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Abstract 20 

 21 

Overweight and obesity are associated with several cardiometabolic risk 22 

factors, including insulin resistance, type 2 diabetes, low-grade inflammation and liver 23 

diseases. The gut microbiota is a potential contributing factor regulating energy 24 

balance. However, although the scientific community acknowledges that the gut 25 

microbiota composition and its activity (e.g., production of metabolites and immune-26 

related compounds) are different between healthy subjects and subjects with 27 

overweight/obesity, the causality remains insufficiently demonstrated. The 28 

development of low-grade inflammation and related metabolic disorders has been 29 

connected with metabolic endotoxaemia and increased gut permeability. However, the 30 

mechanisms acting on the regulation of the gut barrier and eventually cardiometabolic 31 

disorders are not fully elucidated. 32 

In this review, we debate several characteristics of the gut microbiota, gut barrier 33 

function and metabolic outcomes. We examine the role of specific dietary compounds 34 

or nutrients (e.g., prebiotics, probiotics, polyphenols, sweeteners, and a fructose-rich 35 

diet) as well as different metabolites produced by the microbiota in host metabolism, 36 

and we discuss how they control several endocrine functions and eventually have 37 

either beneficial or deleterious effects on host health. 38 

 39 
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Introduction 41 
 42 

Obesity is linked with many cardiometabolic risk factors, such as insulin resistance, 43 

type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Although lowering body 44 

weight is effective for alleviating many of these metabolic abnormalities, prevention 45 

remains the greatest challenge. Among the different factors contributing to the 46 

regulation of energy balance, the microorganisms that reside in the human gut (called 47 

the gut microbiota) have received increasing attention. Initially, the gut microbiota was 48 

studied because of its association with classical infectious diseases, such as gut 49 

infections (Escherichia coli, Shigella), acute colitis, Crohn’s disease, and inflammatory 50 

bowel disease (IBD) (Frank, et al. 2007; Lupp, et al. 2007; Macpherson and Harris 51 

2004; Voth and Ballard 2005), but in the last two decades, it has been investigated 52 

also because of functions beyond those of pathogens (Bäckhed, et al. 2004; Cani and 53 

Delzenne 2009). This incredible awareness of the potential of the gut microbiota is 54 

translated by more than five thousand publications in 2019 alone, many of which are 55 

dedicated to the study of the gut microbiota and cardiometabolic disorders associated 56 

with overweight and obesity. However, caution must be taken with regard to the 57 

causality raised in the literature (Cani 2017, 2018; Lynch and Pedersen 2016). In this 58 

review, we specifically discuss different aspects of the link between the gut microbiota, 59 

gut barrier function and metabolic outcomes. We discuss the role of different 60 

metabolites produced by the microbiota in host metabolism and how specific nutrients 61 

may promote either beneficial or deleterious effects on host health. 62 

 63 

Role of the microbiota in the onset of metabolic diseases 64 
 65 

In 2004, pioneering work from Jeffrey Gordon and his team showed that mice 66 

lacking a microbiota (i.e., germ-free mice) were characterized by specific energy 67 

metabolism and even resistance to diet-induced obesity (Backhed, et al. 2007; 68 

Backhed, et al. 2004). In the same period, we identified a causal association between 69 

the gut microbiota and the development of low-grade inflammation and insulin 70 

resistance associated with obesity and lipid-rich diets (i.e., a high-fat diet, HFD) (Cani, 71 

et al. 2007). We found that some constituents of gram-negative bacteria, such as 72 

lipopolysaccharide (LPS), were the key factors triggering the onset of low-grade 73 

inflammation and insulin resistance (Cani et al. 2007). By using different animal models 74 
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(i.e., genetic, diet-induced obesity and diabetes models), we discovered that these 75 

animals had an increased level of circulating LPS, a condition termed metabolic 76 

endotoxaemia (Cani et al. 2007). This finding has since been confirmed in several 77 

human studies (Amar, et al. 2008; Gomes, et al. 2017; Gummesson, et al. 2011; 78 

Horton, et al. 2014; Jayashree, et al. 2014; Lassenius, et al. 2011; Laugerette, et al. 79 

2011; Monte, et al. 2011; Pussinen, et al. 2011; Radilla-Vazquez, et al. 2016) (Figure 80 

1). Since this discovery, other pathogen-associated molecular patterns (PAMPs) (e.g., 81 

flagellin and peptidoglycans) have also been shown to play a fundamental role in the 82 

regulation of similar metabolic pathways (Chassaing, et al. 2014; Denou, et al. 2015; 83 

Vijay-Kumar, et al. 2010). Over the years, thriving literature has demonstrated that 84 

alterations in gut microbiota composition and function are widely associated with the 85 

development of metabolic diseases, especially obesity and type 2 diabetes (T2D), in 86 

humans (Cotillard, et al. 2013; Karlsson, et al. 2013; Le Chatelier, et al. 2013; 87 

Pedersen, et al. 2016). In this context, faecal microbiota transplantation (FMT) has 88 

recently emerged as a good option to assess the causal relationship between the gut 89 

microbiota and the onset of metabolic diseases (Kootte, et al. 2017; Le Roy, et al. 90 

