
Sum-of-Squares Programming in Julia with JuMP
Benoît Legat∗, Chris Coey†, Robin Deits†, Joey Huchette† and Amelia Perry†

∗ UCLouvain, † MIT

Sum-of-Squares (SOS)
Programming

Nonnegative quadratic forms into
sum of squares

(x1, x2, x3)
unique

p(x) = x>Qx

x2
1 + 2x1x2 + 5x2

2 + 4x2x3 + x2
3 = x>



1 1 0
1 5 2
0 2 1


x

p(x) ≥ 0 ∀x Q � 0⇐⇒ cholesky

(x1 + x2)2 + (2x2 + x3)2 x>

1 1 0
0 2 1



> 
1 1 0
0 2 1

x

Nonnegative polynomial into sum
of squares

(x1, x2, x3)
(x1, x1x2, x2) not unique

p(x) =X>QX

x2
1 + 2x2

1x2 + 5x2
1x

2
2

+4x1x
2
2 + x2

2
=X>



1 1 0
1 5 2
0 2 1


X

p(x) ≥ 0 ∀x Q � 0⇐= cholesky

(x1 + x1x2)2+
(2x1x2 + x2)2 X>


1 1 0
0 2 1



> 
1 1 0
0 2 1

X

When is nonnegativity equivalent to sum of
squares ?
Determining whether a polynomial is nonnegative is
NP-hard.

Hilbert 1888Nonnegativity of p(x) of n variables
and degree 2d is equivalent to sum of squares in
the following three cases:
•n = 1 : Univariate polynomials
• 2d = 2 : Quadratic polynomials
•n = 2, 2d = 4 : Bivariate quartics

Motzkin 1967First explicit example:
x4

1x
2
2 + x2

1x
4
2 + 1− 3x2

1x
2
2 ≥ 0 ∀x

but is not a sum of squares.

Manipulating Polynomials

Two implementations: TypedPolynomials.jl and
DynamicPolynomials.jl.
One common independent interface:
MultivariatePolynomials.jl.
@polyvar y # one variable
@polyvar x[1:2] # tuple/vector

Build a vector of monomials:

• (x2
1, x1x2, x

2
2):

X = monomials(x, 2)
• (x2

1, x1x2, x
2
2, x1, x2, 1):

X = monomials(x, 0:2)

Polynomial variables

By hand, with an integer decision variable a and real
decision variable b:
@variable(model, a, Int)
@variable(model, b)
p = a*x^2 + (a+b)*y^2*x + b*y^3

From a polynomial basis, e.g. the scaled monomial
basis, with integer decision variables as coefficients:
@variable(model,

Poly(ScaledMonomialBasis(X)),
Int)

Polynomial constraints

Constrain p(x, y) ≥ q(x, y) ∀x, y such that x ≥
0, y ≥ 0, x + y ≥ 1 using the scaled monomial basis:
S = @set x >= 0 && y >= 0 && x + y >= 1
@constraint(model, p >= q, domain = S,

basis = ScaledMonomialBasis)

Interpreted as:
@constraint(model, p - q in SOSCone(),

domain = S,
basis = ScaledMonomialBasis)

To use DSOS or SDSOS (Ahmadi, Majumdar 2017):
@constraint(model, p - q in DSOSCone())
@constraint(model, p - q in SDSOSCone())

SOS on algebraic domain

The domain S is defined by equalities forming an
algebraic variety V and inequalities qi. We search
for Sum-of-Squares polynomials si such that
p(x)− q(x) ≡ s0(x)+s1(x)q1(x)+ · · · (mod V )
The Gröbner basis of V is computed the equation
is reduced modulo V .

Dual value

The dual of the constraint is a positive semidefinite
(PSD) matrix of moments µ. The extractatoms
function attempts to find an atomic measure with
these moments by solving an algebraic system.

Sum-of-Squares extension

MathOptInterface.jl (MOI)

MOI is an abstraction layer for mathematical op-
timization solvers. A constraint is defined by a
“function” ∈ “set” pair.

MOI extension: AbstractVectorFunction ∈
SOS(X) (resp. WSOS(X)): SOS constraint without
(resp. with) domain equipped with a bridge to
AbstractVectorFunction ∈ PSD (resp. SOS(X)).

JuMP

JuMP is a domain-specific modeling language for
mathematical optimization. It stores the problem
directly (a cache can optionally be used) in the
solver using MOI.

JuMP extension: p(x) ≥ q(x) and p(x) ∈ SOS()
are rewritten into MOI SOS or WSOS constraints,
e.g. x2 + y2 ≥ 2xy is rewritten into [1,−2, 1] ∈
SOS(x2, xy, y2). p(x) ∈ DSOS() (resp. SDSOS()) is
rewritten into linear (resp. second-order cone) con-
straints.

SumOfSquares.jl

Ma
th

Op
tI

nt
er

fa
ce

.j
l

M
O
I

Bridging

Caching

Solvers: Mosek, CSDP, SCS...

BridgingAutomatic reformulation of a constraint
into an equivalent form supported by the solver,
e.g. quadratic constraint into second-order cone
constraint. In particular, reformulates
SOS/WSOS constraints into PSD constraints.
An interior-point solver that natively supports
SOS and WSOS without reformulation to SDP
using the approach of (Papp, Yıldız 2017) is
under development.

CachingCache of the problem data in case the
solver do not support a modification (can be
disabled). For instance, Mosek provides many
modification capabilities in the API but CSDP
only support pre-allocating and then loading the
whole problem at once.


