) |Ψ′2n−1〉. (6.67b)

Proof. These results directly follow from the projection of both sides of

the equalities (6.62) onto the state |Ψ′L〉. We have

‖Ψ′L‖2 = µL〈Ψ′L|↑↓↑↓ · · ·〉+ 〈Ψ′L|Q′†|ϕ′L〉. (6.68)

The second term in the right-hand side vanishes and the definition of µL
allows us to conclude.

We use this factorisation property of the norm in the next chapter when

we discuss scalar products between ground states.
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6.5 Supersymmetry of the periodic XXZ spin

chain

Supercharge of the periodic spin chain. We recall from Chapter 2

that WL is the space of alternate-cyclic states, which are eigenvectors

of the translation operator S with eigenvalue (−1)L+1. For each L, we

define

N =
1

L

L−1∑
j=0

(
(−1)L+1S

)j
. (6.69)

This operator satisfies N = N † and N 2 = N . It follows that N is an

orthogonal projection. It maps states of V L onto the subspace WL.

The definition of the supercharge Q for spin chains with periodic boundary

conditions uses the projector N :

Q =

αL L∑
j=0

(−1)jqj

N , (6.70)

where we used αL =
√

L
L+1 as a shorthand notation. This definition is

identical to the one made in Chapter 2, with ζ set to 0: on WL, the

supercharge acts as the alternating sum of local supercharges, multiplied

by αL. On every other eigenspace of S, it is identically zero.

The corresponding Hamiltonian follows from (2.28): we have

{Q,Q†} = H (per)
XXZ +

3L

4
on WL. (6.71)

The Hamiltonian H (per)
XXZ has been investigated by Yang and Fendley [80],

using a mapping to the aforementioned M1 model with periodic boundary

conditions. We summarise their results for the XXZ spin-chain with an

odd number of sites in the following theorem.

Theorem 6.5.1 ([80]). For each odd L, the Hamiltonian H (per)
XXZ has the

doubly-degenerate ground-state energy E = −3L
4 . The corresponding

eigenvectors are alternate-cyclic states and belong to the direct sum of

the eigenspaces of M with eigenvalue +1
2 and −1

2 .
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Two remarks about this theorem are in order. First, the degeneracy is

a consequence of the Hamiltonian being invariant under spin reversal

[H (per)
XXZ ,R] = 0: if |ψ〉 is a ground state with magnetisation +1

2 , then

R|ψ〉 is also a ground state, with magnetisation −1
2 , and these states

are orthogonal to each other. This symmetry implies that every ground

state |ψ〉 can be written uniquely as the sum |ψ+〉+ |ψ−〉 such that

M|ψ+〉 =
1

2
|ψ+〉, M|ψ−〉 = −1

2
|ψ−〉. (6.72)

Hence, we can separately examine the ground states in each magnetisation

subspace.

Second, the existence of the eigenvalue can be seen as a consequence

of Theorem 2.4.5 for ζ = 0, as eigenvalues are continuous functions of

ζ. However, the eigenvectors are not necessarily so. In particular, the

ground states introduced in Chapter 2 are not defined for ζ = 0.

The goal of this and the following section is to characterise the ground

states using (co)homological arguments. We start by rephrasing the

statement of Theorem 6.5.1: the cohomology of the supercharge Q is the

direct sum

HL = HL+ ⊕HL−. (6.73)

Here HL+ and HL− are one-dimensional quotient spaces (hence they consist

of a single equivalence class) and are such that each representative of

HL+ and HL− has magnetisation +1
2 and −1

2 , respectively.

To construct simple representatives of these equivalences classes, we

investigate the relation between the supercharges Q and Q′, and the

projector N .

First, we note that the supercharge Q satisfies QN = Q. This relation

follows from the definition of Q. Second, the following proposition

establishes a connection between Q and Q′.

Proposition 6.5.2. For each L, the supercharges Q and Q′ satisfy

αLQ = NQ′. (6.74)
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Proof. The action of the projector on the local supercharge qi, for i =

1, . . . , L yields

N qi =
1

L+ 1

L∑
j=0

(−1)(L+2)jSjqi =
1

L+ 1

 L∑
j=0

qjSj(−1)Lj

 (−1)LiS−i.

(6.75)

We take the alternating sum of these equalities:

NQ′ =
1

L+ 1

L∑
i=1

(−1)i

 L∑
j=0

qjSj(−1)Lj

 (−1)LiS−i

=
1

L+ 1

L∑
j=0

(−1)jqj

L∑
i=1

(
(−1)L+1S

)j−i
=

L

L+ 1

L∑
j=0

(−1)jqjN .

We used the definition of the projector N to obtain the last equality, the

right-hand side of which equals αLQN = αLQ. This ends the proof.

The previous result implies a relation between adjoint supercharges. We

have:

Q′†N = αLQ
†. (6.76)

The relation between the supercharges for open and periodic systems

does not come as a surprise. This result is expected from the connection

between the supercharges and the structures that are used in cyclic

cohomology [74].

6.6 Decomposition of zero-energy states

In this section, we construct representatives of HL+ and HL− for each odd

L = 2n + 1. We use those representatives to characterise the ground

states of H (per)
XXZ . The proofs are based on the representatives of the

(co)homology of Q′ as well as on Proposition 6.5.2.

Proposition 6.6.1. The quotient space HL+ is spanned by the equivalence

class of the state

N (|↑〉 ⊗ |χ · · ·χ〉) . (6.77)



6.6. Decomposition of zero-energy states 119

Proof. It is straightforward to check that the state N (|↑〉 ⊗ |χ · · ·χ〉) has

magnetisation +1
2 . To prove that it is an adequate representative, we

show that this state belongs to the kernel of Q but is not in its image.

On the one hand, using Proposition 6.5.2, one checks that the state

N (|↑〉 ⊗ |χ · · ·χ〉) vanishes under the action of the supercharge:

QN (|↑〉 ⊗ |χ · · ·χ〉) = α−1
L NQ′ (|↑〉 ⊗ |χ · · ·χ〉) = 0. (6.78)

On the other hand, we show that the state N (|↑〉 ⊗ |χ · · ·χ〉) is not in

the image of Q. To this end, we define the state |ωL〉 as follows:

|ωL〉 =

n∑
j=0

|↑〉 ⊗ |↑↓〉j ⊗ |↓↑〉n−j . (6.79)

Here, |↑↓〉j is the shorthand notation for the j-fold tensor product |↑↓〉⊗
· · · ⊗ |↑↓〉, and similarly for |↓↑〉.

Let us suppose that there exists a state |γ〉 such that the following

relation holds

N (|↑〉 ⊗ |χ · · ·χ〉) = Q|γ〉. (6.80)

We project both sides of this equality onto the state N|ωL〉. On the

left-hand side of this relation, the scalar product 〈ωL|N (|↑〉 ⊗ |χ · · ·χ〉)
is easily computed and equals 3n+1

2n+1 , which is non-zero. Furthermore, we

show that Q†N|ωL〉 = Q†|ωL〉 vanishes. Indeed, it is clear from (6.29)

that the action of q†j on |ωL〉 is non-trivial only for j = 0, 1. We have

L∑
j=0

(−1)jqj |ωL〉 = q†0|ωL〉 − q†1|ωL〉

=

n−1∑
j=0

|↑↓〉j ⊗ |↓↑〉n−j−1 ⊗ |↓↓〉 −
n∑
j=1

|↓↓〉 ⊗ |↑↓〉j−1 ⊗ |↓↑〉n−j . (6.81)

To obtain the action of Q† on the state |ωL〉, we apply the projector N
on both sides of this equality. The right-hand side yields zero, which

proves that Q†|ωL〉 = 0 and leads to the desired contradiction.

Proposition 6.6.2. The quotient space HL− is spanned by the equivalence

class of the state N|ω̄L〉 ∈ V L, where |ω̄L〉 is defined as

|ω̄L〉 = 2|↓〉 ⊗ |χ · · ·χ〉+

n∑
j=1

|↑〉 ⊗ | χ · · ·χ︸ ︷︷ ︸
j−1 times

〉 ⊗ |↓↓〉 ⊗ | χ · · ·χ︸ ︷︷ ︸
n−j times

〉. (6.82)
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Proof. One readily checks that the vector N|ω̄L〉 has magnetisation −1/2.

We may verify that it is annihilated by Q and does not belong to its

image.

First, we use Proposition 6.5.2 and compute the action of Q′ on |ω̄L〉:

Q′|ω̄L〉 = −2|↑↑〉 ⊗ |χ · · ·χ〉

+

n∑
j=1

|↑〉 ⊗ | χ · · ·χ︸ ︷︷ ︸
j−1 times

〉 ⊗
(
|↑〉 ⊗ |χ〉 − |χ〉 ⊗ |↑〉

)
⊗ | χ · · ·χ︸ ︷︷ ︸

n−j times

〉. (6.83)

The sum is telescopic and reduces to

Q′|ω̄L〉 = −|↑↑〉 ⊗ |χ · · ·χ〉 − |↑〉 ⊗ |χ · · ·χ〉 ⊗ |↑〉. (6.84)

We apply the projector N on both sides of the equality, its action on the

right-hand side yields zero. Thus, we find QN|ω̄L〉 = 0.

Second, we show that N|ω̄L〉 is not in the image of Q, in the same vein

as in Proposition 6.6.1. We suppose that there exists a state |γ̄〉 such

that

N|ω̄L〉 = Q|γ̄〉. (6.85)

To obtain a contradiction, we project both sides of this identity onto

a state which is in the kernel of Q† and which has a non-zero scalar

product with N|ω̄L〉. Such a state is given by N|↓↑ · · · ↓↑↓〉. Indeed, it is

clear from the action of the local supercharge that Q†N|↓↑ · · · ↓↑↓〉 = 0.

Furthermore, one checks that 〈↓↑ · · · ↓↑↓|N |ω̄L〉 = 3n+2
2n+1 6= 0.

Using the two preceding propositions, we characterise the ground states

of H (per)
XXZ .

Theorem 6.6.3. For each odd L, the space of the ground states of the

Hamiltonian H (per)
XXZ is spanned by the states

|ΨL〉 = N (|↑〉 ⊗ |χ · · ·χ〉) + Q|φ〉 (6.86)

and

|Ψ̄L〉 = N|ω̄L〉+ Q|φ̄〉, (6.87)

where |φ〉, |φ̄〉 ∈ V L−1.
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Proof. The proof directly follows from (6.73) and the cohomology de-

composition of a supersymmetry singlet (1.49).

It is straightforward to verify that the states |ΨL〉 and |Ψ̄L〉 are alternate-

cyclic, have magnetisation 1
2 and −1

2 , respectively, and are thus orthogo-

nal to each other.

Homology decompositions. We determine an alternative homology

decomposition of the states |ΨL〉 and |Ψ̄L〉 defined in (6.86) and (6.87).

This is based on the equivalence between the homology and the coho-

mology as stated in Corollary 1.4.7.

Proposition 6.6.4. For each L = 2n + 1, the states |ΨL〉 and |Ψ̄L〉
possess the following homology decomposition:

|ΨL〉 = λLN|ωL〉+ Q†|ϕ〉 (6.88)

and

|Ψ̄L〉 = λ̄LN|↓↑ · · · ↓↑↓〉+ Q†|ϕ̄〉. (6.89)

Here, |ϕ〉, |ϕ̄〉 are vectors belonging to V L+1. The state |ωL〉 ∈ V L is

defined in (6.79). The constant λL and λ̄L are non-zero and given by

λL =
2n+ 1

3n+ 1
(〈↑| ⊗ 〈χ · · ·χ|) |ΨL〉, λ̄L =

2n+ 1

3n+ 2
〈ω̄L|Ψ̄L〉. (6.90)

Proof. First, we prove that |ΨL〉 can be written according to (6.88). The

state N|ωL〉 is annihilated by the adjoint supercharge, as seen in the

proof of Proposition 6.6.1 and is not in its image. Indeed, if it were the

case, there should be a state |γ′〉 such that N|ωL〉 = Q†|γ′〉. By taking

the scalar product of both sides of this identity with N (|↑〉 ⊗ |χ · · ·χ〉),
we obtain a contradiction.

Hence, the decomposition (6.88) follows from (1.61). We compute the

constant λL by projecting both sides of the equality (6.88) onto the state

N (|↑〉 ⊗ |χ · · ·χ〉).

Second, we show that (6.89) is a valid homology decomposition. The

state N|↓↑ · · · ↓↑↓〉 is in the kernel of Q† and cannot be in its image.
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Indeed, if it were the case, one would have N|↓↑ · · · ↓↑↓〉 = Q†|γ̄′〉 for a

particular state |γ̄′〉. The projection of both sides of this equality onto

the state N|ω̄L〉 (6.79) would give a contradiction.

We find the constant λ̄L by projecting both sides of (6.89) onto the state

N|ω̄L〉. This concludes the proof.

The states |ΨL〉 and |Ψ̄L〉 can be mapped into each other via a spin-

reversal operation: there exists a non-zero constant ρL for each L such

that

R|ΨL〉 = ρL|Ψ̄L〉, R|Ψ̄L〉 = ρ−1
L |ΨL〉. (6.91)

We use this symmetry as well as the (co)homology decompositions of the

ground states |ΨL〉, |Ψ̄L〉 to unveil some of their properties.

Corollary 6.6.5. For each L > 1, the components (ΨL)↑↓···↑↓↑ and

(Ψ̄L)↓↑···↓↑↓ are non zero.

Proof. First we prove the statement for |Ψ̄L〉. The projection of both

sides of the cohomology decomposition (6.87) onto the state |↓↑ · · · ↓↑↓〉
yields

〈↓↑ · · · ↓↑↓|Ψ̄L〉 = 〈↓↑ · · · ↓↑↓|N |ω̄L〉+ 〈↓↑ · · · ↓↑↓|Q|φ̄〉. (6.92)

The action of the supercharge is zero and one checks, as in the proof of

Proposition 6.6.2, that 〈↓↑ · · · ↓↑↓|N |ω̄L〉 = 3n+2
2n+1 6= 0.

Second, the proof for |ΨL〉 follows from the spin-reversal symmetry. We

have

(ΨL)↑↓···↑↓↑ = 〈↑↓ · · · ↑↓↑|RR|ΨL〉 = ρL(Ψ̄L)↓↑···↓↑↓, (6.93)

which is non-zero. This ends the proof.

We note that we can also prove this property by using the Perron-

Frobenius theorem applied to the restriction of the Hamiltonian to the

adequate subspace.

Corollary 6.6.6. For any L > 1, we have

C|ΨL〉 = |ΨL〉, C|Ψ̄L〉 = |Ψ̄L〉. (6.94)
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Proof. The Hamiltonian H (per)
XXZ is invariant under the parity operator,

[H (per)
XXZ , C] = 0. Moreover, we have the commutation relation [C,M] = 0.

Hence we must have

C|ΨL〉 = cL|ΨL〉, C|Ψ̄L〉 = c̄L|Ψ̄L〉. (6.95)

We consider the relation for |ΨL〉. We project the left-hand equation

onto the basis state |↑↓ · · · ↑↓↑〉 and find

〈↑↓ · · · ↑↓↑|ΨL〉 = 〈↑↓ · · · ↑↓↑|C|ΨL〉 = cL〈↑↓ · · · ↑↓↑|ΨL〉. (6.96)

Corollary 6.6.5 ensures that 〈↑↓ · · · ↑↓↑|ΨL〉 is non-zero. Therefore cL = 1.

The proof for |Ψ̄L〉 is similar.

Finally, we observe a factorisation of the norm of |ΨL〉 and |Ψ̄L〉, in terms

of (sums of) components. The proof of this proposition is straightforward

and is similar to the one of Proposition 6.4.6.

Proposition 6.6.7. For each L, we have

〈ΨL|ΨL〉 =
2n+ 1

3n+ 1
(〈↑| ⊗ 〈χ · · ·χ|) |ΨL〉〈ωL|ΨL〉 (6.97a)

and

〈Ψ̄L|Ψ̄L〉 =
2n+ 1

3n+ 2
〈↓↑ · · · ↓↑↓|Ψ̄L〉〈ω̄L|Ψ̄L〉. (6.97b)

We note that these relations are normalisation independent. We use

them in the next chapter to investigate specific scalar products between

ground states.
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Chapter 7

Multipartite fidelities

A purely quantum property of a system is the entanglement. A system

is said to be entangled if a local measurement affects parts of the system

that are far away. Quantifying the entanglement is an essential task in

the understanding of this property. This question was first raised in the

framework of information theory. Nowadays, there is a vast interest in

entanglement in various domains of physics, such as quantum computing

[111], condensed matter [112] and high energy physics.

There are multiple ways to measure the entanglement of a system [113].

Amongst these, the entanglement entropy, a specific type of the so-called

von Neumann entropy [114], is arguably the most studied one. We

consider a quantity that behaves similarly to the entanglement entropy:

the fidelity [115, 116, 117]. It is defined as the scalar product (also

called overlap) between ground states of Hamiltonians that differ by

a perturbation parametrised by λ. Let |λ〉 be the ground state of the

Hamiltonian H(λ). The fidelity is

f(λ, λ′) =

∣∣∣∣∣ 〈λ|λ′〉√
〈λ|λ〉〈λ′|λ′〉

∣∣∣∣∣
2

. (7.1)

We consider the specific example where the system is partitioned in m

complementary subsystems and λ parametrises the interaction between

the subsystems:

H(λ) = H1 + · · ·+Hm + λH int. (7.2)

125
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Here H1, . . . ,Hm are the Hamiltonians of the subsystems, and H int

contains the interaction terms between different subsystems. Let us

denote by |ψ1〉, . . . , |ψm〉 and |ψ〉 the ground states of H1, . . . ,Hm and

H(1), respectively. We define the multipartite fidelity as the ratio

f(1, 0) =

∣∣∣∣〈ψ| (|ψ1〉 ⊗ · · · ⊗ |ψm〉)
‖ψ‖ ‖ψ1‖ · · · ‖ψm‖

∣∣∣∣2 . (7.3)

In particular, the case m = 2 is called the bipartite fidelity and was

introduced and investigated by Dubail and Stéphan [118]. The bipartite

fidelity has been obtained by lattice derivations in a few cases [119,

120, 121, 122, 5]. For one-dimensional quantum critical systems, this

quantity has a large-L asymptotic expansion whose first few terms have

been predicted by conformal field theory (CFT) techniques [118, 119].

These CFT predictions match with the exact lattice computations at the

leading and subleading orders [119, 122, 5].

In this chapter, we consider two types of multipartite fidelities, based

on different scalar products. Specifically, let L, L1, . . . , Lm be such that

L =
∑m

i=1 Li. We investigate the two overlaps

〈Ψ′L|
(
|Ψ′L1

〉 ⊗ · · · ⊗ |Ψ′Lm
〉
)
, 〈ΨL|

(
|Ψ′L1

〉 ⊗ · · · ⊗ |Ψ′Lm
〉
)
, (7.4)

where we recall that |Ψ′L〉 and |ΨL〉 are ground states of the Hamiltonians

(6.3) and (6.4), with open and periodic boundary conditions, respectively.

Moreover, we introduce a new class of fidelities. They are built upon

tensor products of ground states and down spins such that two ground

states are separated by down spins. As an example, we consider the

scalar product

〈Ψ̄L|
(
|↓〉 ⊗ |Ψ′L1

〉 ⊗ |↓〉 ⊗ · · · ⊗ |Ψ′Lm
〉 ⊗ |↓〉

)
(7.5)

with L =
∑m

i=1 Li +m+ 1. We refer to the fidelity corresponding to this

kind of scalar product as a dressed multipartite fidelity.

We use the (co)homology decompositions of the ground states of the

XXZ spin-chain Hamiltonians with open and periodic boundary condi-

tions to compute multipartite fidelities as a product of simple (sum of)

components of each involved state. Using exact finite-size expressions of

these (sum of) components, we provide an explicit formula for the scalar

products as a function of L1, . . . , Lm.
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The layout of this chapter is as follows. We define of the multipartite

fidelity in Section 7.1 and prove that they can be written in terms of

simple (sum of) components of the ground states. We introduce the

dressed multipartite fidelity in Section 7.2. It allows for the computation

of fidelities that involve ground states of periodic spin-chain Hamiltonians

on both sides of the scalar product. In Section 7.3, we evaluate exactly

the multipartite fidelities and provide their scaling limits.

7.1 Multipartite fidelities

In Proposition 6.4.6, we have obtained simple relations for the square

norm of the supersymmetry singlets. This simplicity is a consequence of

the supersymmetry. To be specific, let us consider L = 2n. We have

〈Ψ′2n|χ · · ·χ〉
‖Ψ′2n‖

=
1

(Ψ′2n)↑↓···↑↓/‖Ψ′2n‖
. (7.6)

On the left-hand side of this equality, we have the projection of the

normalised zero-energy state onto an n-fold tensor product of zero-energy

states of the two-site chain. On the right-hand side, we find the inverse

of a special component of the normalised zero-energy state on 2n sites.

It is natural to investigate if the result remains equally simple when

we replace the |χ〉’s by the zero-energy energy states of spins chains of

generic lengths. This construction leads to the definition of multipartite

fidelity: the square of the projection of the ground state of the complete

chain onto the tensor product of the ground states of m subchains of

lengths L1, . . . , Lm > 0.