2013; Vrieze, et al. 2012). In addition, an increasing number of studies are seeking to 91 

identify specific microbial signatures in the gut and liver that could predict the onset 92 

and/or severity of metabolic disorders, such as liver diseases (Boursier, et al. 2016; 93 

Michail, et al. 2015; Sookoian, et al. 2020; Wang, et al. 2016). In addition to changes 94 

in the gut microbiota, it was discovered that the barrier function of the gut also played 95 

a key role (for a review: (Cani 2018; Cani, et al. 2019)). Because gut microbes are 96 

located close to intestinal epithelial cells, gut barrier function must be highly efficient to 97 

prevent the enteric microbiota and potent immunostimulatory molecules from entering 98 

the circulation. However, the gut barrier must also be permissible to allow uptake of 99 

essential nutrients and fluids. This delicate balance is part of a multifaceted system 100 

controlled through intricate mechanisms. Over the last decade, the role of gut barrier 101 

function has been investigated, and numerous studies have discovered that 102 

maintaining an adequate gut barrier requires finely tuned mechanisms that are 103 

dependent on the microbial composition. More precisely, the gut barrier is composed 104 

of several physical and chemical components. A single layer of epithelial cells that 105 

display densely packed microvilli (brush border) and are joined at their apical side by 106 

tight junction proteins (TJPs, e.g., zonula occludens 1 (ZO-1), occludin, and claudins) 107 

act as the transcellular barrier. This monolayer is renewed constantly (every 4–5 days 108 
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due to Intectin and Cyclin D1) and is covered by a protective mucus layer that is 109 

impregnated with several immune factors (e.g., antimicrobial factors) produced by the 110 

host. Together, the mucus layer and the different antimicrobial factors (e.g., C-type 111 

lectin, primarily regenerating islet-derived 3-gamma, Reg3γ, several defensins, 112 

lysozyme C and phospholipases) contribute to maintaining gut microbes at a certain 113 

distance from intestinal epithelial cells (Bevins and Salzman 2011; Hooper and 114 

Macpherson 2010; Pott and Hornef 2012) (Figure 1). Maintaining the integrity of the 115 

gut barrier is critical and avoids structural and functional disorganization of the intestine 116 

that can lead to several disorders. IBD is the hallmark example of compromised gut 117 

barrier function (Stange and Schroeder 2019; Wehkamp, et al. 2008). Altered mucus 118 

function and chemical defence by defensins are characteristic of ulcerative colitis and 119 

Crohn’s disease, respectively (Johansson, et al. 2014; Salzman, et al. 2010). It is 120 

important to note that the antibiotic action of specific defensins is reinforced by their 121 

proteolytic fragmentation into shorter peptides and thereby constitutes an interesting 122 

way to modulate gut barrier function (Ehmann, et al. 2019). Defects in this line of 123 

defence have also been correlated with metabolic diseases. By using metaproteomic 124 

resources, Zhang et al. showed that several AMPs are depleted in the faeces of T2D 125 

subjects in comparison to those in prediabetic and healthy subjects (Zhong, et al. 126 

2019). In addition to the innate immune system, the adaptive immune system is 127 

another important contributor; for example, immunoglobulin A (IgA) is able to inhibit 128 

bacterial penetration into the host mucus and mucosal tissue (Macpherson, et al. 129 

2012). 130 

Therefore, gut barrier function is a very complex and multifaceted mechanism 131 

(Figure 1), and alterations in this line of defence are the first signal that allows the 132 

penetration of bacteria and thereby contributes to a local inflammatory response (e.g., 133 

IBD) and/or metabolic disorders (e.g., T2D). (reviewed in (Konig, et al. 2016; Paone 134 

and Cani 2020; Stange and Schroeder 2019; Wells, et al. 2017)). 135 

 136 

 137 

 138 

 139 

 140 

  141 

 142 
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Effect of specific nutrients on the microbiota composition and their 143 
impact on health: “beneficial” versus “deleterious” effects 144 
 145 

 Maintaining normal intestinal barrier function is an essential aspect of human 146 

health. The growing significance of gut barrier integrity and concomitant translocation 147 

of bacteria and bacterial components raises the question of how we can improve gut 148 

barrier function. This aspect is of particular interest since alteration of intestinal 149 

homeostasis (gut microbiota composition and gut barrier function) directly or indirectly 150 

(via microbial-produced metabolites) disturbs the production and secretion of gut 151 

endocrine hormones, thereby triggering metabolic diseases (Figure 2). The most 152 

obvious strategy to maintain gut barrier integrity is to maintain a healthy nutritional 153 

status, as it has been shown that certain dietary patterns are associated with improved 154 

health (for example, a Mediterranean versus Western diet), whereas high-fat, high-155 

sugar diets or diets depleted of certain nutrients, such as zinc, glutamine and 156 

tryptophan, could compromise gut barrier integrity (see below the section “deleterious 157 

effects”). 158 

 Dietary patterns are dominant factors in shaping the gut microbiota. Therefore, 159 

understanding the key mechanisms involving the different components of our diet is a 160 

challenge that needs to be met. Effectively manipulating the microbiota can reduce 161 

low-grade intestinal inflammation and improve gut barrier integrity, thereby reducing 162 

plasma glucose and serum lipid levels, ultimately resulting in weight loss and 163 

decreased insulin resistance (Cani, et al. 2009a; Dewulf, et al. 2013; Dray, et al. 2007; 164 

