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coffee breaks. Also Dražen, thanks for your friendship, your wisdom and for

sharing my interests. I too am very grateful to the great administrative staff of
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de ma thèse.
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Introduction

The Universe we live in is undoubtedly expanding [1]. Particles, planets, galax-

ies, or structures in general are moving away from each other, and the greater

the distance between them, the speedier the distancing velocity. They move

apart because their support, our spacetime itself, is inflating, and it appears

to have done so ever since the very first instants of its existence. Now turning

the arrow of time, the Universe expansion becomes nothing but its contrac-

tion, and it collapses into itself. Therefore, at very early times, there are no

more planets, or galaxies, just a very hot and dense primordial plasma made of

elementary constituents of our Universe. The energy densities and conditions

to which particles are exposed at those early times are tremendously more in-

tense than any human-designed experiment will ever achieve. Therefore, the

primordial Universe constitutes a perfect laboratory for physicists to try and

test their high-energy fundamental theories of nature, simply by looking at

nature itself. Describing the origin and evolution of our Universe, from its

smallest elementary constituents that composed the primordial plasma to the

large scale structures that make up the world around us today, is the field of

physics known as cosmology.

After years and years of combined efforts, generations of relentless mathemati-

cians and physicists have eventually come up with two mathematically very

complicated, yet fantastically well-working theories of nature, namely the Stan-

dard Model (SM) of particle physics, and the Einstein gravity theory of General

Relativity (GR), both of which are heavily used in cosmology. On one hand,

the SM describes the quantum world of all elementary particles1 and their in-

teractions in the framework of relativistic quantum mechanics, also known as

quantum field theories (QFT).

1Particles which do not have subconstituents.
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On the other, GR encodes gravity and the expansion of the Universe by a

curved spacetime in which those particles move, interact and evolve. Those

two theories combined with standard thermodynamics provide a rock solid

framework to describe our Universe, from 10−43 seconds after its creation to

the cosmos we observe today. Fortunately, this is not the end of this beautiful

story. There are still many puzzles to be solved!

Indeed, claiming that the SM together with GR strictly suffice to go from 10−43

seconds after the creation of the Universe, all the way to today is an overstate-

ment. They need to be supplemented by (a) a theory of cosmic inflation, (b)

a dark matter candidate, and (c) a dark energy content, and all three must be

consistent with observations. Let us briefly describe them.

In a nutshell, cosmic inflation (a) is a period of quasiexponentially accelerated

expansion of the primeval Universe. We shall very shortly explain in detail why

it ought to exist. Dark matter (b) is an optically invisible, gravitational source

which we know must be present to e.g. explain certain galaxy rotations [2, 3].

Dark energy (c), also known as cosmological constant Λ, is a form of energy

of negative pressure that is insensitive to the Universe expansion [4]. As it

grows bigger and bigger, the dark energy density remains constant while other

standard forms of energy get diluted away.

The current total energy budget of our Universe is constituted of 5% of ordi-

nary matter, 27% of dark matter and 68% of dark energy. While those three

features (a)-(c) of our Universe are crucial for our theoretical modelling of the

cosmos, there is yet no consensus as to what is responsible for the origins of

these peculiarities. Nevertheless, their existence is well-established in the scien-

tific community and altogether, they compose the so-called standard big-bang

models of cosmology, or ΛCDM cosmologies which thus far, pass with flying

colors most observational tests they are confronted with.

With the ever-growing experimental precision, not only is there hope that we

will eventually be able to distinguish different modellings of inflation, dark

matter or energy, but also most certainly will we be able to pinpoint more ac-

curately where exactly the standard model needs to be modified or completed.

That of course is a valid statement only provided that theoretical predictions

within the standard model match the current and forthcoming experimental

resolutions. Unconventional models of inflation and precision cosmology pre-

cisely are the motivations for my PhD thesis, which is thus divided in two

independent and equally important parts.
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Part I. The first of these is motivated by the so-called warm inflation models

[5–7], of potentially recognisable experimental signatures which, if chosen by

nature, would radically change our perspectives on the formation of the seeds

for galaxy formation. Let us briefly describe them. Cosmic inflation [8], be

it standard or warm, is a period of quasiexponentially accelerated expansion

of the Universe which, although initially invented to solve the problem of the

absence of magnetic monopoles in theories of grand unification, is nowadays

summoned to solve three “problems” of the standard model, namely

• The homogeneity and isotropy problem. Our cosmos is observed

homogeneous and isotropic (up to very small perturbations), see Fig. 5.1.

While this sounds appealing and reasonable, there is a priori no justi-

fication for it from a theoretical point of view, apart from the so-called

“cosmological principle” which simply stipulates it to be so. As good

physicists, we do not like postulates, we want logical explanations.

• The flatness problem. On cosmological scales, the spacetime curvature

of the observable Universe appears to be flat, but again, we have no idea

why, GR a priori allows for other geometries, too.

• The horizon problem. Due to Einstein’s theory of special and general

relativity, our spacetime has a causal structure governed by the speed

of light. Information cannot be passed from one source to the other

instantaneously, and the transmission velocity is limited by the speed of

light, hence creating so-called causal horizons, as depicted in Fig. 2. The

horizon problem is that structures which should be causally disconnected

according to the standard expansion of the Universe seem to have quite

strongly communicated in the far past.

By drastically expanding the size of our Universe by at least 26 orders of mag-

nitude, starting 10−36 seconds after the big-bang singularity, cosmic inflation

solves all these three problems for almost any type of initial conditions. First,

it nearly instantaneously dilutes away any particle content, hence bringing the

Universe in an isotropic and homogeneous state. Second, it effectively flattens

any curvature by making the observable Universe just a tiny portion of its to-

tal size, which globally may or may not be curved. And third, by enhancing

the expansion rate, cosmic inflation enlarges the past horizons, causally recon-

necting structures that would otherwise be disconnected. The observational

constraints on cosmic inflation primarily affect its duration, it must be long

enough so as to actually solve the aforementioned three problems. While this
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Figure 1: Full-sky measurement of the temperature of our Universe, which up

to small deviations, is homogeneous and isotropic T = 2.726± 10−5 K [9].

time

space

big-bang singularity

= object

= past light cone

initially
= causally connected

regions

Figure 2: Two-dimensional causal structure of our Universe.

makes its modelling rather flexible, cosmic inflation is most commonly realised

in the framework of relativistic QFT, by adding one or several scalar parti-

cles to the Standard Model of particle physics, the so-called inflaton(s). The

standard inflationary paradigm [8,10–12] unfolds as summarised in Fig. 3.
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V (ϕ)

ϕ

ϕ→

slow-roll inflation

quantum fluctuations
⇓

Ti
reheating

⇒ hot Tf

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ) = 0

← ϕ→

Γϕ dissipation rate
V (ϕ) effective potential

Figure 3: Effective potential driving standard inflation.

It takes place in two distinguished phases. It starts 10−36 seconds after the big-

bang with a slowly-rolling field ϕ which potential energy V (ϕ) dominates that

of the Universe and consequently triggers inflation, cooling down the Universe

down to a near-absolute-zero freezing temperature. The tiny quantum fluctua-

tions of this field, once inflated on large scales, give rise to the tiny temperature

fluctuations observed in the sky today. As the inflaton rolls down, its potential

energy decreases more and more and eventually inflation stops. Then, the in-

flaton undergoes a phase of reheating during which most of its energy budget

is transferred to SM particles via particle decays. The Universe transits from

an ultracold quasiempty state to a hot soup of ultrarelativistic particles about

10−32 seconds after the big-bang singularity. This has to be the starting point

of the thermal history of the Universe as we currently understand it. During

both regimes, the fields follows the dynamical, differential equation of motion

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ) = 0 (1)

where dots are time derivatives, H is the Universe expansion rate, also known as

Hubble rate, Γϕ is the damping rate, and V ′(ϕ) is the effective force determined

from the slope of the potential. Depending on what phase of standard inflation

is under consideration, inflation or reheating, then the dynamics is respectively

potential- or dissipation-dominated and it is the careful, first principles analysis

of these two that determine the feasibility of inflation models.
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Though this standard picture for inflation is well-established and commonly

accepted in the literature, in the late 1990s, there was proposed an alternative

scenario to the standard paradigm, the so-called warm inflation scenario [5],

which we summarise in Fig.4.

V (ϕ)

ϕ

slow-roll maintained with large Γϕ

A.Berera Phys.Rev.Lett. 75 (1995) 3218-3221

ϕ̈+ (3H + Γϕ)ϕ̇+ V ′(ϕ) = 0

hot Ti ' Tf

ϕ ⇒ quantum and
thermal

fluctuations
⇒

Figure 4: Effective potential driving warm inflation.

Instead of occurring in two distinguished, somewhat discontinuous phases,

warm inflation smoothly transits from the inflationary regime to a hot radiation-

dominated era. The long duration of inflation is guaranteed by a strong-

dissipation-enforced slow-roll motion of the field, maintained through an enor-

mous particle production which balances out with the cosmic inflation, and

also keeps the temperature quasiconstant. In this scenario, the fluctuations

that give rise to the observed temperature fluctuations are not only quantum,

but also thermal, hence radically changing our conception of the origins of the

seeds for galaxy formation.

While warm inflation is an attractive alternative to the standard archetype, its

viability at the background level is disputed, see e.g. [5–7,13,14] for encouraging

pieces of research that indicate its feasibility, in particular the most recent

[15], vs. e.g. the more critical and pessimistic [16, 17]. Whatever the beliefs,

all agree that formulating the model from first principles of nonequilibrium

QFT is a complicated and rather poorly understood exercise which warrants

investigation. It requires to address fundamental questions about the far-from-
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equilibrium dynamics of scalar fields in the very early Universe and the first

part of my thesis is precisely devoted to that.

Part II. The second part of this PhD thesis focuses on a precision computa-

tion of the effective number of cosmological neutrinos Neff , a well-measured and

beyond-standard-model-physics-sensitive cosmological observable. At temper-

atures of around T ∼ 10 MeV ∼ 1011 K, the Universe is primarily made of

(anti)electrons e±, photons γ and neutrinos, respectively kept at equilibrium

by their electromagnetic and weak interactions. Roughly speaking, Neff is then

computed from precisely evaluating the late-time ratio of the photon to neu-

trino energy densities. Under the most simplifying assumptions, we find Neff

= 3, which is the number of neutrinos in the standard model, hence its name.

A more refined computation of Neff ought to be obtained from quantum ther-

mofield dynamics. While this second part is less fundamental and conceptual

than the first, it is more technical and required finer analytic and numerical

techniques to achieve the unprecedented level of precision we were aiming at.

Outline of this thesis

In chapter 1, we review the framework of (non)equilibrium relativistic quantum

field theory, which is used in both parts of the thesis.

Part I. In chapter 2, we derive from first principles of nonequilibruim QFT

a model-independent inflation-like equation of motion (1) for a slowly-rolling

scalar field ϕ. In the next two chapters 3 and 4, we particularise the discussion

to a two-field scalar model wherein we perform a careful study and derive

the main characteristics of the effective potential and damping rate associated

with the method presented in the previous chapter 2. Then in chapter 5, we

comment on the feasibility of warm inflation in that model. Eventually, we

conclude and comment on future perspectives to part I.

Part II. In chapter 6, we briefly review ingredients of thermodynamics in

expanding spacetimes and properly define Neff in the framework of cosmological

thermodynamics, and list where deviations from Neff = 3 potentially come

from. In chapter 7, we provide a standard model theoretical prediction for Neff

of unprecedented accuracy, a would-be state-of-the-art value for Neff for future

generations of experiments. Eventually, we conclude and comment on future

perspectives to part II.



16

This PhD thesis is based on the following publications:

• G. Buldgen, M. Drewes, J. U. Kang and U. R. Mun, General Markovian

Equation for Scalar Fields in a Slowly Evolving Background, 1912.02772,

• J. J. Bennett, G. Buldgen, M. Drewes, Y. Y. Wong, Towards a precision

calculation of the effective number of neutrinos Neff in the Standard Model

: The QED equation of state, 1911.04504, JCAP 03 (2020) 003,

• G. Buldgen, M. Drewes, J. U. Kang and U. R. Mun, Dissipation in a

Coleman-Weinberg potential (in preparation),

• J. J. Bennett, G. Buldgen, P. F. de Salas, M. Drewes, S. Gariazzo, S. Pas-

tor and Y. Y. Wong, Towards a precision calculation of Neff in the Stan-

dard Model: Neutrino decoupling in the presence of flavour oscillations

and finite-temperature QED (in preparation).

Part I is the final outcome of my work with my closest collaborators Marco

Drewes, Jin U Kang and Ui Ri Mun. Part II is a piece of work done in close

collaboration with Marco Drewes, Jack Bennett and Yvonne Wong.

I also acknowledge the support of the National Fund for Scientific Research

(F.R.S.- FNRS Beligum) through a FRIA grant for my PhD thesis.

https://arxiv.org/pdf/1912.02772.pdf
https://arxiv.org/pdf/1911.04504.pdf


Chapter 1
Common background

In this chapter, we dive into technicalities and present a detailed literature

review of the theoretical frameworks employed throughout this thesis. We

articulate the description of the background knowledge in two parts:

• (Non)equilibrium quantum field theory.

• 2 Particle Irreducible (2PI) effective action formalism.

We shall particularise the discussion to real scalar field degrees of freedom and

provide a complete description of that case study, heavily relying on Refs. [18–

22], wherein generalisations to other spins can be found, too. Throughout this

thesis we shall use a unit system where the vacuum speed of light c, the reduced

Planck constant ~ and the Boltzmann constant kB are unity c = ~ = kB = 1.

Our Minkowski metric is η = diag(+1,−1,−1,−1).

1.1 Elements of (non)equilibrium field theory

In this section we briefly describe how (non)equilibrium systems of interacting

quantum fields can be studied using diagrammatic techniques by means of the

so-called Schwinger-Keldysh [23, 24] or Closed Time-Path (CTP) formalism.

17



18 Chapter 1. Common background

1.1.1 The system

The time evolution of the system under consideration is driven by the full,

time-dependent Hamiltonian H(t) which we decompose as

H(t) = H0(t) +Hint(t), (1.1)

where H0 is the free Hamiltonian and Hint encodes the nontrivial time depen-

dence and interactions between the fields. Unless specified otherwise, operators

will be considered in the full Heisenberg picture, where their time evolution is

dictated by the full Hamiltonian H(t). In nonequilibrium situations, only the

initial density matrix, which we denote %(ti), is known and one is interested in

computing the statistically weighted quantum expectation values

〈O〉 =
tr [%(ti)O]

tr[%(ti)]
, (1.2)

also known as ensemble averages. The trace operator tr performs an average

over the entire Hilbert space of the theory. If one has the decomposition

%(ti) =
∑

n

%n|n〉〈n|, (1.3)

ensemble averages then evaluate to

〈O〉 =
1

Z

∑

n

%n〈n|O|n〉, (1.4)

where Z =
∑
n %n is a normalisation factor and %n is the statistical weight of

the quantum state |n〉.

Equilibrium systems. At thermal equilibrium, when a temperature β =

T−1 can be defined at all times, we have the grand canonical density matrix

% = e−β(H−µN), (1.5)

with µ the chemical potential and N the particle number operator. For the

sake of this work, the systems under consideration will always be of vanishing

chemical potential µ = 0, hence studied in the so-called canonical formalism of

statistical mechanics1. The canonical density matrix reads

% = %(eq) = e−βH . (1.6)

1Though notationnally heavier, generalisations to the grand canonical ensemble in the

presence of non vanishing chemical potentials are straightforward, see e.g. Ref. [21].
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Together with the Hamiltonian eigenbasis H|n〉 = En|n〉, this yields the usual

Boltzmann weight %n = e−βEn and equilibrium partition function

Z(β) = Tr
[
e−βH

]
=
∑

n

e−βEn , (1.7)

which indicate that a system tends to relax to the microstate which minimises

its energy functional. The lower the energy, the more statistically likely the

state. An important point to be made here is the following. At thermal equilib-

rium, on top of ensemble averages of microphysical quantities, we can also de-

termine thermodynamic quantities (and their associated quantum corrections)

such as the pressure P , energy ρ and entropy s densities which characterise

thermally averaged, bulk properties of the entire system. They are computed

from the quantum partition function using the standard thermodynamic rela-

tions for infinite volume

P (T ) =
T

V
lnZ, (1.8)

ρ(T ) =
T 2

V

∂ lnZ

∂T
= −P + T

∂P

∂T
, (1.9)

s(T ) =
ρ+ P

T
. (1.10)

The energy density ρ(T ) is not to be confused with the density matrix %(t).

1.1.2 Why do we need the Closed Time-Path ?

Ensemble averages are fundamentally different objects than the S-matrix ele-

ments one is usually interested in in zero temperature field theory or vacuum

field theory. Therefore, they must unsurprisingly be studied using different

tools. In this section, we argue why standard QFT techniques cannot straight-

forwardly be applied to compute nonequilibrium ensemble averages.