For each L = L1 + · · ·+ Lm, we define

Z ′(L1, . . . , Lm) =
〈Ψ′L|

(⊗m
j=1 |Ψ′Lj

〉
)

‖Ψ′L‖
∏m
j=1 ‖Ψ′Lj

‖
. (7.7)

If L is odd, we define

Z(L1, . . . , Lm) =
〈ΨL|

(⊗m
j=1 |Ψ′Lj

〉
)

‖ΨL‖
∏m
j=1 ‖Ψ′Lj

‖
. (7.8)
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These quantities are the square roots of multipartite fidelities. The divi-

sion by the norms of the states makes them normalisation-independent.

For L = 2n and Lj = 2 for j = 1, . . . , n, the expression (7.7) allows us

to recover (up to factor) the left-hand side of (7.6).

Theorem 7.1.1. If L1, . . . , Lm are even, then

Z ′(L1, . . . , Lm) =
‖Ψ′L‖

(Ψ′L)↑↓···↑↓

m∏
j=1

(Ψ′Lj
)↑↓···↑↓

‖Ψ′Lj
‖

. (7.9)

If Lk is odd (for some 1 6 k 6 m) and L1, . . . , Lk−1, Lk+1, . . . , Lm are

even, then

Z ′(L1, . . . , Lm) =
‖Ψ′L‖

(Ψ′L)↑↓···↑↓↑

(Ψ′Lk
)↑↓···↑↓↑

‖Ψ′Lk
‖

m∏
j=1
j 6=k

(Ψ′Lj
)↑↓···↑↓

‖Ψ′Lj
‖

, (7.10)

Z(L1, . . . , Lm) = g(L)
‖ΨL‖
〈ωL|ΨL〉

(Ψ′Lk
)↑↓···↑↓↑

‖Ψ′Lk
‖

m∏
j=1
j 6=k

(Ψ′Lj
)↑↓···↑↓

‖Ψ′Lj
‖

, (7.11)

where g(L) = (3L− 1)/(2L) and |ωL〉 is defined in (6.79). In all other

cases, the scalar product vanishes.

We note that these results are remarkably simple. The zero-energy states

typically are very complicated states with many non-zero components.

For a state in V L of magnetisation 0, there are, a priori, 2( L
L/2) such

non-trivial components. Nonetheless, we can infer the scalar product

from the sole knowledge of less than n components of the complete

chain’s ground state, as well as a single component of each state of the

subchains. Furthermore, the exchange of Li and Lj for i 6= j leaves the

result invariant even though it can completely change the subdivision of

the chain of length L into m smaller subchains.

The proof of Theorem 7.1.1 is based on the following lemma:

Lemma 7.1.2. If L1, . . . , Lm are even, then

m⊗
i=1

|Ψ′Li
〉 = |χ · · ·χ〉+ Q′|φ′L1,··· ,Lm

〉 (7.12)
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for a certain state |φ′L1,··· ,Lm
〉. If Lk is odd (for some 1 6 k 6 m) and

L1, . . . , Lk−1, Lk+1, . . . , Lm are even, then

m⊗
i=1

|Ψ′Li
〉 = |↑〉 ⊗ |χ · · ·χ〉+ Q′|φ′L1,··· ,Lm

〉 (7.13)

for a certain state |φ′L1,··· ,Lm
〉.

Proof. First, we show (7.12). Its proof is based on recurrence. The

case m = 1 follows from the cohomology decomposition (6.52). We now

assume that the relation is valid for n = 1, . . . ,m− 1 and show that it

holds for n = m: we have

m⊗
i=1

|Ψ′Li
〉 =

(
|χ · · ·χ〉+ Q′|φ′L1,··· ,Lm−1

〉
)
⊗
(
| χ · · ·χ︸ ︷︷ ︸
Lm

2
times

〉+ Q′|φ′Lm
〉
)
.

The tensor product expands into four terms. We rearrange three of those

terms as a vector in the image of Q′. We obtain (7.12) by choosing

|φ′L1,··· ,Lm
〉 = |φ′L1,··· ,Lm−1

〉 ⊗ |χ · · ·χ〉+ |χ · · ·χ〉 ⊗ |φ′Lm
〉

+ |φ′L1,··· ,Lm−1
〉 ⊗Q′|φ′Lm

〉. (7.14)

Second, we prove (7.13). Similarly to the previous case, one shows that

m⊗
i=1

|Ψ′Li
〉 = |χ · · ·χ〉 ⊗ |↑〉 ⊗ |χ · · ·χ〉+ Q′|φ′L1,··· ,Lm

〉. (7.15)

for a certain state |φ′L1,··· ,Lm
〉. Here, the up (↑) spin in the right-hand

side is at the position L1 + · · ·Lk−1 + 1. We observe that

|χ · · ·χ〉 ⊗ |↑〉 ⊗ |χ · · ·χ〉 = |↑〉 ⊗ |χ · · ·χ〉

+ Q′

(L1+···+Lk−1)/2∑
j=1

| χ · · ·χ︸ ︷︷ ︸
j−1 times

〉 ⊗ |↓↓〉 ⊗ |χ · · ·χ〉

 . (7.16)

This identity follows from Q′|↓↓〉 = |χ〉⊗ |↑〉− |↑〉⊗ |χ〉. We combine the

identities (7.15) and (7.16) to conclude the proof.
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Proof of Theorem 7.1.1. First, we focus on the proof of (7.9). Using

Lemma 7.1.2, we have

〈Ψ′L|
( m⊗
j=1

|Ψ′Lj
〉
)

= 〈Ψ′L|χ · · ·χ〉+ 〈Ψ′L|Q′|φ′L1,··· ,Lm
〉 (7.17)

The second term on the right-hand side of this equation vanishes. We

divide by the norms of the zero-energy states and use Corollary 6.4.2 as

well as Proposition 6.4.6 to find (7.9). The proof of (7.10) is similar.

Second, we prove (7.11). According to Lemma 7.1.2, we have

〈ΨL|
( m⊗
j=1

|Ψ′Lj
〉
)

= 〈ΨL| (|↑〉 ⊗ |χ · · ·χ〉) + 〈ΨL|Q′|φ′L1,··· ,Lm
〉. (7.18)

The action of (Q′)† on the state |ΨL〉 yields zero, as a consequence of

(6.76):

(Q′)†|ΨL〉 = (Q′)†N|ΨL〉 = αLQ
†|ΨL〉 = 0. (7.19)

Upon division by the norms of the states and use of (6.97), we obtain

(7.11).

Finally, the scalar products vanish in all other cases because of the

definite magnetisation of the zero-energy states.

7.2 Dressed multipartite fidelities

The proof of Theorem 7.1.1 is based on the supersymmetry, and specifi-

cally on the fact that the action on Q′ in the scalar product yields zero,

which allows us to express multipartite fidelities in terms simple (sum of)

normalised components. In this section, we use a similar property of the

adjoint supercharge to define new multipartite fidelities. In particular,

we construct dressed multipartite fidelities that involve the ground states

|ΨL〉 and |Ψ̄L〉 of the periodic spin chain on both sides of the scalar

product.

Dressed multipartite fidelity and open spin chains. Let L1, . . . ,

Lm and L be such that L+1 =
∑m

i=1(Li+1). We split the set {1, . . . ,m}
into the disjoint sets I and I ′, such that I ∪ I ′ = {1, . . . ,m} and k ∈ I ′
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if Lk is even. These subsets allow us to label the ground states of the

periodic and open spin chains. We introduce the notation

|ψLi〉 =

{
|ΨLi〉 for i ∈ I,
|Ψ′Li
〉 for i ∈ I ′.

(7.20)

For each L1, . . . , Lm and subsets I, I ′ of {1, . . . ,m}, we introduce the

quantity

Z ′d(I, I
′;L1, . . . , Lm) =

〈Ψ′L|
(
|ψL1〉 ⊗

⊗m
j=2(|↓〉 ⊗ |ψLj 〉)

)
‖Ψ′L‖

∏m
j=1 ‖ψLj‖

. (7.21)

This defines the square root of the corresponding dressed multipartite

fidelity.

Theorem 7.2.1. If L1, . . . , Lm are odd then

Z ′d(I, I
′;L1, . . . , Lm)

=
(Ψ′L)↑↓···↑↓↑
‖Ψ′L‖

∏
i∈I

g(Li)
‖ΨLi‖
〈ωLi |ΨLi〉

∏
i∈I′

‖Ψ′Li
‖

(Ψ′Li
)↑↓···↑↓↑

, (7.22)

where g(L) = (3L− 1)/(2L). If Lk is even (for some 1 6 k 6 m, k ∈ I ′)
and L1, . . . , Lk−1, Lk+1, . . . , Lm are odd, then

Z ′d(I, I
′;L1, . . . , Lm)

=
(Ψ′L)↑↓···↑↓
‖Ψ′L‖

∏
i∈I

g(Li)
‖ΨLi‖
〈ωLi |ΨLi〉

∏
i∈I′
i 6=k

‖Ψ′Li
‖

(Ψ′Li
)↑↓···↑↓↑

‖Ψ′Lk
‖

(Ψ′Lk
)↑↓···↑↓

. (7.23)

In all other cases, the scalar product vanishes.

Proof. Let us prove (7.22). The reasoning is similar to the proof of

Theorem 7.1.1. We use the cohomology decomposition of |Ψ′L〉 (6.53) in

order to write

〈Ψ′L|

(
|ψL1〉 ⊗

m⊗
j=2

(|↓〉 ⊗ |ψLj 〉)

)

=
(
〈↑| ⊗ 〈χ · · ·χ|+ 〈φ′L|(Q′)†

)(
|ψL1〉 ⊗

m⊗
j=2

(|↓〉 ⊗ |ψLj 〉)

)
. (7.24)
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The term involving (Q′)† vanishes. Indeed, the action of (Q′)† on |ψLi〉
yields zero for each i = 1, . . . ,m. This is direct for i ∈ I ′ and follows

from (7.19) for i ∈ I. Moreover, one checks that if both |ψ〉 and |ψ′〉 are

in the kernel of (Q′)† then (Q′)†(|ψ〉 ⊗ |↓〉 ⊗ |ψ′〉) = 0 as a consequence

of (6.29). Applying this property repeatedly, we reduce (7.24) to

〈Ψ′L|

(
|ψL1〉 ⊗

m⊗
j=2

(|↓〉 ⊗ |ψLj 〉)

)
=

m∏
j=1

(〈↑| ⊗ 〈χ · · ·χ|) |ψLj 〉. (7.25)

Dividing by the norms of the states, and using (6.67) and (6.97), we find

(7.22).

The proof of (7.23) is similar, using in addition the parity invariance

of the zero-energy states |Ψ′L〉 and |ΨL〉. In all other cases, the scalar

products vanish because of the definite magnetisation of the zero-energy

states.

It is possible to extend the definition of Z ′d in order to account for the

case where Lk is 0 for some 1 6 k 6 m (k ∈ I ′), and the L1, . . . , Lk−1,

Lk+1, . . . , Lm are odd. (This can be done by formally defining |Ψ′0〉 = 1.)

In this case, we have

Z ′d(I, I
′;L1, . . . , Lk = 0, . . . , Lm)

=
〈Ψ′L|

(⊗k−1
j=1(|ψLj 〉 ⊗ |↓〉)⊗

⊗m
j=k+1(|↓〉 ⊗ |ψLj 〉)

)
‖Ψ′L‖

∏m
j=1,j 6=k ‖ψLj‖

=
(Ψ′L)↑↓···↑↓
‖Ψ′L‖

∏
i∈I

g(Li)
‖ΨLi‖
〈ωLi |ΨLi〉

∏
i∈I′
i 6=k

‖Ψ′Li
‖

(Ψ′Li
)↑↓···↑↓↑

.

Dressed multipartite fidelity and periodic spin chains. One

could ask if we can use the supersymmetry to account for multipar-

tite fidelities that involve periodic spin-chain ground states on both sides

of the scalar product. This is indeed the case.

Let L1, . . . , Lm be odd. As previously, we divide the set {1, . . . ,m} into

the disjoint sets I and I ′, such that I ∪ I ′ = {1, . . . ,m}. The subsets

I, I ′ allow us to label the ground states of the periodic and open spin
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chains as in (7.20). We define the quantity

Zd(I, I
′;L1, . . . , Lm) =

〈Ψ̄L|
(
|↓〉 ⊗

⊗m
j=1

(
|ψLj 〉 ⊗ |↓〉

))
‖Ψ̄L‖

∏m
j=1 ‖ψLj‖

, (7.26)

where L = L1 + · · ·+ Lm +m+ 1.

Theorem 7.2.2. If L1, . . . , Lm are odd, then

Zd(I, I
′;L1, . . . , Lm)

=
(Ψ̄L)↓↑···↓↑↓
‖Ψ̄L‖

∏
i∈I

g(Li)
‖ΨLi‖
〈ωLi |ΨLi〉

∏
i∈I′

‖Ψ′Li
‖

(Ψ′Li
)↑↓···↑↓↑

, (7.27)

with g(L)=(3L-1)/(2L). In all other cases, the scalar product vanishes.

Although the result of Theorem 7.2.2 is similar to the preceding theorems,

its proof is more complex and requires the computation of the scalar

product between the involved representatives. To this end, we define for

I ′, I, the homology representative of |ψLi〉:

|$Li〉 =

{
|↑↓ · · · ↑↓↑〉 for i ∈ I ′,
N|ωLi〉 for i ∈ I.

(7.28)

We further introduce the notation

gi(Li) = 〈χ · · ·χ|
(
|$Li〉 ⊗ |↓〉

)
=

{
1 if i ∈ I ′,
3Li−1

2Li
if i ∈ I.

(7.29)

We now prove the following (technical) lemma:

Lemma 7.2.3. Let L1, . . . , Lm be odd and I, I ′ as in Theorem 7.2.2.

Then we have

〈ω̄L|N
(
|↓〉 ⊗

m⊗
j=1

(
|$Lj 〉 ⊗ |↓〉

) )
=

3L+ 1

2L

m∏
j=1

gj(Lj). (7.30)

We recall that the state |ω̄L〉 is defined for odd L = 2n+ 1 and is given

by |ω̄L〉 = |ω̄(1)
L 〉+ |ω̄(2)

L 〉, where

|ω̄(1)
L 〉 = 2|↓〉 ⊗ |χ · · ·χ〉, (7.31)

|ω̄(2)
L 〉 =

n∑
j=1

|↑〉 ⊗ | χ · · ·χ︸ ︷︷ ︸
j−1 times

〉 ⊗ |↓↓〉 ⊗ | χ · · ·χ︸ ︷︷ ︸
n−j times

〉. (7.32)
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For the sake of conciseness, we omit to write the tensor products in the

proof of this lemma. Furthermore, we write N̂ for LN acting on V L.

Proof of Lemma 7.2.3. The proof is based on recurrence. To prove the

basis case, we set m = 1, L = 2n+ 1, L1 = 2n1 + 1 and n = n1 + 1. We

use the shorthand notation |Ω1〉 = |↓〉|$L1〉|↓〉. First, we consider the

projection of |Ω1〉 onto N̂ |ω̄(1)
L 〉. It reads

〈ω̄(1)
L |N̂ |Ω1〉 = 2

2n∑
k=0

(〈↓|〈χ · · ·χ|)S−k|Ω1〉. (7.33)

The terms in the sum that correspond to an odd value of k give a zero

contribution, which is clear from the inspection of the spins on the first

and last sites of |Ω1〉 = |↓〉|$L1〉|↓〉. The values k = 0 and k = n both

yield 2g1(L1), as follows from (7.29). Furthermore, for each k = 2κ,

κ = 1, . . . , n− 1, we use the definition of $L1 to compute(
〈χ · · ·χ︸ ︷︷ ︸

κ

|〈↓|〈χ · · ·χ︸ ︷︷ ︸
n−κ

|
)
|Ω1〉 =

{
1 if 1 ∈ I ′,
n1+1
L1

if 1 ∈ I.
(7.34)

The different contributions add up to

〈ω̄(1)
L |N̂ |Ω1〉 =

{
2(n+ 1) if 1 ∈ I ′,
4g1(L1) + 2nn1

L1
if 1 ∈ I.

(7.35)

Second, we focus on the following scalar product that involves |ω̄(2)
L 〉:

〈ω̄(2)
L |N̂ |Ω1〉 =

n∑
j=1

2n∑
k=0

(
〈↑|〈χ · · ·χ︸ ︷︷ ︸

j−1

|〈↓↓|〈χ · · ·χ︸ ︷︷ ︸
n−j

|
)
S−k|Ω1〉. (7.36)

We analyse the terms of the sums depending on the value of j and the

parity of k. On the one hand, for each j = 1, . . . , n, the summand

vanishes if k is odd, apart from the case where k = 2(n− j) + 1, which

gives a contribution g1(L1). On the other hand, we consider k = 2κ with

κ = 0, . . . , n. The sum over j of the terms corresponding to κ = n− j
and κ = n− j + 1 is

n∑
j=1

(
〈↓↓|〈χ · · ·χ|〈↑|〈χ · · ·χ︸ ︷︷ ︸

j−1

|+ 〈χ · · ·χ|〈↑|〈χ · · ·χ︸ ︷︷ ︸
j−1

|〈↓↓|
)
|Ω1〉

=

{
0 if 1 ∈ I ′,
(n− 1)g1(L1) if 1 ∈ I.

(7.37)
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Moreover, for a given j = 1, . . . , n, and κ 6= n− j, n− j + 1, we evaluate

the summand:

(
〈↑|〈χ . . . χ|〈↓↓|〈χ . . . χ|〈↑|〈χ . . . χ|〈↑|

)
|$L1〉 =

{
0 if 1 ∈ I ′,
1
L1

if 1 ∈ I.
(7.38)

There are (n1− 1)n1 such contributions. By summing the different terms

resulting from (7.36), we have

〈ω̄(2)
L |N̂ |Ω1〉 =

{
n if 1 ∈ I ′,
(2n− 1)g1(L1) + (n1−1)n1

L1
if 1 ∈ I.

(7.39)

Finally, we gather the contributions from |ω̄(1)
L 〉 and |ω̄(2)

L 〉. For 1 ∈ I ′,
we find

〈ω̄L|N̂ |Ω1〉 = (3n+ 2)g1(L1) =
3L+ 1

2
g1(L1). (7.40)

Similarly, for 1 ∈ I, we have

〈ω̄L|N̂ |Ω1〉 = (2n+ 3)g1(L1) + n1
2n+ n1 − 1

L1
=

3L+ 1

2
g1(L1),

which concludes the proof of recurrence’s basis case.

Let us suppose that (7.30) is satisfied for each L1, . . . , Lm−1. This means

that we have

〈ω̄L1+···+Lm−1+m|N̂ |Ω〉 =
3(L1 +· · ·+ Lm−1 +m) + 1

2

m−1∏
j=1

gj(Lj), (7.41)

where we introduced the shorthand notation

|Ω〉 = |↓〉|$L1〉|↓〉|$L2〉 · · · |↓〉|$Lm−1〉|↓〉. (7.42)

Here, |Ω〉 depends on the lengths L1, . . . , Lm−1 and the sets I, I ′. We

now show that (7.30) holds for n = m and odd L1, . . . , Lm. As previously,

we separately treat the projection of |ω̄(1)
L 〉 and |ω̄(2)

L 〉 onto |Ω〉|$Lm〉|↓〉.

First, we focus on the following scalar product:

〈ω̄(1)
L |N̂

(
|Ω〉|$Lm〉|↓〉

)
=

2n∑
k=0

〈ω̄(i)
L |S

−k
(
|Ω〉|$Lm〉|↓〉

)
. (7.43)
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The odd values of k contribute with zero to the sum. We have

〈ω̄(1)
L |N̂

(
|Ω〉|$Lm〉|↓〉

)
= 2

∑
k even

(
〈↓|〈χ · · ·χ|

)
S−k|Ω〉〈χ · · ·χ|

(
|$Lm〉|↓〉

)
+ 2
(
〈χ · · ·χ|〈↓|

)
|Ω〉 ×

nm∑
k=0

(
〈↑|〈χ · · ·χ︸ ︷︷ ︸

k

|〈↓|〈χ · · ·χ︸ ︷︷ ︸
nm−k

|
)(
|$Lm〉|↓〉

)
.

We can simplify this expression by completing the first sum in the right-

hand side to create a projector, N . Furthermore, we express the second

sum as follows:

2

nm∑
k=0

(
〈↑|〈χ · · ·χ︸ ︷︷ ︸

k

|〈↓|〈χ · · ·χ︸ ︷︷ ︸
nm−k

|
)(
|$Lm〉|↓〉

)
= 〈ω̄(1)

Lm+2|N̂
(
|↓〉|$Lm〉|↓〉

)
− 2〈χ · · ·χ|

(
|$Lm〉|↓〉

)
. (7.44)

Hence we have

〈ω̄(1)
L |N̂

(
|Ω〉|$Lm〉|↓〉

)
= 〈ω̄(1)

L1+···+Lm−1+m|N̂ |Ω〉 × 〈χ · · ·χ|
(
|$Lm〉|↓〉

)
+
(
〈χ · · ·χ|〈↓|

)
|Ω〉 × 〈ω̄(1)

Lm+2|N̂
(
|↓〉|$Lm〉|↓〉

)
− 2
(
〈χ · · ·χ|〈↓|

)
|Ω〉 × 〈χ · · ·χ|

(
|$Lm〉|↓〉

)
.