Parnell and Reimer 2009). This constitutes a promising and feasible approach, and 165 

several dietetic concepts, including prebiotics as well as probiotics, are currently being 166 

researched (Reid, et al. 2019; Sanders, et al. 2019). Traditionally, the quality and 167 

quantity of fatty acids and dietary fibres are denoted as crucial modulators of the gut 168 

microbiota composition (Caesar, et al. 2015; Devkota, et al. 2012; Just, et al. 2018; 169 

Lam, et al. 2015; Makki, et al. 2018); however, it is now clear that other potential actors, 170 

including many different metabolites, are involved (Holmes, et al. 2011; Wikoff, et al. 171 

2009; Zierer, et al. 2018). In the next section of this review, we will focus on specific 172 

nutrients or food additives that are currently used in the Western diet. We focus first 173 

on the “beneficial” factors and then the “deleterious” factors. 174 

 175 

 176 
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 177 

Beneficial effects 178 

 179 

Gut permeability and prebiotics 180 
 181 

Since the beginning of the 2000s, the expansion of original scientific work has tended 182 

to show that the modulation of the gut microbiota population by prebiotics has a major 183 

impact on human health (Roberfroid, et al. 2010). This is particularly the case for 184 

fermentable dietary fibres, such as inulin-type fructans that include inulin and 185 

oligofructose (Gibson, et al. 2017), which are known to improve glucose homeostasis 186 

(Cani, et al. 2006; Roberfroid et al. 2010). Evidence suggests a potential link between 187 

the intake of prebiotics and the modulation of gut permeability. The increased use of 188 

prebiotics to improve insulin sensitivity and/or reduce food intake in metabolic 189 

disorders is well described in animal models and in humans (reviewed in (Delzenne, 190 

et al. 2011)). 191 

 192 

Animal models: Deciphering the mode of action of prebiotics on insulin sensitivity or 193 

energy homeostasis is still a competitive research topic. In 2004, we discovered that 194 

the colonic fermentation of a specific prebiotic called oligofructose (i.e., an inulin-type 195 

fructan) had the capacity to modulate endogenous production of appetite-controlling 196 

gut hormones (Cani, et al. 2004). Indeed, both oligofructose and inulin have the 197 

capacity to reduce dietary intake in rodents by a mechanism that involves anorexigenic 198 

and orexigenic gut hormones, i.e., an increase in glucagon-like peptide 1 (GLP-1) and 199 

peptide YY (PYY) concentrations in the intestine and a decrease in the orexigenic 200 

hormone ghrelin concentration (Cani et al. 2004; Delzenne, et al. 2005). Prebiotics are 201 

generally known for their health benefits, but some recent papers bring nuances to the 202 

debate. Singh et al. showed that mice fed a compositionally defined diet (CDD) 203 

enriched with inulin developed hepatocellular carcinoma (HCC) through a mechanism 204 

dependent on the gut microbiota (Singh, et al. 2018). These results are in line with 205 

another study showing that inulin, when incorporated into a CDD, exacerbated colitis 206 

in mice exposed to dextran sulfate sodium (DSS) (Miles, et al. 2017). Although this 207 

effect has been observed in very specific animal models, these findings prove the 208 

importance of the dietary context in the effects of prebiotics in general. Regarding their 209 

mechanisms of action, many questions remain, but it is well known that due to their 210 
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utilization by specific bacteria (i.e., fermentation), prebiotic fibres are transformed into 211 

different bacterial metabolites, such as short-chain fatty acids (SCFAs) (Koh, et al. 212 

2016). These SCFAs act on a specific family of G-coupled protein receptors (GPCRs) 213 

called GPR41 and GPR43 (Le Poul, et al. 2003) and trigger the secretion of gut 214 

peptides involved in the regulation of appetite, energy homeostasis and glucose 215 

metabolism (Brooks, et al. 2017). However, this mechanism is still debated since Zou 216 

et al. showed that SCFAs and GPR43 are dispensable in the beneficial effects of inulin 217 

on HFD-induced low-grade inflammation and metabolic syndrome (Zou, et al. 2018). 218 

They demonstrated that IL-22, which is already known to protect against several 219 

intestinal infections (Zheng, et al. 2008; Zhong et al. 2019), is involved in fortification 220 

of the intestine through increased epithelial cell proliferation, thus contributing to 221 

protection against HFD-induced disorders. 222 

In 2006, we demonstrated that the anti-diabetic action of oligofructose required a GLP-223 

1 signalling pathway. Indeed, blocking the GLP-1 receptor by using pharmacological 224 

agents or using GLP-1 receptor knockout mice abolished the anti-diabetic effect of 225 

oligofructose (Cani et al. 2006). Treatment of obese and diabetic mice with 226 

oligofructose is associated with changes in the gut microbiota that rescue intestinal 227 

permeability. This physiological effect is associated with a restoration of the distribution 228 

and localization of the TJPs ZO-1 and occludin, thereby reinforcing the gut barrier, 229 

decreasing the LPS concentration in the portal vein and eventually reducing hepatic 230 

steatosis and systemic inflammation (Cani, et al. 2009b; Everard, et al. 2011). 231 

