
Ecole polytechnique de Louvain
ICTEAM Institute
UCL Crypto Group

Authentication in the presence of
side-channel leakage

Francesco Berti

Thèse présentée en vue de l’obtention du grade de
docteur en sciences de l’ingénieur.

Composition du jury :
Pr. Christophe Craeye (UCLouvain) - Président du Jury
Pr. Michel Abdalla (ENS)
Pr. Alexandre Duc (HEIG-VD)
Pr. Oliver Pereira (UCLouvain) - Promoteur
Dr. Thomas Peters (UCLouvain)
Pr. François-Xavier Standaert (UCLouvain) - Promoteur

Louvain-la-Neuve, Belgique – 2020

i

alla mia mamma

Acknowledgments

This thesis would have not been possible without the help, support and
guidance of many people. In fact I have been taught so much, so many
supported me and I have passed so many nice moments. Moreover, I
have spent 5 wonderful years in Belgium. Thus, I thank them all. I hope
not to forget anyone (I apologize if I have forgotten anyone).

First of all, I would like to thank my supervisor, Pr.François-Xavier
Standaert who chose me as one of his Ph.D. students 5 years ago. He
is very helpful, he has given me so many good suggestions and he has
helped me to grew as a researcher. I really appreciated working under
his guidance. I feel that he is able to understand what I was able to give.
I would also like to thank my cosupervisor Prof. Olivier Pereira who
helped me with many corrections, who improved my scientific writing.
Moreover, I would like to thank Dr. Thomas Peters for all the dis-
cussions, corrections and suggestions. I would like also to thank Proff.
Michel Abdalla and Alexandre Duc for having accepted to follow my the-
sis and to be in my jury. Their commentaries and their questions helped
me to make my manuscript better. Finally, I would like to thank Prof.
Cristophe Craye for having accepted to be the president of the jury for
this thesis.

I would also thank Proff. François-Xavier Standaert and Olivier
Pereira for having created a wonderful research group. Not only are
there many great researcher, but also there is a wonderful atmosphere
which made me really enjoy these years at work. Moreover, they were
always supportive in the difficult moments (to name only an episode, I
was (and still I am) really touched by the fact that Itamar and Davide
came to the airport to pick me up when I was back from the funeral of
my mum).
Parmi mes collègues, je voudrais commencer par remercier Florentin qui
a partagé avec moi le bureau pour presque toute ma thèse. Il a pu ap-

iv

précier l’expressivité et la gestualité italienne ;)1. Je me souviens de
nombreuses taquinieries d’Édouard„2, mais aussi de sa chaleur humain.
Je remercie François pour son aide et les soirées jeux ensemble. I would
like to than Itamar for his friendship, for the dinners together with his
family. Ringrazio Davide che mi ha permesso infine di poter discutere
di lavoro in italiano! Et puis, j’aimerais remercier tous les autres, Al-
izée, Anthony, Charles, Chun, Clément, Dina, Gaëtan, Kashif, Olivier,
Pierrick, Qian, Romain, Tanya, Sebastien, Tobias, Vincent et Weija avec
lesquels j’ai partagé plein d’idées. On a fait des TP ensembles, on a passé
plein des pauses à la cafeteria (avec les mots fléchés...) et on a fait des
beermeetings les soirs. Je remercie Sylvie et Viviane qui m’ont toujours
aidé à surmonter les problèmes bureacratiques.
Enfin, j’aimerais remercier les autres membres de l’UCL (comme Anne-
Sophie, Jean, Pierre-Yves et Stéphanie, pour en nommer seulement quelques-
uns) qui m’ont accueilli et avec lesquels j’ai passé plein de chouettes mo-
ments.

Ringrazio la mia famiglia, mio papà che mi ha sempre supportato e
ha sempre creduto in me. Mio fratello Federico con cui sono cresciuto in-
sieme e che infine, da quando ho iniziato il dottorato, non ha più potuto
“apprezzare” la mia presenza costante3. Ringrazio i miei nonni Gianna
e Alberto, i miei zii Andrea e Cesarina ed i miei cugini Giulio, Virginia
e Saverio che mi hanno sempre voluto bene e sostenuto.

Ringrazio i miei amici storici di matematica Filo, Giulio, Pietro, Simo
(mi mancano le serate Hearts ed il ranking), Ali, Giulia, Pengo, Guido,
Ari R., Chiara (e la piccola Alma), Elena e Mascotto con cui è sempre
bello vedersi (anche se purtroppo troppo raramente).
Ringrazio Irvin che conosco da così tanto tempo e con cui è sempre bello
rivedersi e sciare.
Ringrazio i miei amici della montagna Annie, Camilla e Angelo con cui
ci si rivede sempre almeno d’estate e.
Ringrazio Monica e Matteo con Gabriele, Marta, Giacomo, Francesco e
Lucia per la compagnia tutte le estati.

Je remercie mes premiers colocataires, pour le premières deux an-
nées, David, François, Parfait, Pierrot, Sergio etVincent et les autres
qui m’ont très bien accueilli, m’ont beacoup aidé à apprendre le français

1Il m’ a accueilli avec beaucoup de chaleur. On s’est bien amusé
2Par example parce qu’on n’ est pas allé en Roussie en 2018, mais je te rappelle

qu’à l’Euro 2016 Italie 2 -0 Belgique 0 [Giaccherini 32’, Pellé 90’+2] ;)
3Infine ha avuto TV, PC, ecc... tutti per sè.

v

et avec lesquels j’ai passé plein de beaux moments.

Ringrazio Alessandro, Chiara, Cristina, Floriana e Vincenzo con cui
abbiamo girato insieme il Belgio (e un po’ d’Irlanda).
Ringrazio Daniele con cui abbaimo visto così tante partite insieme in
Belgio.

Ringrazio Fabio, compagno di arrampicata 4 et sa femme Marie. On
a passé plein de chouettes moments ensemble.

Je remercie Adam, Agathe,Alessandra, Alicia, Antonio, Apolline5,
Astrid Carlotta, Charles, Constance, Donatien6, Émeline, Fei, Florent,
Florian, Giorgia, Greg, Guillaume Hélène, Jean-Aleandre, Laia, Lau-
rence, Laurent, Louis, Louise, Manu, Marge Matoux, MG, MdN, Patrick,
Pauline, Sara, Sarah Simon7,Tanguy et Zbigniew8, qui ont été avec moi
ces trois dernières années. J’ai vraiment apprecié cette période.
Je remercie Louis pour avoir géré un super jeu qui nous9 pris pour 2 ans.
Je remercie Anne-Marie pour s’être autant attachée à moi.
Je remercie Hugues10, Letizia et Virginia.
Je remercie Charles-Hubert, Louis et Sara pour toutes les soirées jeux.

Je remercie Sara avec laquelle je m’amuse toujours et qui me rend
heureux.

Infine, vorrei ringraziare le persone che erano con me all’inizio di
questa tesi e che oggi non ci sono piú e non possono leggere questa tesi.
Il mio Nonno Giovanni che era così orgoglioso di suo nipote e ogni volta
che lo chiamavo dal Belgio era felicissimo. La mia nonna Elda che quando
andavo a trovarla era così felice e che mi ha sempre incitato a studiare.
Per ultima, la mia mamma, che mi ha sempre seguito sin da bambino nel
mio percorso di studi, che mi ha voluto così tanto bene e che nonostante
gli mancassi molto e le facesse tristezza che non fossi più vicino a lei, era
così felice che fossi in Belgio per il mio dottorato.

4speriamo di vedere una volta un titolo piloti per la Ferrari prima o poi
5Avec un p et deux l ;)
6Merci pour toutes les balades à vélo et en montagne, et descentes avec les skis

faites ensemble!
7Il confinamento non è stato male, con i campionatie Champions vinte con il nostro

Pescara di capitan Tonali!!
8et nombreuses autres
9Donatien, Mathilde et Tanguy

10Merci pour les partie d’échec le dimance soir

Abstract

One of the goals of modern cryptography is to prevent an adversary from
making forgeries. That is, sending a message which the receiver believes
valid while not sent by a genuine sender. For "black box" adversaries
only able to access the inputs and outputs a cryptographic algorithm,
many efficient solutions exist and provide strong mathematical security
guarantees. Over the last decade, various research advances have shown
that preventing black box attacks is not sufficient. For example, so-called
side-channel adversaries can also access physical quantities produced dur-
ing the cryptographic computations. Thanks to these physical leakages,
very efficient forgery attacks can be performed, for example by extract-
ing the long-term cryptographic keys.
In this thesis, we propose a formal solution to the problem of authenticity
in the presence of side-channel leakage. For this purpose, we introduce
a new theoretical framework that allows capturing security against side-
channel attacks, explain what security we aim for and how we model
physical leakages, and then build constructions for which the physical
security can be reduced to clear assumptions thanks to rigorous proofs.
In particular, our proofs indicate which part of an implementation must
be strongly protected against side-channel attacks and which part can
leak (sometimes in full) with limited consequences. For example, we
show that it is possible to reduce the security of full fledged authentica-
tion schemes to standard black box security properties and only requiring
strong protections against side-channel attacks for one execution of its
underlying cryptographic primitive.

Contents

1 Introduction 1
1.1 Scope and motivation . 1
1.2 Blackbox authenticity and integrity 3
1.3 Leakage . 4

1.3.1 Countermeasures 5
1.4 Our contributions . 6

1.4.1 Theoretical framework 7
1.4.2 Constructions . 9

1.5 Related works . 10
1.6 Structure of the thesis . 13

2 Background 15
2.1 Notations . 15

2.1.1 Time notation . 17
2.2 Adversaries and proofs . 17
2.3 Hash functions . 20

2.3.1 The birthday bound 21
2.3.2 Multi-Collisions . 22
2.3.3 Pre-image resistance 22

2.4 Pseudorandomness . 23
2.4.1 Tweakable pseudorandom functions 25
2.4.2 Strong pseudorandom permutations 26

2.5 Message Authentication Codes (MACs) 27
2.5.1 MAC security: authenticity 28

2.6 Authenticated Encryption (AE) 30
2.6.1 Integrity . 31
2.6.2 Confidentiality and Integrity 32

2.7 Random oracle model . 33

x CONTENTS

3 Leakage and countermeasures 35
3.1 Leakage . 36

3.1.1 Sources of leakages 36
3.1.2 Simple and Differential Power Analysis 37

3.2 Countermeasures . 38
3.2.1 Masking . 38

3.3 Leakage-resilience . 39
3.3.1 Rekeying . 39
3.3.2 Leveled implementation 40
3.3.3 The CCS2015 leakage-resilient MACs 40
3.3.4 A leakage-resilient encryption scheme 43

4 Theoretical framework 47
4.1 Security definitions with leakage 48

4.1.1 suf-L . 48
4.1.2 suf-L2 . 49
4.1.3 CIML . 50
4.1.4 CIML2 . 52

4.2 Unbounded leakage model 52
4.3 Strongly protected implementations 54

4.3.1 Leak-free . 55
4.3.2 Strong unpredictability 56

4.4 The Barwell et al. authenticity definition 58

5 Constructions 61
5.1 HBC: a suf-L MAC. 62

5.1.1 Security of HBC . 63
5.2 DTE, Digest-Tag-and-Encrypt 65

5.2.1 The double IV composition 65
5.2.2 The DTE construction 66
5.2.3 The CIML-security of DTE 68

5.3 The problem of decryption leakage 71
5.3.1 HBC is not suf-L2 72
5.3.2 DTE is not CIML2: a first attack 72
5.3.3 DTE′ - the first patch 73
5.3.4 The second attack 74

5.4 More leak-free components do not help. 77
5.4.1 For HBC . 77
5.4.2 For DTE . 77

5.5 HBC2 - the solution for MACs 79
5.5.1 HBC2: a suf-L2 MAC. 79
5.5.2 Security of HBC2 80

CONTENTS xi

5.5.3 HTBC: a BBB variant 81
5.5.4 Security of HTBC 82

5.6 DTE2 - a solution for AE 85
5.6.1 The CIML2-security of DTE2 87

5.7 EDT, Encrypt-Digest-then-Tag 90
5.7.1 The CIML2-security of EDT 92

5.8 CONCRETE, a single-leak-free-call scheme 95
5.8.1 The CIML2 security of CONCRETE 101

5.9 Other constructions . 103
5.9.1 Inner-keyed sponges: CIL1 and CCAL1-secure. . . . 104
5.9.2 ASCON and Spook: CIML2 and CCAmL1 secure . . 105
5.9.3 ISAP and TEDT: CIML2 and CCAmL2-secure . . . 107

5.10 The construction of Barwell et al. 110

6 Authenticity from unpredictability 113
6.1 For HBC2 . 114
6.2 The suf-L2-security of HTBC based on sUL 116
6.3 Application to CIML2 . 119
6.4 About the usage of the Random Oracle 119

7 Conclusion 121
7.1 Summary . 121

7.1.1 Definitions and leakage models 121
7.1.2 Constructions . 122

7.2 Prospects . 123
7.3 Concluding remarks . 125

References 126

Index 145

A Additional definitions 145
A.1 Syntactic definitions for (AE) 145
A.2 Misuse-resistance . 147

B Detailed proofs 149
B.1 Proof of the suf-L security of HBC 149
B.2 Proof of the CIML-security of DTE 152
B.3 Proof of the suf-L2 security of HBC2 160
B.4 Proof of the suf-L2 security of HTBC 165
B.5 Proof of the CIML2-security of DTE2 171
B.6 Proof of the CIML2-security of EDT 178
B.7 Proof of the CIML2-security of CONCRETE 184

xii CONTENTS

B.8 Proof for HBC2 based on sUL 192
B.9 Proof for HTBC based on sUL 194

List of notations

Arithmetic

N Set of positive integers
R Set of real numbers
FUNC(X ,Y) Set of functions f : X → Y
PERM(X) Set of permutations p : X → X
x

$← X x is picked uniformly at random in X

Cryptographic notations and abbreviations

NIST National Institute of Standards and Technology
MI5 British Security Service (Military Intelligence 5)
AES Advanced Encryption Standard
SPA Simple Power Attack
DPA Differential Power Attack

A,B,C,EE Adversaries
O Oracle
KH Keyspace for hash functions
HM Inputspace for hash functions
T Outputspace for hash functions
K Keyspace
B Blockspace for block ciphers
T W Tweakspace
ME Message space for MAC and encryption schemes
T AG Tag space
{0, 1}n Set of n-bits strings
{0, 1}∗ Set of finite strings
{0, 1}∞ Set of infinite strings

xiv LIST OF NOTATIONS

Black box definition - Chap. 2

H Hash function
CR Collision resistance
roPR Range-oriented pre-image resistance
F Pseudorandom function (when implemented)
BC Block cipher
TBC Tweakable block cipher
PRF Pseudorandom function
PRP Pseudorandom permutation
TPRF Tweakable pseudorandom function
TPRP Tweakable pseudorandom permutation
sPRP Strong pseudorandom permutation
sTPRP Strong tweakable pseudorandom permutation
MAC Message authentication code
Mac Tag-generation algorithm
Vrfy Verification algorithm
euf Unforgeability
suf Strong unforgeability
AE Authenticate Encryption
Π AE scheme
Enc Encryption algorithm
Dec Decryption algorithm
pAE Probabilistic AE scheme
INT-CTXT Ciphertext Integrity
RO Random Oracle
MRAE Misuse-Resistant AE

Constructions

CCSMAC1 First MAC proposed by Pereira et al. [111]
CCSMAC2 Second MAC proposed by Pereira et al. [111]
PSV Encryption scheme proposed by Pereira et al. [111]

HBC Hash-then-BC1
HBC2 Hash-then-BC
HTBC Hash-then-TBC
DTE Digest-Tag-and-Encrypt
EDT Encrypt-Digest-and-Encrypt
CONCRETE Commit-Encrypt-Send-the-Key

xv

Definition with leakage

suf-L Strongly existentially unforgeable against chosen message and
verification attacks with leakage in tag-generation

suf-L2 Strongly existentially unforgeable against chosen message and
verification attacks with leakage in tag-generation and
verification

CIML Ciphertext integrity with misuse and encryption leakage
CIML2 Ciphertext integrity with misuse and (encryption & decryption)

leakage
sUL Strong unpredictability with leakage in evaluation and

inversion

List of publications

This list summarizes the academic work realized during the thesis. Only
bold titles of following publications are discussed in this dissertation.

Journal publications

1. Francesco Berti, Olivier Pereira, Thomas Peters and François-Xavier
Standaert On Leakage-Resilient Authenticated Encryption
with Decryption Leakages - IACR Transactions on Symmetric
Cryptology [27].

2. Dina Kamel, François-Xavier Standaert, Alexandre Duc, Denis
Flandre and Francesco Berti Learning with Physical Noise or Er-
rors - IEEE Transactions on Dependable and Secure Computing
2018 [80].

3. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters and
François-Xavier Standaert TEDT, a Leakage-Resist AEAD Mode
for High Physical Security Applications - IACR Transactions on
Cryptographic Hardware and Embedded Systems [21] (eprint ver-
sion [20]).

4. Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers,
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Ita-
mar Levi, Charles Momin, Olivier Pereira, Thomas Peters François-
Xavier Standaert, Balazs Udvarhelyi and Friedrich Wiemer Spook:
Sponge-Based Leakage-Resistant Authenticated Encryption with a
Masked Tweakable Block Cipher - IACR Transactions on Symmet-
ric Cryptology [?].

xviii LIST OF PUBLICATIONS

International conference publications

1. Francesco Berti and François-Xavier Standaert An Analysis of the
Learning Parity with Noise Assumption Against Fault Attacks -
CARDIS 2016 [30].

2. Farzaneh Abed, Francesco Berti and Stefan Lucks Is RCB a Leak-
age Resilient Authenticated Encryption Scheme? - NordSec 2016 [4]
(eprint version [3]).

3. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters
and François-Xavier Standaert Ciphertext Integrity with Mis-
use and Leakage: Definition and Efficient Constructions
with Symmetric Primitives - AsiaCCS 2018 [24] (eprint ver-
sion [23]).

4. Francesco Berti, Olivier Pereira and Thomas Peters Reconsidering
Generic Composition: The Tag-then-Encrypt Case - INDOCRYPT
2018 [25] (eprint version [26]).

5. Francesco Berti, Olivier Pereira and François-Xavier Standaert Re-
ducing the Cost of Authenticity with Leakages: a CIML2-
Secure AE Scheme with One Call to a Strongly Protected
Tweakable Block Cipher - AFRICACRYPT 2019 [29] (eprint
version [28]).

6. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters and
François-Xavier Standaert Strong Authenticity with Leakage
under Weak and Falsifiable Physical Assumptions - In-
scrypt 2019 (eprint version [22]).

Proposal to competitions

1. Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers,
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Ita-
mar Levi, Charles Momin, Olivier Pereira, Thomas Peters François-
Xavier Standaert, and Friedrich Wiemer Spook: Sponge-Based
Leakage-Resilient Authenticated Encryption with a Masked Tweak-
able Block Cipher - Submission to NIST Lightweight Cryptogra-
phy [18].

Chapter 1

Introduction

Contents
1.1 Scope and motivation 1
1.2 Blackbox authenticity and integrity 3
1.3 Leakage . 4

1.3.1 Countermeasures 5
1.4 Our contributions 6

1.4.1 Theoretical framework 7
1.4.2 Constructions 9

1.5 Related works 10
1.6 Structure of the thesis 13

1.1 Scope and motivation

Messages, when sent, can be tampered by a malicious adversary.
Today, open source software are deployed. They often need updates
which are usually downloaded from the Internet. Although the authors
are not concerned about the confidentiality of these updates, since they
are publicly available, the authors care that the actual update is down-
loaded and not a version modified by a malicious adversary.
The goal of authenticity is to prevent that anybody can send a message
impersonating someone else.
The cryptographic primitive for this is a MAC (Message Authentication
Code). It is a vastly deployed primitive [81].

Consider when the results of medical exams are sent by email to pa-
tients. Not only is it necessary that these results are correct, but also

2 CHAPTER 1. INTRODUCTION

that nobody sees them.
Authenticated Encryption (AE) schemes are the solution for this. For
AE the authenticity property is usually called integrity.

As a first step to the deployment of these schemes, their security is
assessed in the blackbox scenario: the adversaries have only access to
their outputs and usually their inputs. The proofs of the security of
these schemes are based on the security of underlying primitives, as, for
example, block ciphers (BCs), hash functions [81].
However, these schemes must be implemented on real devices, and these
implementations use time, power consumption. The observation of these
physical quantities may give additional information [86, 87]. These addi-
tional sources of information are called side-channels. Attacks exploiting
them are called side-channel attacks.

Authenticity may be affected by these attacks. For example, the ad-
versary may be able to retrieve the scheme’s key. Nevertheless, this is
not the only threat side-channel attacks pose. There may be other inter-
mediate values obtained during the cryptographic computation, which,
if exposed, may affect authenticity.
The fact that side-channel attacks pose a threat to authenticity is a sig-
nificant problem. We give two examples.
First, imagine a credit card reader that has been tampered by an ad-
versary. This device is used to collect side-channel information about
the secrets of client cards, for example, their PINs. We would like to
prevent that via this “malicious reader” an adversary can create credit
card payments which are considered valid.
Second, imagine a device, for example, an Internet-of-Things (IoT) sen-
sor. This device receives updates. These updates are authenticated. Via
side-channel attacks, it may be possible to create a malicious update that
passes the authentication check. If this happens, an adversary can take
control of that device. And, in IoT, it is often enough to be able to have
control of one of the devices to be able to create significant damage to
the whole net [120].
Thus, leakage is not only a theoretical threat but also poses real prob-
lems to authenticity.

To prevent this, first, it is necessary to have a theoretical comprehen-
sion of the situation. Thus, we introduce a theoretical scenario, stating
the security definitions and introducing new leakage models.
These definitions give concrete security in real scenarios. Using the leak-
age models we present, the security proofs highlight the primitives which

1.2. BLACKBOX AUTHENTICITY AND INTEGRITY 3

must be protected. Our contribution is not only theoretical, but also
practical since we provide many constructions achieving the definitions
we have stated in our leakage models.

1.2 Blackbox authenticity and integrity

We assume that two parties share a key k to guarantee the authenticity
of their communication. This is the symmetric-key (also called private-
key) setting.
According to the Kerchoff principle, “the cipher method must not be re-
quired to be secret, and it must be able to fall into the hands of the enemy
without inconvenience”. That is, “security rely solely on the secrecy of
the key” [81].
Message Authentication Code (MAC) is the common cryptographic prim-
itive to provide authenticity. MAC computes a tag τ to authenticate the
message m. To ensure that a message is genuine and not tampered, the
tag τ attached to the message m is verified.
MAC security ensures that it is hard to produce a forgery, that is, a valid
tag for a new message [81].
Although this solution is enough when the message contains no private
information, in many situations, the message m should not be sent in
clear, because it contains private information. AE schemes are the cryp-
tographic primitive to provide confidentiality in addition to authentic-
ity [16, 82, 88, 14].
To send a message m using an AE scheme, m is encrypted producing
a ciphertext c. When this ciphertext c is received, it is decrypted in a
message m, and the authenticity of c is verified.
Ciphertext-integrity security ensures that it is hard to produce a fresh
ciphertext that is deemed authentic. Such a ciphertext fabricated by the
adversary is called forgery.
To provide it, many AE schemes compute a tag [99, 107, 112, 19]. In
some cases, AE schemes are built via the composition of existing MACs
and encryption schemes [104].
We end noting that AE is widely used [55, 99, 107, 112, 19] (e.g., it is
only the one accepted in TLS 1.3 [74]).

As a first step, the security for these schemes is proved in the blackbox
model. In this model, adversaries have access only to the outputs and,
usually, to the inputs.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: A leakage trace, from Oswald et Standaert [110]. Note that
since bit keys are processed one by one (it is an exponentiation and the
key is the exponent), with the legend, it is possible to recover the full
key with a single leakage trace.

1.3 Leakage

Consider a malicious vendor, who owns a smart card reader, which is
used to allow electronic payments. He can do much more than merely
seeing the inputs and the outputs of his device. For example, he may
observe the instantaneous power consumption of his device, and he may
receive a trace similar to Fig. 1.1. During this computation, the key is
processed bit-by-bit. Furthermore, the instantaneous power consump-
tion is different if the key bit processed is 0 or 1, as shown by the legend
of Fig. 1.1. Thus, the adversary can “easily” retrieve the key via side-
channel.
Consequently, having a secure scheme in the blackbox scenario is not
enough in the real world.

The previous attack is an example of side-channel attacks.
Side-channel attacks start from the fact that schemes must be imple-
mented on real devices. So the adversary may obtain other information
than the outputs (and the inputs). For example, to do the cryptographic
operation needed by aMAC or an AE scheme, these devices consume elec-
trical power, generate an electromagnetic field, use time, etc...
Moreover, all these physical quantities may be measured, and these ob-
servations give additional information about the inner computations per-
formed by the device. In some cases, this is enough to recover the full
key breaking the security of the scheme [6, 87, 96, 97, 93].

These attacks are particularly effective against the Internet-of-Things
(IoT) nets. Sensors, being deployed in a not-secure environment, are an
easy target for side-channel attacks. For example, it may be possible to
mount an attack using side-channels, where an adversary can make the

1.3. LEAKAGE 5

sensor accept a malicious update.
Moreover, since sensors should be cheap and countermeasures against
side-channel are expensive (see Sec. 1.3.1), they are often less protected.

The physic behind these attacks is very complicated. In particular,
it is tough to compute a leakage trace even knowing all the values and
the physical quantities involved in that cryptographic computation [124].
The only known way to obtain them is to sample by taking actual mea-
surements from the target circuits on given inputs [124].
Thus, to theoretically model an adversary who can do side-channel at-
tacks, he is supposed to have access to a leakage function, which gives
him the information he may obtain via leakage. As the physic behind
side-channel is hard, we observe that it is tough to model the leakage
function correctly [124, 78]. There are many different models (for exam-
ple, memory leakage, leakage from computation, for a complete survey,
see the survey of Kalai and Reyzin [78]) for the leakage function.
Usually, the adversary has some constraints for his leakage function; for
example, bounding the output size [56]. A critical drawback of this ab-
straction is that quantifying an “overall amount of leakage” is hard for
hardware engineers and to assure in practice [124].

1.3.1 Countermeasures

We start observing that, in general, it is more difficult to mount an at-
tack against a scheme when the adversary has access to the leakage of a
single execution than with the leakage of more executions.

The countermeasures against side-channel attacks which have been
introduced, work at different levels.
At the hardware level countermeasures target the reduction of the infor-
mation leaked, for example adding noise [94].
At the implementation level, the previous countermeasures can be am-
plified reducing the side-channel leakage [116, 95, 127]. The most studied
implementation level countermeasure is masking whose main idea is to
split a sensitive data into many random shares. Masking has a strong
theoretical background [76, 53, 54]. Its security depends on the number
of shares, the higher, the better. On the other hand, it has considerable
overheads, which are roughly quadratic in the number of shares [62, 77].
Thus, a device with a strong masking protection can be a thousand times
slower.
At the mode level, leakage-resiliency aims to design schemes that are
inherently more secure against side-channel attacks [58], for example,

6 CHAPTER 1. INTRODUCTION

updating the key [111].

To reduce the cost of countermeasures Pereira et al. [111] have pro-
posed the concept of leveled implementation: that is, combining the min-
imal use of a primitive which is strongly protected against side-channel
attacks and thus may be very slow, with a mode of operations where the
bulk of the computation is carried by weakly protected (or not protected
at all) primitives which are much more efficient.

Leak-free. It remains the problem of how good the strongly protected
implementations should be. Pereira et al. [111] have modeled them as
leak-free: that is, they do not leak anything. Although this model seems
too demanding, it has many advantages. It reasonably models strongly
protected implementations (as for example, a TBC with an high-order
masking scheme). It is very straightforward to use. Additionally, this
model has the advantage of showing where to put the countermeasure.
In practice, leak-free implementations do not entirely exist. We can see
actual strongly-protected implementations as an imperfect realization of
a leak-free implementation [111].

1.4 Our contributions

We have followed two lines for our contributions. From a theoretical
point of view, we try to capture the security that is needed. Moreover, we
try to model leakage in a simple way, which encompasses many attacks.
More precisely:

• Since we want to capture different scenarios, we provide different
security definitions.
These definitions are different because they allows to consider dif-
ferent scenarios with different trade offs between the security needed
and efficiency.

• We propose a leakage model, easy to use: leak-free for strongly pro-
tected implementations and unbounded leakage (that is, we assume
that these implementations have no security at all with leakage)
for everything else.

• We create a model (strong unpredictability) to relax the leak-free
assumption for strongly protected implementations.

1.4. OUR CONTRIBUTIONS 7

From a more practical point of view, we build and analyze several con-
structions, both MACs, and AE schemes, in our leakage models.
First, the security is assessed supposing that the strongly protected prim-
itives are leak-free, then, that they are only strongly unpredictable.
To be more efficient, all our constructions uses components whose imple-
mentation is either strongly protected or unprotected at all. This leads
us to assume that the unprotected components leak everything, thus we
have the unbounded leakage.

1.4.1 Theoretical framework

Definitions We start from the authenticity definition for MACs of
Pereira et al. [111]: strongly existentially unforgeable against chosen mes-
sage and verification attacks with leakage in the tag-generation (suf-L).
In this definition, the adversary tries to create a forgery having only ac-
cess to the leakage of the tag-generation algorithm.
In particular, the adversary may not only target the key, but he can
target some intermediate values which he may find useful for forgeries.
First, we extend this definition to the AE-case, supposing that only the
encryption algorithm leaks (CIML).
Then, we extend these two definitions to the case when also the verifica-
tion (for MACs), with suf-L2, or the decryption (for AE schemes), with
CIML2, algorithm leaks.
Note that in all these definitions, we suppose that when the key is gen-
erated, the adversary has not access to the leakage since this may done
during the fabrication of the device. On the other hand, we allow the
adversary to choose the random coins used by the algorithms when he
is interacting with them. That is, we also consider that the random
coins (or the nonce) are not used correctly in tag-generation/encryption
queries.
A significant result is that for both MAC and AE, there can be schemes
whose security depends if the adversary has access or not to the leakage
of the verification or the decryption oracle. This result may be useful
for devices which are used only to send (or authenticate) messages, not
to receive (or verify). In this case, the adversary may have the leakages
only of the encryption (or the tag-generation).

As a side-note, we observe that for AE, integrity with leakage may
also improve confidentiality with leakage. In fact, an AE scheme which
provides integrity may prevent the leakage of any valuable information
from the decryption of invalid ciphertexts. Such decryptions may be
source of interesting information [7, 11, 33].

8 CHAPTER 1. INTRODUCTION

Leakage models We introduce a pragmatic leakage model: the un-
bounded leakage model. In this model, the adversary receives every input,
output, and key used by any primitive underlying the scheme except for
the key used by the strongly protected implementations of primitives
(which we model as leak-free). This model, although it keeps the prob-
lem of the leak-free model for strongly protected implementations, has
many advantages:
(i) it is easy for practitioners to identify where the efforts against side-
channel attacks should be put.
(ii) The leakage function is straightforward to describe. In fact, it usu-
ally consists of one or two values, from which the adversary is usually
able to recompute every other secret value used during the computation
(except for the key of the leak-free primitive).
(iii) We observe that the adversary cannot obtain any other information
from the weak-protected primitives.
Thus, a proof in our unbounded leakage model means that to break the
authenticity, the adversary must attack the strongly protected compo-
nent to win or the underlying blackbox assumption. As a side note, we
observe that it is very hard for an adversary to be able to perfectly re-
cover every secret value (apart from the key of the leak-free primitives).
Consequently, when we do a proof in our leakage model, we can re-
duce the authenticity/integrity of the whole scheme to some black-box
properties of hash functions, (tweakable) block ciphers ((T)BC) and the
goodness of the strongly protected implementation even in the face of
the most powerful possible side-channel adversaries.

Strong unpredictability We introduce a notion relaxing the leak-free
hypothesis for (T)BC: Strong Unpredictability in the presence of leakage
(sUL) for a (tweakable) block cipher, which is an extension of the unpre-
dictability notion introduced by Dodis and Steinberger [51, 52]. Roughly
speaking, sUL states that it is hard to find for a fresh input the output of
(T)BC, even if the adversary has oracle access to it, its inverse; moreover,
he receives the leakage of its direct and inverse calls.
This notion has the advantage that (i) it is game-based and it is not
an idealized physical assumption, (ii) it may be verified (or falsified) by
laboratories, (iii), it gracefully degrades when the physical assumptions
are not completely respected (iv) it is more adapted to actual imple-
mentations which protects the key heavily, but do not assume anything
about the outputs and their randomness.

1.4. OUR CONTRIBUTIONS 9

1.4.2 Constructions

Our second line of contribution is providing many constructions achiev-
ing our security definitions in the unbounded leakage model.
First, we start introducing a MAC, HBC (Hash-then-BC), which is secure
when only the tag-generation leaks.
Second, we introduce a new construction for AE, which we denote as the
DTE scheme (for Digest, Tag, and Encrypt), which is secure when only
the encryption leaks. DTE uses HBC for the Digest and Tag part. Since
DTE is a probabilistic scheme, we have considered the case that the ran-
dom coins it uses are not good (misuse). We can prove its authenticity
with encryption leakage and random coins chosen by the adversary. DTE
uses two calls to the strongly protected BC.
Third, we tackle the problem of verification/decryption leakage.
We introduce HBC2 and HTBC to solve the problem of verification leak-
age for MACs. HBC2 is a modified version of HBC, where we have modi-
fied only the verification algorithm. In HBC2 we are able to verify a tag
τ without having to compute the correct tag τ̃ and comparing τ with τ̃ .
HTBC is an improved version of HBC2 using a tweakable BC instead of a
BC and having whose probability of forgeries is even much smaller, since
it is beyond birthday secure.
Regarding the problem of decryption leakages, we introduce DTE2, which
is substantially DTE, where we have replaced HBC with HBC2. Fourth,
we start from the observation that in decryption, DTE2, first decrypts
then verifies if the ciphertext is valid. Although the fact that a mes-
sage is retrieved in decryption, before having checked its authenticity
does not affect integrity (even with leakage), it may not be the case for
other security property, as confidentiality with leakage. To prevent that
any message is retrieved if the ciphertext is invalid, EDT is introduced,
changing the paradigm of DTE. That is, in EDT, it is the ciphertext
that is digested and tagged (and not the message1 as for DTE). EDT is
CIML2-secure, uses two calls per execution to the strongly protected BC.
On the other hand, it is no more misuse-resistant like DTE2.
Finally, to reduce the overall cost, we propose a construction, CONCRETE,
which uses only one call to the strongly protected implementation. To
obtain this, we rearrange the structure of EDT (and of its variant) en-
tirely.

Note that in all the constructions where leakage in verification/ de-
cryption is considered, the use of a strong (tweakable) BC (with a strongly
protected implementation) is crucial, because the inverse of the (T)BC

1And the randomness used.

10 CHAPTER 1. INTRODUCTION

is used in verification/decryption.

In all our AE constructions, to improve efficiency, we use a leveled im-
plementations, using as little as possible calls to the strongly protected
implementation of the (T)BC. In particular, during the encryption part,
we use take advantage of an existing leakage-resilient encryption scheme
which is based on rekeying, that is, changing the key during the execu-
tion.

We end noting that we have designed both EDT and CONCRETE in
a way that makes the decryption of invalid ciphertexts give no useful
information to an adversary, one, EDT, blocking the decryption before
it gives anything useful, the other, CONCRETE, leaking random values
if the ciphertext is not authentic.

Proofs based on strong unpredictability. We can prove the
suf-L2-security of both HBC2 and HTBC assuming that the (T)BC is sUL-
secure (and not leak-free), but on the expense of relying on a random
oracle (RO). However, the RO is only considered in the black box model
and we do not need any security assumptions regarding its leakage. In
fact, in the proofs, every time the RO is used, we suppose that the
adversary knows its inputs and its output.
These results may be extended easily to DTE2 and EDT.

1.5 Related works

Leakage-resilient constructions. The first leakage-resilient construc-
tion was the stream-cipher proposed in 2006 [58]. There is a flourishing
literature on it; see, for example, the survey of Kalai and Reyzin [78]. An
attractive solution, which we always use in our AE schemes, is rekeying.
That is, the key is changed after a few executions. Abdalla et al. [1] have
proved that using a leakage-resilient scheme on top of an existing secure
encryption scheme in the standard model, leads to a leakage resilient
encryption scheme.
We also take advantage of the literature on leakage-resilient stream ci-
phers in order to reduce the use of strongly protected implementations [58,
113, 132, 59, 131, 124].
To our knowledge, the first leakage-resilient AE scheme is RCB [5], which
is not secure, as proved by Abed et al. [4].

1.5. RELATED WORKS 11

The CCS 2015 paper. [111]. Our work starts from the CCS 2015
paper by Pereira et al. [111]. In particular, we have used their definition
of authenticity with leakage in tag-generation for MAC. Moreover, they
have introduced a leakage-resilient encryption scheme, PSV, which is
based on rekeying. We have used PSV in all our AE schemes. In fact, we
use it for the Encryption part of DTE, DTE2, EDT and CONCRETE.
Differently from us, Pereira et al. [111] establish the authenticity of the
MAC, assuming a weak hypothesis (simulatability) on the not strongly-
protected implementation of the BC.

Works based on this thesis. Our works are the base of many others.
At LatinCrypt 2019, Guo et al. [65] give a complete survey of the security
definitions with leakage for AE (thus, also considering confidentiality)
also establishing the relations among them. Their authenticity defini-
tions are ours.
Moreover, they propose a variant of EDT, AEDT to treat associated data,
data which need to be authenticated but not encrypted.
Finally, they introduce FEMALE, which is an improved version of EDT
with the encryption part modified in order to be misuse-resistant.

At CHES 2020 [21] a scheme based on EDT has been proposed: TEDT
(Tweakable EDT). This scheme, which uses only TBC, is beyond birth-
day secure. Moreover, a one-pass version of it, called TET1, is proposed.
TET1 is more efficient, but relinquishes some security properties.

Finally, TET1Sponge, an instantiation of TET1 with a sponge for the
encryption part is the NIST submission Spook [18] to the competition
for Lightweight Cryptography.

Note that in all the constructions achieving integrity leakage in both
encryption and decryption, in decryption, the inverse of the (T)BC is
used.

Other theoretical works. Guo et al. [65] and Barwell et al. [10] have
proposed two theoretical framework for AE in the presence of leakage.
Regarding integrity, Guo et al. [65] incorporate our definitions in their
framework. Instead, the work of Barwell et al. [10] is more focused on
composition results, while we pay particular attention to efficient in-
stances of MACs and AE schemes. As a result of this choice, a second
difference is that their instantiations require all the building blocks to
be well protected against side-channel analysis, while we aim to mini-
mize the use of strongly protected implementations. In particular, in

12 CHAPTER 1. INTRODUCTION

our construction, the encryption part does not need to be as protected
as theirs. Third, and more technically, we discuss what can be achieved
by symmetric cryptographic building blocks, while Barwell et al. [10] use
elliptic curves operations. Note the leakage-resilient-pairing-based-PRF
proposed in the latter work could be an option to instantiate our leak-
free component, instead of a TBC with an high-order masking scheme.

In a distinct line of work, the problem of leakages resulting from de-
cryption failures has been investigated [33, 7, 72]. The motivation of
these works is that, when decryption fails (as a result of an incorrect
ciphertext), the decryption software typically reveals more information
than just this failure: for example, it often happens that different error
codes are sent depending on the step at which decryption fails. In this
setting, leakage naturally happens when decryption fails only; that is,
correct decryption operations do not leak anything since there is just no
error message. However, in the context of side-channel attacks, this re-
striction becomes meaningless: decryption takes time, consumes power,
and produces electromagnetic radiations, whether if it succeeds or fails.
(And we may even expect that implementations will leak more in case
of successful decryption since this is likely to be the case during which
the most substantial amount of computation takes place.)
We observe that CIML2 (and suf-L2) security in the unbounded leakage
model provides stronger security guarantees. In fact, knowing all the in-
ternal values computed (apart from the key of the primitives used with
a the strongly-protected implementation), the adversary also has access
to the value that is compared in the check that generates the invalid
message.

The distinction between leakage of valid and invalid ciphertexts also
puts the security notions that we propose in this work out of the unifying
definition framework of Barwell et al. [11], called Subtle Authenticated
Encryption (SAE). In [27], the advantages of CIML2 in the unbounded
model with respect to SAE are discussed.

Note that although the unbounded leakage model does not cover
the release of unverified plaintext (see [7]) in general, our schemes are
always CIML2 even if unverified plaintexts are released. In particular,
CONCRETE is secure even if unverified plaintexts are released (it pro-
vides both authenticity and privacy, while DTE and EDT provide only
integrity).

Other leakage resilient constructions. Dobraunig et al. [46] com-
bine a concrete instance of fresh re-keying (borrowed from [100, 48]),

1.6. STRUCTURE OF THE THESIS 13

with a sponge-based construction [31] giving birth to ISAP (which is also
a NIST candidate). This line has also been followed by ASCON by Do-
braunig et al. [47] and Xoodyak by Daemen et al. [41]. All these schemes
are also based on sponges (they use the seminal work on sponges by
Bertoni et al. [32]).
Their security has been studied in detail [66, 49, 42, 50]. To obtain
integrity in the unbounded leakage model, they have to protect the com-
parison between the transmitted tag and the correct tag [50].

1.6 Structure of the thesis

In the first two chapters, we introduce the background. Chap. 2 is de-
voted to the blackbox case while Chap. 3 to the leakage case. We put
some additional blackbox definitions in App. A. These definitions are
not necessary to understand the integrity problem with leakage, but are
useful to understand other properties of our schemes.
Chap. 4 is devoted to the theoretical framework, introducing the leakage
model, the model for strongly protected implementations, while Chap. 5
to the constructions. We end Chap. 4 comparing our definitions with
those of Barwell et al. [10], while Chap. 5 we compare our constructions
with ISAP [46], ASCON [47], Xoodyak [41] and the one by Barwell et
al. [10].
In Chap. 5 we do all the proofs assuming strongly protected implemen-
tation as leak-free. In the last chapter, Chap. 6, we prove again the
security of some of the previous constructions assuming strongly pro-
tected implementation as strongly unpredictable.
In the thesis, we only put a sketch of our proofs, leaving the full proofs
to App. B.

Chapter 2

Background

Contents
2.1 Notations . 15

2.1.1 Time notation 17
2.2 Adversaries and proofs 17
2.3 Hash functions 20

2.3.1 The birthday bound 21
2.3.2 Multi-Collisions 22
2.3.3 Pre-image resistance 22

2.4 Pseudorandomness 23
2.4.1 Tweakable pseudorandom functions 25
2.4.2 Strong pseudorandom permutations 26

2.5 Message Authentication Codes (MACs) . . . 27
2.5.1 MAC security: authenticity 28

2.6 Authenticated Encryption (AE) 30
2.6.1 Integrity . 31
2.6.2 Confidentiality and Integrity 32

2.7 Random oracle model 33

In this chapter, we recall some fundamental notions of symmetric-
key cryptography. We present the blackbox definitions, and we do not
consider leakage.

2.1 Notations

We usually use the callygraphic notation (A) for sets.
Given a set X , we denote with |X | its cardinality.

16 CHAPTER 2. BACKGROUND

Given two sets X and Y, the set of all functions f : X → Y is de-
noted by FUNC(X ,Y), while the set of all permutations p : X → X
is denoted by PERM(X). Note that if X and Y are both finite, then,
|FUNC(X ,Y)| = |Y||X |, while |PERM(X)| = |X |!.
Given a non-empty finite set X , let x $← X denote the draw of an element
x from X uniformly at random.
A random function f : X → Y is a function picked uniformly at random
from the set FUNC(X ,Y), that is, f $← FUNC(X ,Y). Thus, when we
have to use a random function, ∀x ∈ X , we may simply pick a y uni-
formly at random in Y and define f(x) := y.
A random permutation p : X → X is a permutation picked uniformly at
random from the set PERM(X), that is, p $← PERM(X). Thus, when
we have to use a random permutation, ∀x ∈ X , we may simply pick a y
uniformly at random in X \ L, where L is the list of the y ∈ X already
picked as image of previous x′ ∈ X , and define p(x) := y.
Two functions f : X → Y and f ′ : X ′ → Y ′ have the same signature if
their domain and codomain are the same, that is, X = X ′ and Y = Y ′.

Definition 1. A function f : N→ N is negligible if for every polynomial
p(.), ∃N ∈ N s.t. ∀n ∈ N, n ≥ N

f(n) ≤ 1

|p(n)|
.

That is, a negligible function decreases faster than any polynomial
function.

Given a, b ∈ Z, we denote with {a, ..., b} the set of all integer numbers
between a and b, that is, {a, .. :, b} = [a, b] ∩ Z, where [a, b] is the closed
interval in R.
Given x, y ∈ N with x ≤ 2y − 1, we denote with [x]y the binary writing
of x with y digits (thus, pre-appending as many 0s as necessary).
We write Pr[B;A1, A2, ...] for the probability that event B happens given
that the events A1, A2, ... have happened.

Strings

We use finite binary strings. The string of x 0s is denoted by 0x. The
length of the string x is denoted by |x|.
The set of all finite strings is denoted by {0, 1}∗, the set of all n-bit
strings by {0, 1}n, the set of strings of at most n bits by {0, 1}≤n, the
set of strings of infinite length by {0, 1}∞.

2.2. ADVERSARIES AND PROOFS 17

Given a string x = (x1x2...xl) of l bits, we denote with πt(x) the
string (x1...xT) where T = min(|x|, t), that is, the string obtained
by the first t bits of the string x. Thus, we can define the function
πt : {0, 1}n → {0, 1}≤t as the projection on the first t bits.
Given two strings, x and y, let x‖y denote the string obtained by con-
catenating x and y, while x ⊕ y denotes the string obtained XORing
bitwise x and y, provided that |x| = |y|.

Parsing. Often, we have to parse a message m in n-bit blocks. This
means that the message m is divided in (m1, ...,ml−1,ml), with
|m1| = ... = |ml−1| = n, |ml| ≤ n and m = m1‖...‖ml−1‖ml.

2.1.1 Time notation

In this section, we collect all the time notations we use in the proofs:
tch(x,B): is the time needed to pick uniformly at random x values in B
tchn(x,B): is the time needed to pick uniformly at random with no repe-

titions x values in B.
tAlg: the time needed to execute once the algorithm Alg
t$: the time needed to randomly sample a value

tf(y): the time needed to lazy sample the random permutation (or func-
tion) f y times with y ∈ N.

2.2 Adversaries and proofs

Since this thesis aims to do a further step in providing authenticity in
cryptography, we want that all our schemes are provably secure. That
is, given a scheme Π, we want to be able to give an upper bound ε to
the probability that an adversary with certain resources (for us, usually,
time and number of queries to their oracles) can break the property X of
the scheme Π. In this case, we say that a scheme is ε-secure with respect
to this property.
These results must and may only be obtained through “rigorous proofs
of security” [81].

Quantitative proofs. Our proofs are quantitative, that is, we prove
that a scheme is secure when adversaries have access to a certain amount
of resources (for example, time).
Since we want to prove the security of actual schemes, we prefer this
approach than the asymptotic ones. In the asymptotic proofs, the prob-
ability that an adversary breaks the security of a scheme is bounded by
a negligible function, ε(n), of a security parameter, n, (for example, the

18 CHAPTER 2. BACKGROUND

size of the key). Asymptotic proofs, although very important, do not
provide security for actual schemes, since cryptographic schemes, once
deployed, cannot usually (or can only very difficultly) change this secu-
rity parameter.
Note that in our quantitative proofs we do not consider the time needed
for communications.

To reach our goal of security, first, we need to define what adversaries
are, then, what is the security we aim for, after that, what security
assumptions we make and finally how we combine all this.

Adversaries. First, we define what are adversaries.

Definition 2. A (q1, ..., qd, t)-adversary A against Π is a probabilistic
algorithm A having oracle access to O1, ...,Od, making at most qi queries
to oracle Oi, running in time bounded by t, and outputting a finite string
of bits.

