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Abstract—In this paper, measured RF noise performance of
graded-channel metal-oxide-semiconductor (MOS) transistors
(GCMOS—also named laterally asymmetric channel transistors)
shows impressive reduction in minimum noise figure (N Fiyipn)
as compared to classical MOSFET transistors (with the same
gate length L, = 0.5 pum). The reason is proven to be because
of the higher noise correlation coefficient (C). GCMOS also
shows lower sensitivity to extrinsic thermal noise as compared
to classical MOSFET. Moreover, it is demonstrated that the use
of 0.5-pm-gate-length GCMOS gives a competitive RF noise per-
formance as compared to 0.25-pm-gate-length classical nMOS
transistors.

Index Terms—Graded-channel metal-oxide-semiconductor
(GCMOS), minimum noise figure, noise correlation coefficient,
silicon-on-insulator (SOI), transition frequency (fr).

I. INTRODUCTION

HE IDEA of a graded-channel device was first introduced

by DeMassa et al. [1], [2] in 1971 and 1973. In 1975,
DeMassa and Iyer [3], [4] proposed a closed-form solution
for a graded-channel junction field-effect transistor, and they
introduced a study of thermal noise in the same device. Later,
in 1978, Williams and Shaw [5] presented improved linear-
ity and noise figure using a graded-channel FET. The RF-
favored performance of graded-channel devices over classical
uniform-doping devices was highlighted in 1980 by Malhi and
Salama [6], where they reported a higher cutoff frequency for
graded-channel FET.

The metal-oxide—semiconductor (MOS) version of the
graded-channel devices was introduced for the first time in 2000
by Pavanello et al. [7], and since then, it has been receiving
increasing attention. In these devices, the implantation used to
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Fig. 1. (a) Cross section of a GCMOS structure. (b) Measured cutoff fre-
quency fr and dc transconductance G, as a function of the drain current
density for both GCMOS and classical nMOS devices with a channel length of
0.5 pem.

adjust the threshold voltage V7 is masked near the drain over a
distance L1,p [see Fig. 1(a)], yielding a high V7 region near the
source in series with a low Vp part adjacent to the drain. The
high concentration at the source end improves the threshold-
voltage rolloff and drain-induced barrier lowering, while the
low doping near the drain ensures high mobility and reduced
peak electric field and impact ionization. As a result, a better
analog performance is achieved with a better intrinsic gain,
owing to a higher dc transconductance (G, ) and a lower output
conductance (g4). In addition, the analog and RF characteristics
of the graded-channel MOS (GCMOS) are highly improved
with a higher cutoff frequency (fr) as compared to classical
MOSFET transistors [see Fig. 1(b)] [8]-[13].

The low-frequency (1/ f noise) [14] performance of GCMOS
have also been analyzed in order to investigate the ability
of this device to integrate in the recent low-power low-noise
applications. Using TCAD simulations, Lim ef al. [15] showed
that the minimum noise figure of the laterally asymmetric
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channel MOS should outperform the classical nMOS device
due to a higher correlation factor C' in the Pucel’s model [20].
On the other hand, Roy et al. [16] described the noise sources
distribution along the channel and showed a higher correlation
factor in the case of GCMOS transistor as compared to classical
nMOS. To our knowledge, an improvement of RF noise trend
was never observed experimentally before this paper.

This paper investigates the RF noise performance of GCMOS
in comparison to classical nMOS from an experimental, a mod-
eling, and an analytical point of view. Section II starts by pro-
viding a description of the measurement setup and the devices
analyzed in this paper. Section III presents the experimental re-
sults of the noise performance obtained for GCMOS as well as
for the classical nMOS in the intrinsic case after removing the
effect of extrinsic elements. This is followed by an analytical
explanation of these results based on the extraction of noise-
model parameters and analytical formulations. Section IV
concerns the extrinsic noise performance of these two devices
and their sensitivity to the thermal noise of extrinsic resistances.
Finally, the impact of device downscaling on noise performance
is presented, showing the advantages of GCMOS for low-noise
applications.

II. MEASUREMENT SETUP AND DEVICES
A. Measurement Setup

Standard dc and RF characteristics are measured, at room
temperature, using an HP4142B semiconductor parameter an-
alyzer and an HP8510C vector network analyzer controlled
by ICCAP 2006B software. Noise parameters are measured
using a mechanical tuner system from Maury Microwaves in the
1-8-GHz frequency range.

