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In this paper, we present simulations of turbulent thermal convection driven by free-surface evaporation above and a
heated wall below. A novel algorithm is proposed for predicting evaporation rates at a free surface which we then
validate against experimental data. At the top of a cuboidal domain, a shear-free boundary condition acts as an approx-
imation of the free surface. We first focus on a domain of aspect ratio Γ = 1, where a fully-resolved Direct Numerical
Simulation (DNS) is carried out at moderate Rayleigh number, Ra = 1.2×107, and we compare flow statistics with a
Large-Eddy Simulation (LES) on a coarse grid. Both the fully-resolved simulation and the LES predict well the time-
and area-averaged evaporation rate and free surface temperature when compared with the experimental data. Next, we
carry out a series of LES, with increasing lower wall temperature and consequently Ra. We then validate the evap-
oration model by comparing LES predictions of the time- and area-averaged mass flux and temperature at the upper
boundary, against the experimental measurements. The aspect ratio of the domain is then reduced and we show, for
the first time, the transition to a dual-roll state of the large-scale circulation (LSC) at the aspect ratio of Γ = 1/4 in a
cuboidal domain. The temperature and velocity distributions at the free surface are impacted by the state of the LSC.
However, we find that the water-side turbulence and aspect ratio play a negligible role on the evaporation rate above, in
accordance with experimental observations.

I. INTRODUCTION

In this paper, we present a series of simulations of
evaporation-driven turbulent thermal convection. With liquid
water as the convecting fluid, a dynamically calculated inho-
mogeneous temperature gradient at a shear-free upper bound-
ary serves as an approximation of an evaporating free sur-
face. Building on previous publications1,2, we first propose
and validate a new evaporation algorithm before investigating
whether the aspect ratio of a cuboidal domain has an influence
on large-scale circulation structure, evaporation rates, mean
flow properties or statistics.

Evaporation-driven thermal convection occurs in both nat-
ural sciences and in industrial flows, e.g. in Spent Fuel Pools
(SFP) of nuclear facilities. With an initially quiescent velocity
field in a deep water pool, evaporation at the free surface in-
duces convective motion below. With no further heat addition,
this thermal convection configuration is known as evaporative
cooling. Conversely, if heat is added from below and simulta-
neously evacuated above then a flow is induced similar to tur-
bulent Rayleigh-Bénard Convection (RBC). The thermal con-
vection studied here constitutes an evaporating free-surface,
adiabatic side-walls and a heated bottom wall. The problem
in hand thus borrows attributes from both turbulent RBC and
evaporative cooling.

Turbulent RBC is commonly studied as a fluid uniformly
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heated from below and cooled from above with solid up-
per and lower boundaries3–5. The flow and thermal dynam-
ics are determined by the geometry of the system, the tem-
perature difference across it and the resulting variation in
fluid properties. The two dimensionless parameters that then
govern the flow are the Prandtl, Pr = ν/κ , and Rayleigh,
Ra = |g|β∆T H3/(νκ), numbers. In these expressions, |g|
is the magnitude of gravitational acceleration, β the thermal
expansion coefficient, H the height of the domain, ν the kine-
matic viscosity, ∆T the temperature difference between lower
and upper boundaries and κ is the thermal diffusivity. In tur-
bulent RBC the system response is measured in terms of the
Nusselt (Nu) and Reynolds (Re) numbers4. The representa-
tive velocity is often that of a large-scale circulation (LSC),
or mean wind, which is formed across the height of the do-
main. This LSC, which also exists in the evaporation-driven
thermal convection configuration1,2,6, sweeps across the upper
and lower boundaries stabilizing the thermal boundary layers,
and simultaneously creates a hydrodynamic boundary layer
with its shear7.

Evaporative cooling on the other hand is the study of the
liquid-side flow induced by an evaporating interface8,9 with
no other heat source participating in driving the flow. The
upper thermal boundary layer is then the unique source for
thermal plumes in the domain. In such a thermal convection,
turbulent kinetic energy peaks at the free surface10 and the
vortical turbulent structures existing beneath the interface in-
crease in number and in magnitude as the evaporative mass
flux increases11. Hereafter, we use the terms interface and
free surface interchangeably.

Specifically, and with relation to turbulent RBC,
evaporation-driven thermal convection shares the attribute of
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plume formation at both boundaries, hence also the presence
of a LSC2. Likewise, from evaporative cooling, the current
set-up shares the attribute of the maximum rms of velocity1,12

and temperature2,12 fluctuations occurring at the free surface.
Our motivation is to better understand the combined effects

of turbulent convection and free surface evaporation in the
early stages of a loss-of-cooling accident in a SFP. Wherein,
heat is added to the upper volume of the pool from the fuel as-
semblies below and free-surface evaporation is the main mode
of phase change that leads to heat evacuation and water inven-
tory loss. During an accident, a SFP will experience both low
and high free-surface evaporation mass transfer regimes.

Post-Fukushima 2011, efforts have been made to create13

and validate14 models for predicting evaporative mass-transfer
rates across the free surface in this high evaporation regime.
Prior to this, most models were based on observations and
measurements from nature, such as the evaporation taking
place at the surface of lakes or oceans. Typically, the mass-
transfer rate in these models was, inaccurately, a function of
bulk water temperature and, accurately, a function of ambi-
ent air conditions, that is relative humidity and temperature.
One source of error, is that in reality the mass-transfer rate
depends on the free-surface temperature. It has long been
known that interfacial and bulk temperatures differ as a result
of free-surface evaporation15,16, with recent research show-
ing this difference to be substantial in the high-mass-transfer
regime14,17. The experimental study of Boelter et al.18 inves-
tigated evaporation in tanks up to a maximum bulk temper-
ature of 361.15 K, and hence under high-mass transfer con-
ditions. Importantly however, due to limitations of the ex-
perimental techniques at the time no distinction was made be-
tween free-surface and bulk temperatures. We utilise the more
recent data14 to validate our proposed algorithm for predict-
ing evaporation rates at a free surface. To the authors knowl-
edge, the algorithm presented herein represents the first vali-
dated model of dynamic and local free-surface evaporation in
a single-phase CFD code.

The container shape and in particular, its aspect ratio, Γ =
W/H where W is the width of the cuboidal domain, plays
an important role in determining the structure of the LSC.
In turbulent RBC the LSC has been shown to be either in
a single-roll, dual-roll or transitory state. In the single-roll
state the LSC occupies the entirety of the domain, whereas
under certain Ra, Pr and Γ conditions, the single-roll breaks
down into a dual-roll state. One explanation for this break-
down is that the LSC is driven by plumes of the same size as
the thermal boundary layers. As Ra is increased, this thick-
ness decreases and eventually a critical Ra exists, for a given
Γ and Pr, whereby hot plumes emitted from the lower wall
become so thin and elongated that they lose their excess heat
and thus buoyancy to the bulk fluid before reaching the cool
upper boundary. At such a point the LSC sinks somewhere
in the middle of the domain in order to regain heat and from
the lower wall19. The opposite is true if the starting point is
considered as the cool upper boundary and we focus on cold
plumes.

In this study we fix the upper boundary surface area, so that
the depth equals the width, and vary the aspect ratio via the

height. In cuboidal domains at aspect ratio Γ = 1 and seem-
ingly over a large range of Pr, the single-roll state of the LSC
is dominant in thermal convection flows2,20,21. With respect to
turbulent RBC in cylindrical domains of aspect ratio Γ = 1/2
and with water as the working fluid, the single-roll state is
dominant, whereas the dual-roll state is observed only in tran-
sition. In Xi and Xia 22 it was shown that the most likely state
of the LSC for aspect ratios Γ = 1 and 1/2 is the a single-roll
state, where it exists for ∼ 90% and ∼ 70% of the time, re-
spectively. On the other hand, at still smaller aspect ratios,
specifically Γ = 1/3, the single-roll state was shown to be
present ∼ 25% of the time. For the remainder, the LSC is
in transition to, or actually occupying the dual-roll state . This
trend suggests that any further decrease in Γ is likely to reduce
further the likelihood of the single-roll state.

The single-roll state has been shown to be marginally more
efficient for heat transfer than the dual-roll equivilent23 when
working in 3D geometries and with water as the working fluid.
Although the difference is limited to a few percent for in do-
mains of aspect ratio Γ = 1/2 at high Ra24,25. In this study,
we investigate the role of aspect ratio on the LSC state, evap-
oration rate, mean flow properties and statistics. To the best
of our knowledge, this work is the first study of its kind to
assess the aforementioned subjects in slender 3D cuboidal ge-
ometries.