In some cases, the vector q1, ..., qd is denoted with q.
We do not need to consider bounded memory since A is (q1, ..., qd, t)-
bounded, thus, the maximal size that the adversary uses is necessarily
bounded.
Observe that our adversaries have access to bounded resources. Oth-
erwise, schemes which are secure against unbounded adversaries, have
strong limitations, for example, having the key as long as the message
and never reusing this key [81]. Thus, secure schemes against unbounded
adversaries are often unusable in most setting1

Our adversaries are probabilistic, because the ability to toss coins may
provide additional power [81] and we need that the class of adversaries
to be as large as possible.2

Security definitions The security we aim is provided by security def-
initions. In particular, one of the aim of this thesis is to justify four
(three of which are new) security definitions.
Security definitions model the security we want (which must be well

1For example, a scheme secure against unbounded adversaries, one-time-pad, is
“rumored” to be used for the “red phone”, which was the system allowing direct
communication between the White House and the Kremlin during the Cold War [81].

2We do not consider in this thesis, quantum adversaries (for example see [34]), that
is, adversaries who can evaluate an oracle “in superposition” (on quantum states). In
fact, every adversary, in this thesis, queries his oracles on a (classical) input x, not
on a superposition of inputs

∑
x

αx.

2.2. ADVERSARIES AND PROOFS 19

understood) and explain when a scheme can be deployed safely. In addi-
tion, they can be compared. Moreover, precise definitions allow rigorous
proofs [81].

Security assumptions To prove the security of a construction, we
need to base the security on security assumptions. Security assump-
tions, which cannot be avoided, should be minimal, clear and, if possible,
broadly accepted [81].

Security proofs Finally, to prove the security of schemes, we use the
reductionist approach. We usually have theorems of the form: “Given
that Assumption X is true, Construction Y is secure according to Defi-
nition C”.
Our proofs typically show how an adversary breaking Construction Y
can be used as a sub-routine to break Assumption X [81].

Game-playing proofs

For most of the proofs, we use a game-based approach [123, 17].
Suppose that we have to prove that a scheme Π is secure. To do this, we
want to upper bound the advantage of a bounded adversary A in attack-
ing some cryptographic constructions. The advantage is the difference
between the probability that A outputs 1 in two different “worlds”. World
0 is when he interacts with the scheme Π. Thus, we write a code initial-
izing variables, showing how A can interact with Π. This is Game 0 and
can be seen as a piece of code. Then, we write another piece of code that
we call Game 1. We build Game 1 such that it is “substantially as hard
as” Game 0 for the adversary A. That is, we show that the advantage
that A has playing Game 0 with respect to Game 1 is little, either using
a security assumption or showing that these two games are syntactically
identical if a given event, whose probability we bound, happens. Next,
we create Game 2 and show that it is “substantially as hard as” Game
1 for the adversary A. Iterating, we produce a chain of games ending
with a terminal game in which it is possible to compute the probability
that adversary A wins with conventional arguments (that is, either via a
computational assumption or an information-theoretical argument) [17].

Game A game G is a program, that is, a collection of procedures, run
by an adversary A, which ends in a finite (polynomial) number of steps.
At the end of the game G, the adversary A outputs a value x, which
may be probabilistic (and, in this case, its probability is denoted with
Pr[AG ⇒ x]). The game processes this output to produce the outcome

20 CHAPTER 2. BACKGROUND

y. Usually, we are interested in bounding or computing Pr[GA ⇒ y], the
probability that the outcome y happens. Since adversaries are proba-
bilistic and, thus, their outputs, too, then, the outcome y of a game is
probabilistic.

Usually, during the proofs there will be a sequence of games G0, ...,GI .
In our proofs, we usually prove that every couple (i, i + 1) of games Gi

and Gi+1 is (q, t, ε)-indistinguishable, that is, for any (q, t)-adversary A,
for any possible outcome y of these games, we bound the difference
|Pr[GiA ⇒ y]− Pr[Gi+1

A ⇒ y]| < ε, where ε is little.

The oracle $(·) and ⊥ (·). In many security proofs and definitions, we
have to prove or to assume that an adversary is not able to distinguish
a set of oracles implemented with the real algorithms from ideal oracles.
Two ideal oracles are used: $(·) or ⊥ (·).
The oracle $(·) outputs a random string, whose length is specified by
the definition or the proof. For example, if A has to distinguish between
the oracles OA(·) and $(·), the oracle $(·) on input x returns a random
string of length |OA(x)|.
The oracle ⊥ (·) always returns ⊥.

2.3 Hash functions

First, we introduce hash functions.
Hash functions are generally used to compress strings.

Definition 3. A hash function is a function H : KH × HM → T ,
indexed by a key selected from the key set KH.

We need that hash functions are keyed to be able to give security
definitions for them, even if, in practice, most of them are unkeyed. On
the other hand, the key of the hash function is supposed to be public.
Thus, we will often omit to explicit it.

Hash-functions should be collision resistant ; that is, given the key s,
it should be hard to find a collision. A collision is a couple of different
inputs x, x′ s.t. Hs(x) = Hs(x

′). Formally:

Definition 4 (CR). A (t, ε)-collision resistant hash function
H : KH×HM→ T is a function such that, for every t-bounded adversary
A, the probability that A(s) outputs a pair of distinct inputs

2.3. HASH FUNCTIONS 21

(m0,m1) ∈ (HM)2, such that Hs(m
0) = Hs(m

1) and m0 6= m1, is
bounded by ε, where s $← KH is picked uniformly at random, that is:

Pr[A(s)⇒ (m0,m1) ∈ (HM)2 s.t. m0 6= m1,

Hs(m
0) = Hs(m

1)|s $← KH] ≤ ε

2.3.1 The birthday bound

In practice, the hash functions we use have HM = {0, 1}∗ and T =
{0, 1}n, for a certain fixed n. Thus, due to the pigeon-hole principle
(called also Dirichlet’s box principle), there are always many collisions.
For a collision-resistant hash function, it should be hard to find one of
them.
Since an adversary may go on trying different inputs until he finds a colli-
sion, we recall what is the best possible collision resistant hash function.3

The following theorem answers this question.

Theorem 1. Let H : KH ×HM → T be a random function. Then, H
is (q, ε)-collision resistant, with

ε ≤ q(q − 1)

2|T |
.

Note that we do not bound the time the adversary has access to since
we use a combinatorial argument and not a computational one. Thus,
we only consider the number of queries he can ask.

Proof. See App.A.4 [81].

This bound is tight, that is, there are matching attacks [81].

A tight bound means that if q =
√
|T | roughly half of the times,

we find a collision. In the literature, this problem is called the Birthday
problem4 and the bound is called Birthday Bound (BB). As we have
proved, this bound is unavoidable for hash functions.

3We do not consider the case |HM| ≤ |T | because it is irrelevant in practice;
moreover, in our works |HM| � |T |.

4In fact, the usual statement of the problem is: How many people (supposing that
there are no twins) need to be in a room to have a 50% chance to have two people
who share the same birthday? The answer, to the surprise of the most, turns out to
be 23.

22 CHAPTER 2. BACKGROUND

2.3.2 Multi-Collisions

We are also interested to bound the probability that a multiple collision
happens, that is, asking q different evaluation of a random function f,
what is the probability that we have asked s different inputs x1, ..., xs
among our q queries, such that f(x1) = ... = f(xs). Suzuki et al. [126]
have studied this problem.

Let 1 ≤ s ≤ q ≤ n. We consider the experiment where we uniformly
throw q balls at random into n bins. MultiColl(n, q) ≥ s denotes the
event that at least one bin contains at least s balls. We recall a useful
upper-bound on the probability of multi-collisions.

Theorem 2. [126] Let 1 ≤ s ≤ q ≤ n, with s, q, n ∈ N.

Then, Pr[MultiColl(n, q) ≥ s] ≤ 1

ns−1

(
q

s

)
.

2.3.3 Pre-image resistance

Informally, a hash function is pre-image resistant if it is hard to ”invert”,
that is, given y ∈ T it is hard to find a pre-image for y, that is an element
of H−1

s (y). Although the idea is straightforward, it is difficult to formally
capture pre-image resistance with a “good definition” [118, 8].
For simplicity we only mention here the definition we use.5.

Definition 5 (roPR). A (t, ε)-range-oriented pre-image resistant hash
function H : KH×HM→ T is a function such that, for every t-bounded
adversary A, the probability that A(s, y) outputs a string m s.t Hs(m) =

y, is bounded by ε, where s $← KH, y $← T are picked uniformly at
random, that is:

Pr
[
A(s, y)⇒ m s.t. Hs(m) = y |s $← KH, y $← T

]
≤ ε (2.1)

As an example of the problem of formalizing pre-image resistance, we
observe that the hash function Hs(x) := s, ∀x ∈ HM 6, is range-oriented
pre-image resistant, although it is not a good hash function.

5The interested reader may find all the other definitions and all the details in the
aforementioned papers [118, 8]

6It is necessary to assume that KH = T .

2.4. PSEUDORANDOMNESS 23

2.4 Pseudorandomness

Randomness is at the core of many cryptographic schemes. Since it is
difficult and expensive to provide true randomness [81], we need to rely
on an alternative source which provides something which “simulates” ran-
domness “good enough”.
In cryptography, a pseudorandom function is a primitive allowing ran-
domness simulation.
Roughly speaking, a pseudo-random function is a function whose outputs
are indistinguishable from random ones. Formally:

Definition 6 (PRF). A function F : K ×M→ T is a
(q, t, ε)-pseudorandom function (PRF) if for every (q, t)-adversary A, the
advantage:

AdvPRFF (A) :=

∣∣∣∣Pr
[
AFk(·) ⇒ 1

]
− Pr

[
Af(·) ⇒ 1

] ∣∣∣∣
is upper bounded by ε, where k and f are chosen uniformly at random
from their domains, namely K and FUNC(M, T).

Note that we can see a PRF as a family of functions which is indexed
by the key.

Maximal security for PRFs. It is always possible to break a PRF
trying all keys. Such an attack is called exhaustive key search. Thus, the
keyspace should be big enough7.

Sometimes, it is interesting to have an invertible PRF. It is possible
to adapt the PRF definition to this situation:

Definition 7 (PRP). A function F : K ×M → M is a (q, t, ε)- pseu-
dorandom permutation (PRP) if if for every k ∈ K, Fk : M →M is a
permutation and for every (q, t)-adversary A, the advantage :

AdvPRPF (A) := |Pr[AFk(·) ⇒ 1]−Pr[Af(·) ⇒ 1]|

is upper bounded by ε, where k and f are chosen uniformly at random
from their domains, namely K and PERM(M).

Usually, pseudorandom permutations are called blockciphers (BCs)
and their input is called block.

When designing PRPs, we usually ask that the most efficient attack
against it is the exhaustive key search.

7As an example, in the recent call for lightweight cryptography, the NIST imposes
that the key size is at least 128 bits [12].

24 CHAPTER 2. BACKGROUND

PRF vs PRP-security Since a random permutation is picked from the
set PERM(M) which is much smaller than FUNC(M,M)8 it is natural
to wonder if we may see a secure PRP as a secure PRF. This is is proved
by the following proposition:

Proposition 1. Let F : K×M→M be a (q, t, εPRP)-PRP, then, F is a
(q, t, εPRF)-PRF, with:

εPRF = εPRP +
q(q + 1)

2|M|
.

Proof. A standard proof can be found in [81, 17].

The main idea of the proof is, first to replace the pseudo-random per-
mutation with a random permutation, then, to compute the probability
that the event Output collision (OC), that is, there is at least a collision
when we evaluate a random function on q different inputs. Note that
we have already studied the probability of event OC in Thm. 1 and it is
precisely the birthday bound.
We end noting that a random function is indistinguishable from a ran-
dom permutation if event OC does not happen.

The previous proposition gives also the bound when we have to dis-
tinguish a random permutation from a random function:

Corollary 1. Let p : M → M be a random permutation. Then, for
any q-adversary, the distinguishing advantage between p and the random
function f (with the same signature as p) is bounded by:

|Pr[Ap(·) ⇒ 1]−Pr[Af(·) ⇒ 1]| ≤ q(q + 1)

2|M|

Note that the proof is based on a combinatorial argument and not
on a computational one. Thus, we only consider the number of queries
A is allowed to ask, and we do not need to bound his running time.

Proof. See [17].

Thus, it has been proved that we can use a PRP as a PRF. On the
other hand, we have a bound on the maximal security we can achieve us-
ing a PRP (the so-called birthday bound (BB)). Improved constructions
based on PRPs can overcome this problem, for example, see [102].

8 In fact, if |M| < ∞, |PERM(M)| = |M|!, while |FUNC(M)| = |M||M|. We
remember that n! ∼

√
2πn

(
n
e

)n due to the Stirling approximation. For infinite sets
the problem is much harder, but, since we do not use infinite sets, we can omit to
treat this problem.

2.4. PSEUDORANDOMNESS 25

Beyond birthday security. Therefore, the birthday bound affect
many schemes. Schemes having a better security are called beyond birth-
day secure (BBB) and there is a flourishing literature about them, for
example [52, 38, 112, 68] and in our work [20].

2.4.1 Tweakable pseudorandom functions

To add more flexibility, Liskov et al. [92] introduced tweakable blockci-
phers (TBC). Roughly speaking, TBCs have an additional input, the
tweak, in addition to the key and the block. The role of the tweak is to
provide “independent variability”, while the key provides “uncertainty to
the adversary” [92].

Similarly as for PRFs, we may require that the outputs of a TBC
remain random, even if the adversary chooses the inputs and the tweaks.

Definition 8 (TPRF). A function F : K × T W ×M→ T is a (q, t, ε)-
tweakable pseudorandom function (TPRF) if for every (q, t)-adversary
A, the advantage :

AdvTPRFF (A) := |Pr[AFk(·,·) ⇒ 1]−Pr[Af(·,·) ⇒ 1]|

is upper bounded by ε, where k and f are chosen uniformly at random
from their domains, namely K and FUNC(T W ×M, T).

A function f taken uniformly at random from FUNC(T W ×M, T)
is called a random tweakable function.

Often, to make the notation lighter, the tweak is put as superscript,
i.e., Ftwk (m) stands for Fk(m, tw).

As for PRFs, it is interesting to have that ∀ k ∈ K and ∀tw ∈ T W,
Ftwk :M→M is a permutation. We adapt the TPRF definition to this
situation:

Definition 9 (TPRP). A function F : K×T W ×M→M is a (q, t, ε)-
tweakable pseudorandom permutation (TPRP) if for every k ∈ K and
tw ∈ T W, Ftwk (·) : M → M is a permutation and for every (q, t)-
adversary A, the advantage :

AdvTPRPF (A) := |Pr[AFk(·,·) ⇒ 1]−Pr[Af(·,·) ⇒ 1]|

is upper bounded by ε, where k and f are chosen uniformly at random
from their domains, namely K and T PERM(T W,M) (which is the

26 CHAPTER 2. BACKGROUND

space of all functions f : T W ×M → M s.t. ∀tw ∈ T W, ftw(·) is a
permutation).

A function f taken uniformly at random from T PERM(T W,M) is
called a random tweakable permutation.

Likewise, as for PRPs, TPRPs are called tweakable blockciphers. As
for PRFs, most TPRFs used in practice are TPRPs. In fact, a secure
TPRP is also a secure TPRF. The proof is a simple extension of Prop. 1.

It is possible to build a TPRP F̃ from the PRP F, for example Liskov
et al. have proposed F̃k(tw,m) := Fk(tw ⊕ Fk(m)) [92].
Improved constructions are able to have better security bounds [90, 89,
101].

2.4.2 Strong pseudorandom permutations

The advantage of PRPs and TPRPs is that they are invertible. Some
constructions exploit deeply this using the inverse. Thus, to provide se-
curity, it is needed that also the inverse gives random outputs. Formally:

Definition 10 (sPRP). A function F : K×M→M is a (q, t, ε)-strong
pseudorandom permutation (sPRP) if for every k ∈ K Fk : M→M is
a permutation and for every (q, t)-adversary A, the advantage :

AdvsPRPF (A) := |Pr[AFk(·),F−1
k (·) ⇒ 1]−Pr[Af(·),f−1(·) ⇒ 1]|

is upper bounded by ε, where k and f are picked uniformly at random
from their domains, namely K and PERM(M).
The adversary can do at most q′ queries to the first oracle and q − q′
queries to the second oracle for any q′ ≤ q.

Naturally, it is possible to adapt the previous definition to TPRPs:

Definition 11 (sTPRP). A function F : K×T W×M→M is a (q, t, ε)-
strong tweakable pseudorandom permutation (sTPRP) if for every
(q, t)-adversary A, the advantage :

AdvsTPRPF (A) := |Pr[AFk(·,·),F−1
k (·,·) ⇒ 1]−Pr[Af(·,·),f−1(·,·) ⇒ 1]|

is upper bounded by ε, where k and f are chosen uniformly at random
from their domains, namely K and T PERM(T W,M).
The adversary can do at most q′ queries to the first oracle and q − q′
queries to the second oracle for any q′ ≤ q.

2.5. MESSAGE AUTHENTICATION CODES (MACS) 27

To make the notation more compact and to avoid the use of different
oracles, we add another input, which is ±1, where +1 stands for a query
to the first oracle (that is, either F or f), while −1 for an inverse query,
that is, a query to the second oracle (either F−1 or f−1). That is, a query
on input (m,+1) (or (tw,m,+1)) stands for a query to the first oracle
on input m (or (tw,m)), while a query on input (m,−1) (or (tw,m,−1))
stands for a query to the inverse (second) oracle on input m (or (tw,m)).

2.5 Message Authentication Codes (MACs)

The basic cryptographic primitive allowing authenticating message is a
Message Authentication Code (MAC) [81]. A MAC is composed of three
algorithms. The first is designed to generate the key, which is shared
between the sender and the receiver. The sender computes a tag via the
tag-generation algorithm to authenticate a message; instead, the receiver
verifies the tag associated with the message to check the authenticity of
a message. Formally:

Definition 12 (MAC). A Message Authentication Code (MAC) is a
triple Π = (Gen,Mac,Vrfy) where

• Gen picks a key in the keyspace K.

• the tag-generation algorithm Mac is an algorithm that takes as in-
put a couple (k,m) ∈ K ×ME and outputs a tag τ ← Mack(m)
from the tag space T AG.

• the verification algorithm Vrfy takes as input a triple (k,m, τ) in
K×ME×T AG and outputs either the value “>” (“accept”) or “⊥”
(“reject”).

We ask that the couple composed by a message m and the tag τ computed
for the message m by Mac is always considered valid. Formally:

Correctness: ∀(k,m) ∈ K ×ME , Vrfy(k,m,Mac(k,m)) = >.

A string-input MAC strMAC has as input space a set of strings, that is
ME ⊆ {0, 1}∗.

In this work, we consider only deterministicMAC, that is, MAC whose
tag-generation algorithm is deterministic (there are also probabilistic
MACs, iv-based MAC and nonce-based MAC, for example).

28 CHAPTER 2. BACKGROUND

2.5.1 MAC security: authenticity

The usual security notion for MAC is “unforgeability”. That is, to assert
authenticity of a tag from a MAC we ask that it is difficult to create
a valid tag τ∗ for a message m∗ even if the adversary can see tags of
messages of his choice, where m∗ is a message for which has never been
authenticated yet. The couple (m∗, τ∗) is called an existential forgery.
If we relinquish the requirement that m∗ has never been authenticated,
we have strong unforgeability. (Since when the adversary has received a
valid tag τ for a message m, he can simply replay this couple message,
tag, to avoid trivial victory, we ask that the couple message, tag (m∗, τ∗)
is fresh). Formally:

The FORGEeuf−cma
MAC,A and FORGEsuf−cma

MAC,A experiments.
Initialization: Oracle Mack(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {m} [S ← S ∪ {(m, τ)}]

Return τ
Finalization:

(m∗, τ∗)← AMack(·),Vrfy(·,·) Oracle Vrfyk(m, τ):
If > = Vrfyk(m

∗, τ∗) Return Vrfyk(m, τ)
If m∗ /∈ S [If (m∗, τ∗) /∈ S]
Return 1

Return 0

Table 2.1: The FORGEeuf−cma and FORGEeuf−cma experiments. For the
FORGEsuf−cma experiment use the lines within the square brackets.

Definition 13 (euf [81]). A MAC Π = (Gen,Mac,Vrfy) is
(qM , qV , t, ε)- existentially unforgeable-secure (euf) if for every (q, t)-
adversary A

Pr
[
FORGEeuf−cma

Π,A ⇒ 1
]
≤ ε

where the FORGEeuf−cma-experiment is defined in Tab. 2.1.

Definition 14 (euf [81]). A MAC Π = (Gen,Mac,Vrfy) is
(qM , qV , t, ε)- strongly unforgeable-secure (suf) if for every (q, t)-adversary
A

Pr
[
FORGEsuf−cma

Π,A ⇒ 1
]
≤ ε

where the FORGEsuf−cma-experiment is defined in Tab. 2.1.

Note that the adversary has always a chance of winning: in fact, if
he chooses a message m∗ in the message space and he picks a candi-
date tag τ∗ uniformly at random, he may, by pure chance, have bumped

2.5. MESSAGE AUTHENTICATION CODES (MACS) 29

into the correct tag. Thus, no scheme can be (qM , qV , t, 0)-unforgeable.
Moreover, we can give a lower bound of the unforgeability security:
ε ≥ |T AG|−1.

In the rest of the thesis we are interested in strongly unforgeable
MAC, thus, when we talk about an unforgeable MAC we mean a strongly
unforgeable MAC.

Multiple verification query. In our previous definition, the adver-
sary A has oracle access also to the verification oracle. It may seem that
having access to a verification oracle is not so useful. In fact, the only
information an adversary can receive from the verification oracle is if the
couple (m, τ) he is querying on is valid or not. If it is valid, he can sim-
ply reuse it as a forgery; otherwise, it seems that he has learned nothing
more and he must go on from scratch. The previous intuition is true and
is formalized by the following:

Proposition 2. Let MAC Π = (Gen,Mac,Vrfy) be (qM , 0, t, ε)-unforgeable.
Then, it is (qM , qV , t, (qV + 1)ε)-unforgeable.

Note that the bound is (qV + 1)ε because the adversary may win
either asking a valid verification query and using this as his output or
trying with a new query as his output.

Proof. The proof is straightforward and can be found in [25].

Secure MAC from random functions. A natural construction for a
MAC is to create the tag τ applying a pseudo-random function Fk to the
message m. Thus, the adversary has to guess a fresh output of a PRF
to create a valid forgery. Since a pseudo-random function has outputs
indistinguishable from random ones, this should be hard. This is the
case and it is formalized by the following

Proposition 3. Let F : K ×ME → T AG be a (qM + qV + 1, t)-PRF.
Let MAC Π = (Gen,Mac,Vrfy) defined as follow:
Gen picks a random key k in K, that is, k $← K
Mac Mac : K ×ME → T AG, defined by Mack(m) := Fk(m),
Vrfy Vrfyk(m, τ) = > iff Fk(m) = τ ; otherwise ⊥.
Then, MAC is (qM , qV , t, ε+ (qV + 1)|T |−1)-unforgeable.

Proof. See Theorem 4.4 [81].

Some authors, for example [104], when they define MAC security,
they ask the tag-generation function Mac to be a PRF.

30 CHAPTER 2. BACKGROUND

Secure MACs need not to provide random tags. Observe that
there is no need that the tag is random to have a secure MAC. In
fact, let Π = (Gen,Mac,Vrfy) be a (qM , qV , t, ε)-unforgeable MAC, then,
Π′ = (Gen′,Mac′,Vrfy′) defined by
• Gen′ = Gen,
• Mac′k(m) := m||Mack(m),
• Vrfy′k(m, τ

′) := > iff τ ′ = m‖τ and Vrfyk(m, τ) = >.
Then Π′ is (qM , qV , t, ε)-unforgeable. In fact, from a forgery (m, τ ′)
against Π′, it is possible to create a forgery against Π simply remov-
ing the message prefixed in τ ′.
On the other hand, Mac′ does not output a random value.

This previous secure MAC shows that a tag does not hide the au-
thenticated message. Thus, authenticity does not provide confidentiality

2.6 Authenticated Encryption (AE)

When, both authenticity and confidentiality are needed, the crypto-
graphic tool to use is Authenticated Encryption (AE).
Like a MAC, an authenticated encryption scheme is composed by three
algorithms. The first is designed to generate the key, which is shared be-
tween the sender and the receiver. The second is a procedure to encrypt
a message, obtaining a ciphertext; the third is a procedure for decrypting
a ciphertext and verifying the authenticity of the ciphertext. Formally:

Definition 15 (pAE). A scheme for probabilistic Authenticated En-
cryption (pAE) is a triple Π := (Gen,Enc,Dec), where

• Gen picks a key k in the keyspace K, which is not empty.

• the encryption algorithm Enc is a probabilistic algorithm which
takes as input the couple (k,m) ∈ K × ME and outputs c ←
Enck(m) called ciphertext.

• the decryption algorithm Dec is a deterministic algorithm which
takes as input the tuple (k, c) ∈ K × {0, 1}∗ and outputs m ←
Deck(c) which is either a string m ∈ ME or the symbol “⊥” (“in-
valid”).

We require that the algorithm Dec is always able to correctly decrypt the
output of Enc, that is:

• (Correctness) if Enck(m) = c, then, Deck(c) = m for any key k

2.6. AUTHENTICATED ENCRYPTION (AE) 31

If Deck(c) =⊥ we say that the algorithm “rejects” c, otherwise it “ac-
cepts” c and c is “valid”.

The message m is also called plaintext.

In order to have a probabilistic encryption scheme, often, it is easier
to use a deterministic algorithm that takes an additional input, which is
randomly picked [119]. For more details, see App. A.

2.6.1 Integrity

Authenticity for AE is called integrity. We ask that the adversary is not
able to create a new ciphertext, which is deemed valid by the decryption
algorithm [14]. Formally:

Definition 16 (INT-CTXT). A probabilistic authenticated encryption
scheme pAE Π = (Gen,Enc,Dec) is (qE , qD, t, ε)-INT-CTXT(Ciphertext
integrity)-secure if the advantage

AdvINT-CTXTΠ (A) := Pr
[
⊥6= m∗ ← Deck(c

∗); c∗ ← AEnck(·),Deck(·)
]

is bounded by ε for every (qE , qD, t) adversary A. The adversary A is
not allowed to output c∗ if he received c∗ as c∗ ← Enck(m

∗) for a certain
input m∗ that he has asked to the first oracle.

We can also see the previous security definition as follow:
for every (qE , qD, t)-adversary A

Pr[INT-CTXTA,Π ⇒ 1] ≤ ε.

where the INT-CTXT experiment is described in Tab. 2.2.
Informally, the previous probability can also be stated as:

Pr[AEnck(·),Deck(·) forges].

Access to the decryption oracle. Similarly to what done for MAC,
we can observe that having access to the decryption oracle is not useful.
In fact,

Proposition 4. Let Π = (Gen,Enc,Dec) be (qE , 0, t, ε)-INT-CTXT se-
cure. Then, it is (qE , qD, t, (qD + 1)ε)-INT-CTXT secure.

32 CHAPTER 2. BACKGROUND

The INT-CTXT experiment.
Initialization: Oracle Enck(m):
k ← Gen c = Enck(m)
S ← ∅ S ← S ∪ {c}

Return c
Finalization:
c∗ ← AEnck(·),Deck(·) Oracle Deck(c):
If ⊥6= Deck(c

∗) Return Deck(c)
If c∗ /∈ S
Return 1

Return 0

Table 2.2: The INT-CTXT experiment.

2.6.2 Confidentiality and Integrity

When we ask confidentiality in addition to authenticity, we want that
not only is it difficult for any adversary to create a forgery but also that
no information about the message can be inferred from the ciphertext.
The use of random ciphertexts is a possible solution to avoid that any
information is obtained from the ciphertext. Formally:

Definition 17 (pAE-security). A probabilistic authenticated encryption
scheme (pAE) Π := (Gen, Enc, Dec) is (qE , qD, t, ε)-pAE-secure if the
advantage

AdvpAEΠ (A) :=
∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ (2.2)

is bounded by ε for every (qE , qD, t)-adversary A that respects the follow-
ing condition:

(i) If A queried the first (encryption) oracle on input m and was an-
swered c, then he is not allowed to query the second (decryption)
oracle on input c;

This notion provides privacy, since it assumes that ciphertexts are
indistinguishable from random, and authenticity, since it assumes de-
cryption queries made by the adversary on fresh ciphertexts, are not
valid.

To have confidentiality, the length of the ciphertext must not give any
additional information about the plaintext. Thus, we need the following
property:

Definition 18. Let Alg be an algorithm whose inputs are in
M1 × ...×Mn and whose outputs are in T . We say that algorithm Alg

2.7. RANDOM ORACLE MODEL 33

does not reveal, via the length of his output, any information about its
inputs apart from their lengths if there exists a deterministic function
f : Nn 7−→ N s.t. for all possible inputs (x1, ..., xn) ∈ M1 × ... ×Mn,
|y| = f(|x1|, ..., |xn|), where y ← Alg(x1, ..., xn).

This can be seen as a “public length function”.

2.7 Random oracle model

When we assume that a blockcipher is a PRP or that a hash function is
collision resistant (or pre-image resistant) we are making some assump-
tions which are in the so called standard model.
However, in some cases cryptographic primitives, especially hash func-
tions, are used in an “injustified” way (already in 1993, Bellare and Ro-
gaway [15] realised this).
In particular, in many schemes, the outputs of the hash functions are as-
sumed to be “random”. It makes sense, since for a good hash functions,
its outputs should be “unpredictable” and the adversary should not be
able to control them. On the other hand, since the adversary knows the
key of the hash function, he may trivially distinguish the outputs of a
hash function, from the ones of a random function.
Thus to give a theoretical base of these schemes, they defined the random
oracle model (ROM):

Definition 19 (RO [15]). A random oracle (RO) R is a map
R : {0, 1}∗ → {0, 1}n chosen by selecting each bit of R(x) uniformly and
independently, for every x.

In practice, the random oracle is used to model hash functions.
That is, hash functions are assumed to be replaced by a random oracle
with appropriate range. In this way, an adversary is not able to evaluate
the result of the hash function. Instead, to evaluate the hash function,
he has to call an oracle.
In this way, we can suppose that the adversary cannot pre-compute the
outputs of the hash function and they are “random” for him.

The ROM “controversy”. Note that proofs in this model are not
completely satisfactory. In fact, a scheme secure in the random oracle
model (ROM) may be broken entirely when the random oracle is instan-
tiated with an actual hash function, see [35]. In particular, Canetti et
al. [35] built a scheme which is secure in the ROM model, but, which is
insecure when the RO is instantiated with any possible hash function.
Luckily, by now, all the schemes secure in the ROM-model but insecure

34 CHAPTER 2. BACKGROUND

when the RO is instantiated with a hash function, are artificial. That
is, they do not arise from actual schemes, but they are only built with
the idea of proving a separation result between the ROM-model and the
standard model [40, 73].
Considering everything, a proof in the ROM should be as much better
than no proof at all, but we must be aware that such a proof might leave
some security gaps. However, none of these potential gaps has led so
far to a practical attack against any deployed scheme whose security has
been proved in the ROM model.
ROM-based security proofs allow more flexible and efficient schemes.
Moreover, they allow some cryptographic tasks, as non-interactive non-
committing encryption [106].
A complete survey on the topic can be found in [83, 84].

Chapter 3

Leakage and countermeasures

Contents
3.1 Leakage . 36

3.1.1 Sources of leakages 36
3.1.2 Simple and Differential Power Analysis 37

3.2 Countermeasures 38
3.2.1 Masking . 38

3.3 Leakage-resilience 39
3.3.1 Rekeying . 39
3.3.2 Leveled implementation 40
3.3.3 The CCS2015 leakage-resilient MACs 40
3.3.4 A leakage-resilient encryption scheme 43

In this chapter, we present the challenges due to side-channel attacks.
First, we introduce what leakage is, explaining in particular why there
is leakage, and how it can be exploited. Then, we introduce the counter-
measures at the hardware and the implementation level, especially mask-
ing, which is the most studied. Finally, we introduce countermeasures
at mode level, introducing our starting point regarding constructions;
that is, the constructions presented at CCS15 by Pereira et al. [111]: 2
leakage-resilient MACs and a leakage resilient encryption scheme, PSV.

Legend for figures

In all the figures, we denote in red long-term secret, in orange ephemeral
secrets, while in green inputs, outputs or values publicly computable from
them. For primitives, we denote with dark grey the strongly protected
implementations, while in light grey or white the weak protected or not
protected implementations.

36 CHAPTER 3. LEAKAGE AND COUNTERMEASURES

Figure 3.1: A leakage trace, from Oswald et Standaert. [110]. Note that
since bit keys are processed one by one (it is an exponentiation and the
key is the exponent), thus, with the legend, it is possible to recover the
full key with a single leakage trace. In the x-axis we have put the time,
while in the y-axis the instantaneous consummation of power.

3.1 Leakage

In the previous chapter, Chap. 2, we have seen some security definitions.
Many schemes are achieving them, see, for example, [81].
Note that in all these security definitions, adversaries interact with their
oracles only querying them and receiving only their answers.
On the other hand, these schemes (or functions) must be implemented
in real devices, either in hardware or software. Then, these devices do
all the computations involved to compute the outputs. To do this, they
need time and electrical power. Moreover, the computations, moving
electrons, create a variable electromagnetic field which induces an elec-
tromagnetic radiation which can be measured. Thus, an adversary may
collect information about the computations carried by the scheme not
only by the outputs he receives but also via these other sources of infor-
mation, called side-channels.
The information collected in this way may be able, for example, to reveal
the key or the plaintext completely. See, for example, Fig. 3.1.

3.1.1 Sources of leakages

The first documented use of side-channel to break cryptography was
made by MI5, in 1956 [130].
Kocher made the first academic paper describing a side-channel attack
in 1996 [86]. In this paper, Kocher explains “how to find Diffie-Hellman
exponents, factor RSA-keys carefully measuring the amount of time used
to perform private key operations”.
Subsequent works proved that information may be leaked via power
consumption [87, 96] or via the electromagnetic radiation a device pro-
duces [60, 115], exhibiting attacks working against real devices. Inter-

3.2. COUNTERMEASURES 37

estingly, even if the electronic device is powered off, it is possible to
retrieve information about the secret key, via the so-called “cold boots”
attacks [69]. These seminal works were followed by a very vast literature
of attacks [96].

3.1.2 Simple and Differential Power Analysis

In this section, we want to present two examples of leakage attacks. In
particular, we want to highlight that the number of traces collected with
the same key and different inputs is a critical element in the success of a
leakage attack. Thus, we can decide to use weaker countermeasures for
a component whose key is used only once (or twice) with a given key in
the whole history of its usage.

The first attack exploiting the consummation of electrical power used
the leakage of a single execution of the device. The measurement is called
a trace (for example, we have presented a trace in Fig. 3.1). This trace
L = L(t) is collected by an oscilloscope and may be seen as the sum of a
deterministic part D = D(t), and a noise N (which usually is assumed
to be gaussian), that is:

L(t) = D(t) +N.

An attack based on the leakage of the execution of a single input is called
Simple Power Analysis (SPA).
Such an attack can exploit conditional branching operations which are
key-dependent (see, for example, the leakage trace of Fig. 3.1, where if
the key bit used as the exponent is 1, an additional operation, much
more power-consuming is performed).
On the other hand, there are effects correlated to data which the device
manipulate [87]. Even if these variations are small, they are possible to
be detected, especially using many leakage traces for the same key with
different inputs. This is called a Differential Power Analysis (DPA).
Note that a DPA is much more effective than SPA, but it is also much
more complex to do. Moreover, it requires many measurements (for
example thousands [128]).
A detailed study of this can be found in [96].

3.2 Countermeasures

Apart from avoiding branching dependent on secret data (especially the
key, but also the plaintext), there are many possible ways to limit the

38 CHAPTER 3. LEAKAGE AND COUNTERMEASURES

information a leakage trace conveys. For example, there is masking (stud-
ied in Sec. 3.2.1), the most used by far, hiding, and shuffling.

Hiding. “The goal of hiding is to make the power consumption of cryp-
tographic devices independent of the intermediate values and indepen-
dent of the operations that are performed” [95].

Shuffling Already, in the seminal work about power analysis [87], the
authors mentioned time randomization as a possible solution.
In the literature, this idea has been developed in many ways:
• Random delays, see, for example [37]
• Shuffling, see, for example [116].
• Building a non-deterministic processor, see, for example [13].

A comprehensive study may be found in [127].

3.2.1 Masking

The most popular and more used countermeasure against side-channel is
masking. The idea is to split a sensible value x in some shares x1, ..., xd+1,
with the constraint that x1+...+xd+1 = x.1 That is, x1, ..., xd are picked
independently, while xd+1 is picked according to the recombination law.
This is called a d-order masking.
In the literature, masking may be done via Boolean masks, polynomial
masks, multiplicative masks. A complete survey may be found in [63].
Moreover, every time, or at least very often, the shares are used, they
are refreshed, that is, they are changed.
From the seminal works [36, 61], masking have been studied and proved
secure [53, 54, 114, 125]. The physical assumptions (independent leakage
of the shares) behind these proofs has been questioned, for example,
see [91].
We have already implementations of masked AES, for example, [70].

Higher-order masking. To have better security, thus, higher-order
masking has been studied [121]. For example, a version of AES masked
with a 10-order masking scheme has been proposed [62] and even a 32-
order [77] one.

Cost. Masking, and especially high-order masking, is very expensive.
It may be even thousands time more expensive, as proved by Goudarzi

1The + denotes the operation used to recombine the share. It must not only be
understood as the addition in Z2

n.

3.3. LEAKAGE-RESILIENCE 39

and Rivain [62] and Journault and Standaert [77].
For example a version of unmasked AES on 32-bit Cortex M4 needs 661.7
cycles [122], while if masked with a 10-order masking, it needs 480,942
cycles [62] and if with a 32-order [77] scheme, it needs 2,783,510 cycles.

The previous countermeasures can be seen as low level countermea-
sures, that is, they are either at the hardware or at the implementation
level.

3.3 Leakage-resilience

A complementary approach is to design countermeasures at the mode
level. That is, a scheme is designed to be inherently more secure against
side-channel attacks. Against side-channel attacks, there is flourishing
literature proposing schemes that are secure against such attacks. These
schemes are called leakage resilient (a survey can be found in the work
of Kalai and Reyzin [78]).
Observe that most of the papers cited in the survey [78], provide schemes
secure in their leakage model.

A constant in these schemes is that they are designed not only ex-
ploiting the countermeasures against side-channel attacks, like masking,
but also they try to reduce the surface exploitable for an adversary. In
this way, these schemes try to be “inherently (more) secure against such
physical attacks” [111].
Moreover, since the countermeasure we have against side-channel at-
tacks may be very expensive, it may be useful to reduce the number of
execution of primitives implemented with such heavy countermeasures,
especially for constrained devices.

3.3.1 Rekeying

One of the most widespread technique in leakage-resilient cryptography
is rekeying [2].
When two parties have a shared key k, instead of using k directly to
encrypt the data, they produce some derived keys k1, k2, ... which are
then used.
Although rekeying initially was used to reduce the number of blocks
processed with the same key (and especially for DES, this was crucial
to keep the security2), immediately its potential to counter side-channel
attacks was understood [85].

2Since DES is a 64-bit block cipher with a 56-bit key.

40 CHAPTER 3. LEAKAGE AND COUNTERMEASURES

This idea was later developed by Abdalla et al. [1] and Dziembowski et
al. [57]. The idea is to use the shared key and an additional input, either
random or simply not repeated, to generate a session key. In this way, the
master key (which is a long-term secret) can only be targeted once per
execution, while if a session key is exposed and retrieved, the adversary
is only able to obtain information when that particular session key is
used. In particular, he cannot infer any information from an ephemeral
key about the master key. In particular, as we show in the next sections
(Sec. 3.3.3 and Sec. 3.3.4), it is possible to design encryption or MAC
scheme where the master key is used only once per execution, while a
session key is used only once (for MAC and encryption) in the whole
execution of the protocol.

3.3.2 Leveled implementation

Rekeying allows to implement the primitives in a scheme with different
levels of protections. This is called leveled implementation.
In a leveled implementation, we have a primitive implemented in a
strongly protected way, and others with a weakly (or not at all) pro-
tected implementation.

3.3.3 The CCS2015 leakage-resilient MACs

Pereira et al. [111] designed two MACs which use the key only once per
authentication. In this way, on each round, only a single component
involved in the computation must be strongly protected since only this
component can be the target of a DPA attack.

The first MAC. For the authentication of the message m, a stream
of ephemeral keys is created from the key k, a random value, called IV,
and the message m. The tag corresponds to the last updated key. The
details can be found in Alg. 1 and in Fig. 3.2.
Note that these ephemeral keys k1, ..., kl are used only in this query and
not in subsequent tag-generation queries. Thus, the leakage of these
keys is less problematic, and we have only to prevent the leakage of k,
protecting only one call to the block cipher F∗.

Security of the MAC1. Pereira et al. [111] showed that it is hard to
forge this MAC even if the tag-generation algorithm leaks, based on sim-
ulatability, assuming that F∗ is implemented with a strongly protected
implementations and F has a weakly protected implementation.

3.3. LEAKAGE-RESILIENCE 41

Algorithm 1 The CCS2015 leakage-resilient
MAC1 = (Gen,Mac,Vrfy) [111].
It uses a PRF F : K×B → B, a strongly protected PRF F∗ : K∗×B → B
with B = K = {0, 1}n.
For simplicity, we consider only messages composed by full blocks.
• Gen:

– k ← K∗
• Mack(m)

– Parse m = (m1, ...,ml) with |m1| = ... = |ml| = n

– Pick a random iv
$← {0, 1}n

– k1 = F∗k(iv)
– For i = 1, ..., l
∗ ki+1 = Fki(mi)

– τ = kl+1

– Return τ = (iv, τ)
• Vrfy1

k(m, τ):
– Parse τ = (iv, τ)
– Parse m = (m1, ...,ml) with |m1| = ... = |ml| = n
– k1 = F∗k(iv)
– For i = 1, ..., l
∗ ki+1 = Fki(mi)

– τ̃ = kl+1

– If τ̃ = τ
∗ Return >

– Else Return ⊥

42 CHAPTER 3. LEAKAGE AND COUNTERMEASURES

Figure 3.2: The CCS2015 leakage-resilient MAC [111].

The second MAC.

To authenticate a message m, the tag generation algorithm Mac first
creates an ephemeral key k1 from the key k and from a random value,
called IV. Then, it digests the message m via a hash function, obtaining
h = Hs(m). Finally, it authenticates the digest h , using a PRF with the
ephemeral key, that is, τ = Fk1(h). The details can be found in Alg. 2
and in Fig. 3.3.
Note that these ephemeral key k1 is used only in this authentication
and not in subsequent tag-generation queries. Thus, the leakage of these
keys is less problematic, and we have only to prevent the leakage of k,
protecting only one call to the block cipher F∗.

Algorithm 2 The CCS2015 leakage-resilient
MAC2 = (Gen,Mac,Vrfy) [111].
It uses a PRF F : K×B → B, a strongly protected PRF F∗ : K∗×B → B
with B = K = {0, 1}n and a hash function H : KH×HM→ B.
• Gen:

– k
$← K∗

– s
$← KH (s is a public parameter)

• Mack(m)

– Pick a random iv
$← {0, 1}n

– k1 = F∗k(iv)
– h = Hs(m)
– τ = Fk1(h)
– Return τ = (iv, τ)

• Vrfy1
k(m, τ):

– k1 = F∗k(iv)
– h = Hs(m)
– τ̃ = Fk1(h)
– If τ̃ = τ
∗ Return >

– Else Return ⊥

3.3. LEAKAGE-RESILIENCE 43

Figure 3.3: The CCS2015 leakage-resilient MAC2 [111].

Security of the MAC2. Pereira et al. [111] proved that it is hard
to forge this MAC even if the tag-generation algorithm leaks, based on
simulatability. In the proof, F ∗ is assumed to be a PRF and strongly
protected against side-channel attacks, and H is assumed to be collision
resistant.

3.3.4 A leakage-resilient encryption scheme

In the same paper [111], the authors put forth a leakage-resilient encryp-
tion scheme. We call this scheme PSV after the name of their authors:
Pereira, Standaert, and Vivek.

PSV is based on the stream cipher introduced by Standaert et al. [124].
The stream is obtained using a block cipher, and it is based on rekeying.
To obtain the first ephemeral key k1, the master key k is used with a
random iv, k1 = F∗k(iv). The iv is given as part of the output.
Given an ephemeral key ki, it works as follow:
• a new ephemeral key ki+1 is produced: ki+1 = Fki(pA)
• a new stream block yi is computed: yi = Fki(pB)

where pA and pB are two public constants of n-bit, with pA 6= pB (n is
the block size of the BC F).
To obtain an encryption scheme, the authors simply XOR the message
to this pseudo-random stream of blocks.
Note that in this way, each ephemeral key is used only twice in an en-
cryption query and never reused for following encryption queries (here,
we do not consider decryption queries). Thus, only a SPA can be made
against these ephemeral keys.
The PSV scheme is described in detail in Alg. 3 and Fig.3.4.

44 CHAPTER 3. LEAKAGE AND COUNTERMEASURES

Algorithm 3 The PSV encryption scheme [111].
It uses a strongly protected BC∗ F∗ : K∗ × B∗ → B∗ and a weakly
protected BC F : K × B → B with B∗ = K = B = {0, 1}n.
• Gen

– k
$← K∗

– pA, pB ← B with pA 6= pB pA and pB are public
• Enck(m):

– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = n and
|ml| ≤ n

– Pick iv $← B
– k1 = F∗k(iv)
– For i = 1, ...l − 1
∗ (ci, ki+1)← sPSV(ki,mi)

– yl = Fkl(pB)
– cl = π|ml|(yl)⊕ml

– Return c = (iv, c1, ..., cl)
• Deck(c):

– Parse c = (iv, c1, ..., cl) with |c1| = ... = |cl−1| = n and |cl| ≤
n

– k1 = F∗k(iv)
– For i = 1, ...l − 1
∗ (mi, ki+1)← sPSV(ki, ci)

– yl = Fkl(pB)
– ml = π|cl|(yl)⊕ cl
– Return m = (m1, ...,ml)

• sPSV(ki,mi):
– ki+1 = Fki(pA)
– yi = Fki(pB)
– ci = mi ⊕ π|mi|(yi)
– Return (ci, ki+1)

3.3. LEAKAGE-RESILIENCE 45

Figure 3.4: The PSV encryption scheme [111]. The single block compo-
nent sPSV is highlighted.

Security. PSV is aimed to provide confidentiality with leakage. Its se-
curity, confidentiality with leakage when only the encryption algorithm
leaks (CPAL), has been proved by the authors, again based on simulata-
bility [111].

Chapter 4

Theoretical framework for
authenticity with leakage

Contents
4.1 Security definitions with leakage 48

4.1.1 suf-L . 48

4.1.2 suf-L2 . 49

4.1.3 CIML . 50

4.1.4 CIML2 . 52

4.2 Unbounded leakage model 52

4.3 Strongly protected implementations 54

4.3.1 Leak-free . 55

4.3.2 Strong unpredictability 56

4.4 The Barwell et al. authenticity definition . . 58

This chapter is devoted to the theoretical framework. First, we in-
troduce four security definitions: authenticity for MACs when the tag-
generation algorithm leaks and then when both the tag-generation and
the verification algorithm leak; after that, we consider the AE case: au-
thenticity for AEs when the encryption algorithm leaks and then when
both the encryption and the decryption algorithm leak. Then, we model
leakage. After that, we give two models for the leakage of strongly pro-
tected components. Finally, we compare our definitions with those of
Barwell et al. [10].