Zero-temperature field theory methods to compute vacuum quantum expecta-

tion values entirely rely on the so-called Gell-Man-Low (G-ML) theorem [25],

which relates correlators on the interacting vacuum |Ω〉 to correlators on the

free vacuum |0〉 via the reduction formula

〈Ω|T {O1(t1) · · ·On(tn)}|Ω〉 = lim
ε→0+

〈0|T {O1,I(t1) · · ·On,I(tn)Uε(+∞,−∞)}|0〉
〈0|Uε(+∞,−∞)|0〉 ,

(1.11)
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where T is the time ordering operator, OI are interaction picture operators2

and Uε is the time-evolution operator for the Hamiltonian

Hε(t) = H0(t) +Hε,int(t) = H0(t) + e−ε|t|Hint(t). (1.13)

It is defined as

U(t, ti) = T
{

exp

[
−i
∫ t

ti

dt′HI(t
′)

]}
, with U(t, ti) = U†(ti, t), (1.14)

where HI(t) = eiH0(t−ti)Hint(t)e
−iH0(t−ti) is the interaction Hamiltonian in the

interaction picture. Identical expressions can be written with a subscript ε.

This whole procedure to evaluate correlators is however not appropriate for

generic (non)equilibrium situations for two reasons. On one hand, though it

is sometimes omitted in standard references, e.g. in Ref. [26], one has not to

forget that the G-ML formula entirely relies on the matching conditions

H0 = lim
ε→0+

Hε(+∞), H = lim
ε→0+

Hε(0), (1.15)

which themselves crucially rely on the existence of an adiabatic mapping be-

tween Hint and Hε,int. In principle, this mapping cannot be achieved for generic

nonequilibrium dynamics and in those situations where it is not, one fails to

satisfy the GM-L assumptions and the entire zero temperature techniques fail

to be reproduced.

On the other hand, ensemble averages of the form of Eq. (1.4) do not only in-

volve vacuum correlators, rather they also require the computation of quantum

expectation values on any state that spans the complete Hilbert space of the

theory. There is no G-ML-like formula for these states whatsoever because an-

other crucial assumption that leads to the GM-L formula is the nondegeneracy

of the Hamiltonian spectrum. There is no obvious reasons to assume that the

energy spectrum of a generic nonequilibrium system is nondegenerate.

Finally, we would like to comment that even in cases where the adiabatic map-

ping of Eq. (1.15) can be established, the resulting (non)equilibrium correla-

tors could not be mapped to S-matrix elements via the Lehmann-Symanzik-

Zimmerman (LSZ) formula. Indeed, the in- and out-states of the S-matrix and

LSZ formulae are ill-defined for (non)equilibrium plasma where particles and

states are never free and always surrounded by scattering partners.

2Operators in the interaction picture are Heisenberg operators from which the time-

evolution of the free Hamiltonian has been extracted. Their time evolution is solely driven

by that of Hint,and reads

O(t) = U(ti, t)OI(t)U(t, ti). (1.12)



1.1. Elements of (non)equilibrium field theory 21

1.1.3 The Closed Time-Path (CTP) formalism

From the previous discussion, it has becomes clear that standard techniques

cannot be used to calculate (non)equilibrium ensemble averages. In principle,

this is a disaster because vacuum field theory can be very conveniently and effi-

ciently studied in the framework of Feynman’s diagrammmatics and we would

of course preferably like to avoid the need for an entirely new formalism.

Based on Ref. [18], we here show that it is possible to construct a diagrammatic

language convenient for real-life computations of nonequilibrium correlators, by

means of the so-called Closed Time-Path (CTP) formalism.

In order to motivate and understand how it arises naturally, let us show that

O(t) = U†(t, ti)OI(t)U(t, ti) = TC
{
e
−i
∫
Ct

dt′HI(t′)
OI(t)

}
(1.16)

where TC is the time-ordering along the time-path Ct depicted on Fig. 1.1.

|ti | t t

C+

C−

Ct

Figure 1.1: Finite-time Closed Time-Path (CTP).

Let us first expand the exponential, we find

TC
{
e
−i
∫
Ct

dτHI(τ)
OI(t)

}

=

∞∑

n=0

(−i)n
n!

∫

Ct
dτ1 · · ·

∫

Ct
dτnTCt {HI(τ1) · · ·HI(τn)OI(t)} .

The products of integrals over Ct = C+ + C− give rise to 2n terms. Since the

integration variables are dummy ones, we can rename them at our convenience

to recast those 2n terms into n!
m!(n−m)! identical terms. Then, making use of
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the time orientation along Ct, we find

TC
{
e
−i
∫
Ct

dτHI(τ)
OI(t)

}

=

∞∑

n=0

(−i)n
n!

n∑

m=0

n!

m!(n−m)!

×
∫

C−
dτm+1 · · ·

∫

C−
dτnTC− {HI(τm+1) · · ·HI(τn)}OI(t)

×
∫

C+
dτ1 · · ·

∫

C+
dτmTC+ {HI(τ1) · · ·HI(τm)} .

Now by hand introducing a Kronecker’s delta which allows us to re-express the

sums, and then evaluating the sum over n explicitly, we find

TC
{
e
−i
∫
Ct

dτHI(τ)
OI(t)

}

=

∞∑

n=0

∞∑

k=0

∞∑

m=0

(−i)n
m!k!

δn,k+m

×
∫

C−
dτ1 · · ·

∫

C−
dτkTC− {HI(τ1) · · ·HI(τk)}OI(t)

×
∫

C+
dτ1 · · ·

∫

C+
dτmTC+ {HI(τ1) · · ·HI(τm)}

=

∞∑

k=0

∞∑

m=0

(−i)k(−i)m
m!k!

∫

C−
dτ1 · · ·

∫

C−
dτkTC− {HI(τ1) · · ·HI(τk)}OI(t)

×
∫

C+
dτ1 · · ·

∫

C+
dτmTC+ {HI(τ1) · · ·HI(τm)} .

Therefore, we find

TC
{
e
−i
∫
Ct

dτHI(τ)
OI(t)

}
= TC−

{
e
−i
∫
C−

dτHI(τ)
}
OI(t)TC+

{
e
−i
∫
C+

dτHI(τ)
}
.

(1.17)

On one hand, since the forward region of the CTP is just the usual time orien-

tation TC+ = T , we can immediately see that

TC+
{
e
−i
∫
C+

dτHI(τ)
}

= T
{
e
−i
∫ t
ti

dτHI(τ)
}

= Û(t, ti).
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On the other hand, using H†I = HI and that the time orientation of C− is just

about running backwards, we evaluate

TC−
{
e
−i
∫
C−

dτHI(τ)
}

=

∞∑

n=0

(−i)n
n!

∫ ti

t

dτ1 · · · dτnTC− {HI(τ1) · · ·HI(τn)}

=

∞∑

n=0

(−i)n
n!

∫ ti

t

dτ1 · · · dτn (T {HI(τ1) · · ·HI(τn)})†

=

( ∞∑

n=0

(−1)n(−i)n
n!

∫ ti

t

dτ1 · · · dτnT {HI(τ1) · · ·HI(τn)}
)†

=

( ∞∑

n=0

(−i)n
n!

∫ t

ti

dτ1 · · · dτnT {HI(τ1) · · ·HI(τn)}
)†

= U†(t, ti).

At the end of the day, we find

TC
{
e
−i
∫
Ct

dτHI(τ)
OI(t)

}
= U†(t, ti)OI(t)U(t, ti) = O(t). (1.18)

This result is crucial. We showed that any operator in the full Heisenberg

picture can formally be described by CTP-ordered products of operators. This

motivates the natural democratisation of standard time arguments to CTP-

generalised ones. Taking this step forward, one embarks on the Schwinger-

Keldysch or CTP formulation of nonequilibrium QFT.

1.1.4 CTP-ordered n-point functions

Let us apply this method to contour-ordered two-point functions ∆(x, y) to

show it expresses it in terms of Feynman diagrams in a similar fashion to the

zero temperature case. ∆(x, y) is defined as the connected part of the contour-

ordered 2-point functions, namely

∆(x, y) = 〈TC{φ(x)φ(y)}〉 − ϕ(x)ϕ(y), (1.19)

where ϕ(x) = 〈φ(x)〉. Though not necessary strictly speaking, for simplicity,

we shall assume ϕ(x) = 0 and find for the contour-ordered two-point function

∆(x, y) = Z−1 tr
[
%(ti)TC

{
e−i

∫
Cx dτHI(τ)φI(x)

}
TC
{
e
−i
∫
Cy dτHI(τ)

φI(y)
}]

= Z−1 tr
[
%(ti)TC

{
e
−i
∫
Cx+Cy dτHI(τ)

φI(x)φI(y)
}]

,

where the subscript x (resp. y) denotes that the contour Cx (resp. Cy) stretches

from ti to x0 (resp. y0) and back to ti, as shown on Fig. 1.2. Here we also
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have used that under contour ordering, operators commute and exponentials of

operators can be assembled as one usually would with exponentials of numbers.

Now realising that the contributions from the dashed regions of the closed

contours Cx and Cy depicted on Fig. 1.2 cancel because in those regions the

field operators do not intervene and need not be ordered, we obtain

∆(x, y) = Z−1 tr
[
%(ti)TC

{
e
−i
∫
Ctmax

dτHI(τ)
φI(x)φI(y)

}]
, (1.20)

where tmax = max(x0, y0).

t

ti

x0|

Cx

y0
|

Cy

Figure 1.2: Overlapped closed contours for nonlocal two-point functions.

Playing the same game with the insertions of the field operators, one can equiv-

alently extend Ctmax all the way to +∞, leading to the usual CTP, denoted Ci,
which extends from ti to +∞ and back. The latter is depicted on Fig. 1.3. For

the nonequilibrium two-point function, we obtain

∆(x, y) = Z−1 tr
[
%(ti)TC

{
e
−i
∫
Ci

dτHI(τ)
φI(x)φI(y)

}]
. (1.21)

|ti t→∞

C+

C−

Ci· · ·

· · ·

Figure 1.3: Infinite-time Closed Time-Path (CTP)
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Realising that this procedure could have equivalently been dealt with, with

infinitely many field operator insertions, we find the n-point correlators as

〈TC{φ1(x1) · · ·φn(xn)}〉conn. =
tr
[
%(ti)TC

{
e
−i
∫
Ci

dτHI(τ)
φ1,I(x1) · · ·φn,I(xn)

}]

tr[%(ti)]
.

(1.22)

This can be further simplified in the equilibrium case where

%(ti) = %(eq) = e−βH = e−βH0T↓
{
e−i

∫ ti−iβ
ti

dτHI(τ)
}

(1.23)

where the integration is made along the imaginary axis, from ti to ti − iβ

following a downward-oriented (denoted by ↓) path. Combining this together

with Eq. (1.21), we can eventually recast everything in terms of one single

contour-ordered integral along a specific time-path Cβ depicted in Fig. 1.4.

|ti t→∞

C+

C−

Cβ· · ·

· · ·

−ti − iβ

Figure 1.4: Finite temperature CTP.

The resulting equilibrium propagator reads

∆(eq)(x, y) = Z(eq)−1 tr
[
e−βH0TCβ

{
e
−i
∫
Cβ

dτHI(τ)
φI(x)φI(y)

}]
. (1.24)

Again using that while subject to contour-ordering, operators commute, to-

gether with the relation TC
{
e
−i
∫
Ci

dτHI(τ)
}

= I, we have that the denominator

of Eq. (1.24) rewrites

Z(eq) = tr
[
e−βH0T↓

{
e−i

∫ ti−iβ
ti

dτHI(τ)
}]

= tr
[
e−βH0TCβ

{
e
−i
∫
Cβ

dτHI(τ)
}]

, (1.25)

simply because Cβ = Ci + [ti, ti − iβ]. Eq. (1.24) therefore reads

∆(eq)(x, y) =
tr
[
e−βH0TCβ

{
e
−i
∫
Cβ

dτHI(τ)
φI(x)φI(y)

}]

tr
[
e−βH0TCβ

{
e
−i
∫
Cβ

dτHI(τ)
}] . (1.26)
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When put under this form, the connection to zero-temperature QFT [26] is

clearer. Wick’s theorem together with the combinatorial arguments apply, the

disconnected diagrams from the numerator precisely cancel with the sum of

vacuum diagrams of the denominator. Then, one is left with a suitable per-

turbative expansion of connected Feynamn diagrams, except it is for contour-

ordered propagators, such that a matrix structure underlies the diagrammatical

construction. Adopting the path integral formalism, we shall explicitly show

this both for the equilibrium and nonequilibrium propagators. Before moving

on to that, let us quickly comment and define how yet another contour, the

Schwinger-Keldysh one, can be employed for certain nonequilibrium systems.

1.1.5 The Schwinger-Keldysh contour

In situations where the microscopic time scale τint of the particle interactions is

shorter than the macroscopic time scale which characterises the time evolution

of bulk properties of the system, we can let ti → −∞. This corresponds to

τint → 0 versus the macroscopic evolution time scale. In such situations, one

is left with the so-called Schwinger-Keldysh contour depicted on Fig. 1.5, both

in the equilibrium and nonequilibrium cases.

· · ·

· · ·

ti → −∞
t→∞

C+

C−

C· · ·

· · ·

Figure 1.5: Schwinger-Keldysh CTP

Looking at Eqs. (1.24) and (1.36), it is less obvious that one ends up with the

Schwinger-Keldysh CTP starting from the equilibrium contour Cβ of Fig. 1.4,

because that means we somehow got rid of the [ti, ti − iβ] part of the contour.

Let us explain why this is effectively what happens when we let ti approach

−∞. Physically, this is because any propagator with a time argument in the

imaginary time stretch gets damped very quickly, on the microscopic time

scales of scattering events τint. Mathematically, it can be shown [20] that any

two-point function with a time argument belonging in the imaginary stretch

[−∞,−∞−iβ] is vanishing. Equivalently the integration of the [−∞,−∞−iβ]

band at the level of the generating functional (to be defined next) can be

performed, and it leaves us with an inconsequential normalisation factor [21].

We shall prove both later for the leading order thermal propagators.



1.1. Elements of (non)equilibrium field theory 27

On the Schwinger-Keldysh contour, two-point functions, e.g. the contour-ordered

propagators ∆(x, y), are split in four components

∆(x, y) =





∆++(x, y) = ∆F (x, y), if x0, y0 ∈ C+
∆+−(x, y) = ∆<(x, y), if x0 ∈ C+, y0 ∈ C−
∆−+(x, y) = ∆>(x, y), if x0 ∈ C−, y0 ∈ C+
∆−−(x, y) = ∆F̄ (x, y), if x0, y0 ∈ C−

where F and F̄ respectively stand for Feynman- and anti-Feynman-ordered

propagators, > and < stand for the usual greater and lesser Wightman prop-

agators. For those, the time ordering is automatically set since their time

arguments belong to different branches of the contour. The same decomposi-

tion can be achieved for all functions on the CTP. The more time arguments

x0
1, · · · , x0

n, the more Schwinger-Keldysh labels or polarities ±, · · · ,±.

1.1.6 The CTP generating functional

From the previous discussion, a natural CTP-generalised generating functional

for both the in- and out-of-equilibrium 1- and 2-point functions is

Z[J,R] = tr
[
%(ti)TC

{
ei[
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)]

}]
, (1.27)

where
∫
x

=
∫
Ci
∫

d3x. J(x) and R(x, y) respectively are the local and nonlocal

sources, both of which will be needed later on to define the 2 Particle Irreducible

effective action 1.2. Taking functional derivatives of Z[J,R] with respect to J

(resp. R), evaluating it for vanishing sources and and normalising the result to

Z(0, 0), one obviously obtains the n-point functions of the theory.

Expanding the trace operator and using the initial time completeness relation3,

let us re-express the generating functional by means of a path integral

Z[J,R] =

∫
dφ1〈φ1|%(ti) TC

{
ei[
∫
x
J(x)φ(x)+ 1

2

∫
R(x,y)φ(x)φ(y)]

}
|φ1〉

=

∫
dφ1dφ2〈φ1|%(ti)|φ2〉〈φ2|TC

{
ei[
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)]

}
|φ1〉

=

∫
dφ1dφ2〈φ1|%(ti)|φ2〉 −→ initial conditions

×
∫ φ(t−i )=φ2

φ(t+i )=φ1

Dφ ei[SCi [φ]+
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)]

︸ ︷︷ ︸
−→ quantum dynamics

, (1.28)

3We expand on the initial time configuration space φ(ti,x)|φ1; ti〉 = φ(ti,x)|φ1〉 =

φ1x |φ1〉. Same for |φ2〉. In the Schrödinger picture, the states are then evolved accord-

ing to time evolution operator as 〈φ; ti|e−iH∆t = 〈φ; ti + ∆t|.
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where SCi [φ] =
∫
Ci
∫

d3xL is the action functional of the field theory under

consideration, where the time integration is performed over Ci. Rigorously

speaking, one should quickly comment that we have an abuse of notation was

made in Eq. (1.28). First, we did not distinguish the field operator of Eq. (1.27)

from its functional counterpart of Eq. (1.28). Second, we used a condensed way

of referring to the infinitely many field theoretical degrees of freedom φx(t) =

φ(t,x) = φ(x), ∀x ∈ R3, carefully distinguishing between a standard (dφ) and

a functional (Dφ) integration measure4

∫
dφ =

∫ ∏

x∈R3

dφx, 〈φ| = ⊗
x∈R3
〈φx|, (1.29)

∫ φ(t−i )=φ2

φ(t+i )=φ1

Dφ =

∫ φ(t−i ,x)=φ2x , ∀x∈R3

φ(t+i ,x)=φ1x , ∀x∈R3

∏

x∈R3

Dφ(t,x). (1.30)

The generating functional of Eq. (1.28) can equivalently be used for both equi-

librium and out-of-equilibrium situations. Under this form, it displays the two

main features of nonequilibrium quantum field theory, expressed as an initial

value problem: the dependence on initial conditions is captured by the initial-

time correlators 〈φ1|%(ti)|φ2〉 and the quantum dynamics is to be identified

with the subsequent path integral in Eq.(1.28).