Second, we consider the scalar product 〈ω̄(2)
L |N̂

(
|Ω〉|$Lm〉|↓〉

)
. We use

similar arguments as before to write

〈ω̄(2)
L |N̂

(
|Ω〉|$Lm〉|↓〉

)
= 〈ω̄(2)

L1+···+Lm−1+m|N̂ |Ω〉 × 〈χ · · ·χ|
(
|$Lm〉|↓〉

)
+
(
〈χ · · ·χ|〈↓|

)
|Ω〉 × 〈ω̄(2)

Lm+2|N̂
(
|↓〉|$Lm〉|↓〉

)
.

Eventually, we take the sum of both contributions and the recurrence to

obtain

〈ω̄L|N̂
(
|Ω〉|$Lm〉|↓〉

)
=

3L+ 1

2

m∏
j=1

gj(Lj), (7.45)

which is the desired result.
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Proof of Theorem 7.2.2. We use the cohomology decomposition of |Ψ̄L〉
to write

〈Ψ̄L|

|↓〉 ⊗ m⊗
j=1

(
|ψLj 〉 ⊗ |↓〉

)
=
(
〈ω̄L|N + 〈φ̄L|Q†

)|↓〉 ⊗ m⊗
j=1

(
|ψLj 〉 ⊗ |↓〉

) .

Similarly to the proof of Theorem 7.2.1, the term that involves Q†

vanishes. Furthermore, we express the tensor product as

|↓〉 ⊗
m⊗
j=1

(
|ψLj 〉 ⊗ |↓〉

)
=
∏
i∈I′

µLi

∏
i∈I

λLi |↓〉 ⊗
m⊗
j=1

(
|$Lj 〉 ⊗ |↓〉

)
+ Q†|Φ〉

for a certain |Φ〉. (We could, in principle, compute the state |Φ〉 but we

do not need its explicit expression.) We recall that µL and λL are defined

in Proposition 6.4.5 and Proposition 6.6.4, respectively. The action of

Q† vanishes and the multipartite fidelity reduces to

Zd(I, I
′;L1, . . . , Lm) =

∏
i∈I′

µLi

∏
i∈I

λLi

〈ω̄L|N
(
|↓〉 ⊗

⊗m
j=1

(
|$Lj 〉 ⊗ |↓〉

))
‖Ψ̄L‖

∏m
j=1 ‖ψLj‖

.

We finally use Lemma 7.2.3, the definition of µL, λL, and the factorisation

of the norms (6.67), (6.97) to conclude the proof.

We can further generalise the quantity Zd by allowing for a single Lk, k =

1, . . . ,m to be even. In this case, we have

Zd(I, I
′;L1, . . . , Lm)

=
(Ψ̄L)↓↑···↓↑↓
‖Ψ̄L‖

∏
i∈I

g(Li)
‖ΨLi‖
〈ωLi |ΨLi〉

∏
i∈I′
i 6=k

‖Ψ′Li
‖

(Ψ′Li
)↑↓···↑↓↑

‖Ψ′Lk
‖

(Ψ′Lk
)↑↓···↑↓

.

The proof of this statement is similar to the one of Theorem 7.2.2, which

can formally be seen as the case k = 0.
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7.3 Scaling limits

In this section, we discuss the multipartite fidelities found in Theo-

rems 7.1.1, 7.2.1 and 7.2.2. We provide exact finite-size expressions for

special (sum of) components of the normalised zero-energy state. We

use them to exactly evaluate the fidelities Z,Z ′, Zd and Z ′d, as well as

their scaling limits.

Special components of |Ψ′
L〉. The ratio of the two components

(Ψ′2n)↑↓···↑↓ and (Ψ′2n+1)↑↓···↑↓↑ by the norm of the corresponding states

can be expressed in terms of two integer sequences AV(2n+1) and N8(2n).

These two sequences enumerate (2n+ 1)× (2n+ 1) vertically-symmetric

alternating sign matrices and cyclically-symmetric transpose complement

plane partitions in a 2n× 2n× 2n cube, respectively [53, 123]. (We give

the precise definitions of these objects in Chapter 9.) Explicitly, they are

given by

AV(2n+1)=
1

2n

n∏
k=1

(6k − 2)!(2k − 1)!

(4k − 1)!(4k − 2)!
, N8(2n)=

n−1∏
k=0

(3k + 1)(6k)!(2k)!

(4k)!(4k + 1)!
.

Theorem 7.3.1. For each n, we have

(Ψ′2n+1)↑↓···↑↓↑

‖Ψ′2n+1‖
=

√
N8(2n+ 2)

AV(2n+ 3)
,

(Ψ′2n)↑↓···↑↓
‖Ψ′2n‖

=

√
AV(2n+ 1)

N8(2n+ 2)
.

(7.46)

We provide a proof of Theorem 7.3.1 along with many other combinatorial

properties of the ground state |Ψ′L〉 in subsequent chapters. This proof

does not use the supersymmetry of the model. It exploits the quantum

integrability of the XXZ spin chain.

The sequences AV(2n+ 1) and N8(2n) are given by ratios of products of

factorials. We can evaluate the components (7.46) for large system sizes:

(Ψ′2n+1)↑↓···↑↓↑

‖Ψ′2n+1‖
= C (2n)1/12 α−2n−2

(
1 +O(n−1)

)
, (7.47a)

(Ψ′2n)↑↓···↑↓
‖Ψ′2n‖

=

√
2

C
(2n)−1/12α−2n−1

(
1 +O(n−1)

)
. (7.47b)
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Here C, α are the constants

C =

√
Γ(1/3)

π1/4
, α =

33/4

2
. (7.47c)

Special (sum of) components of |ΨL〉 and |Ψ̄L〉. The normalised

components and sums of components of |ΨL〉 and |Ψ̄L〉 appearing in the

fidelities are given in terms of the sequences A(n) and AHT(2n+1). These

sequences enumerate n×n alternating sign matrices and (2n+1)×(2n+1)

half-turn symmetric alternating sign matrices, respectively, and are given

by [53, 123, 124]

A(n) =

n−1∏
k=0

(3k + 1)!

(n+ k)!
, AHT(2n+ 1) =

n∏
k=1

4

3

(
(3k)!k!

(2k)!2

)2

. (7.48)

The components of the normalised vector |ΨL〉 have been exactly com-

puted, and the following combinatorial results hold [60, 61]:

(Ψ2n+1)↑↓···↑↓↑
‖Ψ2n+1‖

=
A(n)√

AHT(2n+ 1)
, (7.49)

(〈↑| ⊗ 〈χ · · ·χ|) |Ψ2n+1〉
‖Ψ2n+1‖

=
A(n+ 1)√
AHT(2n+ 1)

. (7.50)

Similar relations hold for |Ψ̄L〉 too, as a consequence of the spin reversal

symmetry. Furthermore, we can use (6.97) to find exact expressions for

〈ωL|ΨL〉 and 〈ω̄L|Ψ̄L〉.

Similarly to the case of the open spin chains, we evaluate the (sum of)

components (7.49), (7.50) in the limit of large system size:

(Ψ2n+1)↑↓···↑↓↑
‖Ψ2n+1‖

=

√
2

C2
(2n)−1/6α−2n−2/3

(
1 +O(n−1)

)
,

(7.51a)

(〈↑| ⊗ 〈χ · · ·χ|) |Ψ2n+1〉
‖Ψ2n+1‖

=

√
2

C2
(2n)−1/6α2n+4/3

(
1 +O(n−1)

)
.

(7.51b)

Scaling behaviour of multipartite fidelities. We use the asymp-

totic expansions (7.47), (7.51) to extract the scaling behaviour of the
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multipartite fidelities. It is obtained when the lengths of the subintervals

L1, . . . , Lm become large in such a way that the ratio Li/L approaches

the scaling variable 0 < xi < 1, for each i = 1, . . . ,m. The fidelity

is then given by an asymptotic series with respect to the system size

L. The series coefficients are functions of x1, . . . , xm. Notice that the

multipartite fidelities (and thus the corresponding asymptotic series) are

only well-defined if the parity of the integers L1, . . . , Lm is fixed.

First, we compute the scaling behaviour of Z and Z ′. There are two

interesting cases treated in Theorem 7.1.1:

If Li is even for each i = 1, . . . ,m, then L is even and

Z ′(L1, . . . , Lm) =
(√2

αC

)m−1
L−(m−1)/12

m∏
i=1

x
−1/12
i

(
1 +O(L−1)

)
.

If Lk is odd for a certain k and Li is even for each i = 1, . . . , k − 1, k +

1, . . . ,m. In this case, L is odd, and

Z ′(L1, . . . , Lm) =
(√2

αC

)m−1
L−(m−1)/12x

1/12
k

m∏
i=1
i 6=k

x
−1/12
i

(
1 +O(L−1)

)
,

Z(L1, . . . , Lm) =
(√2

αC

)m
α1/3L−m/12 x

1/12
k

m∏
i=1
i 6=k

x
−1/12
i

(
1 +O(L−1)

)
.

Second, we focus on the dressed multipartite fidelities. We compute

the scaling limits of the quantities Z ′d and Zd using the results of Theo-

rems 7.2.1 and 7.2.2. If Li is odd for each i = 1, . . . ,m, then L is odd

and

Z ′d(L1, . . . , Lm) =
( √2

α2/3

)|I|
C1−2|I|−|I′|

× L(1−2|I|−|I′|)/12
∏
i∈|I|

x
−1/6
i

∏
i∈|I′|

x
−1/12
i

(
1 +O(L−1)

)
, (7.52)

and

Zd(L1, . . . , Lm) =
( √2

α2/3

)|I|+1
C−2−2|I|−|I′|

× L(−2−2|I|−|I′|)/12
∏
i∈|I|

x
−1/6
i

∏
i∈|I′|

x
−1/12
i

(
1 +O(L−1)

)
. (7.53)

In the case where Lk is even for a single k, we obtain similar results.
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Scaling behaviour and conformal field theory. The power-law

decay of the fidelities’ scaling limits as well as their algebraic dependence

on the coordinates x1, . . . , xm suggest that they are related to correlation

functions of conformal field theory (CFT).

The case m = 2 is related to the the logarithmic bipartite fidelity men-

tioned above and introduced by Dubail and Stéphan [118, 119]. In

particular, they predicted the leading-order terms of the asymptotic

expansion of the logarithmic bipartite fidelity with respect to the system

size L for one-dimensional quantum critical systems from CFT argu-

ments. In [1], we compared our exact results for Z ′(L1, L2) with the

CFT predictions of Dubail and Stéphan and observed a perfect match.

Hence, a natural question to ask is whether one can reproduce such a

matching for the other types of multipartite fidelities that we introduced.

The first calculations that we made confirm that this is the case [5]. The

CFT calculations and the comparison with our exact results are, however,

beyond the scope of this dissertation. We discuss this open problem and

some outlook in the conclusion chapter.
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Chapter 8

Boundary quantum

Knizhnik-Zamolodchikov

equations

In this and the following chapter, we study a generalisation of the XXZ

spin chain considered in Chapter 6, with diagonal boundary magnetic

fields that differ on both extremities of the chain. Its Hamiltonian is

given by

H = −1

2

L−1∑
i=1

(
σ1
i σ

1
i+1 + σ2

i σ
2
i+1 −

1

2
σ3
i σ

3
i+1

)
+ pσ3

1 + p̄σ3
L, (8.1)

where the boundary magnetic fields are given by

p =
1

2

(
1

2
− x
)
, p̄ =

1

2

(
1

2
− 1

x

)
. (8.2)

Here, x is an arbitrary complex parameter. A connection of the Hamil-

tonian with these parameters to the O(1) model on a strip and the

one-boundary Temperley-Lieb algebra has been discussed in [125, 126].

This Hamiltonian generalises the supersymmetric Hamiltonian considered

in Chapters 6 and 7. In that case, we had x = 1, and we observed some

combinatorial properties of the ground state related to the enumeration of

alternating sign matrices and plane partitions. We stated these properties

in Theorem 7.3.1.

143
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The goal of this and the following chapter is to construct the ground-state

vector explicitly and explore its properties, for generic x. To this end,

we adapt a strategy of Razumov, Stroganov and Zinn-Justin [61] to the

case of open boundary conditions: we find a solution to the so-called

boundary quantum Knizhnik-Zamolodchikov equations. This construction

allows us to prove Theorem 7.3.1.

Boundary quantum Knizhnik-Zamolodchikov equations. The

Knizhnik-Zamolodchikov equations appeared in the context of conformal

field theories that possess a Lie algebra symmetry [127]. They are a

system of partial differential equations. They define correlation functions

of operators that intertwine representations of the algebra [128]. The

analogue of these equations for quantum algebras is a system of difference

equations, known as quantum Knizhnik-Zamolodchikov (qKZ) equations.

They are given in terms of the corresponding R-matrix and depend on

the deformation parameter q [129]. We refer to [130] for an overview

of classical and quantum Knizhnik-Zamolodchikov equation and their

relation with representation theory.

Di Francesco and Zinn-Justin established a connection between finite

spin chains and qKZ equations. In order to prove some conjectures of

Razumov and Stroganov for the related O(1) model, they constructed a

polynomial vector depending on inhomogeneity parameters [131]. Their

vector satisfied relations akin to the qKZ equations [59]. This connection

was used to find an explicit expression for the ground state components

of the periodic XXZ chain, for ∆ = −1/2, and allowed for the proof of

some of its combinatorial properties [61]

For systems with open boundary conditions, the corresponding equations

are the boundary quantum Knizhnik-Zamolodchikov (bqKZ) equations

[132]. Solutions to the bqKZ equations have been constructed to inves-

tigate specific models: semi-infinite XXZ and XYZ spin chains (with a

single boundary) [133, 134, 120] or loop model and their relation with

enumerative combinatorics [135, 62]. Furthermore, solutions to the bqKZ

equation have been found in terms of (sums of off-shell) Bethe vectors

[136], orthogonal polynomials [137], or multiple contour integrals [138].

The purpose of this chapter is to construct and analyse a (Laurent

polynomial) solution to the bqKZ equations for the R-matrix of the
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six-vertex model and a diagonal K-matrix. We give this solution in

terms of multiple contour integrals. We show that it is an eigenvector of

the transfer matrix of the inhomogeneous six-vertex model on a strip if

q = e2πi/3. We study the homogeneous limit of this vector, its relation

with the Hamiltonian (8.1), and its combinatorial properties in the next

chapter.

The layout of this chapter is as follows. In Section 8.1, we define through

multiple contour integrals the components of a vector |ΨL〉 ∈ V L that

depends on L complex variables z1, . . . , zL and a complex parameter q.

We use the contour integrals in Section 8.2 and Section 8.3 to show that

the vector obeys the exchange and reflection relations. These relations

imply that the vector is a solution to the bqKZ equations. We discuss

the polynomiality of the solution in Section 8.4 and obtain the vector’s

behaviour under a parity transformation in Section 8.5. In Section 8.6,

we consider the transfer matrix of the inhomogeneous six-vertex model.

Finally, we establish a relation between this transfer matrix and the bqKZ

equations in Section 8.7. In particular, we show that if q = e2πi/3, |ΨL〉 is

an eigenvector of the transfer matrix and we compute the corresponding

eigenvalue.

8.1 Integral solution to the boundary quantum

Knizhnik-Zamolodchikov equations

Throughout this and the following chapter, we systematically use the

notation [z] = z − z−1. Furthermore, we denote by n and n̄ the integers

n = bL/2c, n̄ = dL/2e. (8.3)

Moreover, a1, . . . , an are integers that satisfy 1 6 a1 < · · · < an 6 L.

Inspired by [62, 139, 140], we define the multiple contour integral

(ΨL)a1,...,an(z1, . . . , zL) = (−[q])n
∏

16i<j6L

[qzj/zi]
[
q2zizj

]
×
∮
· · ·
∮ n∏

`=1

dw`
πiw`

Ξa1,...,an(w1, . . . , wn|z1, . . . , zL), (8.4)



146 Chapter 8. bqKZ equations

where z1, . . . , zL and w1, . . . , wn are complex numbers. Moreover, q ∈
C\{0, 1,−1} is a complex parameter. The integrand contains the mero-

morphic function

Ξa1,...,an(w1, . . . , wn|z1, . . . , zL)

=

∏
16i<j6n[qwj/wi][wi/wj ][qwiwj ]

∏
16i6j6n[q2wiwj ]

∏n
i=1[βwi]∏n

i=1

(∏ai
j=1[zj/wi]

∏L
j=ai

[qzj/wi]
∏L
j=1[q2wizj ]

) ,

(8.5)

where β ∈ C\{0}. The integration contour of wi in (8.4) is a col-

lection of positively-oriented curves surrounding the poles wi = zj .

This contour does not surround any other singularities situated at

wi = 0,−zj ,±qzj ,±q−2z−1
j .

Similarly, let b1, . . . , bn̄ be integers with 1 6 b1 < · · · < bn̄ 6 L. We

define the multiple contour integral

(Ψ̄L)b1,...,bn̄(z1, . . . , zL) = [q]n̄
∏

16i<j6L

[qzj/zi] [qzizj ]
L∏
i=1

[βzi]

×
∮
· · ·
∮ n̄∏

`=1

dw`
πiw`

Ξ̄b1,...,bn̄(w1, . . . , wn̄|z1, . . . , zL), (8.6)

whose integrand contains the meromorphic function

Ξ̄b1,...,bn̄(w1, . . . , wn̄|z1, . . . , zL)

=

∏
16i<j6n̄[qwj/wi][wi/wj ][q

2wiwj ]
∏

16i6j6n̄[qwiwj ]∏n̄
i=1

(∏bi
j=1[qwi/zj ]

∏L
j=bi

[wi/zj ]
∏L
j=1[qwizj ]

)∏n̄
i=1[βwi]

. (8.7)

The integration contour of wi in (8.6) is a collection of positively-oriented

curves surrounding the poles wi = zj , but not the singularities located

at wi = 0,−zj ,±q−1zj ,±q−1z−1
j ,±β−1.

It is possible to apply the residue theorem and compute an explicit

(combinatorial) formula for the multiple contour integrals defined in (8.4)

and (8.6). This combinatorial formula is, however, not quite useful for

explicit computations. It only simplifies in the two cases ai = i and

bi = n̄+ i. In these cases, we obtain:
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Proposition 8.1.1. For each L > 2, we have

(ΨL)1,...,n(z1, . . . , zL) = (Ψ̄L)n̄+1,...,L(z1, . . . , zL)

=
n∏
i=1

[βzi]
∏

16i<j6n

[qzizj ][qzj/zi]
∏

n+16i<j6L

[qzj/zi|[q2zizj ]. (8.8)

Proof. We only sketch the evaluation of (ΨL)1,...,n(z1, . . . , zL). To this

end, we iteratively compute the contour integrals (8.4) with respect to

w1, . . . , wn for ai = i. We observe that the only pole that contributes

to the contour integral with respect to w` is z`. The evaluation of its

residue leads to (8.8). The computation of (Ψ̄L)n̄+1,...,L(z1, . . . , zL) is

similar.

We now introduce1 two vectors |ΨL〉 = |ΨL(z1, . . . , zL)〉 and |Ψ̄L〉 =

|Ψ̄L(z1, . . . , zL)〉. For L = 1, they are given by |Ψ1〉 = |Ψ̄1〉 = |↑〉. For

L > 2, we use (8.4) and (8.6) to define them as

|ΨL(z1, . . . , zL)〉 =∑
16a1<···<an6L

(ΨL)a1,...,an(z1, . . . , zL) |↑ · · · ↑ ↓
a1

↑ · · · ↑ ↓
an
↑ · · · ↑〉, (8.9)

|Ψ̄L(z1, . . . , zL)〉 =∑
16b1<···<bn̄6L

(Ψ̄L)b1,...,bn̄(z1, . . . , zL) |↓ · · · ↓↑
b1

↓ · · · ↓ ↑
bn̄

↓ · · · ↓〉. (8.10)

Here and in the following, we label the components of a vector in terms of

the positions of the up or down spins of the associated spin configuration.

We only write out the dependence on z1, . . . , zL if necessary.

It follows from Proposition 8.1.1 that these vectors do not identically

vanish. The purpose of the following section is to investigate their

properties.

1The vectors |ΨL〉 and |Ψ̄L〉 depend on the variables z1, . . . , zL and must not be

confused with the ground states of the periodic XXZ spin chain previously introduced.
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8.2 The exchange relations

To formulate the exchange relations, we recall from Chapter 3 the defi-

nition of the R-matrix of the six-vertex model. It is an operator on V 2

that acts on the canonical basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} as the matrix (3.4)

where the weight d is absent:

R(z) =


a(z) 0 0 0

0 b(z) c(z) 0

0 c(z) b(z) 0

0 0 0 a(z)

 . (8.11)

We choose the following parameterisation for the entries of R(z):

a(z) = [qz]/[q/z], b(z) = [z]/[q/z], c(z) = [q]/[q/z]. (8.12)

The R-matrix obeys the Yang-Baxter equation, similar to (3.19). On V L

and with the parameterisation (8.12), it is given by

Ri i+1(z/w)Ri i+2(z)Ri+1 i+2(w) = Ri+1 i+2(w)Ri i+2(z)Ri i+1(z/w).