The paper is structured as follows: in Section II we outline
the governing equations, the sub-grid scale modelling and the
algorithm for calculating the temperature gradient at the upper
boundary based on evaporative heat losses. Next, in Section
III we present the numerical set-up and resolution criteria. In
Section IV we present the results, where we first focus on the
validation process. Therein, we compare the flow statistics
from a direct numerical and a large-eddy simulation at mod-
erate Ra, before comparing the evaporation model predictions
with experimental results. We then present a study of the as-
pect ratio before drawing conclusions in Section V.

II. GOVERNING EQUATIONS

The working fluid is liquid water, which we treat as Newto-
nian. By not invoking the Oberbeck–Boussinesq approxima-
tion we take into account the variations of density and trans-
port properties with temperature. For this reason, the system
of governing equations is the low-Mach number approxima-
tion of the compressible Navier-Stokes-Fourier equations26,27.
The governing equations are Favre filtered to allow for vari-
able density Large-Eddy Simulations (LES). Applied to a
generic quantity φ , the corresponding Favre-filtered quantity
φ̃ is given as φ̃ = ρφ

ρ
, where ρ and ρφ are spatially filtered

quantities. Accordingly, the governing equations read, in di-
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mensional form,

∂ρ

∂ t
+∇· (ρũ) = 0 , (1)

∂ (ρũ)

∂ t
+∇· (ρũũ) = −∇p+∇·µ

(
2S̃− 2

3
(∇· ũ)I

)

−∇·τ r +ρg , (2)

∂ρcpT̃
∂ t

+∇·
(

ρcpũT̃
)

=
dp0 (t)

dt
+∇·

(
λ∇T̃

)
+∇·qr ,

(3)

where ρ and ũ=(ũ, ṽ, w̃) stand, respectively, for the fluid den-
sity and velocity vector. Also, p is the sum of the dynamic
and bulk-viscous pressures28,29, the dynamic pressure being
the 2nd-order term of the asymptotic expansion of the fluid
pressure at low Mach numbers.

On the right-hand side of Eq. (2), S̃ is the filtered strain-
rate tensor, S̃ = 1

2

(
∇ũ+(∇ũ)>

)
, I the identity matrix, and

µ is the dynamic viscosity. In Eq. (3), cp is the specific heat,
λ the thermal conductivity and p0(t) the 1st-order term of the
asymptotic expansion of pressure at low Mach numbers, inter-
preted as the thermodynamic pressure. According to the low-
Mach-number expansion, it is spatially uniform and a func-
tion of time only. For open domains, which is the case for
this study, p0 is constant and equal to the ambient pressure.
Further, in the governing equations, τ r and qr stand for the
sub-grid scale stress tensor and heat flux, respectively.

We add that mass loss due to evaporation is not modelled
and consequently the surface level is constant throughout. For
the highest evaporation case the mass loss would be equivalent
to 3%. This is considered to have a minor effect on the free-
surface level, and hence on the aspect ratio and Ra, over the
simulation times investigated.

In order to close the system of governing equations, an iso-
baric “equation of state” for the water density is required.
More specifically, a ρ− T̃ relation is introduced. This relation
is a fourth-order polynomial fit, see Eq. (4), of tabulated data
for water density at the ambient pressure and over the tem-
perature range of interest30. The other fluid thermodynamic
properties, λ and µ are also calculated from a quartic polyno-
mial fit, with data originating from the same reference. For a
generic quantity φ , this fit reads

φ = c4T̃ 4 + c3T̃ 3 + c2T̃ 2 + c1T̃ + c0 . (4)

For certain simulations with large ∆T , the dynamic viscos-
ity and the thermal conductivity can vary considerably. Even
though the density variations are small, the induced variations
in the transport properties of water are non-negligible. On the
other hand, cp variations are negligible and it is taken as a
constant, case-dependent, value in all simulations.

For the numerical solution of Eqs. (1)–(3) we employ a
second-order accurate time-integration scheme, taking into
account the values of the convective and diffusive terms in the
current and the two previous time steps. Regarding the spatial
discretization, the governing equations are discretised using

second-order central difference schemes on a collocated grid
system. A flux interpolation technique is used in the spirit of
Rhie and Chow 31 , to avoid the well-known issue of pressure
odd-even decoupling27,32,33.

For the pressure-velocity coupling a PISO-type projection
method is used, similar to the methods proposed by Issa 34

and Oliviera and Issa 35 for constant-density flows. The di-
vergence of the momentum equation is taken and the continu-
ity equation is used as a constraint to formulate the variable-
coefficient Poisson equation to be solved for p. In this low-
Mach-number PISO algorithm, the temporal derivative of the
density, ∂ρ

∂ t , emerges on the left-hand side of the Poisson equa-
tion which would be zero for the incompressible case.

A. Sub-grid scale modelling

The Large-Eddy-Simulation (LES) approach offers a com-
putationally cheaper alternative to fully resolved Direct Nu-
merical Simulations (DNS). According to it, only the large,
energy containing eddies are resolved and the effects of the
unresolved scales on the flow are modelled. In Eqs. (2) and
(3), the terms that appear after filtering are the sub-grid scale
stress tensor and sub-grid scale heat flux, respectively defined
as,

τ r = ρ(ũũ− ũu) , (5)

qr = ρ

(
ũT̃ − ũT

)
. (6)

Many LES studies of thermal convection12,36–38 have used the
eddy-viscosity model of Smagorinsky39. Wherein, the influ-
ence of the filtered-out eddies are approximated as a viscous
contribution on the resolved fields. This leads to,

τ r− 1
3

Tr(τ r) = µt

(
2S̃− 2

3
(∇· ũ)I

)
, (7)

and

qr = λt∇T̃ . (8)

Then, the residual kinetic energy term in Eq. (7), 1
3 Tr(τ r), is

incorporated in the pressure term p of Eq. (2).
Lilly 40 extended the model, using dimensional analysis, to

account for the turbulence owing to buoyancy caused by the
temperature gradients of the large-scale flow. The inclusion
of a buoyancy production term gives the following relation
for the turbulent viscosity,

µt = ρC2
s ∆

2|S̃|
(

1− Ri
Prt

)0.5

, (9)

with the Richardson number, Ri, given by

Ri =
1

|S̃|2
|g|
ρref
·∇ρ . (10)

In Eq. (9), Cs is the model constant, ∆ is the filter (grid) width
for which we choose the cube root of the cell volume, ∆ =
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(∆x∆y∆z)1/3, and |S̃| is defined as the square root of twice
the double inner product of the filtered strain-rate tensor, that
is |S̃| = (2S̃ : S̃)1/2. We note that Eq. (9) reduces to the
Smagorinsky model for isothermal flows. Further, Eq. (10) is
an approximation of the gradient Richardson number, Ri, valid
for low-Mach number flows. The numerator in Eq. (10) is
equivalent to the square of the buoyancy frequency, presented
here in the form familiar to the oceanography community41,
with ρref as a reference density.

In our study we employ the Lagrangian dynamic model42

adapted for variable density flows. As such, the resolved
scales are used to compute Cs locally and at each time-step.
This model employs the dynamic procedure43, where the nu-
merator and denominator used to find Cs are averaged over
streamlines. This averaging procedure therefore requires the
solution of two further transport equations. Any negative vis-
cosity is removed and the correct behaviour of Cs is found
near the walls. Indeed, although some clipping is required in
our simulations it is always limited to a few percent. Finally,
we use the Reynolds analogy (λt = µtcp/Prt) to compute the
eddy conductivity. We take Prt, also present in Eq. (9), as
constant and equal to 0.4 as recommended in Eidson36.

B. Evaporation model

In a previous publication on evaporation-driven thermal
convection2, we investigated different evaporation rates which
formed the basis of a temperature gradient assigned as a
non-zero Neumann boundary condition at a shear-free upper
boundary. Over a series of simulations, the lower (bottom)
wall temperature was then iteratively refined until the statisti-
cally stationary solution for the time- and area-averaged upper
boundary temperature matched the predicted mean value.

In what follows, we present an improved dynamic and inho-
mogeneous version of this evaporation model. The new algo-
rithm removes the requirement for iterative simulations and
results in significant computational savings. The non-zero
Neumann thermal boundary condition is calculated at each
time-step and is dependent only on the cell temperature near-
est the interface and on fixed ambient conditions.