Importantly, blocking the GLP-2 receptor, a gut peptide increased by prebiotics and 232 

regulating epithelial cell proliferation and the gut barrier, abolished the effects of 233 

prebiotics on the gut barrier. This last result shows that prebiotics have the capacity to 234 

reduce low-grade inflammation and contribute to reducing insulin resistance. In 235 

addition, mice lacking the receptor GPR43 do not respond to prebiotic fibres, thereby 236 

showing the link between SCFAs, specific gut peptides and metabolism (Brooks et al. 237 

2017). However, recent data also suggest that not all fermentable dietary fibres exert 238 

their effects on either the gut barrier or glucose metabolism by similar mechanisms 239 

and likely not only via SCFAs and gut peptides (Van Hul, et al. 2020). The reduction in 240 

HFD-induced obesity, fat mass accumulation and glucose intolerance with 241 

oligofructose and soluble corn fibre involves a distinct remodelling of the gut microbiota 242 

and subsequent different SCFA profiles. 243 

 244 
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Therefore, although some mechanisms of action have been identified, it has also been 245 

established that gut microbes exert other functions via, for example, the release of 246 

other biological factors (such as neurotransmitters, bioactive lipids, gases) that also 247 

have an impact on gut physiology and contribute to the cross-talk observed between 248 

gut microbes and the host (review in (Cani and Knauf 2016; Rastelli, et al. 2018; 249 

Rastelli, et al. 2019)). 250 

 251 

Humans: Although numerous data have been obtained in animals, human data also 252 

support that changing the gut microbiota by using fermentable fibres modifies gut 253 

peptide production (i.e., GLP-1, PYY, and Ghrelin) (Cani et al. 2009a; Parnell and 254 

Reimer 2009). Other studies have also confirmed the key role played by SCFAs in the 255 

beneficial effects, suggesting that they may be due to increased plasma levels of the 256 

enteroendocrine hormones PYY and GLP-1 (Chambers, et al. 2015; Freeland and 257 

Wolever 2010). In addition to their effects on gut peptides, inulin-type fructans exert 258 

beneficial effects on glucose metabolism in humans, including an improvement in 259 

fasting glycaemia, hyperinsulinaemia, HOMA-IR and HbA1c (Rao, et al. 2019; Zhang, 260 

et al. 2020). Several recent studies also found that a mix of prebiotics (i.e., 261 

inulin/oligofructose) correlated with bacterial-related metabolites (phosphatidylcholine, 262 

lactate and others) and to a specific gut microbiota composition that could explain the 263 

beneficial effect on glucose metabolism (Dewulf et al. 2013; Hiel, et al. 2019; 264 

Rodriguez, et al. 2020). 265 

The results obtained regarding satiety and food intake are more discussed in humans. 266 

In 2018, Korczak and Slavin showed that fructan fibres used at a dose less than 10 267 

g/day did not modify satiety or food intake (Korczak and Slavin 2018). The authors 268 

claimed that these fibres could not be used as the sole satiating agent since their 269 

impact on food intake is observed only at very high doses (>16 g/day) and when used 270 

for a long period (12-16 weeks). 271 

Overall, the impacts of prebiotics on food consumption, glucose metabolism and body 272 

weight in humans is less significant than those observed in rodents. 273 

 274 

Gut permeability and polyphenols 275 
 276 

In addition to dietary fibres, plant-derived polyphenols represent other important 277 

substrates for the gut microbiota. Like dietary fibres, they are catabolized by and may 278 
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influence the intestinal microbial ecosystem. In recent decades, polyphenols and their 279 

metabolites have gained attention for their promising beneficial health effects, which 280 

are generally attributed to their antimicrobial, antioxidant and anti-inflammatory 281 

properties (Anhe, et al. 2019). Recent studies also show the role of plant polyphenols 282 

in the regulation of the intestinal barrier. An overview of the main evidence from in vitro 283 

and in vivo studies supporting the role of polyphenols in modulating gut barrier 284 

permeability was the subject of a recent publication and will not be repeated here 285 

(Bernardi, et al. 2020). At present, it remains largely unknown how polyphenols exert 286 

their beneficial effects. They may be mediated by the microbial production of bioactive 287 

polyphenol-derived metabolites and/or by the modulation of the gut microbial 288 

community itself. However, several hypotheses have been proposed regarding how 289 

polyphenols influence the gut barrier. For example, polyphenols may improve barrier 290 

function by regulating oxidative stress through the downregulation of reactive oxygen 291 

species (ROS). Another mechanism by which polyphenols could exert their activity is 292 

by targeting different members of the NF-kB pathway or by antagonizing its activation. 293 

This pathway is responsible for the transcriptional induction of pro-inflammatory 294 

cytokines, chemokines and additional inflammatory mediators in different types of 295 

innate immune cells. By interfering with this signalling, polyphenols prevent the 296 

disassembly of TJPs and restore barrier integrity. Polyphenols also reinforce gut 297 

barrier function and morphology through the maintenance of the epithelial mucus layer 298 

in different mouse models of defective gut epithelium (Pierre, et al. 2013; Rodríguez-299 