(8.13)

Moreover, we have R(1) = P , where P is the permutation operator

acting according to P (|v〉 ⊗ |w〉) = |w〉 ⊗ |v〉 for any |v〉, |w〉 ∈ V . Using

this operator, we define the Ř-matrix by

Ř(z) = PR(z). (8.14)

It follows from (8.13) that it obeys the braid version of the Yang-Baxter

equation

Ři i+1(z/w)Ři+1 i+2(z)Ři i+1(w) = Ři+1 i+2(w)Ři i+1(z)Ři+1 i+2(z/w).

(8.15)

Exchange relations. We say that a vector |Φ〉 = |Φ(z1, . . . , zL)〉 ∈
V L, L > 2, that depends on the complex numbers z1, . . . , zL, obeys the

exchange relations if

Ři i+1(zi/zi+1)|Φ(. . . , zi, zi+1, . . . )〉 = |Φ(. . . , zi+1, zi, . . . )〉, (8.16)

for each i = 1, . . . , L− 1. The compatibility of these equations follows

from (8.15).
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Proposition 8.2.1. For each L > 2, the vectors |ΨL〉 and |Ψ̄L〉 obey

the exchange relations (8.16).

Proof. The proofs of the exchange relations for |ΨL〉 and |Ψ̄L〉 are similar

and follow the lines of [61]. Hence, we focus on |ΨL〉. To prove that

it obeys the exchange relations, we consider integers a1, . . . , an with

1 6 a1 < a2 < · · · < an 6 L and an integer 1 6 i 6 L− 1. We examine

four cases, depending on whether i and i + 1 belong to {a1, . . . , an}.
In this proof, we use Ξa1,...,an(z1, . . . , zL) as a shorthand notation for

Ξa1,...,an(w1, . . . , wn|z1, . . . , zL)

Case 1: i, i+ 1 /∈ {a1, . . . , an}. In this case, we note that the polynomial

Ξa1,...,an(. . . , zi, zi+1, . . . ) is symmetric under the exchange of zi and zi+1.

We combine this observation with (8.4) and conclude that the quotient

of (ΨL)a1,...,an(. . . , zi, zi+1, . . . ) and [qzi+1/zi] is symmetric under the

exchange of zi and zi+1. Hence, we find the relation

[qzi/zi+1]

[qzi+1/zi]
(ΨL)a1,...,an(. . . , zi, zi+1, . . . ) = (ΨL)a1,...,an(. . . , zi+1, zi, . . . ).

(8.17)

Case 2: i, i + 1 ∈ {a1, . . . , an}. Let 1 6 ` 6 n − 1 be the integer such

that a` = i. We have

Ξa1,...,an(. . . , zi+1, zi, . . . )− Ξa1,...,an(. . . , zi, zi+1, . . . )

=
[qw`/w`+1][zi/zi+1]

[qzi/w`+1][zi+1/w`]
Ξa1,...,an(. . . , zi, zi+1, . . . ) (8.18)

The inspection of (8.5) allows us to conclude that this difference is

antisymmetric under the exchange of w` and w`+1. Hence, the multiple

contour integral over the difference vanishes. It follows that the quotient

of (ΨL)a1,...,an(. . . , zi, zi+1, . . . ) and [qzi+1/zi] is symmetric under the

exchange of zi and zi+1. Therefore, the relation (8.17) holds in this case,

too.
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Case 3: i ∈ {a1, . . . , an} and i+ 1 /∈ {a1, . . . , an}. Let 1 6 ` 6 n− 1 be

the integer such that a` = i. We find

Ξa1,...,i+1,...,an(. . . , zi, zi+1, . . . ) =
[qzi/w`]

[zi+1/w`]
Ξa1,...,i,...,an(. . . , zi, zi+1, . . . ),

(8.19)

Ξa1,...,i,...,an(. . . , zi+1, zi, . . . ) =
[zi/w`]

[zi+1/w`]
Ξa1,...,i,...,an(. . . , zi, zi+1, . . . ).

(8.20)

We combine these relations into the equality

[q]Ξa1,...,i,...,an(. . . , zi, zi+1, . . . )

+ [zi/zi+1]Ξa1,...,i+1,...,an(. . . , zi, zi+1, . . . )

= [qzi/zi+1]Ξa1,...,i,...,an(. . . , zi+1, zi, . . . ). (8.21)

Using this equality, it is straightforward to show that

[q]

[qzi+1/zi]
(ΨL)a1,...,i,...,an(. . . , zi, zi+1, . . . )

+
[zi/zi+1]

[qzi+1/zi]
(ΨL)a1,...,i+1,...,an(. . . , zi, zi+1, . . . )

= (ΨL)a1,...,i,...,an(. . . , zi+1, zi, . . . ). (8.22)

Case 4: i /∈ {a1, . . . , an} and i + 1 ∈ {a1, . . . , an} The analysis of this

case is very similar to the previous one. One obtains the relation

[q]

[qzi+1/zi]
(ΨL)a1,...,i+1,...,an(. . . , zi, zi+1, . . . )

+
[zi/zi+1]

[qzi+1/zi]
(ΨL)a1,...,i,...,an(. . . , zi, zi+1, . . . )

= (ΨL)a1,...,i+1,...,an(. . . , zi+1, zi, . . . ). (8.23)

To conclude, we note that (8.17), (8.22) and (8.23) are equal to the

exchange relations, written for the components of |ΨL〉, which ends the

proof.
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Properties of solutions to the exchange relations. We now in-

vestigate a few simple properties of |Φ〉 = |Φ(z1, . . . , zL)〉 ∈ V L, L > 2, a

vector with magnetisation (n̄− n)/2 that obeys the exchange relations

(8.16). We define its components through the expansion

|Φ〉 =
∑

16a1<···<an6L
Φa1,...,an(z1, . . . , zL)|↑ · · · ↑ ↓

a1

↑ · · · ↑ ↓
an
↑ · · · ↑〉.

(8.24)

Following the proof of Proposition 8.2.1, we rewrite the exchange relations

for the components of the vector. There are four different cases. The

next lemma addresses two of them.

Lemma 8.2.2. Let i be an integer with 1 6 i 6 L− 1 such that either

i, i+ 1 /∈ {a1, . . . , an} or i, i+ 1 ∈ {a1, . . . , an} then

Φa1,...,an(. . . , zi, zi+1, . . . ) = [qzi+1/zi]Φ̄a1,...,an(. . . , zi, zi+1, . . . ), (8.25)

where Φ̄a1,...,an(. . . , zi, zi+1, . . . ) is symmetric under the exchange of zi
and zi+1.

For the two other cases, we introduce the divided difference operator δ.

It acts on a function f of two complex variables z, w according to

δf(z, w) =
[qw/z]f(w, z)− [q]f(z, w)

[z/w]
. (8.26)

More generally, for a function f depending on z1, . . . , zL, we write δif

for the action of the divided difference operator δ on f with z = zi and

w = zi+1.

Lemma 8.2.3. Let i be an integer with 1 6 i 6 L − 1 such that i ∈
{a1, . . . , an} and i+ 1 /∈ {a1, . . . , an}, then

Φa1,...,i+1,...,an(. . . , zi, zi+1, . . . ) = δiΦa1,...,i,...,an(. . . , zi, zi+1, . . . ),

(8.27)

Φa1,...,i,...,an(. . . , zi, zi+1, . . . ) = δiΦa1,...,i+1,...,an(. . . , zi, zi+1, . . . ).

(8.28)

This lemma allows us to prove the following useful property of the

solutions to the exchange relations:
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Proposition 8.2.4. Suppose that there are integers ā1, . . . , ān with 1 6
ā1 < · · · < ān 6 L such that Φā1,...,ān(z1, . . . , zL) vanishes identically

then the vector |Φ〉 vanishes identically.

Proof. Lemma 8.2.3 allows us to write for all integers a1, . . . , an with

1 6 a1 < · · · < an 6 L the relation

Φa1,...,an(z1, . . . , zL) =

 ∏
i=1,...,n

x∏
j=i,...,ai−1

δj

Φ1,...,n(z1, . . . , zL). (8.29)

Here, x indicates that we take the products of operators in reverse order.

Since the component Φā1,...,ān(z1, . . . , zL) vanishes identically, we find

0 =

 x∏
i=1,...,n

∏
j=i,...,āi−1

δj

Φā1,...,ān(z1, . . . , zL) (8.30)

=

 x∏
i=1,...,n

∏
j=i,...,āi−1

δj

 ∏
i=1,...,n

x∏
j=i,...,āi−1

δj

Φ1,...,n(z1, . . . , zL).

(8.31)

One checks that for each j = 1, . . . , L − 1, the divided difference oper-

ator δj has the property δ2
j = id. Hence, we conclude from (8.31) that

Φ1,...,n(z1, . . . , zL) vanishes identically, and from (8.29) that all compo-

nents vanish identically.

We now show that the two vectors defined in Section 8.1 are equal. This

equality allows us to limit our investigation to |ΨL〉. For each of its

(non-trivial) components, we have two different multiple contour integral

formulas.

Proposition 8.2.5. We have |Ψ̄L〉 = |ΨL〉.

Proof. For L = 1, the proposition holds by the definition of the vectors.

Hence, we consider the difference |Φ〉 = |Ψ̄L〉− |ΨL〉 for L > 2. It follows

from (8.9) and (8.10) that this vector is of the form (8.24). Moreover,

Proposition 8.2.1 implies that it obeys the exchange relations. It has the

component

Φ1,...,n(z1, . . . , zL)

= (Ψ̄L)n̄+1,...,L(z1, . . . , zL)− (ΨL)1,...,n(z1, . . . , zL) = 0, (8.32)
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as follows from Proposition 8.1.1. By virtue of Proposition 8.2.4, we

conclude that |Φ〉 vanishes identically.

8.3 The reflection relations

The reflection relations for the vector |ΨL〉 are written in terms of a

K-matrix. It is an operator K(z) on V that solves the boundary Yang-

Baxter equation for the six-vertex model [35],

R12(z/w)K1(z)R12(zw)K2(w) = K2(w)R12(zw)K1(z)R12(z/w).

(8.33)

The most general solution of this equation can be found in [104]. Here,

we consider Cherednik’s diagonal solution K(z) = K(z;β) [132]. It acts

on the canonical basis {|↑〉, |↓〉} as the matrix

K(z;β) =

(
1 0

0 [βz]/[β/z]

)
, (8.34)

where β is a non-zero complex number.

Reflection relations. A vector |Φ〉 = |Φ(z1, . . . , zL)〉 ∈ V L that de-

pends on the complex numbers z1, . . . , zL obeys the reflection relations

if

K1(z−1
1 ;β)|Φ(z1, . . . , zL)〉 = |Φ(z−1

1 , . . . , zL)〉, (8.35)

KL(szL; sβ̄)|Φ(z1, . . . , zL)〉 = |Φ(z1, . . . , s
−2z−1

L )〉. (8.36)

Here, s and β̄ are two complex parameters. Throughout this section, we

assume that they obey the relations

s4 = q6, (8.37)

and

β̄2β2q2 = 1. (8.38)

Proposition 8.3.1. For each L > 1, the vector |ΨL〉 obeys the reflection

relations.
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Proof. The case L = 1 is trivial. Hence, we consider L > 2. We present

the proof of the second reflection relation (8.36) for |Φ〉 = |ΨL〉 in detail.

To this end, we establish the two equations

(ΨL)a1,...,an(z1, . . . , zL) = (ΨL)a1,...,an(z1, . . . , s
−2z−1

L ), (8.39)

if an < L, and

[s2β̄zL]

[β̄z−1
L ]

(ΨL)a1,...,an(z1, . . . , zL) = (ΨL)a1,...,an(z1, . . . , s
−2z−1

L ), (8.40)

if an = L. These two equations are equivalent to the reflection relations.

Case 1: an < L. Using (8.8) and (8.37), it is straightforward to show

that

(ΨL)1,...,n(z1, . . . , zL) = (ΨL)1,...,n(z1, . . . , s
−2z−1

L ). (8.41)

For n = 1, there is nothing left to prove. For n > 2, we apply Lemma 8.2.3

to obtain (8.39).

Case 2: aL = L. We consider the difference

∆(z1, . . . , zL) = [s2β̄zL](ΨL)1,...,n−1,L(z1, . . . , zL)

− [β̄z−1
L ](ΨL)1,...,n−1,L(z1, . . . , s

−2z−1
L ). (8.42)

We compute it using the contour integral formula (8.4). The integrations

with respect to w1, . . . , wn−1 are straightforward. Using (8.37), we find

∆(z1, . . . , zL) = p(z1, . . . , zL)

∫
C

dwn f(wn), (8.43)

where

p(z1, . . . , zL) = −[q][s2z2
L]

n−1∏
i=1

[βzi]

×
∏

16i<j6n−1

[qzj/zi][qzizj ]
∏

n6i<j6L

[qzj/zi][q
2zizj ], (8.44)

and

f(w) =
[β̄q3w][βw][q2w2]

∏n−1
i=1 [qw/zi][qwzi]

iπw
∏L+1
i=n [zi/w][q2wzi]

. (8.45)
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Here, we abbreviated zL+1 = s−2z−1
L . The integration contour C is a col-

lection of positively-oriented curves around the simple poles zn, . . . , zL+1,

but not around any other pole of f .

We now analyse the contour integral in (8.43). To this end, we make

three simple observations. First, f has a removable singularity at w = 0.

All other singularities of f are simple poles, located at w = zn, . . . , zL+1

and w = ϕi(zn), . . . , ϕi(zL+1), i = 1, 2, 3, where

ϕ1(w) = −w, ϕ2(w) = q−2w−1, ϕ3(w) = −q−2w−1. (8.46)

Second, we note that f obeys ϕ′i(w)f(ϕi(w)) = f(w). This is trivial for

i = 1. For i = 2, 3, it follows from (8.38). These properties of f allow us

to write ∫
ϕi(C)

dwn f(wn) =

∫
C

dwn f(wn), i = 1, 2, 3. (8.47)

Third, we note that f tends to zero at infinity and has no residue at

infinity. This observation allows us to push the integration contour C in

(8.43) to infinity, which results in∫
C

dwn f(wn) = −
3∑
i=1

∫
ϕi(C)

dwn f(wn) = −3

∫
C

dwn f(wn). (8.48)

Here, we used (8.47). We conclude from this equation that ∆(z1, . . . , zL)

vanishes, and therefore

[s2β̄zL]

[β̄z−1
L ]

(ΨL)1,...,n−1,L(z1, . . . , zL) = (ΨL)1,...,n−1,L(z1, . . . , s
−2z−1

L )

(8.49)

For n = 1, there is nothing left to prove. For n > 2, we use Lemma 8.2.3

to obtain (8.40). This ends the proof of (8.36).

Finally, we comment on the proof of (8.35). It amounts to establishing

the relations

[β/z1]

[βz1]
(ΨL)a1,...,an(z1, . . . , zL) = (ΨL)a1,...,an(z−1

1 , . . . , zL), (8.50)

if a1 = 1, and

(ΨL)a1,...,aL(z1, . . . , zL) = (ΨL)a1,...,an(z−1
1 , . . . , zL), (8.51)



156 Chapter 8. bqKZ equations

if a1 > 1. The first relation is easily proven for the specific choice ai = i,

using the component (8.8). The general relation (8.50) then follows from

Lemma 8.2.3. The proof of the second relation is based on showing that

the difference

∆̄(z1, . . . , zL) = (ΨL)2,...,n+1(z1, . . . , zL)− (ΨL)2,...,n+1(z−1
1 , . . . , zL).

(8.52)

vanishes. Proposition 8.2.5 allows us to rewrite this difference as

∆̄(z1, . . . , zL)

= (Ψ̄L)1,n+2,...,L(z1, . . . , zL)− (Ψ̄L)1,n+2...,L(z−1
1 , . . . , zL). (8.53)

Using the alternative integral formula (8.6), we write this difference in

terms of a single contour integral similar to (8.43). Following the same

lines as above, we show that this contour integral vanishes. This proves

(8.51) for the choice ai = i+ 1. The general relation (8.51) follows from

Lemma 8.2.3.

The bqKZ equations. Let us introduce for each i = 1, . . . , L an

operator

S(i)(z1, . . . , zL) =
x∏

j=1,...,i−1

Řjj+1(s2zi/zj)K1(s2zi;β)

y∏
j=1,...,i−1

Řjj+1(s2zizj)

×
y∏

j=i,...,L−1

Řjj+1(s2zizj+1)KL(szi; sβ̄)

x∏
j=i,...,L−1

Řjj+1(zi/zj+1).

(8.54)

Proposition 8.2.1 and Proposition 8.3.1 imply that the vector |ΨL〉 obeys

the bqKZ equations [132, 137, 136, 138]

S(i)(z1, . . . , zL)|ΨL(. . . , zi, . . . )〉 = |ΨL(. . . , s2zi, . . . )〉, i = 1, . . . , L.

(8.55)

This system of difference equations is compatible thanks to the commu-

tation relations

S(i)(z1, . . . , s
2zj , . . . , zL)S(j)(z1, . . . , zL)

= S(j)(z1, . . . , s
2zi, . . . , zL)S(i)(z1, . . . , zL), (8.56)
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for each 1 6 i, j 6 L. These commutation relations follow from the

Yang-Baxter equation (8.13) and the boundary Yang-Baxter equation

(8.33).

8.4 Polynomiality

In this section, we show that the components of |ΨL〉 are Laurent poly-

nomials in the variables z1, . . . , zL, and determine their degrees. To

this end, we examine the action of the divided difference operator on

Laurent polynomials. We then apply the results of this investigation to

the components.

The divided difference operator. We consider the divided difference

operator δ defined in (8.26) acting on a Laurent polynomial f in z, w.

For a special class of Laurent polynomials, the action again yields a

Laurent polynomial.

Lemma 8.4.1. Let f be a Laurent polynomial with

f(−z, w) = εf(z, w), f(z,−w) = −εf(z, w), (8.57)

where ε2 = 1, then δf is a Laurent polynomial with the property

δf(−z, w) = −εf(z, w), δf(z,−w) = εf(z, w). (8.58)

Proof. The definition of the divided difference operator implies that δf

is a rational function that obeys (8.58). We compute the limits

lim
z→w

δf(z, w) =
w

2

(
−q

2 + 1

qw
f(w,w) + [q]

(
∂f(w,w)

∂w
− ∂f(w,w)

∂z

))
,

(8.59)

and, using (8.58),

lim
z→−w

δf(z, w) = −ε lim
z→w

δf(z, w). (8.60)

They imply that δf(z, w) has no poles at z = ±w. Hence, it is a Laurent

polynomial with respect to z. A similar calculation shows that it is a

Laurent polynomial with respect to w, too.
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For each Laurent polynomial f in z, w, there are integers d± and d̄±,

with d− 6 d+ and d̄− 6 d̄+, such that

f(z, w) =
d+∑

k=d−

ck(w)zk =
d̄+∑

k=d̄−

c̄k(z)w
k, (8.61)

with non-zero cd±(w), c̄d̄±(z). We refer to d− as the lower degree and d+

as the upper degree of f with respect to z, and use the same terminology

for d̄− and d̄+ for the degrees of f with respect to w. We also use the

following notation:

deg±z f = d±, deg±w f = d̄±. (8.62)

The action of the divided difference operator does not preserve the

degrees. They can, however, not change arbitrarily as show the next two

lemmas.

Lemma 8.4.2. Let f be as in Lemma 8.4.1.

(i) Let m = deg+
z f − 1 and suppose that deg+

w f 6 m, then

deg+
z δf 6 m and deg+

w δf = m+ 1. (8.63)

(ii) Let m = deg+
w f − 1 and suppose that deg+

z f 6 m, then

deg+
z δf = m+ 1 and deg+

w δf 6 m. (8.64)

Proof. The proofs of (i) and (ii) are very similar. We only present the

proof of (i).

Let m′ = deg+
w f . First, we analyse δf(z, w) for z →∞. We find

δf(z, w) =
(
− q−1c̄m′(w)zm

′
+O(zm

′−1)
)

+
(
[q]wcm+1(w)zm +O(zm−1)

)
. (8.65)

This expression allows us to conclude that deg+
z δf 6 max(m,m′) 6 m.

Second, we consider w →∞ and obtain

δf(z, w) =
(
− qcm+1(z)wm+1 +O(wm)

)
+
(
− [q]zc̄m′(z)w

m′−1 +O(wm
′−2)

)
. (8.66)

This expression implies that deg+
w δf = m+ 1, since qcm+1(z) does not

vanish identically and m+ 1 > m′ − 1.
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Lemma 8.4.3. Let f be as in Lemma 8.4.1.

(i) Let m = deg−z f and suppose that deg−w f > m+ 1, then

deg−z δf > m+ 1 and deg−w δf = m. (8.67)

(ii) Let m = deg−w f and suppose that deg−z f > m+ 1, then

deg−z δf = m and deg−w δf > m+ 1. (8.68)

Proof. The proof follows from the analysis of δf(z, w) as z → 0 and

w → 0. It is similar to the proof of Lemma 8.4.2.

Polynomiality of the vector. We now show that the components of

the vector |ΨL〉 are Laurent polynomials in the variables z1, . . . , zL and

find (bounds for) their degrees with respect to each zi. We treat the

cases of even and odd L separately in the two following propositions.

Proposition 8.4.4. Let L = 2n, n > 1 and i be integers with 1 6 i 6 L,

then we have:

(i) The component (Ψ2n)a1,...,an is a Laurent polynomial with respect

to zi.