Gaussian initial conditions. The case of nonequilibrium Gaussian initial

conditions where all n-point functions can be determined from the 1- and 2-

point correlators allows for further simplifications of the generating functional.

First, note that 〈φ1|%(ti)|φ2〉 in Eq. (1.28) can be brought through the path

integral
∫ φ(t−i )=φ2

φ(t+i )=φ1
Dφ. That said, it is shown [19] that for arbitrary Gaussian

initial conditions we have for F [φ] some arbitrary functional of φ

∫ φ(t−i )=φ2

φ(t+i )=φ1

Dφ〈φ1|%(ti)|φ2〉F [φ] = N
∫ φ(t−i )=φ2

φ(t+i )=φ1

Dφeif [φ]F [φ], (1.31)

where N is an irrelevant normalisation factor, f [φ] = α0 +
∫
x
α1(x)φ(x) +

1
2

∫
xy
α2(x, y)φ(x)φ(y) depends on the explicit Gaussian form of %(ti) and φ is

precisely that of the path integral. Indeed, the Gaussian initial density matrix

%(ti) is expressed through a Gaussian function of the field operators evaluated

4Here the infinite factor that arises from the discretisation of the time interval under

consideration was also absorbed into the definition of the path integral measure [22,27]. That

physically irrelevant prefactor always cancels out to give a finite results for all quantities of

interest in this work.
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at ti. Therefore, due to the path integral boundary conditions, those initial-

time operators equivalently evaluate to φ once they act on the initial-time states

|φ1〉 or |φ2〉. One last subtlety is hidden in the functions αi(x), i = 1, 2, which

in f [φ] appear to be generic functions for arbitrary time arguments. However,

those technically only evaluate to nonzero values when x0 = ti since they are

parameters that characterise the initial density matrix %(ti). In mathemat-

ical words the last two statements regarding φ and the functions αi can be

understood by explicitly expanding our condensed notation

∫

x

α1(x)φ(x) =

∫
d3x

[
α+

1 (x)φ(t+i ,x) + α−1 (x)φ(t−i ,x)
]

=

∫
d3x

[
α+(x)φ1x + α−(x)φ2x

]

and similarly for α2(x, y) except the structure is slightly more complicated since

there are two CTP integrations to deal with.

Bringing these expressions into a form where we unnecessarily integrate them

over the whole CTP however helps us rewrite the generating functional in a

more familiar shape. Indeed, by making the replacements J → J − α1 and

R → R − α2 and neglecting the multiplicative constant N eiα0 , we get the

Gaussian generating functional

Z[J,R] =

∫
dφ1dφ2

∫ φ(t−i )=φ2

φ(t+i )=φ1

Dφ exp i

[
SCi [φ] +

∫

x

J(x)φ(x) +
1

2

∫

xy

R(x, y)φ(x)φ(y)

]

(1.32)

which is independent of %(ti). Since we integrate over all configurations |φi〉,
i = 1, 2, we can equivalently rewrite this as

Z[J,R] =

∫
Dφ exp i

[
SCi [φ] +

∫

x

J(x)φ(x) +
1

2

∫

xy

R(x, y)φ(x)φ(y)

]

(1.33)

where we implicitly integrate over all possible paths of arbitrary boundary con-

ditions at t±i , the end and beginning of the CTP. It is important to note here

that while this trick of replacing J → J − α1 and R → R − α2 conveniently

expresses the generating functional in the standard form (1.33), it also very

subtly gets rid of our initial conditions. Therefore, it should not be forgot-

ten that the generating functional (1.33) can only be used for nonequilibrium

problems with (abitrary) Gaussian initial conditions, which always ought to be
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supplemented “by hand” to any dynamical equations for the n-point correla-

tors, as e.g. derived from an nPI effective action [19]. Had we not absorbed

the boundary terms in the sources, they would just appear as surface terms in

the action of the generating functional, and then consequently in the equations

of motion for the n-point functions. The same goes for non-Gaussian initial

conditions [28].

The equilibrium generating functional. At equilibrium, the density ma-

trix reads %(ti) = %(eq) = e−βH and Eq. (1.27) can be rewritten as

Z(eq)[J,R] =

∫
dφ〈φ; ti|e−βHTC

{
ei[
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)]

}
|φ; ti〉

(1.34)

which, recalling that H is the generator of time translations, yields

Z(eq)[J,R] =

∫
dφ〈φ; ti − iβ|TC

{
ei[
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)]

}
|φ; ti〉.

(1.35)

Again turning this into a functional integral, we find that one has to integrate

over paths which not only have to be analytically continued to the complex

plane, but also have to be −iβ-cyclic. Therefore, we naturally are led to con-

sider configurations which time evolutions take place on the time-path Cβ of

Fig. 1.4. In mathematical words, making the same abuse of notation, one

obtains

Z(eq)[J,R] =

∫
−iβ

cyclic

Dφ(t)ei[SCβ [φ]+
∫
x
J(x)φ(x)+ 1

2

∫
xy
R(x,y)φ(x)φ(y)], (1.36)

where
∫
x

is now performed over Cβ and the path integration is performed over

all −iβ-cyclic fields. As we shall come back to later on, this cyclicity is what

is responsible for all finite temperature effects in field theory. As an example,

let us study the leading-order equilibrium partition function Z(β).

1.1.7 Leading-order equilibrium thermodynamics

For vanishing sources J = R = 0, the generating functional (1.36) also gives

the perturbative expansion for the field theoretical partition function Z(β) of

Eq. (1.7). In perturbative real scalar quantum field theories, we have

S[φ] =
1

2

∫

x

φ(x)(�x +m2)φ(x) + λF [φ] (1.37)
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where � = ∂µ∂
µ = ∂2

t −∇2 and λ is a small expansion parameter and F [φ] an

arbitrary functional of φ that has the dimensions of an action. Therefore, at

leading order in λ, the thermodynamic partition function reads

Z(0)(β) =

∫
−iβ

cyclic

Dφ(t)e−
i
2 [
∫
x
φ(x)(�x+m2)φ(x)], (1.38)

where the superscript (0) refers to the zeroth order expansion in λ. Due to

their −iβ cyclicity, without loss of generality, the field configurations can be

decomposed in Fourier series

φ(x) =

√
−iβ
V

+∞∑

n=−∞
e−iωnx

0 ∑

p

eip·xφ(p), (1.39)

with V the thermodynamic volume and ωn = 2πn
−iβ . The function φ(x) is now

solely determined by its amplitudes φn(p) and using the real scalar property

φ−n(−p) = (φn(p))∗, the partition function rewrites

Z(0)(β) = N
∫ +∞

−∞

∏

m

d|φm(p)| exp

[
−β

2

2

∑

n

∑

p

(−ω2
n + ω2

p)|φn(p)|2
]
,

where N is an irrelevant constant for thermodynamic considerations and ω2
p =

m2 + p2 is the leading-order dispersion relation. Performing the independent

Gaussian integrals over each individual |φn(p)|, and neglecting yet another

irrelevant constant, we find

lnZ(0)(β) = −1

2

∑

n

∑

p

ln
(
β2(−ω2

n + ω2
p)
)

= −1

2

∑

n

∑

p

ln
[
(2πn)2 + β2ω2

p

]
.

(1.40)

The frequency sum over n can be evaluated using the following two relations

ln
[
(2πn)2 + β2ω2

p

]
=

∫ β2ω2
p

1

dρ2

ρ2 + (2πn)2
+ ln

[
1 + (2πn)2

]
,

∑

n

(n2 + (ρ/2π)2)−1 =
2π2

ρ
(1 + 2fB(ρ)) .

where

fB(ωp) = (eβωp − 1)−1, (1.41)

is the so-called Bose-Einstein phase space distribution function. It satisfies

1 + fB(q0) + fB(−q0) = 0, coth

(
βq0

2

)
= 1 + 2fB(q0), (1.42)
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often used throughout this thesis. Neglecting a V - and β-independent term

and letting
∑

p → V
∫

d3p
(2π)3 , we find

lnZ(0)(β) = V

∫
d3p

(2π)3

(
−βωp

2
− ln

[
1− e−βωp

])
. (1.43)

The first term is the so-called zero-point energy that arises for quantum me-

chanical harmonic oscillators too and it ought to be subtracted if the vacuum

is to be a zero-energy state. The remaining associated leading-order pressure

(1.8) and energy density (1.9) are

P (0) = −T
∫

d3p

(2π)3
ln
[
1− e−βωp

]
=

∫
d3p

(2π)3

p2

3ωp
fB(ωp), (1.44)

ρ(0) =

∫
d3p

(2π)3
ωpfB(ωp). (1.45)

These P (0) and ρ(0) are nothing but the usual pressure and energy densities

for an ideal gas of noninteracting bosons. At high temperatures with respect

to the particles bare mass, i.e. when T � m, and the particles are effectively

ultrarelativistic and

P (0) T�m→ Pr =
π2

90
T 4, ρ(0) T�m→ ρr =

π2

30
T 4 = 3Pr. (1.46)

These are the pressure and energy densities for an ideal gas of bosonic radiation

or ultrarelativistic bosons, which equation of state reads ρr = 3Pr.

Higher order corrections to those ideal gas quantities involve quantum field

theoretical perturbative computations expressed in terms of Feynman diagrams

and products of contour-ordered correlation functions. In the next section,

using functional techniques, we describe how (non)equilibrium perturbation

theory can be consistently formulated in these terms.

1.1.8 Perturbation theory

In this section we shall describe how equilibrium perturbation theory can be

consistently formulated by means of standard diagrammatic expressions gener-

alised to contour-ordered integrals. The nonequilibrium case is dealt with iden-

tically and is even simpler because there is no −iβ-cyclicity involved. Nonequi-

librium real-life computations are nevertheless harder, because they do not

enjoy that extra property.

Let us distinguish the free and interacting parts of the action in terms of their

corresponding Lagrangians SCβ [φ] =
∫
x
L and articulate the discussion using

L = L0 + Lint, (1.47)
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with L0 = − 1
2φ
(
�+m2

)
φ, � = ∂µ∂

µ = ∂2
t −∇2 and Lint describes the inter-

actions that the field φ is subject to. In perturbative quantum field theories,

the latter always is accompanied by a tiny coupling constant and one performs

a power expansion in Lint at the level of the generating functional (1.36). For

the time being, we can disregard the nonlocal source R(x, y) as it plays no role

in what follows, and write (1.36) as

Z(eq)[J ] =

∫
−iβ

cyclic

Dφ(t)

∞∑

n=0

in

n!

[∫

x

Lint

]n
ei[
∫
x
(L0+J(x)φ(x))] . (1.48)

If Lint = − λ
`!φ

`, we can even replace it by− λ
`!

δ`

(iδJ(x))`
and organise perturbation

theory in terms of Feynman diagrams, as we shall detail now.

Let us define iG0(x, y) = iG0(x−y) the −iβ-cyclic (in time) free theory Green’s

function defined on the contour Cβ as

iG−1
0 (x, y) =

δ2SCβ ,0[φ]

δφ(x)δφ(y)
⇔ (�x +m2)iG0(x, y) = δCβ (x− y), (1.49)

and perform the following functional change of variables

φ′(x) = φ(x)− i
∫

y

G0(x, y)J(y). (1.50)

At the level of functional integrals, the latter is nothing but a mere shift which

Jacobian leaves the path integral measure unchanged. Note however that, had

we not by hand enforced G0(x, y) to be −iβ-cyclic, the field redefinition would

not have been consistent with the path integration of Eq. (1.91). Dropping the

primes, we find

Z(eq)[J ] =

∫
−iβ

cyclic

Dφ(t)eiS0

∞∑

n=0

in

n!

[
− λ
`!

∫

x

δ`

(iδJ(x))`

]n
e−

1
2

∫
x,y

J(x)G0(x,y)J(y)

(1.51)

and this formula proves the claims made below Eq. (1.24). Starting from here,

it is clear that a suitable perturbative expansion can be performed, and that the

usual combinatorial arguments apply identically to the vacuum case. Whenever

one computes an n-point correlator, disconnected diagrams from the numerator

conspire with the vacuum diagrams from the denominator and cancel. Only

connected diagrams survive the perturbative expansion.

From Eq. (1.51), one can infer the usual Schwinger-Dyson equation [26]

∆−1(x, y) = G−1
0 (x, y)−Π(x, y), (1.52)
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with Π(x, y) the 1 Particle Irreducible (1PI) selfenergy. The Schwinger-Dyson

equation (1.52) is usually interpreted as a geometric series which we depicted

on Fig. 1.6. It is equivalently written as
∫

z

G−1
0 (x, z)∆(z, y)−

∫

z

Π(x, z)∆(z, y) = δC(x− y). (1.53)

= + 1PI + 1PI 1PI + · · ·

Figure 1.6: Geometric series of the Schwinger-Dyson equation (1.52). Thick

(resp. thin) solid lines represent fully dressed (resp. free) propagators.

So far, all these equations look very similar, if not identical, to those encoun-

tered in vacuum QFT textbooks [26] and as a matter of fact, there are only

two differences with zero temperature field theory. The first one is a pure

finite temperature effect, hidden in the −iβ-cyclic field configurations in the

path integral, which led to the −iβ-cyclicity of the propagator. The second

one is that all spacetime integrals in e.g. Eq. (1.53) are defined on a closed

time-contour, thus generating a matrix structure for the propagators which in

the Schwinger-Keldysh limit 1.1.5 is of the form
∫

z

Π(x, z)∆(z, y) ∼
∑

b=±
b

∫ +∞

−∞
dz0

∫
d3z Πab(x, z)∆bc(z, y) (1.54)

where a, b, c = ± are the so-called Schwinger-Keldysh polarities. In the next

section, we discuss the two-point functions on the CTP relevant for this work,

as well as their associated properties.

1.1.9 Contour-ordered two-point functions

Let us start by recalling the definition of the contour-ordered propagator ∆(x, y)

for a scalar field φ(x) on an arbitrary time contour C

∆(x, y) = 〈TCφ(x)φ(y)〉 − ϕ(x)ϕ(y). (1.55)

Here TC is the time-ordering operator along the time-path C and

ϕ(x) = 〈φ(x)〉, (1.56)

is the field one-point function, also known as the field condensate or background

field. From the definition of the Wightman two-point functions

∆>(x, y) = 〈φ(x)φ(y)〉 − ϕ(x)ϕ(y) = ∆−+(x, y), (1.57)
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∆<(x, y) = 〈φ(y)φ(x)〉 − ϕ(x)ϕ(y) = ∆+−(x, y), (1.58)

follows the relation

∆(x, y) = θC(x
0 − y0)∆>(x, y) + θC(y

0 − x0)∆<(x, y), (1.59)

with θC(t) is the Heaviside step function on the contour C. One can further

define the so-called statistical and spectral two-point functions, respectively

denoted by ∆+(x, y) and ∆−(x, y), as

∆+(x, y) =
1

2
〈{φ(x), φ(y)}〉−ϕ(x)ϕ(y) =

1

2

(
∆>(x, y) + ∆<(x, y)

)
, (1.60)

∆−(x, y) = i〈[φ(x), φ(y)]〉 = i
(
∆>(x, y)−∆<(x, y)

)
, (1.61)

where [·, ·] and {·, ·} are the commutator and anti-commutator operators. In

coordinate space, ∆+(x, y) and ∆−(x, y) are real-valued functions which are

respectively symmetric and anti-symmetric under x ↔ y permutations. From

this statement, together with equal time canonical commutation relations

[φ(x), φ(y)]|x0=y0 = [φ̇(x), φ̇(y)]|x0=y0 = 0,

[φ(x), φ̇(y)]|x0=y0 = iδ(x− y),

∆−(x, y) satisfies the following relations

∆−(x, y)|x0=y0 = 0, (1.62)

∂x0∆−(x, y)|x0=y0 = −∂y0∆−(x, y)|x0=y0 = δ(x− y), (1.63)

∂x0∂y0∆−(x, y)|x0=y0 = 0. (1.64)

In particular for x0 = y0 = ti, we obtain that canonical quantisation readily en-

forces a set of initial conditions on the spectral two-point functions. It also is in-

tersting to note that the latter, i.e. ∆−, is related to the usual Källén–Lehmann

spectral density [26] ℘(x, y)

℘(x, y) = 〈[φ(x), φ(y)]〉 = ∆>(x, y)−∆<(x, y), (1.65)

via the relation ∆− = i℘. Note here that the spectral density ℘(x, y) is not to

be confused with the density matrix %(t) or the energy density ρ(T ). In terms

of its real statistical and spectral components, the propagator (1.55) reads

∆(x, y) = ∆+(x, y)− i

2
signC(x

0 − y0)∆−(x, y), (1.66)
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with signC(t) the contour-ordered sign function. On the real axis [ti,+∞], one

can also define the retarded and advanced propagators

∆R(x, y) = θ(x0 − y0)∆−(x, y) = ∆++(x, y)−∆+−(x, y), (1.67)

∆A(x, y) = −θ(y0 − x0)∆−(x, y) = ∆++(x, y)−∆−+(x, y). (1.68)

The selfenergy Π(x, y) has a similar decomposition as that of the contour-

ordered propagator ∆(x, y), except for its local component which has to be

separately dealt with. It is given by

Π(x, y) = −iΠloc(x)δC(x−y)+θC(x
0−y0)Π>(x, y)+θC(y

0−x0)Π<(x, y). (1.69)

From that definition, one can similarly define the statistical and spectral self-

energies as

Π+(x, y) =
1

2

(
Π>(x, y) + Π<(x, y)

)
(1.70)

Π−(x, y) = i
(
Π>(x, y)−Π<(x, y)

)
(1.71)

such that

Π(x, y) = −iΠloc(x)δC(x− y) + Π+(x, y)− i

2
signC(x

0− y0)Π−(x, y), (1.72)

together with the retarded and advanced selfenergies, which read

ΠR(x, y) = θ(x0 − y0)Π−(x, y) = Π++(x, y)−Π+−(x, y)) (1.73)

ΠA(x, y) = −θ(y0 − x0)Π−(x, y) = Π++(x, y)−Π−+(x, y)). (1.74)

They satisfy the same properties as those of the analogous propagators.