Daza, et al. 2020). However, many other pathways have also been suggested as 300 

potential polyphenol targets, many of which cross-talk with each other (reviewed in 301 

(Yang, et al. 2017), making this a complex issue to disentangle and highlighting the 302 

diversity within the polyphenol family. Indeed, in a comparative study using 303 

polyphenols derived from different sources (grapes or cinnamon), we demonstrated 304 

that both polyphenol extracts produced similar metabolic outcomes and that both 305 

improved gut barrier integrity via different underlying mechanisms (Van Hul, et al. 306 

2017). 307 

When discussing the health-promoting effects of polyphenols, it is important to 308 

consider their phenolic composition, bioavailability, distribution, metabolism and 309 

elimination. All of these parameters vary importantly from one study to another and 310 

explain, among others, strong interindividual variations (Boccellino and D'Angelo 2020; 311 

Teng and Chen 2019). The composition of polyphenol-rich solutions (e.g., sugar, fibre, 312 
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and impurities) is not fully known in preclinical and clinical studies, and it remains 313 

difficult to determine the exact contribution of polyphenols rather than other 314 

components to the observed effects. Therefore, some efforts need to be made to 315 

standardize the chemical forms of dietary polyphenols used in preclinical and clinical 316 

studies to fully assess the effect of polyphenols on gut barrier function and health. 317 

 318 

Deleterious effects 319 

 320 

Impact of high-fat diets on the gut barrier 321 
 322 

 Chronic excess dietary fat not only increases systemic exposure to potentially 323 

pro-inflammatory free fatty acids but also disrupts gut barrier function by several 324 

mechanisms. First, a HFD can directly increase gut barrier permeability because both 325 

saturated and unsaturated fatty acids can impair the expression and distribution of 326 

TJPs. Moreover, lipid-rich diets facilitate the physiological absorption of LPS via the 327 

formation of chylomicrons (Ghoshal, et al. 2009). This phenomenon will trigger an 328 

immune response and enhance the secretion of pro-inflammatory factors (e.g., 329 

cytokines), which will then disrupt TJPs. This activity will in turn increase the 330 

permeability and lead to the leakage of even more LPS, resulting in a vicious circle 331 

(Cani, et al. 2008; Fujiyama, et al. 2007; Hamilton, et al. 2015; Kawano, et al. 2016; 332 

Luck, et al. 2015; Yoshida, et al. 2001; Zou et al. 2018). It has also been proposed that 333 

saturated fatty acids directly bind to toll-like receptor 4 (TLR-4) in the intestine via the 334 

adaptor protein fetuin A, thereby suggesting that saturated fatty acids may directly 335 

increase the production of inflammatory markers (Pal, et al. 2012) and contribute to 336 

alteration of the gut barrier. In contrast, mucus integrity has been positively associated 337 

with fatty acid synthase (FAS), a rate-limiting enzyme of fat-producing lipogenesis 338 

(Wei, et al. 2012). Defective intestinal lipogenesis in the absence of FAS is detrimental 339 

to the palmitoylation of Muc2, a key component of the mucus layer. These findings 340 

highlight the importance of lipid sources (dietary fat vs. de novo synthetized fat) in gut 341 

barrier function. 342 

The HFD have become the gold standard for the study of the relationship between gut 343 

function and obesity (Buettner, et al. 2007). It is now well accepted that a HFD leads 344 

to alterations in gut microbiota composition and gut barrier function. However, caution 345 

should be exercised with regard to the composition of diets. The amounts of fibres, 346 
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one of the main substrates used by the gut microbiota, differ among chow diets and 347 

are often greater than those found in HFDs (Pellizzon and Ricci 2018). Pioneering 348 

studies were performed using fibre-rich chow diets as a control and demonstrated for 349 

the first time that mice fed a HFD displayed increased gut permeability not only 350 

because of an alteration of TJPs but also because of an alteration of the intestinal 351 

mucus layer, further participating in gut barrier dysfunction and endotoxaemia (Cani et 352 

al. 2007; Everard, et al. 2013; Gulhane, et al. 2016). Since then, many works have 353 

been carried out with compositionally defined diets (CDDs) as a control, which mirror 354 

the composition of HFDs (excluding fat) (Chassaing, et al. 2015b; Dalby, et al. 2017; 355 

Jensen, et al. 2016). While exposure to the CDD (vs chow diet) induced significant 356 

alterations in the gut microbiota composition and in the intestine morphology, this effect 357 

is not sufficient to induce obesity and glucose intolerance that are characteristic of HFD 358 

feeding, thereby suggesting that gut microbiota alterations do not necessarily 359 

determine the onset of obesity (Dalby et al. 2017). 360 

 In addition to the mechanisms described above, dietary fat may also induce gut 361 

barrier dysfunction via alteration of the luminal bile acid profile. For example, dietary 362 

fat increases the concentration of deoxycholic acid (DCA), which is very hydrophobic 363 

and capable of disrupting cell membranes, whereas it reduces the concentration of the 364 

more hydrophilic and membrane-stabilizing ursodeoxycholic acid (UDCA) (Stenman, 365 

et al. 2012). In addition, BA has been shown to modulate gut permeability by affecting 366 

tight junction structure (Raimondi, et al. 2008; Stenman et al. 2012; Suzuki and Hara 367 