(ii) If i ∈ {a1, . . . , an} then (Ψ2n)a1,...,an is an odd function of zi with

deg±zi(Ψ2n)a1,...,an = ±(2n− 1). (8.69)

(iii) If i /∈ {a1, . . . , an} then (Ψ2n)a1,...,an is an even function of zi with

deg−zi(Ψ2n)a1,...,an > −2(n− 1), deg+
zi(Ψ2n)a1,...,an 6 2(n− 1).

(8.70)

Proof. The proof is based on recurrence. First, we note that (i), (ii) and

(iii) hold for the special component (Ψ2n)1,...,n, as readily follows from

(8.8).

Second, we show that (i), (ii) and (iii) are preserved under the action

of a divided difference operator on any component. To this end, let

us consider integers ā1, . . . , ān with 1 6 ā1 < · · · < ān 6 L such that



160 Chapter 8. bqKZ equations

there is j = 1, . . . , 2n− 1 with j ∈ {ā1, . . . , ān} but j + 1 /∈ {ā1, . . . , ān}.
According to Lemma 8.2.3, we have

(Ψ2n)ā1,...,j+1,...,ān(. . . , zj , zj+1, . . . )

= δj(Ψ2n)ā1,...,j,...,ān(. . . , zj , zj+1, . . . ). (8.71)

Let us now suppose that (i), (ii) and (iii) hold for the component

Ψā1,...,j,...,ān(. . . , zj , zj+1, . . . ). We apply Lemma 8.4.1 to (8.71). It implies

that Ψā1,...,j+1,...,ān(. . . , zj , zj+1, . . . ) is an even Laurent polynomial in

zj , and an odd Laurent polynomial in zj+1. Moreover, it follows from

Lemma 8.4.2(i) that

deg+
zj (Ψ2n)ā1,...,j+1,...,ān 6 2(n−1), deg+

zj+1
(Ψ2n)ā1,...,j+1,...,ān = 2n−1.

(8.72)

Likewise, we may apply Lemma 8.4.3(ii) to conclude that

deg−zj (Ψ2n)ā1,...,j+1,...,ān > 2(1−n), deg−zj+1
(Ψ2n)ā1,...,j+1,...,ān = 1−2n.

(8.73)

Since all other variables remain unaffected, we conclude that (i), (ii) and

(iii) hold for the component (Ψ2n)ā1,...,j+1,...,ān(. . . , zj , zj+1, . . . ).

Third, the statements (i), (ii) and (iii) follow for each component

(Ψ2n)a1,...,an as we can obtain it through the action of a (finite) product

of divided difference operators on the component (Ψ2n)1,...,n.

Proposition 8.4.5. Let L = 2n + 1, n > 1 and i be integers with

1 6 i 6 L, then we have:

(i) The component (Ψ2n+1)a1,...,an is a Laurent polynomial with respect

to zi.

(ii) If i ∈ {a1, . . . , an} then (Ψ2n+1)a1,...,an is an odd function of zi with

deg−zi(Ψ2n+1)a1,...,an > −(2n− 1), deg+
zi(Ψ2n+1)a1,...,an 6 2n− 1.

(8.74)

(iii) If i /∈ {a1, . . . , an} then (Ψ2n+1)a1,...,an is an even function of zi
with

deg±zi(Ψ2n+1)a1,...,an = ±2n. (8.75)
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Proof. The proof is very similar to the proof of Proposition 8.4.4. We

only mention a few minor differences. First, we note that (i), (ii) and

(iii) hold for the component (Ψ2n+1)1,...,n. Second, the argument that

the action of the divided difference operators preserves (i), (ii) and (iii)

follows through but uses Lemma 8.4.2(ii) and Lemma 8.4.3(i). Third,

the statements hold for each component (Ψ2n+1)a1,...,an as we can obtain

it through the action of a (finite) product of divided difference operators

on (Ψ2n+1)1,...,n.

Relations between even and odd size. For each s ∈ {↑, ↓} and

i = 1, . . . , L+ 1, let Θs
i : V L → V L+1 be the linear operator whose action

on the canonical basis vectors of V L is given by

Θs
i |s1 · · · si−1si · · · sL〉 = |s1 · · · si−1〉 ⊗ |s〉 ⊗ |si · · · sL〉. (8.76)

In the next proposition, we use this operator to establish a relation

between the vectors |ΨL〉 and |ΨL−1〉.

Proposition 8.4.6. Let n > 1. For each i = 1, . . . , 2n, we have

lim
zi→0

z2n−1
i |Ψ2n〉 = (−1)n+i+1β−1q−

3(i−1)
2

+ 1
2

∑i−1
j=1σ

3
j

Θ↓i |Ψ2n−1(z1, . . . , zi−1, zi+1, . . . , z2n)〉, (8.77)

lim
zi→∞

z
−(2n−1)
i |Ψ2n〉 = (−1)n+iβq

3(i−1)
2
− 1

2

∑i−1
j=1σ

3
j

Θ↓i |Ψ2n−1(z1, . . . , zi−1, zi+1, . . . , z2n)〉. (8.78)

Likewise, for each i = 1, . . . , 2n+ 1, we have

lim
zi→0

z2n
i |Ψ2n+1〉 = (−1)i−1q−

3(i−1)
2
− 1

2

∑i−1
j=1 σ

3
j

Θ↑i |Ψ2n(z1, . . . , zi−1, zi+1, . . . , z2n+1)〉, (8.79)

lim
zi→∞

z−2n
i |Ψ2n+1〉 = (−1)i−1q

3(i−1)
2

+ 1
2

∑i−1
j=1 σ

3
j

Θ↑i |Ψ2n(z1, . . . , zi−1, zi+1, . . . , z2n+1)〉. (8.80)
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Proof. The proofs of the first two relations are similar. Hence, we focus on

the proof of (8.77). First, we consider the case where i = 1. It follows from

Proposition 8.4.4 that there is a vector |Φ〉 = |Φ(z2, . . . , z2n)〉 ∈ V 2n−1

such that

lim
z1→0

z2n−1
1 |Ψ2n(z1, z2 . . . , z2n)〉 = |↓〉 ⊗ |Φ(z2, . . . , z2n)〉. (8.81)

This vector is of the form (8.24) (with n replaced by n− 1) and obeys

the exchange relations. Moreover, it has the component

Φ1,...,n−1(z2, . . . , z2n) = lim
z1→0

z2n−1
1 (Ψ2n)1,...,n(z1, z2 . . . , z2n)

= (−1)nβ−1(Ψ2n−1)1,...,n−1(z2, . . . , z2n). (8.82)

We apply Lemma 8.2.3 and conclude |Φ〉 = (−1)nβ−1|Ψ2n−1(z2, . . . , z2n)〉.
This ends the proof for i = 1.

Second, for i = 2, . . . , 2n, we write

|Ψ2n(z1, . . . , zi, . . . , z2n)〉

=

x∏
j=1,...,i−1

Řjj+1(zi/zj)|Ψ2n(zi, z1, . . . , zi−1, zi+1, . . . , z2n)〉. (8.83)

Using the relation limz→0 Řjj+1(z) = −q−
3
2
− 1

2
σ3
jσ

3
j+1Pjj+1 and the result

for i = 1 leads to the relation (8.77).

Moreover, the proofs of (8.79) and (8.80) are also similar. Therefore,

we only prove (8.79). First, we consider the case i = 2n + 1. By

Proposition 8.4.4, there exists a vector |Φ〉 = |Φ(z1, . . . , z2n)〉 ∈ V 2n such

that

lim
z2n+1→0

z2n
2n+1|Ψ2n+1(z1, . . . , z2n+1)〉 = |Φ(z1, . . . , z2n)〉 ⊗ |↑〉 (8.84)

This vector is of the form (8.24), satisfies the exchange relations and has

the component

Φ1,...,n(z1, . . . , z2n) = lim
z2n+1→0

z2n
2n+1(Ψ2n+1)1,...,n(z1, z2 . . . , z2n+1)

= q−3n(Ψ2n)1,...,n(z1, . . . , z2n). (8.85)

Lemma 8.2.3 implies that |Φ〉 = q−3n|Ψ2n(z1, . . . , z2n)〉. A direct inspec-

tion shows that this is the result (8.79) for i = 2n+ 1.
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Second, for i = 1, . . . , 2n, we have

|Ψ2n+1(z1, . . . , z2n+1)〉 =
∏

j=i,...,2n

Řjj+1(zj+1/zi)

× |Ψ2n+1(z1, . . . , zi−1, zi+1, . . . , z2n+1, zi)〉. (8.86)

We use the relation limz→∞ Řjj+1(z) = −q
3
2

+ 1
2
σ3
jσ

3
j+1Pjj+1 and the result

for the case i = 2n+ 1 to obtain (8.79).

The preceding proposition allows us to show that the bounds in the

inequalities (8.70) and (8.74) of Propositions 8.4.4 and 8.4.5 are actually

equal to the degrees.

Proposition 8.4.7. The property (ii) of Proposition 8.4.4 holds with

(8.70) replaced by

deg±zi(Ψ2n)a1,...,an = ±2(n− 1). (8.87)

Likewise, the property (iii) of Proposition 8.4.5 holds with (8.74) replaced

by

deg±zi(Ψ2n+1)a1,...,an = ±(2n− 1). (8.88)

Proof. The proofs of the two properties are similar. Hence, let us prove

that Proposition 8.4.4 holds with (8.87). To this end, let j be an integer

with 1 6 j 6 2n and a` = j. From Proposition 8.4.6, it follows that

lim
zj→0

z2n−1
j (Ψ2n)a1,...,a`−1,j,a`+1,...,an = (−1)n+j+1β−1q−(`+j−2)

× (Ψ2n−1)a1,...,a`−1,a`+1−1,...,an−1(z1, . . . , zj−1, zj+1, . . . , z2n). (8.89)

Now, choose an integer 1 6 i 6 2n with i /∈ {a1, . . . , a`−1, a`+1, . . . , an}.
By Proposition 8.4.5, the right-hand side of (8.89) is a Laurent polynomial

in zi with lower degree −2(n−1) and upper degree +2(n−1). According

to Proposition 8.4.4, these are equal to the bounds on the degrees of

(Ψ2n)a1,...,a`−1,j,a`+1,...,an with respect to zi. Since the lower degree can

only increase and the upper degree can only decrease when taking the

limit on the left-hand side of (8.89), we have

deg±zi(Ψ2n)a1,...,a`−1,j,a`+1,...,an = ±2(n− 1). (8.90)

Since this statement holds for all j ∈ {a1, . . . , an}, we obtain (8.87).
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8.5 Parity

In this section, we establish the behaviour of |ΨL〉 under a parity trans-

formation. To this end, we use an explicit formula for the component

(ΨL)n̄+1,...,L. Obtaining it from the contour-integral formulas appears to

be complicated. Hence, we compute it via factor exhaustion.

Proposition 8.5.1. We have the component

(ΨL)n̄+1,...,L = (−1)(L+1)n
L∏

i=n̄+1

[qβzi]

×
∏

16i<j6n̄

[qzj/zi][qzizj ]
∏

n̄+16i<j6L

[qzj/zi][q
2zizj ]. (8.91)

Proof. Lemma 8.2.2 implies the factorisation

(ΨL)n̄+1,...,L = fL(z1, . . . , zn̄; zn̄+1, . . . , zL)

×
∏

16i<j6n̄

[qzj/zi]
∏

n̄+16i<j6L

[qzj/zi], (8.92)

where fL(z1, . . . , zn̄; zn̄+1, . . . , zL) is a Laurent polynomial with respect

to each of its arguments. It is separately symmetric in the variables

z1, . . . , zn̄, and zn̄+1, . . . , zL. Furthermore, the reflection relations (8.40)

and (8.51) lead to

[β̄s2zL]
L−1∏
i=n̄+1

[qzL/zi]fL(. . . ; . . . , zL) =

[β̄z−1
L ]

L−1∏
i=n̄+1

[q/(s2zLzi)]fL(. . . ; . . . , s−2z−1
L ),

and
n̄∏
i=2

[qzj/z1]fL(z1, . . . ; . . . ) =

n̄∏
i=2

[qzjz1]fL(z−1
1 , . . . ; . . . ).

Taking into account the symmetry of fL, we obtain

fL(z1, . . . , zn̄; zn̄+1, . . . , zL) = CL

L∏
i=n̄+1

[β̄z−1
i ]

×
∏

16i<j6n̄

[qzizj ]
∏

n̄+16i<j6L

[q/(s2zizj)]. (8.93)
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It follows from Propositions 8.4.4 and 8.4.5 that CL is a Laurent poly-

nomial in zi with degrees deg±zi CL = 0 for each i = 1, . . . , L. Therefore,

CL is a constant. To find it, we consider the limits where z1 →∞ and

zL →∞. Using Proposition 8.4.6, we obtain the recurrence relations

C2n+1 = (−1)nC2n, C2n = (q3/s2)n−1β̄βq C2n−1, (8.94)

for each n > 1. The initial condition C1 = 1 implies

C2n+1 = (−1)nC2n = (−1)n(n+1)/2(q3/s2)n(n−1)/2(β̄βq)n. (8.95)

We substitute (8.93) and (8.95) into (8.92) and simplify the resulting

expression with the help of (8.37) and (8.38). This yields (8.91).

In the next proposition, we compute the action of the parity operator

C, defined in Chapter 6, onto |ΨL〉. To this end, we write |ΨL〉 =

|ΨL(z1, . . . , zL;β)〉 to stress the vector’s dependence on the parameter β.

Proposition 8.5.2. We have

C|ΨL(z1, . . . , zL;β)〉 = εL|ΨL(s−1z−1
L , . . . , s−1z−1

1 ; q2s−1β−1)〉, (8.96)

where εL = (q3s−2)(L+1)n.

Proof. We consider the vector

|Φ〉 = εLC|ΨL(s−1z−1
L , . . . , s−1z−1

1 ; q2s−1β−1)〉. (8.97)

Using the fact that Ř(z) is a symmetric matrix, it is straightforward to

show that this vector obeys the exchange relations. Moreover, it has the

component

Φ1,...,n = εL(ΨL)n̄+1,...,L(s−1z−1
L , . . . , s−1z−1

1 ; q2s−1β−1). (8.98)

We compute the right-hand side by using the explicit formula for the

component (ΨL)n̄+1,...,L given in Proposition 8.5.1. This leads to Φ1,...,n =

(ΨL)1,...,n. Hence, by Proposition 8.2.4 we have |Φ〉 = |ΨL〉.
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8.6 The transfer matrix of the six-vertex model

In this section, we consider the transfer matrix of the inhomogeneous

six-vertex model on a strip and discuss some of its properties.

Following [35], we define the double-row transfer matrix of the inhomo-

geneous six-vertex model on a strip with L horizontal lines. It is an

operator on the space V L, given by the partial trace

T (z|z1, . . . , zL) = tr0

(
K0(qz; β̄)

x∏
i=1,...,L

R0i(z/zi)K0(z;β)
y∏

i=1,...,L

R0i(zzi)
)
.

(8.99)

The operators inside the trace act on V0 ⊗ V L, where V0 is the auxiliary

space. The trace is taken with respect to the space V0. This transfer

matrix is the inhomogeneous version, for the six-vertex model, of the one

defined in Chapter 5.

The Yang-Baxter equation (8.13) and the boundary Yang-Baxter equation

(8.33) imply the commutation relation

[T (z|z1, . . . , zL), T (w|z1, . . . , zL)] = 0 (8.100)

for all z, w and z1, . . . , zL [35]. The common eigenvectors of the family

of commuting transfer matrices T (z|z1, . . . , zL) parameterised by z are

therefore independent of z. In the following, we construct a common

eigenvector of the family of commuting transfer matrices and compute

its eigenvalue.

To this end, we use a few properties of the transfer matrices that follow

from the properties of the R-matrix (8.11) and the K-matrix (8.34).

As for the R-matrix, let us introduce for i < j the operator Rji(z) =

PijRij(z)Pij . By virtue of the symmetry of the R-matrix, we find

Rji(z) = Rij(z). (8.101)

Furthermore, the R-matrix satisfies the unitarity relation

Rij(z)Rij(1/z) = 1, (8.102)
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and obeys the following relations:

[q/z]σ1
i (Rij(z))

ti σ1
i = −[q2z]Rij(−1/(qz)), (8.103)

[q/z]σ2
i (Rij(z))

ti σ2
i = −[q2z]Rij(1/(qz)), (8.104)

σ3
iRij(z)σ

3
i = Rij(−z). (8.105)

Here, the superscript ti indicates the transposition with respect to the

space Vi.

Lemma 8.6.1. We have the relations

T (−z|z1, . . . , zL) = T (z|z1, . . . , zL), (8.106)

and

T (1/(qz)|z1, . . . , zL)

=
[β/z][β̄/(qz)]

[β̄z][qβz]

L∏
i=1

(
[qzi/z][q/(zzi)]

[q2z/zi][q2zzi]

)
T (z|z1, . . . , zL). (8.107)

Proof. First, we use (8.105) to write

T (−z|z1, . . . , zL)

= tr0

(
K0(−qz; β̄)σ3

0

x∏
i=1,...,L

R0i(z/zi)σ
3
0K0(−z;β)σ3

0

y∏
i=1,...,L

R0i(zzi)σ
3
0

)
.

The relations K0(−z;β) = σ3
0K0(z;β)σ3

0 = K0(z;β) and the cyclicity of

the trace allow us to conclude that T (−z|z1, . . . , zL) = T (z|z1, . . . , zL).

Second, we use (8.104), take the transpose on the space V0 and use the

cyclicity of the trace to obtain

T (1/(qz)|z1, . . . , zL) =
L∏
i=1

[qzi/z][q/(zzi)]

[q2z/zi][q2zzi]
×

tr0

(
σ2

0

y∏
i=1,...,L

R0i(zzi)σ
2
0K0(1/z; β̄)σ2

0

x∏
i=1,...,L

R0i(z/zi)σ
2
0K0(1/(qz);β)

)
.

The K-matrix satisfies σ2
0K0(1/z;β)σ2

0 = [β/z]
[zβ] K0(z;β) as well as the

following relation

tr0̄

(
K0̄(qz; β̄)R0̄0(z2)P0̄0

)
=

[q2z2][β̄/z]

[z2/q][qz/β̄]
K0(z; β̄), (8.108)
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where we introduced a new auxiliary space V0̄ = V . The operators inside

trace act on V0̄ ⊗ V0 ⊗ V L. We use these relations to write

T (1/(qz)|z1, . . . , zL) =

L∏
i=1

[qzi/z][q/(zzi)]

[q2z/zi][q2zzi]

[qz/β̄][β/(qz)]

[zβ̄][βqz]

[z2/q]

[q2z2]
×

tr0̄

(
tr0

(
K0̄(qz; β̄)

y∏
i=1,...,L

R0i(zzi)R0̄0(z2)

x∏
i=1,...,L

R0̄i(z/zi)P0̄0K0(qz;β)
))
.

We rearrange the products of R-matrix inside the trace by using the

Yang-Baxter equation in the form

R0i(zzi)R0̄0(z2)R0̄i(z/zi) = R0̄i(z/zi)R0̄0(z2)R0i(zzi) (8.109)

After rearrangement, we note that the permutation operator P0̄0 allows

us to take the products out of the trace over the space V0. We obtain

T (1/(qz)|z1, . . . , zL) =

L∏
i=1

[qzi/z][q/(zzi)]

[q2z/zi][q2zzi]

[qz/β̄][β/(qz)]

[zβ̄][βqz]

[z2/q]

[q2z2]
×

tr0̄

(
K0̄(qz; β̄)

x∏
i=1,...,L

R0̄i(z/zi)tr0

(
R0̄0(z2)P0̄0K0(qz;β)

) y∏
i=1,...,L

R0̄i(zzi)
)
.

We again use the relation (8.108) and recognise the transfer matrix with

auxiliary space index 0̄. This concludes the proof.

Lemma 8.6.2. Let z be a solution of z4 = 1 then

T (z|z1, . . . , zL) =
[q2][β̄/z]

[q][β̄/(qz)]
1. (8.110)

Proof. We separately consider the cases where z = ±1 and z = ±i. First,

if z = ±1, then we have K0(z;β) = 1 and R0i(z/zi) = R0i(1/(zzi)).

These relations allow us to write

T (z|z1, . . . , zL) = tr0

(
K0(qz; β̄)

x∏
i=1,...,L

R0i(1/(zzi))
y∏

i=1,...,L

R0i(zzi)
)
.

Moreover, using the unitarity relation (8.102), we find

T (z|z1, . . . , zL) = tr0

(
K0(qz; β̄)

)
=

[q2][β̄]

[q][β̄/q]
1. (8.111)
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This proves (8.110) for z = ±1.

Second, if z = ±i, then we have K0(z;β) = σ3
0, and R0i(z/zi)σ

3
0 =

σ3
0R0i(1/(zzi)). These relations allow us to write

T (z|z1, . . . , zL) = tr0

(
K0(qz; β̄)σ3

0

x∏
i=1,...,L

R0i(1/(zzi))
y∏

i=1,...,L

R0i(zzi)
)
.

Using the unitarity relation (8.102), we find

T (z|z1, . . . , zL) = tr0

(
K0(qz; β̄)σ3

0

)
=

[q2][β̄/z]

[q][β̄/(qz)]
1. (8.112)

This proves (8.110) for z = ±i.