48 CHAPTER 4. THEORETICAL FRAMEWORK

4.1 Security definitions with leakage

We start giving the authenticity definitions for MACs, first when the ad-
versary collects the leakage of the tag-generation algorithm, then, when
he collects in addition also the leakage of the verification algorithm.
Then, we pass to integrity for AE schemes, first when the adversary col-
lects the leakage of the encryption algorithm, then, when he coolects also
the leakage of the decryption algorithm.

Modeling leakage in definitions. In our definitions, to denote that
the adversary A can do side-channel attacks, we grant him oracle access
to the leakage L of the algorithm Alg(·). Thus, we use the notation
AAlgL(·).
The leakage function of the execution of the algorithm Alg with input x
and key k, it is denoted with LAlg(x; k).
Following Pereira et al. [111] to denote that the adversary can also profile
the leakage, we denote it with AL(·) or AL. In fact, the adversary, having
access to a device, where he can choose the inputs and the keys used,
can learn a lot about the profile of the leakage trace and the information
that can be extracted from it.

Structure of the definitions. Our definitions are modifications, for
MACs, of the authenticity definition (Def. 14) and, for AE, of the integrity
definition (Def. 16).
To denote that we consider leakage we add the suffix L if only tag-
generation, for MACs or encryption, for AE, leaks. Instead, for MACs if
also verification leaks we add the suffix L2. We do similarly for AE.

Misuse For AE, we consider that the adversary is allowed to tamper
the random coins that are used in encryption. To model this, we allow the
adversary to choose the randomness r used by the encryption algorithm.
We denote this, adding the suffix M.

4.1.1 suf-L: Strong unforgeability with tag-generation leak-
age

In the unforgeability definition for MAC, Def. 14, we have asked that it
is hard for an adversary to produce a forgery. We want that it remains
hard even if the adversary has access to the leakage of the tag-generation
oracle. Formally (this definition has been stated before from Pereira et
al. [111]):

4.1. SECURITY DEFINITIONS WITH LEAKAGE 49

The FORGELsuf−vcma−L
MAC,LM ,AL experiment.

Initialization: Oracle MacLk(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, LM (m; k))
Finalization:

(m, τ)← AL,MacLk(·),Vrfyk(·,·) OracleVrfyk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return Vrfyk(m, τ)
Return 0

Return 1

Table 4.1: The FORGELsuf−vcma−L experiment against the scheme
MAC = (Gen,Mac,Vrfy).

Definition 20 ((suf-L)). A Message Authentication Codes
MAC = (Gen,Mac,Vrfy) with tag-generation leakage function LM pro-
vides (qL, qM , qV , t, ε)-strongly existentially unforgeable against chosen
message and verification attacks with leakage in the tag-generation (suf-L)
if for all (qL, qM , qV , t)-adversaries AL, we have

Pr
[
FORGELsuf−vcma−L

MAC,LM ,A ⇒ 1
]
≤ ε.

where the FORGELsuf−vcma−L experiment is defined in Tab. 4.1.

We can observe that this definition is simply the unforgeability def-
inition where the adversary has oracle access to the leakage of tag-
generation queries; moreover he can profile the leakage.

Multiple verification queries. We can observe that, as for unforge-
ability (euf), it is irrelevant if the adversary has or not oracle access to
the verification oracle. This is formalized by the following proposition:

Proposition 5. Let MAC Π = (Gen,Mac,Vrfy) be (qL, qM , 0, t, ε)-suf-L-
unforgeable. Then, it is (qL, qM , qV , t, (qV + 1)ε)-suf-L-unforgeable.

Proof. The proof is similar to the proof of Prop. 2. It is enough to adapt
that proof to our syntax.

4.1.2 suf-L2: Strong unforgeability with tag-generation
and verification leakage

We extend the previous definition to the case when also verification leaks.

50 CHAPTER 4. THEORETICAL FRAMEWORK

The FORGEL2suf−vcma−L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle MacLk(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, LM (m; k))
Finalization:

(m, τ)← AL,MacLk(·),VrfyLk(·,·) Oracle VrfyLk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return
Return 0 (Vrfyk(m, τ), LV (m, τ ; k))

Return 1

Table 4.2: The FORGEL2suf−vcma−L2 experiment against the scheme
MAC = (Gen,Mac,Vrfy).

Definition 21 (suf-L2). A Message Authentication Codes
MAC = (Gen,Mac,Vrfy) with tag-generation leakage function LM and
verification leakage function LV provides (qL, qM , qV , t, ε)-strongly ex-
istentially unforgeable against chosen message and verification attacks
with leakage in the tag-generation and the verification (suf-L2) if for all
(qL, qM , qV , t)-adversaries AL, we have

Pr
[
FORGEL2suf−vcma−L2

MAC,LM ,LV ,A
⇒ 1

]
≤ ε.

where the FORGEL2suf−vcma−L2 experiment is defined in Tab. 4.2.

In Chap. 5.3.1, we prove that suf-L and suf-L2 are not equiva-
lent. That is, suf-L-secure does not imply suf-L2-secure (with qV 6=
0). On the other hand, suf-L2-secure implies suf-L secure. In fact, a
(qL, qM , t)-suf-L-adversary against MAC can be seen as a (qL, qM , 0, t)-
suf-L2-adversary against MAC.

Note that for the blackbox definitions the fact that the adversary has
or does not have oracle access to the verification oracle is not essential,
see Chap. 2.5.1.

4.1.3 CIML: Ciphertext integrity with misuse and encryp-
tion leakage

Similarly, we proceed for AE.
First, we want the adversary not being able to produce a valid ciphertext
even if he receives the leakage of the encryption algorithm. Moreover,

4.1. SECURITY DEFINITIONS WITH LEAKAGE 51

The CIMLΠ,LE ,AL experiment

Initialization: Oracle EncLk(r,m):
k ← Gen c = Enck(r,m)
S ← ∅ S ← S ∪ {C}

Return (c, LE(r,m; k))
Finalization:
c← AdvL,EncLk(·,·),Deck(·) Oracle Deck(c):
If c ∈ S or ⊥ = Deck(c) Return Deck(c)
Return 0

Return 1

Table 4.3: The CIML experiment against the scheme Π = (Gen,Enc,Dec).

we allow the adversary to control the random source used by the proba-
bilistic algorithm Enc.
This may be seen as a generalization of ciphertext-integrity [14]. Starting
from the INT-CTXT definition, Def. 16, we define the CIML experiment
in Tab. 4.3 which leads to the following definition:

Definition 22 (CIML). An authenticated encryption Π = (Gen,Enc,Dec)
with encryption leakage function LE provides (qL, qE , qD, t, ε)-ciphertext
integrity with coin misuse and leakage on encryption if for all (qL, qE , qD, t)-
adversaries AL, we have

Pr
[
CIMLΠ,LE ,AL ⇒ 1

]
≤ ε.

We can observe that this definition is simply the ciphertext-integrity
definition (with the adversary in control of the random source) where
the adversary has oracle access to the leakage of encryption queries.

To model the adversarial control of the random source, we allow the
adversary to choose the randomness r used by the encryption algorithm.

This definition may also be extended to the other possible syntax for
AE (those defined in App. A).

In the original paper defining CIML [24], encryption and decryption
queries are not separated. Instead, only the total number of queries
made to the oracles is bounded. Here, we prefer to divide encryption
and decryption querier to be more coherent with the rest of definitions.

52 CHAPTER 4. THEORETICAL FRAMEWORK

The CIML2Π,LE ,LD,AL experiment

Initialization: Oracle EncLk(r,m):
k ← Gen c = Enck(r,m)
S ← ∅ S ← S ∪ {c}

Return (c, LE(r,m; k))
Finalization:
c← AL,EncLk(·,·),DecLk(·) Oracle DecLk(c):
If c ∈ S or ⊥ = Deck(c) Return (Deck(c), LD(c; k))
Return 0

Return 1

Table 4.4: The CIML2 experiment against the scheme Π =
(Gen,Enc,Dec).

4.1.4 CIML: Ciphertext integrity with misuse and leakage
in both encryption and decryption

Similarly to what was done for MAC, we extend the previous definition
to the case when also decryption leaks. Formally:

Definition 23 (CIML2). An authenticated encryption Π = (Gen,Enc,Dec)
with encryption leakage function LE and decryption leakage function LD
provides (qL, qE , qD, t, ε)-ciphertext integrity with coin misuse and leak-
age on encryption and decryption if for all (qL, qE , qD, t)-adversaries AL,
we have

Pr [CIML2Π,LE ,LD,A ⇒ 1] ≤ ε

where the CIML2 experiment is defined in Tab. 4.4.

This definition may be also extended to the other possible syntax for
AE schemes (see App. A) [27, 65].

4.2 Unbounded leakage model

There are plenty of leakage models [79].
Instead of using previous models, we introduce a new model where we
have divided the implementations of hash functions, block ciphers in two
classes: strongly protected and not protected. For the not protected im-
plementations, we suppose that it leaks entirely, that is, input, outputs,
and key. For the strongly protected ones, we model their leakage in
Sec. 4.3 Formally:

4.2. UNBOUNDED LEAKAGE MODEL 53

Definition 24. We define the unbounded leakage model as a model in
which the leakage functions L, when queried, returns:
• for unprotected building blocks: inputs, outputs and keys;
• for strongly protected building blocks: inputs and outputs, but not
the keys

We call this model unbounded because the leakage of not protected
implementations has no bound in the sense that having access to the key,
the input, and the output, the adversary has all the information.

Advantages of the unbounded model. This model has many ad-
vantages:
Clarity: in this model, strongly protected building blocks and unpro-

tected building blocks are distinguished. Thus, this model high-
lights on which building block(s) the side-channel countermeasures
should be put.

Simple: it completely avoids the problem of describing a leakage func-
tion, which is consistent with the traces collected. Instead, in this
model, the leakage function, as we see, is straightforward to de-
scribe. In fact, the leakage function usually consists of some (often
one or two) values computed by the oracle during its execution.
Moreover, in other leakage models the security holds only when the
leakage function L is in a certain class. Thus, when the implemen-
tations of a scheme change the proofs hold no more.

Strength: A security proof of a scheme in this model can be seen as a
proof that even the most potent leakage adversary has to break the
strongly protected implementations (or the blackbox assumption)
in order to break the scheme.
We note that it is challenging for any adversary to obtain all the in-
formation he receives via leakage with the precision we give. More-
over, this approach clarifies where the protections need to be and
reduces the risk that implementers create side-channel problems
via an optimized implementation (explaining where they must not
optimize).

Efficiency: This allows a leveled implementation where we can have one
component, used only a few times per execution (one or two usu-
ally), very well protected against side-channel, for example, a BC
with an high-order masking scheme (and thus slower, see
Chap. 3.2.1) and a second one not protected at all, and, presum-
ably, much more efficient.

A consequence of the unbounded leakage model is that a secure
scheme has to use its key only as a key of a strongly protected prim-

54 CHAPTER 4. THEORETICAL FRAMEWORK

itive.

Unbounded model and profiling. When the unbounded model is
used, the adversary do not need to profile the leakage of the scheme,
but only (when it is useful) the leakage of the strongly protected build-
ing blocks. In fact, he receives already everything he needs for the not
protected building blocks, so he does not gain anything from profiling
them. Thus, we may omit that the adversary can profile the leakage of
the scheme.

4.3 Modeling strongly protected
implementations

It remains to define what the strongly protected implementations leak.
First, we explain why it is not enough to protect the key. Then, we
offer two models, one leak-free, which is ideal, but usable in a broader
contest, another, strong unpredictability, which is more tailored to the
authenticity situation.

Protecting only the key it is not enough.

The Kerchoff’s laws explain that the security of a cryptosystem should
rely only in the key which must remain secret. So, we may wonder if
we may consider “good enough” an implementation of a primitive s.t. its
key is hard to retrieve via side-channel attacks. This is not the case as
we show with two examples:

Theoretical Consider a PRF F : K × B → B with K = K1 × K2 s.t.
Fk1,k2(x) = Fk1,k′2(x) ∀x ∈ B, k1 ∈ K1 and ∀k2, k

′
2 ∈ K2 [that is, we may

consider the second part of the key, k2 as not used].
Now, if the adversary is able to retrieve only the first part of the key, k1,
while the second part, k2 remains very hard to retrieve, he has retrieved
everything he needs. Thus, although the key recovery attack may succeed
with probability 2−|K2|, this cannot be considered an implementation
“good enough”.

Feistel Consider the well known Feistel scheme, see, for example [81]
based on a random function. Luby and Rackooff [?] proved that a 3-
round Feistel construction F′k with k = (k1, k2, k3) based on a PRF f is a
PRP, where k1, k2 and k3 are three keys for the PRF f. So, if we define
F(x) := π |F′

k
(x)|
2

(F′k(x)) (that is, F outputs the first half of F′k(x)), F is a

4.3. STRONGLY PROTECTED IMPLEMENTATIONS 55

PRF.
On the other hand, it is simple to see that if the adversary is able to
recover all the inputs and outputs of F′ via leakage, F is no more a PRF.
Moreover, he is able to predict the output for any value.
In fact, supposing that the input x is divided in two parts x = xl‖xr of
the same size, we have that F′ is built as follow:
• y1,l := xr and y1,r := fk1(xr)⊕ xl
• y2,l := y1,r and y2,r := fk2(y1,r)⊕ y1,l

• y3,l := y2,r and y3,r := fk3(y2,r)⊕ y2,l

Output of F′: y := y3,l‖y3,r

Output of F′: y := y3,l

Now, an adversary if the adversary is able to recover all the yi,r and yi,l
via side-channel, F is no more secure. Let us suppose that the adversary
wants to predict the output of x∗ = x∗l ‖x∗r . He can proceed as follow:

• A asks F(x1) with x1 = x1
l ‖x∗r where x1

l is picked uniformly at
random with x1

l 6= x∗l , so he recovers y1
1,r and he computes the

value z1 := y1
1,r ⊕ x1

l which is equal to fk1(x1
r) = fk1(x∗r).

• A asks F(x2) with x2 = x2
l ‖x2

r where x2
l and x

2
r are picked uniformly

at random with x2 6= x1, x∗, so he recovers y2
1,r and he computes

the value z2 := y2
1,r ⊕ x1

2 which is equal to fk1(x2
r).

• A asks F(x3) with x3 = x3
l ‖x3

r where x3
r = x2

r and x3
l := z2⊕z1⊕x∗l ,

so he recovers y3
2,r and he computes the value z3

2 := y3
1,r⊕y3

2,1 which
is equal to fk2(z2 ⊕ z1 ⊕ x∗l ⊕ z2) = fk2(z1 ⊕ x∗l).

• We observe that Fk(x∗) = z3
2 ⊕ x∗r .

Thus, even supposing that an adversary is not able to recover any infor-
mation about the keys used by F, only the knowledge of the inputs and
outputs of f is enough to make F not good for our scopes.

4.3.1 Leak-free

To model the leakage of a heavy protected component, at CCS15 [111]
a new model has been introduced: leak-free. Roughly speaking, this
model says that the adversary cannot make any efficient side-channel
attack against this implementation.

Definition 25. A PRF F∗ : K∗ × B∗ 7−→ B∗ is implemented in a leak-
free way if the adversary is not able to recover any useful information
from its leakage. We model this, saying that the leakage function of this
implementation is void.

56 CHAPTER 4. THEORETICAL FRAMEWORK

This notion can easily be adapted to PRP, TPRF, and TPRP (for
the PRP and TPRP we also need to assume that the strongly protected
implementation of the inverse is leak-free).

Strength and weaknesses of the leak-free model. This definition
is unambiguous and easy to use. Moreover, it reasonable models for
very-well protected components. Additionally, this model (used in com-
bination with the unbounded model) explicitly show where implementers
must put all the resources against side-channel.
On the other hand, the existence of such an implementation is question-
able, and we may see actual implementations as an imperfect realization.
Overall, we think that this model is worth to be used.

The leak-free model used with the unbounded leakage. When
we use these two models together, the adversary receives the inputs
and the outputs of the strongly protected implementation of primitives.
Thus, he does not receive only the keys of the primitives with a strongly
protected implementation.

Leak-free and profiling. Since we assume that the leakage of a strongly
protected implementation gives no information, thus, profiling the leak-
age of a strongly protected implementation is useless. Thus, when, we
use the leak-free model with the unbounded leakage model, we do not
have to worry about profiling and we may omit the term qL.

4.3.2 Strong unpredictability

In this subsection, we consider a new leakage model for strongly pro-
tected implementation, which assumes that the adversary can collect
some information also about the secrets involved in the computation of
the strongly protected implementations. We do not directly bound the
information he may collect; instead, we bound what he may do with
them.

Unpredictability with leakage. We start from the definition of un-
predictability with leakage for block ciphers (BC) introduced by Dodis
and Steinberger [51]. Roughly speaking, for an unpredictable BC, it is
hard to find the output for a fresh input even if the adversary has access
to the leakage when the BC is evaluated.

4.3. STRONGLY PROTECTED IMPLEMENTATIONS 57

We extend this definition, for PRPs and TPRPs, also considering the
leakage of the inverse.
To save some space, we directly describe this notion for TBCs.
We get the corresponding notion for BCs by removing all the tweaks in
the definition below.

We denote by L = (LEval, LInv) the leakage function pair associated to
an implementation of the TBC, where LEval(tw, x; k) (resp. LInv(tw, z; k))
is the leakage resulting from the computation of Fk(tw, x) (resp.
F−1
k (tw, z)). We also allow the adversary A to profile the leakages and

write AL as before, like in [111].

Definition 26 (sUL). A tweakable block cipher F∗ : K∗×T W∗×M∗ →
T ∗ with leakage function pair L = (LEval, LInv) is (qE , qI , qL, t, ε) strongly
unpredictable with leakage in evaluation and inversion (sUL), or
(qL, qE , qI , t, ε)-SUL2, if for any (qL, qE , qI , t)-adversary A, we have

Pr[sULA,F∗,L ⇒ 1] ≤ ε,

where the sUL experiment is defined in Tab. 4.5, and where AL makes at
most qL (offline) queries to L.

The sULA,F∗,L experiment.
Initialization: Oracle LEval(tw, x):

k
$← K z = Fk(tw, x)

L ← ∅ le = LEval(tw, x; k)
L ← L ∪ {(x, tw, z)}

Finalization: Return (z, le)

(x, tw, z)← AL,LEval(·,·),LInv(·,·)

If (x, tw, z) ∈ L Oracle LInv(tw, z):
Return 0 x = F−1

k (tw, z)
If z = Fk(tw, x) li = LInv(tw, z; k)
Return 1 L ← L ∪ {(x, tw, z)}

Return 0 Return (x, li)

Table 4.5: Strong unpredictability with leakage in evaluation and inver-
sion experiment.

Strength and weaknesses. This definition is game-based, and it is
not an idealized physical assumption. In fact, an implementation may
be leak-free or not. Instead, sUL is a computational assumption, where
the adversary has a certain probability, which we hope is very low, to

58 CHAPTER 4. THEORETICAL FRAMEWORK

win.
It is possible to test in laboratories if an implementation is strongly un-
predictable or not. Moreover, it may be quantified the probability that
the adversary wins.
With the leak-free assumption, if we have assumed that an implementa-
tion was leak-free and after a while, a new attack against it is discovered,
we cannot infer anything about the security of the whole scheme. In-
stead, for sUL, if a new attack is discovered showing that the success
of an adversary against that implementation is bigger than what was
thought and we are able to quantify the security loss for sUL, we are
also able to quantify the security loss for the whole scheme. That is, the
security gracefully degrades when based on sUL.
Furthermore, actual countermeasures are usually aimed to protect the
key, that is, to make a key-recover attack unfeasible. Inputs and the out-
puts are usually much less protected. Thus, this model assumes that the
adversary has access to the inputs and outputs of the implementation he
is attacking. He “only” does not fully know the key.

The sUL model used in the unbounded leakage model. When
we use these models together, it means that the adversary receives the
leakage due to the unbounded model. Moreover, he also receives the
leakage of the evaluation of the strongly protected implementation and
the leakage of the strongly protected implementation of its inverse eval-
uation.

Profiling in the unbounded leakage model. We have already ex-
plained that if we assume that the leakage of not protected building
blocks is unbounded, an adversary has only to profile the leakage of
the strongly protected building blocks. When these implementations are
modelled as sUL, we consider the qL profiling queries at the mode level as
the queries used to profile the leakage of the strongly protected building
blocks.

4.4 The Barwell et al. authenticity definition

We finish this chapter presenting the integrity definition with leakage of
Barwell et al. [10] presented at ASIACRYPT2017.

Definition 27. Let MAC = (Gen,Mac,Vrfy) be a MAC with tag genera-
tion leakage function LM and verification leakage function LV . The MAC
is (qM , qV , qlV , t, ε)-strongly existentially unforgeable under an adaptive

4.4. THE BARWELL ET AL. AUTHENTICITY DEFINITION 59

chosen message with leakage attack (sEUF− CMLA) if for every
(qM , qV , qlV , t)-adversary A the following advantage

AdvsEUF−CMLA :=
∣∣∣Pr
[
AVrfyk(·,·),MacLk(·),VrfyLk(·,·) ⇒ 1

]
−

Pr
[
A⊥(·,·),MacLk(·),VrfyLk(·,·) ⇒ 1

]∣∣∣
is bounded by ε. The adversary has access to qV queries to the first oracle
(either Vrfyk(·, ·) or ⊥ (·, ·)), qM to the second oracle and qlV to the third
oracle. If the adversary A has received (τ, ·) as the answer to a query to
the second oracle on input m, he cannot query his first oracle on input
(m, τ).

We have rephrased here the definition of Barwell et al. [10] to make
it consistent with our notations and in a quantitative way. In particular,
there, for the authors, a scheme and its implementation are different.
Thus, they consider the leakage of that implementation, and then they
assess the security for that implementation of a scheme.
A similar definition can be given for AE schemes.

The LAE security of Barwell et al. The previous definition is then
used to prove a unique security definition for authenticated encryption
(LAE):

AdvLAE :=
∣∣∣Pr
[
AEnck,Deck,EncLk,DecLk ⇒ 1

]
− Pr

[
A$,⊥,EncLk,DecLk ⇒ 1

]∣∣∣
Note that the adversary receives no leakage for the queries which are
treated differently in the two situations he has to distinguish.

Difference with our suf-L2 definition. We start observing that their
definition is given via a distinguishing game, while ours is via a compu-
tational game. That is, “the adversary must forge a tag”. This change is
not relevant since the two approaches are equivalent.
Thus, their definition and ours are very similar since in both definitions
the adversary has oracle access to MacLk(·) and VrfyLk(·, ·) The only dif-
ference is that, for us, the adversary can profile the leakage and we have
modeled this with AL.
On the other hand, defining with a distinguishing game is more consis-
tent with their goal: that is first, give a unique security definition for AE
with leakage (as it is often done in the blackbox case), second to prove
the security of a generic construction via composable security definitions.

60 CHAPTER 4. THEORETICAL FRAMEWORK

Thus, they have to use the same leakage model for both confidentiality
and authenticity.
Instead, with our approach (followed by Guo et al. [65]) we want to
prove the authenticity with leakage separately from the confidentiality
with leakage. Thus, we can use a different leakage model in each situa-
tion.

Chapter 5

Constructions

Contents
5.1 HBC: a suf-L MAC. 62

5.1.1 Security of HBC 63
5.2 DTE, Digest-Tag-and-Encrypt 65

5.2.1 The double IV composition 65
5.2.2 The DTE construction 66
5.2.3 The CIML-security of DTE 68

5.3 The problem of decryption leakage 71
5.3.1 HBC is not suf-L2 72
5.3.2 DTE is not CIML2: a first attack 72
5.3.3 DTE′ - the first patch 73
5.3.4 The second attack 74

5.4 More leak-free components do not help. . . . 77
5.4.1 For HBC . 77
5.4.2 For DTE . 77

5.5 HBC2 - the solution for MACs 79
5.5.1 HBC2: a suf-L2 MAC. 79
5.5.2 Security of HBC2 80
5.5.3 HTBC: a BBB variant 81
5.5.4 Security of HTBC 82

5.6 DTE2 - a solution for AE 85
5.6.1 The CIML2-security of DTE2 87

5.7 EDT, Encrypt-Digest-then-Tag 90
5.7.1 The CIML2-security of EDT 92

5.8 CONCRETE, a single-leak-free-call scheme . . 95

62 CHAPTER 5. CONSTRUCTIONS

5.8.1 The CIML2 security of CONCRETE 101
5.9 Other constructions 103

5.9.1 Inner-keyed sponges: CIL1 and CCAL1-secure. 104
5.9.2 ASCON and Spook: CIML2 and CCAmL1 secure105
5.9.3 ISAP and TEDT: CIML2 and CCAmL2-secure 107

5.10 The construction of Barwell et al. 110

This chapter is devoted to present the MAC constructions achieving
suf-L and suf-L2 and the AE schemes achieving CIML and CIML2.
First we present HBC which is suf-L. It is an amelioration of the
CCS MAC2 (see 3.3.3, in particular Fig. 3.3 and Alg. 2).
Then, we use this MAC as a subroutine in AE-encryption scheme, DTE,
which is CIML.
After that, we discuss the problem of verification and decryption leakage.
Then, we argue why the solution to the previous problem is not trivial.
After that, we provide a solution for MACs, building a suf-L2-secure
scheme. We obtain the solution changing only the verification algorithm
of HBC, from recomputing the tag τ̃ and comparing it to the actual value
τ provided by the adversary, to computing a certain value h̃ from the
tag and checking it, which, if the tag is not good is “random”, thus, it
gives no information to the adversary even if it is leaked.
In addition, we provide a variant which is BBB secure.
This solution is applied to DTE, obtaining DTE2, which is CIML2.
From DTE2, we propose another scheme EDT (Encrypt-Digest-then-Tag)
which is CIML2-secure. With respect to DTE2 it is no more misuse-
resistant, but since the ciphertext is verified before the plaintext is com-
puted, the decryption of invalid ciphertexts does not give any useful
information to the adversary (in particular, it is CCA-secure with leak-
age.
Finally, we propose a scheme, CONCRETE, which, differently from all
other constructions, is CIML2-secure using a single call to the strongly
protected component, while, both DTE2 and EDT needs two calls to the
strongly protected component.

The leakage model used. As in all this thesis, we use the unbounded
leakage model (see Def. 24). Note that in this chapter, we model strongly
protected implementations as leak-free (see Def. 25).

5.1 HBC: a suf-L MAC.

We start by observing that the CCS MAC2 (see Chap. 3.3.3, Fig. 3.3 and
Alg. 2) is not suf-L in the unbounded leakage model. Then, we propose

5.1. HBC: A SUF-L MAC. 63

a new MAC, HBC, which is a modification of the CCSMAC2 which is
suf-L.

The CCS MAC2 in the unbounded leakage model. Although Pereira
et al. [111] proved the security of MAC2 when there is leakage, MAC2
is not secure in the unbounded leakage model. This because their proof
assumes that F∗ is leak-free and F is 2-simulatable, while, here, in the
unbounded leakage model, F is assumed to leak everything.
Infact, if k1 is leaked during the computation of the tag (iv1, τ1) for a
message m1, a forgery can be easily computed. It is enough to compute
h2 = H(m2) for a different message m2. Simply, compute τ2 = Fk1(h2)
and the forgery is (m2, iv, τ2).

We can do a similar attack for the CCS MAC1.

We stress again the fact that the security or insecurity of MAC2 de-
pends on the leakage model used in the proof. We do not want to make
any criticism of the work of Pereira et al. [111].

The simplest way to have a leakage-resilient MAC is to compose a
hash function with a blockcipher implemented with strong countermea-
sures. (This MAC has been implicitly introduced in the ASIACCS2018
paper [24] and its eprint version [23]. It has also been mentioned in the
work of Dodis and Steinbergerer [51]).

HBC from the CCS MAC2. In the CCS MAC2, first, an ephemeral key
is created, then, this ephemeral key is used to authenticate the hash.
It is easier and more efficient to use directly the strongly protected PRF
F∗ to authenticate the hash.

Considering a hash function H : KH × HM → {0, 1}n and a PRF
F∗ : K∗ × {0, 1}n → {0, 1}n with a strongly protected implementation,
with HM = {0, 1}∗, we can build a MAC, HBC, which is suf-L-secure in
the unbounded model, as described in Alg. 4 and Fig. 5.1. Note that for
this MAC,ME = {0, 1}∗ and T AG = T ∗ = {0, 1}n.

5.1.1 Security of HBC

Before proving the security of HBC, we have to describe its leakage in
the unbounded model:

64 CHAPTER 5. CONSTRUCTIONS

Algorithm 4 HBC based on the Digest and Tag parts of DTE - Full
description.
• Gen:

– k
$← K∗

– s
$← KH (s is a public parameter)

• MACk(m):
– h = Hs(m) // digest
– τ = F∗k(h) // tag
– Return τ

• Vrfyk(m, τ):
– h = Hs(m)
– τ̃ = F∗k(h)
– If τ == τ̃ Return >, Else Return ⊥.

Figure 5.1: The leakage resilient MAC HBC. Leakage reveals the orange
value.

Leakage: LM (m; k) := ∅, that is, there is no leakage, since h can be
computed by anyone and τ is the output.

Then, we can prove the authenticity with the leakage of HBC:

Theorem 3. Let H : KH × HM → {0, 1}n be a (t2, εCR)-collision re-
sistant hash function. Let F∗ : K∗ × {0, 1}n → {0, 1}n be a (q, t1, εPRF)-
pseudorandom function (PRF). Let HM = {0, 1}∗.
Then, HBC is (qM , qV , t, ε)-suf-L-secure in the unbounded leakage model
with

ε ≤ εPRF + εCR + (qV + 1)2−n

with q = qM + qV + 1, t1 = t+ tch(1,KH) + q′tH and t2 = t+ qtH + tf∗(q′).

5.2. DTE, DIGEST-TAG-AND-ENCRYPT 65

Idea of the proof. Here we present only a sketch of the proof. The
full proof may be found in App. B.1.
Note that the actual flow of the proof is different; instead, our sketch
aims to give only the main ideas.

Sketch. First, we replace the PRF F∗k(·) with a random function f∗ with
the same signature.
Then, we want to prove that every verification query (mi, τ i) is invalid.
We may have two different events with respect to the value hi = Hs(m

i)
obtained during the ith verification query:
F1: hi = hj with hi = Hs(m

i) and hj = Hs(m
j), where mi and mj are

respectively the ith and the jth tag-generation query.
Since this implies a collision for the hash function, the probability
that this happens is bounded easily by εCR.

F2: Event F1 does not happen, thus f∗(hi) has never been computed
in tag-generation queries.
Since f∗ is a random function, the probability that f∗(hi) = τ i is
exactly 2−n.

5.2 DTE, Digest-Tag-and-Encrypt,
a CIML-secure AE-scheme

This section is inspired by the ASIACCS18 paper by Berti et al. [24] and
its eprint version [23].
First, we introduce the idea to compose a leakage-resilient MAC and a
leakage-resilient encryption scheme. Then, we introduce DTE and finally
we prove its integrity with leakage.

5.2.1 The double IV composition

We want to build a CIML-secure AE scheme. The first idea is to combine
the previous MAC, HBC with the LR-encryption scheme PSV. Among
the various possibilities, we choose the Double IV (DIV) approach:

• DIV is based on the MAC-then-Enc paradigm, composing a MAC
and an encryption scheme. MAC and Enc has two different keys,
respectively kE and kM .

• first a randomness r is picked uniformly at random and the MAC
is used to authenticate both the randomness r and the message m

66 CHAPTER 5. CONSTRUCTIONS

obtaining the tag τ = MackM (r,m)1.

• The tag τ of the MAC is asked to be (pseudo)random.

• The encryption scheme Enc uses as his own randomness rE the tag
τ and encrypts both the randomness r and the message m, that is
C = EnckE (rE , r‖m) with rE = τ .

• The ciphertext is c = (τ, C). To decrypt, first both the randomness
r and the message m are retrieved via (r,m) = DeckE (rEnc, C),
with rEnc = τ , then, it is checked if the tag τ is correct.

For more details, see Alg. 5.

As explained in [24] this idea of encrypting the IVMac, gives stronger
confidentiality with leakage.
Note that, if we do not consider leakage, the randomness r need only
not be repeated and may be seen as a nonce [119]. In this case, the
DIV composition is misuse-resistant (MRAE, see Def. 31) as long as the
encryption scheme is good.

Figure 5.2: The DIV composition.

5.2.2 The DTE construction

We would like to use the DIV composition using the previous MAC, HBC
and the encryption scheme PSV (see Chap. 3.3.4, Fig. 3.4 and Alg. 3).
If possible, we would like that a single key is used.
Our first proposal is DTE, Digest-Tag-and-Encrypt:
Digest : h← H(r||m) with r random

that is, first a randomness r is picked; then, the randomness r and
the message m are digested via an hash function

1Often, in the literature an encryption scheme using in this way the randomness is
called IV-based encryption scheme and the randomness is called Initialization Vector
(IV) [104].

5.2. DTE, DIGEST-TAG-AND-ENCRYPT 67

Algorithm 5 The DIV (Double IV) composition [24]
The DIV composition, based on a PRF-secure
IV-MAC = (GenM ,Mac,Vrfy) and an IV-based-encryption scheme
Π = (GenE ,Enc,Dec), obtaining the pAE scheme
Π = (Gen,Enc,Dec):
• Gen:

– (kM , kE)← (GenM ,GenE)
• EnckM ,kE (m):

– Pick r uniformly at random
– τ ← MackM (r,m)
– C ← EnckE (τ, r‖m)
– Return (τ, C)

• DeckM ,kE (c):
– Parse c in (τ, C)
– (r,m)← DeckE (τ, C)
– If VrfykM (τ, (r,m)) = > Return m
– Else Return ⊥

Tag : τ = F∗k(h)
that is, we authenticate the digest

Encrypt : C ← PSVEnck(τ, r‖m)
that is, we encrypt using PSV, where the first ephemeral key,
k0 = F∗k(τ). 2

• the output is c = (τ, C).
Omitting r, HBC corresponds to the Digest and Tag part of DTE. For de-
cryption, first, r and m are retrieved from c = (τ, C) via PSVDeck(τ, C),
then, the authenticity of c is checked, that is, we check if τ = Fk(h) with
h = Hs(r‖m).

For more details, see Alg. 6 and Fig. 5.3.

Security of DTE. DTE achieves many security goals:
• it is a secure AE-scheme (nonce-based, where the randomness r is

seen as a nonce, and the adversary provides it)
• it is misuse-resistant (blackbox) (r is again seen as a nonce and

provided by the adversary)
• it is CIML-secure

2Note that when we have described PSV, in Alg. 3 the first ephemeral key is
denoted with k1, here we denote it with k0 since, in this way ki will be used to create
the stream block used to encrypt the ith message block.

68 CHAPTER 5. CONSTRUCTIONS

Figure 5.3: DTE leakage-resilient AE (part I). Part II can be found in
Fig. 5.4.

Figure 5.4: Part II of DTE.

• it provides confidentiality in the presence of leakage in encryption3

All the other results being a sideline to the scope, here, we prove only
the CIML-security. For the other proofs, see the ASIACCS18 paper [24]
or its eprint version [23].

5.2.3 The CIML-security of DTE

Before proving the CIML security of DTE, we have to consider what
misuse means and what is its leakage in the unbounded model:
Misuse: Since misuse models the situation where the adversary has taken

control of the random source, the adversary during encryption
queries provides the randomness r alongside with the message. He
has no constraint on the choice of r (other than r ∈ B).

3The leakage model used in this proof is 2-simulatability

5.2. DTE, DIGEST-TAG-AND-ENCRYPT 69

Algorithm 6 DTE - Full description.
DTE
• Gen:

– k
$← K

– s
$← KH

– pA, pB
$← B (s, pA, pB are public parameters)

• Enck(m), where m = (m1,m2, . . . ,ml):
– r

$← {0, 1}n
– τ ← Tagk(r,m):
∗ h = Hs(r||m) // digest
∗ τ = F∗k(h) // tag

– C ← PSVEnck(τ, (r,m)): // ...and encrypt
∗ k0 = F∗k(τ)
∗ y0 = Fk0(pB)
∗ c0 = y0 ⊕ r
∗ For i = 1, ..., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· ci = π|mi|(yi)⊕mi

∗ C = (c0, c1, ..., cl)
– Return c← (τ, C)

• Deck(c), where c = (τ, c0, c1, c2, . . . , cl):
– (r,m)← PSVDeck(τ, C):
∗ k0 = F∗k(τ)
∗ y0 = Fk0(pB)
∗ r = y0 ⊕ c0

∗ For i = 1, ..., l
· ki = Fki−1

(pA),
· yi = Fki(pB)
· mi = π|ci|(yi)⊕ ci

– TagVrfyk(τ, (r,m)):
∗ h = Hs(r||m)
∗ τ̃ = F∗k(h)
∗ If τ = τ̃ Return (m1, ...,ml), Else Return ⊥.

70 CHAPTER 5. CONSTRUCTIONS

Leakage: Since in the unbounded model the adversary should be able to
receive all the inputs and outputs of every primitive and all the keys
not used by the strongly protected implementation of the primitive,
we need h, all the ephemeral keys k0, ..., kl and the y0, ..., yl to be
given by the leakage function.
Note that if we set LE(r,m; k) := k0 the adversary has all the
information he wants.
In fact, he can recompute h from r and m knowing the key s of
the hash function; moreover, from k0 all the k1, ..., kl and y0, ..., yl
may be recomputed.4

Now, we can prove the integrity with leakage of DTE:

Theorem 4. Let H : KH×HM→ {0, 1}n be a (t2, εCR)-collision resis-
tant and (t2, εroPR)-range-oriented preimage resistant hash function. Let
F∗ : K∗ × {0, 1}n → {0, 1}n be a (2q, t1, εPRF)-pseudorandom function.
Let F : K × B → B. Let HM = {0, 1}∗. Let L be the maximal number
of blocks for a message.
Then, DTE is (qE , qD, t, ε)-CIML-secure in the unbounded leakage model
with

ε ≤ εPRF + εCR + qεroPR + (qD + 1)2−n

with q = qE + qD + 1 and

t1 = t+ tch(1,KH) + tchn(2,B) + (q + 1)(tH + (2L+ 1)tF), and

t2 = t+ tchn(2,B) + (q + 1)(tH + (2L+ 1)tF) + tf∗(2(q+1)).

Note that we ask nothing about the security of F. We only need
that it has the good syntax, that is, its input space, output space, and
keyspace are all equal to {0, 1}n.
This result is particularly interesting and surprising.5

Here we present only a sketch of the proof. The full proof may be
found in App. B.2.
Note that the actual flow of the proof is different from obtaining better
bounds; instead, our sketch aims to give only the main ideas.

Sketch. First, we replace the PRF F∗k(·) with a random function f∗ with
the same signature.

4This example shows the power of the unbounded leakage model as the description
of the leakage function is very simple in this case.

5Clearly, F must be a PRF to prove the AE-security, MRAE-security and confiden-
tiality with leakage. This result should not be intended as in DTE it is not necessary
to instantiate F with a PRF. Simply, we do not need this hypothesis for CIML.

5.3. THE PROBLEM OF DECRYPTION LEAKAGE 71

Then, we want to prove that every decryption query (τ i, ci) is invalid. We
may have three different events with respect to the value hi = Hs(r

i‖mi)
obtained during the ith decryption query:
F1: hi = hj with hi = Hs(r

i||mi) and Hs(r
j ||mj) and where (ri,mi)

and (rj ,mj) are respectively the ith and the jth encryption query
F2: Event F1 does not happen and hi = τ j where τ j is the tag of the

jth encryption query on input (rj ,mj)
F3: Neither event F1 nor event F2 happens.

Let Ei be the event that the ith decryption query is fresh and valid.
We bound now Pr[Ei ∩ Fi′] for i = 1, ..., qD + 1 and i′ = 1, 2, 3:
Ei ∩ F1: it means that we have found a collision for the hash function

Hs
Ei ∩ F2: it means that we have found a pre-image for the hash function

for the value τ j . Since the tags are picked uniformly at random
(they are the outputs of f∗), the probability that this happens
is bounded by εroPR. Moreover, there at most qE + qD possible
different targets.

Ei ∩ F3: since f∗(hi) has never been computed and f∗ is a random func-
tion, the probability that f∗(hi) = τ i is exactly 2−n.

Remark on the proof. When we consider event Ei∩F2, there are qE
possible target due the τ j computed during encryption queries. The qD
additional targets come from the proof. In fact, the adversary may have
chosen a couple randomness-message (r,m), have computed his hash
h = Hs(r‖m) and then he may first, ask a decryption query c = (τ, C)
with τ = h and, then, an encryption query on input (r,m). Now, when
the roPR-game is simulated, the tag the adversary receives after this en-
cryption query is no longer random, since it has already been computed
before.

In the complete proof, we use a different path to avoid to have qD+1

as a global factor for the advantage.

5.3 The problem of decryption and verification
leakage for authenticity

Now, it is natural to wonder what happens if also verification or de-
cryption leaks. This section is devoted to proving that such additional
leakage provides a new and dangerous threat to authenticity. In fact, we
prove that HBC is suf-L and not suf-L2 secure, and DTE is CIML but

72 CHAPTER 5. CONSTRUCTIONS

no CIML2 secure, exhibiting attacks.
Thus, we have proved that both suf-L ; suf-L2 and CIML ; CIML2.

We start with the attack against HBC; then, we introduce two at-
tacks against DTE. The first attack is due to the structure of DTE, and
will be prevented with a patch, DTE′, while the second is based on the
attack against HBC.
We end discussing why adding more components with a strongly pro-
tected implementation does not help.

This section covers the ToSC17 paper [27] (one attack is also present
in the ASIACCS18 paper [24]).

Unbounded decryption leakage. First, we have to define both the
leakage function of verification for HBC and of decryption for DTE:
HBC LV (m, τ ; k) := τ̃
DTE LD(c; k) := (k0, τ̃)

since, from these values, the adversary is able to recompute all interme-
diate values and all keys used by the algorithms, apart from the key used
in the strongly protected implementations. For both tag-generation and
encryption, we still use the same leakage functions, that is LM (m; τ) = 0
for HBC and LE(r,m; k) := k0 for DTE.

5.3.1 HBC is not suf-L2

We start with HBC. In this attack, we exploit the fact that the correct
tag, τ̃ , is recomputed during the verification query. Since τ̃ is recom-
puted, it may be leaked. The computation of τ̃ poses a problem which
we can exploit as follow:
• Ask the verification of (m, τ) for any message m and a random tag
τ . Obtain via leakage τ̃ .
• The forgery is (m, τ̃).
Note that the fact that a verification query on input (m, τ) has been

asked does not invalidate the forgery.

This attack is due to the structure of the verification algorithm, which
recomputes the correct tag, before comparing it. The vast majority of
MACs have a verification algorithm recomputing the correct tag [81]. To
the best of our knowledge, the only verification or decryption algorithm
not recomputing the correct tag is the one designed by Barwell et al. [10]
in a competitive work.

5.3. THE PROBLEM OF DECRYPTION LEAKAGE 73

5.3.2 DTE is not CIML2: a first attack

Now, we move to DTE. The first attack exploits the fact that both
the tag τ and the first ephemeral key k0 are computed from the block
cipher F∗k (which has a strongly protected implementation) which uses
in the computation the same key. Thus, in this attack in a decryption
query, the computation of the first ephemeral key k0 is used to obtain
information about a correct tag. In detail:
• Pick some randomness r∗ and a message m∗ = m∗1, ...,m

∗
l and

compute h∗ = Hs(r
∗‖m∗).

• Ask for the decryption of ciphertext c1 = (τ1, C1) with τ1 = h∗ and
any C1 = (c1

0, ..., c
1
l). Recover the first ephemeral key k1

0 = F∗k(h
∗)

via decryption leakage.
• Ask for the decryption of ciphertext c2 = (τ2, C2) with τ2 = k1

0

and any C2 = (c2
0, ..., c

2
l). Recover the first ephemeral key k2

0 via
leakage.
• From k2

0, compute the ciphertext C3 for PSV in this way:
– k3

0 := k2
0,

– c3
0 = Fk30(pB)⊕ r∗,

– For i = 1, ..., l
∗ k3

i = Fk3i−1
(pA),

∗ c3
i = Fk3i (pB)⊕m∗i

– The PSV-ciphertext C3 = (c3
0, ..., c

3
l)

and output (τ3, C3) with τ3 = τ2

This ciphertext is valid. In fact, the first ephemeral key is k3
0 = k2

0 (we
have obtained already via leakage F∗k(τ

2) during the second decryption
query). Thus, the randomness and the message retrieved by PSVDec is
(r∗,m∗). Moreover, F∗k(h

∗) = τ2, with h∗ = Hs(r
∗‖m∗) since we have al-

ready obtained via leakage this value (during the first decryption query).

Roughly speaking, we use twice the leakage of F∗k(·) in decryption.
The first time to obtain via leakage F∗k(h

∗) (which is the tag τ∗) asso-
ciated to h∗ (=Hs(r

∗‖m∗)), the second time to obtain F∗k(τ
∗) which is

the first ephemeral key k∗0 associated to τ∗. With the knowledge of a
correct triple (hash, tag, and first ephemeral key), it is easy to create the
forgery.

Decryption leakage vs encryption leakage. The fundamental dif-
ference between encryption leakages and decryption leakages lies in the
way the adversary can influence the generation of the ephemeral key
k0. In the CIML case, the adversary can only obtain the k0’s associated
with unpredictable random tags while, in the latter case, the adversary

74 CHAPTER 5. CONSTRUCTIONS

can obtain the k0’s from arbitrarily selected tags, which therefore allows
forgeries of valid ciphertexts.

5.3.3 DTE′ - the first patch

Note that in the previous attack, we have used twice the computation of
the first ephemeral key in decryption to obtain information about both
the first ephemeral key and the right tag to use in the forgery.

A simple and efficient way to prevent the previous attack on DTE is
to use a tweakable strongly-protected PRF to distinguish these two com-
putations, leading to DTE’ (see details in Alg. 7, the where we highlight
the changes in gray, and Fig. 5.5). The only difference with respect to the
DTE encryption is in the computation of τ = F∗,0k (h) and k0 = F∗,1k (τ),
that is we tweak F∗k with one bit to distinguish the tag-computation from
the first ephemeral key-computation. In this way, we can see F∗,0k , and
F∗,1k as independent pseudorandom functions. As a result, the adversary
is no more able to use a decryption query to obtain the correct tag as-
sociated to a certain h, via the leakage of the first ephemeral key k0.
We show next that this patch, although it prevents the previous attack,
it is not enough to provide CIML2-security, exhibiting a more powerful
forgery attack:

Figure 5.5: DTE’ leakage-resilient AE (part I). Part II is identical to
Fig. 5.4.

Security of DTE′. It can be easily proved that DTE′ keeps the same
security properties as DTE: AE-security, MRAE-security, CIML-security
and confidentiality with leakage.
In fact, instead of replacing a BC, a TBC must be replaced in all the
security proofs. Apart from this, they are identical.

5.3. THE PROBLEM OF DECRYPTION LEAKAGE 75

Algorithm 7 DTE’ - The changes from DTE are highlighted.
• Gen:

– k
$← K

– s
$← KH

– pA, pB
$← B (s, pA, pB are public parameters)

• Enck(m):
– Parse m = (m1,m2, . . . ,ml)

– r
$← {0, 1}n

– τ ← Tag0
k(r,m) :

∗ h = Hs(r‖m) // digest

∗ τ = F∗,0k (h) // tag

– C ← PSVEnc1
k(τ, (r,m)): // ...and encrypt

∗ k0 = F∗,1k (τ)

∗ y0 = Fk0(pB)
∗ c0 = y0 ⊕ r
∗ For i = 1, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· ci = π|mi|(yi)⊕mi

∗ C = (c0, c1, . . . , cl)
– Return c = (τ, C)

• Deck(c, τ):
– Parse C = (τ, C)
– Parse C = (τ, c0, c1, c2, . . . , c`)

– (r,m)← PSVDec1
k(τ, C):

∗ k0 = F∗,1k (τ)

∗ y0 = Fk0(pB)
∗ r = y0 ⊕ c0

∗ For i = 1, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· mi = π|ci|(yi)⊕ ci

∗ (r,m) = (r, (m1, ...,ml)
– h = Hs(r‖m)

– TagVrfy0
k(τ, (r,m)):

∗ τ̃ = F∗,0k (h) // check tag
∗ If τ = τ̃ Return m; Else Return ⊥.