We find both the evaporative (q̇′′evap) and convective (q̇′′conv)
heat losses at the water-side of the interface and use them to
apply a non-zero-Neumann thermal boundary condition of the
following form,

∂ T̃
∂y

=
1

λint

(
q̇′′conv + q̇′′evap

)
=

1
λint

(
q̇′′conv + ṁ′′hlv

)
, (11)

where ṁ′′ is the evaporative mass flux, hlv is the latent heat of
evaporation, and λint∂ T̃/∂y is the heat flux at the water-side
of the interface, with λint as the thermal conductivity of water
at Tint.

Beginning with the evaporative heat losses, the first step in
finding ṁ′′ is to fix the gas-side conditions. Table I provides
the temperature (T∞), ambient pressure (p0) and relative hu-
midity at a distance far from the interface.

TABLE I. Gaseous mixture properties far from the interface (at ∞).
In this table T∞ is the ambient temperature, p0 the ambient pressure,
RH is the relative humidity, and pv,∞ and ρ∞ are the water vapour
partial pressure and gaseous mixture density far from the interface.

T∞ (K) p0 (Pa) RH (%) pv,∞ (Pa) ρ∞ ( kg
m3 )

298.15 101325 40 1270 1.18

The water vapour partial pressure, pv,∞, is calculated from
a Wagner equation44 of the following form,

pv = pc exp
(
(aτ +bτ

1.5 + cτ
3 +dτ

6)/Tr

)
, (12)

where pc and Tc are respectively the critical pressure and tem-
perature, Tr = T̃/Tc is the reduced temperature and τ = 1−Tr,
with the constants available in the literature45. The vapour
mass fraction far from the interface, Yv,∞, is then found from,

Yv =
pvMw

pvMw +(p0− pv)Ma
, (13)

where Mw and Ma are respectively the molar masses of water
and air. Assuming a binary mixture of water vapour and air,
the mass fraction of air far from the interface is then equal to
1−Yv,∞. The gaseous mixture density far from the interface,
ρ∞, is calculated from the ideal-gas equation of state,

ρg =
Mw pv

RT
+

Ma(p0− pv)

RT
, (14)

where ρg is the gaseous mixture density, R = 8314 J/kmol/K
is the universal gas constant and T is the relevant temperature.

Equivalently, we find the conditions at the interface; this
requires the local Tint, from which we find the local properties
of saturation pressure, pv,int, the vapour mass fraction, Yv,int,
and mixture density, ρint, all calculated in the same manner as
above.

Transition from the interface conditions to those far away
is assumed to occur over a layer of finite thickness, or a film.
Film properties are estimated from mean values of the inter-
face and those at ∞. The quantities ρf and µf representing re-
spectively the film density and dynamic viscosity are required.
This latter quantity is found from the kinetic theory of gases
assuming a two-component mixture46,

µf =
2

∑
i=1

xiµi

x1φi1 + x2φi2
, (15)

with

φij =
[1+(µi/µj)

1/2(Mj/Mi)
1/4]2√

8[1+(Mi/Mj)]1/2
. (16)

where xi is the molar fraction of component i and values for
air and vapour dynamic viscosities are found from polynomial
fits. The film kinematic viscosity, νf is then inferred from the
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above quantities. On the other hand, the film mass diffusivity
for the binary mixture of air and vapour, Df, is found from47,

Df = 1.87×10−10 T 2.072
f
p0

(
m2

s

)
, (17)

where the thermodynamic pressure, p0, is in units of atmo-
spheres, i.e. equal to 1 atm. The film diffusion coefficients
are used to find the Schmidt number, Sc, and we evaluate the
concentration Rayleigh number, Rac, as

Rac =
|g|(ρ∞−ρint)W 3

Dfµf
, (18)

with W being the characteristic length-scale, the width of the
domain. We use a Sherwood number, Sh, correlation for nat-
ural convection flows17, to find the concentration boundary
layer height, δc,

Sh = 0.23 Sc0.333Rac
0.321 ≈ W

δc
. (19)

The mass flux can then be estimated from48,

ṁ′′ =
ρfDf

δc
log(1+Bm) , (20)

with the mass transfer driving force, Bm, defined as

Bm =

(
Yv,∞−Yv,int

Yv,int−1

)
. (21)

Substituting (19) into (20) gives the final mass flux relation,

ṁ′′ = Sh
ρfDf

W
log(1+Bm) . (22)

Finally, we find hlv from a Watson relation49,

hlv = 2256.4
(

Tc−Tint

Tc−373.15

)n

(23)

with the exponent n = 0.283.
Next, we concentrate on the convective heat losses away

from the free-surface. We estimate this by assuming that heat
transfer away from the interface is proportional to the differ-
ence between the temperature of the interface, Tint, and the
ambient gas-side temperature, T∞, with the heat transfer coef-
ficient, h, as the proportionality coefficient. Overall we have
the following,

q̇′′conv = h(Tint−T∞) , (24)

where h is estimated from the following correlation for a hor-
izontal flat surface, warmer than the ambient air above50,

h W
λf

= Nut = 0.54Rat
0.25 . (25)

In the above relation we obtain λf in an equivalent manner51

to µf from Eq. (15). The film thermal diffusivity, κf is again

TABLE II. Thermal boundary conditions for the simulations of the
cubic (Γ = 1) domain. In this table, Tlow is the fixed lower wall tem-
perature, and ∂T/∂y, Tint and ṁ′′ are respectively the time- and area-
averaged temperature gradient, temperature and evaporative mass
flux at the upper boundary. For all cases the time- and area-averaged
normalised interface temperature, 〈θ̂int〉xz =−0.5.

Case Ra Tlow (K) ∂T
∂y

(K
m
)

Tint (K) ṁ′′
( g

m2s

)

DNS1 1.2×107 320.95 -1555 318.20 0.36
LES1 1.2×107 320.95 -1550 318.05 0.36
LES2 3.0×107 335.15 -3480 330.15 0.86
LES3 5.2×107 345.15 -5670 338.25 1.46
LES4 8.3×107 355.15 -8875 345.55 2.36
LES5 1.3×108 365.65 -13725 352.95 3.77

found from aforementioned quantities, and we define Rat as
the gas-side thermal Rayleigh number,

Rat =
|g|β∞ (Tint−T∞)W 3

κfνf
. (26)

Regarding the initial conditions, the water is quiescent and
a linear temperature profile from Tlow to a first approxima-
tion of Tint (from previous simulations2) is imposed across
the vertical direction. At the first time-step, the temperature
gradient at the upper boundary is assumed to be zero, that is
∂ T̃/∂y = 0, so that the boundary faces have the same value
as their cell-centre neighbour. A flowchart for the above algo-
rithm which finds the temperature gradient at the upper bound-

ary for the following time-step, ∂ T̃
∂y

∣∣∣
n+1

, is provided in Fig. 17
of the Appendix.

The thermal boundary conditions for the simulations in the
cubic (Γ= 1) domain are presented in Table II. The given Tlow
is fixed, whereas the remaining columns are the values from
the statistically stationary solution. For the study of the aspect
ratio in Section IV B we use the same Tlow as in the high-
est evaporation case in cubic (Γ = 1) domain, that is LES5.
We then assess the influence, or lack thereof, of the aspect
ratio on the other values. The lowest and highest Ra, which
are here representative of low and high mass transfer regimes,
correspond to temperature drops across the domain of approx-
imately 3 K and 13 K respectively. With this temperature drop
occuring over two thermal boundary layers, one can infer the
large discrepancy between bulk and interface temperatures at
high evaporation rates discussed in the Introduction.

III. NUMERICAL SET-UP

Before elaborating on the numerical set-up we first note
that dimensionless variables are denoted with a hat (.̂.), and
provide nondimensionalisation reference values in Tables III
and IV. The reference velocity is the free-fall velocity,
Uff =

√
|g|Hβref∆T , from which the reference free-fall time

is found, tff = H/Uff. Further, the reference temperature, Tref,
is the mean of the lower wall and (time- and area-averaged)



6

interface temperatures, with all reference properties then rel-
ative to Tref. With this in mind, the normalised temperature is
defined as,

θ̂ = (T̃ −Tref)/∆T , (27)

and the Rayleigh number, found from the reference values as,

Ra =
gβref(Tlow−Tint)H3

νrefκref
. (28)

The current configuration differs from a turbulent RBC set-
up in its upper hydrodynamic and thermal boundary condi-
tions. The lower wall is located at ŷ = 0, the upper boundary
at ŷ = 1 and, likewise, the side walls at x̂ = 0 (ẑ = 0) and x̂ = 1
(ẑ = 1). No-slip velocity boundary conditions are enforced at
the side and lower walls. The free-slip condition is prescribed
at the upper boundary, so that ∂ û

∂ ŷ =
∂ ŵ
∂ ŷ = 0 and v̂ = 0 at ŷ = 1.