Spacetime translation invariant systems. In spacetime translation in-

variant systems, e.g. systems at thermal equilibrium, two-point correlators are

only functions of the difference of their spacetime arguments, and

∆(x, y) = ∆(z) (1.75)

where z = x − y, and one can Fourier transform with respect to z. For any

function F (z), we define its Fourier transformations as

F (z) =

∫
d4q

(2π)4
F (q)e−iq·z, F (q) =

∫
d4z F (z)eiq·z (1.76)

where we made the usual abuse of notation and did not distinguish between the

function itself and its Fourier transform, though they are technically different.
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From their properties in position space, the Fourier space two-point functions

have useful properties, too. Relevant for this work are the following

∆±(±q) = ±∆±(q) (1.77)

∆±(q)∗ = ±∆±(q) (1.78)

2iIm∆R(q) = ∆−(q) (1.79)

Im∆R(−q) = −Im∆R(q) (1.80)

Re∆R(q0,q) = P
∫ ∞

−∞

dω

π

Im∆R(ω,q)

ω − q0
(1.81)

Re∆R(−q) = Re∆R(q) (1.82)
∫ +∞

−∞

dq0

2π
q0℘(q0,q) = 1, (1.83)

where P is the Cauchy principal value. These relations are to be satisfied

at all orders in perturbation theory and therefore hold for the corresponding

selfenergies, too.

Thermal equilibrium Let us now particularise the discussion to % = %(eq) =

e−βH , i.e. to systems at thermal equilibrium, and study the associated two-

point functions. Again, recalling that H is the infinitesimal generator of time

translations, we will interpret e−βH as a time translation operator in the imag-

inary direction and derive useful properties satisfied by two-point functions,

the most famous one being the Kubo-Martin-Schwinger (KMS) relation.

For this purpose, let us e.g. compute the ensemble average of two operators

O1(x) and O2(y). At equilibrium,

〈O1(x0,x)O2(y0,y)〉 = tr
[
e−βHO1(x0,x)O2(y0,y)

]
. (1.84)

Now inserting I = eβHe−βH between O1(x) and O2(y) and using the cyclicity

of the trace operator, it is immediate to show that

〈O1(x0,x)O2(y0,y)〉 = 〈O2(y0,y)O1(x0 + iβ,x)〉, (1.85)

or equivalently

〈O1(x0 − iβ,x)O2(y0,y)〉 = 〈O2(y0,y)O1(x0,x)〉. (1.86)

Had we done the same exercise for an n-point correlator, we would have ob-

tained that thermal n-point correlators effectively only depend on n− 1 times.

In particular for O1 = φ = O2, this leads to the KMS relation

∆>
(eq)(z

0, z) = ∆<
(eq)(z

0 + iβ, z). (1.87)
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At the level of their Fourier transforms with respect to z0, this translates into

∆<
(eq)(q

0, z) = e−βq
0

∆>
(eq)(q

0, z), ∆<
(eq)(q) = e−βq

0

∆>
(eq)(q). (1.88)

The latter can be re-expressed in terms of the spectral density (1.65) as

∆>
(eq)(q) = (1 + fB(q0))℘(eq)(q), ∆<

(eq)(q) = fB(q0)℘(eq)(q), (1.89)

where the Bose-Einstein distribution function (1.41) is a built-in feature of

thermal field theory for bosons. In terms of the statistical and spectral two-

point functions, we find

∆+
(eq)(q) = −i

(
1

2
+ fB(q0)

)
∆−(eq)(q) =

(
1

2
+ fB(q0)

)
℘(eq)(q), (1.90)

again naturally displaying the bosonic nature of scalar fields.

Contour-ordered free propagator for scalars. The so-called free generat-

ing functional Z
(eq)
0 [J,R] is nothing but the zeroth order generating functional

obtained from truncating the power series of Eq. (1.51) after the zeroth order

term which square bracket then evaluates to 1. It is given by

Z
(eq)
0 [J ] =

∫
−iβ

cyclic

Dφ(t)eiS0[φ]e−
1
2

∫
x,y

J(x)G0(x−y)J(y). (1.91)

and the associated free propagator reads

∆
(eq)
0 (x, y) =

1

Z
(eq)
0 [0]

δ2Z
(eq)
f [J ]

iδJ(x)iδJ(y)

∣∣∣∣∣
J=0

= G0(x, y). (1.92)

The latter is nothing but the free −iβ-cyclic Green’s function on Cβ which is

independent of the specific interactions that φ undergoes. It is the same for any

real scalar field theory. Taking its Fourier transform with respect to z = x− y

the solution of Eq. (1.49), subject to −iβ-cyclicity in time, as well as time

ordering along Cβ , is given by

∆
(eq)
0 (z0; q) = G0(z0,q) =

fB(ωq)

2ωq

[
θCβ (z0)

(
eβωqe−iωqz

0

+ eiωqz
0
)

+θCβ (−z0)
(
eβωqeiωqz

0

+ e−iωqz
0
) ]
,

(1.93)

where ωq =
√
m2 + q2. Here, a few comments are in order. First, in the

limit where T → 0, or β → +∞, it reproduces the standard zero temperature

propagator on C+. Second, it satisfies the KMS relation (1.84). Third, it is an
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even function of z0, as in the vacuum case. Fourth, we can explicitly show the

statement made about the Schwinger-Keldysh contour and the irrelevance of

the imaginary time stretch. For this purpose, let us write z0 = t − ti and let

us assume that t = t′ + iτ has an imaginary component. Then, let us send ti
to −∞. We find lim

ti→∞
G0(t′ + iτ − ti,q) = 0. As a result, when it is justified

to let ti approach −∞, we infer that both at the level of the propagator and

the generating functional, the only relevant part of the contour Cβ of Fig. 1.4

is that of Fig. 1.5, i.e. C the Schwinger-Keldysh contour. Eventually, when put

under this form, it is a rather straightforward exercise to identify the different

Schwinger-Keldysh polarities by investigating the Heaviside functions. Taking

their z0-Fourier transforms, we find

∆++
0,(eq)(q) = ∆F

0,(eq)(q) =
i

q2 −m2 + iε
+ 2πfB(|q0|)δ(q2 −m2), (1.94)

∆+−
0,(eq)(q) = ∆<

0,(eq)(q) = 2πfB(q0)sign(q0)δ(q2 −m2), (1.95)

∆−+
0,(eq)(q) = ∆>

0,(eq)(q) = 2π(1 + fB(q0))sign(q0)δ(q2 −m2), (1.96)

∆−−0,(eq)(q) = ∆F̄
0,(eq)(q) =

−i
q2 −m2 − iε + 2πfB(|q0|)δ(q2 −m2), (1.97)

and, thanks to the KMS relation (1.88), we thus identify the equilibrium

Källén–Lehmann free spectral density ℘
(eq)
0 (q) = 2πsign(q0)δ(q2 −m2), which

satisfies the sum rule Eq. (1.83).

1.1.10 Finite temperature Dirac fermions in a nutshell

Thus far, almost identical conclusions can be drawn for Dirac fermions [18,21],

too, except for a few minor subtleties, which we shall briefly comment on.

The classical action for a Dirac fermion is

A[ψ, ψ̄] =

∫

x

ψ̄(i/∂ −m)ψ +Aint[ψ, ψ̄], (1.98)

where ψ̄ = (γ0ψ)†, /∂ = γµ∂µ and γµ are the gamma matrices which satisfy the

Dirac algebra {γµ, γν} = 2ηµνI4×4. The contour-ordered propagator reads

S(x, y) = 〈TC{ψ(x)ψ̄(y)}〉 (1.99)

= θC(x
0 − y0)S>(x, y) + θC(y

0 − x0)S<(x, y), (1.100)

with S>(x, y) = 〈ψ(x)ψ̄(y)〉 and S>(x, y) = −〈ψ̄(x)ψ(y)〉 and the other prop-

agators can be defined analogously to the scalar case. Only the fermion sum
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rule is different, it reads

1

4

∫ +∞

−∞

dq0

2π
Tr
[
γ0℘ψ(q0,q)

]
= 1 (1.101)

where the factor 1/4 arises from spin averaging.

Also, the fermionic equilibrium KMS relation (1.88) picks up an extra minus

sign from commuting Grassman variables in Eq. (1.84). Therefore, we have

S>(eq)(z
0, z) = −S<(eq)(z

0 + iβ, z), S<(eq)(q) = −e−βq0S>(eq)(q), (1.102)

which can again be expressed in terms of the fermionic equilibrium spectral

density as

S>(eq)(q) = (1− fD(q0))℘ψ(eq)(q), S<(eq)(q) = −fD(q0)℘ψ(eq)(q), (1.103)

where

fD(q0) = (eβq
0

+ 1)−1 (1.104)

and the Fermi-Dirac distribution function is a built-in feature of thermal field

theory for fermions.

Then, the whole procedure with the equilibrium path integral for scalars de-

scribed in the previous section can be reproduced for Dirac fermions, too, to

obtain the Schwinger-Dyson equation for fermionic propagators

S−1(x, y) = K−1
0 (x, y)− Σ(x, y), (1.105)

with K0(x, y) the contour-ordered, −iβ-anti-cyclic Dirac Green’s function

iK−1
0 (x, y) =

δ2A0[ψ, ψ̄]

δψ(x)δψ̄(y)
= (i/∂ −m)δC(x− y), (1.106)

and Σ(x, y) the fermionic 1PI selfenergy. Setting Σ(x, y) = 0 to obtain the free

spin-averaged propagators, we have

S++
0,(eq)(q) = SFf,(eq)(q) = (/q +m)

[
i

q2 −m2 + iε
− 2πfD(|q0|)δ(q2 −m2)

]
,

(1.107)

S+−
0,(eq)(q) = S<f,(eq)(q) = −2πfD(q0)sign(q0)(/q +m)δ(q2 −m2), (1.108)

S−+
0,(eq)(q) = S>f,(eq)(q) = 2π(1− fD(q0))sign(q0)(/q +m)δ(q2 −m2),

(1.109)

S−−0,(eq)(q) = SF̄f,(eq)(q) = (/q +m)

[ −i
q2 −m2 − iε − 2πfD(|q0|)δ(q2 −m2)

]
,

(1.110)
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and the free spectral density ℘ψ0,(eq)(q) = 2πsign(q0)(/q + m)δ(q2 −m2) which

satisfies the sum rule (1.101).

The leading order partition function can be determined too by using similar

tricks to those presented in the scalar discussion. For vanishing chemical po-

tentials, we find

lnZ
(0)
ψ (β) = 2V

∫
d3p

(2π)3

(
βωp + 2 ln

[
1 + e−βωp

])
. (1.111)

Here, there are two prefactors 2 which have a physical explanation. While

the overall prefactor 2 which multiplies the volume V comes from the two

relativistic spin degrees of freedom for spin 1/2 fields, the one that multiplies

the logarithm owes its presence to the contribution of both the particles and

anti-particles. The associated pressure and energy densities read

P
(0)
ψ = 4T

∫
d3p

(2π)3
ln
[
1 + e−βωp

]
= 4

∫
d3p

(2π)3

p2

3ωp
fD(ωp), (1.112)

ρ
(0)
ψ = 4

∫
d3p

(2π)3
ωpfD(ωp). (1.113)

Those are nothing but the usual pressure and energy densities for an ideal gas

of noninteracting fermions. At high temperatures with respect to the particles

bare mass T � m, the particles are effectively massless and

P
(0)
ψ

T�m→ Pr,ψ = 4
7

8

π2

90
T 4, ρ

(0)
ψ

T�m→ ρr,ψ = 4
7

8

π2

30
T 4 = 3Pr,ψ. (1.114)

They are the pressure and energy densities for an ideal gas of fermionic radiation

or ultrarelativistic fermions, which equation of state reads ρr,ψ = 3Pr,ψ.

These last expressions close the discussion on (non)equilibrium field theory that

is relevant for this thesis, and we now move to the description of the 2 Particle

Irreducible effective action formalism which we motivative first.

1.2 The 2 Particle Irreducible (2PI) effective ac-
tion formalism

Eqs. (1.52)(1.105) are of primordial importance in this work. They describe

how the free propagator gets resummed with insertions of 1PI bubbles. It is

well known in (non)equilibrium field theory that resummation effects can be of

great importance. They give rise to significant effects that naive perturbation

theory does not account for, through contributions to physical quantities that
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are proportional to noninteger powers of the coupling constant, see e.g. [21,22].

They too give rise to qualitatively new (collective) excitations in the quasipar-

ticle spectrum of quantum field theories, see e.g. [22] for holes in abelian gauge

theories and [29] for luons in scalar ones.

In this section, heavily relying on Ref. [19], we describe the so-called 2 Particle

Irreducible (2PI) formalism that systematically and selfconsistently implements

resummation effects onto the one- and two-point functions of a field theory,

including couplings to external backgrounds.

1.2.1 2PI effective action

For simplicity, let us consider a theory constituted of several real scalar fields

{Φa}, where a labels the fields degrees of freedom. The quantum dynamics of

the system is described by the generating functional

Z[J,R] =

∫
DΦ exp

[
i

(
S[Φ] +

∫

x

Ja(x)Φa(x) +
1

2

∫

xy

Rab(x, y)Φa(x)Φb(y)

)]
,

(1.115)

which, as long as initial conditions are Gaussian (cf. (1.33) and the discus-

sion around), is appropriate for both equilibrium and nonequilibrium systems.∫
x

=
∫
C
∫
d3x, where C is the time-path chosen to suit the problem of inter-

est. It need not necessarily be the Schwinger-Keldysh contour, and we insist

that a and b are labels for field degrees of freedom, not Schwinger-Keldysh

polarities. Repeated indices are summed over. We collectively refer to the

set {Φa} by using the condensed notation Φ. S[Φ] designates the classical

field theory action functional. We assume that it can be put in the shape

of S[Φ] =
∫
x

(
1
2∂µΦa∂

µΦa − 1
2m

2
aΦ2

a + Lint[Φ]
)

with canonical kinetic terms,

where Lint[Φ] contains all interaction terms between the fields. As long as

perturbation theory holds, they need not be specified.

The generating functional for connected correlators W [J,R] is defined as

iW [J,R] = lnZ[J,R], (1.116)

and the one- and contour-ordered connected two-point functions in the presence

of sources are found as

δW [J,R]

δJa(x)
= ϕa(x),

δW [J,R]

δRab(x, y)
=

1

2
(ϕa(x)ϕb(y) + ∆ab(x, y)) . (1.117)

Eqs. (1.117) are to be interpreted as relations among the four arbitrary func-

tions ϕ, ∆, J and R which mix them together two by two, i.e. the knowledge
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of two of them formally suffices to determine the two others. From now on,

we shall make the following abuse of notation and refer to ϕ (resp. ∆) as both

the arbitrary function resulting from a Legendre transform with respect to J

(resp. R) and the full contour-ordered one-point (resp. two-point) function.

The 1 Particle Irreducible (1PI) effective action Γ[ϕ,R] is then defined as the

Legendre transform of W [J,R] with respect to J

Γ[ϕ,R] = W [J,R]−
∫

x

ϕa(x)Ja(x) (1.118)

where we have identified δW [J,R]
δJa(x) = ϕa(x). On the right hand side of this

equation, J is to be dealt with as a functional of ϕ and R, and J = J [ϕ,R]

as a result of the Legendre transformation. We shall always omit those im-

plicit dependences resulting from Legendre transformations, in order to avoid

notational clutter.