2010). All these mechanisms support the notion that the HFD induces health disorders 368 

through an alteration of the gut environment. 369 

 370 

The effects of sweeteners 371 

 372 

 In addition to the higher fat and sugar content, the Western-type diet is made 373 

up of ultra-processed food containing a large number of food additives (Carocho, et al. 374 

2014). Among them, sweeteners are widely present to make food more palatable and 375 

stable. Despite their approbation by regulatory agencies, artificial sweeteners are not 376 

all safe, and some of them present adverse health effects. Saccharin, sucralose and 377 

aspartame induced glucose intolerance more than glucose did (with saccharin having 378 

the most pronounced effect) through an alteration in the composition and function of 379 

the gut microbiota (Suez, et al. 2014). Mice exposed to saccharine exhibited glucose 380 
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intolerance associated with increased Bacteroides and decreased Clostridiales 381 

abundance. Metagenomic analysis revealed an enrichment in pathways targeting 382 

lipopolysaccharide biosynthesis, thereby revealing the potential mechanism by which 383 

sweeteners enhance susceptibility to T2D (Suez et al. 2014). In the same study, the 384 

authors demonstrated a positive correlation between the consumption of sweeteners 385 

and metabolic parameters such as HBA1c and glucose in humans. In another study 386 

that linked sweeteners with the gut microbiota, the authors reported that several 387 

“beneficial” phyla, such as Bifidobacterium, Lactobacillus and Bacteroides, were 388 

depleted in animals exposed to a combination of sweeteners and maltodextrin (Abou-389 

Donia, et al. 2008). Given that sweeteners are able to bind sweet-taste receptors that 390 

are essential for the release of incretins, a large number of studies have aimed to 391 

investigate the potential of sweeteners as agents to trigger the secretion of gut 392 

endocrine hormones. Although sweeteners (mainly sucralose) have been reported to 393 

stimulate the release of GLP-1 in several enteroendocrine cell lines (Geraedts, et al. 394 

2011; Jang, et al. 2007; Kidd, et al. 2008; Margolskee, et al. 2007), oral exposure in 395 

mice and humans failed to show the same effects (Brown, et al. 2009; Ford, et al. 2011; 396 

Fujita, et al. 2009; Ma, et al. 2009; Steinert, et al. 2011). Recently, two studies aimed 397 

to investigate the role of sweeteners in gut barrier integrity. The authors demonstrated 398 

that artificial sweeteners disrupted gut barrier function by increasing intestinal 399 

permeability and apoptosis in vitro (Santos, et al. 2018; Shil, et al. 2020). Shil et al. 400 

proposed that sweet-taste receptors were involved in this phenomenon since mice 401 

deleted for one of these receptors (T1R3) exhibited attenuated gut hyperpermeability 402 

(Shil et al. 2020). Given the presence of conflicting results regarding the effects of 403 

artificial sweeteners, additional studies on the topic have to be conducted to truly 404 

appreciate the safety of these additives. 405 

 406 

The effects of emulsifiers 407 

 408 

Another class of common additives is emulsifiers, which help to stabilize emulsions of 409 

liquids (such as mixes of oil and water). Emulsifiers are widely used, but some findings 410 

raise questions about their safety. In particular, carboxymethylcellulose (CMC) and 411 

polysorbate 80 (P80), two major emulsifiers, have been intensively studied for their 412 

capacity to trigger metabolic disorders. It has been demonstrated that CMC targets the 413 

microbial environment by promoting bacterial overgrowth in mice and that P80 414 
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enhances the translocation of E. coli in intestinal-derived M-cells (Roberts, et al. 2010; 415 

Swidsinski, et al. 2009). A few years later, Chassaing et al. showed that CMC and P80 416 

exposure predisposed mice to low-grade inflammation and metabolic syndrome and 417 

enhanced susceptibility to colitis in Il10-/- mice by a mechanism involving alteration of 418 

the mucus layer (Chassaing, et al. 2015a). Indeed, they discovered that the use of 419 

specific emulsifiers changes the penetrability of the mucus by different bacteria, 420 

thereby increasing the close vicinity of microbial cells with intestinal epithelial cells. In 421 

this pioneering work, they demonstrated that the gut microbiota plays a major role 422 

since transferring the microbiota from emulsifier-treated mice to germ-free mice 423 

reproduced the alteration of the gut barrier with an altered mucus layer, increased 424 

disruption of TJPs and induced metabolic endotoxaemia (Chassaing et al. 2015a). 425 

Similarly, in the absence of the microbiota, the mice were protected against emulsifier-426 

induced gut barrier dysfunction, low-grade inflammation and eventually the onset of 427 

metabolic disorders. These findings are strengthened by ex vivo studies showing that 428 

CMC and p80 exposure in a human gut microbiota simulator (M-SHIME) enhanced the 429 

pro-inflammatory potential by increasing the levels of bioactive flagellin through a 430 

mechanism involving the gut microbiota (Chassaing, et al. 2017). Moreover, germ-free 431 

mice receiving this altered gut microbiota recapitulated all the metabolic disorders 432 

listed above, thereby confirming the involvement of the gut microbiota in mediating the 433 

deleterious effects of emulsifiers on health. In addition to the potential implication of 434 

the gut microbiota, a recent study proposed that emulsifiers might alter food intake by 435 

modulating the expression of neuropeptides (i.e., increase in appetite-stimulating 436 