This acts as a first order approximation of a free surface. For
the thermal boundary conditions we have adiabatic side-walls
with ∂ θ̂

∂ x̂ prescribed. At ŷ = 0 we set θ̂ = 0.5 as a Dirich-
let boundary condition, whereas at ŷ = 1 we calculate and
prescribe at each time step the non-zero Neumann condition
explained in detail in Section II B and in the Appendix. For
completeness, the statistically stationary dimensionless tem-
perature gradients at the interface for LES1–LES5 are 24.1,
31.3, 37.0, 41.6 and 49.0. Similarly, for the aspect ratio study
the equivalent values for LES6 and LES7 are 94.9 and 180.7;
the increase being due to the change in the height of the do-
main.

As a result of the aforementioned boundary conditions, five
hydrodynamic boundary layers exist, one at each of the verti-
cal side walls and one at the lower wall. On the other hand,
there are only two thermal boundary layers, at the cooled up-
per boundary and heated lower wall.

A. Resolution criteria

In this section we present the resolution criteria for the fully
resolved DNS and the LES. The accuracy of a DNS is en-
sured only when the smallest length scales of the flow are ev-
erywhere resolved. The first criterion is therefore to ensure
adequate resolution of the hydrodynamic and thermal bound-
ary layers in the vertical direction. Here, we use the criterion
based on the Prandtl-Blasius boundary layer theory52, which
assumes the boundary layers to be laminar at the Ra investi-
gated herein. The number of cells in the hydrodynamic, Nu,
and the thermal, Nθ , boundary layers for all simulations are
provided in Table V with the numbers inside the parenthe-
ses representing the minimum requirements and those outside
the true values. We note that the boundary layers are over-
resolved by a factor of three for the DNS, whereas only the
minimum requirements are met for the LES. We use a hyper-
bolic tangent expansion function to cluster cells near the walls
and expand into the bulk.

The second criterion is the maximum cell size in the bulk
of the domain. Here, we assume homogenous isotropic tur-
bulence exists away from the walls and that, for the DNS, all

eddies down to the Kolmogorov length-scale, η , must be re-
solved. In fact, for fluids with Pr > 1, which is the case in
all simulations investigated here, the temperature microscale,
ηθ , is limiting. With respect to the DNS we therefore ensure
that all cells are smaller than the a priori estimation of the
temperature microscale given as follows53,54,

∆ 6 πηθ ≈ πH
(

1
RaPr Nu

)0.25

. (29)

Clearly we require an estimation of the global Nusselt number,
Nu, for Eq. (29). To this end we first define a local Nusselt
number, Nuy, as the sum of convective, diffusive and turbulent
contributions as follows,

Nuy =
√

RaPr 〈ρ̂ v̂θ̂〉xz︸ ︷︷ ︸
Nuconv

−〈λ̂ ∂ θ̂

∂ ŷ
〉xz

︸ ︷︷ ︸
Nudiff

−〈q̂r〉xz︸ ︷︷ ︸
Nuturb

, (30)

with the turbulent contribution estimated via the dimension-
less version of Eq. (8). The global Nusselt is then defined
as above except that volume-averaging is carried out, i.e.
〈..〉xyz. Specifically, for Nu in Eq. (29) we use the relation,
Nu = 0.178Ra0.301, from a previous publication based on a
similar thermal configuration2.

On the other hand, the maximum cell size in the bulk for
the LES is less stringent. The mesh plays the role of the
filtering cut-off length, which must be in the inertial sub-
range. An a priori estimation can be found using the Tay-
lor microscale, ηl . For isotropic turbulence this is given55 by
ηl = (15νu∗2/ε)1/2, where u∗ is representative of the ve-
locity in the bulk. Here we use the square root of the bulk
turbulent kinetic energy given as,

u∗ =
√

Kbulk =

√
(vrms)

2
bulk +(ūrms)

2
bulk

2
, (31)

with (vrms)bulk as the rms of vertical velocity fluctuations in
the bulk and (ūrms)bulk as the rms of the in-plane velocity fluc-
tuations, also found in the bulk. It is noted that the rms of the
in-plane velocity fluctuations is defined as

ūrms =
√
〈u′2 +w′2〉

xz
. (32)

Again from a similar thermal convection configuration2, we
find the relation (vrms)bulkH/κ = 0.37Ra0.454. Similarly, for
the rms of in-plane velocity fluctuations we find the relation
(ūrms)bulkH/κ = 0.16Ra0.479. With appropriate scaling56 for
the dissipation of the turbulent kinetic energy, ε , the following
relation can then be used to find the Taylor microscale,

ηl =
H
√

15û∗

[Ra(Nu−1))]0.5
, (33)

with û∗ given by,

û∗ =
u∗H

κ
=
√

0.068Ra0.91 +0.012Ra0.96 . (34)
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TABLE III. Nondimensionalisation reference values for the cubic (Γ = 1) domain. In this table, Ra is increased between simulations via
the thermal boundary conditions. The reference length for all cases in the above table is the height of the domain, H = 0.045m. The
nondimensionalisation reference values for the DNS are not provided as they are equal to those for LES1.

Case Γ Ra Uff

(m
s

)
∆T (K) Tref ρref

(
kg
m3

)
βref

(
1
K

)
νref

(
m2

s

)
κref

(
m2

s

)
Prref

LES1 1 1.2×107 0.023 2.9 319.5 989.6 4.3×10−4 5.84×10−7 1.54×10−7 3.8
LES2 1 3.1×107 0.034 5.0 332.6 983.5 5.1×10−4 4.76×10−7 1.58×10−7 3.0
LES3 1 5.1×107 0.041 6.9 341.7 978.6 5.6×10−4 4.20×10−7 1.61×10−7 2.6
LES4 1 8.4×107 0.051 9.6 350.4 973.5 6.1×10−4 3.75×10−7 1.63×10−7 2.3
LES5 1 1.3×108 0.060 12.7 359.3 967.9 6.5×10−4 3.40×10−7 1.65×10−7 2.1

TABLE IV. Nondimensionalisation reference values for the study of
the aspect ratio. For all cases in this table, Tlow is the same as that of
LES5 (see Table II) and Ra is increased between simulations via the
height of the domain. We later assess if the remaining statistically
stationary thermal boundary conditions of LES5 persist at the higher
Ra (lower aspect ratio).

Case Ra Γ H (m) Uff

(m
s

)

LES5 1.3×108 1 0.045 0.060
LES6 1.1×109 1/2 0.090 0.086
LES7 8.8×109 1/4 0.180 0.120

For all LES presented herein, the largest cell size in the
bulk is defined as the smallest of either half the Taylor length-
scale or a relaxed temperature microscale, taken here as 4πηθ .
Preliminary simulations conducted in the course of this study,
showed that this latter relaxed criterion in the bulk serves as a
bounding value. We find that meshes with cells of size greater
than 4πηθ in the bulk, that still satisfy boundary layer re-
quirements for a wall-bounded domain, tend to demand a very
large expansion and result in unacceptably high aspect ratios
in near-wall cells. We present the final grid resolution criteria
in Table V.

In order to assess the DNS refinement a posteriori we find
the ratios of local grid spacing to the local temperature mi-
croscale with this latter quantity defined as follows,

ηθ = (κ3/ε)0.25 , (35)

The maximum ratio in the domain is 0.46, as this value is
smaller than unity the DNS refinement is considered as ade-
quate. Finally, in all simulations the time-step is calculated
from a maximum Courant number of 0.25.

IV. RESULTS

The results section is divided into two parts with the first
assessing the validity of both the LES strategy and the evap-
oration model. In the second part, we decrease the aspect ra-
tio and assess the impact on the LSC state, evaporation rates,

mean flow properties and flow statistics. We adopt the follow-
ing notation: the mean of a generic variable φ is denoted by
〈φ〉 and refers to time averaging, additional averaging over a
given horizontal x− z plane is denoted by 〈φ〉xz, and over vol-
ume by 〈φ〉xyz. The fluctuating component is then denoted by
φ ′ and the rms value by φrms =

√
〈φ ′φ ′〉.