Γ[ϕ, 0] = Γ[ϕ] is the usual 1PI effective action, i.e. the generating functional

for 1PI diagrams, and Γ[ϕ,R] can formally be viewed as that of the modified

classical theory

S[Φ, R] = S[Φ] +
1

2

∫

xy

Rab(x, y)Φa(x)Φb(y). (1.119)

Performing a second Legendre transform of W [J,R] with respect to R,5 we

arrive at the 2PI effective action,6 defined as

Γ[ϕ,∆] = W [J,R]−
∫

x

ϕa(x)Ja(x)− 1

2

∫

xy

ϕa(x)ϕb(y)Rab(x, y)− 1

2
Tr[∆R].

(1.120)

It is equivalent to the R-Legendre transform of the 1PI effective action Γ[ϕ,R]

Γ[ϕ,∆] = Γ[ϕ,R]−
∫

xy

δΓ[ϕ,R]

δRab(x, y)
Rab(x, y)

= Γ[ϕ,R]− 1

2

∫

xy

ϕa(x)ϕb(y)Rab(x, y)− 1

2
Tr[∆R], (1.121)

since δΓ[ϕ,R]
δRab(x,y) = δW [J,R]

δRab(x,y) . Carefully accounting for the implicit functional de-

pendences, it is also a straightforward exercise to show that functional deriva-

tives of the 2PI effective action evaluated for vanishing external sources gen-

erate quantum kinetic equations of motion for ϕ and ∆, the relevant one- and

5Here the trace operator has to be distinguished from that of Eq. (1.4). The one under

consideration now does not perform a quantum average over the Hilbert space, rather it sums

over all field degrees of freedom a, b and integrates all spacetime arguments.
6The different effective actions (1PI vs. 2PI) are notationnally distinguished by their

arguments.
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two-point functions of the quantum theory, via

δΓ[ϕ,∆]

δϕa(x)

∣∣∣∣
J=R=0

= 0,
δΓ[ϕ,∆]

δ∆ab(x, y)

∣∣∣∣
J=R=0

= 0, (1.122)

hence justifying the abuse of notation described below Eq. (1.117). A careful

reader might note here that for nonequilibrium problems with Gaussian initial

conditions, the sources J and R actually implicitly contain information on the

initial condition, cf. (1.33) and the discussions around it. Therefore, it may

seem odd to just set them to zero. As far as we know, there are two schools of

thought regarding this issue. The one adopted here, which follows [19], sets the

sources to zero anyway, and then “by hand” supplements the n-point function

equations of motion (1.121) with Gaussian initial conditions, as constraints on

the side. However, as emphasised below (1.33), this is not compulsory. The

initial conditions need not be absorbed in the sources, in which case they also

need not be supplemented by hand and are dealt with as boundary terms in

the generating functional itself. Following this approach which is e.g. taken

in [28], the initial conditions then manifestly appear in the right hand sides of

(1.121). This too allows for non-Gaussian initial conditions to be dealt with in

a similar manner.

Γ[ϕ,∆] is usually split into a tree-level contribution S[ϕ], a one-loop correction

Γ1[ϕ,∆] and all higher-loop corrections are gathered in an object Γ2[ϕ,∆],

where the subscript 2 refers to all diagrams of two or more loops. It rewrites

Γ[ϕ,∆] = S[ϕ] + Γ1[ϕ,∆] + Γ2[ϕ,∆] = S[ϕ] + Γloop[ϕ,∆] (1.123)

and only Γloop is a functional of ∆. Though referred to as the classical action,

S[ϕ] really is the classical action functional evaluated at the statistical and

quantum ensemble averages 〈Φa〉. Performing a functional Gaussian integral

as detailed in appendix A, the one-loop term can be expressed as

Γ1[ϕ,∆] =
i

2
Tr ln

(
∆−1

)
+
i

2
Tr
(
G−1

0 [ϕ]∆
)
, (1.124)

where G−1
0,ab[ϕ] are the inverse tree-level operators

iG−1
0,ab[ϕ](x, y) =

δ2S[Φ]

δΦa(x)δΦb(y)

∣∣∣∣
〈Φ〉

=

(
−(�+m2

a)δab +
δ2Lint[Φ(x)]

δΦa(x)δΦb(x)

∣∣∣∣
〈Φ〉

)
δC(x− y),

(1.125)
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defined in analogy to Eq. (1.49), where 〈Φ〉 evaluates all fields at their quantum

and statistical expectation values ϕ. G−1
0,ab[ϕ] is to be handled as explicit ϕ-

dependent inputs to Γ2[ϕ,∆]. At equilibrium, this one-loop contribution is

what gives rise to the finite-temperature Coleman-Weinberg potential [30].

Taking the functional derivative of Eq. (1.123) and implicitly setting the sources

to zero, the equation of motion for ϕ reads

δΓ[ϕ,∆]

δϕa(x)
= −(�+ma)ϕa(x) +

δLint[ϕ(x)]

δϕa(x)
+
δΓloop[ϕ,∆]

δϕa(x)
= 0. (1.126)

Analogously, the equations of motion for the full (resummed) connected two-

point functions ∆ab(x, y) are derived from

δΓ[ϕ,∆]

δ∆ab(x, y)
= 0 (1.127)

From Eq. (1.123), Eq. (1.127) yields

∆−1
ab (x, y) = G−1

0,ab[ϕ](x, y)−Πab[ϕ,∆](x, y) , (1.128)

where, in comparison with Eq. (1.52), we defined

Πab[ϕ,∆](x, y) = 2i
δΓ2[ϕ,∆]

δ∆ab(x, y)
. (1.129)

More closely looking at Eq. (1.128) together with Eq. (1.52), we conclude that

only 1PI diagrams contribute to Πab[ϕ,∆](x, y) since it has to be the 1PI

contour-ordered selfenergy. This in turn implies that only 2PI diagrams con-

tribute to Γ2[ϕ,∆],7 hence its name and definition

Γ2 = (−i)× (sum of all 2PI diagrams/symmetry factors). (1.130)

Convolving Eq. (1.128) with ∆bc(z, y), one obtains

∑

b

∫

z

G−1
0,ab[ϕ](x, z)∆bc(z, y)−

∑

b

∫

z

Πab[ϕ,∆](x, z)∆bc(z, y) = δacδC(x−y) .

(1.131)

Here, δC(x − y) is the four-dimensional delta function with time arguments

on the contour C. Eqs. (1.128) (1.131) are nothing but generalisations of

Eqs. (1.52)(1.53) in the presence of condensates ϕa which contribute to the

tree-level Green’s functions, too. The leading-order propagator is no longer

the free one, but readily resums couplings to the backgrounds.

7Diagrammatically, taking a derivative with respect to ∆ cuts open a line of a diagram.
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On the formal independence of ∆ and ϕ in Γ[ϕ,∆]. At the level of the

2PI effective action, one- and two-point correlators are independent degrees

of freedom. They stem from Legendre transforms with respect to independent

variables. It is important to note that this statement is only valid before solving

the 2PI equations of motion.

As an example, take a system solely made of one scalar field, described by the

effective action Γ[ϕ,∆], functional of only two independent variables ϕ and ∆,

which respectively obey Eqs. (1.126) and (1.131). In practice, one adopts a

perturbative approach to solve these equations, and expands Γloop and Π in

terms of Feynman graphs. Mathematically speaking, these are nothing but

convolved integrals involving ∆ and ϕ, i.e. integrals of products of ∆ and ϕ.

Then, Eqs. (1.126) and (1.131) form a set of coupled integro-differential quan-

tum kinetic equations of motion for ∆ and ϕ. At any given order in pertur-

bation theory, we can write the solution of Eq. (1.131) as a formal function

of ϕ which we denote ∆[ϕ]. Plugging ∆[ϕ] back into (1.126) yields an effec-

tive action Γ[ϕ,∆[ϕ]] for ϕ at the desired order in perturbation theory8. Since

∆[ϕ] solves its 2PI equation of motion, the dynamical equation derived from

Γ[ϕ,∆[ϕ]] is equivalent to that derived from Γ[ϕ,∆], namely

δΓ[ϕ,∆[ϕ]]

δϕ(z)
=
∂Γ[ϕ,∆[ϕ]]

∂ϕ(z)
+

∫

x,y

∂Γ[ϕ,∆]

∂∆ab(x, y)

∣∣∣∣∣
∆[ϕ]︸ ︷︷ ︸

=0

δ∆ab[ϕ](x, y)

δϕ(z)
. (1.132)

Had we solved for ϕ first, an analogous conclusion would have been drawn.

2PI formalism for fermions. For a Dirac fermion (1.98), the 2PI formalism

is almost identical to that for a scalar. We briefly comment on the very few

differences which all arise from the distinguished fermionic and bosonic path

integral measures
∫
Dφ →

∫
DψDψ̄, and actions S[Φ] → A[ψ, ψ̄]. Performing

the fermionic functional integrals à la appendix A, we again get a functional

determinant, except it is for the free Dirac operator this time. Turning it into

a trace and playing the same game as in appendix A, we obtain the one-loop

effective action in absence of fermionic condensates

Γ1[S] = −iTr ln
[
S−1

]
− iTr

[
SK−1

0

]
, (1.133)

where the fermionic inverse tree-level propagator K−1
0 is precisely (1.106). The

difference between scalars and fermions is i
2 → −i in front of the two traces.

8In opposition to Γ[ϕ,∆], Γ[ϕ,∆[ϕ]] can no longer be used as an effective action for ∆.
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At arbitrary loop order, the 2PI effective action thus reads

Γ[S] = −iTr ln
[
S−1

]
− iTr

[
SK−1

0

]
+ Γ2[S], (1.134)

where Γ2[S] is made of 2PI diagrams of two or more loops. The equation of

motion for S is derived in the same way as in the previous scalar case, only

the definition of the selfenergy gets changed, precisely because of that change

in the prefactor of the one-loop effective action. We have

S−1(x, y) = K−1
f (x, y)− Σ[S](x, y) (1.135)

where we defined the fermionic selfenergy Σ[S](x, y) = −i δΓ2[S]
δS(x,y) .

1.2.2 The Kadanoff-Baym equations

On the CTP of Fig. 1.3, the evolution equations for the two-point functions,

i.e. the Schwinger-Dyson equation (1.131), can conveniently be rewritten in

terms of their statistical and spectral components, cf. Eqs. (1.61)(1.60) and

(1.71)(1.70). Plugging these in Eq. (1.131) and using the identity

∫

C
dy0signC(x

0 − y0) =

∫ x0

ti

dy0 +

∫ tf

x0

dy0(−1) +

∫ ti

tf

dy0(−1)

= 2

∫ x0

ti

dy0 (1.136)

we obtain the so-called Kadanoff-Baym equations (KBEs) for ∆+ and ∆−

(
�xδac +M tree

ac (x)2 + Πloc
ac (x)

)
∆−cb(x, y) = −

∫ x0

y0

dzΠ−ac(x, z) ∆−cb(z, y),

(1.137)
(
�xδac +M tree

ac (x)2 + Πloc
ac (x)

)
∆+
cb(x, y) = −

∫ x0

ti

dzΠ−ac(x, z)∆
+
cb(z, y)

+

∫ y0

ti

dzΠ+
ac(x, z)∆

−
cb(z, y).

(1.138)

Here, we used the abbreviated notation
∫ t2
t1
dz =

∫ t2
t1
dz0

∫∞
−∞ d3z and M tree

ac (x)

stands for the tree-level mass defined by

M tree
ac (x)2 = m2

aδac −
δ2Lint[Φ(x)]

δΦa(x)δΦc(x)

∣∣∣∣
〈Φ〉

. (1.139)
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These equations can quite rarely be solved analytically as the memory inte-

grals of the right hand sides involve very complicated convoluted loop inte-

grals, which are both highly nonlinear and nonlocal in the functions of interest.

Nevertheless, significant efforts have been deployed in the last two decades,

successfully leading to an improvement of our understanding of both their

analytic [28, 31–34] and numerical solutions [19, 28, 32, 34]. Under a certain

approximation scheme known as the Wentzel-Kramers-Brillouin (WKB) ap-

proximations which is based on a separation of microscopic and macroscopic

time scales, we shall explicitly solve the Kadanoff-Baym equations later in this

work.
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Introduction

Many features of the Universe we observe around us today are the outcome

of nonequilibrium phenomena that have taken place in the early stages of its

thermal history. Of particular relevance for this section are those phenom-

ena that involve scalar fields. While the prominent initial motivation for this

work is warm inflation, understanding and describing the properties of scalar

fields in a thermal and nonequilibrium environment has a wider range of ap-

plicability than just inflationary cosmology. Indeed, scalar fields are involved

in many other areas of science, this e.g. includes the Landau theory of phase

transitions [35], the Ising model [36,37], the Landau-Ginzburg theory of super-

conductivity [38] or the Brout-Englert-Higgs mechanism [39–41]. In cosmology,

on top of scalar-driven cosmic inflation models mentioned in the introduction,

they too may solve the strong CP-problem [42], explain Dark Matter [43–46]

or Dark Energy [47–50]. They too can trigger phase transitions, e.g. relevant

for electroweak physics and baryogenesis [51–54].

In this part of the thesis, we study the nonequilibrium dynamics of scalars from

first principles of statistical mechanics and quantum field theory. In particular,

we shall focus on systems which bulk properties are adiabatically evolving,

wherein well-defined quasiparticles arise in the spectrum of the theory. We

shall also derive the master equation that drives the adiabatic evolution of

the field condensate, would-be inflaton, which will be of the form ϕ̈ + Γϕϕ̇ +

V ′(ϕ) = 0, where the transport coefficients Γϕ and V ′(ϕ) are respectively the

damping rate and ϕ-derivative of the effective potential V (ϕ). Those will be

computed exactly in a specific Z2-symmetric scalar model from first principles

of nonequilibrium field theory using the 2PI formalism. The viability of warm

inflation in that model will be discussed too. On top of inflationary cosmology,

the results presented in this part of the thesis can be potentially applied to

any quantum system which nonequilibrium dynamics is effectively described

by (pseudo)scalars.
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Chapter 2
Markovian dynamics for scalars
in slowly-evolving backgrounds

The evolution equations, or equations of motion, that dictate the nonequilib-

rium dynamics of the n-point functions of interacting quantum fields are usually

highly nonlocal and nonlinear in those very n-point functions, as can e.g. be

seen from the 2PI dynamics equations for the one- and two-point functions,

respectively Eq.(1.126) and Eqs.(1.137)(1.138). There, the nonlocalities come

from the loop contributions to the 2PI effective action, as many 2PI diagrams

have vertices which are separated in spacetime.

Local, also known as Markovian, differential equations have very satisfactory

properties, e.g. they possess well-defined coefficients describing well-understood

physics. Typically, one articulates the discussion in terms of quantities multi-

plying certain powers or derivatives of the function which dynamics is under

consideration. As emphasised in the introduction, relevant for this work is the

equation ϕ̈+Γϕϕ̇+V ′(ϕ) = 0, where Γϕ is identified with the friction rate and

V ′(ϕ) with the effective force.

In this chapter, we will show how the equations of motion for the condensates

of scalar fields can be Markovianised in this form under certain circumstances,

namely when the only time-varying quantities that break time-translation in-

variance are slowly-evolving backgrounds to which the fields are coupled. For a

more refined discussion on the localisation procedure in the presence of slowly-

varying functions, we invite the interested reader to e.g. consult [55].
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The general set-up under consideration here is that of Section 1.2, restricting

ourselves to spatially homogeneous and isotropic systems. While this simplify-

ing assumption is taken, our analysis can be extended to spatial gradients as

well, but it becomes notationnally heavier. Then, again for simplicity, we shall

assume that only one of the degrees of freedom among {Φa}, say φ, acquires

a nonvanishing expectation value which we denote ϕ. The latter will serve as

a prototype of macroscopic quantity which time-evolution is characterised by

much larger time scales than those of quantum events, such as collisions or

scatterings of particles. Therefore, we shall assume that the expansion

ϕ(t′)n = ϕ(t)n + n(t′ − t)ϕ̇(t)ϕ(t)n−1 +O[ϕ̈] , (2.1)

is justified under loop integrals, which will help us localise them. Physically,

this assumes that the background is quasiconstant during quantum interactions.

Mathematically, this is justified because in the 2PI equations of motions, non-

local contributions come under the form of convolutions of ϕ with quantum

n-point correlators. Those are power-law suppressed for large time separations

with respect to the typical microphysical time scale τint and hence effectively

act as “window functions” of finite supports. The precise definition of τint and

associated power-law suppressions are model dependent, see e.g. [56].

Based on these considerations, we provide a general method to derive an effec-

tive quantum kinetic equation of the form1

ϕ̈+
∑

Γ(n)
ϕ ϕ̇n + V ′(ϕ) = 0 (2.2)

where Γ
(n)
ϕ and V (ϕ) respectively are the damping rates and effective potential

that govern the dynamics of ϕ.