76 CHAPTER 5. CONSTRUCTIONS

5.3.4 The second attack

Although the previous attack does not work anymore against ‘DTE′,
on the other hand, DTE’ is still not CIML2-secure. In fact, it may be
attacked with a variant of the attack against HBC (see Sec. 5.3.1:
• Ask for the decryption of c1 = (τ1, c1

0, ..., c
1
l) for random τ1 and

C1 = (c1
0, ..., c

1
l). During the decryption a randomness r1 and a

message m1 = m1
1, ...m

1
l are retrieved. Then h1 = Hs(r

1‖m1) is
computed and it is verified if τ̃1 = F∗,0k (h1) is equal to τ1. Recover
via leakage r1,m1 and τ̃1.
• Ask for the decryption of (τ2, c2

0, ..., c
2
l) for τ2 = τ̃1 and random

C2 = (c2
0, ..., c

2
l) in order to get k2

0 = F∗,1k (τ2) via leakage.
• From τ2 and k2

0 it is possible to compute the valid encryption of
(r1,m1). In fact, consider the PSV-ciphertext C3 built as follow:
– k3

0 = k2
0,

– c3
0 := Fk30(pB)⊕ r1,

– For i = 1, ..., l
∗ k3

i = Fk3i−1
(pA),

∗ c3
i = Fk3i (pB)⊕m1

i

– The PSV ciphertext C3 = (c3
0, ..., c

3
l)

and outputs c3 = (τ3, C3) with τ3 = τ2.
In fact, in decryption, r1 and m1 are retrieved since k3

0 = F∗,1k (τ3) and
τ̃3 = τ3 since it is the correct tag for (r1,m1) (since τ3 = τ̃1).
As a result, DTE′ is not CIML2.

Roughly speaking in this attack, first, we obtain via leakage the good
tag τ̃1 for a random couple randomness message (r1,m1). Then, via
leakage, the correct first ephemeral key k2

0 associated with the tag τ̃1 is
obtained. Knowing τ̃1 and k2

0 we are able to correctly forge.

Forgery with a given plaintext. In the previous attack, the forgery
is the encryption of a random plaintext (in fact, if DTE′ is implemented
with F a PRF, then, r1 and m1 are random, as it may be easily proved).
Instead, if the goal is to provide a forgery where the randomness used is
r∗ and the message encrypted is m∗, it is possible to modify the previous
attack slightly, as follow:
• Ask the decryption of a random ciphertext c0 = (τ0, C0) with τ0

and C0 are random. Via leakage, obtain the first ephemeral key
k0

0.
• Compute the PSV-ciphertext C1 as follow:

– k1
0 = k0

0,

5.4. MORE LEAK-FREE COMPONENTS DO NOT HELP. 77

– c1
0 := Fk10(pB)⊕ r∗,

– For i = 1, ..., l
∗ k1

i = Fk3i−1
(pA),

∗ c1
i = Fk1i (pB)⊕m∗i

– The PSV ciphertext C1 = (c1
0, ..., c

1
l)

and ask the decryption of c1 = (τ1, C1) with τ1 = τ0. Obtain via
leakage τ̃1 (Note that τ̃1 = F∗,0k (h1) with h1 = Hs(r

∗‖m∗) since
during the decryption, the couple randomness-message retrieved is
(r∗,m∗).
• Then, proceeds as in the previous attack. (Note that here

(r∗,m∗) = (r1,m1))

5.4 More leak-free components do not help.

We may wonder if this attack may be solved using more primitives with
a strongly protected implementations. We give a negative answer both
for HBC and DTE.

5.4.1 For HBC

We argue that adding leak-free does not improve security by visual in-
spection. That is, say, we add more leak-free components after each
execution of an F∗ in Fig. 5.1. We obtain a composition of strongly-
protected PRFs, which can be viewed as a single (less efficient) PRF
from the adversary’s point of view. Indeed, even if we modify Mack(m)
of HBC to return τ ′ = F∗i ◦ . . .F∗2 ◦ F

∗,0
k (h) with h = Hs(m), for any non

negative integers i, j, l, we simply have τ ′ = F∗0(h) for some F∗0. This does
not prevent the aforementioned forgery attacks.

5.4.2 For DTE

Since tweaking DTE does not allow avoiding forgery attacks, another
natural option to consider is the use of more strongly-protected com-
ponents. Before arguing that such an approach is also unlikely to be
effective, we first remind that the goal of DTE is to leverage the good
security properties offered by leakage-resilient stream ciphers. This goal
implies that for the encryption part of Fig. 5.4, we do not want to use
leak-free components on all the blocks (or the interest of the whole con-
struction vanishes). This goal leaves us with two main options, which we
discuss next: the addition of leak-free calls in the authentication part of
Fig. 5.3 and after the encryption part of Fig. 5.4.

78 CHAPTER 5. CONSTRUCTIONS

More leak-free components in the authentication part of DTE.
It is similar to Sec. 5.4.1.
We argue that such a variation does not improve security by visual in-
spection. That is, say we add more leak-free components after each
execution of an F∗ in Fig. 5.3. Independently of whether we operate this
change for the first or the second execution of F∗, we obtain a composi-
tion of strongly-protected PRFs, which can be viewed as a single (less effi-
cient) PRF from the adversary’s point of view. Indeed, even if we modify
Tagtwk (h) of DTE′ to return τ ′ = F∗i ◦ . . .F∗2 ◦ F

∗,0
k (h) and PSVEnctwk (τ ′, ·)

to compute the ephemeral key k′0 = F∗l ◦ . . .F∗j+1 ◦ F
∗,1
k ◦ F

∗
j ◦ . . .F∗i+1(τ ′),

for any non negative integers i, j, l, we simply have τ ′ = F∗0(h) and
k′0 = F∗1(τ ′) for some F∗0 and F∗1. This does not prevent the aforemen-
tioned forgery attacks.

More leak-free components after the encryption part of DTE.
Starting from any Π = (Gen,Enc,Dec), we define
Π′ = (Gen′,Enc′,Dec′) such that (1) Gen′ returns the output of Gen and
a (one-more) strongly-protected PRF G∗, (2) Enc′ returns the ciphertext
c output by Enc and τ ′ = G∗(c), (3) Dec′ first checks whether τ ′ = G∗(c)
and halts if it does not hold, otherwise it outputs Dec(c).6

Assuming there is a (q, t)-bounded adversary A against Π in CIML2,
we show how to build a (2q + 1, t)-bounded adversary A′ against Π in
CIML2 with the same advantage. The reduction is straightforward.
• A queries an encryption of m with randomness r to Enc: A′ queries

an encryption on (r,m) to Enc′ and gets back (c, τ ′) along with
L′E(r,m; k). Since τ ′ is given in the ciphertext, we simply have
L′E(r,m; k) = LE(r,m; k). Then, A′ hands A with c and LE(r,m; k).
• A queries a decryption of c to Dec: A′ conducts two steps,

1. A′ picks a dummy tag τ ′0 and queries a decryption of (c, τ ′0)
to Dec′. The check τ ′0 = τ̃ ′, where τ̃ ′ = G∗(c), may fail but
leaks the right tag τ̃ ′ to A′;

2. A′ queries a decryption of (c, τ̃ ′) to Dec′. Since the check
passes, now A′ learns Dec(c) and LD(c; k) and forwards them
to A.

Eventually A outputs a forgery c∗ with some probability. Then, A′ runs
the subroutine in item 1 on c∗ to get the right tag τ̃ ,∗ and finally outputs
(c∗, τ̃ ,∗), which is a forgery with the same probability.

Despite heuristic, the latter observations suggest that adding a leak-

6 We omit the use of obvious inputs such as keys, messages and so for readability.
Note also that one could additionally hash the ciphertext in Step (2) which would
not affect our argument.

5.5. HBC2 - THE SOLUTION FOR MACS 79

free-PRF anywhere inside a CIML2-insecure authenticated encryption
scheme will not directly help to prevent forgeries. We leave the proof of
a more formal statement (e.g., based on induction of the leak-free calls)
as an interesting scope for further research, and for now, we use these
observations to motivate the positive result in the next section.

5.5 HBC2 - the solution for MACs

This section is mainly inspired by the ToSC paper [27]. We present two
MACs, which are suf-L2. In both, we use the inverse in decryption as
a crucial element to solving the problem of verification leakage. The
last MAC, HTBC, is implicitly defined by the TEDT [21] and Spook
constructions [18].

5.5.1 HBC2: a suf-L2 MAC.

It turns out that using the inverse of the BC in verification provides a
powerful ingredient. The main problem was that in HBC the adversary
was able to retrieve, via verification leakage, the right tag τ̃ for a given
message m. In fact, τ̃ = F∗k(h) with h = Hs(m).
But, being able to use the inverse of the BC, it is not necessary to
recompute the good tag in verification. In HBC2 instead of computing
τ̃ and comparing it with the tag provided by the adversary, we compute
h̃ = F∗,−1

k (τ) and compare it with h = Hs(m).
That is, the verification algorithm instead of saying “your tag τ is wrong
because the correct tag is τ̃ ” and leaking τ̃ tells “ your tag τ is wrong
because τ is the good tag for this hash value h̃ which is different from
your digest h” and leaking h̃. We highlight this change of approach in
Fig. 5.6.
Now, if it is difficult to find a pre-image of this hash value h̃, the scheme
may be suf-L2. This modification only in the verification algorithm gives
birth to HBC2 (see details in Alg. 8 and Fig. 5.6, the changes from HBC
are highlighted in gray.)

5.5.2 Security of HBC2

As usual, before proving the security of HBC2, we have to describe its
leakage in the unbounded model:
Leakage: LM (m; k) := ∅ as for HBC.

LV (m, τ ; k) := h̃. In fact, the adversary, from the inputs, can
compute all the other values.

80 CHAPTER 5. CONSTRUCTIONS

Figure 5.6: HBC2.

Theorem 5. Let H : KH × HM → B∗ be a (t2, εCR)-collision resis-
tant and (t3, εroPR)-range-oriented pre-image resistant hash function. Let
F∗ : K∗×B∗ → B∗ be a (qM +qV +1, t1, εsPRP)-strong pseudorandom per-
mutation with a strongly protected implementation. Let HM = {0, 1}∗
and B∗ = T AG = {0, 1}n.
Then, HBC2 is (qM , qV , t, ε)-suf-L2-secure in the unbounded leakage
model with

εsTPRP + εCR + qV εroPR + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1

with q = qM + qV + 1, t+ tch(1,KH) + qtH ≤ t1, t+ qtH + tf∗(q)) ≤ t2 and
t+ qtH + tf∗(q−1) ≤ t3.

The terms of the bound.
• εsTPRP due to the use of a sTPRP and not a TPRP
• εCR since having found a collision for the hash function, it is easy

to make a forgery
• qV εroPR since the adversary has qV h̃ (which are randomly picked).

If he finds a pre-image for one of them, he can make a forgery.
• q(q−1)

2n+1 − qM (qM−1)
2n+1 because h̃ are not picked uniformly at random

(as required for range-oriented pre-image resistance), but using a
permutation (so, there are some values which cannot be picked).

Idea of the proof. Here we present only a sketch of the proof. The
full proof may be found in App. B.1.
Note that the actual flow of the proof is different; instead, our sketch
aims to give only the main ideas.

5.5. HBC2 - THE SOLUTION FOR MACS 81

Algorithm 8 HBC2, a suf-L-secure MAC - Full description.
The changes from HBC are highlighted.
• Gen:

– k
$← K

– s
$← KH (s is a public parameter)

• MACk(m):
– h = Hs(m) // digest
– τ = F∗k(h) // tag
– Return τ

• Vrfyk(m, τ) :
– h = Hs(m)

– h̃ = F∗,−1
k (τ)

– If h = h̃ Return >, Else Return ⊥.

Sketch. First, we replace the PRF F∗k(·) with a random permutation f∗

with the same signature.
Then, we want to prove that every verification query (mi, τ i) is invalid.
We may have two different events with respect to the value hi = Hs(m

i)
obtained during the ith verification query:
F1: hi = hj with hi = Hs(m

i) and hj = Hs(m
j) where mi and mj are

respectively the ith and the jth tag-generation query.
Since this implies a collision, the probability that this happens is
bounded easily by εCR.

F2: Event F1 does not happen and hi = h̃j for a previous verification,
that is h̃j is computed during the jth verification query, with j < i.
Since this implies having found a pre-image for a random target,
the probability that this happens is bounded easily by εroPR.

F3: Event F1 and F2 do not happen, thus f∗,−1(τ i) has never been
computed before.
Since f∗ is a random permutation, the probability that f∗(hi) = τ i

can be bounded by 1
2n−qE−i+1 (where qE + i − 1 is the maximal

number of previous evaluation of f∗).

5.5.3 HTBC: a BBB variant

The main problem of HBC2 is that there is a birthday-bound, due to
the collision resistance of H. Thus, it may not achieve security beyond
n/2-bits (thus, it achieves security up to half of the bit size of the blocks

82 CHAPTER 5. CONSTRUCTIONS

of the BC).
Although in many case it is enough, we can have a better result: HTBC
using a TBC instead of a BC achieves security up to the bit size of the
blocks of the BC.
We obtain this doubling the size of the output the hash function. Thus,
it doubles the birthday-bound for the collision-resistance (from q(q+1)

2n+1 ,
implying a security of n

2 -bits to q(q+1)
22n+1),thus, now, the εCR-term of the

bound implies a security of n-bits, which is equal to the bit size of the
blocks. In this way, we have obtained a beyond birthday (BBB) security
with respect to the bit size of the blocks of the TBC.

Considering a hash function H : KH × {0, 1}2n → B1 × B2 and a
strongly protected tweakable block cipher F∗ : K × {0, 1}n × {0, 1}n →
{0, 1}n, with HM = {0, 1}∗, simply using half of the digest as a tweak,
we can build a MAC, HTBC, which is suf-L2-in the unbounded model, as
described in Alg. 9 and Fig. 5.7. Note that for this MAC,ME = {0, 1}∗
and T AG = {0, 1}n.

Figure 5.7: HTBC leakage-resilient MAC.

5.5.4 Security of HTBC

As usual, before proving the security of HTBC, we have to describe its
leakage in the unbounded model:

5.5. HBC2 - THE SOLUTION FOR MACS 83

Algorithm 9 HTBC based on the Digest and Tag parts of TEDT - Full
description.
• Gen:

– k
$← K∗

– s
$← KH (s is a public parameter)

• MACk(m):
– h1‖h2 = Hs(m) // digest
– τ = F∗k(h2, h1) // tag
– Return τ

• Vrfyk(m, τ):
– h1‖h2 = Hs(m)
– h̃1 = F∗,−1

k (h2, τ)

– If h1 == h̃1 Return >, Else Return ⊥.

Leakage: LM (m; k) := ∅ since h can be computed by anyone and τ is the
output.
LV (m, τ ; k) := h̃1 since all others values can be computed from
anyone.

Now, to state the security of HTBC, we have to define a variant of the
range-oriented pre-image resistance (Def. 5). In fact, we cannot apply
straightforwardly in the proof the range-oriented pre-image resistance
since the first half of the target h̃1 is picked uniformly at random after
the adversary has chosen the second half of the target h2 as he wishes.
This, is due to the fact that h2 is chosen by the adversary, since he
chooses the message m during verification queries (remember that in
verification query h = h1‖h2 = Hs(m)).
Thus, we modify the definition of range-oriented pre-image resistance to
obtain the following:

Definition 28 (roPR′). A (t, ε)-range-oriented pre-image resistant hash
function with half of the input chosen by the adversary H : KH ×
HM → T1 × T2 is a function such that, for every t-bounded adver-
sary A = (A1,A2), the probability that A2(s, y1, st) outputs m ∈ HM
s.t Hs(m) = y1‖y2, with (y2, st) ← A1, is bounded by ε, where s $← KH,
y1

$← T1 are picked uniformly at random, that is:

Pr[A2(s, y1, st)⇒ m s.t. Hs(m) = y1‖y2 (5.1)

s.t. s $← KH, y1
$← T1, (y2, st)← A1(s)] ≤ ε (5.2)

84 CHAPTER 5. CONSTRUCTIONS

We think that this definition is meaningful since we think that for
a good hash function, it should be difficult to find a pre-image even if
half of the target is chosen by the adversary, while the remaining half is
picked uniformly at random.

This allows us to

Theorem 6. Let H : KH × HM → B1 × B2 be a (t2, εCR)-collision
resistant and (t2, εroPR′)-range-oriented pre-image resistant hash function
with half of the input chosen by the adversary. Let F∗ : K∗ × T W∗ ×
B∗ → B∗ be a (qM + qV + 1, t1, εsTPRP)-strong-pseudorandom tweakable
permutation with a strongly protected implementation. Let B1 = B∗ and
B2 = T W. Let HM = {0, 1}∗ and B∗ = T W = T AG = {0, 1}n.
Then, HTBC is (qM , qV , t, ε)-suf-L2-secure in the unbounded leakage
model with

εsTPRP + εCR + qV εroPR′ + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1

with q = qM + qV + 1, t+ tch(1,KH) + qtH ≤ t1, t+ qtH + tf∗(q) ≤ t2 and
t+ qtH + tf∗(q−1) ≤ t3.

Note that every term of the bound is tight, having a matching attack,
except the term q(q+1)

2n+1 , which is not beyond birthday. In fact, we have a
matching attack only up to qV +1

2n+1 (merely asking the verification of the
same message with different tags). To have a matching attack up q(q+1)

2n+1

we need to be able to find qE+qV +1 partial hash collision on h2 (that is,
we force to use in every query the same tweak h2, and the messages used
in tag-generation queries and the message used in verification queries
(which is always the same) are all different).

Idea of the proof. The proof is very similar to the proof of the security
of HBC2. Simply, it is necessary to treat the tweak correctly. Here we
present only a sketch of the proof. The full proof may be found in
App. B.4.
Note that the actual flow of the proof is different; instead, our sketch
aims to give only the main ideas.

Sketch. First, we replace the sTPRP F∗k(·, ·) with a random tweakable
permutation f∗ with the same signature.
Then, we want to prove that every verification query (mi, τ i) is invalid.
We may have two different events with respect to the value hi = Hs(m

i)
obtained during the ith verification query:

5.6. DTE2 - A SOLUTION FOR AE 85

F1: hi = hj with hi = Hs(m
i) and hj = Hs(m

j) where mi and mj are
respectively the ith and the jth tag-generation query.
Since this implies a collision, the probability that this happens is
bounded easily by εCR.

F2: Event F1 does not happen and the couple (h̃1
i
, hi2) has already

been obtained in a previous verification, that is h̃1
j
is computed

during the jth verification query (mj , τ j) with j < i, and hj =
hj1‖h

j
2 = Hs(m

j) is such that
hj2 = hi2.
Since this implies having found a half pre-image for a random target
h̃1
j
, after having chosen hj2 the probability that this happens is

bounded easily by εroPR′ .
F3: Event F1 and F2 do not happen, thus f∗,−1(hi2, τ

i) has never been
computed before.
Since f∗ is a random tweakable permutation, the probability that
f∗,−1(hi2, τ

i) = hi1 can be bounded by 1
2n−#Eval(hi2)

with #Eval(hi2)

is the number of times we have already lazy sampled f∗(hi2, ·) (that
is, f∗ with that given tweak) which is easily bounded by 1

2n−qE+i−1
(where qE + i− 1 is the maximal number of previous evaluation of
f∗).

Other solutions. Barwell et al. [10] have proposed a solution based
on pairing. The security of this solution has been proved in the generic
group model, for more details, see Chap. 5.10.

5.6 DTE2 - a solution for AE

This section is mainly inspired by the ToSC paper [27].
It presents a CIML2-secure scheme DTE2 obtained from DTE′ replac-

ing the TPRF with a sTPRP and using its inverse in decryption. Simply,
we replace HBC with HBC2.

DTE2 It turns out that using the inverse of the TBC in verification
provides a powerful ingredient to avoid degrading AE-security when Dec
leaks during checking ciphertext validity. The main problem was that in
DTE′ the adversary was able to retrieve, via decryption leakage, the right
tag τ̃ for a given couple randomness-message (r,m). In fact, τ̃ = F∗,0k (h)
with h = Hs(r,m).

86 CHAPTER 5. CONSTRUCTIONS

But, being able to use the inverse of the TBC, it is not necessary to
recompute the good tag to have a correct and tidy7 decryption algorithm.
In DTE2 instead of computing τ̃ and comparing it with the tag provided
by the adversary, we compute h̃ = F∗,0,−1

k (τ) and compare it with
h = Hs(r‖m).
That is, the decryption algorithm instead of saying “your tag τ is wrong
because the correct tag is τ̃ ” and leaking τ̃ , tells “ your tag τ is wrong
because τ is the good tag for this hash value h̃ which is different from
your digest h” and leaking h̃. This change of approach is highlighted in
Fig. 5.9.
Now, if it is difficult to find a pre-image of this hash value h̃ the scheme
may be CIML2. This modification only in the decryption algorithm gives
birth to DTE2 (see details in Alg. 10 and Fig. 5.8, the changes from DTE′

are highlighted in gray.)

Figure 5.8: DTE2 - decryption. The encryption is equal to DTE’, see
Fig. 5.5.

Security of DTE2. DTE2 achieves many security goals:
• it is a secure AE-scheme
• it is misuse-resistant
• it is CIML2-secure
• it provides confidentiality in the presence of leakage in encryption8.

All the other results being a sideline to the scope, here we only prove
the CIML2-security. For the other proofs, see the ToSC17 paper [27].

5.6.1 The CIML2-security of DTE2

Before proving the CIML2 security of DTE2, we have to consider what
means misuse and what is the leakage in the unbounded model:

7An AE-scheme is tidy if the decryption algorithm accepts as valid only ciphertexts
which are the possible outputs of the encryption algorithm.

8The leakage model used in this proof is 2-simulatability

5.6. DTE2 - A SOLUTION FOR AE 87

Algorithm 10 DTE2 - The changes from DTE are highlighted.
• Gen:

– k
$← K

– s
$← KH

– pA, pB
$← B (s, pA, pB are public parameters)

• Enck(m):
– Parse m = (m1,m2, . . . ,ml) in n-bit blocks
– r

$← {0, 1}n
– τ ← Tag0

k(r,m):
∗ h = Hs(r‖m) // digest
∗ τ = F∗,0k (h) // tag

– C ← PSVEnc1
k(τ, (r,m)): // ...and encrypt

∗ k0 = F∗,1k (τ)
∗ y0 = Fk0(pB)
∗ c0 = y0 ⊕ r
∗ For i = 1, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· ci = π|mi|(yi)⊕mi

∗ C = (c0, c1, . . . , cl)
– Return c = (τ, C)

• Deck(c):
– Parse c = (τ, C)
– Parse C = (c0, c1, c2, . . . , c`) in n-bit blocks
– (r,m)← PSVDec1

k(τ, C):
∗ k0 = F∗,1k (τ)
∗ y0 = Fk0(pB)
∗ r = y0 ⊕ c0

∗ For i = 1, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· mi = π|ci|(yi ⊕ ci

∗ (r,m) = (r, (m1, ...,ml))
– h = Hs(r‖m)

– TagVrfy0
k(τ, (r,m)):

∗ h̃ = F∗,−1,0
k (τ) // check tag

∗ If h = h̃ Return m; Else Return ⊥.

88 CHAPTER 5. CONSTRUCTIONS

Figure 5.9: The difference between the decryption of DTE2 from that
of DTE′.

Misuse: As for DTE we assume that the adversary during encryption
queries provides the randomness r alongside with the message.

Leakage: As for DTE, the encryption leakage is LE(r,m; k) := k0.
Instead for decryption leakage, we set LD(c; k) := (k0, h̃) because
from these values the adversary has all the information he wants.
In fact, he can recompute r andm (and thus h = Hs(r‖m)) from k0

because, from k0 all the k1, ..., kl and y0, ..., yl may be recomputed.

Theorem 7. Let H : KH × HM → B′ be a (t2, εCR)-collision resistant
and (t2, εroPR)-range-oriented preimage resistant hash function. Let F∗ :
K∗×B∗×T W → B∗ be a (2q, t1, εsTPRP)-strong tweakable pseudorandom
permutation with a strongly protected implementation. Let F : K × B →
B. Let HM = {0, 1}∗, T W = {0, 1} and B′ = B∗ = K = B = {0, 1}n.
Then, DTE2 which encrypts at most L-block messages is
(qE , qD, t, ε)-CIML2-secure in the unbounded leakage model with

ε ≤ εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1

where q = qE + qD + 1, t+ tch(1,KH) + tchn(2,B) + q(tH + (2L+ 1)tF) ≤ t1,
t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q)) ≤ t2 and
t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q−1)) ≤ t3.

Note that, as for DTE, we ask nothing about the security of F. We
only need that it has the right syntax.

5.6. DTE2 - A SOLUTION FOR AE 89

The terms of the bound.
• εsTPRP since we are using a sTPRP and not a TPRP
• εCR since having found a collision for the hash function, it is easy

to make a forgery
• qDεroPR since the adversary has qD h̃ (which are randomly picked).

If he finds a pre-image for one of them, he can make a forgery.
• q(q−1)

2n+1 − qE(qE−1)
2n+1 because h̃ are not picked uniformly at random

(as required for range-oriented pre-image resistance), but using a
permutation (so, there are some values which cannot be picked).

Here we present only a sketch of the proof. The full proof may be
found in App. B.5.
Note that the actual flow of the proof is different since we may obtain
better bounds (in particular we may avoid to have qV + 1 as a factor of
the whole bound); instead, our sketch aims to give only the main ideas
of the proof.

Sketch. First, we replace the sTPRP F∗k(·, ·) with a random tweakable
permutation f∗ with the same signature.
Then, we want to prove that every decryption query ci(τ i, Ci) is in-
valid. We may have three different events with respect to the value
hi = Hs(r

i‖mi) obtained during the ith decryption query:
F1: hi = hj with hi = Hs(r

i||mi) and hj = Hs(r
j ||mj) where (ri,mi)

and (rj ,mj) are respectively the ith and the jth encryption query
(the jth encryption query has happened before the ith decryption
query)

F2: Event F1 does not happen and hi = h̃j where h̃j is the check hash
value obtained during the jth decryption query (j < i)

F3: Neither event F1 nor event F2 happens.
Let Ei be the event that the ith decryption query is fresh and valid.
We bound now Pr[Ei ∩ Fi′] for i = 1, ..., qD + 1 and i′ = 1, 2, 3:
Ei ∩ F1: it means that we have found a collision for the hash function

Hs
Ei ∩ F2: now f∗,0,−1(τ i) has already been computed in the history of the

CIML2-game. It means that a pre-image for the hash function for
the value h̃j . Since these values are picked uniformly at random
(they are the outputs of f∗,−1), the probability that this happens
is bounded by εroPR. Moreover, there at most i − 1 ≤ qD possible
different targets.

Ei ∩ F3: since f∗,0,−1(τ i) has never been computed and f∗ is a random
tweakable permutation, the probability that f∗,0,−1(τ i) = hi is ex-
actly 1

2−n−q ≤
1

2−n−qE−qD where q is the number of queries already
done to f∗,0 (since f is a random permutation its injectivity gives

90 CHAPTER 5. CONSTRUCTIONS

some information).

5.7 EDT, Encrypt-Digest-then-Tag,
a CIML2-secure AE-scheme

This section is inspired by the ToSC paper [27].

DTE2 solves the problem of authenticity with leakage in both encryp-
tion and decryption with additional nice properties: confidentiality with
misuse and leakage in encryption and misuse resistance. On the other
hand, when decryption leaks it is easy to mount a DPA which is able to
retrieve the message encrypted, as we show here:

DPA in decryption. The idea of this attack is to mount a DPA
on the XORs used in decryption. It exploits the fact that the whole
psuedorandom stream used to encrypt a message depends only on τ .
Suppose that an adversary has received the ciphertext c∗ = (τ∗, C∗) and
he wants to recover the message. He may proceed as follow:
• Ask the decryption of C1, ..., Cq with ci = (τ∗, Ci) where Ci is

random and |Ci| = |C∗|.
• During each decryption target with a DPA the XORs mi

j = yij⊕ cij
and retrieve the yji which are equal to Fkij

(pB). Note, that ∀i, i′

and ∀j, kij = ki
′
j , thus y

i
j = yi

′
j and we denote them simply with yj

(omitting the i).
• After having recovered all the yj , the message encrypted by C∗ is
m∗ where m∗j = c∗j ⊕ yj

This situation may happen, for example, for secure boot loading or bit-
stream decryption, when the user is only supposed to be able to run the
code without having access to the sources (e.g., multimedia content or
video games).

Thus, it may be interesting to provide confidentiality when the ad-
versary also has access to leakage in decryption (denoted with CCAmL.
This has been formalized by the notion of eavesdropper security with
leakage in decryption (see the ToSC17 paper [27]).

To achieve this security, keeping AE-security, CIML2-security and
confidentiality with leakage and using only two calls to a highly-protected
primitive we have to relinquish the misuse-resistance (for a detailed study

5.7. EDT, ENCRYPT-DIGEST-THEN-TAG 91

of this problem, see Guo et al. [65]) since to protect against this attack
there are two possible paths, for example:

• first, to verify the ciphertext before to decrypt it. The problem
is that in many misuse-resistant AE schemes the tag depends on
all the plaintext. Thus, we should decrypt before verifying the
authenticity of the ciphertext, as it is done in DTE2. A possible
solution is to rencrypt the ciphertext and then, to authentify the
new ciphertext (but, this solution is less efficient).

• otherwise, we would need that if we change a bit of the cipher-
text, the whole message obtained during the decryption, would be
changed. This implies a double-pass decryption. If it is combined
with a double pass encryption (needed for misuse-resistance), the
scheme must be more complex, and, thus, less efficient.

DTE cannot fulfill this previous notion without relying on a strong
assumption since even if the tag is not correct, we decrypt. In particular,
note that the first ephemeral key computed in decryption, k0, which
is part of the output of the leakage function, LD(·, ·; ·), is computed
only from the tag. Thus, if we want to have information about the
message encrypted by the ciphertext c∗ = (C∗, τ∗) we have only to ask
the decryption of a ciphertext c1 = (C ′, τ∗) for any PSV-ciphertext C ′ to
obtain the right ephemeral key k∗0, from which it is possible to compute
the PSV-decryption of C∗.
Note that although c1 is not a valid ciphertext, k1

0 is computed during
decryption and k1

0 = k∗0. Thus, we would like to have a scheme which
first checks the authenticity of the ciphertext, then, starts decrypting.
To obtain this security we propose EDT, Encrypt-Digest-and-Tag:
• A nonce r is provided along with the message m9

• C ← PSVEnck(r,m)
that is, we encrypt using PSV, where the first ephemeral key,
k1 = F∗,0k (r).
• h← Hs(r‖C)

that is, the nonce r and the PSV-ciphertext C are digested via an
hash function
• τ = F∗,1k (h)

that is, we authenticate the hash
• the output is c = (C, τ)10.

9The nonce r may also be picked as a randomness, thus r $← {0, 1}n
10If r is picked by the algorithm, r must be part of the output. Instead, if it is a

nonce, it is already known.

92 CHAPTER 5. CONSTRUCTIONS

For decryption, we use again the inverse trick to have CIML2. First the
digest is recomputed via h̃ = F∗,1,−1

k (τ) and it is checked whether it
matches the actual digest h = Hs(r‖C). If it is not the case, the cipher-
text is deemed invalid; otherwise, the usual PSV-decryption takes place.
Thus, invalid ciphertexts never trigger the PSVDec.

Note that EDT is a secure nonce-based encryption scheme which
means that as long as r is not repeated during encryption queries, we
keep the AE-security (and confidentiality with leakage).
On the other hand, we relinquish the misuse-resistance since PSV is not
a misuse-resistant encryption scheme. In fact, the first ephemeral key is
computed directly from the nonce r. Thus, the PSV ciphertext blocks
ci does not depend on all the message, which is a necessary condition to
reach misuse-resistance.

For more details on EDT, see Alg. 11 and Fig. 5.10.

Security of EDT. EDT achieves many security goals:
• it is a secure AE-scheme
• it provides nonce misuse-resilience (see App. A.2)
• it is CIML2-secure
• it provides confidentiality in the presence of leakage in encryp-

tion11.
• it has eavesdropper security with differential leakage (EavDL) [a

notion introduced in the ToSC17 paper [27]]
All the other results being a sideline to the scope, here we prove only
the CIML2-security. For the other proofs, see the ToSC17 paper [27].

Figure 5.10: EDTencryption.

11The leakage model used in this proof is 2-simulatability

5.7. EDT, ENCRYPT-DIGEST-THEN-TAG 93

Algorithm 11 EDT.
• Gen:

– k
$← K

– s
$← KH

– pA, pB
$← B (s, pA, pB are public parameters)

• Enck(r,m):
– Parse m = (m1,m2, . . . ,ml)
– C ← PSVEnc0

k(r,m) // encrypt
∗ k1 = F∗,0k (r)
∗ y1 = Fk1(pB)
∗ c1 = π|m1|(y1)⊕m1

∗ For i = 2, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· ci = π|mi|(yi)⊕mi

∗ C = (c1, c2, . . . , cl)
– τ ← Tag1

k(C):
∗ h = Hs(r‖C) // digest
∗ τ = F∗,1k (h) // ... and tag

– Return c = (C, τ)
• Deck(r, c):

– Parse c = (C, τ)
– Parse C = (c1, c2, . . . , c`)
– TagVrfy1

k(C, τ):
∗ h = Hs(r‖C)
∗ h̃ = F∗,1,−1

k (τ) // check tag
∗ If h 6= h̃ Return ⊥.

– m← PSVDec0
k(r, C):

∗ k1 = F∗,0k (r)
∗ y1 = Fk1(pB)
∗ m1 = y1 ⊕ c1

∗ For i = 2, .., l
· ki = Fki−1

(pA)
· yi = Fki(pB)
· mi = π|ci|(yi)⊕ ci

∗ m = (m1, ...,ml)
– Return m

94 CHAPTER 5. CONSTRUCTIONS

5.7.1 The CIML2-security of EDT

Before proving the CIML2 security of EDT, we have to consider what
means misuse and what is the leakage in the unbounded model:
Misuse: For EDT we assume that the adversary during encryption queries

provides the randomness r alongside with the message.
Leakage: As for DTE, the encryption leakage is LE(r,m; k) := k1, that

is, the first ephemeral key.
Instead for decryption leakage, we set LD(c; k) := h̃ for invalid
decryption queries; k1 for valid decryption queries (since h̃ = h for
valid decryption queries). In fact, from these values, the adversary
has all the information he wants.

Theorem 8. Let H : KH×HM→ {0, 1}n be a (t1, εCR)-collision resis-
tant and (t1, εroPR)-range-oriented preimage resistant hash function. Let
F∗ : K∗ × {0, 1}n × T W → {0, 1}n be a (2q − 1, t1, εsTPRP)-strong tweak-
able pseudorandom permutation with a strongly-protected implementa-
tions. Let F : {0, 1}n × {0, 1}n → {0, 1}n. Let HM = {0, 1}∗ and
T W = {0, 1}.
Then, EDT which encrypts at most L-block messages is (qE , qD, t, ε)-
CIML2-secure in the unbounded leakage model with

εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1

with q = qE+qD+1, t+tch(1,KH)+tchn(2,B)+qtH+(q−1)(2L−1)tF) ≤ t1,
t+ tchn(2,B) + qtH + (q − 1)(2L− 1)tF + tf∗(2q−1)) ≤ t2
and t+ tchn(2,B) + qtH + (q − 1)(2L− 1)tF + tf∗(2q−2) ≤ t3.

Note that, as for DTE and DTE2, we ask nothing about the security
of F. We only need that it has the right syntax.

Here we present only a sketch of the proof. The full proof may be
found in App. B.6.
Note that the actual flow of the proof is different; instead, our sketch
aims to give only the main ideas of the proof.

Difference with DTE2 proof. The proof is inspired by that of DTE2.
We have only to consider that now h = Hs(r‖C) (and no more h =
Hs(r‖m) and adjust everything consistently).

Sketch. First, we replace the sTPRP F∗k(·, ·) with a random tweakable
permutation f∗ with the same signature.
Then, we want to prove that every decryption query ci = (Ci, τ i) is

5.8. CONCRETE, A SINGLE-LEAK-FREE-CALL SCHEME 95

invalid. We may have three different events with respect to the value
hi = Hs(r

i‖Ci) obtained during the ith decryption query:
F1: hi = hj with hi = Hs(r

i‖Ci) and hj = Hs(r
j‖Cj) where Ci and

Cj are respectively the outputs of PSVEnc during the ith and the
jth encryption query (on input (rj ,mj))

F2: Event F1 does not happen and hi = h̃j where h̃j is the check hash
value obtained during the jth decryption query (j < i)

F3: Neither event F1 nor event F2 happens.
Let Ei be the event that the ith decryption query is fresh and valid.
We bound now Pr[Ei ∩ Fi′] for i = 1, ..., qD + 1 and i′ = 1, 2, 3:
Ei ∩ F1: it means that we have found a collision for the hash function

Hs
Ei ∩ F2: now f∗,1,−1(τ i) has already been computed in the history of the

CIML2-game. It means that we have found a pre-image for the hash
function for the value h̃j . Since these values are picked uniformly
at random (they are the outputs of f∗), the probability that this
happens is bounded by εroPR. Moreover, there at most i− 1 ≤ qD
possible different targets.

Ei ∩ F3: since f∗,1,−1(τ i) has never been computed and f∗ is a random
tweakable permutation, the probability that f∗,1,−1(τ i) = hi is ex-
actly 1

2−n−q ≤
1

2−n−qE−qD where q is the number of queries already
done to f∗,0 (since f is a random permutation its injectivity gives
some information).

FEMALE. If we want a scheme which has the advantages of EDT, with
respect to DTE2 with, in addition, misuse-resistance, as DTE2, Guo et
al. [65] have provided FEMALE. On the other hand, it is much more
expensive, since instead of PSV, a double pass encryption scheme is
used. Moreover, it uses our solution, the inversion of the TBC to have
the CIML2-security.

5.8 CONCRETE, reducing the number of strongly
protected TBC

In this section, we exhibit a CIML2-secure AE scheme using only one
call to the strongly protected TBC. This scheme is CONCRETE, which
stands for COmmit-eNCRypt-sEnd-The-kEy.
This section is based on the AFRICACRYPT19 paper [29] and its ex-
tended version on eprint [28].

96 CHAPTER 5. CONSTRUCTIONS

The reason to do this is that the strongly protected building block
is very expensive. Thus, if we want to have a more efficient scheme, the
first solution is to reduce the number of times this building block is used.
We want to explore what we can achieve with a single call to the strongly
protected building block. The mode we present is more efficient, but at
the price of shifting the nonce-based AE approach to a probabilistic AE
approach.

Characteristic of previous designs. We observe that we can divide
every of the previous CIML2 scheme in three parts

a Generation of the first ephemeral key (which is either called k0 or
k1)

b Encryption,12 starting from the first ephemeral key
c Authentication

Note that these steps must not be done in this order. For example DTE
(see Sec. 5.6) and DTE2 are c-a-b, while EDT is a-b-c.
The calls to the strongly protected component are usually used in Step
a and c, and the verification should be done in a clever way, not simply
a basic recheck of the authentication part.

Design goals. The design and security constraints of the scheme are
the following:
• AE secure in the black-box model (we can use either the nonce-

based AE approach or the pAE)
• CIML2 secure in the unbounded model
• CPAL and CCAL secure with some hypothesis about the leakage
• only one call to the strongly protected implementation per execu-

tion
• the key k of the scheme used only as a key of the leak-free
• F changes keys as much as possible (rekeying), as in DTE and EDT

The hypothesis on k is because the key of the strongly-protected F∗

is the only internal secret not leaked in the unbounded model.
To reduce the possibility of leakage, we should not use the PRF F with
more than two different plaintexts for any key it uses in any security
game. Thus, we would like to use a scheme based on rekeying, as PSV.

Design rationale of the Commit-Encrypt-Send-the-Key,
CONCRETE scheme. We present here the ideas of the mode

12usually using PSV or one of its variant or a sponge, as done in other works not
covered in this thesis.

5.8. CONCRETE, A SINGLE-LEAK-FREE-CALL SCHEME 97

CONCRETE (Fig. 5.11). In particular, how we treated each of the three
different parts of a leakage-resilient AE scheme:
• Derivation of the first ephemeral key We pick a randomly k0

as first ephemeral key. We use a round of the PRG of Standaert
et al. [124] to obtain a commit of k0 (called c0), which consists in
the encryption of on with k0, and a new fresh key (k1). That is,
using the public constants pA and pB (two strings of n bits, with
pA 6= pB) we obtain k1 = Fk0(pA) and c0 = Ek0(pB).
• Encryption We use here the strongly protected building block

which is a TBC F∗ with T W = {0, 1}n. From k1 we can use the
PSV [111] (see Fig. 3.4) encryption algorithm to encrypt m (which
is parsed in m = (m1, ...,ml)), wherw k1 is the first ephemeral key,
using the constants pA and pB, obtaining c1, ..., cl. We denote the
algorithm in this part Enc.
• Authentication Since k0 is picked uniformly at random, it must

be recomputed by the decryption algorithm Dec from the cipher-
text c. Thus, to send it, we hash the commitment c0 and the output
of the encryption part c1, ..., cl obtaining h = Hs(c0‖c1‖...‖cl) and
we encrypt k0 with the long term key k obtaining cl+1 = F∗k(h, k0).
The ciphertext is c := (c0, c1, ..., cl, cl+1).
• Decryption First k0 is retrieved, with k0 = F∗,−1

k (h, cl+1) with
h = Hs(c0‖...‖cl), then c̃0 = Fk0(pB) is computed. If c0 = c̃0, the
ciphertext is deemed valid and decryption proceeds in the natural
way; otherwise, the ciphertext is deemed invalid.
• Ciphertext expansion The ciphertext has an expansion of two

blocks, that is, given c ← Enck(m), |c| = |m| + 2n. On the other
hand, since the nonce should be sent anyway, if the nonce is a n-
bit string, the size of ciphertext plus the nonce sent is the same for
CONCRETE, EDT and DTE.
• Cost If the hash function is implemented with the Hirose construc-

tion [71], thus, its cost is 2cF for each block processed, then, the
cost of CONCRETE to process l block message is cF∗ + 4(l + 1)cF,
with cF∗ and cF the cost, respectively, of one call to F∗ and F.

A detailed description of the scheme can be found in Alg. 12. Note that
c0, ..., cl can be seen as PSVk0(0n‖m).

Replacing PSV in the encryption part. It is possible, as discussed
in the proofs, to replace PSV with other encryption scheme based on
rekeying. The security constraints of such replacements are discussed
after the proof in the eprint version [28].
Although CONCRETE is AE and CIML secure and it uses only one leak

98 CHAPTER 5. CONSTRUCTIONS

Algorithm 12 The leakage resilient pAE-scheme
CONCRETE = (Gen,Enc,Dec) - Full description.
• Gen:

– k
$← K∗

– s
$← KH

– Public parameters:
∗ pA, pB ∈ {0, 1}n, pA 6= pB
∗ s

• Enck(m):
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = n

and |ml| ≤ n
– k0 := r

$← K
– c0 = Fk0(pB) // Commit
– For i = 1, ..., l: // Encrypt
∗ ki = Fki−1

(pA)
∗ yi = Fki(pB)
∗ ci = π|mi|(yi)⊕mi

– h = Hs(c0‖c1‖...‖cl)
– cl+1 = F∗,hk (k0) // Send the key
– Return c = (c0, ..., cl, cl+1)

• Deck(c):
– Parse c = (c0, ..., cl+1) with |c0| = ... = |cl−1| = |cl+1| = n

and |cl| ≤ n
– h = Hs = (c0‖...‖cl+1)

– k0 = F∗,−1,h
k (cl+1)

– c̃0 = Fk0(pB)
– If c0 6= c̃0

∗ Return ⊥
– For i = 1, ..., l
∗ ki = Fki−1

(pA)
∗ yi = Fki(pB)
∗ ci = π|ci|(yi)⊕mi

– Return m = (m1, ...,ml)

5.8. CONCRETE, A SINGLE-LEAK-FREE-CALL SCHEME 99

Figure 5.11: The leakage-resilient pAE-scheme CONCRETE [29].

free call, it is neither nonce-misuse resistance (as DTE [24] and
FEMALE [65]) nor secure beyond birthday and in the multi-user case (as
TEDT [21]).

History of the design The main idea is avoiding to use a leak-free
component to generate the first ephemeral key k1, but picking it uni-
formly at random, see Fig. 5.12 a.
But this imposes to send the ephemeral key k1 with the ciphertext, to
allow the receiver to decrypt.
Next, we have the problem of sending k1. To do this we use the sTPRP
F∗ to generate cl+1 = F∗k(tw, k1), because to send k1 there is no other
possibility than to use the master key k, see Fig. 5.12 b. We have to
decide what to put as tweak tw. Since we want to have authentic-
ity, cl+1 must depend on all the other blocks. This can be done using
tw = h′ = Hs(c1‖...‖cl), see Fig. 5.12 c. Unfortunately this solution gives
no authenticity, since every ciphertext would be valid13.
Thus, we add, in the ciphertext, a commitment c0 of k1, as c0 = Fk1(pC)
for a certain constant pC (pC must be different from pB [and pA], oth-
erwise, the first block of plaintext would be leaked [or k2]). Thus,
h = Hs(c0‖...‖cl) (see Fig. 5.12 d). This scheme is CIML secure, when
we recompute c̃0 and check it.
But in this last scheme, k1 is used three times with three different plain-
texts as key of F. Thus, to avoid this, we pick randomly k0, we compute
its commit c0 = Fk0(pB) and we do a rekeying to obtain k1 = Fk0(pA)

13It could be argued that such a scheme would be CCA-secure, since it could be
proved that every decryption query made by an adversary, which is an not answer
from a previous encryption query, would result in a random answer.

100 CHAPTER 5. CONSTRUCTIONS

Figure 5.12: How we designe CONCRETE.

5.8. CONCRETE, A SINGLE-LEAK-FREE-CALL SCHEME 101

(see Fig. 5.12 e).

We note that our construction could benefit from implementations of
the strongly protected component based on randomized countermeasures
(such as masking, shuffling), in which case the PRG needed for both could
be shared. However, this may not be systematic since the quality of the
random numbers used in side-channel countermeasures may be weaker
than for cryptographic keys.

Security of CONCRETE CONCRETE achieves these security goals:
• it is a secure pAE-scheme
• it is CIML2-secure
• it provides confidentiality in the presence of leakage in encryp-

tion14.
• it is RUP-AE-secure, that is, it is secure when unverified plaintexts

are released15

All the other results being a sideline to the scope, here we prove only
the CIML2-security. For the other proofs, see the eprint paper [28].

5.8.1 The CIML2 security of CONCRETE

Before proving the CIML2 security for CONCRETE, we have, as usual,
to define what means misuse and its leakage functions in the unbounded
leakage model.
Misuse: we suppose that the adversary can control the PRG providing

the randomness, thus, he provides r (thus, he chooses k0)
Leakage in the unbounded model, when there is misuse, we can assume

that there is no leakage since all the ephemeral keys and inner
values (apart from the key of F∗) can be recomputed from the
randomness r and the ciphertext c.
On the other hand, LD(c; k) := k0, because from k0, the adversary
can recompute all values used in the decryption apart from k.

It is interesting that when there is randomness misuse (when the adver-
sary provides k0), there is no useful information in the encryption leakage
for CIML2 security.