AgRP and decrease in appetite-suppressing α-MSH), thereby suggesting that 437 

emulsifiers may endanger health by modulating the gut-to-brain axis (Holder, et al. 438 

2019). 439 

 440 

The effect of fructose-rich diets 441 
 442 

The consumption of fructose soared across the world after the introduction of high-443 

fructose corn syrup in the food industry in 1960. The overconsumption of fructose is 444 

strongly correlated with metabolic disorders, such as obesity, T2D, hepatic steatosis 445 

and cardiovascular diseases (Malik, et al. 2010; Ouyang, et al. 2008; Stanhope and 446 

Havel 2009). At the intestinal level, fructose alters gut barrier integrity by several 447 

mechanisms. First, chronic fructose intake is associated with a drop in the levels of 448 
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TJPs in the duodenum, especially occludin and Claudin-1 (Jegatheesan, et al. 2016; 449 

Ochoa, et al. 2015; Ritze, et al. 2014; Volynets, et al. 2017; Zhou, et al. 2014). Because 450 

they observed an increase in serum endotoxin levels (i.e., metabolic endotoxaemia) 451 

and transcriptional activation of bacterial toll-like receptors, the authors proposed that 452 

fructose in combination with fat altered the gut barrier, leading to the translocation of 453 

bacterial products and thereby promoting hepatic inflammation (Mazzotti, et al. 2016; 454 

Ochoa et al. 2015; Spruss and Bergheim 2009). As observed with a high-fat diet, 455 

fructose intake alters mucus integrity by reducing mucus thickness (Rahman, et al. 456 

2016; Volynets et al. 2017). Interestingly, Rahman et al showed that F11r-/- mice 457 

exhibited all the features of NASH (hepatic steatosis with lobular inflammation and 458 

ballooning), in contrast to similarly fed WT mice, suggesting that disrupted gut barrier 459 

function is instrumental for the progression of hepatic steatosis to NASH (Rahman et 460 

al. 2016). 461 

Because enteroendocrine cells express the fructose transporter GLUT5 (Parker, et al. 462 

2009; Reimann, et al. 2008), it is assumed that they adapt to the production of gut 463 

hormones as a function of fructose concentrations. However, the effect of fructose on 464 

gut hormones is still under investigation. In humans, fructose is able to stimulate CCK, 465 

PYY and neutrotensin (NTS) in a manner similar to that of glucose and GLP-1 to a 466 

lesser extent. However, fructose has no effect on GIP kinetics in both humans and 467 

rodents, suggesting that fructose acts on GIP and GLP-1 in different ways (Kuhre, et 468 

al. 2014). 469 

 470 
 471 
Role of specific microbial metabolites in triggering metabolic 472 
diseases 473 
 474 

We have shown that modulation of the microbiota itself is sufficient to affect host 475 

metabolism. Via its contribution to the production of bioactive metabolites, such as 476 

organic compounds (e.g., nitric oxide (NO), carbon oxide, indole, ammonia, and 477 

hydrogen sulfide), branched-chain amino acids (BCAAs) and SCFAs and their 478 

derivatives, the gut microbiota is also able to use these channels to influence 479 

peripheral metabolism (Koh et al. 2016; Pedersen et al. 2016; Tomasova, et al. 2016). 480 

As discussed in the chapter focused on prebiotics, most of the studies focused on the 481 

regulation of glucose tolerance and insulin signalling by SCFAs through a mechanism 482 

involving the endogenous production of GLP-1 and PYY. 483 
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 However, the gut microbiota produces a multitude of metabolites, many of which 484 

enter the bloodstream and may have an impact on specific metabolic pathways as well. 485 

These include metabolites that are derived from the gut-driving metabolism of amino 486 

acids, and of these, trimethylamine (TMA) is the best documented. TMA is produced 487 

by the gut microbiota from dietary choline and carnitine and is converted into 488 

trimethylamineoxide (TMAO) by flavin-containing monooxygenase 3 (FMO3) in the 489 

liver. TMAO is strongly associated with the development of cardiovascular diseases 490 

and insulin resistance in humans (Bennett, et al. 2013; Shih, et al. 2015; Tang, et al. 491 

2013; Wang, et al. 2011). Moreover, insulin-resistant mice lacking hepatic insulin 492 

receptor (LIRKO) exhibited an upregulation of Fmo3 and subsequent increased levels 493 

of TMAO (Miao, et al. 2015). Consistently, knockdown of Fmo3 in LIRKO mice 494 

prevented hyperglycaemia and atherosclerosis by suppressing FOXO1 protein 495 

expression and activity (Miao et al. 2015). 496 

Another microbially produced amino acid-derived metabolite involved in the 497 

development of insulin resistance is imidazole propionate, which results from the 498 

histidine degradation pathway. Imidazole propionate is increased in individuals with 499 

type 2 diabetes (T2D) and impairs glucose tolerance and insulin signalling in HFD-fed 500 

mice by a mechanism involving inhibition of insulin receptor substrate (IRS) through 501 

activation of the p38y/p62/mTORC1 pathway (Koh, et al. 2018). 502 

Recently, the role of indolepropionic acid (IPA), a microbiota-produced deamination 503 

product of the amino acid tryptophan, has also been described. IPA is a bioactive 504 

compound that binds to pregnane X receptor (PXR) and aryl hydrocarbon receptor 505 