B. Devices Under Test

The devices measured in this paper are all fabricated on
a partially depleted silicon-on-insulator 0.25-uym technology.
Results presented in this paper are for classical nMOS devices
of 0.25 and 0.5 pm and for GCMOS devices of 0.5-pm channel
lengths. All devices feature gates with 12 fingers each of which
has a 13.2-um width. The silicon-film, the buried-oxide, and
the gate-polysilicon thicknesses are, respectively, 100, 400, and
200 nm. The ratio of the low-doped channel length to the
total channel length (Lyp/L) is approximately 0.5 [13]. The
threshold voltage is 0.4 V in case of L = 0.5 um (for both
GCMOS and classical nMOS) and 0.5 V in case of L =
0.25 pm classical nMOS devices. All noise measurements are
performed while keeping the transistor in saturation (Vpg =
1.2 V) and varying Vg from 0.5 to 1.5 V.

III. INTRINSIC NOISE PERFORMANCE

The intrinsic experimental noise performance is first pre-
sented in this section in order to provide a basic understanding
of the advantage of using GCMOS devices over classical nMOS
devices.

Tuner measurements give the four noise parameters (/N Fiyin,
Ry, and Y, = Gopy + jBopt) for each device and at each
selected frequency point, where N F};, is the minimum noise
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Fig. 2. Intrinsic minimum noise figure N Fy,;, and intrinsic associated gain
Glass as a function of drain current density for both GCMOS and classical
nMOS of 0.5-pm channel length (at 6 GHz).

figure, Y,¢ is the optimum source admittance, and R,, is the
equivalent noise resistance (a quantity which shows the effect
of a nonoptimum source admittance on the noise figure of the
device).

First, a one-step (open) de-embedding procedure is applied to
withdraw the pad parasitic network influence on noise param-
eters using a correlation matrix technique. Next, the procedure
using [18] is used to remove the effect of the Nyquist noise in
the extrinsic resistances (R, R4, and R2,) and, thus, obtain what
we refer to as intrinsic-noise parameters. Extrinsic resistances
are extracted from measured S-parameters using Bracale’s
method [19] (R, = 3.8 2 and R, = 3.3 ) for both GCMOS
and classical nMOS).

A. Intrinsic-Noise Parameters

Figs. 2 and 3 show the intrinsic-noise parameters as a func-
tion of drain current density Ipg. The intrinsic minimum noise
figure N Fl,i, (Fig. 2) of GCMOS device shows an interesting
reduction as compared to the intrinsic N Fi,;, of classical
nMOS device, both of which have the same geometry. This
better noise performance is more pronounced in the low-current
region, which is interesting for low-power low-voltage applica-
tions. However, the intrinsic associated gain G,.s (Fig. 2) of
GCMOS shows relatively lower performance as compared to
classical nMOS.

In the low-power low-voltage regime of operation, slightly
lower Gopt, and |Bgpg| are observed in the case of GCMOS
[Fig. 3(a)], which is indicative of a slightly greater difficulty in
satisfying noise matching. However, R,, [Fig. 3(b)] is lower for
GCMOS, yielding a lower sensitivity of noise-figure mismatch
from optimum source impedance.

These intrinsic results are in complete accordance and pro-
vide experimental evidence of trends described in [15] where
the authors used TCAD simulations.

B. PRC Noise Parameters

In addition to the four intrinsic noise parameters pre-
sented earlier for both devices, the extraction of Pucel’s three-
parameter (P, R, and C') noise model [20], [21] is of interest
and should provide more insight in understanding this favored
noise performance of GCMOS over classical nMOS device.
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Fig. 3. (a) Intrinsic optimum noise conductance Gopt and susceptance Bopt.

(b) Intrinsic R, variation as a function of drain current density for both
GCMOS and classical nMOS of 0.5-pm channel length (at 6 GHz).

P RC noise parameters can simply be obtained from induced
gate noise current (i2), drain noise current (i3) and their cross

correlation (z4¢%) [22], and intrinsic admittance parameters
(Y11 and Y21)

7 —akr, Yl pay (1)
7 |Ya1]
i3 = 4KT,|Vo1 | PAf @)

igiq =JC\/ i3 i3 @)

where T}, is the ambient temperature. Throughout, it is assumed
that T}, is equivalent to the standard noise temperature 7g, thus
T, =Ty =290 K.

P, R, and C are dimensionless, and they depend on the
physical properties of the device. They are bias-dependent
and are frequency-independent. Fig. 4 shows the PRC noise
parameters as a function of drain current density.