Theorem 9. Let F∗ : K∗×B∗×T W∗ → B∗ be a leak free (q+1, εsTPRP)-
strong tweakable pseudorandom permutation (sTPRP), let F : K×B → B
be a (2, εPRF)-pseudorandom function (PRF) and let H : KH×HM→ B′

14The leakage model used in this proof is 2-simulatability
15For the RUP-AE-security, we request that the plaintext m retrieved during a

decryption query, if it comes from an invalid ciphertext, is indistinguishable from
random.

102 CHAPTER 5. CONSTRUCTIONS

be a εCR-collision resistant hash function. Let B∗ = K = B and T W∗ =
B′. Let B = {0, 1}n.
Then, the mode CONCRETE, which encrypts messages which are at most
L-block long, is (qE , qD, ε)-CIML2 secure in the unbounded leakage model
with

ε ≤ εsTPRP +
(qE + qD)(qE + qD − 1)

2n+1
+ εCR+

(qD + 1)(L+ 1)(qD + 2qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF.

with q = qE + qD and

t1 = tch′ + (q + 1)(tH + (2L+ 1)tF)

t2 = tch′ + (q + 1)(tH + (2L+ 1)tF) + tf(Q+1).

Observation on the bound. We want to discuss some terms of the
bound:
• εsTPRP + (qE+qD)(qE+qD−1)

2n+1 because F∗ is a sTPRP and not a PRF.
• εCR because, if there is a collision, the mode is trivially broken:

given c0 = Fk0(pB) if there is a collision ((c0, c1, ..., cl), (c0, c
′
1, ..., c

′
l))

we observe that cl+1 = c′l+1 if they both encrypt k0,
• (qD + 1)εPRF, because we do not check k0, but Fk0(pB). 16

• (qD+1)(L+1)(qD+2qE)
2n+1 because we need that, in every decryption

query, k0 must have never been used before as ephemeral key; oth-
erwise, c0 would not be random anymore. It may be improved to
(qD+1)(qD+2qE)

2n+1 if F is not used in PSV, [for example, we may use a
different PRF, but this choice would require one more primitive to
implement].

Sketch. In the proof, first, we replace F∗ with a random tweakable permu-
tation, then, we suppose that all the hash outputs are different (provided
that their inputs are different). For fresh decryption queries, on input
c = (c0, c1, ..., cl, cl+1) we observe the following:

1. If the partial ciphertext (c0, ..., cl) is fresh, then, its hash h is
fresh. Thus, k0 is random. Consequently, the probability that
c0 = Fk0(pB) is bounded by εPRF.

2. If the partial ciphertext (c0, ..., cl) is not fresh and comes from an
encryption query, then, the couple ((c0, ..., cl), cl+1) must be fresh;
otherwise, either the decryption query is not fresh [not possible by

16If we had checked k0 and put it into the ciphertext, i.e., c0 = k0, we would have
obtained a better CIML2 bound, but no pAE security.

5.9. OTHER CONSTRUCTIONS 103

hypothesis] or it is the repetition of a previous decryption query [so,
its validity has already been established]. Thus, k0 = F∗,−1

k (h, cl+1)
is still random. Then, again, the probability that c0 = Fk0(pB) is
bounded by εPRF.

To prove that Pr[c0 = Fk0(pB)] is negligible, we use that F is a PRF,
thus, we must assume that k0 is fresh.

The complete proof can be found in App. B.7.

Interestingly, we use the fact that F is a PRF in the proof (to prove
that the probability that c0 = Ek0(pB) is negligible). This is a difference
with respect to all previous proofs, Thm. 4, Thm.‘7 and 8, where no
hypothesis on F has been used in the CIML and CIML2 proofs.

5.9 Other constructions

In many constructions a new primitive is used: sponges.

Sponges. With the victory of Keccak [32] for the competition to build
the new standard hash function SHA-3, a new cryptographic primitive
has become popular: the sponge [32].
A sponge is based on a permutation p : {0, 1}n → {0, 1}n and has two
steps: absorbing and squeezing.
The state of the permutation is divided in two parts, the rate part of r
bits, and the capacity.
First, the sponge is initialized choosing its initial state s0.
When, a sponge absorbs a message m = (m1, ...,ml) , with |mi| ≤ r, it
simply updates its state with si+1 ← p(si⊕mi‖0∗), that is, mi is XORed
to the first r bits of the state si, then, applying the permutation p to the
results of the previous computation, a new state state si+1 is obtained.
At the end, the output is obtained squeezing the sponge, that is the
outputs of the sponge is the first r bits of the states sl+1, sl+2, ... with
si+1 ← si. That is, we takes the first r bits of sl+1, then, we update the
state with the permutation and we iterate until we have a string long
enough.
The security of sponges is based on the fact that the capacity part of the
state is not under adversarial control.

Sponges are often used in the duplex construction:

104 CHAPTER 5. CONSTRUCTIONS

The duplex construction. It is based on a sponge. The idea is not
to wait for the end of the absorption phase to start outputting bits and
using them as a stream cipher. Instead, after initialization, the sponge is
used at the same time to absorb the message and to encrypt. After every
time the permutation is called, a part of the updated state is output, and
it is used as stream cipher block; that is, a part of the state is XORed
with a block of message forming a ciphertext block. Then, the message is
absorbed, that is XORed with the state, and then, the state is updated
doing a new round of the permutation on it.
In this way, every block of the ciphertext depends on all previous blocks.
Thus, part of the final state can be used as a tag.
In this way, a sponge can be used as a one-pass AE scheme (Fig. 5.14
depicts an example of a duplex construction).

Advantages of the duplex construction. The duplex construction
seems very interesting from a leakage-resilient point of view since if the
capacity (that is, the part of the state which is not output) is not fully
leaked, then, the new state (after having applied the permutation to the
previous state) should be “enough” random.

Taxonomy of other constructions. We divide these constructions
according to the security they offer:

• Schemes which offer CIL1 (Ciphertext Integrity with leakage in en-
cryption) and CCAL1 (CCA 17 with leakage in encryption)

• Schemes which offer CIML2 and CCAmL1 (CCA with misuse-resilience
and leakage in encryption)

• Schemes which offer CIML2 and CCAmL2 (CCA with misuse-resilience
and leakage in both encryption and decryption)

We conclude with the construction of Barwell et al. [10] which have
different security goals.

5.9.1 Inner-keyed sponges: CIL1 and CCAL1-secure.

Here, we propose a scheme which is based on the duplex construction:
PHOTON-BEETLE [?], see Fig. 5.13.
Note that the key is only used at the start of the encryption to initialize

17CCA stands for Chosen Ciphertext attacks security, that is, we suppose that the
adversary is not able to distinguish the encryption of two plaintexts with the same
length even if he has oracle access to Enck and Deck.

5.9. OTHER CONSTRUCTIONS 105

Figure 5.13: The PHOTON-BEETLE AE mode. The figure is taken
from [?].

the sponge (Similar designs have the NIST candidates Gimli, Xoodyak [41],
and Oribatida).
These schemes are called inner-keyed because the key is put in the ca-
pacity of the initial state of the sponge.

Confront with our modes. The idea is that during encryption if the
full state of the sponge is not completely leaked, the adversary is not
able to make a forgery.
On the other hand, if a nonce is reused or if the adversary has access
to decryption leakages, he can mount a DPA attack on the state. Thus,
recovering it, he may create any forgery.
Instead, in our modes, we use the key also when we authenticate the hash
of the ciphertext (the final state of the sponge can be seen as the hash
of the ciphertext). With our solution, we can cover the case of misuse
and, with the inversion, decryption leakages.

5.9.2 ASCON and Spook: CIML2 and CCAmL1 secure

ASCON and Spook are candidates to the NIST competition for lightweight
AE. They are based on the duplex construction.

106 CHAPTER 5. CONSTRUCTIONS

Figure 5.14: The ASCON AE mode. The figure is taken from [44]

Differently from the schemes presented in the previous subsection, in
these modes the key is also used when the ciphertext is authenticated.

ASCON. ASCON [44] (see Fig. 5.14) is based on the duplex construc-
tion. The key of the scheme is used at the start as inner-keyed sponges,
than, after having done the first round of the sponge, it is XORed again
to the state.
Moreover, it is used again before the final permutation (which produces
the “digest” of the whole ciphertext) and it is XORed again to the output
in order to obtain the tag.

Spook. Spook [?] can be divided in 4 phases:

• Using a strongly protected TBC (and the key), starting from the
nonce (and, using the public key P as tweak) we produce an
ephemeral key

• From this ephemeral key, we use a sponge to absorb the associated
data.

• We use a duplex construction to encrypt and absorb the ciphertext

5.9. OTHER CONSTRUCTIONS 107

Figure 5.15: The Spook AE mode. The figure is taken from [?]

• We authenticate with the strongly protected component (and the
key), the final state of the sponge18

• In decryption, to verify we use the inverse of the TBC, as in DTE2
and in EDT.

Spook is our proposal to the NIST competition. It can be seen in
Fig. 5.15. It has been studied in many works [?, ?, ?, 67, ?].
Note that Spook achieves multi-user security.

Comparison with our modes. We start observing we can see that
both schemes are following the paradigm of EDT, with the encryption
and the digest done in the same phase. In particular, the key is used in
both modes as for EDT, during the initialization, which depends on the
nonce, and during the tag computation.
Spook allows a CIML2 security using the inversion of the TBC during
decryption, while for ASCON the comparison needs to be done in a “leak-
free” way, if we study it in the unbounded-leakage model.
Regarding confidentiality they do not offer security if a nonce is reused,
but only for reused nonce (misuse-resilience). Moreover, if decryption
leaks, a DPA attack can be easily done (similarly to what presented for
DTE2, see Chap. 5.7 since before verification, the plaintext is recom-
puted.
On the other hand, with respect to EDT, these schemes are one-pass,
thus, more efficient.

5.9.3 ISAP and TEDT: CIML2 and CCAmL2-secure

Here, we propose two schemes which are CIML2 and CCAmL2-secure:
ISAP and TEDT.

18Note that the last bit of the tweak is one in this call, while it was forced to be 0
in the other ones to prevent the attack described in Sec. 5.3.2.

108 CHAPTER 5. CONSTRUCTIONS

ISAP. ISAP [43] is a 2-pass encryption mode based on sponges. It is
described in Fig. 5.16.
It is based on four permutations: pK , pB, pE and pH . These four per-
mutations are modeled as being random.
During encryption, first the state is initialized with the key k and a fixed
IV, and then, it is updated with a new round of the permutation pK .
Then, the nonce N is absorbed (that is, first it is XORed with part of
the state, then, the new state is updated doing a new round of the per-
mutation pB). This absorption is done bit by bit to avoid DPA.
Then, the ciphertext is obtained using the permutation pE as a stream
cipher (that is, after every round of the permutation, rH bits of the state
are extracted and XORed with the ith block of message Mi to obtain
the ith block of ciphertext Ci).
After that, a second pass is done, using the sponge as a hash function:
the sponge is initialized with the nonce N and a fixed IV, IVA, then, it
absorbs the associated data and the ciphertext to obtain a value Y 19.
Finally, Y is absorbed as the nonce, bit by bit, to give K∗A, and the tag is
computed replacing the first |k| bits of the state with K∗A, doing another
round of the permutation and taking the first τ bits of the output.
This mode is very well designed. It prevents DPA absorbing bit by bit
the value which may be chosen by the adversary.
The security of ISAP in the presence of leakage has been studied by many
works [42, 67, 45, 49, 50].

Comparison between ISAP with our modes. We can see, as in our
modes, that there are parts of the mode which are more protected than
others. In fact, we can see the absorption bit by bit of the nonce N and
of Y as a strongly protected implementation of the sponge, while for the
rest of the mode a faster, but not DPA-secure, sponge is used.
We can see that ISAP, as EDT is based on a Encryption, Digest and Tag
paradigm.
On the other hand, in verification the tag must be recomputed and ver-
ified. Thus, to obtain authenticity when also decryption leaks, it is
necessary to have a DPA-secure comparison between the tag T provided
with the ciphertext and the correct tag T̃ (the authors propose to do an
additional round of the permutation, that is, to compare the output of
p(T‖0∗) with those of p(T̃‖0)).
In particular, if we study the CIML2-security of ISAP in the unbounded
leakage model, also the comparison must be assumed as “leak-free”, while

19Note that when all the associated data are absorbed, the last bit of the state,
which belongs to the capacity part of the state, is XORed with 1 to distinguish the
two situations.

5.10. THE CONSTRUCTION OF BARWELL ET AL. 109

in our modes, the adversary receives the values that are compared.
Our approach and their are very interesting, with their pros and cons.
With respect to DTE and DTE2 which are two pass-modes, we observe
that our modes offer misuse-resistance in addition.

TEDT. TEDT [21], see Fig. 5.17 is a 2-pass mode based on TBC. TEDT
is based on EDT. It can be divided in 4 phases:
• An ephemeral key is created using the strongly protected TBC,

from the nonce, the key and the public key T .
• From this ephemeral key, we use a variant of PSV to compute the

ciphertext (the public key is used as a tweak for the TBC).
• We use the Hirose construction to hash the associated data, the

nonce, the ciphertext and the public key.
• We authenticate with the strongly protected component (and the

key), this hash with HTBC20

• In decryption, to verify we use the inverse of the TBC, as in DTE2
and EDT.

Comparison between TEDT. TEDT achieves CIML2 as EDT in the
same way. On the other hand, it achieves BBB security (using the public
key, and doubling the outputs of the key). Moreover, the use of T in
the encryption part allows to avoid that if a collision appears on the
ephemeral keys, confidentiality is doomed.
Finally, it achieves multi-user security.
We can see TEDT as an improvement of our schemes.

5.10 The construction of Barwell et al.

Barwell et al. [10] started proving that Encrypt-then-MAC is secure un-
der leakage. Then, they aim to have a mode that offers both misuse and
security with leakage. So they propose SIVAT (Synthetic IV and Tag).
Their idea is to use an iv-based encryption scheme. They obtain the iv
via a leakage resilient PRF, whose inputs are nonce, the message, and the
associated data (AD). Then, the tag is computed via a leakage-resilient
MAC from the ciphertext, the iv and the AD.
To instantiate the PRF, they take advantage of the existing leakage-
resilient literature.
For the MAC, to avoid that the leakage of the verification may cause

20Note that the last bit of the tweak is one in this call, while it was forced to be 0
in the other ones to prevent the attack described in Sec. 5.3.2.

110 CHAPTER 5. CONSTRUCTIONS

Figure 5.16: The ISAP AE mode. The figure is taken from [43]

5.10. THE CONSTRUCTION OF BARWELL ET AL. 111

Figure 5.17: The TEDT AE mode. The figure is taken from [21].

problems, they propose to use the MAC of Martin et al. [98]. This MAC
uses pairing, and it is proved secure in the generic group model.

Comparison with our modes. We can see that SIVAT has the same
structure as DTE (in fact, both modes aim to obtain misuse-resistance).
On the other hand, we observe that their goal is to find a good composi-
tion scheme for leakage-resilient encryption and MAC, while our schemes
are designed considering leveled implementation. In fact, for their se-
curity proof everything is assumed to be well protected against leakage,
while in ours, only the strongly protected component.
Moreover, this scheme aims to leakage resilience (that is, the leakage of
other encryption or decryption queries does not affect the confidentiality
of a ciphertext if the adversary has not received the leakage when it is
computed); instead, we aim to have leakage-resistance, that is, to have
confidentiality even if the adversary has access to the leakage of the com-
putation of the challenge ciphertext.
Finally, we observe that our solution to have CIML2 is better because it is
more efficient (since pairings have bigger keys), moreover, our proofs are
done using standard assumptions (instead in theirs, they use the generic
group model21).

21 We observe that this latter assumption is questionable when the adversary also
has access to the leakage of the MAC.

Chapter 6

Authenticity from unpredictability

Contents
6.1 For HBC2 . 114

6.2 The suf-L2-security of HTBC based on sUL . . 116

6.3 Application to CIML2 119

6.4 About the usage of the Random Oracle . . . 119

This chapter is devoted to the proofs of the suf-L2-security (and the
CIML2-security) in the unbounded leakage model when we model the
strongly protected implementations as strongly unpredictable with leak-
age (sUL).
It turns out that the MACs and many of the AE schemes remain suf-L2
and CIML2 respectively although we have weakened the security leakage
assumption on the implementation (from leak-free to sUL).
Here we do a trade-off, we have milder hypothesis for the strongly pro-
tected building blocks, but we have stronger hypothesis for the hash
functions since they are modelled as Random Oracles. Moreover, con-
sider that there is no key to protect for the hash function.

In this chapter, we prove the suf-L2-security of HBC2 (defined in
Chap. 5.5.1) based on a sUL BC. After that, we we prove the suf-L2-
security of HTBC (defined in Chap. 5.5.3) based on a sUL TBC. Then,
we mention how we can extend these results to the CIML2-security of
the AE schemes we have introduced in the previous chapter. Finally, we
discuss the usage of the Random Oracle.

This chapter is based on the Inscrypt paper and its eprint version [22].

114 CHAPTER 6. AUTHENTICITY FROM UNPREDICTABILITY

6.1 The suf-L2-security of HBC2 based on sUL

In the unbounded leakage model, the adversary receives all the ephemeral
values computed during the tag generation and the verification. Only the
key of the BC, which is the key of the MAC, remains hidden as implicitly
defined by the leakage function pair of its implementation
L = (LEval, LInv). More precisely, the unbounded leakage function pair
L∗ = (L∗Mac, L

∗
Vrfy) of HBC2 is thus:

LM (m; k): return h = H(m) and LEval(h; k);

LV (m, τ ; k): return h = H(m) and h̃ = F−1
k (τ) as well as LInv(τ ; k).

Despite H is a public function, we explicitly include its outputs in the
leakage. It can be considered as redundant but, as we rely on a ran-
dom oracle to prove the security of HBC2, we prefer making them fully
available to avoid any confusion.

Theorem 10. Let F∗ : K∗×B∗ 7−→ B∗ be a (qM , qV , qL, t, εsUL)-strongly
unpredictable block cipher in the presence of leakage, and H : KH ×
HM 7−→ B′ be a hash function modeled as a random oracle that is queried
at most qH times. Let B∗ = B′ = {0, 1}n and HM = {0, 1}∗.
Then, HBC2 is a (qM , qV , qL, t, ε)-strongly unforgeable MAC in the un-
bounded leakage setting, with L∗ = (LM , LV) defined above, where

ε ≤ (qH + qV + 1)(qV + 1)εsUL + (qH + qM + qV + 1)2/2n,

and tH(qH + qM + qV + 1) + (qM + qL − q)tF + (qV + q)tF−1 ≤ t for any
q ≤ qL, and where we assume that all the H-query involved in the qL
queries are already among the qH queries, and if qV ≤ qH (which can be
artificially fulfilled at the end of the experiment).

The advantage is bounded by 2qHqV εsUL +4q2
H2−n under the natural

assumption qM + qV + 1 ≤ qH (since qM and qV correspond to online
queries while qH corresponds to offline queries, it is expected to hold
comfortably). The leading term is 2qHqV εsUL: for εsUL = 2−128, it implies
that security holds up to qH = 264 and qV = 263 (i.e., slightly below the
birthday bound), if implemented with a 128-bit blockcipher (as AES).
For a more realistic εsUL = 2−96, it only holds with a stronger limit on
the number of verification queries (e.g., qH ≈ 264 and qV = 231). Note
that the factor qHqV may be due to the reduction proof technique, as it
relates to a case where the adversary is likely to produce a forgery early
in the experiment. Therefore, much of the computational power of the
reduction seems useless to the adversary. Hence, it might be possible

6.1. FOR HBC2 115

to obtain tighter bounds using a different reduction approach. It would
also be interesting to explore the possibility of making a proof based on
standard assumptions on the hash function. Such assumptions would
require to exclude damaging and implausible interactions between the
hash function and the PRF and would be an interesting area for future
research.

Idea of the proof. Assuming that an adversary A succeeds in the
FORGEL2suf−vcma−L2

A,HBC2,L∗ experiment by making a total of qM leaking
tag queries and qV leaking verification queries, let (m, τ) be the forgery,
i.e., the couple returned by A in the finalization phase. To bound this
winning probability, we partition this event into sub-events:

1 The tag τ appears in the answer to a leaking tag query (and thus,
as an output of Fk);

2 The tag τ never appears in answer to a leaking tag query (and
thus, τ can only be involved as an input of F−1

k) and:
a m appears as an input of H before F−1

k (τ) was ever computed
in the experiment;

b τ appears as an input of F−1
k before H(m) was ever computed

in the experiment.
We cover all the cases since when both m and τ are fresh in a verification
query, we always compute (or ask the computation of) H(m) first so that
we can say that m appears “before” (the computation of F−1

k on input) τ ,
and since we view the last verification in the finalization as the (qV +1)-th
verification query.

The goal of the proof is to show that the collision resistance of H
ensures that winning in case 6.1 is negligible, the unpredictability of F
ensures that winning in case 6.1 is negligible and that preimage resistance
of H ensures that winning in case 6.1 is negligible as well.

1 there is a tag query on m′ which defines τ = Fk(H(m′)). Since
(m, τ) is a forgery we have Fk(H(m)) = τ with m 6= m′. Then, m
and m′ produce a collision as Fk is a permutation:
H(m) = F−1

k (τ) = H(m′).
2a we assume that F is SUL2-secure. Since m appears before τ , as

a challenger, we have to use the value h = H(m), and we “wait”
for the good tag in a verification query to win the sUL game. We
do not have to consider the messages for which A makes a tag
query. However, we cannot know in advance what will be the right
tag, and we cannot wait until the finalization of the unforgeability
experiment because even if A’s output (m, τ) is the right pair, τ
may have been already used in a previous verification query. If so,
the challenger should have already made a leaking inverse query of

116 CHAPTER 6. AUTHENTICITY FROM UNPREDICTABILITY

the block cipher with input τ to get h̃ = F−1
k (τ) and li ← LInv(m; k)

to simulate LV (m, τ ; k), and it could no more win the game against
F with τ . Therefore, for all possible m involved in a H-query or
a verification query, we have to guess what will be the right τ in
verification. Then, we need to consider all the possible such pairs,
and we thus have to make at most (qH+qV +1)(qV +1) reductions.

2b the reduction can generate the key k itself and then evaluate F and
its inverse by itself. The first time τ appears (in a leaking verifi-
cation query) we define the H-target h̃ = F−1

k (τ) since the winning
corresponding m is still not hashed by assumption. Note that we
even do not care whether h̃ already appeared or not in response
to a H-query since fresh queries will result in independent hashes.
Therefore, the validity of (m, τ) means that m is a preimage of h̃,
as H(m) = F−1

k (τ), while H(m) is random.
The complete proof can be found in App. B.8.

In the next section, we show that HTBC has better security bound,
which is beyond birthday.

6.2 The suf-L2-security of HTBC based on sUL

As usual, we start considering the unbounded leakage function pair L∗ =
(L∗Mac, L

∗
Vrfy) of HTBC. We define L∗ as follow:

LM (m; k): return h1‖h2 = H(m) and LEval(h2, h1; k);

LV (m, τ ; k): return h1‖h2 = H(m) and h̃1 = F−1
k,h2

(τ) as well as
LInv(h2, τ ; k).

As we rely on the random oracle model to prove the security of HTBC,
we include the digests in the leakage to capture the fact that H is a public
function.

Theorem 11. Let H : KH×HM 7−→ B′ be a hash function modeled as
a random oracle, and F∗ : K × T W × B 7−→ B be a (qT , qV , qL, t, εsUL)-
strongly unpredictable tweakable block cipher with leakage L = (LEval, LInv).
Let HM = {0, 1}∗, B′ = T W × B and B = {0, 1}n.
Then, HTBC is a (qT , qV , qH, qL, t, ε)-suf-L2 strongly unforgeable MAC
with unbounded leakage function pair L∗ = (LM , LV) as defined above,
where

ε ≤ (qH + qT + qV)2

22n
+ (qV + 1) · εsUL +

q2
HqV
2n
· εsUL +

qV (qH + qV)

22n
,

6.2. THE SUF-L2-SECURITY OF HTBC BASED ON SUL 117

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any
q ≤ qL, and where we assume that all the H-query involved in the qL
queries are already among the qH queries, as long as 4 ≤ qH + qT + qV ,
4qV ≤ qH and 10qH ≤ 2n.

The leading term in the security bound is εsUL · q2
HqV 2−n. This time,

for n = 128 and εsUL ≈ 2−96, security holds up to qH ≈ 280 and qV = 264.
As for Theorem 5, we are not aware of a realistic matching attack (i.e.,
if a reasonable hash function and TBC are used in the construction).
Investigating whether the additional qH2−n factor that we gain compared
to the BC-based construction can get closer to 2−n is an interesting open
problem.

The structure of the proof for HTBC is different from that of HBC2.
The main reason is that the collision resistance of H does not cover all
the winning cases when the adversary’s τ of the forgery appears in an
LMac query. Indeed, we might have H(m) = h1‖h2 6= h′1‖h′2 = H(m′)
such that Fk(h2, h1) = τ = Fk(h

′
2, h
′
1) with m′ in an LMac query. That is

because Fk,h2 and Fk,h′2 can be seen as two different permutations given
that h2 6= h′2: an output τ defines many possible tweak-input pairs.
As we will see the distribution and the freshness of (h2, τ) will play an
important role in the proof.

Idea of the proof. Let (m, τ) be a forgery and write H(m) = h1‖h2.
If no triple of the form (?, h2, τ) appears during the computation of all
the evaluations and inversions of F, (h1, h2, τ) is a valid fresh triple for
F which breaks the unpredictability of the TBC. However, if it is not
the case, a triple (?, h2, τ) appears either in the evaluation of F during
an LMac query or only in the inversion of F in an LVrfy query. In the
former case, as the answer to an LMac query is necessarily valid, the
triple (?, h2, τ) must actually be (F−1

k (h2, τ), h2, τ), i.e. (h1, h2, τ). Of
course, if the adversary has made an LMac query on m, it cannot win.
If the adversary is successful, it means that it managed to request the
computation of a hash value which collides on H(m), which only occurs
with a beyond-birthday probability in n = |k| = |τ |. We can thus focus
on the latter case where a triple (?, h2, τ) only appears when answering
an LVrfy query, i.e., in an inversion of F.

We split the remaining winning conditions into:
2 m appears as an input of H before ever computing a TBC inversion

on input (h2, τ) when answering a leaking verification query;
1 m appears strictly after the first computation of a TBC inversion

on input (h2, τ) when answering a leaking verification query;

118 CHAPTER 6. AUTHENTICITY FROM UNPREDICTABILITY

no matter whether τ appears first in a LMac answer or in a LVrfy query.
We note that we no more need to consider the H computation in the
LMac queries as we already dealt with H-collisions. In a nutshell, the
first case means the adversary chooses τ depending on the view of the
hash value h1‖h2, and hence it relates to the unpredictability of F. In
the second case, the target h1‖h2 is fixed in the leaking verification query
while the output of H(m) remains uniformly random and independent of
the view at that time. By convention, if m and τ first appear for the first
time together in a LVrfy query, we first compute H(m) so that we always
consider that m appears “before” τ . Besides, we consider the forgery as
the (qV + 1)-th LVrfy query.
Case 1: H(m) = h1‖h2 appears before the computation of a TBCtriple

(?, h2, τ) which will first be run when answering a leaking verifica-
tion query. We want to build an adversary B against F which ends
by sending (h1, h2, τ). To make B successful, we have to prevent B
from making an LInv query on input (h2, τ) earlier, since otherwise
(h1, h2, τ) is not a winning triple at the end. Such a query can
happen only if A manages to make an LVrfy query on some (m′, τ)
such that H(m′) = h′1‖h′2 with h′2 = h2. Of course, this happens if
m = m′ and, indeed, A can win if (m, τ) appears in an LVrfy query
before the (qV +1)-th one. However, it can also happen if m′ 6= m,
but then h′1 6= h1. Fortunately, if the first time (h2, τ) appears in
an LVrfy query is with m′ 6= m, we know that m appeared in a
hash computation earlier for the first time (and it cannot be in a
LMac query). To sum up, we cannot build a single B but by con-
sidering all the hash computations in the H queries and the LVrfy
queries to combine with all the tags in the LVrfy queries, we have
at most (qH + qV + 1)(qV + 1) reductions to build to cover all the
possibilities. Fortunately, we only have to consider the messages
m′ with H(m′) = h′1‖h′2 such that h′2 appears in a subsequent LVrfy
query. Furthermore, we can see when this happens before having
to invert the TBCwith tweak h′2. We will see in the proof that
the probability of multi-collision on the hi2-value involved in the
ith LVrfy query will decrease the probability by a factor of roughly
qH/2

n, which gives us a beyond birthday term eventually.
Case 2: the adversary outputs a forgery (m, τ) while (h2, τ) appears in

a leaking verification query before the first computation of H(m).
Here, we simply pick the key of the TBC to simulate the forgery
experiment. If (h2, τ) already appears in an LVrfy query the valid
triple (h̃1, h2, τ) is already fixed in answer to that query (necessar-
ily invalid). Therefore H(m) which is still uniformly random and
independent of the view at that time will have to match the tar-

6.3. APPLICATION TO CIML2 119

get (h̃1, h2). This match thus happens with probability 1/22n for
each future hash evaluation in a H-query or a next LVrfy query.
Of course we do not know what will be the right (h2, τ) until
the adversary output its forgery in the finalization phase. So, if
(hi2, τ

i) denotes the input of the inversion of F in the i-th leaking
verification query, we actually defines qV targets (h̃i1, h

i
2, τ

i), since
i < qV + 1 here. Therefore, the probability that this case occurs is
upper-bounded by qV (qH + qV)/22n.

The complete proof can be found in App. B.9.

6.3 Application to CIML2

These results can be extended also to CIML2. For DTE2 and EDT the
extension is straightforward from Thm. 5.

CONCRETE. For CONCRETE, a straightforward adaptation of our proofs
is not enough. We can only say that the retrieved key k0 is unpredictable.
This fact is not enough to say that the probability that c̃0 = c0 is negli-
gible. Such a situation can happen due to “pathological” block ciphers.
(Imagine a block cipher which does not use half of its key. This block
cipher may still be a PRF. Imagine that we are only able to predict the
half of the key, which is used. In this case, CONCRETE is not secure).
We conjecture that assuming that F is an Ideal Cipher1, the CIML2-
security of CONCRETE can be extended to the hypothesis that F∗ has a
sUL-implementation.

6.4 About the usage of the Random Oracle

We would like to remove the ROM hypothesis. We do not require any
form of programmability or other conveniences that come with the ran-
dom oracle model). This model fits well with many applications, for
instance, when we build the hash function from a sponge, which we also
traditionally model as an ideal permutation. Still, our analysis does not
suggest any reason why an ideal object would be needed, and it would,
therefore, be interesting to investigate whether and how this assumption
could be relaxed.

1An ideal tweakable blockcipher is a function F : K × T W × B 7−→ B such that
∀k ∈ K, tw ∈ T W, Fk(tw, ·) : B × B is a permutation, picked uniformly at random
from the set of functions with the same signature. It is a very strong hypothesis,
which is related to the Random Oracle Model (see Sec. 2.7) [39, 40, 73].

Chapter 7

Conclusion

Contents
7.1 Summary . 121

7.1.1 Definitions and leakage models 121
7.1.2 Constructions 122

7.2 Prospects . 123
7.3 Concluding remarks 125

7.1 Summary

This thesis studies the problem of authenticity with leakage. Our work
focuses on two different directions:

1. Find the good security definitions and identify meaningful leakage
models based on which we can build security proofs.

2. Find constructions providing integrity with respect to our defini-
tions in our leakage models

We briefly summarize the results in this chapter. Then, we develop some
open problems.

7.1.1 Definitions and leakage models

Definitions. As we have explained in Chap. 2.2 definitions must be
precise and express the security we want. Our four definitions (CIML,
suf-L, CIML2, and suf-L2) are all defined via games and express integrity
goals corresponding to real situations. Some of our definitions have been
integrated into the framework proposed by Guo et al. [65] focusing on
authenticated encryption.

122 CHAPTER 7. CONCLUSION

The unbounded leakage model. We have introduced the unbounded
leakage model, in this model implementations of primitives are divided
into two classes, unprotected, for which we give to the adversary inputs,
outputs, and keys, and strongly protected for which we give to the adver-
sary inputs and outputs, but no keys. Thus, our definitional framework
allows reducing the security of the whole scheme to some basic black
box security properties and a leakage property of the implementation of
a single primitive (which may be more easily verified than the leakage of
the implementation of the whole scheme).

Strong unpredictability. Finally, we tackle the problem of how to
model strongly protected implementations, introducing strongly unpre-
dictability with leakage in both evaluation and inversion. This new def-
inition is game-based, and it is falsifiable by evaluation laboratories.
Moreover, a scheme whose security is established based on a strongly
unpredictable implementation has a gracefully degrading security.

7.1.2 Constructions

In this thesis, we have provided many constructions achieving our secu-
rity definitions. They are resumed in Tab. 7.1 for MACs and Tab. 7.2 for
unpredictability.

Name Security Use # calls to BBB
inverse SP (T)BC NP BC H secure

CCS MAC1 [111] suf-L
not unb. No 1 l 0 No

CCS MAC2 [111] suf-L
not unb. No 1 1 1 No

HBC [24] suf-L
unb. No 1 0 1 No

HBC2 [27] suf-L
unb. Yes 1 0 1 No

HTBC [21] suf-L2
unb. Yes 1T 0 1 Yes

Table 7.1: The MAC discussed in this thesis. We suppose that they are
used to authenticate a l block message. SP stands for strongly protected
implementation, while NP to not protected implementation. With T we
denote if a TBC is used instead of a BC. BBB stands for beyond birthday
secure.

7.2. PROSPECTS 123

Name Integ. Use # calls to BBB Conf Mis.
with inv. BC BC H secure with
leak. SP WP integr. leak.

PSV [111] No No 1 2l 0 No CPAL m
DTE [24] CIML No 2 2l 1 No CPAL M
DTE2 [27] CIML2 Yes 2T 2l 1 No CPAL M

EDT [27] CIML2 Yes 2T 2l 1 No CPAL
EavDL

m

CONC. [29] CIML2 Yes 1T 2l+2 1 No CPAL
EavDL

No

DCE [24] CIML No 1 2l 1
(RO) No CPAL No

FEMALE [65] CIML2 Yes 2T 4l 1 No CCAmL2
EavDL

M

TEDT [21] CIML2 Yes 2T 4lT No Yes CCAmL2
EavDL

m

TET1 [21] CIML2 Yes 2T (2l+2)T No Yes CPAL m
Spook [18] CIML2 Yes 2T Sp. No Yes CPAL m

Table 7.2: The AE schemes discussed in this thesis and in other works [65,
21, 18]. We suppose that we use them for a l block message. Integ. stands
for integrity, inv. for inverse, conf. for confidentiality and Mis. for misuse
resistance. SP stands for strongly protected implementation, while WP
for weakly protected implementation. CONC. stands for CONCRETE.
With T, we denote if a TBC is used instead of a BC. BBB stands for
beyond birthday security. M stands for misuse resistant, while m for
misuse resilience. We take the definitions of confidentiality with leakage
from the zoo of Guo et al. [65]. The last five constructions have not been
treated in this thesis and are there only for comparison.

Authenticity from unpredictability. Using only the strong unpre-
dictability hypothesis for leakage, we can prove the security of some
schemes (even if we have to model the hash function as a Random Ora-
cle (RO)).

7.2 Prospects

We now highlight some future perspectives.

Real evaluations of sUL. We know that leak-free is an ideal assump-
tion (although, it reasonably models strongly protected building blocks).
On the other hand, sUL is not an ideal assumption.
Thus, since we have based the security on the sUL hypothesis, we need a

124 CHAPTER 7. CONCLUSION

real evaluation of the sUL of a strongly protected implementation to be
able to give a concrete security bound for our schemes.
Thus, finding a technique to establish the sUL security of the implemen-
tation of a BC (or of a TBC) would be a complementary result of this
thesis. We suspect that this bound is similar to the bound computed for
a key-retrieval attack using side-channel. We do not see any reason why,
for a reasonable PRP (not a pathological one1), an adversary should be
able to predict the output not knowing the key.
Finally, a standardization for protected implementations can be done.

Using sUL for confidentiality. We focused on integrity but it will be
worth investigating confidentiality.
We have proved that it is possible to provide CIML2 and suf-L2 using
a sUL (T)BC. The natural follow up is if it is possible to provide confi-
dentiality using a sUL (T)BC. Using sponges to encrypt, as for Spook, it
should be easier, because if the input is unpredictable, the output should
be random. Even using a rekeying-based scheme, as PSV, as we do for
EDT, for example, it may be possible to prove the confidentiality with
leakage making some additional hypothesis on the BCs used in the en-
cryption (perhaps the Ideal Cipher one?2). If we succeed, we are able
to base security on a verifiable assumption, which allows a gracefully
degradation of security.
Moreover, the interpretation of this unpredictability assumption is an
interesting topic.

Extending our results to the asymmetric case. Since asymmetric
cryptography is also broadly used, we think it is interesting to extend
our theoretical framework to it.
The first natural step is to extend our results to signature schemes. Since
everyone can check the signature, due to its asymmetric nature, we do
not have anymore the problem of verification leakage.
Then, it interesting to study the problem of integrity with leakage when
an asymmetric encryption scheme is used to send a key which is then used
to encrypt the message via a symmetric scheme. We think CONCRETE is
particularly adapted to this situation, due to its structure. In fact, since
the first ephemeral key, k0 must be sent, we might take advantage of the
structure of CONCRETE to take advantage of the asymmetric primitive
to send the key.
We think it is interesting to adapt our framework to the signcryption

1Imagine a BC which does not use a part of its key in the computations, example.
2Note that also for sponges, it is needed to assume that the permutation is ideal.

Thus, we need idealized assumption in both cases.

7.3. CONCLUDING REMARKS 125

primitive, which does encryption and signature in a single logical step,
can be seen as the correspondent of AE in the asymmetric context.

Necessity of a (T)BC for suf-L2 and CIML2. In all our constructions
achieving integrity with leakage also in decryption or verification, the
use of a (T)BC is crucial. We wonder if it is possible to achieve these
definitions in our model without having to use the inverse. As a first
direction, one can investigate other primitives.

Get rid of the Random Oracle hypothesis. A nice problem is the
necessity of the Random Oracle hypothesis in the proof of Thm. 5 and
Thm. 11.
Although this hypothesis should not create any problem in practice, we
do not see any fundamental reason why it is necessary. We had to use it
as an artifact of the proof.
Perhaps, it is possible, via another proof technique to be able to avoid
it.
At least, it would be nice to find some MACs, which are suf-L2 based on
a sUL (T)BC without having to use the RO for the hash function.

7.3 Concluding remarks

We think it is fundamental to use schemes which are proved to be se-
cure. Although there may be bugs in proofs (see, for example, the attack
against the well-known OCB2 [75]), if proofs are clear and carefully in-
spected by many experts, the probability that this happens is low. More-
over, it is much better to have proofs (and publicly available and, thus,
verifiable) than if the security is obtained by obscurity. In fact, in the
latter case, it is difficult, if not impossible, to have an extensive study
of the scheme; moreover, reverse engineering of the code (or espionage)
may pose a threat [81]. The advantage of “open cryptographic design”
has been proved many times [81].
With our definitions and our leakage models, we conform to this direc-
tion. We think that the unbounded leakage model is a very powerful
threat model. Anyway, it is appealing since it allows to reduce the secu-
rity of the whole scheme to the security of the implementation of a single
primitive, which should be strongly protected.
With sUL, we have modelled the security of the implementation of the
strongly protected primitive, which we need. This assumption can be
tested. We think that it is possible to build a sUL implementation of a
(T)BC.

126 CHAPTER 7. CONCLUSION

Finally, we have proposed only constructions for which we can prove
their security. We have tried to do our proofs as correct, as complete
and as precise as possible.

Bibliography

[1] Michel Abdalla, Sonia Belaïd, and Pierre-Alain Fouque. Leakage-
resilient symmetric encryption via re-keying. In Guido Bertoni and
Jean-Sébastien Coron, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2013 - 15th International Workshop, Santa
Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086
of Lecture Notes in Computer Science, pages 471–488. Springer,
2013.

[2] Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key:
A comparative analysis of the security of re-keying techniques. In
Okamoto [108], pages 546–559.

[3] Farzaneh Abed, Francesco Berti, and Stefan Lucks. Insecurity of
RCB: leakage-resilient authenticated encryption. IACR Cryptology
ePrint Archive, 2016:1121, 2016.

[4] Farzaneh Abed, Francesco Berti, and Stefan Lucks. Is RCB a leak-
age resilient authenticated encryption scheme? In Helger Lipmaa,
Aikaterini Mitrokotsa, and Raimundas Matulevicius, editors, Se-
cure IT Systems - 22nd Nordic Conference, NordSec 2017, Tartu,
Estonia, November 8-10, 2017, Proceedings, volume 10674 of Lec-
ture Notes in Computer Science, pages 39–52. Springer, 2017.

[5] Megha Agrawal, Tarun Kumar Bansal, Donghoon Chang,
Amit Kumar Chauhan, Seokhie Hong, Jinkeon Kang, and Somi-
tra Kumar Sanadhya. Rcb: leakage-resilient authenticated encryp-
tion via re-keying. The Journal of Supercomputing, pages 1–26,
2016.

[6] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds:
A timing attack on amazon’s s2n implementation of TLS. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptol-
ogy - EUROCRYPT 2016 - 35th Annual International Conference

128 BIBLIOGRAPHY

on the Theory and Applications of Cryptographic Techniques, Vi-
enna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665
of Lecture Notes in Computer Science, pages 622–643. Springer,
2016.

[7] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, and Kan Yasuda. How to securely release unveri-
fied plaintext in authenticated encryption. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 105–125. Springer, 2014.

[8] Elena Andreeva and Martijn Stam. The symbiosis between colli-
sion and preimage resistance. In Liqun Chen, editor, Cryptography
and Coding - 13th IMA International Conference, IMACC2011,
Oxford, UK, December 12-15, 2011. Proceedings, volume 7089 of
Lecture Notes in Computer Science, pages 152–171. Springer, 2011.

[9] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting au-
thenticated encryption robustness with minimal modifications. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 3–33. Springer, 2017.

[10] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn
Stam. Authenticated encryption in the face of protocol and side
channel leakage. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I, volume 10624 of Lecture Notes in Computer Sci-
ence, pages 693–723. Springer, 2017.

[11] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption
failures: Reconciling AE robustness notions. In Groth [64], pages
94–111.

[12] Lawrence Bassham, Çağdaş Çalık, Kerry McKay, and Meltem Sön-
mez Turan. Submission requirements and evaluation criteria for
the lightweight cryptography standardization process. Technical

BIBLIOGRAPHY 129

report, Technical report, US National Institute of Standards and
Technology, 2018.

[13] Ali Galip Bayrak, Nikola Velickovic, Paolo Ienne, and Wayne
Burleson. An architecture-independent instruction shuffler to pro-
tect against side-channel attacks. TACO, 8(4):20:1–20:19, 2012.

[14] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic compo-
sition paradigm. In Okamoto [108], pages 531–545.

[15] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In Dorothy E.
Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Vic-
toria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Vir-
ginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993.

[16] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryp-
tion: How to exploit nonces or redundancy in plaintexts for efficient
cryptography. In Okamoto [108], pages 317–330.

[17] Mihir Bellare and Phillip Rogaway. The security of triple encryp-
tion and a framework for code-based game-playing proofs. In Serge
Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in
Computer Science, pages 409–426. Springer, 2006.

[18] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan
Cassiers, Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan
Leurent, Itamar Levi, Charles Momin, Olivier Pereira, Thomas
Peters, François-Xavier Standaert, and Friedrich Wiemer. Spook:
Sponge-based leakage-resilient authenticated encryption with a
masked tweakable block cipher. Submission to NIST Lightweight
Cryptography, 2019.

[19] Dan J Bernstein. Caesar call for submissions, final, january 27
2014.

[20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Tedt, a leakage-resilient AEAD mode
for high (physical) security applications. IACR Cryptology ePrint
Archive, 2019:137, 2019.

130 BIBLIOGRAPHY

[21] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Tedt, a leakage-resist AEAD mode for
high physical security applications. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):256–320, 2020.

[22] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Strong authenticity with leakage un-
der weak and falsifiable physical assumptions. Cryptology ePrint
Archive, Report 2019/1413, 2019. https://eprint.iacr.org/
2019/1413.

[23] Francesco Berti, François Koeune, Olivier Pereira, Thomas Pe-
ters, and François-Xavier Standaert. Leakage-resilient and misuse-
resistant authenticated encryption. IACR Cryptology ePrint
Archive, 2016:996, 2016.

[24] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters,
and François-Xavier Standaert. Ciphertext integrity with misuse
and leakage: Definition and efficient constructions with symmetric
primitives. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yong-
dae Kim, Javier López, and Taesoo Kim, editors, Proceedings of
the 2018 on Asia Conference on Computer and Communications
Security, AsiaCCS 2018, Incheon, Republic of Korea, June 04-08,
2018, pages 37–50. ACM, 2018.

[25] Francesco Berti, Olivier Pereira, and Thomas Peters. Reconsid-
ering generic composition: The tag-then-encrypt case. In Debrup
Chakraborty and Tetsu Iwata, editors, Progress in Cryptology -
INDOCRYPT 2018 - 19th International Conference on Cryptol-
ogy in India, New Delhi, India, December 9-12, 2018, Proceedings,
volume 11356 of Lecture Notes in Computer Science, pages 70–90.
Springer, 2018.

[26] Francesco Berti, Olivier Pereira, and Thomas Peters. Reconsider-
ing generic composition: the tag-then-encrypt case. IACR Cryp-
tology ePrint Archive, 2018:991, 2018.

[27] Francesco Berti, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. On leakage-resilient authenticated encryp-
tion with decryption leakages. IACR Trans. Symmetric Cryptol.,
2017(3):271–293, 2017.

[28] Francesco Berti, Olivier Pereira, and François-Xavier Standaert.
Reducing the cost of authenticity with leakages: a ciml2-secure

https://eprint.iacr.org/2019/1413
https://eprint.iacr.org/2019/1413

BIBLIOGRAPHY 131

AE scheme with one call to a strongly protected tweakable block
cipher. IACR Cryptology ePrint Archive, 2019:451, 2019.

[29] Francesco Berti, Olivier Pereira, and François-Xavier Standaert.
Reducing the cost of authenticity with leakages: a \mathsf CIML2
-secure \mathsf AE scheme with one call to a strongly protected
tweakable block cipher. In Johannes Buchmann, Abderrahmane
Nitaj, and Tajje-eddine Rachidi, editors, Progress in Cryptology -
AFRICACRYPT 2019 - 11th International Conference on Cryptol-
ogy in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings, vol-
ume 11627 of Lecture Notes in Computer Science, pages 229–249.
Springer, 2019.

[30] Francesco Berti and François-Xavier Standaert. An analysis of
the learning parity with noise assumption against fault attacks. In
Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card Re-
search and Advanced Applications - 15th International Conference,
CARDIS 2016, Cannes, France, November 7-9, 2016, Revised Se-
lected Papers, volume 10146 of Lecture Notes in Computer Science,
pages 245–264. Springer, 2016.

[31] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. On the indifferentiability of the sponge construction. In
Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey, April
13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Com-
puter Science, pages 181–197. Springer, 2008.

[32] Guido Bertoni, Joan Daemen, Michaël Peters, Gilles Van Assche,
and Ronny Van Keer. Caesar submission: Ketje v2. Technical re-
port, 2016. https://keccak.team/files/Ketjev2-doc2.0.pdf.

[33] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson,
and Martijn Stam. On symmetric encryption with distinguishable
decryption failures. In Moriai [103], pages 367–390.

[34] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. Random oracles in a quantum
world. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on
the Theory and Application of Cryptology and Information Secu-
rity, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 41–69. Springer,
2011.

https://keccak.team/files/Ketjev2-doc2.0.pdf

132 BIBLIOGRAPHY

[35] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004.

[36] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. Towards sound approaches to counteract power-analysis at-
tacks. In Wiener [129], pages 398–412.