2.1 The Markovian equation: a derivation

Let us show how one can derive a Markovian equation of motion for ϕ from

Γ[ϕ,∆[ϕ]], i.e. using the 2PI effective action (1.123) and (1.126), where one has

plugged in the solution of the 2PI equation of motion (1.131) for the propaga-

tors, which we formally denote ∆[ϕ]. We first perform a Taylor expansion of

1Note that this equation describes the dynamics of the statistically weighted quantum

average ϕ = Tr[%(ti)φ]. The latter averages out noise terms of the fluctuation-dissipation

theorem which we would have obtained if we had derived the Langevin equation of motion

for φ(x) instead [56,57].
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∂Γ[ϕ,∆[ϕ]]/∂ϕ about ϕ̄ in functional space with ϕ = ϕ̄+ δϕ̄ and find

∂Γloop[ϕ,∆[ϕ]]

∂ϕ(x)

∣∣∣∣
ϕ̄+δϕ̄

=
∂Γloop[ϕ,∆[ϕ]]

∂ϕ(x)

∣∣∣∣
ϕ̄

+

∞∑

n=1

1

n!

n∏

i=1

∫

C
dx0

i

∫
d3xi δϕ̄(xi)

[
δn

δϕ(x1) · · · δϕ(xn)

(
∂Γloop[ϕ,∆[ϕ]]

∂ϕ(x)

)]∣∣∣∣
ϕ̄

(2.3)

where the implicit dependence on ϕ of ∆[ϕ] is not affected by the partial func-

tional derivatives ∂/∂ϕ, as those only act on the explicit dependence of Γloop.

The expansion (2.3), is widely utilised in the literature, especially around ϕ̄ = 0,

known as the small field expansion, but it is actually valid for any ϕ̄ if one is

interested in sufficiently small variations around it. It diagrammatically corre-

sponds to expanding the ϕ-dependent vertices and lines around the reference

value ϕ̄ in functional space. Of course, this approach has the following short-

comings: it breaks down in situations where one needs to track large field

excursions over sizeable time intervals.

In our case, the range of validity of this approximation can be enhanced by the

“window function argument” which suppresses the nonlocal loop integrals in

Γloop for time separations larger than τint, provided that we judiciously choose

ϕ̄. For this purpose, we take it to be a constant function which value is the self-

consistent solution of the equation of motion evaluated at the reference time

t = x0 set by that of the equation of motion, ϕ̄ = ϕ(t). In doing so, we can

Markovianise the a priori nonlocal contribution (2.3) by using (2.1) inside the

loop integrals, which effectively makes the equation (2.3) local in time. And

indeed, this does not restrict the field elongations as this expansion can locally

be applied at each instant t = x0. Using δϕ̄(xi) = ϕ̇(t)(x0
i − t), we obtain for

the single-condensate isotropic version of equation (1.126)

ϕ̈+

+∞∑

n=1

Γ(n)
ϕ ϕ̇n + V ′(ϕ) = 0 (2.4)

with

V ′(ϕ) = −∂Lint[ϕ(t)]

∂ϕ(t)
− ∂Γloop[ϕ,∆[ϕ]]

∂ϕ(x)

∣∣∣∣
ϕ̄=ϕ(t)

(2.5)

and

Γ(n)
ϕ = − 1

n!

n∏

i=1

∫

C
dx0

i (x
0
i−t)

∫
d3xi

[
δn

δϕ(x1) · · · δϕ(xn)

(
∂Γloop[ϕ,∆[ϕ]]

∂ϕ(x)

)] ∣∣∣∣∣
ϕ̄

.

(2.6)
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A few comments are in order. Note that this expansion allows to implement

powers of ϕ̇ to all orders, but neglect higher order derivatives. Terms propor-

tional to ϕ̈ will essentially correct the kinetic terms which already are present in

the classical theory, and hence perturbative loop corrections to it are neglected,

though they could in principle be included à la [58]. In contradistinction, the

dissipation rates Γ
(n)
ϕ , which only arise from loop corrections, are qualitatively

new with respect to what is present in the classical dynamics. Higher order

derivatives usually give rise to ugly and unstable behaviours in Markovian,

loop-truncated equations of motion. Nevertheless, if the fundamental theory is

well-behaved and the derivative expansion is properly performed, this spurious

dynamics can be kept under control [59].

2.2 Interpretation of the leading friction term

Neglecting terms proportional to ϕ̇n for n ≥ 2, which in this work is justified

as ϕ is slowly rolling, Eq. (2.4) for ϕ precisely gives the Markovian equation2

ϕ̈+ Γϕϕ̇+ V ′(ϕ) = 0 (2.7)

where Γϕ = Γ
(1)
ϕ is the leading friction term. Let us try to interpret it in terms

of microphysical processes in a model-independent fashion. In certain cases,

e.g. when φ resides in a near-equilibrium thermal bath, the effective potential

and friction rate, respectively (2.5) and (2.6) can be expressed in terms of real

and imaginary parts of retarded self-energies, evaluated at integer multiples of

excitations oscillation frequencies, cf. e.g. Refs. [32, 61–63] for detailed deriva-

tions. As long as the optical theorem applies, which it does at thermal equilib-

rium, imaginary parts of selfenergies can be related to Cutkosky cut Feynman

diagrams [64–69], hence Γϕ can be interepreted in terms of microphysical scat-

terings or particle productions [61,64,70,71]. A striking consequence of cutting

rules is that local diagrams do not have imaginary parts as they cannot be cut

through, and therefore, local diagrams do not generate dissipation and friction

solely arises from the non-local term Γ2[ϕ,∆[ϕ]]. As a matter of fact, this is

no longer true for the nonequilibrium problem at hand.

Indeed, let us evaluate Γϕ from (2.6) and split it as

Γϕ = Γ[1]
ϕ + Γ[2]

ϕ , Γ[i]
ϕ =

∫

C

∫
d3x1dx

0
1(x0

1 − t)Π[i]
ϕ (x1, x) (2.8)

2Note that this equation is strictly identical to the equation of motion derived in linear

response theory where an expansion in small deviations around ϕ̄ = 0 is performed, and

truncated at leading order in δϕ [57, 60]. This should not be confused with the approach

taken here, which relies on a derivative expansion in ϕ̇ and not in the smallness of the field

elongation, which is arbitrarily large in our case.
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with

Π[1]
ϕ (x1, x) = − ∂2Γloop[ϕ,∆[ϕ]]

∂ϕ(x1)∂ϕ(x)

∣∣∣∣
ϕ̄

, (2.9)

Π[2]
ϕ (x1, x) = −

∑

a,b

∫

y

∫

z

(
∂2Γloop[ϕ,∆]

∂∆ab(y, z)∂ϕ(x)

∣∣∣∣
∆[ϕ]

δ∆ab[ϕ](y, z)

δϕ(x1)

)∣∣∣∣∣∣
ϕ̄

.

(2.10)

The damping rate Γϕ receives two contributions, respectively Π
[1]
ϕ , which comes

from the explicit ϕ-dependence of Γloop and Π
[2]
ϕ . In terms of the perturbative

loop expansion, the former arises from the ϕ-dependent vertices that appear in

the action when splitting φ = ϕ+η and the latter comes from the ϕ-dependence

of the resummed propagators ∆[ϕ].

Let us now argue that local diagrams can indeed contribute to dissipation

in nonequilibrium field theory. First, note that the functions Π
[i]
ϕ (x1, x) are

convolved with (x0
1 − t) in order to define Γϕ, and hence any that contains

δ(x0
1 − t) in Π

[i]
ϕ (x1, x) will eventually yield a vanishing contribution to the

dissipation rate. Therefore, it is tempting to believe that “local diagrams”,

e.g. the one-loop diagrams of Γ1, will not contribute to the friction rate, just as

in the equilibrium case. However, while this is true for Π
[1]
ϕ , it is not for Π

[2]
ϕ .

The contribution to Π
[1]
ϕ (x1, x) from the one-loop effective action Γ1 reads

Π[1]
ϕ (x1, x) ⊃ − ∂2Γ1[ϕ,∆[ϕ]]

∂ϕ(x1)∂ϕ(x)

∣∣∣∣
ϕ̄

= − i
2

∑

a,b

∫

z

∫

z′

(
∂2G−1

0,ab[ϕ](z, z′)

∂ϕ(x1)∂ϕ(x)
∆ab[ϕ](z, z′)

)∣∣∣∣∣∣
ϕ̄

, (2.11)

where partial derivatives solely act on G−1
0,ab[ϕ] as explained below Eq. (1.125).

Using the definition of G−1
0,ab[ϕ](z, z′) (1.125), we find

∂2iG−1
0,ab[ϕ](z, z′)

∂ϕ(x1)∂ϕ(x)
=

1

2

∂2

∂ϕ(x1)∂ϕ(x)

(
∂2S[Φ]

∂Φa(z)∂Φb(z′)

∣∣∣∣
〈Φ〉

)

∝ δC(z − z′)δC(z − x1)δC(z − x). (2.12)

Putting the last two equations together, the local Γ1 contribution to Π
[1]
ϕ (x1, x)

is multiplied by δC(x0
1 − t) which, once convolved with the factor (x0

1 − t)

of Γ
[1]
ϕ , vanishes. Following this line of thought, we conclude that Γloop can

be replaced by Γ2 in Π
[1]
ϕ and only 2PI diagrams which have two separate

background-dependent vertices can contribute to the damping rate Γ
[1]
ϕ .
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Nevertheless, the one-loop effective action Γ1 does contribute to Γϕ through

Π
[2]
ϕ (x1, x). First note that Π

[2]
ϕ (x1, x) in (2.10) is made of two distinguished

factors, one that involves derivatives of the effective action, and the other of

the propagators. Let us first focus on the Γ1 contribution to the first factor.

Using Eqs.(1.124) and (1.125), we find for the first factor in (2.10)

∂2Γ1[ϕ,∆]

∂∆ab(y, z)∂ϕ(x)

∣∣∣∣
∆[ϕ]

=
1

2

∂

∂ϕ(x)

(
∂2S[Φ]

∂Φa(y)∂Φb(z)

∣∣∣∣
〈Φ〉

)
∝ δC(y−z)δC(y−x).

(2.13)

Now using the relation δA = −Aδ(A−1)A, which holds for any invertible ma-

trix/operator A, we can express the second factor as

δ∆ab[ϕ](y, z)

δϕ(x1)
= −

(
∆
δ∆−1

δϕ(x1)
∆

)

ab

[ϕ](y, z), (in the matrix product sense)

= −
∑

a′b′

∫

y′

∫

z′
∆aa′ [ϕ](y, y′)

δ
(
G−1

0,a′b′ [ϕ](y′, z′)−Πa′b′ [ϕ](y′, z′)
)

δϕ(x1)
∆b′b[ϕ](z′, z).

(2.14)

Multiplying the functional derivatives G−1
0 [ϕ] and of Π[ϕ] with Eq. (2.13)

above, we see that both can a priori lead to nonvanishing contributions to

the damping rate, and they both arise from “local” one-loop diagrams. This

seems to indicate that time-dependent backgrounds and their backreactions vi-

olate the optical theorem and dissipation rates are no longer to be read off from

Cutkosky cut Feynman diagrams. In an attempt to save that interpretation,

we could nevertheless argue that local diagrams are effectively nonlocal once

resummation effects are properly taken into account, as we did in the above

equation by inserting the Schwinger-Dyson equation for the propagator.

Therefore, the one- and higher-loop contributions to the effective action, namely

Γ1 and Γ2 behave very differently when it comes to the way they enter computa-

tions of dissipation coefficient. While Γ2 leads to friction terms regardless what

thermodynamic state the system is in, e.g. thermal equilibrium, the damping

from local diagrams is a peculiar feature which arises from nonequilibrium dy-

namics and the backreaction of time-dependent background on quasiparticles

properties. Those comments close our remarks on the microphysical interpre-

tation of the dissipation term derived herewith and for the remainder of this

part, we shall particularise our results and 2PI investigations to a generic Z2-

symmetric renormalisable field theory.



Chapter 3
2PI formalism for interacting
Z2-symmetric scalars

We here study the 2PI effective action and its resulting equations of motion

for a renormalisable Z2-symmetric field theory made of two real scalar fields,

namely φ(x) and χ(x). The defining Lagrangian density reads

L =
1

2
∂µφ∂

µφ−
m2
φ

2
φ2− λφ

4!
φ4 +

1

2
∂µχ∂

µχ− m
2
χ

2
χ2− λχ

4!
χ4− h

4
φ2χ2 (3.1)

and in order to apply the techniques developed in the previous chapter, we first

have to study the 2PI ingredients of such a scalar system, which is what this

chapter is dedicated to. For this purpose, we assume that only φ(x) acquires

a thermal expectation value ϕ(x) = 〈φ(x)〉 and that χ(x) does not. Therefore

ϕ(x) constitutes the only time-varying background field of our system, just as

in the previous chapter. We formulate the theory on the CTP of Fig. 1.3 of

initial time ti, suitable for nonequilibrium perturbation theory, assuming that

a power expansion in all three dimensionless couplings λφ, h and λχ is justified.

Using Eq. (1.125) we find the tree-level propagator for the φ field of this theory

iG−1
0,a[ϕ](x, y) = −

(
�x +M tree

a (x)2
)
δC(x− y), (3.2)

where δC is the four-dimensional delta function on the closed contour, and

M tree
a (x) =

√
m2
a + ga

2 ϕ(x)2 is the tree-level time-dependent mass with ga the

coupling constant that couples a to φ in the Lagrangian (3.1), i.e. gφ = λφ and

gχ = h. With that expression at our disposal, we can now move on and derive

the 2PI equations of motion for a Z2-symmetric theory of interacting scalars.
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3.1 The 2PI equations of motion

On one hand, using Eqs. (1.126)(1.123)(1.124) together with Eq. (3.2) we find

that the equation of motion for the condensate for the problem at hand reads
(
�x +m2

φ +
λφ
6
ϕ(x)2 +

λφ
2

∆φ(x, x) +
h

2
∆χ(x, x)

)
ϕ(x) =

δΓ2[ϕ,∆]

δϕ(x)
. (3.3)

On the other hand, the Kadanoff-Baym equations (1.137)(1.138) for the prop-

agators of Z2-symmetric scalar theories with only one condensate read

(
�x +M tree

a (x)2 + Πloc
a (x)

)
∆−a (x, y) =−

∫ x0

y0

dzΠ−a (x, z) ∆−a (z, y),

(3.4)
(
�x +M tree

a (x)2 + Πloc
a (x)

)
∆+
a (x, y) =−

∫ x0

ti

dzΠ−a (x, z)∆+
a (z, y)

+

∫ y0

ti

dzΠ+
a (x, z)∆−a (z, y),

(3.5)

as there is no mixing between the full propagators (resp. selfenergies) external

legs: ∆ab = ∆aδab (resp. Πab = Πaδab) and the Kadanoff-Baym are diagonal

in the space of field labels. This statement is nontrivial, so let us carefully

explain it. Splitting the only condensating field φ into its ensemble average

plus quantum fluctuations around it, themselves parametrised by a quantum

field η, namely φ = ϕ + η, the part of the interaction action which is relevant

for the construction of 2PI diagrams is given by

iSint ⊃
∫

x

[
(−iλφ)

4!
η4 +

(−iλφϕ)

3!
η3 +

(−iλχ)

4!
χ4 +

(−ihϕ)

2
ηχ2 +

(−ih)

4
η2χ2

]
.

(3.6)

Let us now prove that these interactions forbid mixing between propagators.

Such a mixing would have to be the result of some non vanishing Πφχ, so let us

assume it exists and one has a 1PI selfenergy, which external legs are a φ and a

χ particle. Now closely looking at Eq. (3.6), we infer that whatever interactions

constitute this Πφχ, it must have an even number, say 2N , of χ lines attached

to each of its vertices. Therefore the number of internal χ lines within Πφχ is

given by (2N−1)/2 which is noninteger and cannot be, hence Πφχ cannot exist.

Note that if χ had a nonvanishing condensate 〈χ〉 6= 0, the Z2-symmetry in the

χ interactions would be broken and that statement would not hold anymore.

Diagonal KBEs describe Z2-symmetric scalar theories if and only if solely one

field acquires a nonvanishing expectation value.
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3.2 The 2PI dynamics at three-loop order

According to Eqs. (1.130) and (3.6), the 2PI diagrams at 3-loop order (which is

also at most of second order in the coupling constant expansion for all relevant

couplings λφ, h and λχ) are depicted in Fig. 3.1 and the associated effective

action reads

Γ2[ϕ,∆] =− i

22

[
(−iλφ)

2

∫

x

∆φ(x, x)2 +
(−iλχ)

2

∫

x

∆χ(x, x)2

+ (−ih)

∫

x

∆φ(x, x)∆χ(x, x)

]

− i

2 · 3!