8.7 The eigenvector

In this section, we establish a relation between the double-row transfer

matrix of the inhomogeneous six-vertex model on the strip and the

operators S(i) (8.54). (We refer to [141] for a general discussion on the

relation between transfer matrices and bqKZ equations.) We use this

relation to show that if q = e2πi/3 then the vector |ΨL〉 is an eigenvector of

the transfer matrix. Moreover, we explicitly compute the corresponding

eigenvalue.

Proposition 8.7.1. If q = e2πi/3 and (8.38) holds then

T (zi|z1, . . . , zL) = − [qβzi]

[q2βzi]
S(i)(z1, . . . , zL), (8.113)

for each i = 1, . . . , L. Here, S(i)(z1, . . . , zL) is the operator defined in

(8.54) with s = 1.

Proof. First, we assume that q, β, β̄ are generic. We use R0i(1) = P0i,

the symmetry of the R-matrix (8.101), and the properties of partial

traces to write

T (zi|z1, . . . , zL) =
x∏

j=1,...,i−1

Rij(zi/zj)Ki(zi;β)
y∏

j=1,...,i−1

Rij(zizj)

× tr0

(
K0(qzi; β̄)

x∏
j=i+1,...,L

R0j(zi/zj)R0i(z
2
i )

y∏
j=i+1,...,L

Rij(zizj)P0i

)
.
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We rearrange the products of R-matrix using the Yang-Baxter equation

as in the proof of Lemma 8.6.1 and obtain

T (zi|z1, . . . , zL) =
x∏

j=1,...,i−1

Rij(zi/zj)Ki(zi;β)
y∏

j=1,...,i−1

Rij(zizj)

×
y∏

j=i+1,...,L

Rij(zizj) tr0

(
K0(qzi; β̄)R0i(z

2
i )P0i

) x∏
j=i+1,...,L

Rij(zi/zj).

(8.114)

The remaining trace is given by

tr0

(
K0(qzi; β̄)R0i(z

2
i )P0i

)
=

[q2z2
i ][β̄/zi]

[z2
i /q][qzi/β̄]

Ki(zi; β̄). (8.115)

We rewrite the products of R-matrices as products of Ř-matrices and

obtain

T (zi|z1, . . . , zL) =
[q2z2

i ][β̄/zi]

[z2
i /q][qzi/β̄]

x∏
j=1,...,i−1

Řjj+1(zi/zj)K1(zi;β)

×
y∏

j=1,...,i−1

Řjj+1(zizj)
y∏

j=i,...,L−1

Řjj+1(zizj+1)KL(zi; β̄)
x∏

j=i,...,L−1

Řjj+1(zi/zj+1).

(8.116)

Second, we assume q = e2πi/3 and that (8.38) holds. In (8.116), these

specialisations lead to the pre-factor

[q2z2
i ][β̄/zi]

[z2
i /q][qzi/β̄]

= − [qβzi]

[q2βzi]
. (8.117)

The products of Ř- and K-matrices that remain yield the operator

S(i)(z1, . . . , zL) defined in (8.54) with s = 1.

Proposition 8.7.2. Let q = e2πi/3 and suppose that (8.38) holds then

we have

T (z|z1, . . . , zL)|ΨL〉 = ΛL(z)|ΨL〉, (8.118)

where the eigenvalue is

ΛL(z) = − [qβz]

[q2βz]
. (8.119)
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Proof. We define the operator

T̄ (z|z1, . . . , zL) = −[β/z][q2βz]
( L∏
j=1

[qzj/z][q/(zjz)]
)
T (z|z1, . . . , zL).

(8.120)

We are going to prove that if q = e2πi/3 and (8.38) holds then

T̄ (z|z1, . . . , zL)|ΨL〉 = [β/z][qβz]
( L∏
j=1

[qzj/z][q/(zjz)]
)
|ΨL〉, (8.121)

which is equivalent to the statement of the theorem. To this end, we

note that the pre-factor on the right-hand side of (8.121) is a Laurent

polynomial in z with lower degree −2(L+ 1) and upper degree 2(L+ 1).

Likewise, the matrix elements of T̄ (z|z1, . . . , zL) are Laurent polynomials

in z with lower degree at least −2(L + 1) and upper degree at most

2(L+ 1). Therefore, it is sufficient to show that (8.121) holds for at least

4L+ 5 distinct values of z.

First, it follows from Proposition 8.7.1 that

T̄ (zi|z1, . . . , zL)

= [β/zi][qβzi]
( L∏
j=1

[qzj/zi][q/(zjzi)]
)
S(i)(z1, . . . , zL), (8.122)

where S(i)(z1, . . . , zL) is the operator defined in (8.54) with s = 1. It

follows from this equality and from the bqKZ equations (8.55) that

(8.121) holds if z = zi for each i = 1, . . . , L. Moreover, Lemma 8.6.1

allows us to conclude that it holds if z = −zi, 1/(qzi),−1/(qzi) for each

i = 1, . . . , L, too.

Second, according to Lemma 8.6.1 and Lemma 8.6.2, for any solution z

of z4 = 1 we have

T̄ (z|z1, . . . , zL) =
( L∏
j=1

[qzj/z][q/(zjz)]
)

[β/z][qβz]1. (8.123)

This implies that (8.121) trivially holds for the values z = ±1,±i,

±q−1,±iq−1.

In summary, the relation (8.121) holds for 4L+8 > 4L+5 distinct values

of z and, hence, for all z.



172 Chapter 8. bqKZ equations

Two remarks about the eigenvalue ΛL(z) are in order. First, we note

that we can write it as the trace

ΛL(z) = tr0

(
K0(qz; β̄)K0(z;β)

)
, (8.124)

where β̄ is a solution of (8.38). Formally, the right-hand side of this

equality is the transfer matrix of the six-vertex model on a strip with

L = 0 vertical lines. Second, for q = β = e2πi/3 and z1 = · · · = zL = 1,

the eigenvalue is equivalent to the trigonometric limit of the eigenvalue

of the supersymmetric eight-vertex model on a strip studied in Chapter 5

[3].



Chapter 9

Spin chain and

combinatorics

In this chapter, we study the homogeneous limit z1 = · · · = zL = 1 of the

vector |ΨL〉 defined in Chapter 8. It is convenient to define the rescaled

version

|ψL〉 = (−1)n̄(n̄−1)/2[β]−n[q]−n(n−1)−n̄(n̄−1)|ΨL(1, . . . , 1)〉. (9.1)

This vector is non-vanishing, as follows from Proposition 8.1.1, and

depends on the parameters q and β.

For generic q, β, the state |ψL〉 is unrelated to the XXZ spin chain. If

q = e2iπ/3, then we show that |ψL〉 becomes an eigenvector of the XXZ

Hamiltonian (8.1) with the parameters (8.2), where

x = −[qβ]/[β]. (9.2)

Moreover, for x > 0, it spans the ground-state eigenspace. Hence, if

q = e2πi/3, we refer to |ψL〉 as the ground-state vector (even though,

strictly speaking, this is only valid for x > 0).

As already mentioned in Chapters 6 and 8, there is a close connection

between XXZ spin-chain ground-states at ∆ = −1/2 (and, to a larger

extent, the solutions of qKZ equations) and enumerative combinatorics.

As for |ψL〉, we show that scalar products are related to the enumeration

of symmetry classes of plane partitions and alternating sign matrices. In

173
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particular, we conjecture a relation between the sum of components of

|ψL〉, for generic q, and a weighted enumeration of the so-called totally-

symmetric alternating sign matrices.

The layout of this chapter is as follows. In Section 9.1, we show that if

q = e2πi/3 then |ψL〉 is an eigenvector of the XXZ spin-chain Hamiltonian

(8.1) with parameters (8.2) and (9.2). Furthermore, we compute the

corresponding eigenvalue. The purpose of Section 9.2 is to express the

components of the homogeneous vector in terms of multiple contour

integrals and to investigate some of its properties. We discuss scalar

products involving the vector |ψL〉 in Section 9.3. In Section 9.4, we recall

the definition and enumeration of (special kinds of) plane partitions and

alternating sign matrices and discuss the relation of these combinatorial

objects with the components of |ψL〉.

9.1 Transfer matrix and the XXZ Hamiltonian

In this section, we show the relation between the transfer matrix and the

Hamiltonian (8.1) and prove that the latter possesses a simple eigenvalue

in the sector of magnetisation µ = (n̄− n)/2. To this end, we define the

transfer matrix of the homogeneous six-vertex model on the strip by

t(z) = T (z|1, . . . , 1). (9.3)

It follows from the calculation made in Chapter 5 that its logarithmic

derivative at z = 1 yields the XXZ Hamiltonian of the open XXZ spin

chain [35]. Using our parameterisation of the R- and K-matrix, we find

t(1)−1t′(1) = − 4

[q]
(H − C1) , (9.4)

where H is the Hamiltonian (8.1) with the parameters

∆ =
[q2]

2[q]
, p =

[q][β2]

4[β]2
, p̄ =

[q][β̄2]

4[β̄]2
. (9.5)

Moreover, the constant C is given by

C =
3L[q2]

4[q]
+

[q][β2]

4[β]2
− [q]2[β̄2]

2[q2][β̄][q/β̄].
(9.6)
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Theorem 9.1.1. The Hamiltonian (8.1) with the parameters (8.2) pos-

sesses the eigenvalue

E0 = −3L− 1

4
− (1− x)2

2x
. (9.7)

For real x > 0, it is the non-degenerate ground-state eigenvalue in the

sector of magnetisation µ = (n̄− n)/2.

Proof. Let q = e2πi/3 and suppose that (8.38) holds. In this case, it

follows from (9.5) that ∆ = −1/2 and that the parameters p, p̄ satisfy

(8.2), where x is given in terms of β by (9.2).

First, we prove the existence of the eigenvalue E0. To this end, we use

(9.4) to write

H|ψL〉 = C|ψL〉 −
[q]

4
t(1)−1t′(1)|ψL〉. (9.8)

By Proposition 8.7.2, |ψL〉 is an eigenvector of t(z) with the eigenvalue

ΛL(z). Hence, we find H|ψL〉 = E0|ψL〉 with

E0 = C − [q]

4

Λ′L(1)

ΛL(1)
. (9.9)

Using (9.6) and the explicit expression of ΛL(z), we find that the right-

hand side yields (9.7).

Second, let us denote by Eµ(x) the ground-state eigenvalue of the restric-

tion Hµ of H to the sector of magnetisation µ = (n̄ − n)/2. We show

that if x > 0, then E0(x) = Eµ(x) and E0(x) is non-degenerate. Here,

we write E0 = E0(x) to stress its dependence on x.

We show that Eµ(x) is non-degenerate following an argument of Yang

and Yang [14]. For each real x > 0, we use a similar argument as in

[3] to show that there exists a real number λ such that the λ −Hµ is

a non-negative irreducible matrix. Hence, we may apply the Perron-

Frobenius theorem. It implies that the largest eigenvalue of λ − Hµ

is non-degenerate. Therefore, the ground-state eigenvalue Eµ of Hµ is

non-degenerate.

For x = 1, E0(1) is the non-degenerate ground-state eigenvalue of the

Hamiltonian. The corresponding eigenvector has magnetisation µ =

(n̄− n)/2 [1]. This implies that E0(1) = Eµ(1).
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One finally checks that for x > 0, both E0(x) and Eµ(x) are continuous

functions of x. We show that E0(x) = Eµ(x) for each x > 0. Indeed,

if E0(x) 6= Eµ(x) for x 6= 1 (without loss of generality, we can assume

that 0 < x < 1), this would imply that there exists x′ with x < x′ ≤ 1

such that E0(x′) = Eµ(x′) is (at least) doubly degenerate. This is a

contradiction. Hence, E0(x) = Eµ(x) and E0(x) is non-degenerate

Theorem 9.1.1 gives an explicit expression for the ground-state eigenvalue

of the Hamiltonian in the sector of magnetisation µ = (n̄ − n)/2, for

x > 0. Its existence was conjectured in [126]. The state |ψL〉 spans the

corresponding eigenspace.

9.2 Components

In this section, we investigate the properties of the vector |ψL〉. For

L > 2, we may write

|ψL〉 =
∑

16a1<···<an6L
(ψL)a1,...,an |↑ · · · ↑ ↓

a1

↑ · · · ↑ ↓
an
↑ · · · ↑〉. (9.10)

Likewise, we have

|ψL〉 =
∑

16b1<···<bn̄6L
(ψ̄L)b1,...,bn̄ |↓ · · · ↓↑

b1

↓ · · · ↓ ↑
bn̄

↓ · · · ↓〉. (9.11)

We note that (9.1) fixes the following component:

(ψL)1,...,n = (ψ̄L)n+1,...,L = τ n̄(n̄−1)/2. (9.12)

Here, and in the following, τ = −q − q−1.

The value q = e2πi/3 corresponds to τ = 1. In this case, |ψL〉 is an

eigenvector of the Hamiltonian and the normalisation (9.12) becomes

(ψL)↓···↓↑···↑ = 1. (9.13)

Contour integral formulas. There are several contour-integral for-

mulas for the components of |ψL〉. The first type of formulas follows from
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the evaluation of (8.4) with z1 = · · · = zL = 1. Changing the integration

variables to ui = [wi]/[wi/q] leads to the following expression:

(ψL)a1,...,an = τL(L−1)/2×∮
· · ·
∮ n∏
k=1

duk
2πi

(1 + xuk)(1 + τuk)(τ + (τ2 − 2)uk)(1 + τuk + u2
k)
L−2n

uakk (τ + (τ2 − 1)uk)L

×
∏

16i<j6n

(uj − ui)(1 + τ(ui + uj) + (τ2 − 1)uiuj)(1 + τuj + uiuj)

× (τ + (τ2 − 1)(ui + uj) + τ(τ2 − 2)uiuj). (9.14)

The integration contour of ui goes around 0, but not around −τ/(τ2− 1).

Likewise, the evaluation of (8.6) with z1 = · · · = zL = 1 and a change

of the integration variables to ui = [wn̄+1−i]/[qwn̄+1−i] leads to a second

contour integral formula

(ψ̄L)b1,...,bn̄ =

∮
. . .

∮ n̄∏
k=1

duk
2πi

(1 + τuk + u2
k)
L+1−2n̄

u
L+1−bn̄+1−k

k (1 + (x− τ)uk)

×
∏

16i6j6n̄

(1− uiuj)
∏

16i<j6n̄

(uj − ui)(1 + τuj + uiuj)(τ + ui + uj)

(9.15)

Here, the integration contour of ui goes around 0. We also use the

following third contour-integral representation of the components:

Proposition 9.2.1. For each increasing sequence 1 6 a1 < · · · < an 6
L, we have

(ψL)a1,...,an =

∮
. . .

∮ n∏
k=1

duk
2πi

(uk + x)(1 + τuk + u2
k)
L−2n

u
L+1−an+1−k

k

×
∏

16i6j6n

(1− uiuj)
∏

16i<j6n

(uj − ui)(1 + τuj + uiuj)(τ + ui + uj).

(9.16)

The integration contour of ui goes around 0.

Proof. It follows from Proposition 8.5.2 that

(ΨL)a1,...,an = εL(ΨL)L+1−an,...,L+1−a1(s−1z−1
L , . . . , s−1z−1

1 ; q2s−1β−1),

(9.17)
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where s obeys (8.37). Using the integral formula (8.4) on the right-hand

side and performing the change of variables wi → s−1w−1
n+1−i lead, after

some algebra, to

(ΨL)a1,...,an = [q]n
∏

16i<j6L

[qzj/zi][qzizj ]

∮
· · ·
∮ n∏

k=1

dwk
iπwk

[qβwk]

×
∏

16i<j6n[qwj/wi][wi/wj ][q
2wiwj ]

∏
16i6j6n[qwiwj ]∏n

i=1

(∏ai
j=1[qwi/zj ]

∏L
j=ai

[wi/zj ]
∏L
j=1[qwizj ]

) . (9.18)

The integration contour of wi is collections of positively-oriented curves

around zj , but not 0,−zj ,±q−1zj , ±q−1z−1
j .

We now set z1 = · · · = zL = 1 and change the integration variables to

ui = [wn+1−i]/[qwn+1−i]. Using the definitions (9.1) and (9.2), we obtain

(9.16).

For x = 0, this proposition shows that |ψL〉 is the vector studied in [139].

We now show that we can compute this vector from x = τ . To this end,

we recall that the spin-reversal operator R on V L is defined as

R =

L∏
i=1

σ1
i . (9.19)

Proposition 9.2.2. We have |ψL(0)〉 = R|ψL−1(τ)〉 ⊗ |↑〉.

Proof. For x = 0, the contour-integral expression (9.16) becomes

(ψL)a1,...,an =

∮
. . .

∮ n∏
k=1

duk
2πi

(1 + τuk + u2
k)
L−2n

u
L−an+1−k

k

×
∏

16i6j6n

(1− uiuj)
∏

16i<j6n

(uj − ui)(1 + τuj + uiuj)(τ + ui + uj).

(9.20)

It implies that the component vanishes for an = L because the integrand

has no pole at u1 = 0. For an < L, we find by comparison with (9.15)

the relation

(ψL(0))a1,...,an = (ψ̄L−1(τ))a1,...,an (9.21)

Combining this relation with (9.10) and (9.11) proves the statement of

the proposition.
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Polynomiality. Using the expression of the components in terms of

multiple contour integrals, we prove the following property:

Theorem 9.2.3. The components (ψL)s1···sL are polynomials in x and

τ with integer coefficients. Furthermore, for τ = 1 and each 1 6 m 6 n,

the degree of the polynomial (ψL)↓···↓sm+1···sL in x is at most n−m.

Proof. First, it follows from the residue theorem that the contour integral

(9.16) yields a polynomial in x and τ with integer coefficients.

Second, for τ = 1, the contour-integral formula (9.14) simplifies to

(ψL)a1,...,an =

∮
· · ·
∮ n∏

k=1

duk
2πi

n∏
k=1

(1 + xuk)(1 + uk + u2
k)
L−2n

uakk

×
∏

16i6j6n

(1− uiuj)
∏

16i<j6n

(uj − ui)(1 + uj + uiuj)(1 + ui + uj). (9.22)

If ai = i for i = 1, . . . ,m, then the integrations with respect to u1, . . . , um
are trivial. We find

(ψL)1,...,m,am+1,...,an

=

∮
· · ·
∮ n∏

k=m+1

duk
2πi

(1 + xuk)(1 + uk)
2m(1 + uk + u2

k)
L−2n

uak−mk

×
∏

m+16i6j6n

(1− uiuj)
∏

m+16i<j6n

(uj − ui)(1 + uj + uiuj)(1 + ui + uj). (9.23)

The right-hand side is a polynomial in x of degree is at most n−m.

More generally, we observe that the coefficients of the polynomials in x

and τ are non-negative but do not have a proof of this statement.

Parity. Next, we consider the vector’s behaviour under a parity trans-

formation C, for τ = 1. To express the action of the parity operator

on the ground-state vector, we stress its dependence of x by writing

|ψL〉 = |ψL(x)〉.

Theorem 9.2.4. For τ = 1, we have C|ψL(x)〉 = xn|ψL(x−1)〉.
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Proof. For τ = 1, we find by comparison of (9.14) and (9.16) the relation

(ψL)L+1−an,...,L+1−a1(x) = xn(ψL)a1,...,an(x−1). (9.24)

It is equivalent to C|ψL(x)〉 = xn|ψL(x−1)〉.

9.3 Scalar products

In this section, we consider scalar products involving the vector |ψL〉. We

investigate the overlap of |ψL〉 with a tensor product of states belonging

to V 2, as well as the sum of its components.

Let us introduce the co-vector 〈ξ(α)| = 〈↑↓|+α〈↓↑|, where α is a complex

number. We define the scalar products

F2n =
(
〈ξ(α)| ⊗ · · · ⊗ 〈ξ(α)|

)
|ψ2n〉,

F2n+1 =
(
〈↑| ⊗ 〈ξ(α)| ⊗ · · · ⊗ 〈ξ(α)|

)
|ψ2n+1〉.

(9.25)

The scalar products FL are polynomials in α and x of degree at most n.

The following theorem gives closed-form expressions for FL:

Theorem 9.3.1. For each n > 0, we have

F2n =
n

det
i,j=1

(
αxf−2

i,j + (α+ x)f−1
i,j + f0

i,j

)
. (9.26)

and

F2n+1 =
n

det
i,j=1

(
αxf0

i,j+1 + (α+ x)f1
i,j+1 + f2

i,j+1

)
, (9.27)

where

fki,j = τ2(i−j)+k+1
∞∑
m=0

(
i− 1

2(i− j) +m+ k + 1

)(
j − 1

m

)
τ2m. (9.28)

This theorem reveals that the scalar products are symmetric under the

exchange of x and α. We have not been able to find a simple symmetry

of the ground state that could explain this curious property.

The proof follows the lines of [62, 139], and uses an antisymmetriser

identity. We recall that the antisymmetriser Af of a function f of the

variables u1, . . . , un is

(Af)(u1, . . . , un) =
∑
σ

sgnσ f(uσ(1), . . . , uσ(n)). (9.29)
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Here, the sum runs over all permutations σ of {1, . . . , n}. We use two

elementary properties of the antisymmetriser. First, the Vandermonde

determinant can be written as an antisymmetriser:

∆(u1, . . . , un) =
∏

16i<j6n

(uj − ui) = A

(
n∏
i=1

ui−1
i

)
. (9.30)

Second, if f and g are functions of u1, . . . , un then we have∮
· · ·
∮ n∏

i=1

dui
2πi

(Af)(u1, . . . , un) g(u1, . . . , un)

=

∮
· · ·
∮ n∏

i=1

dui
2πi

f(u1, . . . , un)(Ag)(u1, . . . , un), (9.31)

where the integration contour of each ui on both sides is a collection

of positively-oriented curves around 0, but no other singularity of the

integrand.