Before continuing, we present some global observations by
looking at the instantaneous isotherms of an example simu-
lation in Fig. 1. The plumes formed above and below are
encouraged into a flow path by the presence of a large-scale
circulation in one of the diagonal planes. The same situation is
observed whenever the single-roll state is present. Further, we
note from Fig. 1 that the minimum normalised temperature
in the domain exceeds the lower bound observed in turbulent
RBC, that of θ̂ = −0.5. This is due to the variable free sur-
face temperature that results in localised cold spots above; the
same effect is seen in all cases investigated herein.

FIG. 1. Example instantaneous isotherms coloured by the normalised
temperature, θ̂ . The case shown is at aspect ratio Γ = 1/2 and
Ra = 1.1×109.
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TABLE V. Resolution criteria. In this table, Nx, Nz and Ny are respectively the number of cells in the x, z and y directions, Nu and Nθ are the
number of cells inside the hydrodynamic and thermal boundary layers with numbers in parentheses providing the minimum requirement and
those outside the true values. The terms ∆̂ymin and ∆̂ymax are respectively the smallest and largest cell size, ηl

2 is half the Taylor microscale
and 4πηθ is the relaxed a priori temperature microscale prediction. We add for the DNS that πηθ = 0.017 so that Eq. (29) is satisfied as
∆̂ymax = 0.014. Finally, tavg is the averaging time for statistics in free-fall time units.

Case Γ Ra Nx×Nz Ny Nu Nθ ∆̂ymin ∆̂ymax
ηl
2 4πηθ tavg

DNS1 1 1.2×107 130×130 130 14 (5) 10 (3) 1.6×10−3 0.014 / / 300
LES1 1 1.2×107 40×40 40 6 (5) 5 (3) 2.4×10−3 0.059 0.059 0.069 300
LES2 1 3.0×107 48×48 48 6 (5) 5 (4) 1.9×10−3 0.050 0.052 0.057 300
LES3 1 5.2×107 54×54 54 6 (6) 5 (4) 1.6×10−3 0.044 0.044 0.047 300
LES4 1 8.1×107 60×60 60 6 (6) 5 (4) 1.5×10−3 0.040 0.041 0.042 300
LES5 1 1.3×108 64×64 64 6 (6) 5 (5) 1.4×10−3 0.037 0.037 0.037 400
LES6 1/2 1.1×109 64×64 128 8 (8) 6 (6) 6.4×10−4 0.019 0.025 0.019 600
LES7 1/4 8.8×109 64×64 256 9 (11) 7 (9) 6.2×10−5 0.009 0.017 0.010 800

TABLE VI. Time-averaged results for cubic (Γ = 1) domain. In this
table, Nu is the global Nusselt number, δ̂θint and δ̂θlow are the thermal
boundary layer heights at the interface and the lower wall respec-
tively, whereas δ̂u is the hydrodynamic boundary layer height at the
lower wall. Finally, we provide the global Reynolds number, Re,
defined in the text.

Case Ra Nu δ̂θint δ̂θlow δ̂u Re

DNS1 1.2×107 24.9 0.014 0.024 0.040 205
LES1 1.2×107 24.2 0.015 0.023 0.042 210
LES2 3.0×107 31.7 0.011 0.017 0.029 410
LES3 5.1×107 36.8 0.0094 0.013 0.028 600
LES4 8.3×107 41.7 0.0086 0.011 0.023 840
LES5 1.3×108 47.4 0.0074 0.010 0.022 1150

A. Validation

In this section we focus on the the cubic (Γ= 1) domain and
compare flow statistics of the fully resolved DNS against an
LES at a moderate Ra = 1.2×107. We then compare a series
of LES predictions of evaporative mass loss at the free surface
against experimental data as a means of testing the accuracy
of the implemented evaporation model.

We first compare DNS and LES predictions of the "convec-
tive plus turbulent" and diffusive contributions to Nuy in Figs.
2a and 2b respectively. The convective component is the dom-
inant contribution in the bulk but tends to a very small value
inside the thermal boundary layers. For the diffusive com-
ponent, Nudiff, only the near-wall contribution is shown, as it
is negligible in the bulk. We observe that the LES underpre-
dicts Nuy everywhere by approximately 3%, which is due to
the chosen model and associated resolution. Overall, the 3%
underprediction is a satisfactory result for the LES, given the
coarseness of the meshes used, which were required for the
taking of statistics over long simulations.

For all flows studied herein, a statistically stationary state is
achieved when Nuy is constant along the vertical and further
equal to Nu. For all cases investigated, the final Nu differed

by a maximum of 1.5% from the Nu found after half the av-
eraging time. The time-averaging interval can therefore be
considered adequate.

We now compare the DNS and LES predictions of the rms
of velocity fluctuations in Fig. 3. In Fig. 3a we note a near
parabolic profile for v̂rms with zero values at the boundaries.
The profiles are similar to those of other thermal convection
set-ups with shear-free upper boundary conditions1,2,12. The
profile is not symmetric with respect to the mid-plane ŷ = 0.5
as a result of the different strengths in ascending and descend-
ing plumes12, the latter being stronger. We find that the LES
predictions are very close to those of the DNS but slightly un-
derpredict the peak in the upper half of the domain.

The ūrms profile is presented in Fig. 3b. We observe a
unique hydrodynamic boundary layer at the lower wall and a
maximum in the rms of in-plane velocity fluctuations found at
the surface. This feature has been observed experimentally10

for evaporative cooling and numerically2,12 for thermal con-
vection configurations with a shear-free upper boundary. The
profile in the bulk of Fig. 3b is different to that seen in similar
thermal convection flows with periodic boundaries12,57 where
the bulk profile is flat. This feature of the profile is attributed
to the side-wall boundaries leading to counter-rotating vortical
cells. For the DNS, the maximum bulk value seen in Fig. 3b
corresponds approximately to the vertical position at which
the counter-rotating vortical cells interact. The same is true
for the LES, however due to the coarseness of the mesh, the
peak is less pronounced.

Finally, the hydrodynamic boundary layer created by the
shear of the large-scale circulation has a height, δ̂u, estimated
from the local peak in ūrms

57,58. The LES predicts a boundary
layer height very close to that of the DNS, as seen in Table
VI, suggesting that the hydrodynamic boundary layer is well-
resolved in the LES. We add that we observe in Table VI the
expected hydrodynamic boundary layer thinning as Ra is in-
creased.

We next compare the DNS and LES predictions of the mean
temperature and rms of temperature fluctuations respectively
in Figs. 4a and 4b. Firstly, in Fig. 4a we note that boundary
layers exist at both the upper and lower boundaries and that
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(a) (b)

FIG. 2. Plots of the time- and area-averaged components of Nuy at Ra = 1.2× 107. (a) Nuconv +Nuturb across the vertical direction and (b)
Nudiff zoom on lower boundary. The legend is as follows: DNS ( ), LES ( ).

(a) (b)

FIG. 3. Plots of the rms of velocity fluctuations at Ra = 1.2× 107. (a) v̂rms and (b) ˆ̄urms. The velocities have been made dimensionless by
κref/H. The legend is as follows: DNS ( ), LES ( ).

the bulk temperature gradient is essentially zero. We further
note that the bulk temperature is shifted towards the cooler up-
per boundary value, as also seen in similar configurations with
a shear-free upper boundary1,2. This is in contrast to turbulent
RBC57 where the bulk temperature is the mean of the upper
and lower boundaries. We present also a zoom on the upper
and lower boundaries as insets, where we see that the LES re-
produces well the profile. In Fig. 4b we note a local peak near
the lower wall representing the location of the thermal bound-
ary layer, δ̂θlow , before dropping in the bulk and increasing to a
maximum at the upper boundary. We again show insets which
suggest that the LES reproduces well the DNS results. In par-
ticular we note that the height of the lower thermal bound-
ary layer appears well predicted. The upper thermal boundary

layer height, δ̂θint , on the other hand is estimated as follows,

δθint =−λint
Tint−Tbulk

q̇′′
, (36)

with Tint and q̇
′′

respectively as the time- and area-averaged
temperature and heat flux at the interface and where the di-
mensional Tbulk is interpreted from Fig. 4a. Table VI con-
firms that the LES reproduces well the DNS predictions of
both δ̂θlow and δθint , suggesting that the thermal boundary lay-
ers are well-resolved in the LES.