∫

x,y

(−iλφϕ(x)) (−iλφϕ(y)) ∆φ(x, y)3

− i

2 · 2

∫

x,y

(−ihϕ(x)) (−ihϕ(y)) ∆φ(x, y)∆χ(x, y)2

− i

4!2

[
(−iλφ)2

∫

x,y

∆φ(x, y)4 + (−iλχ)2

∫

x,y

∆χ(x, y)4

]

− i

23

∫

x,y

(−ih)2∆φ(x, y)2∆χ(x, y)2 . (3.7)

× × × ×

Figure 3.1: The three-loop Γ2[ϕ,∆]. Solid (resp. dashed) lines correspond to

φ (resp. χ) quanta. Solid (resp. light gray, empty) dots correspond to λφ
(resp. h, λχ) couplings. Crosses correspond to couplings to the background

condensate ϕ.
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3.2.1 Equation of motion for ϕ

At second order in the loop and coupling constant perturbation theory, we have

δΓ2[ϕ,∆]

δϕ(x)
= i

∫

y

[
λ2
φ

3!
∆φ(x, y)3 +

h

2
∆2
χ(x, y)∆φ(x, y)

]
ϕ(y) , (3.8)

which should be substituted into the right hand side (3.3). Doing so and using

the spectral and statistical decompositions of the propagators (1.66), we find

(
�x +m2

φ +
λφ
6
ϕ(x)2 +

λφ
2

∆+
φ (x, x) +

h

2
∆+
χ (x, x)

)
ϕ(x)

+

∫ x0

ti

dy0

∫
d3yΠ−sun

φ (x, y)ϕ(y) = 0, (3.9)

where

Π−sun
φ (x, y) =

1

4

[
λ2
φ

3!
∆−φ (x, y)3 +

h2

2
∆−χ (x, y)2∆−φ (x, y)

]

−
λ2
φ

2
∆+
φ (x, y)2∆−φ (x, y)

− h2

2

(
2∆−χ (x, y)∆+

χ (x, y)∆+
φ (x, y) + ∆+

χ (x, y)2∆−φ (x, y)
)
.

(3.10)

The superscript sun is used because those nonlocal contributions arise from

the nonlocal two-loop sunset diagrams in the middle line of Fig. 3.1. Note

that this selfenergy should a priori not be confused with those derived from

(1.129) which contribute to the Kadanoff-Baym equations and shall be dealt

with next. However, in this particular case, Π−sun
φ (x, y) is precisely the one

that will contribute to the 2PI equation for the propagator.

3.2.2 Selfenergies for the Kadanoff-Baym equations

Taking the functional derivative of (3.7) following Eq. (1.129), which diagram-

matically amounts to cutting open a line of the close 2PI diagrams of Fig. 3.1,
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we find the following selfenergies

Πφ[ϕ,∆](x, y) =− i

2

(
λφ∆+

φ (x, x) + h∆+
χ (x, x)

)
δC(x− y)

− 1

2
λ2
φ ϕ(x)ϕ(y) ∆φ(x, y)2 − h2

2
ϕ(x)ϕ(y)∆χ(x, y)2

−
λ2
φ

3!
∆φ(x, y)3 − h2

2
∆φ(x, y)∆χ(x, y)2, (3.11)

and

Πχ[ϕ,∆](x, y) =− i

2

(
λχ ∆+

χ (x, x) + h∆+
φ (x, x)

)
δC(x− y)

− h2 ϕ(x)ϕ(y) ∆φ(x, y)∆χ(x, y)

− λ2
χ

3!
∆χ(x, y)3 − h2

2
∆φ(x, y)2∆χ(x, y), (3.12)

which have to be decomposed in their statistical and spectral components for

the sake of the Kadanoff-Baym equations. Plugging in the decomposition

(1.66) and using its selfenergy counterpart, the relevant Πloc
a (x, x), Π+

a (x, y)

and Π−a (x, y) are identified as

Πloc
φ (x) =

λφ
2

∆+
φ (x, x) +

h

2
∆+
χ (x, x) , (3.13)

Πloc
χ (x) =

λχ
2

∆+
χ (x, x) +

h

2
∆+
φ (x, x) , (3.14)

Π+
φ (x, y) = Π+crab

φ (x, y) + Π+sun
φ (x, y) , (3.15)

Π+
χ (x, y) = Π+crab

χ (x, y) + Π+sun
χ (x, y) , (3.16)

Π−φ (x, y) = Π−crab
φ (x, y) + Π−sun

φ (x, y) , (3.17)

Π−χ (x, y) = Π−crab
χ (x, y) + Π−sun

χ (x, y) , (3.18)

with Π±crab(x, y) and Π±sun(x, y) being the crab and setting-sun contributions

(cf. Fig. 3.2) respectively, given by

Π+crab
φ (x, y) = −1

2
ϕ(x)ϕ(y)

[
λ2
φ

(
∆+
φ (x, y)2 − 1

4
∆−φ (x, y)2

)

+ h2
(

∆+
χ (x, y)2 − 1

4
∆−χ (x, y)2

)]
, (3.19)

Π+sun
φ (x, y) = −λ2

φ

(
1

3!
∆+
φ (x, y)3 − 1

8
∆+
φ (x, y)∆−φ (x, y)2

)

− h2

(
1

2
∆+
φ (x, y)∆+

χ (x, y)2 − 1

8
∆+
φ (x, y)∆−χ (x, y)2 (3.20)

−1

4
∆+
χ (x, y)∆−χ (x, y)∆−φ (x, y)

)
,
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Π+crab
χ (x, y) = −ϕ(x)ϕ(y)h2

(
∆+
φ (x, y)∆+

χ (x, y)− 1

4
∆−φ (x, y)∆−χ (x, y)

)
,

(3.21)

Π+sun
χ (x, y) = −λ2

χ

(
1

3!
∆+
χ (x, y)3 − 1

8
∆+
χ (x, y)∆−χ (x, y)2

)

− h2

(
1

2
∆+
χ (x, y)∆+

φ (x, y)2 − 1

8
∆+
χ (x, y)∆−φ (x, y)2 (3.22)

−1

4
∆+
φ (x, y)∆−φ (x, y)∆−χ (x, y)

)
,

Π−crab
φ (x, y) = −ϕ(x)ϕ(y)

(
λ2
φ∆+

φ (x, y)∆−φ (x, y) + h2∆+
χ (x, y)∆−χ (x, y)

)
,

(3.23)

Π−sun
φ (x, y) = −λ2

φ

(
1

2
∆+
φ (x, y)2∆−φ (x, y)− 1

4!
∆−φ (x, y)3

)

− h2

(
∆+
φ (x, y)∆+

χ (x, y)∆−χ (x, y) +
1

2
∆−φ (x, y)∆+

χ (x, y)2 (3.24)

−1

8
∆−φ (x, y)∆−χ (x, y)2

)
,

Π−crab
χ (x, y) = −ϕ(x)ϕ(y)h2

(
∆+
φ (x, y)∆−χ (x, y) + ∆−φ (x, y)∆+

χ (x, y)

)
,

(3.25)

Π−sun
χ (x, y) = −λ2

χ

(
1

2
∆+
χ (x, y)2∆−χ (x, y)− 1

4!
∆−χ (x, y)3

)

− h2

(
∆+
χ (x, y)∆+

φ (x, y)∆−φ (x, y) +
1

2
∆−χ (x, y)∆+

φ (x, y)2 (3.26)

−1

8
∆−χ (x, y)∆−φ (x, y)2

)
.

Their names and superscripts defined in Eqs. (3.13)-(3.18) find their origins

in their diagrammatic representations which we explicitly illustrated for χ in

Fig. 3.2. We note in passing that we indeed checked that the propagator self-

energy (3.24), Π−sun
φ (x, y), is precisely the one that appears in the condensate

equation of motion, too.
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× ×

Figure 3.2: Reading from left to right, those diagrams respectively represent

the local, crab and sunset selfenergy contributions to Πχ of Eq. (3.12).

The Kadanoff-Baym equations (3.4)(3.5) with those selfenergies plugged in, to-

gether with the background field evolution equation (3.3) form the order O(λ2)

closed set of integro-differential 2PI equations that govern the dynamics of the

one- and two-point functions of Z2-symmetric scalars. For the remainder of this

part of this thesis, we shall study selfconsistent solutions of these equations,

carefully paying attention to the dynamics of the condensate and its quantum

and thermal effective potential and damping rate. On one-hand by carefully

following the method outlined in chapter 2 and on the other by providing ap-

proximate analytic solutions of the nonequilibrium Kadanoff-Baym equations,

using the so-called Wentzel-Kramers-Brillouin (WKB) approximation scheme.

Both approaches rely on a separation of microscopic vs. macroscopic time scales

and we will show that the resulting condensate dynamics is identical.
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Chapter 4
A slowly-rolling, homogeneous
and isotropic scalar

In this chapter, which heavily relies on the two previous ones and the assump-

tions made therein, we shall particularise the study of last chapter’s interacting

Z2-symmetric scalar theory

L =
1

2
∂µφ∂

µφ−
m2
φ

2
φ2− λφ

4!
φ4 +

1

2
∂µχ∂

µχ−m
2
χ

2
χ2− h

4
φ2χ2− λχ

4!
χ4, (4.1)

to the case where there is a clear separation of microscopic vs. macroscopic

time scale in an homogeneous and isotropic environment. Microscopic time

scales dictate the dynamics of particle interactions and macroscopic that of the

time evolution of bulk properties of the system, such as ϕ = 〈φ〉, assumed to be

the only time-dependent quantity of the system that breaks time translation

invariance. In particular, and of greatest importance for this chapter, we shall

assume that the frequencies ω that describe the mode decomposition of all fields

evolve adiabatically ω̇/ω2 � 1. This allows for many quantum and dissipative

aspects of the dynamics to be understood in terms of well-defined quasiparticles

that propagate freely between spacetime-confined interactions.

For this purpose, we assume that the χ degrees of freedom constitute a thermal

reservoir of temperature T , maintained at equilibrium through their interac-

tions which take place on time scales τint that are much shorter than those

that describe the dynamics of ϕ(t): τintϕ̇/ϕ � 1. This can e.g. be realised if

χ has large gauge couplings to many other field degrees of freedom. In this
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situation, it is justified to formulate our theory on the Schwinger-Keldysh con-

tour of nonequilibrium field theory, as explained in section 1.1.5, wherein the

classical action reads S[φ, χ] =
∫
x
L and

∫
x

=
∫
C dx0

∫
d3x implicitly integrates

over the Schwinger-Keldysh contour.

Furthermore, these considerations allow for the techniques developed in chap-

ter 2 to be applied and the equation of motion for ϕ to be Markovianised as in

the previous chapter, i.e. ϕ̈ +
∑+∞
n=1 Γ

(n)
ϕ ϕ̇n + V ′(ϕ) = 0, where the transport

coefficients Γ
(n)
ϕ and V ′(ϕ) can be perturbatively organised and computed in

terms of Feynman diagrams. We shall do so using two methods. One one hand,

we shall apply the method of chapter 2 to the letter and derive the associated

Γ
(n)
ϕ and V ′(ϕ) from the truncated effective action studied in chapter 3. On

the other, we shall repeat a similar analysis based on adiabatic solutions of

the homogeneous and isotropic Kadanoff-Baym equations and plugging them

back in the evolution equation for the background ϕ. Both procedures shall

lead to identical transport coefficients expressed in terms of Feynman diagrams

and convolutions of correlations functions. As formal expressions, those do

not require further approximations, however evaluating the loop integrals an-

alytically does and those calculations are greatly simplified when we can use

close-to-equilibrium propagators. The use of near-equilibrium propagators ap-

plies to the following set of initial conditions:

• The fluctuations of all fields have close-to-equilibrium initial conditions.

In particular, even though ϕ is initially offset from its equilibrium ground

state, the quantum fluctuations η in φ = ϕ+η are at thermal equilibrium.

• The fluctuations η are far from their equilibrium states, and our anal-

ysis only applies to systems with the coupling hierarchy λφ � h such

that the contributions from the nonequilibrium excitations (∼ λφ) can

be disregarded from those of the thermal bath (∼ h).

• The fluctuations η are far from thermal equilibrium and there is no hier-

archy in the couplings, but a very large number of the fields that compose

the bath couple directly to φ, hence effectively making h very large1 [17].

1Note that this does not invalidate perturbation theory. It is perturbative results which

for many degrees of freedom add up and effectively can be described by a large h.
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4.1 The Markovian equation

We first investigate our method of chapter 2 to Markovianise the 2PI equation

of motion (3.9). In particular, we shall evaluate the leading-order damping rate

explicitly, using Eqs. (2.8)(2.9)(2.10) derived in the previous chapter.

For the sake of simplicity, let us assume that λχ, λφ � h for the time being and

discard those interactions in (3.7) that arise from the φ-selfinteractions. Lifting

that assumption is straightforward and identically dealt with, only prefactors

slightly differ because diagrams from selfinteractions have different symmetry

properties. As far as ϕ is concerned, this amounts to focusing on a two-scalar

theory which solely interacts via Lint = −hφ2χ2/4.

We first evaluate Π
[1]
ϕ from (2.9). As shown after Eq. (2.12), Γϕ does not receive

a contribution from Γ1 through Π
[1]
ϕ because of the convolution with (x0

1− t) in

Eq. (2.8). We therefore focus on Γ2[ϕ,∆] and looking at Fig. 3.1, it is clear that

only the setting-sun diagram with two couplings to the external background ϕ

can contribute because the partial functional derivative in (2.9) only acts on

the explicit factors ϕ at the vertices, not on the implicit ϕ-dependence of the

propagators. Calculating it explicitly, we obtain

− ∂2Γ2[ϕ,∆[ϕ]]

∂ϕ(x1)∂ϕ(x)

∣∣∣∣
ϕ̄

= − ih
2

2
∆2
χ[ϕ̄](x, x1)∆φ[ϕ̄](x, x1), (4.2)

which still has to be convolved with (x0
1 − t) to obtain the final contribution

to Γϕ. The loop integrals are to be evaluated with full propagators, but with

ϕ = ϕ̄, i.e., in a (locally) static background. This diagram has been studied

before in the literature, see e.g. Ref. [62], and the resulting contribution reads

Γ[1]
ϕ '

h2 T 2

(4π)3Mη
log

(
Mη

Mχ

)
, for T �Mη �Mχ,

Γ[1]
ϕ '

h2 T 2

(4π)3Mχ
log

(
Mχ

Mη

)
, for T �Mχ �Mη, (4.3)

where M2
a = m2

a + δaχ
h
2 ϕ̄

2 + h
24T

2. This term can be interpreted as dissipation

from scatterings with χ-quanta in the thermal bath by making connection to

thermal field theory [71,72]. As expected, the friction coefficient grows with T 2

due to the larger number of scattering partners at higher temperature. We shall

come back to this damping coefficient and its interpretation in detail shortly

in section 4.5.

We now move on to compute the contribution to Γϕ from Π
[2]
ϕ , which includes

contributions from both, Γ1 and Γ2. Starting from (2.10), we first evaluate
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the functional derivative of the propagator ∆ with respect to ϕ using the same

technique as for Eq. (2.14)

δ∆[ϕ]

δϕ(x1)
= −∆[ϕ]

δ∆−1[ϕ]

δϕ(x1)
∆[ϕ] = −∆[ϕ]

δ
(
G−1

0 −Π
)

δϕ(x1)
∆[ϕ]

' −∆[ϕ]
δ
(
G−1

0

)

δϕ(x1)
∆[ϕ] , (4.4)

where, in the last step, we only kept the leading tree-level contribution, which

dominates the one of the self-energy because ϕ appears with additional powers

of h and loop factors in the self-energy (
∣∣δ
(
G−1

0

)/
δϕ(x1)

∣∣ > |δΠ/δϕ(x1) |).
Using this result, we calculate at leading order in the coupling constant h

∫
d3x1Π[2]

ϕ (x1, x) = −
∫

d3x1


∑

a,b

∫

y,z

∂2Γloop[ϕ,∆]

∂ϕ(x)∂∆ab(y, z)

∣∣∣∣
∆[ϕ]

δ∆ab(y, z)

δϕ(x1)



ϕ̄

'
∫

d3x1

∫

y,z

[
∂2Γloop[ϕ,∆]

∂ϕ(x)∂∆χ(y, z)

∣∣∣∣
∆[ϕ]

∫

u,v

∆χ[ϕ](y, u)
δG−1

0,χ[ϕ](u, v)

δϕ(x1)
∆χ[ϕ](v, z)

]

ϕ̄

= ihϕ̄

∫
d3x1

∫

y,z

[
∂2Γloop[ϕ,∆]

∂ϕ(x)∂∆χ(y, z)

∣∣∣∣
∆[ϕ]

∆χ[ϕ](y, x1)∆χ[ϕ](x1, z)

]

ϕ̄

.

(4.5)

Here we have used the explicit expression (3.2). Now we articulate the discus-

sion in terms of contributions from Γ1 and Γ2 to Π
[2]
ϕ , and argue that those of

Γ2 are suppressed compared to that of Γ1. Indeed, we evaluate
[

∂2Γ1[ϕ,∆]

∂ϕ(x)∂∆ab(y, z)

∣∣∣∣
∆[ϕ]

]

ϕ̄

= −h
2
ϕ̄δabδbχδC(y − z)δC(x− y), (4.6)

and [
∂2Γ2[ϕ,∆]

∂ϕ(x)∂∆ab(y, z)

∣∣∣∣
∆[ϕ]

]

ϕ̄

=
ih2ϕ̄

4

[
δC(x− y) + δC(x− z)

]
×

×
[
2∆χ(y, z)∆φ(y, z)δaχδab + ∆2

χ(y, z)δaηδab)
]
. (4.7)

We conclude from those that the former which originates from Γ1 dominates

significantly, from both the loop and coupling constant expansions. Therefore,
∫

d3x1Π[2]
ϕ (x1, x)

' ihϕ̄
∫

d3x1

[∫

y,z

∂2Γ1[ϕ,∆]

∂ϕ(x)∂∆χ(y, z)

∣∣∣∣
∆[ϕ]

∆χ[ϕ](y, x1)∆χ[ϕ](x1, z)

]

ϕ̄

.