Proof of Theorem 9.3.1. We compute the overlap (9.25) for the vector

(9.1) with arbitrary τ . In terms of the components, we obtain

FL =
∑

ε1,...,εn=0,1

α
∑n

i=1 εi(ψL)L−2(n−1)−ε1,L−2(n−2)−ε2,...,L−εn . (9.32)

We use the integral formulas (9.16) to rewrite this sum in terms of a

contour integral:

FL =

∮
· · ·
∮ n∏

k=1

duk
2πi

(uk + x)(uk + α)(1 + τuk + u2
k)
L−2n

u2k
k

×
∏

16i6j6n

(1− uiuj)
∏

16i<j6n

(uj − ui)(1 + τuj + uiuj)(τ + ui + uj).

(9.33)

The integrand contains a Vandermonde determinant. We use (9.30) and

rewrite it as an antisymmetriser. Using (9.31), we obtain

FL =

∮
· · ·
∮ n∏

k=1

duk
2πiuk

h(uk)u
k−1
k (τ + uk)

k−1g(u1, . . . , un), (9.34)

where

h(u) = (u+ x)(u+ α)(1 + τu+ u2)L−2n, (9.35)
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and

g(u1, . . . , un) =
∏

16i6j6n

(1−uiuj)A
( n∏
k=1

u−2k+1
i

∏
16i<j6n

(1+ τuj +uiuj)
)
. (9.36)

Let us denote by g(u1, . . . , un)60 the polynomial in u−1
1 , . . . , u−1

n obtained

from g(u1, . . . , un) by removing all monomials that contain at least one

positive power in u1, . . . , un. We have [139]

g(u1, . . . , un)60 = A

(
n∏
i=1

u−ii (τ + u−1
i )i−1

)
. (9.37)

This identity allows us to apply (9.31) a second time. We obtain

FL =

∮
· · ·
∮ n∏

k=1

duk
2πi

h(uk)u
−k−1
k (τ + u−1

k )k−1

×∆(u1(τ + u1), . . . , un(τ + un)). (9.38)

The Vandermonde determinant in the integrand allows us to rewrite FL
as the determinant of a single contour integral:

FL =
n

det
i,j=1

(∮
du

2πi
h(u)(τ + u)i−1(τ + u−1)j−1ui−j−2

)
. (9.39)

We evaluate the contour integral inside the determinant in terms of

fki,j =

∮
du

2πi
(τ + u)i−1(τ + u−1)j−1ui−j+k

= τ2(i−j)+k+1
∞∑
m=0

(
i− 1

2(i− j) +m+ k + 1

)(
j − 1

m

)
τ2m. (9.40)

The sum on the right-hand side is finite. Therefore, fki,j is a polynomial in

τ . In terms of these polynomials, we find for even L = 2n the determinant

(9.26). If L = 2n+ 1 is odd then the evaluation of the contour integral,

combined with the identity fki,j = fk+2
i,j+1 − τf

k+1
i,j and elementary column

operations, yields (9.27).

The theorem allows us to obtain determinant formulas for the components

of |ψL〉 that are labelled by alternating spin configurations. Indeed, we
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obtain through the specialisations α = 0 and α→∞ the expressions

(ψ2n)↑↓···↑↓ =
n

det
i,j=1

(
f0
i,j + xf−1

i,j

)
, (9.41)

(ψ2n+1)↑↓···↑↓↑ =
n

det
i,j=1

(
xf0

i,j+1 + f1
i,j+1

)
. (9.42)

Furthermore, we consider the sum of components

SL(x, τ) =
∑

16a1<···<an6L
(ψL)a1,...,an . (9.43)

Using (9.16), we can evaluate it in terms of the following multiple contour

integrals

SL(x, τ) =

∮
· · ·
∮ n∏

k=1

duk
2πi

(uk + x)(1 + τuk + u2
k)
L−2n

uL−n+k
k

(
1−

∏k
j=1 uj

)
×

∏
16i6j6L

(1− uiuj)
∏

16i<j6n

(uj − ui)(τ + ui + uj)(1 + τuj + uiuj). (9.44)

We have not been able to simplify further this formula to express it in

terms of a single determinant (as in Theorem 9.3.1) or a pfaffian. In the

next section, we conjecture a relation between this sum of components

and the enumeration of combinatorial objects.

9.4 The XXZ spin chain and combinatorics

In this section, we give the definition of two types of combinatorial

objects, namely the plane partitions and the alternating sign matrices.

We discuss certain symmetry classes and their enumeration. We show

that they are related to certain scalar products that we discussed in the

preceding section. In particular, we prove Theorem 7.3.1.

Plane partitions. A plane partition is a two-dimensional array of

integers, πi,j , i, j > 1, such that each row and column is a non-increasing

sequence of integers

πi,j > πi,j+1 πi,j > πi+1,j . (9.45)
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6 6 6 5 3 3

6 6 5 3 3 3

6 6 5 3 3 1

4 3 3 1 1

4 3 3

3 2 2

Figure 9.1: A cyclically-symmetric transpose-complement plane parti-

tions in a 6× 6× 6−box as an array and as the graphical representation

of its diagram.

For each plane partition π, we can define its diagram (also called Ferrer

graph) as the set of integers D(π) given by

D(π) = {(i, j, k)|πi,j > k}. (9.46)

We say that the plane partition is contained in a r × s × t−box if

i 6 r, j 6 s, k 6 t for each (i, j, k) ∈ D(π).

The diagram allows one to visualise the plane partition as a pile of cubes

in the corner of a box. The Figure 9.1 gives an example of a plane

partition and its graphical representation. In the following, we identify a

diagram with the corresponding plane partition and denote both by π.

A class of symmetry. Various symmetry classes have been considered

for plane partitions [142, 53]. Here, we discuss the cyclically-symmetric

transpose-complement plane partitions. A plane partition is cyclically

symmetric if (i, j, k) ∈ π whenever (j, k, i) ∈ π.

Furthermore, let π be a plane partition contained in a r× s× t−box. Its

complement, πc is the set of points in the box that do not belong to π:

πc = {(i, j, k)|i 6 r, j 6 s, k 6 t, (r−i−1, s−j−1, t−k−1) 6∈ π}. (9.47)

A plane partition is transpose-complement if πc = πt, where πt is the

plane partition obtained by transposition of π: (πt)i,j = πj,i.

We consider cyclically-symmetric transpose-complement plane partitions

(CSTCPP) that are plane partitions that are both cyclically symmetric
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0 0 1

0 1 0

1 0 0

 ,
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1 −1 1
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Figure 9.2: The seven ASMs of size 3× 3.

and transpose-complement. Due to the symmetry constraints, CSTCPPs

only exist in cubic boxes of size 2n. The plane partition depicted in

Figure 9.1 is a CSTCPP. The number of CSTCPPs in a 2n×2n×2n−box

is denoted by N8(2n) and is given by [143, 53]

N8(2n) =

n−1∏
k=0

(3k + 1)(6k)!(2k)!

(4k)!(4k + 1)!
. (9.48)

Alternating sign matrices. An alternating sign matrix (ASM) is a

square matrix with entries −1, 0 or +1, such that each row and column

sum equals one and the non-zero entries along each row and column

alternate in sign [49, 50, 53]. The Figure 9.2 gives the ASMs of size 3× 3.

We consider ASMs that are invariant under a certain symmetry of the

square. There are eight classes of ASMs that are of interest [144, 123].

Here, we focus on two of them.

Vertically symmetric alternating sign matrices. The vertically

symmetric alternating sign matrices are the ASMs that are invariant

under a reflection with respect to the vertical symmetry axis. Let

A = (aij)
N
i,j=1 be a vertically symmetric ASM. In terms of its entries, the

symmetry reads

aij = ai(N+1−j). (9.49)

We denote by AV(N) the number of vertically symmetric ASMs of size

N ×N . (Due to the symmetry, there are no such matrices of even size.)
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These numbers are given by [123]

AV(2n+ 1) =
1

2n

n∏
k=1

(6k − 2)!(2k − 1)!

(4k − 2)!(4k − 1)!
. (9.50)

Before introducing the second class of ASMs, we revisit the supersym-

metric model that we investigate in Chapters 6 and 7 and prove Theo-

rem 7.3.1.

The supersymmetric point. We consider the vector |ψL〉 with x =

τ = 1. It is a ground state of the supersymmetric Hamiltonian H of

Chapter 6. The determinant expressions of Theorem 9.3.1 simplify for

τ = 1, we have

fki,j

∣∣∣
τ=1

=

(
i+ j − 2

2i− j + k

)
. (9.51)

Our first result concerns the components (9.41) and (9.42). For x = 1,

we can explicitly evaluate their determinant expressions with the help of

Krattenthaler’s formula [53]. We obtain

(ψ2n)↑↓···↑↓ = AV(2n+ 1), (ψ2n+1)↑↓···↑↓↑ = N8(2n+ 2). (9.52)

Similarly, the scalar product FL with x = 1 and α = 1 is given by

(〈χ| ⊗ · · · ⊗ 〈χ|) |ψ2n〉 = N8(2n+ 2), (9.53)

(〈↑| ⊗ 〈χ| ⊗ · · · ⊗ 〈χ|) |ψ2n+1〉 = AV(2n+ 3), (9.54)

where we used the definition of |χ〉 = |ξ(1)〉.

These results allow us to prove Theorem 7.3.1:

Proof of Theorem 7.3.1. The proof is a direct consequence of (9.52) and

(9.53), together with Proposition 6.4.6.

Totally-symmetric alternating sign matrices. The other symme-

try class of ASM that we consider are the totally-symmetric alternating

sign matrices (TSASMs), which are ASMs of odd size that are invariant
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0 0 0 0 + 0 0 0 0

0 0 + 0 − 0 + 0 0

0 + − 0 + 0 − + 0

0 0 0 + − + 0 0 0

+ − + − + − + − +

0 0 0 + − + 0 0 0

0 + − 0 + 0 − + 0

0 0 + 0 − 0 + 0 0

0 0 0 0 + 0 0 0 0


Figure 9.3: A totally-symmetric alternating sign matrix of size 9 × 9,

where ± represents the non-zero entry ±1. The horizontal and vertical

median are fixed to alternating sequences of +1 and −1.

under all symmetries of the square [145, 144]. (There are no totally-

symmetric alternating sign matrices of even size.) Figure 9.3 shows an

example of a TSASM.

Let A = (aij)
2m+1
i,j=1 be a TSASM. The invariance under the symmetries

of the square reads

aij = aji = ai(2m+2−j). (9.55)

In particular, the symmetries imply that the horizontal and vertical

medians are alternating sequences of +1 and −1:

amj = (−1)j+1, aim = (−1)i+1. (9.56)

The medians divide the matrix into four equivalent sub-matrices of size

m×m.

Due to the symmetries, TSASM’s entries are determined by the upper-

triangular part of the upper-left sub-matrix:

a11 a12 · · · a1m

a22 a2m

. . .
...

amm.

(9.57)

Let µ(A) and ν(A) be the number of non-zero entries along and above

its diagonal, respectively. In terms of the sub-matrix’ entries, they are
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0 0 0 0

0 0 +

0 0

0

0 0 0 0

+ 0 0

0 0

+

0 0 0 0

0 + 0

− 0

+

0 0 0 0

0 0 +

+ −
+

τ t2 t2τ t2τ2

Figure 9.4: The upper-triangular parts of the upper-left submatrix for

each of the four totally-symmetric alternating sign matrices of size 9× 9

(m = 4) and their corresponding weights. The corresponding generating

function is ATS(9; t, τ) = τ + t2(1 + τ + τ2).

given by

µ(A) =

m∑
i=1

|aii|, ν(A) =
∑

16i<j6m

|aij |. (9.58)

We use them to assign the weight tµ(A)τν(A) to the matrix A. Figure 9.4

displays the triangular parts of all TSASMs of size 9× 9, as well as the

corresponding weights. Using the weights, we introduce the following

generating function:

ATS(2m+ 1; t, τ) =
∑

A∈ATS(2m+1)

tµ(A)τν(A). (9.59)

Here, the sum runs over the set ATS(2m + 1) of all TSASMs of size

(2m + 1) × (2m + 1). For t = τ = 1, we simply write ATS(2m + 1) =

ATS(2m+ 1; 1, 1). These are the TSASM numbers, given by

ATS(2m+ 1) = 1, 1, 1, 2, 4, 13, 46, 248, 1516, 13654, . . . (9.60)

for m = 0, . . . , 9. To our best knowledge, no (product) formula for these

numbers is currently known or conjectured.

We note that the specification t = 0, τ = 1 yields the enumeration

of TSASMs with no entries on the diagonal, except for the central

entry. Namely, these matrices are vertically and off-diagonally symmetric

alternating sign matrices, introduced by Okada [146]. Their enumeration

and some weighted enumerations are known and are given in terms of

products of pfaffians [146, 147].

We have numerically generated the TSASMs for small m with Mathe-

matica and computed the corresponding generating functions ATS(2m+
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1; t, τ). We refer the reader to Appendix A, where we discuss the imple-

mentation and computation of TSASMs.

We observe that the generating functions are related to the sums of the

components SL = SL(x, τ) discussed above and formulate this relation

as the following conjecture:

Conjecture 9.4.1. We have

SL(x, τ) = (1 + x(x− τ))n̄/2ATS(2L+ 3; t, τ), (9.61)

where t = (1 + x)/(1 + x(x− τ))1/2.

This conjecture has several interesting consequences. First, it implies

that the generating functions for the weighted enumeration of TSASMs

introduced in this section can be obtained from the contour-integral

formula (9.44). Even though not very practical, it seems to be the first

formula related to a TSASM enumeration that appears in the literature.

In particular, the TSASM numbers are

ATS(2m+ 1) = Sm−1(0, 1), (9.62)

and can thus be computed from the contour-integral formula. Second,

using Proposition 9.2.2 one easily finds that the sum of the components

obeys the relation SL(0, τ) = SL−1(τ, τ). Hence, we obtain the curious

relation

ATS(2L+ 3; 1, τ) = ATS(2L+ 1; 1 + τ, τ). (9.63)

Finally, specialising the conjecture to t = τ = 1, we obtain the relation

SL(1, 1) = ATS(2L+3). Hence, the sums of the ground-state components

of the spin chain at its supersymmetric point x = 1 yield the sequence

of TSASM numbers. We have numerically verified this corollary for

m = 1, . . . , 16.
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Conclusion and outlook

In this final chapter, we briefly recall the results obtained throughout

this dissertation. We present an outlook and discuss open problems

afterwards.

Conclusion

In this thesis, we have investigated different finite-size integrable models

at particular values of their parameters where they exhibit an additional

symmetry beyond their integrability: supersymmetry. We have discussed

the supersymmetric XYZ spin chains and related eight vertex models in

Chapters 2−5. The rest of the text focuses on XXZ spin chains. We have

explored some of their properties using supersymmetry in Chapters 6

and 7. In the last two chapters, we have studied a solution to the bqKZ

equations and we have proved some properties of this solution related to

combinatorics.

In the first chapter, we have introduced some concepts pertaining to

supersymmetric quantum mechanics. A central definition of Chapter 1 is

the supercharge. The anticommutator of the supercharge and its adjoint

yields a supersymmetric Hamiltonian. We have shown a few properties

of the spectrum and eigenvectors of a supersymmetric Hamiltonian. In

particular, we have discussed the correspondence between the space of

supersymmetry singlets and the (co)homology of the supercharge and its

adjoint.

191
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In Chapter 2, we have studied the XYZ Hamiltonian with periodic

boundary conditions and anisotropy parameters obeying (2.1):

J1J2 + J2J3 + J1J3 = 0. (9.64)

We have shown that the space of the ground-states is two-degenerate

and spanned by supersymmetry singlets.

We have proven Stroganov’s conjecture [54, 56] about the transfer ma-

trix of the supersymmetric eight-vertex model on the square lattice in

Chapter 3. It states that this transfer matrix with L = 2n+ 1 vertical

lines and periodic boundary conditions possesses the doubly degenerate

eigenvalue Θn = (a + b)2n+1. The corresponding eigenvectors are the

supersymmetry singlets characterised in the preceding chapter.

The Chapter 4 has focused on the supersymmetric Hamiltonian of an

XYZ spin chain with open boundary conditions. We showed that if the

parameters of the Hamiltonian are carefully adjusted, then its ground

states are supersymmetry singlets.

We have investigated the corresponding supersymmetric eight-vertex

model on a strip with L vertical lines in Chapter 5. We have shown

that the space of supersymmetry singlets is an eigenspace of the transfer

matrix. We have computed the corresponding non-degenerate eigenvalue:

ΛL = (a+ b)2Ltr(K+K−).

In Chapter 6, we have revisited the spin chains in the XXZ case. First,

for the open spin chain, we have identified a family of supercharges

that yield non-diagonal boundary interactions. We have computed their

cohomology and characterised the space of zero-energy states. Second,

we have discussed the supersymmetry singlets of the periodic spin-chain

Hamiltonian using a relation with the supercharge of the open spin chain.

The Chapter 7 has revealed that we can compute a large family of scalar

products involving an arbitrary number of normalised supersymmetry

singlets in terms of certain distinguished (sum of) components. We have

evaluated these scalar products in the large-system-size limit.

The evaluation of fidelities are based on combinatorial expressions for

certain components of the supersymmetry singlets. We have proved these

combinatorial properties in the last two chapters by investigating the

integrability of the XXZ chain.
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We have studied the boundary quantum Knizhnik-Zamolodchikov equa-

tions for the R-matrix of the six-vertex model and a diagonal K-matrix

in Chapter 8. We have found a solution in terms of multiple contour

integrals, proved some of its properties and shown its relation with the

transfer matrix of the corresponding inhomogeneous six-vertex model.

Finally, in Chapter 9, we have investigated the properties of our solu-

tion to bqKZ equations in the homogeneous limit. In particular, we

have explicitly computed linear sum rules and special components in

terms of determinants and discussed relations with the enumeration of

combinatorial objects.

Outlook

The topics treated in this thesis have natural generalisations. Further-

more, there are various questions and conjectures that our results lead us

to formulate. Here, we present a few open problems that are of interest

to better understand the supersymmetric models that we investigated,

as well as their relation with integrability and combinatorics. We also

suggest strategies and ideas to address these questions.

Inhomogeneous transfer-matrix eigenvalue. The Theorem 3.4.1

proves a twenty-years-old conjecture made by Stroganov on the existence

of the special eigenvalue Θn of the transfer matrix. One may consider

the transfer matrix of the inhomogeneous eight-vertex model with vertex

weights that locally fulfil (3.28), corresponding to η = π/3. In the case

of periodic boundary conditions with L = 2n+ 1, the transfer matrix is

T (u|u1, . . . , uL) = tr0 (R0L(u− uL) · · ·R01(u− u1)) , (9.65)

where u1, . . . , uL are inhomogeneity parameters. Razumov and Stroganov

conjectured that T (u|u1, . . . , uL) possesses the following doubly degener-

ate eigenvalue [57]:

Θn(u1, . . . , uL) =

2n+1∏
j=1

(a(u− uj) + b(u− uj)) . (9.66)

This formula reduces to Θn = (a+ b)2n+1 in the homogeneous limit.
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As for the eight-vertex model on a strip with L > 1 vertical lines, we

give a conjecture that generalises the transfer-matrix eigenvalue to the

inhomogeneous model. Its transfer matrix is

T (u|u1, . . . , uL) = tr0

(
K+

0 (u)U0,[1,L](u|u1, . . . , uL)·
K−0 (u)Ū0,[1,L](u|u1, . . . , uL)

)
, (9.67)

where K−(u) = K(u) and K+(u) = K(u+ 2η), and

U0,[1,L](u|u1, . . . , uL) = R0L(u+ uL) · · ·R01(u+ u1),

Ū0,[1,L](u|u1, . . . , uL) = R01(u− u1) · · ·R0L(u− uL).
(9.68)

Conjecture 9.4.2. Let η = π/3, K(u) be the K-matrix (5.9) with the

coefficients (5.21), evaluated at t = π/6, then the transfer matrix (9.67)

possesses the eigenvalue

ΛL(u|u1, . . . uL) = tr(K+(u)K−(u))·
L∏
j=1

(a(u+ uj) + b(u+ uj)) (a(u− uj) + b(u− uj)) . (9.69)

This conjecture holds in the trigonometric limit p→ 0, as a consequence

of Proposition 8.7.2. Furthermore, we checked that it is compatible with

functional equations obeyed by the transfer matrix [40], and simplifi-

cations that occur for certain specialisations of the spectral parameter

u.

Both these conjectures remain to be proven. Their proof is of interest

since the inhomogeneous models allow one to determine interesting

properties of the corresponding eigenvectors. For periodic boundary

conditions, Zinn-Justin initiated this rigorous investigation in [88].