[37] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Dif-
ferential power analysis in the presence of hardware countermea-
sures. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2000, Second Interna-
tional Workshop, Worcester, MA, USA, August 17-18, 2000, Pro-
ceedings, volume 1965 of Lecture Notes in Computer Science, pages
252–263. Springer, 2000.

[38] Benoît Cogliati and Yannick Seurin. EWCDM: an efficient,
beyond-birthday secure, nonce-misuse resistant MAC. In Robshaw
and Katz [117], pages 121–149.

[39] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-damgård revisited: How to construct
a hash function. In Victor Shoup, editor, Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

[40] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The
random oracle model and the ideal cipher model are equivalent. In
David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008,
28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2008.

[41] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. Xoodyak, a lightweight cryptographic
scheme. IACR Transactions on Symmetric Cryptology, pages 60–
87, 2020.

[42] Jean Paul Degabriele, Christian Janson, and Patrick Struck.
Sponges resist leakage: The case of authenticated encryption. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryp-
tology - ASIACRYPT 2019 - 25th International Conference on

BIBLIOGRAPHY 133

the Theory and Application of Cryptology and Information Secu-
rity, Kobe, Japan, December 8-12, 2019, Proceedings, Part II, vol-
ume 11922 of Lecture Notes in Computer Science, pages 209–240.
Springer, 2019.

[43] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterlug-
gauer. Isap v2.0. Submission to the NIST LWC Competition, 2019.

[44] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterlug-
gauer. Submission to nist. Submission to the NIST LWC Compe-
tition, 2019.

[45] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, and Thomas Unterluggauer. ISAP - authenticated encryp-
tion inherently secure against passive side-channel attacks. IACR
Cryptol. ePrint Arch., 2016:952, 2016.

[46] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, and Thomas Unterluggauer. ISAP - towards side-channel
secure authenticated encryption. IACR Trans. Symmetric Cryp-
tol., 2017(1):80–105, 2017.

[47] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. Ascon v1. 2. Submission to the CAESAR Competi-
tion, 2016.

[48] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian
Mendel, and François-Xavier Standaert. Towards fresh and hy-
brid re-keying schemes with beyond birthday security. In Naofumi
Homma and Marcel Medwed, editors, Smart Card Research and
Advanced Applications - 14th International Conference, CARDIS
2015, Bochum, Germany, November 4-6, 2015. Revised Selected
Papers, volume 9514 of Lecture Notes in Computer Science, pages
225–241. Springer, 2015.

[49] Christoph Dobraunig and Bart Mennink. Leakage resilience of the
duplex construction. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th In-
ternational Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part III, volume 11923 of Lecture Notes in Computer
Science, pages 225–255. Springer, 2019.

134 BIBLIOGRAPHY

[50] Christoph Dobraunig and Bart Mennink. Security of the suffix
keyed sponge. IACR Trans. Symmetric Cryptol., 2019(4):223–248,
2019.

[51] Yevgeniy Dodis and John P. Steinberger. Message authentication
codes from unpredictable block ciphers. In Shai Halevi, editor, Ad-
vances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 267–285. Springer, 2009.

[52] Yevgeniy Dodis and John P. Steinberger. Domain extension for
macs beyond the birthday barrier. In Kenneth G. Paterson, edi-
tor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceed-
ings, volume 6632 of Lecture Notes in Computer Science, pages
323–342. Springer, 2011.

[53] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Uni-
fying leakage models: From probing attacks to noisy leakage. In
Nguyen and Oswald [105], pages 423–440.

[54] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert.
Making masking security proofs concrete - or how to evaluate the
security of any leaking device. In Oswald and Fischlin [109], pages
401–429.

[55] Morris J Dworkin. Recommendation for block cipher modes of op-
eration: Galois/counter mode (gcm) and gmac. Technical report,
2007.

[56] Stefan Dziembowski. Intrusion-resilience via the bounded-storage
model. In Shai Halevi and Tal Rabin, editors, Theory of Cryp-
tography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876
of Lecture Notes in Computer Science, pages 207–224. Springer,
2006.

[57] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony
Journault, Daniel Masny, and François-Xavier Standaert. Towards
sound fresh re-keying with hard (physical) learning problems. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology

BIBLIOGRAPHY 135

Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part II, volume 9815 of Lecture Notes in Computer Sci-
ence, pages 272–301. Springer, 2016.

[58] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient
cryptography. In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia,
PA, USA, pages 293–302. IEEE Computer Society, 2008.

[59] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Prac-
tical leakage-resilient symmetric cryptography. In Emmanuel
Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Work-
shop, Leuven, Belgium, September 9-12, 2012. Proceedings, vol-
ume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012.

[60] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Elec-
tromagnetic analysis: Concrete results. In Çetin Kaya Koç, David
Naccache, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2001, Third International Workshop,
Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lec-
ture Notes in Computer Science, pages 251–261. Springer, 2001.

[61] Louis Goubin and Jacques Patarin. DES and differential power
analysis (the "duplication" method). In Çetin Kaya Koç and
Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems, First International Workshop, CHES’99, Worcester, MA,
USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1999.

[62] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-
order masking be in software? In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes
in Computer Science, pages 567–597, 2017.

[63] Vincent Grosso. Towards side-channel secure block ciphers. PhD
thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium,
2015.

[64] Jens Groth, editor. Cryptography and Coding - 15th IMA Inter-
national Conference, IMACC 2015, Oxford, UK, December 15-17,

136 BIBLIOGRAPHY

2015. Proceedings, volume 9496 of Lecture Notes in Computer Sci-
ence. Springer, 2015.

[65] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Authenticated encryption with nonce misuse and phys-
ical leakage: Definitions, separation results and first construction -
(extended abstract). In Peter Schwabe and Nicolas Thériault, ed-
itors, Progress in Cryptology - LATINCRYPT 2019 - 6th Interna-
tional Conference on Cryptology and Information Security in Latin
America, Santiago de Chile, Chile, October 2-4, 2019, Proceedings,
volume 11774 of Lecture Notes in Computer Science, pages 150–
172. Springer, 2019.

[66] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Towards lightweight side-channel security and the
leakage-resilience of the duplex sponge. IACR Cryptology ePrint
Archive, 2019:193, 2019.

[67] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Towards low-energy leakage-resistant authenticated en-
cryption from the duplex sponge construction. IACR Trans. Sym-
metric Cryptol., 2020(1):6–42, 2020.

[68] Chun Guo, Yaobin Shen, Lei Wang, and Dawu Gu. Beyond-
birthday secure domain-preserving prfs from a single permutation.
Des. Codes Cryptogr., 87(6):1297–1322, 2019.

[69] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten. Lest we remember:
Cold boot attacks on encryption keys. In Paul C. van Oorschot,
editor, Proceedings of the 17th USENIX Security Symposium, July
28-August 1, 2008, San Jose, CA, USA, pages 45–60. USENIX
Association, 2008.

[70] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An
AES smart card implementation resistant to power analysis at-
tacks. In Jianying Zhou, Moti Yung, and Feng Bao, editors, Applied
Cryptography and Network Security, 4th International Conference,
ACNS 2006, Singapore, June 6-9, 2006, Proceedings, volume 3989
of Lecture Notes in Computer Science, pages 239–252, 2006.

[71] Shoichi Hirose. Some plausible constructions of double-block-
length hash functions. In Matthew J. B. Robshaw, editor, Fast

BIBLIOGRAPHY 137

Software Encryption, 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers, vol-
ume 4047 of Lecture Notes in Computer Science, pages 210–225.
Springer, 2006.

[72] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
authenticated-encryption AEZ and the problem that it solves. In
Oswald and Fischlin [109], pages 15–44.

[73] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The
equivalence of the random oracle model and the ideal cipher model,
revisited. In Lance Fortnow and Salil P. Vadhan, editors, Proceed-
ings of the 43rd ACM Symposium on Theory of Computing, STOC
2011, San Jose, CA, USA, 6-8 June 2011, pages 89–98. ACM,
2011.

[74] IETF. The transport layer security (tls) protocol version 1.3 draft-
ietf-tls-tls13-28. Technical report, 2018. https://tools.ietf.
org/html/draft-ietf-tls-tls13-28.

[75] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Po-
ettering. Cryptanalysis of OCB2: attacks on authenticity and
confidentiality. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 3–31. Springer, 2019.

[76] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits:
Securing hardware against probing attacks. In Dan Boneh, edi-
tor, Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003.

[77] Anthony Journault and François-Xavier Standaert. Very high or-
der masking: Efficient implementation and security evaluation.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 623–
643. Springer, 2017.

https://tools.ietf.org/html/draft-ietf-tls-tls13-28
https://tools.ietf.org/html/draft-ietf-tls-tls13-28

138 BIBLIOGRAPHY

[78] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-
resilient cryptography. IACR Cryptology ePrint Archive, 2019:302,
2019.

[79] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-
resilient cryptography. In Oded Goldreich, editor, Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali, pages 727–794. ACM, 2019.

[80] Dina Kamel, François-Xavier Standaert, Alexandre Duc, Denis
Flandre, and Francesco Berti. Learning with physical noise or
errors. IEEE Transactions on Dependable and Secure Computing,
2018.

[81] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography, Second Edition. CRC Press, 2014.

[82] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen
ciphertext secure modes of operation. In Bruce Schneier, editor,
Fast Software Encryption, 7th International Workshop, FSE 2000,
New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978
of Lecture Notes in Computer Science, pages 284–299. Springer,
2000.

[83] Neal Koblitz and Alfred Menezes. Critical perspectives on provable
security: Fifteen years of "another look" papers. Adv. in Math. of
Comm., 13(4):517–558, 2019.

[84] Neal Koblitz and Alfred J. Menezes. The random oracle model: a
twenty-year retrospective. Des. Codes Cryptogr., 77(2-3):587–610,
2015.

[85] Paul C Kocher. Leak-resistant cryptographic indexed key update,
march 25 2003. United States Patent, 6.

[86] Paul C. Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Neal Koblitz, editor, Ad-
vances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Com-
puter Science, pages 104–113. Springer, 1996.

[87] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Wiener [129], pages 388–397.

BIBLIOGRAPHY 139

[88] Hugo Krawczyk. The order of encryption and authentication for
protecting communications (or: How secure is ssl?). In Joe Kil-
ian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 310–331. Springer, 2001.

[89] Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with
asymptotically optimal security. In Moriai [103], pages 133–151.

[90] Will Landecker, Thomas Shrimpton, and R. Seth Terashima.
Tweakable blockciphers with beyond birthday-bound security. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 14–30.
Springer, 2012.

[91] Itamar Levi, Davide Bellizia, and François-Xavier Standaert. Re-
ducing a masked implementation’s effective security order with
setup manipulations and an explanation based on externally-
amplified couplings. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):293–317, 2019.

[92] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable
block ciphers. J. Cryptology, 24(3):588–613, 2011.

[93] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall.
Soc it to EM: electromagnetic side-channel attacks on a complex
system-on-chip. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems - CHES 2015 -
17th International Workshop, Saint-Malo, France, September 13-
16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer
Science, pages 620–640. Springer, 2015.

[94] Stefan Mangard. Hardware countermeasures against DPA ? A sta-
tistical analysis of their effectiveness. In Tatsuaki Okamoto, editor,
Topics in Cryptology - CT-RSA 2004, The Cryptographers’ Track
at the RSA Conference 2004, San Francisco, CA, USA, February
23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Com-
puter Science, pages 222–235. Springer, 2004.

[95] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Hiding,
pages 167–199. In [96], 2007.

140 BIBLIOGRAPHY

[96] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards. Springer,
2007.

[97] Stefan Mangard, Elisabeth Oswald, and François-Xavier Stan-
daert. One for all - all for one: unifying standard differential power
analysis attacks. IET Information Security, 5(2):100–110, 2011.

[98] Daniel P. Martin, Elisabeth Oswald, Martijn Stam, and Marcin
Wójcik. A leakage resilient MAC. In Groth [64], pages 295–310.

[99] David A. McGrew. An interface and algorithms for authenticated
encryption. RFC, 5116:1–22, 2008.

[100] Marcel Medwed, François-Xavier Standaert, Johann Großschädl,
and Francesco Regazzoni. Fresh re-keying: Security against side-
channel and fault attacks for low-cost devices. In Daniel J.
Bernstein and Tanja Lange, editors, Progress in Cryptology -
AFRICACRYPT 2010, Third International Conference on Cryp-
tology in Africa, Stellenbosch, South Africa, May 3-6, 2010. Pro-
ceedings, volume 6055 of Lecture Notes in Computer Science, pages
279–296. Springer, 2010.

[101] Bart Mennink. Optimally secure tweakable blockciphers. In Gre-
gor Leander, editor, Fast Software Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised
Selected Papers, volume 9054 of Lecture Notes in Computer Sci-
ence, pages 428–448. Springer, 2015.

[102] Bart Mennink and Samuel Neves. Optimal prfs from blockcipher
designs. IACR Trans. Symmetric Cryptol., 2017(3):228–252, 2017.

[103] Shiho Moriai, editor. Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers, volume 8424 of Lecture Notes in Computer Science.
Springer, 2014.

[104] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimp-
ton. Reconsidering generic composition. In Nguyen and Oswald
[105], pages 257–274.

[105] Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, vol-
ume 8441 of Lecture Notes in Computer Science. Springer, 2014.

BIBLIOGRAPHY 141

[106] Jesper Buus Nielsen. Separating random oracle proofs from com-
plexity theoretic proofs: The non-committing encryption case. In
Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 18-22, 2002, Proceedings, volume 2442 of
Lecture Notes in Computer Science, pages 111–126. Springer, 2002.

[107] Yoav Nir and Adam Langley. Chacha20 and poly1305 for IETF
protocols. RFC, 7539:1–45, 2015.

[108] Tatsuaki Okamoto, editor. Advances in Cryptology - ASIACRYPT
2000, 6th International Conference on the Theory and Application
of Cryptology and Information Security, Kyoto, Japan, December
3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer
Science. Springer, 2000.

[109] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
Lecture Notes in Computer Science. Springer, 2015.

[110] Elisabeth Oswald and François-Xavier Standaert. Side-channel
analysis and its relevance to fault attacks. In Marc Joye and
Michael Tunstall, editors, Fault Analysis in Cryptography, Infor-
mation Security and Cryptography, pages 3–15. Springer, 2012.

[111] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek.
Leakage-resilient authentication and encryption from symmetric
cryptographic primitives. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015, pages 96–108. ACM, 2015.

[112] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenti-
cated encryption modes for tweakable block ciphers. In Robshaw
and Katz [117], pages 33–63.

[113] Krzysztof Pietrzak. A leakage-resilient mode of operation. In An-
toine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cologne, Germany, April 26-
30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer
Science, pages 462–482. Springer, 2009.

142 BIBLIOGRAPHY

[114] Emmanuel Prouff and Matthieu Rivain. Masking against side-
channel attacks: A formal security proof. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in
Computer Science, pages 142–159. Springer, 2013.

[115] Jean-Jacques Quisquater and David Samyde. Electromagnetic
analysis (EMA): measures and counter-measures for smart cards.
In Isabelle Attali and Thomas P. Jensen, editors, Smart Card Pro-
gramming and Security, International Conference on Research in
Smart Cards, E-smart 2001, Cannes, France, September 19-21,
2001, Proceedings, volume 2140 of Lecture Notes in Computer Sci-
ence, pages 200–210. Springer, 2001.

[116] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-
order masking and shuffling for software implementations of block
ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceed-
ings, volume 5747 of Lecture Notes in Computer Science, pages
171–188. Springer, 2009.

[117] Matthew Robshaw and Jonathan Katz, editors. Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part I, volume 9814 of Lecture Notes in Computer Sci-
ence. Springer, 2016.

[118] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision re-
sistance. In Bimal K. Roy and Willi Meier, editors, Fast Software
Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes
in Computer Science, pages 371–388. Springer, 2004.

[119] Phillip Rogaway and Thomas Shrimpton. Deterministic
authenticated-encryption: A provable-security treatment of the
key-wrap problem. IACR Cryptology ePrint Archive, 2006:221,
2006.

BIBLIOGRAPHY 143

[120] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn.
Iot goes nuclear: Creating a zigbee chain reaction. IEEE Security
& Privacy, 16(1):54–62, 2018.

[121] Kai Schramm and Christof Paar. Higher order masking of the
AES. In David Pointcheval, editor, Topics in Cryptology - CT-RSA
2006, The Cryptographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860
of Lecture Notes in Computer Science, pages 208–225. Springer,
2006.

[122] Peter Schwabe and Ko Stoffelen. All the AES you need on cortex-
m3 and M4. In Roberto Avanzi and Howard M. Heys, editors,
Selected Areas in Cryptography - SAC 2016 - 23rd International
Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised
Selected Papers, volume 10532 of Lecture Notes in Computer Sci-
ence, pages 180–194. Springer, 2016.

[123] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[124] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-
resilient symmetric cryptography under empirically verifiable as-
sumptions. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, volume 8042 of Lecture Notes in Computer Science, pages
335–352. Springer, 2013.

[125] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth
Oswald, Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and
Stefan Mangard. The world is not enough: Another look on second-
order DPA. In Masayuki Abe, editor, Advances in Cryptology -
ASIACRYPT 2010 - 16th International Conference on the The-
ory and Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture
Notes in Computer Science, pages 112–129. Springer, 2010.

[126] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toy-
ota. Birthday paradox for multi-collisions. In Min Surp Rhee and
Byoungcheon Lee, editors, Information Security and Cryptology -
ICISC 2006, 9th International Conference, Busan, Korea, Novem-
ber 30 - December 1, 2006, Proceedings, volume 4296 of Lecture
Notes in Computer Science, pages 29–40. Springer, 2006.

144 BIBLIOGRAPHY

[127] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof,
and François-Xavier Standaert. Shuffling against side-channel at-
tacks: A comprehensive study with cautionary note. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture
Notes in Computer Science, pages 740–757. Springer, 2012.

[128] Weijia Wang, Yu Yu, François-Xavier Standaert, Dawu Gu, Sen
Xu, and Chi Zhang. Ridge-based profiled differential power analy-
sis. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA
2017 - The Cryptographers’ Track at the RSA Conference 2017,
San Francisco, CA, USA, February 14-17, 2017, Proceedings, vol-
ume 10159 of Lecture Notes in Computer Science, pages 347–362.
Springer, 2017.

[129] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, volume 1666 of
Lecture Notes in Computer Science. Springer, 1999.

[130] Peter H. Wright and Paul Greengrass. Spycatcher: The Candid
Autobiography of a Senior Intelligence Officer. Heinemann, 1987.

[131] Yu Yu and François-Xavier Standaert. Practical leakage-resilient
pseudorandom objects with minimum public randomness. In
Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The
Cryptographers’ Track at the RSA Conference 2013, San Fran-
cisco,CA, USA, February 25-March 1, 2013. Proceedings, vol-
ume 7779 of Lecture Notes in Computer Science, pages 223–238.
Springer, 2013.

[132] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung.
Practical leakage-resilient pseudorandom generators. In Ehab Al-
Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Pro-
ceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 141–151. ACM, 2010.

Chapter A

Additional definitions

In this appendix, we study how a probabilistic encryption algorithm can
be built from a deterministic one, using an additional input. Then, we
study what security we can achieve if this additional input is not correctly
used.

A.1 Syntactic definitions for (AE)

As we have explained in Chap. 2.6, it is necessary to have a probabilistic
encryption scheme. However, it is not easy to design a probabilistic
algorithm.

IV-based encryption schemes. A standard solution is to use a deter-
ministic algorithm that uses an additional input called the Initialization
Vector (IV). This IV is supposed to be random and is externally pro-
vided.
When we state security definitions for IV-based encryption schemes, we
ask that the IV are be picked uniformly at random from the IV-space,
during encryption queries (for example, see [119]).

Nonce-based encryption schemes In many cases, it is an overkill
to suppose that the IV is picked uniformly at random. In fact, often, it is
possible to prove the security of many schemes, only supposing that the
IV is not repeated in different encryption queries. In this case, the IV is
called nonce. We can formalize the syntax for nonce-based Authenticated
Encryption scheme as follow:

Definition 29. A scheme for nonce-based Authenticated Encryption
(nAE) is a triple Π := (Gen,Enc,Dec) of algorithms, where

146 APPENDIX A. ADDITIONAL DEFINITIONS

• Gen picks a key k in the keyspace K, which is not empty.

• The encryption algorithm Enc is a deterministic algorithm which
takes as input the triple (k,N,m) ∈ K × N ×ME and outputs a
string c← EncNk (m) called ciphertext.

• The decryption algorithm Dec is a deterministic algorithm which
takes as input the tuple (k,N, c) ∈ K × N × {0, 1}∗ and outputs
m← DecNk (c) which is either a string m ∈ME or the symbol “⊥”
(“invalid”).

We require that the algorithms Enc and Dec are the inverse of each other,
that is:

• (Correctness) if Enck(N,m) = c, then, Deck(N, c) = m

• (Tidiness) if Deck(N, c) = m 6=⊥, then, Enck(N,m) = c.

If Deck(N, c) =⊥ we say that the algorithm “rejects” c, otherwise it “ac-
cepts” c.

In the literature there are some schemes which do no respect the tidi-
ness condition. They are called sloppy schemes.

For the security, we have to simply adapt Def. 17 to the nAE syntax
and the constraint on nonces:

Definition 30. A nonce-based authenticated encryption scheme (nAE)
Π := (Gen, Enc, Dec) is (qE , qD, t, ε)-nAE-secure if the advantage

AdvnAEΠ (A) :=
∣∣∣Pr
[
AEnck(·,·),Deck(·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]∣∣∣ (A.1)

is bounded by ε for every (qE , qD, t)-adversary A that respects the follow-
ing two conditions:

(i) If A queried the first (encryption) oracle on input (N,m) and was
answered c, then he is not allowed to query the second (decryption)
oracle on input (N, c);

(i) A is not allowed to repeat the first component (the nonce) on different
first oracle queries (encryption queries).

This notion provides privacy, since it assumes that ciphertexts are
indistinguishable from random, and authenticity, since it assumes de-
cryption queries made by the adversary are not valid.

A.2. MISUSE-RESISTANCE 147

A.2 Misuse-resistance

The previous security definition does not say anything about the case
when a nonce is repeated. In some case, it is enough to repeat once a
nonce to completely break the security of the scheme [9].
If a nonce N is repeated with the same message m in two different en-
cryption query, the resulting ciphertext will be the same.
The following definition assumes that an adversary cannot give any addi-
tional information from the repetition of the nonces is if they are repeated
with the same message m.

Definition 31. [119] A nonce-based authenticated encryption scheme
(nAE) Π := (Gen, Enc, Dec) is (qE , qD, t, ε)-MRAE-secure (misuse resis-
tant), if the advantage

AdvMRAE
Π (A) :=

∣∣∣Pr
[
AEnck(·,·),Deck(·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (qE , qD, t)-adversary A .

Note that this is Def.30 (nAE-security) where we have omitted the
constraint that nonces are not repeated in encrytption queries (queries
to the first oracle).

There is a flourishing literature about them, for example, [119, 112,
65]. In our works, we studied this in [24, 27].

Misuse-resilience There is a weaker notion of security due to Ashur et
al. [9], which states the if a nonce is repeated, we have security problems
only for that nonce, not for nonces never used or used only once.

Chapter B

Detailed proofs

Contents
A.1 Syntactic definitions for (AE) 145
A.2 Misuse-resistance 147

B.1 Proof of the suf-L security of HBC

Theorem 3. Let H : KH × HM → {0, 1}n be a (t2, εCR)-collision re-
sistant hash function. Let F∗ : K∗ × {0, 1}n → {0, 1}n be a (q, t1, εPRF)-
pseudorandom function (PRF). Let HM = {0, 1}∗.
Then, HBC is (qM , qV , t, ε)-suf-L-secure in the unbounded leakage model
with

ε ≤ εPRF + εCR + (qV + 1)2−n

with q = qM + qV + 1, t1 = t+ tch(1,KH) + q′tH and t2 = t+ qtH + tf∗(q′).

Proof. As usual, we use a sequence of games.
Game 0. Let Game 0 be the suf-L-game where the (qM , qV , t)-adversary
AL tries to forge ‘MACB. Let E0 be the event that the adversary wins
this game, i.e., that the output of the game is 1.

Game 1. Let Game 1 be Game 0, where we have replaced the PRF F∗

with a random function, named f∗. Let E1 be the event that the adver-
sary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0]−Pr[E1] we build a (q+ 1, t1)-PRF adversary B against F∗ based
on A.

150 APPENDIX B. DETAILED PROOFS

The (q+ 1, t1)-PRF adversary B. B has to distinguish if he is interact-
ing against an oracle implemented with the PRF F∗ or with the random
function f∗. To do this, he uses the suf-L-adversary A.
At the start of the game, B picks a key s for the hash function H uni-
formly at random in KH. Then, he relays it to AL. Moreover, he picks
a list S, which is empty at the start. This takes time tch(1,KH).
When A does a tag-generation query on input mi, B (1) simply com-
putes hi = Hs(m

i), then, (2) he calls his oracle on input hi, receiving τ i,
Finally (3), he answers A τ i and he adds {(mi, τ i)} to S.
This takes time tH. Moreover, 1 oracle query is needed.
When A asks a verification query on input (mi, τ i), B first (1), he com-
putes hi = Hs(m

i) and he calls his oracle on input hi, obtaining τ̃ i.
Finally (2), if τ i = τ̃ i, B answers >; otherwise ⊥. This takes time tH.
Moreover, one oracle query is needed.
When A asks outputs its forgery (mqD+1, τ qD+1), B first (1), he computes
hqV +1 = Hs(m

qV +1) and he calls his oracle on input hqV +1, obtaining
τ̃ qV +1. Finally (2), if τ qV +1 = τ̃ qV +1 and (mqV +1, τ qV +1) /∈ S, B outputs
1; otherwise 0.
This takes time tH. Moreover, one oracle queries are needed.
Thus, B does at most qM +qV +1 = q+1 queries to his oracle. He needs
time t+ tch(1,KH) + (q + 1)tH ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εPRF

where the last inequality is due to the fact that B is a (q+1, t1)-adversary
and F∗ is a (q + 1, t1, εPRF)-PRF.

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not
happen:

HC :=

{
∃i, j ∈ {1, ..., qE} ∪ {1, ..., qV + 1} with i %

= j
s.t. hi = hj and ri‖mi 6= rj‖mj

}
.1

1i
%
= j means that if i comes from a tag-generation query and j from a verification

query, or viceversa, then, they are considered differently.

B.1. PROOF OF THE SUF-L SECURITY OF HBC 151

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs and he is based on AL. At the start of the game, he is provided a key
s for the hash function, which he relays to AL. Moreover, he has a list
H which is empty at the start.
When A does a tag-generation query on inputmi, C (1) simply computes
hi = Hs(m

i), then, (2) he lazy samples τ i = f∗(hi), receiving τ i. Finally
(3), he answers τ i to A and he adds {(mi, hi)} to H.
This takes time tH and the time needed to lazy sample f∗ once.
When A asks a verification query on input (mi, τ i), C first (1), he com-
putes hi = Hs(m

i), adds {(mi, hi)} toH, and he lazy samples τ̃ i = f∗(hi).
Finally (2), if τ i = τ̃ i, C answers >; otherwise ⊥. This takes time tH
and the time needed to lazy sample f∗ once.
When A asks outputs its forgery (mqV +1, τ qD+1), C first (1), he computes
hqV +1 = Hs(m

qV +1), adds {(mqV +1, hqV +1)} to H, and he lazy samples
τ̃ qV +1 = f∗(hqV +1).
This takes time tH and the time needed to lazy sample f∗ once.
At the end of the game, he looks up the list S to find a collision. If he
finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ (q + 1) times. Moreover, he
needs time t+ (q + 1)tH + tf∗(q+1) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. In Game 3 we suppose that all verification queries are deemed
invalid (if the couple (mi, hi) is fresh).

Transition between Game 2 and 3. We build a sequence of qV + 2
games Game 2i i = 0, ..., qV + 1. In Game 2i, for the first i decryption
queries, if hi is fresh, then, they are invalid. That is, τ i 6= f∗(hi). Thus,
all the first i verification queries are invalid if fresh. Let Ei2 be the event
that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
2]−Pr[Ei2]|. Note that the difference between Game

2i−1 and Game 2i are equal if the ith verification query is not both fresh
and valid. Thus:

|Pr[Ei−1
2]− Pr[Ei2]| = Pr[(mi, τ i) fresh and valid].

152 APPENDIX B. DETAILED PROOFS

Since we are in Game 2, event CR has not happened. Thus, the only
possibility is that f∗(hi) has never been computed with hi = Hs(|mi).
Thus

|Pr[Ei−1
2]− Pr[Ei2]| ≤ 2−n

since f∗(hi) is picked uniformly at random. Thus, the probability that
f∗(hi) = τ i is 2−n.

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2qV +1 we can bound

|Pr[E2]− Pr[E3]| ≤
qV +1∑
i=1

|Pr[Ei−1
2]− Pr[Ei2]| ≤ (qV + 1)2−n.

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E3] = 0 (since, in Game 3, all verification
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]−Pr[E3] =

3∑
i=1

|Pr[Ei−1]−Pr[Ei]| ≤ εPRF+εCR+(qV +1)2−n.

B.2 Proof of the CIML-security of DTE

Theorem 4. Let H : KH×HM→ {0, 1}n be a (t2, εCR)-collision resis-
tant and (t2, εroPR)-range-oriented preimage resistant hash function. Let
F∗ : K∗ × {0, 1}n → {0, 1}n be a (2q, t1, εPRF)-pseudorandom function.
Let F : K × B → B. Let HM = {0, 1}∗. Let L be the maximal number
of blocks for a message.
Then, DTE is (qE , qD, t, ε)-CIML-secure in the unbounded leakage model
with

ε ≤ εPRF + εCR + qεroPR + (qD + 1)2−n

with q = qE + qD + 1 and

t1 = t+ tch(1,KH) + tchn(2,B) + (q + 1)(tH + (2L+ 1)tF), and

t2 = t+ tchn(2,B) + (q + 1)(tH + (2L+ 1)tF) + tf∗(2(q+1)).

Proof. As usual, we use a sequence of games.
Game 0. Let Game 0 be the CIML-game where the (qE , qD, t)-adversary
AL tries to produce a valid and fresh ciphertext when he plays against
DTE. Let E0 be the event that the adversary wins this game, i.e., that

B.2. PROOF OF THE CIML-SECURITY OF DTE 153

the output of the game is 1.

Game 1. Let Game 1 be Game 0, where we have replaced the PRF F∗

with a random function, named f∗. Let E1 be the event that the adver-
sary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0] − Pr[E1] we build a (2(q + 1), t1)-PRF adversary B against F∗

based on A.

The (2(q + 1), t1)-PRF adversary B. B has to distinguish if he is in-
teracting against an oracle implemented with the PRF F∗ or with the
random function f∗. To do this, he uses the CIML-adversary A.
At the start of the game, B picks two random values pA, pB uniformly at
random in B with pA 6= pB and a key s for the hash function H uniformly
at random in KH. Then, he relays them to AL. Moreover, he picks a list
S, which is empty at the start. This takes time tch(1,KH) + tchn(2,B).
When A does an encryption query on input (ri,mi), B (1) simply com-
putes hi = Hs(r

i‖mi) and he parses mi = (mi
1, ...,m

i
li

), then, (2) he calls
his oracle on input hi, receiving τ i, and (3) he calls again his oracle on
input τ i obtaining ki0. From ki0, he (4) computes ci0 = Fki0(pB)⊕ ri, after
that, for every i′ ∈ [1, li], he computes kii′ = Fki

i′−1
(pA), yi′ = Fki

i′
(pB)

and cii′ = yii′ ⊕ mi
i′

2. Finally (5), he answers A ci = (τ i, Ci) with
Ci = (ci0, c

i
1, ..., c

i
li

), and the leakage ki0 and he adds {ci} to S.
This takes time tH + (2li + 1)tF ≤ tH + (2L + 1)tF. Moreover, 2 oracle
queries are needed.
When A asks a decryption query on input ci = (τ i, Ci), B first (1) queries
his oracle on input τ i obtaining ki0 and he parses
Ci = (c0‘i, ci1, ..., c

i
li

). From ki0, he (2) computes ri = Fki0(pB)⊕ ci0, after
that, for every i′ ∈ [1, li], he computes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB)

and mi
i′ = yii′ ⊕ cii′

3. Then (3), he computes hi = Hs(r
i‖mi) and

he calls his oracle on input hi, obtaining τ̃ i. Finally (4), if τ i = τ̃ i,
B answers mi = (mi

1, ...,m
i
li

) to A; otherwise, ⊥. This takes time
tH + (2li+ 1)tF ≤ tH + (2L+ 1)tF. Moreover, 2 oracle queries are needed.
When A asks outputs its forgery cqV +1 = (τ qV +1, CqV +1), B first (1)
queries his oracle on input τ qV +1 obtaining kqV +1

0 and he parses
CqV +1 = (cqV +1

0 , cqV +1
1 , ..., cqV +1

lqV +1). From kqV +1
0 , he (2) computes

rqV +1 = F
k
qV +1
0

(pB)⊕cqV +1
0 , after that, for every i′ ∈ [1, li], he computes

2For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

3For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

154 APPENDIX B. DETAILED PROOFS

kqV +1
i′ = F

k
qV +1

i′−1

(pA), yqV +1
i′ = F

k
qV +1

i′
(pB) and mqV +1

i′ = yqV +1
i′ ⊕ cqV +1

i′

4. Then (3), he computes hqD+1 = Hs(r
qD+1‖mqD+1) and he calls his

oracle on input hqD+1, obtaining τ̃ qD+1. Finally (4), if τ qD+1 = τ̃ qD+1

and cqD+1 /∈ S, B outputs 1; otherwise 0.
This takes time tH + (2li + 1)tF ≤ tH + (2L + 1)tF. Moreover, 2 oracle
queries are needed.
Thus, B does at most 2(qE + qD + 1) = 2(q+ 1) queries to his oracle. He
needs time t+ tch(1,KH) + tchn(2,B) + (q + 1)(tH + (2L+ 1)tF) ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εPRF

where the last inequality is due to the fact that B is a (2(q + 1), t1)-
adversary and F∗ is a (2(q + 1), t1, εPRF)-PRF.

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not
happen:

HC :=

{
∃i, j ∈ {1, ..., qE} ∪ {1, ..., qD + 1} with i %

= j
s.t. hi = hj and ri‖mi 6= rj‖mj

}
.5

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs and he is based on AL. At the start of the game, he is provided a key
s for the hash function. Moreover, he picks two values pA, pB ∈ B with
pA 6= pB. Then, he relays s, pA and pB to AL. Moreover, he has a list H,
which is empty at the start. This takes time tchn(2,B).
When A does an encryption query on input (ri,mi), C (1) simply com-
putes hi = Hs(r

i‖mi) and he parses mi = (mi
1, ...,m

i
li

), then, (2) he lazy
samples τ i = f∗(hi), receiving τ i, and (3) he lazy samples ki0 = f∗(τ i).
From ki0, he (4) computes ci0 = Fki0(pB) ⊕ ri, after that, for every

4For i′ = lqD+1, mqV +1
i′ = π|mqV +1

i′ |(yi′)
qV +1 ⊕ cqD+1

i′

5i
%
= j means that if i comes from an encryption query and j from a decryption

query, or viceversa, then, they are considered differently.

B.2. PROOF OF THE CIML-SECURITY OF DTE 155

i′ ∈ [1, li], he computes kii′ = Fki
i′−1

(pA), yi′ = Fki
i′

(pB) and cii′ = yii′⊕mi
i′

6. Finally (5), he answers to A ci = (τ i, Ci) with Ci = (ci0, c
i
1, ..., c

i
li

),
and the leakage ki0 and he adds {(ri‖mi, hi)} to H.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice.
When A asks a decryption query on input ci = (τ i, Ci), C first (1) lazy
samples ki0 = f∗(τ i) and he parses ci = (ci0, c

i
1, ..., c

i
li

). From ki0, he (2)
computes ri = Fki0(pB)⊕ ci0, after that, for every i′ ∈ [1, li], he computes
kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′
7. Then (3), he

computes hi = Hs(r
i‖mi), adds {(ri‖mi, hi)} to H, and he lazy samples

τ̃ i = f∗(hi). Finally (4), if τ i = τ̃ i, C answers mi = (mi
1, ...,m

i
li

) to A;
otherwise, ⊥. This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the
time needed to lazy sample f∗ twice.
When A asks outputs its forgery cqD+1 = (τ qD+1, CqD+1), C first (1) lazy
samples kqD+1

0 = f∗(τ qD+1) and he parses
cqD+1 = (cqD+1

0 , cqD+1
1 , ..., cqD+1

lqD+1). From kqD+1
0 , he (2) computes rqD+1 =

F
k
qD+1
0

(pB)⊕cqD+1
0 , after that, for every i′ ∈ [1, li], he computes kqD+1

i′ =

F
k
qD+1

i′−1

(pA), yqD+1
i′ = F

k
qD+1

i′
(pB) and mqD+1

i′ = yqD+1
i′ ⊕ cqD+1

i′
8. Then

(3), he computes hqD+1 = Hs(r
qD+1‖mqD+1), adds

{(rqD+1‖mqD+1, hqD+1)} to H, and he lazy samples τ̃ qD+1 = f∗(hqD+1).
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice.
At the end of the game, he looks up the list S to find a collision. If he
finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ 2(q + 1) times. Moreover, he
needs time t+ tchn(2,B) + (q + 1)(tH + (2L+ 1)tF) + tf∗(2(q+1)) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. Let Game 3 be Game 2, where we suppose that for every τ j

obtained in an encryption query, that is, the answer of the jth encryption
query is cj with cj = (τ j , CJ) the adversary is not able to ask a valid
decryption query cj′ such that τ j′ = τ j . That is, for every τ j obtained

6For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

7For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′
8For i′ = lqD+1, mqD+1

i′ = π|mqD+1

i′ |(yi′)
qD+1 ⊕ cqD+1

i′

156 APPENDIX B. DETAILED PROOFS

as a tag in an encryption query, the adversary is not able to find a hash
pre-image for it.
To make the reduction work we also need to assume that the adversary
is not able to find a pre-image for all kJ0 obtained in decryption queries
if fresh (that is, f∗(τJ) has never been computed, where the Jth decryp-
tion query is cJ = (τJ , CJ)), the adversary AL is not able to ask a valid
decryption query cj′ such that τ j′ = τ j or τ j′ = kJ0 as we will show. Let
E3 be the event that the adversary wins this game.

Transition between Game 2 and 3. We build a sequence of q + 1
games Game 3i′ i′ = 0, ..., q. In Game 3i

′ , for the first i′ encryption and
decryption queries (that is, we have a counter ctr for the sum of the
number of encryption queries and decryption queries and i′ is compared
with this counter 9. To simplify we write ctr = ctrE + ctrD, that is,
we split ctr in the two parts. We suppose that the adversary has never
found a value x s.t. Hs(x) = τ j where, ∀j = 1, ..., ctrE , where τ j is the
tag computed during the jth encryption query, or s.t. x s.t. Hs(x) = kJ0
where, ∀J = 1, ..., ctrD, where kJ0 is the firs ephemeral key computed
during the Jth decryption query, with ctrE + ctrD = i′. Let Ei2 be the
event that the adversary wins in Game 2i.

Transition between Game 2I−1 and Game 2I . Clearly, Game 2I−1

and Game 2I are equal if the following event

PRI :=

if the Ith query is the Jth encryption query
∃j ∈ {1, ..., qD + 1} s.t. Deck(cj) 6=⊥ ∧τ j = τJ

with cJ = (τJ , CJ) = Enck(r
J ,mJ)

else if the Ith query is the J ′th decryption query
∃j ∈ {1, ..., qD + 1} s.t. Deck(cj) 6=⊥ ∧τ j = kJ

′
0

with cJ ′ = (τJ
′
, CJ

′
) and kJ ′0 = f∗(τJ

′
))

does not happen. We build a t3-roPR adversary DI to bound the proba-
bility that event PRI happens.

The DI adversary. The adversary DI receives a random key s for the
hash function and a random value x in the target space of H, and he has
to find a hash pre-image for it. He is based on AL.
To obtain a hash pre-image for x, the idea is that DI sets τ I := x and
uses a forgery cj made by AL where hj = τ I with hj = Hs(r

j‖mj) where
(rj ,mj) is the couple randomness-message retrieved during the jth de-
cryption query. Formally:

9We do not have to consider the qD + 1th decryption query because kqD+1
0 can

never be used as a target

B.2. PROOF OF THE CIML-SECURITY OF DTE 157

At the start of the game, DI is provided a key s for the hash function
and a target value x. Moreover, he picks two values pA, pB ∈ B with
pA 6= pB. Then, he relays s, pA and pB to AL. Moreover, he has two lists
S and H, which are empty at the start. This takes time tchn(2,B).
When A does an encryption query on input (ri,mi), DI (1) simply
computes hi = Hs(r

i‖mi), he adds }(ri‖mi, hi){ to H, and he parses
mi = (mi

1, ...,m
i
li

), then, (2), if (a) this is not the Ith query (among en-
cryption and decryption queries) he lazy samples τ i = f∗(hi); otherwise,
if f∗(hi) is fresh, (b) he sets x = τ i := f∗(hi) (otherwise, he computes
correctly f∗(hi)) 10 11, and (3) he lazy samples ki0 = f∗(τ i). From ki0,
he (4) computes ci0 = Fki0(pB) ⊕ ri, after that, for every i′ ∈ [1, li], he
computes kii′ = Fki

i′−1
(pA), yi′ = Fki

i′
(pB) and cii′ = yii′ ⊕mi

i′
12. Finally

(5), he answers A ci = (τ i, Ci) with Ci = (ci0, c
i
1, ..., c

i
li

), and the leakage
ki0. Moreover, DI adds {(ci,>)} to S.
This takes time tH +(2li+1)tF ≤ tH +(2L+1)tF and the time needed to
lazy sample f∗ twice, if i 6= I, once if i = I. Moreover, DI adds {(ci,⊥)}
to S
When A asks a decryption query on input ci = (τ i, Ci), DI first (1), if
(a) this is not the Ith query (among encryption and decryption queries)
lazy samples ki0 = f∗(τ i); otherwise, if f∗(τ i) is fresh, (b) he sets x =
ki0 := f∗(τ i) (otherwise, he computes correctly f∗(hi)). He parses ci =
(ci0, c

i
1, ..., c

i
li

). From ki0, he (2) computes ri = Fki0(pB) ⊕ ci0, after that,
for every i′ ∈ [1, li], he computes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and

mi
i′ = yii′ ⊕ cii′

13. Then (3), he computes hi = Hs(r
i‖mi), he adds

}(ri‖mi, hi){ to H, and he lazy samples τ̃ i = f∗(hi). Finally (4), if
τ i = τ̃ i, DI answers mi = (mi

1, ...,m
i
li

) to A; otherwise, ⊥. Moreover,
DI adds {(ci,⊥)} to S if DI has answered ⊥ to AL; otherwise {(ci,>)}.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice, if i 6= I, once if i = I.
When A asks outputs its forgery cqD+1 = (τ qD+1, CqD+1), DI first (1)

10Since, by hypothesis there are no collision of the hash functions, then, hi 6= hj

(for both previous encryption and decryption queries); moreover, if hI = τ j , for a
previous encryption query, we have already obtained a pre-image for τ j for j ≤ i− 1,
which is prevented by the fact that in both Games 2i−1 and 2i, events PR1, ..., PRi−1

do not happen.
11This is why we need to consider also x as kJ0 for decryption queries. In fact, we

need to lazy sample f∗ correctly. If the adversary has asked before the decryption
of a ciphertext cj = (τJ , CJ) where τ j = h′ := Hs(r

′‖m′) for a couple (random-
ness,message) of his choice and then, he asks the encryption of (r′,m′), f∗(h′) has
already been sampled and cannot be picked as x.

12For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

13For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

158 APPENDIX B. DETAILED PROOFS

lazy samples kqD+1
0 = f∗(τ qD+1) and he parses

cqD+1 = (cqD+1
0 , cqD+1

1 , ..., cqD+1

lqD+1). From kqD+1
0 , he (2) computes rqD+1 =

F
k
qD+1
0

(pB)⊕cqD+1
0 , after that, for every i′ ∈ [1, li], he computes kqD+1

i′ =

F
k
qD+1

i′−1

(pA), yqD+1
i′ = F

k
qD+1

i′
(pB) and mqD+1

i′ = yqD+1
i′ ⊕ cqD+1

i′
14. Then

(3), he computes hqD+1 = Hs(r
qD+1‖mqD+1), he adds

{(rqD+1‖mqD+1, hqD+1)} to H, and he lazy samples τ̃ qD+1 = f∗(hqD+1).
Finally (4), DI adds {(ci,⊥)} to S if τ qD+1 = τ̃ qD+1 (or if cqD+1 is
not fresh); otherwise {(cqD+1,>)}. This takes time tH + (2li + 1)tF ≤
tH + (2L+ 1)tF and the time needed to lazy sample f∗ twice15.
At the end of the game, he looks up the list H if there is an entry (cj ,>)
such that cj = (τ j , Cj) with τ j = x. If he finds it, he outputs the corre-
sponding entry rj‖mj of H; otherwise, 0n.
Thus, in total, he needs to lazy sample f∗ 2q + 1 times 16. Moreover, he
needs time t+ tchn(2,B) + (q + 1)(tH + (2L+ 1)tF) + tf∗(2(q+1)) ≤ t2.

Bounding |Pr[EI−1
2]−Pr[EI2]|. Observe that if event PRI happens, DI

wins. Since DI is a t2-adversaries and H is a (t2, εroPR)-range-oriented
pre-image resistant hash function, we can bound:

|Pr[EI−1
2]− Pr[EI2]| ≤ Pr[PRI] ≤ εroPR

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2q we can bound

|Pr[E2]− Pr[E3]| ≤
q∑
I=1

|Pr[EI−1
2]− Pr[EI2]| ≤ qεroPR.

Game 4. In Game 4 we suppose that all decryption queries are deemed
invalid (if the ciphertext ci is fresh).

Transition between Game 3 and 4. We build a sequence of qD + 2
games Game 3i i = 0, ..., qD + 1. In Game 3i, for the first i decryption
queries, if hi is fresh, then, they are invalid. That is, τ i 6= f∗(hi). Thus,
all the first i decryption queries are invalid if fresh. Let Ei3 be the event
that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
3]−Pr[Ei3]|. Note that the difference between Game

3i−1 and Game 3i are equal if the ith decryption query is not both fresh
14For i′ = lqD+1, mqD+1

i′ = π|mqD+1

i′ |(yi′)
qD+1 ⊕ cqD+1

i′

15We note that kqD+1
0 cannot be the target since it cannot be reused in future

decryption queries.
16Note that in the ith query, we have lazy sampled f∗ only once.

B.2. PROOF OF THE CIML-SECURITY OF DTE 159

and valid. Thus:

|Pr[Ei−1
3]− Pr[Ei3]| = Pr[ci fresh and valid].

Since we are in Game 3 nor event CR nor events PR1, ..., PRq have
happened. Thus, the only possibility is that f∗(hi) has never been com-
puted with hi = Hs(r

i‖mi), where ri and mi are the couple randomness
and message is the couple retrieved during the decryption of the ith
decryption query on input ci. Thus

|Pr[Ei−1
3]− Pr[Ei3]| ≤ 2−n

since f∗(hi) is picked uniformly at random. Thus, the probability that
f∗(hi) = τ i is 2−n.

Bounding |Pr[E3]− Pr[E4]|. Since Game 3 is Game 30 and Game 4 is
Game 3qD+1 we can bound

|Pr[E3]− Pr[E4]| ≤
qD+1∑
i=1

|Pr[Ei−1
3]− Pr[Ei3]| ≤ (qD + 1)2−n.

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E4] = 0 (since, in Game 4, all decryption
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]− Pr[E4] =

4∑
i=1

|Pr[Ei−1]− Pr[Ei]| ≤

εPRF + εCR + qεroPR + (qD + 1)2−n.