We note that δ̂θlow is larger than δ̂θint and attribute the inho-
mogeneity to the presence of the shear-free upper boundary1,2.
This feature of the flow remains even with the non-uniform in-
terface temperature (see later Fig. 12), and indeed temperature
gradient at the interface, investigated herein. We add that Ta-
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ble VI shows boundary layer thinning as a result of increasing
Ra in the cubic (Γ = 1) domain, however, the inhomogeneities
in the thermal boundary layer heights remain.

Finally, we compare the predictions of the third order statis-
tics of the DNS and LES in Fig. 5. The profile of the third
central moment of the temperature is provided as Fig. 5a
where we again see an asymmetry introduced by the shear-
free upper boundary. The normalised third central moment,
the temperature skewness, is defined as Ŝθ = 〈θ̂ ′3〉xz/θ̂ 3

rms.
Fig. 5b shows that the temperature is predominantly nega-
tively skewed owing to the more intense plume formation at
the shear-free surface12. We can see in both aforementioned
figures that the third-order statistics are well approximated
by the LES, although the peaks are underestimated near the
boundaries and, in particular, the LES exaggerates the nega-
tive skewness in the upper half of the domain. An increased
resolution in the y-direction would lead to the resolution of
smaller scales and better predictions in the upper half. Over-
all, however, we find that the LES predictions of first, second
and third order statistics compare satisfactorily with the DNS
data.

We next present the validation exercise for the evaporation
model, where we start by discussing the experimental set-
up14 in the Institut de Radioprotection et de Sûreté Nucléaire
(IRSN) of France. The experiments were conducted using a
set of insulated stainless steel tanks of differing shapes (cylin-
drical and cuboidal) and aspect ratios. During the tests, the
tanks were filled with water and heated from below. The wa-
ter mass and free-surface temperatures were then measured
simultaneously, the latter using an infrared camera. The am-
bient gaseous conditions, i.e. the relative humidity and tem-
perature, were also recorded above the experimental device.

Importantly, the tanks were heated up towards, but never ar-
riving at boiling point, so as to avoid initiating any nucleation.
At which point the heating was stopped and the water allowed
to cool. During both the heat-up and cool-down stages the
following parameters were measured: the mass of water in
the tank, the bulk water temperature, the interface temperature
Tint, the ambient air temperature T∞, and the relative humidity.
The collated data allowed for a plot of evaporative mass flux
against free-surface temperature with error bars representative
of the measurement device accuracy. In Fig. 6, we replot this
data and superimpose the time- and area-averaged evaporative
mass flux predictions for cases LES1–LES5. We observe that
the predicted evaporative mass fluxes are an excellent fit with
the best estimate from the experimental measurements and are
easily within the limits of experimental error indicated by the
shaded grey area. We can therefore assume that the evapora-
tion model is valid.

It is worth noting that discrepancies in experimental results
due to variable ambient conditions, tank geometry and the
stage of heat transfer (i.e. heat-up or cool-down) were smaller
than the margin of errors in the experimental measurement
devices. This suggests that the aspect ratio should not play
an important role in the rate of evaporation, a result which we
confirm in the next section.

Finally, Table VI shows the global Reynolds number, Re =

(urms)xyzH/ν where (urms)xyz =
√
〈u′2 + v′2 +w′2〉

xyz
(m/s)

is the time- and volume-averaged rms of the velocity fluctu-
ations. Using this data, we obtain the power-law fit over the
parameter space as, Re = 2.7×10−3Ra0.69. We note that, for
the cubic domain, Ra is updated between simulations via the
thermal boundary conditions. Consequently, there are large
variations in Tref and hence in the kinematic viscosity, ν , be-
tween the cases. For this reason, we also provide a power-law
fit of the the time- and volume-averaged rms of the veloc-
ity fluctuations, as (urms)xyz ∝ Ra0.47. This latter fit of the
dimensional rms velocity, matches well that of Scheel and
Schumacher 59 for turbulent RBC at Pr = 0.7 in cylindrical
domains of aspect ratio Γ = 1, according to which Re scales
as Raβ , with β = 0.49±0.01.

B. Study of the effect of the aspect ratio

The purpose of this section is to investigate the role of as-
pect ratio on the structure of the LSC, evaporation rates, mean
flow properties and flow statistics. In relation to the latter,
the common technique of increasing Ra in turbulent RBC ex-
periments is to maintain both Tav and Γ and increase Ra via
thermal boundary conditions, specifically ∆T . In this section
however, we maintain the thermal boundary conditions and Ra
is updated between simulations by reducing the aspect ratio Γ

via the height of the domain.
We start by presenting the time-averaged LSC flow struc-

ture in the cubic (Γ = 1) domain at Ra = 1.3× 108 in Figs.
7 and 8. The streamlines of Fig. 7 suggest a steady single-
roll state of the LSC that occupies the entirety of the domain.
From Fig. 7a we note that the impingement point of the LSC is
aligned in one corner, with the lower wall impingement point
(not shown) found in the opposite corner. This is characteris-
tic of a steady LSC in cubic geometries where the single-roll
state dominates2,21. The same global observations of the LSC
are made in all Γ = 1 simulations. Further, asymmetries are
observed in both the recirculation zones of Fig. 8a and in the
counter-rotating vortices of Fig. 8b. These are a result of the
free-slip upper boundary condition accelerating fluid follow-
ing impingement2.

We next present the LSC structure in the domain of aspect
ratio Γ = 1/2 at Ra = 1.1×109, in Figs. 9 and 10. The same
single-roll LSC state exists as seen in the Γ = 1 case (shown
in Figs. 7 and 8); this LSC structure remained unchanged dur-
ing the simulation. Further, the asymmetries in recirculation
zones and counter rotating vortices persist in Figs. 10a and
10b respectively. As discussed in the Introduction, the transi-
tion from a single to a dual-roll state is dependent on Ra, Pr
and Γ. A Ra−Pr phase diagram was previously proposed19

for determining whether the mean flow structure is a single or
dual-roll states in cylindrical domains of aspect ratio Γ = 1/2.
For the parameter space investigated here, that is Ra ≈ 109

and Pr ≈ 2, the phase diagram19 predicts a single-roll state
like that observed in Fig. 10a. This result suggests that the ex-
perimental studies of the role of aspect ratio on the LSC state
in cylindrical domains could also be relevant for cuboidal ap-
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(a) (b)

FIG. 4. Plots of the temperature at Ra = 1.2×107. (a) Mean, 〈θ̂〉xz, and (b) rms, θ̂rms. The legend is as follows: DNS ( ), LES ( ).

(a) (b)

FIG. 5. Plots of third-order statistics at Ra = 1.2×107. (a) Third central moment of temperature and (b) Skewness of temperature. The legend
is as follows: DNS ( ), LES ( ).

plications.
A long lifetime dual-roll state has previously been inferred

(but not observed) in a cylindrical domain of aspect ratio
Γ = 1/2 with water as the convecting fluid60. However, this
observation was later questioned by Weiss and Ahlers 24 who
investigated a similar set-up. Therein, it was found that the
dual-roll state existed only as a transitional state between re-
orientation events of the single-roll LSC (such as drifting, ces-
sations, or torsional oscillations), and as such for very short
lifetimes. Their research was again based on a slender cylin-
drical domain, but the same conclusion can be inferred from
Fig. 10 for the cuboidal domain where we see a steady single-
roll LSC state.

In Figs. 11a and 11b we present the time-averaged stream-
lines in the domain of aspect ratio Γ = 1/4 at Ra = 8.8×109.
In terms of the flow structure we see that the LSC is in a dual-

roll state. Such a dual-roll or transitional state is expected to
be dominant in low aspect ratio (slender) domains22. How-
ever, to the authors knowledge, no experimental observations
are available in the literature for comparison at the aspect ratio
Γ = 1/4, be that in cylindrical domains or otherwise.

In Fig. 11c, as they are symmetric, we show both diagonal
planes together on the same axes, and again superimpose the
large-scale structures. These symmetric flow-structures in the
dual-roll LSC state are similar to those seen in the orthogonal
plane of the single-roll state. As such, the definitions of diag-
onal planes as LSC and orthogonal, are not appropriate for the
dual-roll state.