The value of P is somewhat similar for both devices while
the value of R is higher for GCMOS, indicating a higher
capacitive coupling between the diffusion channel noise and
the gate. Higher values of C' for GCMOS are clearly observed
(nearly double the values of C for the classical nMOS), which
is the main reason as why GCMOS N Fl;,, outperforms the
nMOS one. This fact is discussed in detail in the next section.
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Fig. 4. Three-parameter noise model comparison between both GCMOS and
classical nMOS of 0.5-pm channel length (extracted at 6 GHz) as a function of
drain current density.
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Fig. 5. Verification of the effect of the correlation factor C' in both GCMOS
and classical nMOS of 0.5-pm channel length (at 6 GHz).

C. Analytical Expressions

1) N Fiin: The analysis of the previously shown intrinsic
results is based on the following analytical formula [23]':

/%
NFpm=1+-—2°_\/1-C? 4
Y W Tognnf @
where g.,, is the intrinsic transconductance calculated from the
real part of the intrinsic admittance parameter Yo .
The second term of (4) can be regarded as the product of

two parts, i.e., \/%g/ZkTogmAf by v/ 1 — C2. By plotting

both parts as a function of drain current density (Fig. 5), it
is clear that Eg/ 2kTogm Af (left axis) is quite similar for

both devices while /1 — C? (right axis) shows an obvious dif-
ference between GCMOS and classical nMOS. Therefore, the
origin of better NV F},;, performance for GCMOS as compared
to classical nMOS is clearly related to the higher correlation
coefficient C' in the case of GCMOS.

2) Gass: Itis possible to express the intrinsic associated gain
G ,ss as follows (see the Appendix):

G — fri V1 —C? Cyop
ass f C ng

)

!t should be noted that the formula for N Fy,j,, in [15] is also derived from
this formula.
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Fig. 6. Extrinsic minimum noise figure /N F1,i,, and extrinsic associated gain
Glass as a function of drain current density for both GCMOS and classical
nMOS of 0.5-um channel length at 6 GHz. N Fi,;, calculated from (6) is
shown in z shapes.

where f; is the intrinsic cutoff frequency (fri = gm /27 Ciot),
C'ot is the total input gate capacitance, and Cyq is the gate-
to-drain capacitance. Equation (5) shows that higher values of
C contribute to the decreasing values of G5, as confirmed in
Fig. 2. Yet, due to the higher fr; of GCMOS as compared to
classical nMOS [Fig. 1(b)], only a relatively small decrease in
G ass 18 observed for GCMOS as compared to classical nMOS.

IV. EXTRINSIC NOISE PERFORMANCE

The previous investigation showed a favorable noise perfor-
mance of GCMOS over classical nMOS in its intrinsic form.
This trend should be confirmed by looking at the extrinsic noise
parameters, based on raw measurements without removing the
effect of extrinsic resistances. They are obtained directly from
Tuner measurements (after open de-embedding). Minimum
noise figure N Fi,i,, as well as associated gain G5, is shown in
Fig. 6. The difference between N F 3, of GCMOS and nMOS
shown in Fig. 6 is found to be bigger as compared to its intrinsic
case (Fig. 2). It can also be seen that associated gain G s
is reduced more in classical nMOS relative to GCMOS when
comparing extrinsic to intrinsic cases.

The difference in the sensitivity of N Fl;, to the thermal
noise of the extrinsic resistances between GCMOS and classical
nMOS can be explained using the formula [21]

2f
NFyin =1+ >~
f

Ti

«\/PR( - C2) + (P + R~ 20VPR)(R, + R,)gm. (6)

In order to check its accuracy, a comparison of (6) with
experimental data is shown in Fig. 6. The impact of extrinsic re-
sistances is quantified by the term (P + R — 2CVPR)(R, +
Ry)gm. Given the higher correlation factor C' in the case of
GCMOS as compared to classical nMOS, the lower impact of
thermal noise featured by extrinsic resistances (R, and R,) on
GCMOS N Fin is obvious.

This important result shows that the benefit of higher C for
N Fyin 1s not limited to the intrinsic noise contribution [i.e.,
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TABLE 1
SENSITIVITY OF NOISE PARAMETERS TO EXTRINSIC RESISTANCES IN
BoTH GCMOS AND CLASSICAL NMOS OF 0.5-ppm CHANNEL LENGTH

NE, niin Ga‘vs G()/)r ‘Bopt| Rn
(Linear)
Intrinsic | 1.197 | 11.03 | 3.91 8.29 | 24.77
GCMOS | Extrinsic | 1.322 | 1037 | 4.66 | 6.69 | 31.75
A% 104 | -598 | 19.2 | -193 | 28.2
Intrinsic | 1.336 | 12.76 | 4.95 | 11.85 | 30.42
nMOS Extrinsic | 1.565 | 10.53 | 6.24 9.7 |37.78
A% 17.1 | -17.5 | 26.1 [-18.14| 24.2
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Fig. 7. (a) Cutoff frequency fr and dc transconductance G, variation
with drain current density for 0.5-pm GCMOS and 0.25-um classical nMOS.
(b) Extrinsic minimum noise figure N Fi, i, and extrinsic associated gain Gass
for the two devices of (a).