Note on the bound. Observe that we have a matching attack for all
the term of the bound with one exception: we have a matching attack
only for the term qEεroPR and not for qεroPR.
In fact, it is due to an artifice of the proof to be able to simulate correctly
and to avoid the situation where the adversary has asked before the
decryption of a ciphertext cj = (τJ , CJ) where τ j = h′ := Hs(r

′‖m′)
for a couple (randomness, message) of his choice and then, he asks the
encryption of (r′,m′). Thus, f∗(h′) has already been computed.
However, doing this, the adversary should not get any advantage.

160 APPENDIX B. DETAILED PROOFS

B.3 Proof of the suf-L2 security of HBC2

Theorem 5. Let H : KH × HM → B∗ be a (t2, εCR)-collision resis-
tant and (t3, εroPR)-range-oriented pre-image resistant hash function. Let
F∗ : K∗×B∗ → B∗ be a (qM +qV +1, t1, εsPRP)-strong pseudorandom per-
mutation with a strongly protected implementation. Let HM = {0, 1}∗
and B∗ = T AG = {0, 1}n.
Then, HBC2 is (qM , qV , t, ε)-suf-L2-secure in the unbounded leakage
model with

εsTPRP + εCR + qV εroPR + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1

with q = qM + qV + 1, t+ tch(1,KH) + qtH ≤ t1, t+ qtH + tf∗(q)) ≤ t2 and
t+ qtH + tf∗(q−1) ≤ t3.

Proof. As usual, we use a sequence of games.
Game 0. Let Game 0 be the suf-L2-game where the (qM , qV , t)-adversary
AL tries to produce a forgery when he plays against HBC2. Let E0 be
the event that the adversary wins this game, i.e., that the output of the
game is 1.

Game 1. Let Game 1 be Game 0, where we have replaced the sPRP
F∗ with a random permutation, named f∗. Let E1 be the event that the
adversary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0]−Pr[E1] we build a (q, t1)-sPRP adversary B against F∗ based on
A.

The (q, t1)-sPRP adversary B. B has to distinguish if he is interacting
against an oracle implemented with the sPRP F∗ or with the random
permutation f∗. To do this, he uses the
suf-L2-adversary A.
At the start of the game, B picks a key s for the hash function H uni-
formly at random in KH. Then, he relays them to A. Moreover, he picks
a list S, which is empty at the start. This takes time tch(1,KH).
When A does an tag-generation query on input mi, B (1) simply com-
putes hi = Hs(m

i), then, (2) he calls his oracle on input (hi,+1), receiv-
ing τ i. Finally (3), he answers A τ i and he adds {(mi, τ i)} to S.
This takes time tH. Moreover, one oracle query is needed.
When A asks a verification query on input (mi, τ i), B first (1), he com-
putes hi = Hs(m

i), then (2), he calls his oracle on input (τ i,−1), ob-
taining h̃i. Finally (3), if hi = h̃i, B answers > to A; otherwise, ⊥.

B.3. PROOF OF THE SUF-L2 SECURITY OF HBC2 161

This takes time tH. Moreover, one oracle query is needed.
When A outputs its forgery (mqV +1, τ qV +1), B first (1), he computes
hqV +1 = Hs(m

qV +1), then, (2) he calls his oracle on input (τ qV +1,−1),
obtaining h̃qV +1. Finally (4), if hqV +1 = h̃qV +1 and (mqV +1, τ qV +1) /∈ S,
B outputs 1; otherwise 0.
This takes time tH. Moreover, one oracle query is needed.
Thus, B does at most q queries to his oracle. He needs time t+tch(1,KH)+
qtH ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εsPRP

where the last inequality is due to the fact that B is a (q, t1)-adversary
and F∗ is a (q, t1, εsPRP)-sPRP.

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not
happen:

HC := {∃i, j ∈ {1, ..., qM} ∪ {1, ..., qV + 1} with i %
= j s.t. hi = hj}.17

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs. At the start of the game, he is provided a key s for the hash function,
which he relays to AL. Moreover, he has a list H which is empty at the
start.
When A does a tag-generation query on input mi, C (1) simply com-
putes hi = Hs(m

i), then, (2) he lazy samples τ i = f∗(hi,+1), receiving
τ i, Finally (3), he answers A τ i and he adds {(mi, hi)} to H.
This takes time tH and the time needed to lazy sample f∗ once.
When A asks a verification query on input (mi, τ i), C first, (1) he com-
putes hi = Hs(m

i), adds {(mi, hi)} to H, then (2), he lazy samples
h̃i = f∗(τ i,−1). Finally (3), if hi = h̃i, C answers > to A; otherwise, ⊥.

17i
%
= j means that if i comes from a tag-generation query and j from a verification

query, or viceversa, then, they are considered differently.

162 APPENDIX B. DETAILED PROOFS

This takes time tH and the time needed to lazy sample f∗ once.
When A asks outputs its forgery (mqV +1, τ qV +1), C first, (1) he com-
putes hqV +1 = Hs(m

qV +1), adds {(mqV +1, hqV +1)} to H, then, (2) he
lazy samples h̃qV +1 = f∗(τ qV +1,−1).
This takes time tH and the time needed to lazy sample f∗ once.
At the end of the game, he looks up the list H to find a collision. If he
finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ at most q times. Moreover, he
needs time t+ qtH + tf∗(q)) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. Let Game 3 be Game 2, where we suppose that for every h̃j
obtained in an invalid verification query, the adversary is not able to ask
a valid verification query (mj′ , τ j

′
) such that hj′ = h̃j . Let E3 be the

event that the adversary wins this game.

Transition between Game 2 and 3. We build a sequence of qV + 1
games Game 3I I = 0, ..., qE

18. In Game 3I , for the first I verification
queries, if they are invalid, the adversary has never found a value x s.t.
Hs(x) = h̃j where, ∀j = 1, ..., I, where h̃j is the check hash computed
during the jth verification query, ∀j = 1, ..., I. Let EI2 be the event that
the adversary wins in Game 2I .

Transition between Game 2i′−1 and Game 2I . Clearly, Game 2I−1

and Game 2I are equal if the following event

PRI :=

{
∃j ∈ {1, ..., qV + 1} s.t. Vrfyk(cj) 6=⊥ ∧hj = h̃I

with cj the jth verification query which is fresh.

}
does not happen. We build a t3-roPR adversary DI to bound the proba-
bility that event PRI happens.

The DI adversary. The adversary DI receives a random value x, and
he has to find a hash pre-image for it. He is based on AL.
To obtain a hash pre-image for x, the idea is that DI sets h̃I := x and uses
a valid forgery (mj , τ j) made by AL where hj = h̃I with hj = Hs(m

j).

18h̃qV +1 cannot be used as a target in subsequent verification query

B.3. PROOF OF THE SUF-L2 SECURITY OF HBC2 163

Formally:
At the start of the game, DI is provided a key s for the hash function
and a target value x. Then, he relays s to AL. Moreover, he has two lists
H and S, which are empty at the start. When A does an tag-generation
query on input mi, DI (1) simply computes hi = Hs(m

i) and he adds
{(mi, hi){ to H, then, (2), he lazy samples τ i = f∗(hi,+1). Finally (3),
he answers τ i to A.
This takes time tH and the time needed to lazy sample f∗ once. More-
over, DI adds {(ci,⊥)} to S
When A asks a verification query on input (mi, τ i), DI first (1), he com-
putes hi = Hs(m

i), he adds {(mi, hi)} to H. After that (2), if (a) it is
the Ith verification query and f∗(τ I ,−1) has never been samples, he sets
x := h̃I = f∗(τ I ,−1) 19; otherwise, (b) he lazy samples h̃i = f∗(τ i,−1).
Finally (3), if hi = h̃i, DI answers > to A; otherwise, ⊥.
This takes time tH and the time needed to lazy sample f∗ once, if i 6= I;
otherwise no lazy sampling is needed.
When A asks outputs its forgery (mqV +1, τ qV +1), DI first, (1) he com-
putes hqV +1 = Hs(m

qV +1), he adds
{(mqV +1, hqV +1)} toH, then, (2) he lazy samples h̃qV +1 = f∗(τ qV +1,−1).
Finally (3), DI answers > to A if hqV +1 = h̃qV +1; otherwise, ⊥.
This takes time tH and the time needed to lazy sample f∗ once.
At the end of the game, DI looks into his list H if he finds a pre-image
for x. If he finds it, he outputs the corresponding entry, that is, if there
is an entry (mj , hj) in H s.t. hj = x, he outputs mj ; otherwise, 0n.
Thus, in total, he needs to lazy sample f∗ q − 1 times20. Moreover, he
needs time t+ qtH + tf∗(q−1) ≤ t3.

19Note that it may be the case that it is not possible to set x = f∗(τ I ,−1) since f∗

is a tweakable permutation. But, this may happen only if
a either f∗(·,+1) has been sampled on input x
b or if sampling f∗(·,−1) has given x as an output.

This is not a problem. In fact:
a it means that we have asked to sample f∗(x,+1). This situation may hap-

pen only in a tag-generation query. Moreover, when it happens, the input
is the hash of the randomness and the message, that is, x = Hs(m

j) for the
previous jth tag-generation query, thus, DI proceeds normally, lazy sampling
f∗(0, ·,+1). Additionally, he has already found a pre-image for x, which is
precisely mj .

b it means that we have sampled x = h̃j = f∗(τ j ,−1). This situation may
happen only in a verification query. We call this verification query the jth
with J < I. But, since in both games Game 2I− and Game 2I , event PRj

does not happen, so it is impossible that DI wins finding a pre-image for x.

20DI does not have to lazy sample f∗(τ I ,−1) because it is equal to x.

164 APPENDIX B. DETAILED PROOFS

Bounding |Pr[EI−1
2]−Pr[EI2]|. Observe that if event PRI happens, DI

wins. Since DI is a t3-adversaries and H is a (t3, εroPR)-range-oriented
pre-image resistant hash function, we can bound:

|Pr[EI−1
2]− Pr[EI2]| ≤ Pr[PRI] ≤ εroPR

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2q we can bound

|Pr[E2]− Pr[E3]| ≤
qV∑
I=1

|Pr[EI−1
2]− Pr[EI2]| ≤ qV εroPR.

Game 4. In Game 4 we suppose that all verification queries are deemed
invalid (if the ciphertext ci is fresh).

Transition between Game 3 and 4. We build a sequence of qV + 2
games Game 3i i = 0, ..., qV + 1. In Game 3i, for the first i verification
queries, if hi is fresh, then, they are invalid. That is, h̃i 6= f∗(τ i,−1).
Thus, all the first i verification queries are invalid if fresh. Let Ei3 be the
event that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
3]−Pr[Ei3]|. Note that the difference between Game

3i−1 and Game 3i are equal if the ith verification query is not both fresh
and valid. Thus:

|Pr[Ei−1
3]− Pr[Ei3]| = Pr[ci fresh and valid].

Since we are in Game 3 nor event CR nor events PR1, ..., PRq have
happened. Thus, the only possibility is that f∗(τ i,−1) has never been
computed where the ith verification query is (mi, τ i). Thus

|Pr[Ei−1
3]− Pr[Ei3]| ≤ 1

2n − qM − i+ 1

since f∗(τ i,−1) is picked uniformly at random with the constraint that
f∗(0, ·) remains a permutation, thus, there at most qM + i−1 values that
cannot be picked in B∗. Thus, the probability that f∗(τ i,−1) = hi is

1
2n−qM−i+1 .

Bounding |Pr[E3]− Pr[E4]|. Since Game 3 is Game 30 and Game 4 is
Game 3qV +1 we can bound

|Pr[E3]− Pr[E4]| ≤
qV +1∑
i=1

|Pr[Ei−1
3]− Pr[Ei3]| ≤

qV +1∑
i=1

1

2n − qM − i+ 1
≤

(qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1
.21

B.4. PROOF OF THE SUF-L2 SECURITY OF HTBC 165

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E4] = 0 (since, in Game 4, all verification
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]− Pr[E4] =
4∑
i=1

|Pr[Ei−1]− Pr[Ei]| ≤

εsTPRP + εCR + qV εroPR + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1
.

B.4 Proof of the suf-L2 security of HTBC

Theorem 6. Let H : KH × HM → B1 × B2 be a (t2, εCR)-collision
resistant and (t2, εroPR′)-range-oriented pre-image resistant hash function
with half of the input chosen by the adversary. Let F∗ : K∗ × T W∗ ×
B∗ → B∗ be a (qM + qV + 1, t1, εsTPRP)-strong-pseudorandom tweakable
permutation with a strongly protected implementation. Let B1 = B∗ and
B2 = T W. Let HM = {0, 1}∗ and B∗ = T W = T AG = {0, 1}n.
Then, HTBC is (qM , qV , t, ε)-suf-L2-secure in the unbounded leakage
model with

εsTPRP + εCR + qV εroPR′ + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1

with q = qM + qV + 1, t+ tch(1,KH) + qtH ≤ t1, t+ qtH + tf∗(q) ≤ t2 and
t+ qtH + tf∗(q−1) ≤ t3.

Proof. As usual, we use a sequence of games.
Game 0. Let Game 0 be the suf-L2-game where the (qM , qV , t)-adversary
AL tries to produce a forgery when he plays against HTBC. Let E0 be
the event that the adversary wins this game, i.e., that the output of the
game is 1.

Game 1. Let Game 1 be Game 0 where the sTPRP F∗ has been replaced
by a tweakable random permutation, named f∗. Let E1 be the event that
the adversary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0] − Pr[E1] we build a (q, t1)-sTPRP adversary B against F∗ based
on A.

166 APPENDIX B. DETAILED PROOFS

The (q, t1)-sPRP adversary B. B has to distinguish if he is interacting
against an oracle implemented with the sTPRP F∗ or with the random
tweakable permutation f∗. To do this, he uses the
suf-L2-adversary A.
At the start of the game, B picks a key s for the hash function H uni-
formly at random in KH. Then, he relays them to A. Moreover, he picks
a list S, which is empty at the start. This takes time tch(1,KH).
When A does an tag-generation query on input mi, B first, (1) he simply
computes hi = Hs(m

i) and he parses it in hi = hi1‖hi2, then, (2) he calls
his oracle on input (hi2, h

i
1,+1), receiving τ i. Finally (3), he answers A

τ i and he adds {(mi, τ i)} to S.
This takes time tH. Moreover, one oracle query is needed.
When A asks a verification query on input (mi, τ i), B first (1), he com-
putes hi = Hs(m

i) and he parses it in hi = hi1‖hi2, then (2), he calls
his oracle on input (hi2, τ

i,−1), obtaining h̃i1. Finally (3), if hi1 = h̃i1, B
answers > to A; otherwise, ⊥.
This takes time tH. Moreover, one oracle query is needed.
When A outputs its forgery (mqV +1, τ qV +1), B first (1), he computes
hqV +1 = Hs(m

qV +1) and he parses it in hqV +1 = hqV +1
1 ‖hqV +1

2 , then, (2)
he calls his oracle on input (hqV +1

2 , τ qV +1,−1), obtaining h̃qV +1. Finally
(4), if hqV +1 = h̃qV +1 and (mqV +1, τ qV +1) /∈ S, B outputs 1; otherwise
0.
This takes time tH. Moreover, one oracle query is needed.
Thus, B does at most q queries to his oracle. He needs time t+tch(1,KH)+
qtH ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εsTPRP

where the last inequality is due to the fact that B is a (q, t1)-adversary
and F∗ is a (q, t1, εsTPRP)-sTPRP.

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not

B.4. PROOF OF THE SUF-L2 SECURITY OF HTBC 167

happen:

HC := {∃i, j ∈ {1, ..., qM} ∪ {1, ..., qV + 1} with i %
= j s.t. hi = hj}.22

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs. At the start of the game, he is provided a key s for the hash function,
which he relays to AL. Moreover, he has a list H which is empty at the
start.
When A does a tag-generation query on inputmi, C (1) simply computes
hi = Hs(m

i) and he parses it in hi = hi1‖hi2, then, (2) he lazy samples
τ i = f∗(hi2, h

i
1,+1), receiving τ i, Finally (3), he answers A τ i and he adds

{(mi, hi)} to H.
This takes time tH and the time needed to lazy sample f∗ once.
When A asks a verification query on input (mi, τ i), C first, (1) he com-
putes hi = Hs(m

i), adds {(mi, hi)} to H and he parses it in hi = hi1‖hi2,
then (2), he lazy samples h̃i1 = f∗(hi2, τ

i,−1). Finally (3), if hi1 = h̃i1, C
answers > to A; otherwise, ⊥.
This takes time tH and the time needed to lazy sample f∗ once.
When A asks outputs its forgery (mqV +1, τ qV +1), C first, (1) he com-
putes hqV +1 = Hs(m

qV +1), adds {(mqV +1, hqV +1)} to H and he parses it
in hqV +1 = hqV +1

1 ‖hqV +1
2 , then, (2) he lazy samples

h̃qV +1
1 = f∗(hqV +1

2 , τ qV +1,−1).
This takes time tH and the time needed to lazy sample f∗ once.
At the end of the game, he looks up the list H to find a collision. If he
finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ at most q times. Moreover, he
needs time t+ qtH + tf∗(q)) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. Let Game 3 be Game 2, where we suppose that for every h̃j

obtained in an invalid verification query, the adversary is not able to ask
a valid verification query (mj′ , τ j

′
) such that hj

′

1 = h̃j1 and hj
′

2 = hj2. Let
E3 be the event that the adversary wins this game.

22i
%
= j means that if i comes from a tag-generation query and j from a verification

query, or viceversa, then, they are considered differently.

168 APPENDIX B. DETAILED PROOFS

Transition between Game 2 and 3. We build a sequence of qV + 1
games Game 3I I = 0, ..., qE

23. In Game 3I , for the first I verification
queries, if they are invalid, the adversary has never found a value x s.t.
Hs(x) = h̃j1‖h

j
2 where, ∀j = 1, ..., I, where h̃j1 is the check hash computed

during the jth verification query, ∀j = 1, ..., I. Let EI2 be the event that
the adversary wins in Game 2I .

Transition between Game 2i′−1 and Game 2I . Clearly, Game 2I−1

and Game 2I are equal if the following event

PRI :=

∃j ∈ {1, ..., qV + 1} s.t. Vrfyk(cj) 6=⊥
∧hj1 = h̃I1 andhj2 = hI2 where cj is the
jth verification query which is fresh.

does not happen. We build a t3-roPR adversary DI to bound the proba-
bility that event PRI happens.

The DI adversary. The adversary DI = (DI,1,DI,2) is composed by
two adversaries, the first DI,1 knows the hash key and outputs a value y
and the information st he wants to send to DI,2; DI,2 receives a random
value x and he has to find an hash pre-image for x‖y. He is based on AL.
To obtain a hash pre-image for x, the idea is that DI sets y = hI2, h̃I1 := x
and uses a valid forgery (mj , τ j) made by AL where hj1 = h̃I1 and hj2 = hI2
with hj = hj1‖h

j
2 = Hs(m

j). Formally:
At the start of the game, DI is provided a key s. Then, he relays s to
AL. Moreover, he has two lists H and S, which are empty at the start.
When A does an tag-generation query on input mi, DI,1 or DI,2 (1) sim-
ply computes hi = hi1‖hi2 = Hs(m

i) and he adds {(mi, hi){ to H, then,
(2), he lazy samples τ i = f∗(hi2, h

i
1,+1). Finally (3), he answers τ i to A.

This takes time tH and the time needed to lazy sample f∗ once. More-
over, DI,1 (or DI,2 adds {(mi,⊥)} to S
When A asks a verification query on input (mi, τ i), DI,1 or DI,2 first (1),
he computes hi = hi1‖hi1 = Hs(m

i), he adds {(mi, hi)} to H. After that
(2), if (a) it is the Ith verification query and f∗(hI2, τ

I ,−1) has never
been samples, DI,1 outputs hI2 : y and the information st = (s,H), then,
DI,2 receives x and he sets x := h̃I1 = f∗(hi2, τ

I ,−1) 24; otherwise, (b) he

23h̃qV +1 cannot be used as a target in subsequent verification query
24Note that it may be the case that it is not possible to set x = f∗(hI

2, τ
I ,−1) since

f∗ is a tweakable permutation. But, this may happen only if
a either f∗(·, ·,+1) has been sampled on input x
b or if sampling f∗(·, ·,−1) has given x as an output.

This is not a problem. In fact:
a it means that we have asked to sample f∗(y, x,+1). This situation may hap-

B.4. PROOF OF THE SUF-L2 SECURITY OF HTBC 169

lazy samples h̃i1 = f∗(hi2, tau
i,−1). Finally (3), if hi1 = h̃i1, DI answers

> to A; otherwise, ⊥.
This takes time tH and the time needed to lazy sample f∗ once, if i 6= I;
otherwise no lazy sampling is needed.
When A outputs its forgery (mqV +1, τ qV +1), DI,2 first, (1) he computes
hqV +1 = hqV +1

1 ‖hqV +1
2 = Hs(m

qV +1), he adds
{(mqV +1, hqV +1)} to H, then, (2) he lazy samples
h̃qV +1

1 = f∗(hqV +1
2 , τ qV +1,−1). Finally (3), DI answers > to A if hqV +1

1 =

h̃qV +1
1 ; otherwise, ⊥.

This takes time tH and the time needed to lazy sample f∗ once.
At the end of the game, DI looks into his list H if he finds a pre-image
for x‖y. If he finds it, he outputs the corresponding entry, that is, if
there is an entry (mj , hj) in H s.t. hj = x‖y, he outputs mj ; otherwise,
0n.
Thus, in total, he needs to lazy sample f∗ q − 1 times25. Moreover, he
needs time t+ qtH + tf∗(q−1) ≤ t3.

Bounding |Pr[EI−1
2]−Pr[EI2]|. Observe that if event PRI happens, DI

wins. Since DI is a t3-adversaries and H is a (t3, εroPR′)-range-oriented
pre-image resistant’ hash function, we can bound:

|Pr[EI−1
2]− Pr[EI2]| ≤ Pr[PRI] ≤ εroPR′

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2q we can bound

|Pr[E2]− Pr[E3]| ≤
qV∑
I=1

|Pr[EI−1
2]− Pr[EI2]| ≤ qV εroPR′ .

Game 4. In Game 4 we suppose that all verification queries are deemed
invalid (if the ciphertext ci is fresh).

Transition between Game 3 and 4. We build a sequence of qV + 2
games Game 3i i = 0, ..., qV + 1. In Game 3i, for the first i verification

pen only in a tag-generation query. Moreover, when it happens, the input is
the hash of the randomness and the message, that is, x‖y = Hs(m

j) for the
previous jth tag-generation query, thus, DI proceeds normally, lazy sampling
f∗(0, ·,+1). Additionally, he has already found a pre-image for x‖y, which is
precisely mj .

b it means that we have sampled x = h̃j = f∗(hj
2, τ

j ,−1). This situation may
happen only in a verification query. We call this verification query the jth
with J < I. But, since in both games Game 2I− and Game 2I , event PRj

does not happen, so it is impossible that DI wins finding a pre-image for x‖y.

25DI does not have to lazy sample f∗(hI
2, τ

I ,−1) because it is equal to x.

170 APPENDIX B. DETAILED PROOFS

queries, if hi is fresh, then, they are invalid. That is, h̃i1 6= f∗(hi2, τ
i,−1).

Thus, all the first i verification queries are invalid if fresh. Let Ei3 be the
event that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
3]−Pr[Ei3]|. Note that the difference between Game

3i−1 and Game 3i are equal if the ith verification query is not both fresh
and valid. Thus:

|Pr[Ei−1
3]− Pr[Ei3]| = Pr[ci fresh and valid].

Since we are in Game 3 nor event CR nor events PR1, ..., PRq have
happened. Thus, the only possibility is that f∗(hi2, τ

i,−1) has never
been computed where the ith verification query is (mi, τ i). Thus

|Pr[Ei−1
3]− Pr[Ei3]| ≤ 1

2n − qM − i+ 1

since f∗(hi2, τ
i,−1) is picked uniformly at random with the constraint

that f∗(0, ·) remains a permutation, thus, there at most qM + i−1 values
that cannot be picked in B∗. Thus, the probability that f∗(hi2, τ i,−1) =
hi is 1

2n−qM−i+1 .

Bounding |Pr[E3]− Pr[E4]|. Since Game 3 is Game 30 and Game 4 is
Game 3qV +1 we can bound

|Pr[E3]− Pr[E4]| ≤
qV +1∑
i=1

|Pr[Ei−1
3]− Pr[Ei3]| ≤

qV +1∑
i=1

1

2n − qM − i+ 1
≤

(qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1
.26

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E4] = 0 (since, in Game 4, all verification
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]− Pr[E4] =

4∑
i=1

|Pr[Ei−1]− Pr[Ei]| ≤

εsTPRP + εCR + qV εroPR′ + (qV + 1)2−n +
q(q − 1)

2n+1
− qM (qM − 1)

2n+1
.

B.5. PROOF OF THE CIML2-SECURITY OF DTE2 171

B.5 Proof of the CIML2-security of DTE2

Theorem 7. Let H : KH × HM → B′ be a (t2, εCR)-collision resistant
and (t2, εroPR)-range-oriented preimage resistant hash function. Let F∗ :
K∗×B∗×T W → B∗ be a (2q, t1, εsTPRP)-strong tweakable pseudorandom
permutation with a strongly protected implementation. Let F : K × B →
B. Let HM = {0, 1}∗, T W = {0, 1} and B′ = B∗ = K = B = {0, 1}n.
Then, DTE2 which encrypts at most L-block messages is
(qE , qD, t, ε)-CIML2-secure in the unbounded leakage model with

ε ≤ εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1

where q = qE + qD + 1, t+ tch(1,KH) + tchn(2,B) + q(tH + (2L+ 1)tF) ≤ t1,
t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q)) ≤ t2 and
t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q−1)) ≤ t3.

Proof. As usual, we use a sequence of games.
Game 0. Let Game 0 be the CIML2-game where the (qE , qD, t)-adversary
AL tries to produce a valid and fresh ciphertext when he plays against
DTE2. Let E0 be the event that the adversary wins this game, i.e., that
the output of the game is 1.

Game 1. Let Game 1 be Game 0, where we have replaced the sTPRP F∗

with a tweakable random permutation, named f∗. Let E1 be the event
that the adversary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0]−Pr[E1] we build a (2q, t1)-sTPRP adversary B against F∗ based
on A.

The (2q, t1)-sTPRP adversary B. B has to distinguish if he is inter-
acting against an oracle implemented with the sTPRP F∗ or with the
random tweakable permutation f∗. To do this, he uses the
CIML2-adversary A.
At the start of the game, B picks two random values pA, pB uniformly at
random in B with pA 6= pB and a key s for the hash function H uniformly
at random in KH. Then, he relays them to A. Moreover, he picks a list
S, which is empty at the start. This takes time tch(1,KH) + tchn(2,B).
When A does an encryption query on input (ri,mi), B (1) simply com-
putes hi = Hs(r

i‖mi) and he parses mi = (mi
1, ...,m

i
li

), then, (2) he
calls his oracle on input (0, hi,+1), receiving τ i, and (3)he calls again
his oracle on input (1, τ i,+1) obtaining ki0. From ki0, he (4) computes

172 APPENDIX B. DETAILED PROOFS

ci0 = Fki0(pB) ⊕ ri, after that, for every i′ ∈ [1, li], he computes kii′ =

Fki
i′−1

(pA), yi′ = Fki
i′

(pB) and cii′ = yii′ ⊕mi
i′

27. Finally (5), he answers

A ci = (τ i, Ci) with Ci = (ci0, c
i
1, ..., c

i
li

), and the leakage ki0 and he adds
{ci} to S.
This takes time tH + (2li + 1)tF ≤ tH + (2L + 1)tF. Moreover, 2 oracle
queries are needed.
When A asks a decryption query on input ci = (τ i, Ci), B first (1) queries
his oracle on input (1, τ i,+1) obtaining ki0 and he parses
Ci = (ci0, c

i
1, ..., c

i
li

). From ki0, he (2) computes ri = Fki0(pB) ⊕ ci0, after
that, for every i′ ∈ [1, li], he computes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB)

and mi
i′ = yii′ ⊕ cii′ 28. Then (3), he computes hi = Hs(r

i‖mi) and he
calls his oracle on input (0, τ i,−1), obtaining h̃i. Finally (4), if hi = h̃i,
B answers mi = (mi

1, ...,m
i
li

) to A; otherwise, ⊥.
This takes time tH + (2li + 1)tF ≤ tH + (2L + 1)tF. Moreover, 2 oracle
queries are needed.
When A outputs its forgery cqD+1 = (τ qD+1, CqD+1), B first (1) queries
his oracle on input (1, τ qD+1,+1) obtaining kqD+1

0 and he parses CqD+1 =

(cqD+1
0 , cqD+1

1 , ..., cqD+1

lqD+1). From kqD+1
0 , he (2) computes

rqD+1 = F
k
qD+1
0

(pB)⊕cqD+1
0 , after that, for every i′ ∈ [1, li], he computes

kqD+1
i′ = F

k
qD+1

i′−1

(pA), yqD+1
i′ = F

k
qD+1

i′
(pB) andmqD+1

i′ = yqD+1
i′ ⊕cqD+1

i′
29.

Then (3), he computes hqD+1 = Hs(r
qD+1‖mqD+1) and he calls his oracle

on input (0, τ qD+1,−1), obtaining h̃qD+1. Finally (4), if hqD+1 = h̃qD+1

and cqD+1 /∈ S, B outputs 1; otherwise 0.
This takes time tH +(2lqD+1 +1)tF ≤ tH +(2L+1)tF. Moreover, 2 oracle
queries are needed.
Thus, B does at most 2q queries to his oracle. He needs time t+tch(1,KH)+
tchn(2,B) + q(tH + (2L+ 1)tF) ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εsTPRP

where the last inequality is due to the fact that B is a (2q, t1)-adversary
and F∗ is a (2q, t1, εsTPRP)-sTPRP.

27For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

28For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′
29For i′ = lqD+1, mqD+1

i′ = π|mqD+1

i′ |(yi′)
qD+1 ⊕ cqD+1

i′

B.5. PROOF OF THE CIML2-SECURITY OF DTE2 173

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not
happen:

HC := {∃i, j ∈ {1, ..., qE} ∪ {1, ..., qD + 1} with i %
= j s.t. hi = hj}.30

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs. At the start of the game, he is provided a key s for the hash function.
Moreover, he picks two values pA, pB ∈ B with pA 6= pB. Then, he relays
s, pA and pB to AL. Moreover, he has a list H, which is empty at the
start. This takes time tchn(2,B).
When A does an encryption query on input (ri,mi), C (1) simply com-
putes hi = Hs(r

i‖mi), adds {(ri‖mi, hi)} to H, and he parses mi =
(mi

1, ...,m
i
li

), then, (2) he lazy samples τ i = f∗(0, hi,+1), receiving
τ i, and (3) he lazy samples ki0 = f∗(1, τ i,+1). From ki0, he (4) com-
putes ci0 = Fki0(pB) ⊕ ri, after that, for every i′ ∈ [1, li], he computes
kii′ = Fki

i′−1
(pA), yi′ = Fki

i′
(pB) and cii′ = yii′ ⊕ mi

i′
31. Finally (5), he

answers A ci = (τ i, Ci) with Ci = (ci0, c
i
1, ..., c

i
li

), and the leakage ki0 and
he adds {(ri‖mi, hi)} to H.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice.
When A asks a decryption query on input ci = (τ i, Ci), C first (1) lazy
samples ki0 = f∗(1, τ i,+1) and he parses Ci = (ci0, c

i
1, ..., c

i
li

). From ki0, he
(2) computes ri = Fki0(pB)⊕ ci0, after that, for every i′ ∈ [1, li], he com-
putes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′ 32. Then (3), he

computes hi = Hs(r
i‖mi), adds {(ri‖mi, hi)} to H, and he lazy samples

h̃i = f∗(0, τ i,−1). Finally (4), if hi = h̃i, C answers mi = (mi
1, ...,m

i
li

)
to A; otherwise, ⊥.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice.
When A asks outputs its forgery cqD+1 = (τ qD+1, CqD+1), C first (1) lazy

30i
%
= j means that if i comes from a encryption query and j from a decryption

query, or viceversa, then, they are considered differently.
31For i′ = li, cii′ = π|mi

i′ |
(yi′)

i ⊕mi
i′

32For i′ = l, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

174 APPENDIX B. DETAILED PROOFS

samples kqD+1
0 = f∗(1, τ qD+1,+1) and he parses

CqD+1 = (cqD+1
0 , cqD+1

1 , ..., cqD+1

lqD+1). From kqD+1
0 , he (2) computes rqD+1 =

F
k
qD+1
0

(pB)⊕cqD+1
0 , after that, for every i′ ∈ [1, li], he computes kqD+1

i′ =

F
k
qD+1

i′−1

(pA), yqD+1
i′ = F

k
qD+1

i′
(pB) and mqD+1

i′ = yqD+1
i′ ⊕ cqD+1

i′
33. Then

(3), he computes hqD+1 = Hs(r
qD+1‖mqD+1), adds

{(rqD+1‖mqD+1, hqD+1)} toH, and he lazy samples h̃qD+1 = f∗(0, τ qD+1,−1).
This takes time tH+(2lqD+1 +1)tF ≤ tH+(2L+1)tF and the time needed
to lazy sample f∗ twice.
At the end of the game, he looks up the list H to find a collision. If he
finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ at most 2q times. Moreover,
he needs time t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q)) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. Let Game 3 be Game 2, where we suppose that for every h̃j
obtained in a not valid decryption query, the adversary is not able to
ask a valid decryption query cj′ such that hj′ = h̃j . Let E3 be the event
that the adversary wins this game.

Transition between Game 2 and 3. We build a sequence of qD + 1
games Game 3I I = 0, ..., qE

34. In Game 3I , for the first I decryption
queries, if they are invalid, the adversary has never found a value x s.t.
Hs(x) = h̃j where, ∀j = 1, ..., I, where h̃j is the check hash computed
during the jth decryption query, ∀j = 1, ..., I. Let EI2 be the event that
the adversary wins in Game 2I .

Transition between Game 2i′−1 and Game 2I . Clearly, Game 2I−1

and Game 2I are equal if the following event

PRI :=

{
∃j ∈ {1, ..., qD + 1} s.t. Deck(cj) 6=⊥ ∧hj = h̃I

with cj the jth decryption query which is fresh.

}
does not happen. We build a t3-roPR adversary DI to bound the proba-
bility that event PRI happens.

33For i′ = lqD+1, mqD+1
i′ = π|mqD+1

i′ |(yi′)
qD+1 ⊕ cqD+1

i′

34h̃qD+1 cannot be used as a target in subsequent decryption query

B.5. PROOF OF THE CIML2-SECURITY OF DTE2 175

The DI adversary. The adversary DI receives a random value x, and
he has to find a hash pre-image for it. He is based on AL.
To obtain a hash pre-image for x, the idea is that DI sets h̃I := x and
uses a valid forgery cj made by AL where hj = h̃I with hj = Hs(r

j‖mj)
where (rj ,mj) is the couple randomness-message retrieved during the
jth decryption query. Formally:
At the start of the game, DI is provided a key s for the hash function
and a target value x. Moreover, he picks two values pA, pB ∈ B with
pA 6= pB. Then, he relays s, pA and pB to AL. Moreover, he has two lists
H and S, which are empty at the start. This takes time tchn(2,B).
When A does an encryption query on input (ri,mi), DI (1) simply com-
putes hi = Hs(r

i‖mi), he adds {(ri‖mi, hi){ to H, and he parses mi =
(mi

1, ...,m
i
li

), then, (2), he lazy samples τ i = f∗(0, hi,+1), and (3) he lazy
samples ki0 = f∗(1, τ i,+1). From ki0, he (4) computes ci0 = Fki0(pB)⊕ ri,
after that, for every i′ ∈ [1, li], he computes kii′ = Fki

i′−1
(pA), yi′ =

Fki
i′

(pB) and cii′ = yii′ ⊕mi
i′

35. Finally (5), he answers A ci = (τ i, Ci)

with Ci = (ci0, c
i
1, ..., c

i
li

), and the leakage ki0.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ twice. Moreover, DI adds {(ci,⊥)} to S
When A asks a decryption query on input ci = (τ i, Ci), DI first (1), he
lazy samples ki0 = f∗(1, τ i,+1) and he parses Ci = (ci0, c

i
1, ..., c

i
li

). From
ki0, he (2) computes ri = Fki0(pB) ⊕ ci0, after that, for every i′ ∈ [1, li],
he computes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′ 36. Then

(3), he computes hi = Hs(r
i‖mi), he adds {(ri‖mi, hi)} to H. After that

(4), if (a) it is the Ith decryption query and f∗(0, τ I ,−1) has never been
samples, he sets x := h̃I = f∗(0, τ I ,−1) 37; otherwise, (b) he lazy samples

35For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

36For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′
37Note that it may be the case that it is not possible to set x = f∗(0, τ I ,−1) since

f∗ is a tweakable permutation. But, this may happen only if
a either f∗(0, ·,+1) has been sampled on input x
b or if sampling f∗(0, ·,−1) has given x as an output.

This is not a problem. In fact:
a it means that we have asked to sample f∗(0, ·,+1). This situation may hap-

pen only in the encryption queries. Moreover, when it happens, the input
is the hash of the randomness and the message, that is, x = Hs(r

j‖mj) for
the previous jth encryption query, thus, DI proceeds normally, lazy sampling
f∗(0, x,+1). Additionally, he has already found a pre-image for x, which is
precisely rj‖mj .

b it means that we have sampled x = h̃j = f∗(0, τ j ,−1). This situation may
happen only in the decryption queries. We call this decryption query the jth
with J < I. But, since in both games Game 2I− and Game 2I , event PRj

does not happen, so it is impossible that DI wins finding a pre-image for x.

176 APPENDIX B. DETAILED PROOFS

h̃i = f∗(0, τ i,−1). Finally (4), if hi = h̃i, DI answers mi = (mi
1, ...,m

i
li

)
to A; otherwise, ⊥.
This takes time tH + (2li + 1)tF ≤ tH + (2L+ 1)tF and the time needed
to lazy sample f∗ once, if i = I; otherwise, twice.
When A asks outputs its forgery cqD+1 = (τ qD+1, CqD+1), DI first (1)
lazy samples kqD+1

0 = f∗(1, τ qD+1,+1) and he parses
CqD+1 = (cqD+1

0 , cqD+1
1 , ..., cqD+1

lqD+1). From kqD+1
0 , he (2) computes rqD+1 =

F
k
qD+1
0

(pB)⊕cqD+1
0 , after that, for every i′ ∈ [1, li], he computes kqV +1

i′ =

F
k
qD+1

i′−1

(pA), yqD+1
i′ = F

k
qD+1

i′
(pB) and mqD+1

i′ = yqD+1
i′ ⊕ cqD+1

i′
38. Then

(3), he computes hqD+1 = Hs(r
qD+1‖mqD+1), he adds

{(rqD+1‖mqD+1, hqD+1)} to H, and he lazy samples
h̃qD+1 = f∗(0, τ qD+1,−1). Finally (4), DI answers mqD+1 is hqD+1 =
h̃qD+1; otherwise, ⊥.
This takes time tH+(2lqD+1 +1)tF ≤ tH+(2L+1)tF and the time needed
to lazy sample f∗ twice.
At the end of the game, DI looks into his list H if he finds a pre-image
for x. If he finds it, he outputs the corresponding entry, that is, if there
is an entry (rj‖mj , hj) in H s.t. hj = x, he outputs rj‖mj ; otherwise,
0n.
Thus, in total, he needs to lazy sample f∗ 2q − 1 times39. Moreover, he
needs time t+ tchn(2,B) + q(tH + (2L+ 1)tF) + tf∗(2q−1) ≤ t3.

Bounding |Pr[EI−1
2]−Pr[EI2]|. Observe that if event PRI happens, DI

wins. Since DI is a t3-adversaries and H is a (t3, εroPR)-range-oriented
pre-image resistant hash function, we can bound:

|Pr[EI−1
2]− Pr[EI2]| ≤ Pr[PRI] ≤ εroPR

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2q we can bound

|Pr[E2]− Pr[E3]| ≤
qD∑
I=1

|Pr[EI−1
2]− Pr[EI2]| ≤ qDεroPR.

Game 4. In Game 4 we suppose that all decryption queries are deemed
invalid (if the ciphertext ci is fresh).

Transition between Game 3 and 4. We build a sequence of qD + 2
games Game 3i i = 0, ..., qD + 1. In Game 3i, for the first i decryption

38For i′ = lqD+1, mqD+1
i′ = π|mqD+1

i′ |(yi′)
qD+1 ⊕ cqD+1

i′

39DI does not have to lazy sample f∗(0, τ I ,−1) because it is equal to x.

B.5. PROOF OF THE CIML2-SECURITY OF DTE2 177

queries, if hi is fresh, then, they are invalid. That is, h̃i 6= f∗(0, τ i,−1).
Thus, all the first i verification queries are invalid if fresh. Let Ei3 be the
event that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
3]−Pr[Ei3]|. Note that the difference between Game

3i−1 and Game 3i are equal if the ith decryption query is not both fresh
and valid. Thus:

|Pr[Ei−1
3]− Pr[Ei3]| = Pr[ci fresh and valid].

Since we are in Game 3 nor event CR nor events PR1, ..., PRq have
happened. Thus, the only possibility is that f∗(0, τ i,−1) has never been
computed where the ith decryption query is ci = (τ i, Ci). Thus

|Pr[Ei−1
3]− Pr[Ei3]| ≤ 1

2n − qE − i+ 1

since f∗(0, τ i,−1) is picked uniformly at random with the constraint that
f∗(0, ·) remains a permutation, thus, there at most qE + i− 1 values that
cannot be picked in B∗. Thus, the probability that f∗(0, τ i,−1) = hi is

1
2n−qE−i+1 .

Bounding |Pr[E3]− Pr[E4]|. Since Game 3 is Game 30 and Game 4 is
Game 3qD+1 we can bound

|Pr[E3]− Pr[E4]| ≤
qD+1∑
i=1

|Pr[Ei−1
3]− Pr[Ei3]| ≤

qD+1∑
i=1

1

2n − qE − i+ 1
≤

(qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1
.40

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E4] = 0 (since, in Game 4, all decryption
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]− Pr[E4] =

4∑
i=1

|Pr[Ei−1]− Pr[Ei]| ≤

εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1
.

178 APPENDIX B. DETAILED PROOFS

B.6 Proof of the CIML2-security of EDT

Theorem 8. Let H : KH×HM→ {0, 1}n be a (t1, εCR)-collision resis-
tant and (t1, εroPR)-range-oriented preimage resistant hash function. Let
F∗ : K∗ × {0, 1}n × T W → {0, 1}n be a (2q − 1, t1, εsTPRP)-strong tweak-
able pseudorandom permutation with a strongly-protected implementa-
tions. Let F : {0, 1}n × {0, 1}n → {0, 1}n. Let HM = {0, 1}∗ and
T W = {0, 1}.
Then, EDT which encrypts at most L-block messages is (qE , qD, t, ε)-
CIML2-secure in the unbounded leakage model with

εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1

with q = qE+qD+1, t+tch(1,KH)+tchn(2,B)+qtH+(q−1)(2L−1)tF) ≤ t1,
t+ tchn(2,B) + qtH + (q − 1)(2L− 1)tF + tf∗(2q−1)) ≤ t2
and t+ tchn(2,B) + qtH + (q − 1)(2L− 1)tF + tf∗(2q−2) ≤ t3.

Proof. Game 0. Let Game 0 be the CIML2-game where the (qE , qD, t)-
adversary AL tries to produce a valid and fresh ciphertext when he plays
against EDT. Let E0 be the event that the adversary wins this game,
i.e., that the output of the game is 1.

Game 1. Let Game 1 be Game 0, where we have replaced the sTPRP F∗

with a tweakable random permutation, named f∗. Let E1 be the event
that the adversary wins this game.

Transition between Game 0 and Game 1. To bound the difference
Pr[E0] − Pr[E1] we build a (2q − 1, t1)-sTPRP adversary B against F∗

based on A.

The (2q, t1)-sTPRP adversary B. B has to distinguish if he is inter-
acting against an oracle implemented with the sTPRP F∗ or with the
random tweakable permutation f∗. To do this, he uses the
CIML2-adversary A.
At the start of the game, B picks two random values pA, pB uniformly at
random in B with pA 6= pB and a key s for the hash function H uniformly
at random in KH. Then, he relays them to A. Moreover, he picks a list
S, which is empty at the start. This takes time tch(1,KH) + tchn(2,B).
When A does an encryption query on input (ri,mi), B first, (1) he
calls his oracle on input (0, ri,+1), obtaining ki1 and he parses mi =
(mi

1, ...,m
i
li

). From ki1, he (2) computes ci1 = Fki0(pB) ⊕mi
1, after that,

for every i′ ∈ [2, li], he computes kii′ = Fki
i′−1

(pA), yi′ = Fki
i′

(pB) and

B.6. PROOF OF THE CIML2-SECURITY OF EDT 179

cii′ = yii′ ⊕mi
i′

41. Then, (3) he simply computes hi = Hs(r
i‖Ci) with

Ci = (ci0, c
i
1, ..., c

i
li

), after that, (4) he calls his oracle on input (1, hi,+1),
receiving τ i, Finally (5), he answers A ci = (Ci, τ i) and the leakage ki1
and he adds {ci} to S.
This takes time tH + (2li − 1)tF ≤ tH + (2L − 1)tF. Moreover, 2 oracle
queries are needed.
When A asks a decryption query on input (ri, ci) with ci = (Ci, τ i), B
first, (1) he computes hi = Hs(r

i‖Ci) and (2) he calls his oracle on input
(1, τ i,−1), obtaining h̃i. Then (3), if hi 6= h̃i, B (3a) answers to A and the
leakage h̃i and stops the execution; otherwise, (3b) he queries his oracle
on input (0, ri,+1) obtaining ki1 and he parses Ci = (ci0, c

i
1, ..., c

i
li

). From
ki1, he (4b) computes mi

1 = Fki1(pB)⊕ ci1, after that, for every i′ ∈ [2, li],
he computes kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′ 42. Fi-

nally (5b), B answers mi = (mi
1, ...,m

i
li

) and the leakage ki1 to A
This takes time tH + (2li − 1)tF ≤ tH + (2L − 1)tF. Moreover, 2 oracle
queries are needed.
When A outputs its forgery (rqD+1, cqD+1) with cqD+1 = (CqD+1, τ qD+1),
B first, (1) he computes hqD+1 = Hs(r

qD+1‖mqD+1) and (2) he calls his
oracle on input (1, τ qD+1,−1), obtaining h̃qD+1. Then (3), if hqD+1 =
h̃qD+1 and cqD+1 /∈ S, B outputs 1; otherwise 0.
This takes time tH. Moreover, one oracle query is needed.
Thus, B does at most 2q − 1 queries to his oracle. He needs time
t+ tch(1,KH) + tchn(2,B) + qtH + (q − 1)(2L− 1)tF) ≤ t1.

Bounding |Pr[E0]−Pr[E1]|. Clearly if the oracle B faces is implemented
with F∗k(·), he correctly simulates Game 0 for A otherwise Game 1. Thus,

|Pr[E0]− Pr[E1]| = |Pr[BF∗k(·) ⇒ 1]− Pr[Bf∗(·) ⇒ 1]| ≤ εsTPRP

where the last inequality is due to the fact that B is a (2q − 1, t1)-
adversary and F∗ is a (2q − 1, t1, εsTPRP)-sTPRP.

Game 2. Let Game 2 be Game 1, where we suppose that there are no
collisions for the hash function. Let E2 be the event that A wins this
game.

Transition between Game 1 and Game 2. Clearly, Game 1 and
Game 2 are identical if the following event HC (Hash collision) does not

41For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

42For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

180 APPENDIX B. DETAILED PROOFS

happen:

HC := {∃i, j ∈ {1, ..., qE} ∪ {1, ..., qD + 1} with i %
= j s.t. hi = hj}.43

To compute this event, we build a t2-CR-adversary C.