(Ahr) to exert effects on gut barrier integrity and glucose homeostasis (Agus, et al. 506 

2018; Hubbard, et al. 2015; Venkatesh, et al. 2014; Zelante, et al. 2013). IPA has been 507 

described as inversely correlated with type 2 diabetes in humans (Tuomainen, et al. 508 

2018). In animals, data are controversial because IPA improved glucose metabolism 509 

and metabolic endotoxaemia in Sprague-Dawley rats (Abildgaard, et al. 2018; 510 

Konopelski, et al. 2019; Zhao, et al. 2019), but its supplementation in mice fed a 511 

Western diet had no effect on glucose and lipid metabolism (Lee, et al. 2020). 512 

Taken together, these data on the different microbial metabolites illustrate their 513 

importance and pleiotropic roles in the functional capacity of the gut microbiota. 514 

 515 

General conclusions and perspectives 516 
 517 
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 Gut microbiota research has undoubtedly broadened our view on how metabolic 518 

pathways are regulated in an organism. However, despite the substantial technical 519 

progress made in the field, we still lack a real gold-standard analysis method. Most of 520 

the strategies rely on complementary approaches (i.e., taxonomic profiling, gene 521 

counts, and functional metagenomics), often in combination with metabolomics (i.e., 522 

analysis of the different metabolites produced by the microbiota). There is, however, a 523 

necessity for further technical advances, and many interrogations are still debated 524 

(Cani 2018). For example, while most of the studies use relative abundancies to 525 

evaluate microbial composition, the quantification of the absolute number of bacteria 526 

(i.e., cell counts or microbial load) may be an important aspect to take into account 527 

when exploring taxonomic changes. Jeroen Raes and his team have revealed new 528 

perspectives by showing that the relative quantification versus absolute quantification 529 

of gut bacteria could completely change the conclusions related to the association 530 

between specific bacteria and either health or diseases (Vandeputte, et al. 2017). Their 531 

study strongly argues that most of the previous works using only relative proportions 532 

of microbes are possibly not capturing the entirety of a health situation. One striking 533 

example highlighted by the team is that the abundance of Bacteroides is connected 534 

with colitis (Crohn’s disease) only after using relative abundance and not when using 535 

quantitative microbiota analysis (Vandeputte et al. 2017). Furthermore, these data 536 

emphasize the limitations of using relative abundance analysis since they can lead to 537 

specious interpretations. 538 

 Additionally, given the number of potential combinations of bacteria/metabolites 539 

and host genes/susceptibilities, it is difficult to generalize all the findings discussed in 540 

this review. For example, Prevotella copri, which produces succinate, has been 541 

associated both positively and negatively with insulin resistance in two dietary 542 

approaches (Kovatcheva-Datchary, et al. 2015; Pedersen et al. 2016). Therefore, the 543 

effects of specific microbial signatures and subsequently produced metabolites can 544 

differ drastically depending on the type of diet used (HFD or fibre-rich chow diet). The 545 

scientific community agrees on the fact that we have to progressively move towards 546 

personalized medicine, and it is likely that nutritional approaches will also need to be 547 

tailored to individual needs.   548 

 Finally, while there is little doubt about the existence of a causal link between 549 

gut microbes and energy homeostasis, further studies are still warranted, for example, 550 

to characterize the numerous interactions between microbes and different nutrients. 551 
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Only then will it one day be possible to target the gut microbiota to address obesity and 552 

related disorders. 553 

 554 
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 1060 

Figure 1: The gut barrier is composed of several physical and chemical 1061 
components 1062 

The mucus layer (1) acts as a physical barrier to keep the local microbiota at a 1063 
distance. It is impregnated with factors that provide additional antibacterial activity (2). 1064 
Epithelial cells (3), joined together by tight junction proteins (4), are the 1065 
primary gatekeepers and are renewed every 4-5 days. Immune cells (5) serve as the 1066 
body's border patrol and limit the inner body's exposure to allergens, pollutants, 1067 
viruses, bacteria, and parasites. 1068 

Disruption of the gut barrier (right) is associated with alterations in microbiota 1069 
composition (I), reduction in mucus layer thickness and consistency (II), disruption of 1070 
TJPs (III), impaired cell renewal (IV), increased permeability (V), translocation of 1071 
PAMPS and pathogens (endotoxaemia) (VI) and inflammation (VII). 1072 

(ZO-1 = Zonula occludens-1; JAM = junctional adhesion molecule; PAMPs = 1073 
pathogen-associated molecular patterns, MMP = matrix metalloproteinase) 1074 
 1075 
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 1076 

Figure 2: Gut barrier dysfunction has systemic consequences 1077 

Disruption of the gut barrier leads to metabolic endotoxaemia and impaired production 1078 
of circulating gut hormones. This phenomenon translates to metabolic disorders in 1079 
various organs. 1080 
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