PR(1 — C?)in (6)] but it also affects the sensitivity of N F,;y,
to the thermal noise of the extrinsic resistances.

To have a complete picture, a comparison between all noise
parameters in their extrinsic and intrinsic forms, as well as the
percentage of change in each parameter (relative to the intrinsic
case), is summarized in Table I, where values are given at a
frequency of 6 GHz and Ipg = 50 mA/mm.

V. RF NOISE TREND: PERSPECTIVE FOR SCALED GCMOS

As shown in Fig. 7(a), the 0.5-pum-gate-length GCMOS
shows lower fr and G, than the 0.25-pm-gate-length nMOS
devices. Nevertheless, the minimum noise figure of 0.5-pm
GCMOS competes with the 0.25-um nMOS, as shown in
Fig. 7(b) (particularly for Ipg lower than 100 mA/mm). At
Ips = 50 mA/mm, the 0.25-pm classical nMOS features fr
of 31 GHz, nearly double that of the GCMOS (~18 GHz),
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whereas both values of N F},;, are almost the same, i.e., 1.17
and 1.21 dB, respectively, at 6 GHz. This interesting scaling
trend is explained by the lower sensitivity of GCMOS to
extrinsic thermal noise effects described earlier.

One may argue that these similar values of N F,,;, are due
to the fact that the value of Ry for the 0.25-um classical
nMOS is twice that of the 0.5-um GCMOS, i.e., 7.6 and 3.8 (2,
respectively. However, it should also be noted that the value of
fr of the classical nMOS is almost twice that of the GCMOS.
Therefore, it is expected that the downscaling would have a
greater impact on the increase of fr while keeping very low
values of N F,i, in the case of GCMOS by comparison with
the classical nMOS device.

VI. CONCLUSION

Channel engineering, as presented in this paper using the
GCMOS concept, proves to be very useful in enhancing RF
noise performance. The experimental extraction of the PRC
noise parameters has confirmed that this interesting behavior is
related to the increased correlation coefficient C' in GCMOS
devices, which then leads to a reduction in minimum noise
figure N F,i,. Although a slight reduction in associated gain
G ass Was noticed for GCMOS devices, this will not affect low-
power applications, as it starts to become critical only at higher
currents. It has also been shown that this higher correlation
coefficient C means that IV F},;, is less sensitive to the thermal
noise in the case of GCMOS by comparison with the case
of the classical nMOS device. Finally, the scaling advantage
of GCMOS has been clearly highlighted, thus enabling the
design of low-noise circuits at lower costs using currently well-
understood and stable technologies.

APPENDIX

The general equation that describes associated gain in FETs
was previously introduced as [24]

[Ya1 [*Re(Yopt)

Gass = (A1)
|Y11 + Yopt|2Re(Yout)
where Y, is the output admittance and expressed as
Y11Yos — Y10 Y5 YooYy,
Yo = 11 Y22 12¥21 + Yoo Pt (A2)

Yl 1+ Yopt

The intrinsic admittance matrix of the transistor can be calcu-
lated from Fig. 1(b) as

jw(C, s+ C ¢ ) —ij’ d
y = | J9(Ces + Ca et A3
Im 9ga + jw(Cas + Cga) A3
while Gopt and By are expressed as [22]
R
Gopt =wCiot F vV1-— Cc? (A4)
Bopt :wctot C\/ % -1 (AS)
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It is easier to analyze (A.1) part by part, thus

‘Yll + i/opt|2 = |jwctot + CVYopt +jBopt‘2

s R

2
=w — A.
Ciot (A.6)

jwcgdgm
jwctot + CTyopt + jBopt

Gopt - j(wctot + Bopt)
Gopt - j(wctot + Bopt) )

Your = gd +

(A7)

Therefore

gdwzctzot% + W2ngctotgmc\/ %

22 R
thotP

Re(Yvout) =

~ ng 9m - c

~ Ciot /R .
P
Then, applying (A.4)—(A.8) into (A.1), the intrinsic associated
gain can be expressed as

(A.8)

Jr V1= C? Ciot
fC  Cua

Gass = (A9)
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