The t2-CR-adversary C. C has to find a collision for the hash function
Hs. At the start of the game, he is provided a key s for the hash function.
Moreover, he picks two values pA, pB ∈ B with pA 6= pB. Then, he relays
s, pA and pB to AL. Moreover, he has a list H, which is empty at the
start. This takes time tchn(2,B).
When A does an encryption query on input (ri,mi), C first, (1) he lazy
samples ki1 = f∗(0, τ i,+1), and he parses mi = (mi

1, ...,m
i
li

). From ki0,
he (2) computes ci1 = Fki0(pB) ⊕mi

1, after that, for every i′ ∈ [2, li], he
computes kii′ = Fki

i′−1
(pA), yi′ = Fki

i′
(pB) and cii′ = yii′ ⊕mi

i′
44. Then,

(3) he simply computes hi = Hs(r
i‖Ci) with Ci = (ci1, ..., c

i
li

), adds
{(ri‖Ci, hi)} to H, after that, (4) he lazy samples τ i = f∗(1, hi,+1), re-
ceiving τ i. Finally (5), he answers A ci = (Ci, τ i) and the leakage ki1.
This takes time tH + (2li − 1)tF ≤ tH + (2L− 1)tF and the time needed
to lazy sample f∗ twice.
When A asks a decryption query on input (ri, ci) with ci = (Ci, τ i), C
first, (1) he computes hi = Hs(r

i‖Ci), adds {(ri‖Ci, hi)} to H, and (2)
he lazy samples h̃i = f∗(1, τ i,−1). Then, (3), if hi 6= h̃i, (3a) C an-
swers to A ⊥ and the leakage h̃ito A; otherwise, (3b) he lazy samples
ki1 = f∗(1, τ i,+1) and he parses ci = (ci1, ..., c

i
li

). From ki0, he (4b) com-
putes mi

1 = Fki1(pB) ⊕ ci1, after that, for every i′ ∈ [2, li], he computes
kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′ 45. Finally (5b), C

answers mi = (mi
1, ...,m

i
li

) to A.
This takes time tH + (2li − 1)tF ≤ tH + (2L− 1)tF and the time needed
to lazy sample f∗ twice.
When A asks outputs its forgery (rqD+1, cqD+1) with
cqD+1 = (CqD+1, τ qD+1), C first, (1) he computes hqD+1 = Hs(r

qD+1‖CqD+1)
and he adds
{(rqD+1‖CqD+1, hqD+1)} to H, and (2) he lazy samples
h̃qD+1 = f∗(1, τ qD+1,−1).
This takes time tH+ and the time needed to lazy sample f∗ once.
At the end of the game, he looks up the list H to find a collision. If he

43i
%
= j means that if i comes from a encryption query and j from a decryption

query, or viceversa, then, they are considered differently.
44For i′ = li, cii′ = π|mi

i′ |
(yi′)

i ⊕mi
i′

45For i′ = l, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

B.6. PROOF OF THE CIML2-SECURITY OF EDT 181

finds it, he outputs it; otherwise, 0n and 1n.
Thus, in total, he needs to lazy sample f∗ at most 2q − 1 times. More-
over, he needs time t+ tchn(2,B) +qtH+(q−1)(2L−1)tF)+ tf∗(2q−1)) ≤ t2.

Bounding |Pr[E1] − Pr[E2]|. Observe that if event HC happens, C
wins. Since C is a t2-adversaries and H is a (t2, εCR)-collision resistant
hash function, we can bound:

|Pr[E1]− Pr[E2]| ≤ εCR.

Game 3. Let Game 3 be Game 2, where we suppose that for every h̃j
obtained in a not valid decryption query, the adversary is not able to
ask a valid decryption query cj′ such that hj′ = h̃j . Let E3 be the event
that the adversary wins this game.

Transition between Game 2 and 3. We build a sequence of qD + 1
games Game 3I I = 0, ..., qE

46. In Game 3I , for the first I decryption
queries, if they are invalid, the adversary has never found a value x s.t.
Hs(x) = h̃j where, ∀j = 1, ..., I, where h̃j is the check hash computed
during the jth decryption query, ∀j = 1, ..., I. Let EI2 be the event that
the adversary wins in Game 2I .

Transition between Game 2i′−1 and Game 2I . Clearly, Game 2I−1

and Game 2I are equal if the following event

PRI :=

{
∃j ∈ {1, ..., qD + 1} s.t. Deck(cj) 6=⊥ ∧hj = h̃I

with cj the jth decryption query which is fresh.

}
does not happen. We build a t3-roPR adversary DI to bound the proba-
bility that event PRI happens.

The DI adversary. The adversary DI receives a random value x, and
he has to find a hash pre-image for it. He is based on AL.
To obtain a hash pre-image for x, the idea is that DI sets h̃I := x and
uses a valid forgery (rj , cj) with cj = (Cj , τ j) made by AL where hj = h̃I

with hj = Hs(r
j‖Cj) where (rj ,mj) is the couple randomness-message

retrieved during the jth decryption query. Formally:
At the start of the game, DI is provided a key s for the hash function
and a target value x. Moreover, he picks two values pA, pB ∈ B with
pA 6= pB. Then, he relays s, pA and pB to AL. Moreover, he has two lists
H and S, which are empty at the start. This takes time tchn(2,B).

46h̃qD+1 cannot be used as a target in subsequent decryption query

182 APPENDIX B. DETAILED PROOFS

When A does an encryption query on input (ri,mi), DI first, (1) he lazy
samples ki1 = f∗(0, ri,+1), and he parses mi = (mi

1, ...,m
i
li

). From ki1,
he (2) computes ci1 = Fki1(pB) ⊕mi

1, after that, for every i′ ∈ [2, li], he
computes kii′ = Fki

i′−1
(pA), yi′ = Fki

i′
(pB) and cii′ = yii′ ⊕mi

i′
47. Then,

(3) he simply computes hi = Hs(r
i‖Ci) with Ci = (ci1, ..., c

i
li

), and he
adds {(ri‖Ci, hi){ to H, after that, (4) he lazy samples τ i = f∗(1, hi,+1).
Finally (5), he answers A ci = (Ci, τ i) and the leakage ki1.
This takes time tH + (2li − 1)tF ≤ tH + (2L− 1)tF and the time needed
to lazy sample f∗ twice. Moreover, DI adds {(ci,⊥)} to S
When A asks a decryption query on input (ri, ci) with ci = (Ci, τ i),
DI first (1), he computes hi = Hs(r

i‖Ci), and he adds {(ri‖Ci, hi)} to
H. After that (2), if (a) it is the Ith decryption query and f∗(1, τ I ,−1)
has never been samples, he sets x := h̃I = f∗(0, τ I ,−1) 48; otherwise,
(b) he lazy samples h̃i = f∗(1, τ i,−1). Then, (3), if hi 6= h̃i, (3c) DI
answers to A ⊥ and the leakage h̃i; otherwise, (3d) he lazy samples
ki1 = f∗(0, τ i,+1) and he parses Ci = (ci1, ..., c

i
li

). From ki1, (4d) he com-
putes mi

1 = Fki1(pB) ⊕ ci1, after that, for every i′ ∈ [2, li], he computes
kii′ = Fki

i′−1
(pA), yii′ = Fki

i′
(pB) and mi

i′ = yii′ ⊕ cii′ 49. Finally, he (5)

answers to A mi = (mi
1, ...,m

i
li

) and the leakage ki1.
This takes time tH + (2li − 1)tF ≤ tH + (2L− 1)tF and the time needed
to lazy sample f∗ once, if i = I; otherwise, twice.
When A asks outputs its forgery (rqD+1, cqD+1) with
cqD+1 = (CqD+1, τ qD+1), DI first, (1) he computes hqD+1 = Hs(r

qD+1‖CqD+1),
and he adds
{(rqD+1‖CqD+1, hqD+1)} toH, then, (2) he lazy samples h̃qD+1 = f∗(1, τ qD+1,−1).
This takes time tH and the time needed to lazy sample f∗ once.

47For i′ = li, cii′ = π|mi
i′ |
(yi′)

i ⊕mi
i′

48Note that it may be the case that it is not possible to set x = f∗(1, τ I ,−1) since
f∗ is a tweakable permutation. But, this may happen only if

a either f∗(1, ·,+1) has been sampled on input x
b or if sampling f∗(1, ·,−1) has given x as an output.

This is not a problem. In fact:
a it means that we have asked to sample f∗(1, x,+1). This situation may happen

only in an encryption query. Moreover, when it happens, the input is the hash
of the randomness and the message, that is, x = Hs(r

j‖Cj) for the previous
jth encryption query, thus, DI proceeds normally, lazy sampling f∗(1, ·,+1).
Additionally, he has already found a pre-image for x, which is precisely rj‖Cj .

b it means that we have sampled x = h̃j = f∗(1, τ j ,−1). This situation may
happen only in a decryption query. We call this decryption query the jth with
J < I. But, since in both games Game 2I− and Game 2I , event PRj does not
happen, so it is impossible that DI wins finding a pre-image for x.

49For i′ = li, mi
i′ = π|mi

i′ |
(yi′)

i ⊕ cii′

B.6. PROOF OF THE CIML2-SECURITY OF EDT 183

At the end of the game, DI looks into his list H if he finds a pre-image
for x. If he finds it, he outputs the corresponding entry, that is, if there
is an entry (rj‖mj , hj) in H s.t. hj = x, he outputs rj‖mj ; otherwise,
0n.
Thus, in total, he needs to lazy sample f∗ 2q − 2 times50. Moreover, he
needs time t+ tchn(2,B) + qtH + (q − 1)(2L− 1)tF) + tf∗(2q−2) ≤ t3.

Bounding |Pr[EI−1
2]−Pr[EI2]|. Observe that if event PRI happens, DI

wins. Since DI is a t3-adversaries and H is a (t3, εroPR)-range-oriented
pre-image resistant hash function, we can bound:

|Pr[EI−1
2]− Pr[EI2]| ≤ Pr[PRI] ≤ εroPR

Bounding |Pr[E2]− Pr[E3]|. Since Game 2 is Game 20 and Game 3 is
Game 2q we can bound

|Pr[E2]− Pr[E3]| ≤
qD∑
I=1

|Pr[EI−1
2]− Pr[EI2]| ≤ qDεroPR.

Game 4. In Game 4 we suppose that all decryption queries are deemed
invalid (if the ciphertext ci is fresh).

Transition between Game 3 and 4. We build a sequence of qD + 2
games Game 3i i = 0, ..., qD + 1. In Game 3i, for the first i decryption
queries, if hi is fresh, then, they are invalid. That is, h̃i 6= f∗(0, τ i,−1).
Thus, all the first i verification queries are invalid if fresh. Let Ei3 be the
event that the adversary wins in Game 3i.

Bounding |Pr[Ei−1
3]−Pr[Ei3]|. Note that the difference between Game

3i−1 and Game 3i are equal if the ith decryption query is not both fresh
and valid. Thus:

|Pr[Ei−1
3]− Pr[Ei3]| = Pr[ci fresh and valid].

Since we are in Game 3 nor event CR nor events PR1, ..., PRq have
happened. Thus, the only possibility is that f∗(1, τ i,−1) has never been
computed where the ith decryption query is (ri, ci) with ci = (Ci, τ i).
Thus

|Pr[Ei−1
3]− Pr[Ei3]| ≤ 1

2n − qE − i+ 1

since f∗(1, τ i,−1) is picked uniformly at random with the constraint that
f∗(1, ·) remains a permutation, thus, there at most qE + i− 1 values that

50DI does not have to lazy sample f∗(0, τ I ,−1) because it is equal to x.

184 APPENDIX B. DETAILED PROOFS

cannot be picked in B∗. Thus, the probability that f∗(0, τ i,−1) = hi is
1

2n−qE−i+1 .

Bounding |Pr[E3]− Pr[E4]|. Since Game 3 is Game 30 and Game 4 is
Game 3qD+1 we can bound

|Pr[E3]− Pr[E4]| ≤
qD+1∑
i=1

|Pr[Ei−1
3]− Pr[Ei3]| ≤

qD+1∑
i=1

1

2n − qE − i+ 1
≤

(qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1
.51

Thus, putting everything together, we can conclude:
Bounding Pr[E0]. Since Pr[E4] = 0 (since, in Game 4, all decryption
queries are invalid (if fresh)), we can conclude:

Pr[E0] = Pr[E0]− Pr[E4] =
4∑
i=1

|Pr[Ei−1]− Pr[Ei]| ≤

εsTPRP + εCR + qDεroPR + (qD + 1)2−n +
q(q − 1)

2n+1
− qE(qE − 1)

2n+1
.

B.7 Proof of the CIML2-security of CONCRETE

Theorem 9. Let F∗ : K∗×B∗×T W∗ → B∗ be a leak free (q+1, εsTPRP)-
strong tweakable pseudorandom permutation (sTPRP), let F : K×B → B
be a (2, εPRF)-pseudorandom function (PRF) and let H : KH×HM→ B′
be a εCR-collision resistant hash function. Let B∗ = K = B and T W∗ =
B′. Let B = {0, 1}n.
Then, the mode CONCRETE, which encrypts messages which are at most
L-block long, is (qE , qD, ε)-CIML2 secure in the unbounded leakage model
with

ε ≤ εsTPRP +
(qE + qD)(qE + qD − 1)

2n+1
+ εCR+

(qD + 1)(L+ 1)(qD + 2qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF.

with q = qE + qD and

t1 = tch′ + (q + 1)(tH + (2L+ 1)tF)

t2 = tch′ + (q + 1)(tH + (2L+ 1)tF) + tf(Q+1).

B.7. PROOF OF THE CIML2-SECURITY OF CONCRETE 185

Proof. We use a series of games. For simplicity, we call the decryption
query induced by the output of AL as the qD + 1 decryption query.

Game 0. This is the real CIML2 game where AL attacks scheme CONCRETE.
Let E0 be the event that AL wins Game 0.

Game 1. In this game, we replace sTPRP F∗k(·, ·) with the random
tweakable permutation f∗(·, ·). Let E1 be the event that AL wins Game
1.

Transition from Game 0 to Game 1. It is easy to build a (q+1, t+t1)-
sTPRP adversary B whose sTPRP advantage is |Pr[E0]− Pr[E1]|.

The sTPRP adversary B. The adversary B has access to an oracle
which is either implemented either via F∗k(·, ·) and F∗,−1

k (·, ·) or via f∗(·, ·)
and f∗,−1(·, ·)52. B has to distinguish the situations. In detail:
At the start of the game, B picks 2 constants pA, pB ∈ {0, 1}n with
pA 6= pB and a key s $← KH and sends to AL (pA, pB, s). Moreover, B
sets S as an empty set.
When A does an encryption query on input (ri,mi), withmi = (mi

1, ...,m
i
li

),
B simply (1) sets ki0 := ri, then, (2) from the ephemeral key ki0, he com-
putes (ci0, ..., c

i
li

) 53 54, after that, (3) he computes hi = Hs(c
i
0‖...‖cili)

and (4) he queries his oracle on input (hi, ki0,+1) obtaining ci
li+1

, finally
(5) B answers A ci with ci = (ci0, ..., c

i
li
, ci
li+1

)55. Then, he updates the
set S, adding the ciphertext ci. For every encryption query B does 1 or-
acle query, moreover, he evaluates F 2li + 1 ≤ 2L+ 1 times and once the
hash function H; thus, answering to A takes at most (2L+1)tF+tH time.
When Amakes a decryption query on input cj with cj = (cj0, ..., c

j
lj
, cj
lj+1

),
B (1) computes the hash hj = Hs(c

j
0, ..., c

j
lj

), (2) queries his oracle on in-
put (hj , cj

lj+1
,−1) obtaining kj0, (3) computes c̃j0 = F

kj0
(pB), then (4)

if cj0 6= c̃j0 he sets mj =⊥, that is, he answers “invalid", otherwise, (5)
from kj0, B is able to compute mj = (mj

1, ...,m
j
lj

)56 57, finally, (6) B sets
LD(cj , k) := kj0 and he answers (mj , kj0). For every decryption query B
does 1 oracle query, moreover, he evaluates once the hash function H,

52To make notation simpler, the adversary uses the third input, which is either +1
or −1 to distinguish if he is doing an evaluation query or an inverse query.

53Via ci = yi ⊕mi with yi = Fki(pB) and ki = Fki−1(pA)
54If i = l, ci = π|mi

li
|(y

i)⊕mi

55We have already showed that we can assume that there is no leakage in encryption.
56Via mi = yi ⊕ ci with yi = Fki(pB) and ki = Fki−1(pA)
57If i = l, mi = π|ci

li
|(y

i)⊕mi

186 APPENDIX B. DETAILED PROOFS

once F if cj is deemed invalid, otherwise 2lj + 1 ≤ 2L + 1 times; thus,
answering to A takes at most (2L+ 1)tF + tH time.
When A outputs the challenge ciphertext c = cqD+1, B proceeds as for
the others decryption queries. Thus, he uses for this decryption query
again 1 oracle query and at most time (2L+ 1)tF + tH. If the decryption
query c is valid and c /∈ S, B outputs 1, 0 otherwise.
Thus B runs in time bounded by t + (q + 1)(tH + (2L + 1)tF) and does
at most q + 1 oracle queries.

Bounding |Pr[E0] − Pr[E1]| ≤ εsTPRP. Clearly if the oracle is im-
plemented with (F∗k(·, ·),F

∗,−1
k (·, ·)) B is correctly simulating Game 0;

otherwise, Game 1.

Thus Pr[BF∗k(·,·),F∗,−1
k (·,·) ⇒ 1] = Pr[A wins Game 0] = Pr[E0]

and Pr[Bf∗(·,·),f∗,−1(·,·) ⇒ 1] = Pr[A wins Game 1] = Pr[E1].

Consequently

|Pr[E0]− Pr[E1]| =
∣∣∣Pr[BF∗k(·,·),F∗,−1

k (·,·) ⇒ 1]− Pr[Bf∗(·,·),f∗,−1(·,·) ⇒ 1]
∣∣∣

which is bounded by εsTPRP since F∗(·, ·) is a a (q+1, t+(q+1)(tH+(2L+
1)tF), εsTPRP)-strong tweakable pseudorandom permutation (sTPRP) and
B is a (q + 1, t+ (q + 1)(tH + (2L+ 1)tF)-sTPRP adversary.

Game 2. Game 2 is Game 1, where we suppose that all hash values
hi are different provided that their inputs are different. Let E2 be the
event that A wins Game 2.

Transition between Game 1 and Game 2. We introduce a failure
event HC, so defined:

HC :=

{
∃i, i′ ∈ {1, ..., qE} ∪ {1, ..., qD+1}, i

%
6= i′

s.t. hi = hi
′and (ci0, ..., c

i
li

) 6= (ci
′

0 , ..., c
i′

li′
)

}

(With the symbol
%
6= we mean that the inequality i 6= i′ always holds if

one index is picked from {1, ..., qE} and the other from {1, ..., qD+1})
To compute the probability of event HC, which clearly consists on a col-
lision for the hash function Hs, we build a collision resistant adversary C.

The (0, t + (q + 1)(tH + (2L + 1)tF) + tf(q+1)) collision resistance
adversary C. The collision resistant adversary C wants to output a

B.7. PROOF OF THE CIML2-SECURITY OF CONCRETE 187

collision for the hash function Hs(·) he has access to and he is based
on the CIML2 adversary A. To emulate either Game 1 or Game 2 for
AL, C simply picks two values pA, pB ← {0, 1}n and a tweakable ran-
dom permutation f∗. To make the adversary more efficient we allow him
to lazy sample [17] the tweakable random permutation f∗. Then he be-
haves as adversary B emulating Game 0 (or 1) for A with two differences:
first, to obtain cil+1 in encryption queries (step 4) and kj0 in decryption
queries (step 2), instead of querying his oracle and using its answers, C
lazy samples f∗(·, ·); second, he has a list H which he updates adding
(hi, (ci0, ..., c

i
li

)) every time he has to compute the hash function Hs(·)
(that is, he keeps track of all inputs and outputs of the hash function).
At the end of the game, C looks up into his list H if he finds a collision: if
it is the case, he outputs it, otherwise he outputs (0, 1). C does no query
and he runs in time bounded by t + (q + 1)(tH + (2L + 1)tF) + tf(q+1),
where tf(q+1) is the time needed to lazy sample f∗ q + 1 times.

Bounding Pr[HC]. If event HC happens, clearly C wins because he
has output a collision. Thus

Pr[HC] ≤ Pr[C produces a collision] ≤ εCR

since the hash function H is (t+ (q + 1)(tH + (2L+ 1)tF) + tf(q+1), εCR)-
collision resistant and C is a t+(q+1)(tH+(2L+1)tF)+tf(q+1))-adversary.

Bounding |Pr[E1]− Pr[E2]|. Since Game 1 and Game 2 are identical if
event HC does not happen, then,

Pr[E1] ≤ Pr
[
E2] + Pr[HC] ≤ Pr[E2] + εcr.

Game 3. Game 3 is Game 2, where we suppose that all fresh decryp-
tion queries are invalid. Let E3 be the probability that A wins Game 3.
Clearly Pr[E3] = 0.

Transition between Game 2 and 3. To bound the difference |Pr[E2]−
Pr[E3]|, we build a sequence of qD + 2 games Game 20, ..., Game 2qD+1.

Game 2i. Game 2i is Game 2 where the first i decryption queries cj , for
j = 1, ..., i, if they are fresh, are answered with (⊥, kj0) with kj0 = LD(cj).
Let Ei2 be the event that adversary wins Game 2i.
Clearly, Game 2 is Game 20 and Game 3 is Game 2qD+2.

Transition between Game 2i−1 and Game 2i. We observe that the
only difference between Game 2i−1 and Game 2i is how the ith decryption

188 APPENDIX B. DETAILED PROOFS

query is treated. Consider the following event:

Fi := { the ith decryption query is valid and fresh}

If event Fi does not happen, Game 2i−1 and Game 2i are indistinguish-
able since the answer to the ith decryption query is the same. Thus:∣∣Pr[Ei−1

2]− Pr[Ei2]
∣∣ ≤ Pr[Fi].

Bounding Pr[Fi]. Let ci = (ci0, c
i
1, ..., c

i
li
, ci
li+1

) be the ith decryption
query. There are two possibilities:

F 1 The partial ciphertext (ci0, ..., cli) is fresh,

F 2 The partial ciphertext (ci0, ..., cli) is not fresh

Clearly, every fresh ciphertext falls in exactly one of the previous case.
We call event F ji event F j ∩ Fi.

Event F 1
i . Since the partial ciphertext (ci0, ..., c

i
li

) is fresh, then, its hash
hi is fresh because event HC has not happened. That is, there are no
collisions for the hash function. Since at least one of the input (the tweak
in this case, which is equal to hi) of the tweakable random permutation
f∗,−1 is fresh, then, ki0 := f∗,−1(hi, ci

li
) is picked uniformly at random via

lazy sampling of the tweakable random permutation. Thus, event F 1
i

happens only if Fki0(pB) = ci0 for a random key. This event is called COi

(collision output). To compute Pr[COi], we introduce Game 3i where,
we replace Fki0(·) with the random function fi(·) in the computation of
the ith decryption query.

Game 3i. Game 3i is Game 2i where we replace in the ith decryption
query Fki0 with the random function fi0. We call event COi2 the event
that ci0 = c̃i0 in Game 2i, and event COi3 the event that ci0 = c̃i0 in Game
3i.

Transition between Game 2i and Game 3i. To do it, we build a
(2, t+ (q + 1)(tH + (2L+ 1)tF) + tf(q+1))-PRF adversary Di based on A.

The (2, t+(q+1)(tH+(2L+1)tF)+tf(q+1))-PRF adversary Di. The PRF
adversary Di has access to an oracle which is implemented either with
Fki0(·) where ki0 is a key picked uniformly at random or with a random
function fi(·). Di has to distinguish the two situations. To emulate Game
2i for A, Di simply picks two values pA, pB ← {0, 1}n, a key for the hash
function, s $← KH, and a tweakable random permutation f∗, which, for

B.7. PROOF OF THE CIML2-SECURITY OF CONCRETE 189

efficiency, he lazy samples. Then, he behaves as adversary C emulating
Game 1 for AL, before the ith decryption query. When Di receives the
ith decryption query on input ci = (ci0, ..., c

i
li
, ci
li+1

), by hypothesis (F 1)
the partial ciphertext is fresh, thus, its hash hi is fresh (HC). Then,
Di calls his oracle on input pB, receiving y as an answer and he sets
c̃i0 = y. After that, he calls his oracle on input pA receiving y′ and he
sets ki1 = y′. Moreover, he picks a random key k̃i0 and he sets the leakage
LD(ci; k) = k̃i0. From now on, he behaves as C in Game 1. At the end of
the game, if c̃i0 = ci0, Di outputs 1, otherwise he outputs 0. Di does only
two queries to his oracle, and he runs in time bounded by

t+(qE+i−1)(tH+(2L+1)tF)+tf(q+1) ≤ t+(q+1)(tH+(2L+1)tF)+tf(q+1).

(Even if adversary Di had not answered correctly to the ith decryption
query, or if he had not simulated the game correctly after that query, this
would not have created any problem since Di’s output does not depend
on what the adversary AL does after his ith decryption query.)
Moreover, concerning the correctness of the simulation, we observe that,
if the key ki0 is a key which has already been used in the game as a key for
F during a previous encryption or decryption query, it is not possible to
replace Fki0(·) with a random function only in the ith decryption query.
Apart from this case, the computation of c̃i0 is correctly simulated if
the oracle is implemented with fi(·) for Game 3i, while if the oracle
is implemented with Fki0(·) for a random key ki0, Game 2i is correctly
simulated by Di. Thus, we define the event KCi (key collision):

KCi :=

{
∃ a previous encryption query (rj ,mj)

or ∃ a previous decryption query cj
s.t. ∃λ s.t. ki0 = kjλ

}

where among encryption queries j can run only among the encryption
queries A has done before the ith decryption query, (which are ≤ qE)
and with the first i− 1 decryption queries.

Bounding Pr[KC]i. Since ki0 is randomly picked and since there are
at most i − 1 + qE possible values that it cannot have, we can bound
Pr[KCi] ≤ qE(L+1)+(i−1)(L+1)

2n .

Bounding
∣∣Pr[COi2]− Pr[COi3]

∣∣. Since Di is a (2, t+(q+1)(tH +(2L+
1)tF) + tf(q+1))-PRF adversary and F(·) is a (2, t + (q + 1)(tH + (2L +
1)tF) + tf(q+1), εPRF)-PRF secure, thus∣∣Pr[COi2]− Pr[COi3]

∣∣ =
∣∣∣Pr[D

F
ki0

(·) ⇒ 1]− Pr[Dfi(·) ⇒ 1]
∣∣∣ ≤ εPRF.

190 APPENDIX B. DETAILED PROOFS

Bounding Pr[COi3]. We can compute Pr[COi3] = 2−n, since fi0(·) is a
random function, thus, the probability that c̃i0 is equal to ci0 is equal to
|T |−1 with T the target space of the function fi0(·).

We are finally able to bound Pr[F 1
i]:

Bounding Pr[F 1
i]. If Di simulates correctly event F 1

i happens iff event
CO2

i happens, thus

Pr[F 1
i] ≤ Pr[KCi]+Pr[COi2] ≤ Pr[KCi]+Pr[COi3]+

∣∣Pr[COi2]− Pr[COi3]
∣∣

Using the previous results, we obtain:

Pr[F 1
i] ≤ Pr[KCi] + Pr[COi3] +

∣∣Pr[COi2]− Pr[COi3]
∣∣ ≤

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ 2−n + εPRF =

qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

Bounding Pr[F 2
i]. Now the partial ciphertext (ci0, ..., c

i
li

) is not fresh
and it has been obtained in encryption58 and/or decryption queries.
Now we can reuse everything we used to bound Pr[F 1

i] since cli+1 is
fresh with respect to the partial ciphertext (ci0, ..., c

i
li

) and thus ki0 is
fresh. Consequently, it is uniformy picked at random. Still, Pr[KCi] ≤
qE(L+1)+(i−1)(L+1)

2n . Consequently we can bound

Pr[F 2
i] ≤ Pr[KCi] + Pr[COi3] +

∣∣Pr[COi2]− Pr[COi3]
∣∣ ≤

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ 2−n + εPRF =

qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

Bounding Pr[Fi]. Since Pr[Fi] ≤ max{Pr[F 1
i],Pr[F 2

i]} we have bounded

Pr[Fi] ≤
qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

Bounding
∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]

∣∣. We have
already proved that

∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]
∣∣ ≤ Pr[Fi]

thus we obtain that∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]
∣∣ ≤ Pr[Fi] ≤

58This may be done finding at most qE different keys k10, ..., k
qE
0 s.t. Fk1

0
(pB) = ... =

Fk
qE
0

(pB) [very unlikely, but possible] and choosing mi
j = m1

j ⊕ Fk1
j
(pB) ⊕ Fki

j
(pB).

This can be done since the adversary chooses the ki0s so he can anticipates all the
values Fki

j
(pB) for every i and j. This is related to what we explain for the tidiness

B.7. PROOF OF THE CIML2-SECURITY OF CONCRETE 191

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ εPRF

Bounding |Pr[A wins Game 3]− Pr[A wins Game 2]|. Since Game
2 is Game 20 and Game 3 is Game 2qD+1 we have:

|Pr[A wins Game 3]− Pr[A wins Game 2]| ≤

qD+1∑
i=1

∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]
∣∣ ≤

qD+1∑
i=1

(
qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

)
=

(qD + 1)qE(L+ 1)

2n
+

qD(qD+1)(L+1)
2

2n
+
qD + 1

2n
+ (qD + 1)εPRF =

(qD + 1)(L+ 1)(q + qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

Bounding Pr[E3]. Since all fresh decryption queries are deemed invalid
in Game 3 there is no possibility that the adversary wins such Game
thus Pr[E3] = 0.

We now are able to finally conclude the proof.
Bounding Pr[E0]. Using all the bounds about the event Ei (i = 0, ..., 3)
we obtain that

Pr[E0] ≤ εsTPRP+εCR+
(qD + 1)(L+ 1)(q + qE)

2n+1
+
qD + 1

2n
+(qD+1)εPRF

Observation on the bound Since we have supposed that all k0 used in
the decryption query are different (and different from all other ephemeral
keys), the previous bound covers also the difference εsTPRP \ εtprf if we
see F∗ as a tweakable PRF, (that is, if F∗k(·, ·) is indistinguishable from a
random function with the same signature).

Observation on the proof The constraint, which we use for F, is
stronger than what is, in reality, necessary, but, since, anyway we need
that F is a (2, t, εPRF) to prove the pAE security (see the eprint ver-
sion [28]) we assume this hypothesis. On the other hand, we would have
been able to prove the CIML2 security, even if we had replaced F with the
identity. The real security property that we need for the commitment
c0 = c0(k0) is the following:

∀c0 ∈ {0, 1}n Pr[c̃0(k0) = c0 if k0
$← K] ≤ εCOM

192 APPENDIX B. DETAILED PROOFS

where c̃0(k0) is the correct commitment for the ephemeral key k0 which
must be picked uniformly at random (in the bound of Thm. 9 we should
replace εPRF with εCOM). That is, given a commit c0, the probability
that it is correct for a random ephemeral key k0, is negligible. In partic-
ular, this is true if the commitment is given by a PRF or by any injective
function.
This also allows us to replace the term (qD+1)(L+1)(q+qE)

2n+1 with (qD+1)(q+qE)
2n+1 ,

that is, we suppose only that all k0 used in decryption queries are differ-
ent.

B.8 Proof for HBC2 based on sUL

Before proving the theorem, we need the following technical lemma:

Lemma 1. If 2q ≤ n,
q∑
s=1

(s− 1) · Pr[MultiColl(n, q) ≥ s] ≤ 1

n

(
q

2

)(
1 +

2q

n

)
.

Proof. Looking at the generic term for s ≥ 3 after applying the Thm. 2
leads to

s− 1

ns−1

(
q

s

)
≤ 1

ns−2

(
q

s− 1

)
· q
n
≤ 1

n

(
q

2

)
·
(q
n

)s−2
.

Then, the whole sum is upper-bounded by

1

n

(
q

2

)
·

q∑
s=2

(q
n

)s−2
≤ 1

n

(
q

2

)
n

n− q
=

1

n

(
q

2

)(
1 +

q

n− q

)
.

Hence, the result since q ≤ n− q.

Theorem 10. Let F∗ : K∗×B∗ 7−→ B∗ be a (qM , qV , qL, t, εsUL)-strongly
unpredictable block cipher in the presence of leakage, and H : KH ×
HM 7−→ B′ be a hash function modeled as a random oracle that is queried
at most qH times. Let B∗ = B′ = {0, 1}n and HM = {0, 1}∗.
Then, HBC2 is a (qM , qV , qL, t, ε)-strongly unforgeable MAC in the un-
bounded leakage setting, with L∗ = (LM , LV) defined above, where

ε ≤ (qH + qV + 1)(qV + 1)εsUL + (qH + qM + qV + 1)2/2n,

and tH(qH + qM + qV + 1) + (qM + qL − q)tF + (qV + q)tF−1 ≤ t for any
q ≤ qL, and where we assume that all the H-query involved in the qL
queries are already among the qH queries, and if qV ≤ qH (which can be
artificially fulfilled at the end of the experiment).

B.8. PROOF FOR HBC2 BASED ON SUL 193

Proof. To prove the theorem, we use a sequence of games. Given an ad-
versary A, we start with Game 0 which is the FORGELsuf−vcma−L

A,HBC2,L∗ exper-
iment and we end with a game where all the leaking verification queries
deem the given input pair (mi, τi) invalid, including the last verifica-
tion at the finalization which is the (qV + 1)-th verification query by
convention.

Game 0. Let E0 be the event that the adversary AL∗ wins this game.
That is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 with respect to Game 0, where
F1 occurs if among the at most (qH + qM + qV + 1) hash computations
there is at least one collision. In Game 1, if F1 occurs, we abort the
game and return 0. We let E1 be the event that the adversary AL∗ wins
this game.

Bounding |Pr[E0]−Pr[E1]|. Since Game 0 and Game 1 are identical as
long as F1 does not occur, if Q = qH + qM + qV + 1, we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤ Q(Q+ 1)/2n+1.

Note: from now on, A wins if τ never appears in a leaking tag query.
Moreover, h̃ = F−1

k (τ) is fresh when τ appears in a leaking verification
query for the first time if m was never used as input of H at that time.
(See above.)

Game 2. We modify the winning condition of the previous game. In
the finalization, once A outputs (m, τ) we say that A does not win and
return 0 if A fails as before or if m appears as an input of H before the
first apparition of τ during a leaking verification query. If we call F2 the
event that makes the adversary winning in Game 1 but loosing in Game
2, we have |Pr[E2]−Pr[E1]| ≤ Pr[F2], where E2 is the event that A wins
in this game.

Bounding Pr[F2]. If we call Vi the event that (m, τ) appears for the
first time in the i-th leaking verification query (mi, τ i), we just have
to bound Pr[F2 ∩ Vi], for all i = 1 to qV + 1. By considering all
the input-output pairs defined by H before the i-th leaking verification
query, except those defined during a leaking tag query, we can build
straightforwards reduction to the SUL2-security of F. We thus have,
Pr[F2 ∩ Vi] ≤ (qH + qV + 1)εsUL and finally

Pr[F2] =

qV +1∑
i=1

Pr[F2 ∩ Vi] ≤ (qH + qV + 1)(qV + 1)εsUL.

194 APPENDIX B. DETAILED PROOFS

Note: in Game 2, the adversary wins only if τ appears before m and τ
first appears in a leaking verification. The random value of H(m) is still
undefined at that time.

Game 3. In this game we follow the specification of FORGELsuf−vcma−L
A,HBC2,L∗

except that we always output 0 at the end of the game.

Bounding |Pr[E3]−Pr[E2]| = Pr[E2]. From the last note, we know that
h̃ = F−1

k (τ) must be reached from a new computation of H. Since any
fresh H evaluation results in a uniform output which is thus independent
of the view of τ , Pr[H(m′) = h̃] = 1/2n for all hash evaluations on some
m′ appearing after τ in a H-query or in a LVrfy query. But the number
of targets h̃ during the game is actually the number of different τ ′ in the
LVrfy queries when considering the hash evaluations after each such τ ′.
Then Pr[E2] ≤ qV (qH + qV)/2n.

To summarize, we have

Pr[E0] ≤ (qH + qV + 1)(qV + 1)εsUL +
qV (qH + qV)

2n
+
Q(Q+ 1)

2 · 2n

from which the result follows as 2qV (qH + qV) ≤ Q(Q− 1).

B.9 Proof for HTBC based on sUL

Theorem 11. Let H : KH×HM 7−→ B′ be a hash function modeled as
a random oracle, and F∗ : K × T W × B 7−→ B be a (qT , qV , qL, t, εsUL)-
strongly unpredictable tweakable block cipher with leakage L = (LEval, LInv).
Let HM = {0, 1}∗, B′ = T W × B and B = {0, 1}n.
Then, HTBC is a (qT , qV , qH, qL, t, ε)-suf-L2 strongly unforgeable MAC
with unbounded leakage function pair L∗ = (LM , LV) as defined above,
where

ε ≤ (qH + qT + qV)2

22n
+ (qV + 1) · εsUL +

q2
HqV
2n
· εsUL +

qV (qH + qV)

22n
,

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any
q ≤ qL, and where we assume that all the H-query involved in the qL
queries are already among the qH queries, as long as 4 ≤ qH + qT + qV ,
4qV ≤ qH and 10qH ≤ 2n.

Proof. To prove the theorem, we use a sequence of games. Given an ad-
versary A, we start with Game 0 which is the FORGELsuf−vcma−L

A,HTBC,L∗ exper-
iment and we end with a game where all the leaking verification queries

B.9. PROOF FOR HTBC BASED ON SUL 195

(mi, τ i) are deemed invalid, including the last and (qV +1)-th verification
which tests the validity of the potential forgery (m, τ). In the sequel, we
note H(m) = h1‖h2.

Game 0. Let E0 be the event that the adversary AL∗ wins this game.
That is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 for Game 0, where F1 occurs
if among the at most (qH +qT +qV +1) distinct hash computations there
is at least one collision. In Game 1, if F1 occurs, we abort the game and
return 0. We let E1 be the event that the adversary AL∗ wins this game.

Bounding |Pr[E0]−Pr[E1]|. Since Game 0 and Game 1 are identical as
long as F1 does not occur, and 4 ≤ qH + qT + qV , we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤ (qH + qT + qV)2/22n.

Note: from now on, in the case of a winning adversary, no TBCtriple of
the form (?, h2, τ) appears when answering to a LMac query.

Game 2. We modify the winning condition of the previous game. In
the finalization, once A outputs (m, τ) we say that A does not win and
returns 0 if A fails as before or if H(m) = h1‖h2 appears before the first
apparition of (h2, τ) as input to F−1

k in a leaking verification query. If
we call F2 the event that makes the adversary winning in Game 1 but
loosing in Game 2, we have |Pr[E2]− Pr[E1]| ≤ Pr[F2], where E2 is the
event that A wins in this game.

Bounding Pr[F2]. If we call Vi the event that the first time (h2, τ) appears
during the computation of the answer to a leaking verification query is
in the i-th leaking verification query (mi, τ i), we just have to bound
Pr[F2 ∩ Vi], for all i = 1 to qV + 1. The event F2|Vi means m appears
before mi (m = mi included) and, if H(mi) = hi1‖hi2, we have (hi2, τ

i) =
(h2, τ) while this never happens before in a previous LVrfy query. If
m = mi, F2|Vi reduces to the strong unpredictability of F with leakage.
Indeed, it is easy to emulate LMac and LVrfy from LEval and LInv and to
output the final triple (hi1, h

i
2, τ

i) against F at the time the i-th query is
made in order to win with the same probability since (hi1, h

i
2) was never

a LEval query (as m was never a LMac query in F2 and there is no more
collision since Game 1) and (hi2, τ

i) was never a LInv query before by
definition of Vi. However, when m 6= mi, we cannot follow such a simple
strategy. Since m 6= mi we know that h1 6= hi1 as there is no collision by
assumption and (hi1, h

i
2 = h2, τ

i = τ) is not a winning triple against F.
Of course, we could simply make an LInv query on (hi2, τ

i) to emulate the

196 APPENDIX B. DETAILED PROOFS

i-th LVrfy query but in that case we will actually “consume” our chance to
win against F with (h1, h2, τ) because the input (h2, τ) for inversion will
be no more fresh after answering the i-th LVrfy query, and the reduction
will fail. Fortunately, at the time we should emulate the i-th LVrfy query,
we now that the history of the hash evaluations already contains the
forged message m, that h2 collides with hi2. Moreover, that τ i is its valid
tag. We thus have to make several hybrids on the collisions with hi2 to
anticipate the right m′ to win against F with the triple (h′1, h

′
2 = hi2, τ

i).
This number of hybrids is the number of collisions with hi2 which remains
small with high probability as it implies multi-collision in {0, 1}n. We
note that only the hash evaluations of a H-query or of an LVrfy query
matter. In the following, we write H2(m′) = h′2 when H(m′) = h′1‖h′2 for
some h′1.

Concretely, if qi is the number of H evaluations made from all the H-
queries and the LVrfy queries until the i-th LVrfy query, including H(mi),
and if Si is the random variable counting the number of H2-collisions with
hi2, for i = 1 to qV , we have

Pr[F2 ∩ Vi] =

qi∑
s=1

Pr[F2 | Vi ∩ Si = s] · Pr[Vi ∩ Si = s]

≤ Pr[F2 | Vi ∩ Si = s ∩
⋃qi
s=1Hi,s]

+

qi∑
s=2

s−1∑
j=1

Pr[F2 | Vi ∩ Si = s ∩Hi,j] · Pr[H2-Coll(qi) ≥ s]

whereHi,j is the event that among the s distinct messages that H2-collide
on hi2 the j-th one is the forged messagem. By convention, we always see
mi as the s-th and last such message even if the computation of H(mi)
appears earlier than in the i-th LVrfy query59. The case

⋃qi
s=1Hi,s thus

corresponds to mi = m and the related probability in the expression is
upper-bounded by εsUL as explained above. Moreover, for each j = 1 to
s− 1, it is now easy to see that the event F2 | Vi ∩ Si=s ∩ Hi,j reduces
to sUL by using the j-th message and τ i as our guess against the TBC.

59This assumption is without loss of generality as the enumeration only matters
in the reduction at the time we get the adversary’s i-th LVrfy query (mi, τ i). The
choice of (which is) the j-th message colliding on hi

2 can be made once the s messages
are known. At that time, if (hi

2, τ
i) = (h2, τ) as implied by Vi, F−1

k (h2, τ) was never
computed anyway.

B.9. PROOF FOR HTBC BASED ON SUL 197

Therefore,

Pr[F2 ∩ Vi] ≤ εsUL + εsUL

qi∑
s=2

(s− 1) · Pr[H2-Coll(qi) ≥ s]

≤ εsUL + εsUL ·
1

2n

(
qi
2

)(
1 +

2qi
2n

)
by lemma 1, since 2qi ≤ 2(qH + qV) ≤ 2n−2 ≤ 2n by assumption on the
number of queries. In addition, 1 + 2qi/2

n ≤ 5/4. Summing on all the
i’s, with Pr[F2 | VqV +1] ≤ εsUL, gives

Pr[F2] ≤ (qV + 1) · εsUL + εsUL ·
1

2n
· 5

4
·
qV∑
i=2

(
qi
2

)
.

Some basic computation shows that
∑qV

i=1

(
qi
2

)
≤
∑qV

i=1

(
qH+i

2

)
≤ 1

2q
2
HqV (1+

2qV
qH

), if qV ≤ qH . But then, as qV ≤ qH/4 by assumption, we have

Pr[F2] ≤ (qV + 1) · εsUL +
q2
HqV
2n
· εsUL.

Game 3. In this game we follow the specification of FORGELsuf−vcma−L
A,HBC2,L∗

except that we always output 0 at the end of the game.

Bounding |Pr[E3]−Pr[E2]| = Pr[E2]. We end by showing that winning
while the TBCinput (h2, τ) for inversion appears when answering a leak-
ing verification query before the computation of H(m) is negligible. For
each (hi2, τ

i) that appears when answering a leaking verification query
and before m′ the only way for the adversary to win with the pair (m′, τ ′)
is to “hope” that H(m′) = h̃i1‖hi2. However, before the computation of
H(m′) its value remains independent of the adversary’s view. Therefore,
the probability that the random output of H(m′) hits the full target
h̃i1‖hi2 is 1/22n. We now count the number of tries a winning adversary
can make in it that case. Clearly, we do not have to count the tries re-
lated to any LMac. Considering the event Vi as in the previous analysis
of Game 2, in E2 ∩Vi there at most qH + qV + 1− i hash evaluations left
after the i-th LVrfy query. Then, Pr[E2 | Vi] ≤ (qH + qV)/22n for i = 1
to qV . Note that Pr[E2 | VqV +1] = 0 by definition. Finally, we get

Pr[E2] ≤ qV (qH + qV)

22n
.

Hence, the bound of the theorem.

	Introduction
	Scope and motivation
	Blackbox authenticity and integrity
	Leakage
	Countermeasures

	Our contributions
	Theoretical framework
	Constructions

	Related works
	Structure of the thesis

	Background
	Notations
	Time notation

	Adversaries and proofs
	Hash functions
	The birthday bound
	Multi-Collisions
	Pre-image resistance

	Pseudorandomness
	Tweakable pseudorandom functions
	Strong pseudorandom permutations

	Message Authentication Codes (MACs)
	MAC security: authenticity

	Authenticated Encryption (AE)
	Integrity
	Confidentiality and Integrity

	Random oracle model

	Leakage and countermeasures
	Leakage
	Sources of leakages
	Simple and Differential Power Analysis

	Countermeasures
	Masking

	Leakage-resilience
	Rekeying
	Leveled implementation
	The CCS2015 leakage-resilient MACs
	A leakage-resilient encryption scheme

	Theoretical framework
	Security definitions with leakage
	suf-L
	suf-L2
	CIML
	CIML2

	Unbounded leakage model
	Strongly protected implementations
	Leak-free
	Strong unpredictability

	The Barwell et al. authenticity definition

	Constructions
	HBC: a suf-L MAC.
	Security of HBC

	DTE, Digest-Tag-and-Encrypt
	The double IV composition
	The DTE construction
	The CIML-security of DTE

	The problem of decryption leakage
	HBC is not suf-L2
	DTE is not CIML2: a first attack
	DTE' - the first patch
	The second attack

	More leak-free components do not help.
	For HBC
	For DTE

	HBC2 - the solution for MACs
	HBC2: a suf-L2 MAC.
	Security of HBC2
	HTBC: a BBB variant
	Security of HTBC

	DTE2 - a solution for AE
	The CIML2-security of DTE2

	EDT, Encrypt-Digest-then-Tag
	The CIML2-security of EDT

	CONCRETE, a single-leak-free-call scheme
	The CIML2 security of CONCRETE

	Other constructions
	Inner-keyed sponges: CIL1 and CCAL1-secure.
	ASCON and Spook: CIML2 and CCAmL1 secure
	ISAP and TEDT: CIML2 and CCAmL2-secure

	The construction of Barwell et al.

	Authenticity from unpredictability
	For HBC2
	The suf-L2-security of HTBC based on sUL
	Application to CIML2
	About the usage of the Random Oracle

	Conclusion
	Summary
	Definitions and leakage models
	Constructions

	Prospects
	Concluding remarks

	References
	Index
	Additional definitions
	Syntactic definitions for (AE)
	Misuse-resistance

	Detailed proofs
	Proof of the suf-L security of HBC
	Proof of the CIML-security of DTE
	Proof of the suf-L2 security of HBC2
	Proof of the suf-L2 security of HTBC
	Proof of the CIML2-security of DTE2
	Proof of the CIML2-security of EDT
	Proof of the CIML2-security of CONCRETE
	Proof for HBC2 based on sUL
	Proof for HTBC based on sUL