Regarding the simulation of the domain of aspect ratio Γ =
1/4, the impingement point above is no longer aligned with a
corner, as was the case in Figs. 7a and 9a, but in the centre
of the surface, similar to observations made in another aspect
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FIG. 6. LES predictions and experimental measurements of the evap-
orative mass flux, ṁ′′, and interface temperature, Tint, at an evaporat-
ing air-water interface. The shaded area represents the accumulated
experimental error (∼±20% of the measured flux). All experimental
runs, regardless of the ambient conditions or tank geometry lie within
the shaded area. The solid line represents a best estimate from all ex-
perimental data.

ratio study61.
Theoretically, reorientation events of the dual-roll LSC are

possible during the averaging time of the aspect ratio Γ = 1/4
simulation. Indeed, such events become more likely as Γ is
reduced25 and the LSC becomes less stable. Unlike in Figs.
8a and 10a, where reorientation events are absent, it is possi-
ble that Figs. 11a and 11b represent a time-averaged flow in
which reorientation events have occurred. However, we note
that the observed flow structure in Fig. 11c appears to remain
steady throughout.

We next discuss whether the aspect ratio has an influence
on the free surface parameters, and notably on the evaporative
mass flux. We first present Fig. 12 showing the mean nor-
malised temperature at the interface, where we observe that
〈θ̂〉 varies in space. There is a clear role of the LSC in de-
termining this spatial variation. As the LSC is driven by the
hot buoyant plumes released from the lower wall, the warmest
locations on the free surface coincide with the impingement
point of the LSC.

Remarkably, however, Table VII shows that the time- and
area-averaged interface temperature remain steady as Ra is in-
creased by almost two orders of magnitude. Consequently, the
evaporative mass flux at the free-surface also remains steady
and can be considered independent of the water-side Ra. At
the same time, the reduction in aspect ratio to Γ = 1/4 and
subsequent transformation of the LSC to a non-single-roll
state clearly changes the velocity field on the interface; see
Fig. 12c. The LSC state therefore also has a negligable influ-
ence on the evaporation rate at the interface. These results are
in fact in accordance with experimental observations14 where
the geometry of the tanks, that is surface shape and crucially
aspect ratio, had no determinable influence on evaporation
rates when experimental error was taken into account.

TABLE VII. Thermal boundary conditions for the study of the as-
pect ratio. In this table, Tlow is the fixed lower wall temperature,
and ∂T/∂y, Tint and ṁ′′ are respectively the time- and area-averaged
temperature gradient, temperature and evaporative mass flux at the
upper boundary taken from the statistically stationary solution. For
all cases the time- and area-averaged normalised interface tempera-
ture, 〈θ̂int〉xz =−0.5.

Case Γ Ra Tlow (K) ∂T
∂y

(K
m
)

Tint (K) ṁ′′
( g

m2s

)

LES5 1 1.3×108 365.65 -13700 352.95 3.77
LES6 1/2 1.1×109 365.65 -13600 352.65 3.73
LES7 1/4 8.8×109 365.65 -13250 352.35 3.63

TABLE VIII. Time-averaged results for the study of the aspect ratio.
In this table, Nu is the global Nusselt number, δ̂θint and δ̂θlow are the
thermal boundary layer heights at the interface and the lower wall
respectively, whereas δ̂u is the hydrodynamic boundary layer height
at the lower wall. Finally, we provide the global Reynolds number,
Re, defined in the text.

Case Γ Ra Nu δ̂θint δ̂θlow δ̂u Re

LES5 1 1.3×108 47.4 0.0074 0.010 0.022 1150
LES6 1/2 1.1×109 92.4 0.0036 0.0059 0.012 2555
LES7 1/4 8.8×109 172.5 0.0022 0.0026 0.008 5265

With respect to any eventual influence of the aspect ratio
on the mean flow properties we assess the dimensionless heat
transfer. We start by presenting Fig. 13, where we plot the
profiles of the different contributions of Nuy. The statistically
stationary nature of the simulations at aspect ratios Γ = 1 and
1/2 is again inferred from the flat profile of Nuconv +Nuturb
across the domain in Fig. 13a. However, we note that ide-
ally we would have taken more statistics for the aspect ratio
Γ = 1/4 simulation. We monitored the statistics throughout
and confirm that the profile flattens with time. This suggests
that if the simulations were carried out over many hundreds
more free-fall times the simulation would be fully statistically
stationary. Table V shows that we ran this simulation for 800
tff which is already longer than the vast majority of earlier
studies, with the notable exception of Foroozani et al. 20,21

who specifically looked at LSC dynamics over long time peri-
ods. The global Nusselt, however, varies only by 1.5% if half
the averaging time, that is 400tff, is used. This result suggests
that Nu is representative of a statistically stationary value.

We now present a Ra–Nu scaling analysis covering a pa-
rameter space of nearly 3 decades of Ra. This analysis is
based on all seven LES, it therefore includes simulations of
variable Tav and Γ which is only permitted as the Nu depen-
dency on Pr and aspect ratio is essentially absent24. This is
certainly true for water at Pr = 2, where the thermal boundary
layer is sheltered within the hydrodynamic one. Any eventual
impact on thermal boundary layer thicknesses as a result of a
transition in LSC flow state is then buffered62. We obtain the
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(a) (b)

FIG. 7. Time-averaged streamlines in the aspect ratio Γ = 1 domain at Ra = 1.2×108, coloured by mean vertical velocity, 〈v̂〉. (a) Top-view
from the front, with the arrow indicating the single-roll LSC plane and direction and (b) side-view from the back.

(a) (b)

FIG. 8. Time-averaged velocity vectors scaled by magnitude with superimposed large-scale structures in the cubic (Γ = 1) domain (a) LSC
plane, as indicated by the arrow in Fig. 7a and (b) the orthogonal plane. The same global LSC structure is seen across all simulations in the
cubic domain.

following power-law fit,

Nu = 0.170Ra0.302 , (37)

which is remarkably close to the scaling obtained from
previous DNS studies in a similar thermal convection
configuration2, which gave Nu = 0.178Ra0.301 over a smaller
parameter space. The reduced prefactor here corresponds to
the slight underestimation of the LES discussed earlier and the
exponent in Eq. (37) is in good agreement with experimental
turbulent RBC studies63 which give Nu ∝ Ra0.309.

Verzicco 64 looked at turbulent RBC between two free
boundaries and two rigid walls. Therein, it was found that heat
transfer in the flow between free-slip boundary conditions was
twice as large as that of the analogous flow with no-slip veloc-
ity boundary conditions. Nevertheless, the power-law fit gave
the same exponent, that is Nu ∝ Ra0.3. Using this information,
and taking the prefactor from Niemala et al. 63 as ∼ 0.12, we
can estimate a prefactor of ∼ 0.24 for the case of turbulent
RBC between two free boundaries. Fig. 14 then shows that

(37) fits well within these correlations, with the prefactor be-
ing about half as large again as that of Niemala et al. 63 .

We also provide the relevant global Re in Table VIII. For
the study of the effect of the aspect ratio, we update Ra via the
height of the domain and, as discussed, the thermal boundary
conditions remained almost constant. A power-law fit over the
aspect ratio range gives Re ∝

( 1
Γ

)1.07
; suggesting that the tur-

bulence intensity increases almost linearly with aspect ratio.
We now assess the influence of the aspect ratio on the flow

statistics and start by presenting the rms of vertical and in-
plane velocity fluctuations in Fig. 15. We first concentrate
on the rms of vertical velocity fluctuations, v̂rms, where Fig.
15a shows that the near-parabolic profile observed in Fig. 3a
persists in all simulations. In Fig. 15b, we again observe ap-
proximately the same trend over all Ra investigated; a peak by
the lower wall represents a hydrodynamic boundary layer, the
bulk ūrms profile shows a bump owing to the contained nature
of the flow and a maximum is found at the upper boundary.
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(a) (b)

FIG. 9. Time-averaged streamlines in the domain of aspect ratio Γ = 1/2 at Ra = 1.1× 109, coloured by mean vertical velocity, 〈v̂〉. (a)
Top-view from the front, with the arrow indicating the single-roll LSC plane and direction and (b) side-view from the back.

(a) (b)

FIG. 10. Time-averaged velocity vectors scaled by magnitude with superimposed large-scale structures for aspect ratio Γ = 1/2 (a) LSC plane,
as indicated by the arrow in Fig. 9a and (b) the orthogonal plane.