Supersymmetry and quantum groups. The proofs of the Theo-

rems 3.4.1 and 5.3.3, stating the existence of the eigenvalues Θn and ΛL,

both rely on a commutation relation between the corresponding transfer

matrix and supercharge. These relations are based on the relation (3.31)

between the R-matrix and the local supercharge. (And, additionally for

the open boundary case, on the relations (5.38), (5.39) between q and

the R and K-matrices.)
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As the Yang-Baxter equation (and the boundary Yang-Baxter equation)

are the cornerstone of the construction of commuting transfer matrices,

it seems that the relations (3.31) (and (5.38), (5.39)) may be the key for

a better understanding of the connection between the supersymmetry

and quantum integrability.

In the trigonometric case, the R-matrix can be understood in the frame-

work of quasi-triangular Hopf algebras, also known as quantum groups,

in which the Yang-Baxter equation arises naturally. As an example, in

our case, the Hopf algebra is built upon Uq(ŝl2), a deformation of the

universal enveloping of the affine algebra ŝl2; and a representation yields

the trigonometric R-matrix (8.11).

An open question is the algebraic origin of the supercharge in the context

of quantum groups. We have dedicated our first investigations to the

behaviour of the supercharge under the action of Uq(sl2). This work,

which yielded promising preliminary results, is in progress.

Fidelity and CFT. In Chapter 7, we have considered multipartite

fidelities and have expressed them in terms of simple components or sum

of components using the supersymmetry. We have computed the scaling

behaviour of these quantities. Here, we briefly discuss the connection

with conformal field theory (CFT) that we mentioned.

For the sake of simplicity, we focus here on the logarithmic bipartite

fidelity (LBF) where we divide the system into two parts [118, 119]. The

LBF for spin chains is given in terms of scalar products:

F = − ln

∣∣∣∣〈ψL| (|ψL1〉 ⊗ |ψL2〉)
‖ψL‖ ‖ψL1‖ ‖ψL2‖

∣∣∣∣2 , (9.70)

with L = L1 + L2. In this dissertation, we explored different variations

of F involving the ground states of periodic and open spin chains.

In these cases, one can equivalently express the LBF in terms of partition

functions Z of the corresponding two-dimensional six-vertex models. It

reads

F = lim
N→∞

− ln

∣∣∣∣ (Z1,2)2

Z1Z2Z1∪2

∣∣∣∣ . (9.71)

Here, the partition functions are defined on a square lattice with N rows.

The number of columns (L1, L2 or L) and the boundary conditions of
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each partition function depend on the corresponding scalar product. As

examples, ‖Ψ′L‖ and ‖ΨL‖ correspond to partition functions on a strip

of length L and a cylinder of perimeter L, respectively.

In the large-L limit, and with the ration x = L1/L kept fixed, we express

F as a linear combination of free energies. We have

F = 2f1,2 − f1 − f2 − f1∪2. (9.72)

Dubail and Stéphan argued that the leading terms of the asymptotic

expansion of this quantity have a universal behaviour. They computed

the LBF in the case where all the subsystems have open boundary

conditions [118, 119]. Morin-Duchesne et al. adapted their strategy to

compute fidelities for models with periodic boundary conditions [5].

These results are universal in the sense that they are obtained by making

little assumptions on the CFT. The formulas for F depend on the

considered geometry, as well as the central charge and the dimension of

the involved fields.

Hence, we can particularise those conformal predictions to the XXZ chain.

Indeed, it is well-known that the XXZ chain with anisotropy parameter

−1 6 ∆ 6 1 is described by a CFT with central charge c = 1 [148].

In [1], we have compared the CFT result of Dubail and Stéphan with

our lattice derivation of Z ′(L1, L2) in the scaling limit. We observed a

perfect matching between its scaling behaviour and the predictions from

CFT at both leading and sub-leading orders. The results obtained in

Chapter 7 also coincide with the CFT calculation of [5].

We have obtained the CFT result that corresponds to the fidelity

Z ′(L1, . . . , Lm) [149]. However, CFT predictions for generic multipartite

fidelities are still lacking and would be of great interest.

Deviation from supersymmetry. The Hamiltonian (8.1), which de-

pends on x, is not supersymmetric for x 6= 1. Nevertheless, it exhibits

features that are akin to a supersymmetric structure. We discuss here ob-

servations related to the spectrum and multipartite fidelities. Afterwards,

we propose an algebraic framework to prove the various conjectures.
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Figure 9.5: Spectrum of the Hamiltonian H − E0, where H is the

Hamiltonian (8.1) with (8.2), for L = 3 (left panel) and L = 4 (right

panel), as a function of x. The eigenvalues depending on x for L = 3 are

present in the spectrum for L = 4, evaluated at x = 1.

The first observations concern the spectrum of the Hamiltonian (8.1).

Our numerical analysis suggests that Theorem 9.1.1 holds without the

restriction on the sector of magnetisation:

Conjecture 9.4.3. For real x > 0, the eigenvalue (9.7) is the non-

degenerate ground-state eigenvalue of the Hamiltonian (8.1).

Moreover, the spectrum reveals that (9.7) is not the ground-state eigen-

value for x < 0.

The rest of the spectrum has another interesting property. For each L

and x > 0, the spectrum decomposes into a set of constants with respect

to x and a set of functions of x. We have observed that, for each L, the

constant part of the spectrum consists of the ground-state eigenvalue

and the set of functions present in the spectrum for L− 1, evaluated at

x = 1. The Figure 9.5 illustrates this phenomenon for L = 3 and 4. We

numerically checked that this property holds up to L = 9.

This observation suggests that, for generic x, there exists a doublets

structure: {|ψ〉 ∈ V L, |ψ′〉 ∈ V L+1} such that

H|ψ〉 = f(x)|ψ〉, H|ψ′〉 = f(1)|ψ′〉. (9.73)

Restricted to x = 1, this property is a direct consequence of supersym-

metry, as explained in Chapter 1: We have |ψ′〉 = Q|ψ〉.

The second observation relates to multipartite fidelities. To formulate it,

we introduce the following scalar products between ground states of the
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Hamiltonian (8.1):

OL1,...,Lm = 〈ψ∗L| (|ψL1〉 ⊗ · · · ⊗ |ψLm〉) , (9.74)

where L = L1 + · · ·+Lm. Here, 〈ψ∗L| = |ψL〉t is defined by transposition

(without complex conjugation).

We have found the scalar products for up to L = 12 sites through the

exact computation of the ground-state vector with Mathematica. Our

results suggest the following conjecture:

Conjecture 9.4.4. Let L1, . . . , Lm be integers and L = L1 + · · · +

Lm. If L1, . . . , Lm are even or if Lk is odd for 1 6 k 6 m and

L1, . . . , Lk−1, Lk+1 . . . , Lm are even, then we have the scalar product

OL1,...,Lm = xnFL(x, x−1)
m∏
j=1

FLj (1, 0), (9.75)

where we wrote FL(x, α) for FL defined in (9.25) to stress its dependence

on x and α. In all other cases, the scalar product vanishes due to the

magnetisation of the vectors.

This factorisation of OL1,...,Lm into a product of determinants is extraor-

dinary simple. It generalises the result for open spin chains obtained in

Chapter 7, for x = 1. For arbitrary x, the proof of the conjecture and

the evaluation of the behaviour of the fidelity in the limit L→∞ remain

interesting open problems.

The two preceding observations and conjectures have been shown to

hold for x = 1. In that case, the proofs rely almost entirely on the

supersymmetry present at this point. Therefore, a possible strategy to

understand these properties for generic x is to use a deformed version

of the supersymmetry. This approach is based on the following observa-

tion: there exist operators Q(x) such that the Hamiltonian (8.1), which

depends on x, reads

H = Q(x)Q(x)t + Q(x)tQ(x)− Γ1. (9.76)

Here, Γ is a function of x, the superscript t denotes the transposition

(without complex conjugation), and the operator Q(x) is a deformation
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of the supercharge. An example of an operator Q(x) is given by Q(x) =

Q′ + Qg where

Qg|ψ〉 =
√
x− 1|↓〉 ⊗ |ψ〉+ (−1)L

√
x−1 − 1|ψ〉 ⊗ |↓〉. (9.77)

This choice leads to Γ = (3L− 1)/4 + 3(x− 1)2/(2x). The relation (9.76)

is akin to the definition of a supersymmetric Hamiltonian. We note that

Q(x) is not a supercharge as it is not nilpotent (except for x = 1 in

which case we recover the supercharge Q′ of Chapter 6). Nevertheless,

this observation is promising to investigate the structure of the spectrum

and eigenvectors, away from the supersymmetric point.

Totally-symmetric alternating sign matrices. The enumeration

of TSASMs is arguably the most striking missing part of the puzzle of the

alternating sign matrices. Therefore, a proof of Conjecture 9.4.1, relating

the vector |ψL〉 and a weighted enumeration of TSASMs, is of great

interest. We commented on the importance and some consequences of

this conjecture, as well as its relations with other combinatorial problems

in Chapter 9. Here, we discuss a strategy for proving it.

A possible approach consists in constructing multivariable Laurent poly-

nomials P1, P2 such that the homogeneous limits yield the sum of the

components of |ψL〉 and the enumeration of TSASMs, respectively. In

the case of |ψL〉, a candidate for L = 2n is

P1 = (〈χ(x1)| ⊗ · · · ⊗ 〈χ(xn)|)|ΨL(x1, x
−1
1 , . . . , xn, x

−1
n 〉. (9.78)

(A similar candidate exists for odd L.) In this equation, |χ(x)〉 is a

solution to the boundary Yang-Baxter equation in its vector form [150].

As for P2, one can construct it using the connection between TSASMs and

the six-vertex model with domain-wall boundary conditions, as explained

in Appendix A. The proof of Conjecture 9.4.1 amounts to showing that

these polynomials are equal. We have started working on this project,

which has not been finalised yet.

The next step would be to express the formula for the sum of the

components in a simpler form. Examples from the literature suggest that

it could be expressed in terms of determinants or pfaffians [146, 147].

Whether such an expression exists is itself an interesting question. So far,
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no formula for the enumeration of the TSASMs has been conjectured.

We hope that our results and observations will allow for the unravelling

of this mystery.



Appendix A

TSASM Enumeration

We based Conjecture 9.4.1, related to the sum of components of |ψL〉,
on the construction and observation of totally-symmetric alternating

sign matrices (TSASMs) of small sizes. The goal of this appendix is to

provide details about the implementation of this problem.

The layout of this appendix is as follows. In Section A.1, we discuss

the equivalence between the alternating sign matrices and configurations

of the six-vertex model on a square lattice with so-called domain-wall

boundary conditions. We investigate this equivalence in the case of

TSASMs in Section A.2. It allows us to express the weighted enumeration

ATS(2m+ 1, t, τ) of Chapter 9 as a matrix element of a specific operator.

We discuss the implementation of this computation on Mathematica

in Section A.3.

A.1 Equivalence with the six-vertex model

The construction of the TSASMs is based on the equivalence between

alternating sign matrices and configurations of the six-vertex model with

specific boundary conditions, as first exploited by Kuperberg [52]. We

recall that the vertices are of six types, as labelled on Figure A.1.

The equivalence is as follows. We consider the six-vertex model on a

N × N square lattice with domain-wall boundary conditions. These

boundary conditions consist of arrows on the left and right boundaries of

201
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1 2 3 4 5 6

0 0 0 0 1 −1

Figure A.1: The configurations of the six-vertex model in terms of arrows

and in terms of lines, labelled from 1 to 6, and the corresponding entry

in the ASM.

the square domain pointing outward and arrows on the top and bottom

pointing inward. The Figure A.2 depicts a configuration of the six-vertex

model on a 3× 3 square lattice with domain-wall boundary conditions.

We create a matrix A = (aij)
N
i,j=1 such that aij = 1,−1 or 0 if the vertex

in the i-th row and j-th column of the square lattice is a vertex of type

5, 6 or different from those two values, respectively. The domain-wall

boundary conditions ensure that the matrix obtained is an ASM and

that the mapping is a bijection. (Hence, one can construct a unique

configuration of the vertex model, given an ASM.)

The partition function of the six-vertex model with domain-wall boundary

conditions is a matrix element of a product of R-matrices acting on a

tensor product of V . We refer the reader to Chapter 3 for an explanation

of the correspondence between arrows and spins configurations. The R-

matrix is an operator acting on V ⊗V . It encodes the weights w1, . . . , w6

of the configurations. In the canonical basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 of V 2, it

reads

R =


w1 0 0 0

0 w3 w5 0

0 w6 w4 0

0 0 0 w2

 . (A.1)
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0 1 0

1 −1 1

0 1 0



Figure A.2: From left to right, a 3 × 3 (totally symmetric) ASM, the

corresponding six-vertex model configuration in terms of arrows, the

same configuration in terms of lines.

A.2 Symmetry classes of ASM and six-vertex

model

In the following, we consider the partition function of the six-vertex

model corresponding to ASM in a particular symmetry class.

Symmetry class and vertex restrictions. If an ASM belongs to a

symmetry class, the corresponding six-vertex model configuration does

not necessarily have the same symmetry. As an example, the matrix

depicted in Figure A.2 possesses the quarter-turn symmetry while the

vertex configuration does not. However, the symmetry of the ASM

may give constraints on the configuration of the vertices. The vertical

symmetry gives a trivial example: it imposes entries ±1 on the vertical

median of the ASM, which implies that the corresponding vertices are of

type 5 or 6.

The diagonal symmetry imposes a more subtle constraint: it forbids

vertices in the i-th row and i-th column, i = 1, . . . , N , to be of type

3 or 4 (we refer to those as vertices on the diagonal). Furthermore,

vertices on the anti-diagonal cannot be of type 1 or 2. This restriction

is difficult to understand from the arrow picture. We rather draw the

vertex configurations in terms of lines, which we obtain by drawing a

thick line on each arrow pointing down or to the left. The Figure A.1

depicts this mapping, and the Figure A.2 gives an example of a vertex

configuration in terms of lines.
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1 2 . . . m̃

Figure A.3: Left panel: a fundamental domain of the six-vertex model

corresponding to an TSASM of size (2m̃+ 3)× (2m̃+ 3). In the picture,

m̃ = 4 . Right panel: the same fundamental domain with vertices on the

anti-diagonal replaced by boundary K matrices.

In this line picture, a configuration of the six-vertex model corresponding

to a TSASM is invariant under the diagonal symmetry. Hence, the only

vertices allowed on the diagonal are those invariant under the diagonal

symmetry, namely vertices of type 1, 2, 5 and 6. The restriction of the

vertices on the anti-diagonal to the vertices of type 3, 4, 5 and 6 follows

a similar argument.

Fundamental domain. To study the TSASMs, it is sufficient to con-

sider one octant of the matrix, which has the shape of a triangle, as

explained in Chapter 9. The matrix entries in an octant completely

determine the TSASM.

Accordingly, we restrict the square lattice of the six-vertex model to a

triangular domain. We refer to this domain as the fundamental domain.

For convenience, we choose the sixth octant which contains the vertices

in the i-th row and j-th column, such that

1 6 j 6 m, N + 1− j 6 i 6 N. (A.2)

The spins in the fundamental domain completely fix the square lattice

configuration. We can further restrict the fundamental domain to the

vertices satisfying

1 < j 6 m, N + 1− j 6 i < N. (A.3)

Here, we removed from the square lattice the N -th row, as the con-

figuration of its vertices are fixed by the TSASM’s symmetries. We

note m̃ = m − 1 the number of columns of the fundamental domain.
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1 2 3 4 5 6

forbidden

Figure A.4: Configurations of a vertex on the anti-diagonal and the

corresponding corner vertex, with weights encoded in the matrix K.

The vertices of type 1 and 2 are forbidden by the symmetry of the

corresponding ASM.

Figure A.3 illustrates the restriction of the 11× 11 square lattice to (one

of) its fundamental domain.

The boundary conditions of the fundamental domain are arrows pointing

north on the bottom boundary, and an alternating sequence of arrows

pointing right and left (starting from the bottom) on the vertical bound-

ary. This condition is a consequence of the vertices being of type 5 and

6 on the vertical median.

We note that a configuration of the six-vertex model in the fundamental

domain with m̃ columns and with these boundary conditions corresponds

to a TSASM of size 2m̃+ 3× 2m̃+ 3.

We now focus on the vertices on the anti-diagonal. They can be in

four possible configurations. Each of these configurations is entirely

determined by the two arrows below and at the right of the vertex (those

arrows lie below the anti-diagonal), as can be seen on Figure A.4. Hence,

it is sufficient to consider these arrows. We encode the weight of the

corresponding vertex in a 2× 2 matrix that we denote by K:

K = (〈v| ⊗ 1)R(|v〉 ⊗ 1) (A.4)

where |v〉 = |↑〉+ |↓〉. In terms of the weights, the K matrix reads

K =

(
w5 w3

w4 w6

)
. (A.5)

It is simpler to see K as an operator acting on a single Hilbert space as

a boundary matrix. The right panel of Figure A.3 shows a fundamental
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−1

−1 1

−1 1 −1

0 0 0 1

0 0 1 0 −1

0 0 0 0 0 1

Figure A.5: Left panel: a configuration of the six-vertex model on the

fundamental domain with m̃ = 4. Right panel: the sixth octant of the

corresponding TSASM of size 11× 11. The grey entries are fixed by the

symmetries of the TSASM and the corresponding vertex are not present

in the fundamental domain.

domain with these boundary K matrices. Furthermore, the Figure A.5

gives an example of a configuration for m̃ = 4 and (an octant of) the

corresponding 11× 11 TSASM.

Partition function. We compute the partition function of the six-

vertex model on the triangular fundamental domain by evaluating the

matrix element

〈↑↓↑↓ · · ·|
x∏

16j6m̃

(
Kj

x∏
16i<j

Rij
)
|↑↑ · · · ↑〉. (A.6)

We obtain the enumeration of TSASM by setting w1 = · · · = w6 = 1.

Our weighted enumeration assigns a different weight to the vertices of

type 5, 6 on the diagonal. We can obtain this by modifying the K matrix

to

K̃ =

(
w̃5 w3

w4 w̃6

)
. (A.7)

In order to obtain the weighted enumeration of TSASMs, as discussed in

Chapter 9, we take the weights as follows:

w1 = w2 = w3 = w4 = 1, w̃5 = w̃6 = t, w5 = w6 = τ. (A.8)
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A.3 Implementation

In this section, we implement the computation of the matrix element

〈↑↓↑↓ · · ·|
x∏

16j6m̃

(
K̃j

x∏
16i<j

Rij
)
|↑↑ · · · ↑〉, (A.9)

with the parameterisation (A.8).

Naive approach. A (naive) way to compute (A.9) is to define the

operators R and K as sparse matrices, and directly evaluate their product.

This is done by the following code:

Definitions of spare matrices and initialisation

Clear["Global‘*"]

x__⊗y___ := KroneckerProduct[x, y]

e1 = SparseArray[{{1, 2} -> 1}, {2, 2}];

e2 = SparseArray[{{2, 1} -> 1}, {2, 2}];

id[L_] := IdentityMatrix[2^L, SparseArray]

Definition of the operators

R[L_,i_,j_,tau_:1] := KroneckerProduct @@

{id[i-1],id[j-i+1] + tau e1⊗id[j-i-1]⊗e2 +

tau e2⊗id[j-i-1]⊗e1,id[L-j]};
K[L_,i_,t_:1] := KroneckerProduct @@

{id[i - 1], {{t, 1}, {1, t}}, id[L - i]};

w[1] = {1,0}; w[2] = {0,1,0,0};

w[L_] := Flatten[w[2]⊗w[L - 2]];

Actual computation

TSASM[L_,t_:1,tau_:1] := w[L].K[L,L,t]. Dot@@Table[

Dot@@Table[R[L,i,j+1,tau], {i,j,1,-1}].

K[L,j,t],{j,L-1,1,-1}].UnitVector[2^L,1]

Optimisation. The above code is explicit but not optimal. It allows1

us to compute ATS(2m+ 1, t, τ) up to m = 8 and ATS(2m+ 1, 1, 1) for

1All the computations have been done under 60 seconds on a intel(R) Core (TM)

i7-67000HQ CPU @ 2.6 GHz
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m = 1, . . . , 12. We optimise it as follows: (i) we recursively construct

the two states of the scalar product (A.9), (ii) we use memoisation (the

storage of intermediate results of the computation).

w[1] = {1,0}; w[2] = {0,1,0,0};

w[L_] := w[L] = Flatten[w[2]⊗w[L-2]]
v[1] = {1,1}; v[L_] := v[L] =

K[L,L,t].Dot@@Table[R[L,i,L,tau],{i,L-1,1,-1}].

Flatten[v[L-1]⊗{1,0}];
TSASM[L_] := w[L].v[L]

This code is particularly efficient for the computation of the non-weighted

enumeration. It allows us to evaluate ATS(2m+1, 1, 1) up to m = 19 (this

corresponds to TSASM of size L = 39) in reasonable time. Furthermore,

this computation provides more terms to the sequence of enumerating

TSASMs available on the On-Line Encyclopedia of Integer Sequences

(limited to m 6 13) [151]. We list the number of TSASMs in the

Table A.1.



A.3. Implementation 209

L ATS(2m+ 1, 1, 1)

0 1

1 1

2 1

3 2

4 4

5 13

6 46

7 248

8 1516

9 13654

10 142873

11 2156888

12 38456356

13 974936056

14 29540545024

15 1259111024288

16 64726478396896

17 4641989615977216

18 404396533544588344

19 48825344233129714772

Table A.1: Number of TSASM of size 2m+ 1× 2m+ 1.
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