Sum-of-Squares Programming in Julia with JuMP

Benoît Legat^{*}, Chris Coey[†], Robin Deits[†], Joey Huchette[†] and Amelia Perry[†]

* UCLouvain, [†] MIT

Sum-of-Squares (SOS) Programming

Nonnegative quadratic forms into sum of squares

Manipulating Polynomials

Two implementations: TypedPolynomials.jl and DynamicPolynomials.jl. interface: One independent common MultivariatePolynomials.jl.

@polyvar y # one variable @polyvar x[1:2] # tuple/vector

Sum-of-Squares extension

MathOptInterface.jl (MOI)

MOI is an abstraction layer for mathematical optimization solvers. A constraint is defined by a "function" \in "set" pair.

Nonnegative polynomial into sum of squares

Build a vector of monomials:

- (x_1^2, x_1x_2, x_2^2) :
- X = monomials(x, 2)
- $(x_1^2, x_1x_2, x_2^2, x_1, x_2, 1)$: X = monomials(x, 0:2)

Polynomial variables

By hand, with an integer decision variable **a** and real decision variable b:

@variable(model, a, Int) @variable(model, b) $p = a*x^2 + (a+b)*y^2*x + b*y^3$

From a polynomial basis, e.g. the *scaled monomial* basis, with integer decision variables as coefficients:

@variable(model,

Poly(ScaledMonomialBasis(X)), Int)

MOI extension: AbstractVectorFunction \in SOS(X) (resp. WSOS(X)): SOS constraint without (resp. with) domain equipped with a bridge to AbstractVectorFunction \in PSD (resp. SOS(X)).

JuMP

J^uMP is a domain-specific modeling language for mathematical optimization. It stores the problem directly (a cache can optionally be used) in the solver using MOI.

JUMP extension: $p(x) \ge q(x)$ and $p(x) \in SOS()$ are rewritten into MOI SOS or WSOS constraints, e.g. $x^2 + y^2 \ge 2xy$ is rewritten into $[1, -2, 1] \in$ $SOS(x^2, xy, y^2)$. $p(x) \in DSOS()$ (resp. SDSOS()) is rewritten into linear (resp. second-order cone) constraints.

SumOfSquares.jl

When is nonnegativity equivalent to sum of squares ?

Determining whether a polynomial is nonnegative is NP-hard.

- Hilbert 1888 Nonnegativity of p(x) of n variables and degree 2d is equivalent to sum of squares in the following three cases:
 - n = 1: Univariate polynomials • 2d = 2: Quadratic polynomials

Polynomial constraints

Constrain $p(x,y) \geq q(x,y) \forall x,y$ such that $x \geq q(x,y) \forall x,y$ $0, y \ge 0, x + y \ge 1$ using the scaled monomial basis:

S = @set x >= 0 && y >= 0 && x + y >= 1@constraint(model, p >= q, domain = S, basis = ScaledMonomialBasis)

Interpreted as:

@constraint(model, p - q in SOSCone(), domain = S, basis = ScaledMonomialBasis)

To use DSOS or SDSOS (Ahmadi, Majumdar 2017):

@constraint(model, p - q in DSOSCone()) @constraint(model, p - q in SDSOSCone())

SOS on algebraic domain

• n = 2, 2d = 4 : Bivariate quartics Motzkin 1967 First explicit example: $x_1^4 x_2^2 + x_1^2 x_2^4 + 1 - 3x_1^2 x_2^2 \ge 0 \quad \forall x$ but is **not** a sum of squares.

The domain S is defined by equalities forming an algebraic variety V and inequalities q_i . We search for Sum-of-Squares polynomials s_i such that $p(x) - q(x) \equiv s_0(x) + s_1(x)q_1(x) + \cdots \pmod{V}$ The Gröbner basis of V is computed the equation is reduced modulo V.

Dual value

The dual of the constraint is a positive semidefinite (PSD) matrix of moments μ . The extractatoms function attempts to find an *atomic* measure with these moments by solving an algebraic system.

Bridging Automatic reformulation of a constraint into an equivalent form supported by the solver, e.g. quadratic constraint into second-order cone constraint. In particular, reformulates SOS/WSOS constraints into PSD constraints. An interior-point solver that natively supports SOS and WSOS without reformulation to SDP using the approach of (Papp, Yıldız 2017) is under development.

Caching Cache of the problem data in case the solver do not support a modification (can be disabled). For instance, Mosek provides many modification capabilities in the API but CSDP only support pre-allocating and then loading the whole problem at once.