Overall, we conclude that the influence of the aspect ratio is
limited, as we see the same global trends that would otherwise
be observed if the standard manner of increasing Ra had been
used. That is, the rms of velocity fluctuatations are positively
correlated with Ra, Table VIII shows thinning of the hydro-
dynamic boundary layer with Ra and the same global profiles
are maintained in v̂rms and ūrms.

We next discuss the time- and area-averaged normalised
temperature distribution in the domain as the aspect ratio is

decreased. Fig. 16a suggests a subtle difference between the
cases at aspect ratios Γ = 1 and Γ = 1/2 where the single-roll
state is present and the case at aspect ratio Γ = 1/4, where
the dual-roll dominates. In the current thermal configura-
tion, the temperature in the bulk is expected to be constant
and equal to a value shifted towards the cold upper bound-
ary temperature1,2. This is indeed the case for aspect ratios
Γ = 1 and Γ = 1/2. However, for the case at aspect ratio
Γ = 1/4, Fig. 16a clearly shows that outside of the bound-
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(a) (b) (c)

FIG. 11. Time-averaged flow structure in the domain of aspect ratio Γ = 1/4 at Ra = 8.8× 109 where a dual-roll LSC state is present. (a)
Top-view from the front of streamlines coloured by mean vertical velocity, 〈v̂〉. At the free surface, we see the upper part of the dual-roll LSC,
where a central impingement point is observed, (b) same as in (a) but a side-view from the back is shown and (c) velocity vectors scaled by
magnitude with superimposed large-scale structures. As the diagonal planes of the dual-roll LSC are now symmetric, we show them together
and on the same axes. The diagonal planes then have a similar structure as the orthogonal planes in Figs. 8b and 10b.

(a) (b) (c)

FIG. 12. Time-averaged normalised interface temperatures, 〈θ̂〉 with time-averaged velocity vectors scaled by magnitude. (a) Aspect ratio
Γ = 1 at Ra = 1.2×108, (b) aspect ratio Γ = 1/2 at Ra = 1.1×109 and (c) aspect ratio Γ = 1/4 at Ra = 8.8×109.

ary layers, the bulk temperature is not constant but in fact
increases linearly. Consequently, the bulk temperature is, in
general, warmer than for the larger aspect ratio cases. We
note that the trend is unchanged if we take only the first half
of the averaging time, 400 tff, and consequently we do not put
this feature of the flow down to lack of statistics. Indeed, a
peak in bulk fluid temperature as a result of a transition to the
dual-roll state has been reported before65. Therein, the flow
feature was described as being caused by the bringing into
contact of the fluid transported from the hot and cold plates in
the cell centre, albeit for a fluid at Pr < 1 and in a cylindrical
domain of aspect ratio Γ = 1/2. On the basis of our findings,

we conclude that the observed bulk temperature gradient is the
same effect played out in the cuboidal domain of aspect ratio
Γ = 1/4.

Concentrating next on Fig. 16b, we observe the same gen-
eral trends as seen in Fig. 4b. That is, a peak at the lower
boundary which defines the lower thermal boundary layer
height, a dip in the centre of the domain and a maximum at
the upper boundary. As Ra is increased the dimensionless
thermal boundary layer heights are decreased as seen in Ta-
ble VIII. The dip in the bulk is reduced, albeit less than one
might expect for the largest Ra (smallest Γ), and the maximum
at the surface is nearly constant. This result appears to answer
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(a) (b)

FIG. 13. Plots of the time- and area-averaged components of Nuy as Ra is increased (Γ is decreased). (a) Nuconv +Nuturb across the vertical
direction and (b) Nudiff zoom on lower boundary. The legend is as follows: aspect ratio Γ = 1 at Ra = 1.3×108 ( ), aspect ratio Γ = 1/2
at Ra = 1.1×109 ( ) and aspect ratio Γ = 1/4 at Ra = 8.8×109 ( ).















FIG. 14. Ra scaling of Nu. The legend is as follows: Nu data ( ),
power-law fit to the present data: Nu = 0.17Ra0.302 ( ), power-
law fit of RBC between two rigid boundaries63: Nu = 0.12Ra0.31

( ), and power-law fit of RBC between two free boundaries64:
Nu = 0.24Ra0.30 ( ). The prefactors have been rounded to two
significant figures.

the question posed by Bower and Saylor 17 of whether water-
side natural convection can affect evaporation rates. Therein,
it was hypothesised that a higher Ra would result in increased
θ̂rms at the interface. This feature is not observed in Fig. 16b,
which shows a constant interface value as Ra is increased. The
same cannot be said for the rms of velocity fluctuations which
increase significantly at the free surface with Ra, as shown in
Fig. 15.

In any case, Table VIII provides values for δ̂θint where there
is visible upper thermal boundary layer thinning as a result
of increasing Ra. This is further observed in the inset of Fig.
16a. However, it is of interest here to analyse the dimensional
upper thermal boundary layer height as Ra is increased. With
the interface (see Table VII) and bulk (see Fig. 16a) tempera-

tures approximately constant, all quantities on the RHS of Eq.
(36) remain unchanged with Ra, and hence δθint is also. If the
thermal boundary layer on the water-side of the air-water in-
terface remains the same thickness, then heat and mass trans-
fer at the interface should indeed be controlled by the air-side
conditions as is the case here.

V. CONCLUSION

We have presented and validated an algorithm for predict-
ing evaporation rates at an air-water interface. Over a series
of LES the algorithm and simulation strategy are shown to ac-
curately reproduce the experimental measurements of evapo-
rative mass flux and interface temperatures. We then fixed the
thermal boundary condition at the lower wall and show that
the aspect ratio and water-side turbulence play no measurable
role on the evaporation rate above.

Over a series of simulations the aspect ratio is shown to in-
fluence the LSC, which changes from a steady single-roll state
to a dual-roll equivalent. It appears that many of the observa-
tions on the influence of the aspect ratio on the state of the
large-scale circulation, originally made in cylindrical contain-
ers, are in fact applicable to cuboidal domains. That is, the
likelihood of the single-roll state diminishes greatly in low as-
pect ratio domains and is dominant in domains of aspect ratio
Γ = 1 and 1/2. However, we observe that the eventual transi-
tion to a dual-roll state at low aspect ratio had no determinable
impact on the heat transfer within the domain and hence on
the evaporation rates above, at least within the accuracy of the
LES carried out.

In future work we intend to take into account the descend-
ing interface, and hence the dynamic calculation of Ra and
aspect ratio. This will allow for longer simulation times at
higher evaporation rates in order to assess the LSC dynamics.
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(a) (b)

FIG. 15. Plots of the rms of velocity fluctuations as Ra is increased (Γ is decreased). (a) v̂rms and (b) ˆ̄urms. The velocities have been made
dimensionless by κref/H and the legend is as follows: aspect ratio Γ = 1 at Ra = 1.3× 108 ( ), aspect ratio Γ = 1/2 at Ra = 1.1× 109

( ) and aspect ratio Γ = 1/4 at Ra = 8.8×109 ( ).

(a) (b)

FIG. 16. Temperature plots as Ra is increased (Γ is decreased). (a) Time- and area-averaged temperature , 〈θ̂〉xz and (b) rms of the temperature
fluctuations, θ̂rms. The legend is as follows: aspect ratio Γ = 1 at Ra = 1.3×108 ( ), aspect ratio Γ = 1/2 at Ra = 1.1×109 ( ) and
aspect ratio Γ = 1/4 at Ra = 8.8×109 ( ).
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Appendix: Flow-chart of evaporation algorithm

In Fig. 17 below, we provide the flowchart for the algorithm
calculating the temperature gradient at the upper boundary for

the time-step n+1, that is ∂ T̃
∂y

∣∣∣
n+1

.

Solve for T̃ n+1 internal field

Find T̃ n+1
int using ∂T̃

∂y

n

Find pn+1
v,int / Y n+1

v,int / ρn+1
int from Eqs. (12) / (13) / (14)

Find T n+1
f using T n+1

int and T∞

Find ρn+1
f / µn+1

f / Dn+1
f from Eqs. (14) / (15) / (17)

Find Ran+1
c / Shn+1 from Eqs. (18) / (19)

Find ṁ′′n+1

/ hn+1
lv from Eqs. (22) / (23)

Find Ran+1
t and hn+1 from Eqs. (26) / (25)

Find q̇′′
n+1

conv from Eq. (24)

Find ∂T̃
∂y

n+1
from Eq. (11)

FIG. 17. Flow-chart of evaporation algorithm
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