(4.8)
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Since the system under consideration was assumed homogeneous and isotropic

we can perform spatial Fourier transforms in the argument differences, and

plugging in (4.6), we find

∫
d3x1Π[2]

ϕ (x1, x) = − ih
2ϕ̄2

2

∫
d3p

(2π)3

[
∆χ[ϕ](t, x0

1; p)2

]

ϕ̄

. (4.9)

Splitting the propagators in their spectral and statistical parts (1.66), and using

the Schwinger-Keldysh contour relation
∫
C dy

0signC(x
0 − y0) = 2

∫ x0

−∞ dy0, we

find for (2.10)

Γ[2]
ϕ = −2× h

2ϕ̄2

2

∫ t

−∞
dx0

1 (x0
1−t)

∫
d3p

(2π)3

[
∆+
χ [ϕ](t, x0

1; p)∆−χ [ϕ](t, x0
1; p)

]

ϕ̄

= h2ϕ̄2

∫ +∞

0

dz z

∫
d3p

(2π)3

[
∆+
χ [ϕ](t, t− z; p)∆−χ [ϕ](t, t− z; p)

]

ϕ̄

, (4.10)

where we have defined z = t− x0
1 in the last line. Explicit expressions for the

resummed statistical ∆+ and spectral ∆− propagators in a static background

have e.g. been computed in Ref. [32]. The latter are only a function of z and

using a slight abuse of notation, we can further evaluate

Γ[2]
ϕ = h2ϕ̄2

∫ ∞

0

dz z

∫
d3p

(2π)3
∆+
χ [ϕ̄](z; p)∆−χ [ϕ̄](z; p)

=
h2ϕ̄2

2

∫ ∞

−∞
dz z

∫
d3p

(2π)3
∆+
χ [ϕ̄](z; p)∆−χ [ϕ̄](z; p)

]

=
h2ϕ̄2

2
lim
ω→0

∂

i ∂ω

∫ ∞

−∞
dzeiωz

∫
d3p

(2π)3
∆+
χ [ϕ̄](z; p)∆−χ [ϕ̄](z; p).

(4.11)

Now taking the inverse Fourier tranform with respect to z,

Γ[2]
ϕ =

h2ϕ̄2

2
lim
ω→0

∂

i∂ω

∫ ∞

−∞
dz eiωz

∫
d3p

(2π)3
×

×
∫

dω′

2π

∫
dω′′

2π
e−iω

′z e−iω
′′z∆+

χ [ϕ̄](ω′; p)∆−χ [ϕ̄](ω′′; p)

=
h2ϕ̄2

2
lim
ω→0

∂

i∂ω

∫
d3p

(2π)3

∫
dω′

2π
∆+
χ [ϕ̄](ω′; p) ∆−χ [ϕ̄](ω − ω′; p)

=
h2ϕ̄2

2
lim
ω→0

∂

i∂ω

∫
d4p

(2π)4
∆+
χ [ϕ̄](p0; p) ∆−χ [ϕ̄](ω − p0; p),
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and using that the static background propagators fulfill the KMS relation

∆+(p) = −i
(

1
2 + fB(p0)

)
∆−(p), we eventually find

Γ[2]
ϕ = −h

2ϕ̄2

4

∫
d3p

(2π)3
lim
ω→0

∂

∂ω
I(p), (4.12)

where I(p) =
∫

dp0
2π

(
fB(p0) − fB(p0 − ω)

)
∆−χ [ϕ̄](p0; p) ∆−χ [ϕ̄](ω − p0; p). To

finally evaluate the integral we use the spectral function in a static background

computed in [32] from solving the Kadanoff-Baym equation (3.4)

∆−χ (p) = lim
ε→0+

−2iImΠR
χ (p) + 2ip0ε(

p2 − (M tree
χ )2 − ReΠR

χ (p)
)2

+
(
ImΠR

χ (p) + p0ε
)2 . (4.13)

Neglecting collective or bound state excitations, the spectral function (4.13) has

four poles which we denote by ±Ω̂χ and ±Ω̂∗χ. Here we have suppressed the

dependence of Ω̂χ on the spatial momentum p for notational simplicity. Under

the assumption that the p0-intergral which constitutes I(p) is dominated by the

pole of its integrand, we can evaluate it using Cauchy’s residue theorem. Note

that technically the function ∆−(p) is not analytic in the complex p0-plane

because it inherits the branch cut that ΠR(p) has across the real p0-axis, and

which defines ImΠR(p) = (ΠR(p0+iε,p)−ΠR(p0−iε,p))/(2i). This in principle

spoils the validity of Cauchy’s theorem. However, under the assumption that

the integral is dominated by the pole regions, the problem can be simplified

by approximating the integrand with a Breit-Wigner p0-independent function

with peaks of width Γχ = −2ImΩ̂χ at locations p0 = ±Ωχ = ±ReΩ̂χ, as e.g. ex-

plained in Refs. [32, 71]. The latter has no branchcuts and is analytic in the

complex plane, hence we can apply Cauchy’s theorem. Physically, this corre-

sponds to assuming that quantum interactions such as decays or scatterings are

dominated by elementary processes involving on-shell quasiparticles. Of course,

this approach has its limitations, e.g. when off-shell transports [14, 70, 71] or

multiple scatterings [70, 71, 73, 74] matter. Precisely understanding the break-

down of the Breit-Wigner approximation is a very interesting topic which we

would like to investigate in the future. In the following calculation it is conve-

nient to introduce

F (p0, ω) = 4
(
fB(p0)− fB(p0 − ω)

)
ImΠR

χ [ϕ̄](p0) ImΠR
χ [ϕ̄](ω − p0)

= −4ω f ′B(p0)
(
ImΠR

χ [ϕ̄](p0)
)2

+O(ω2) (4.14)

and

G(p0) = lim
ω→0

F (p0, ω)

ω
= lim
ω→0

F (−p0, ω)

ω
= lim
ω→0

F (p0 + ω, ω)

ω

= −4f ′B(p0)
(
ImΠR

χ [ϕ̄](p0)
)2

=
2
(
ImΠR

χ [ϕ̄](p0)
)2

T (cosh(p0/T )− 1)
. (4.15)
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Note that G(p0) = G(−p0). We now compute I(p) at linear order in small

ω that is needed to evaluate Eq. (4.12), as the latter sets all contributions of

order O(ω2) to zero eventually. Using Cauchy’s theorem and isolating linear

terms in ω as carefully detailed in [75], we arrive at

−I(p) '
G(Ω̂∗χ)

(
iΩχΓχ + iΩ̂∗χΓχ + 2Ω̂∗χΩχ

)

16Ω̂∗3χ Ω3
χΓ3

χ

ω+
(

Ω̂∗χ → Ω̂χ, iΓχ → −iΓχ
)
ω .

(4.16)

Now taking the limit of this result for small ω, and using the Breit-Wigner

ImΠR
χ (Ω̂χ) ' −ΩχΓχ and narrow peak Ω̂∗ ' Ω approximations, we find

lim
ω→0

∂

∂ω
I(p) ' − 1

2TΩ2
χΓχ(cosh(Ωχ/T )− 1)

, (4.17)

Using the above result in Eq. (4.12) we obtain

Γ[2]
ϕ '

h2ϕ2(t)

8T

∫
d3p

(2π)3

1

Ω2
χΓχ(cosh(Ωχ/T )− 1)

, (4.18)

where we have replaced ϕ̄ by the value ϕ(t) that fixes it locally. Although de-

rived in a more formal setting, this result is consistent with what had previously

been found in Refs. [17, 62] in terms of parametric dependence. Going further

with this integral would necessitate the precise knowledge of Ωχ and Γχ and

their dependences on p, which themselves strongly depend on the details of the

interactions that χ is subject to. We shall evaluate them later in this chapter.

However, we can already understand many properties of the contributions Γ
[1]
ϕ

and Γ
[2]
ϕ as they are presented in Eqs. (4.3) and (4.18).

As we discussed in the last chapter, Γ
[1]
ϕ originates from non-local diagrams

that are expected to generate dissipation from general considerations in equi-

librium thermal field theory. Therefore, the associated contributions can be

interpreted in terms of elementary decays and scatterings of quasiparticles in a

thermal bath, and specific processes are identified by cutting through the rele-

vant diagrams. Those display properties that are expected from thermal field

theory. First, (4.3) grows with the temperature T , and in an equilibrium lan-

guage, this is awaited because the density of scattering partners grows with T ,

and so does the occupancy of final states, hence leading to Bose-enhanced tran-

sition amplitudes. Then, the rate grows with the square of h, that is h2, which

could be anticipated because finite temperature cutting rules identify damping

rates with squared scattering amplitudes which grow with h at leading order.

The term Γ
[2]
ϕ , on the other hand, is a genuine nonequilibrium effect which finds

its origin in the couplings of quasiparticles and fields to the time-dependent
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background ϕ. As we shall explicitly check in more detail later, for large back-

grounds ϕ > T , the damping rate (4.18) Γ
[2]
ϕ dominates over that of Γ

[1]
ϕ . This

however is not due to the time dependence of the condensate, rather it origi-

nates via the effective coupling to ϕ in the Lagrangian due to the replacement

φ → η + ϕ, cf. (3.6). Then, and in contradistinction to what is commonly

expected, Γ
[2]
ϕ decreases with T . Not only from the explicit factor 1/T , but

also because one also generally gets additional powers of T in the denominator

of the integrand, from Ωχ and Γχ, as these quasiparticle energies and thermal

widths typically grow with T . As a final comment, note that formally the ex-

pression (4.18) diverges in the limit Γχ → 0, but in our approximation scheme,

this limit cannot be taken, because we assumed that Γχ > 0 when using the

Breit-Wigner approximation [32,71] and applying Cauchy’s theorem.

In the coming sections, we shall re-derive (4.18) and further study it for spe-

cific quasiparticle dispersions relations and thermal widths which arise from

generic renormalisable Z2-symmetric interactions. This will allow us to verify

our claims in a generic framework. Instead of using the Markovian method,

we shall solve the Kadanoff-Baym Eqs. (3.4)(3.5) analytically, assuming a mild

adiabatic evolution of the time-dependent quantities and then insert those prop-

agators in the evolution equation for the background field.

4.2 The homogeneous and isotropic 2PI equa-
tions of motion

Let us write the 2PI equations of motion for Z2-symmetric scalars in an isotropic

and homogeneous environment, on the Schwinger-Keldysh contour. Because of

homogeneity and isotropy, any convolution of a two-point function with the

background field rewrites

∫
dt′
∫

d3x′O(x, x′)ϕ(x′)n =

∫
dt′O(t, t′; p = 0)ϕ(t′)n. (4.19)

In particular, the equation of motion (3.3) then rewrites

(
∂2
t +m2

φ +
λφ
6
ϕ(t)2 +

∫
d3p

(2π)3

[
λφ
2

∆+
φ (t, t; p) +

h

2
∆+
χ (t, t; p)

])
ϕ(t)

+

∫ t

−∞
dt′Π−sun

φ (t, t′; p = 0)ϕ(t′) = 0. (4.20)

where Π−sun
φ (t, t′; p = 0) is the zero mode of the spatial Fourier transform of

Π−sun
φ (x, y) in Eq. (3.10), which, we recall, is strictly identical to Π−sun

φ (x, y) of
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(3.24). This will come in handy later on in this section. This contribution to

the equation of motion is both coupling constant and loop suppressed, hence we

shall first focus on this line of the equation, which includes the closed one-loop

correction to the equation of motion. In the coupling constant expansion, this

constitutes the leading-order (LO) equation of motion for ϕ and it turns out

to be nothing but the one-loop equation of motion too. As we shall demon-

strate, this readily generates both dissipative effects as well as quantum and

thermal corrections to the tree-level potential, and the friction terms owe their

existence to the nonequilibrium properties of the propagators ∆+
a (t, t; p). The

contribution from Π−sun
ϕ (t, t′; p = 0) will only correct those found at one-loop

and constitutes the next-to-leading (NLO) order equation of motion.

The homogeneous and isotropic Kadanoff-Baym equations (3.4)(3.5) rewrite

(
∂2
t1 + ωa(t1; p)2

)
∆−a (t1, t2; p) =−

∫ t1

t2

dt′Π−a (t1, t
′; p)∆−a (t′, t2; p) ,

(4.21)
(
∂2
t1 + ωa(t1; p)2

)
∆+
a (t1, t2; p) =−

∫ t1

−∞
dt′Π−a (t1, t

′; p)∆+
a (t′, t2; p)

+

∫ t2

−∞
dt′Π+

a (t1, t
′; p)∆−a (t′, t2; p) ,

(4.22)

where we defined the “local” effective time-dependent frequency, function of

the homogeneous background and the local selfenergy

ωa(t; p) =

√
ωtree
a (t; p)2 +

∫
d3q

(2π)3
Πloc
a (t, t; p), (4.23)

with

ωtree
a (t; p) =

√
M tree
a (t)2 + p2, (4.24)

the tree-level frequency which readily includes the feedback of the tree-level

coupling to the condensate ϕ, through the effective masses (3.2).

4.3 Adiabatic solutions of the Kadanoff-Baym
equations

Formal solutions of Eqs. (4.21)(4.22) for the propagators that were outlined in

Ref. [33] is here re-derived in appendix B, using the Wentzel-Kramers-Brillouin
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(WKB) approximation scheme. Dropping the subscripts a for notational sim-

plicity, we find

∆−(t1, t2; p) =
sin
( ∫ t1

t2
dt′ Ω(t′; p)

)
e−

1
2

∣∣ ∫ t1
t2

dt′Γ(t′;p)
∣∣

√
Ω(t1; p) Ω(t2; p)

, (4.25)

∆+(t1, t2; p) =
cos
( ∫ t1

t2
dt′Ω(t′; p)

)
e−

1
2

∣∣ ∫ t1
t2

dt′Γ(t′;p)
∣∣

2
√

Ω(t1; p)Ω(t2; p)

(
1+2f(tB ; p)

)
, (4.26)

where tB = min(t1, t2) is the time for which a Boltzmann equation can be

derived, see appendix B.2. Here the time dependent quasiparticle dispersion

relation Ω(t; p) and width Γ(t; p) are defined through the real and imaginary

parts of Ω̂(t; p) = Ω(t; p)− i
2Γ(t; p), such that

Ω(t; p) = ReΩ̂(t; p), Γ(t; p) = −2ImΩ̂(t; p), (4.27)

where the quasiparticle pole Ω̂ is the solution of the equation

0 = Ω̂2(t,p)− ω2(t,p)− Π̃−(t, Ω̂; p), (4.28)

and ω(t; p) is that of Eq. (4.23). Here we introduced the Laplace transform

Π̃±(t, p0; p) =

∫ ∞

0

dz eizp0Π±(t, t− z; p). (4.29)

For weakly coupled field theories, the so-called narrow width condition is ob-

served Re Π̃− � Im Π̃− and we find the transcendental equations

Ω(t; p) =

√
ω2(t; p) + ReΠ̃−(t, Ω̂; p) , (4.30)

Γ(t; p) = − ImΠ̃−(t, Ω̂; p)

Ω(t; p)
, (4.31)

which relate the quasiparticle dispersion relation and width to real and imag-

inary parts of selfenergies respectively. In particular when time translation

invariance is restored, e.g. for thermal equilibrium situations, it is straightfor-

ward to show that Π̃−(t, p0; p) is precisely the retarded selfenergy ΠR(p0; p)

and one recovers the usual equilibrium relations that define the particle decay

widths and interaction rates [21], as well as the quasiparticle mass shells, in

terms of the retarded selfenergy.

As shown in appendix B.2, the mode-dependent distribution function f(t; p) in

Eq. (4.26) follows a Markovian Boltzmann equation,

ḟ(t; p) = (1 + f(t; p))Γ<(t; p)− f(t; p)Γ>(t; p) (4.32)



4.3. Adiabatic solutions of the Kadanoff-Baym equations 77

where the gain and loss terms Γ≷(t; p) are defined through the relations

Γ = Γ> − Γ<, 2ReΠ̃+(t, Ω̂; p) = −Ω(t; p)(Γ>(t; p) + Γ<(t; p)) . (4.33)

The former of these allows to express the Boltzmann equation (4.32) as

ḟ(t; p) = −Γ(t; p)(f(t; p)− f̄(t; p)) (4.34)

where f̄ is defined by

f̄ = (Γ>/Γ< − 1)−1 . (4.35)

Again, those equations are particularly illuminating in the equilibrium case

where Π̃−(t, p0; p) is the retarded selfenergy ΠR(p0; p), and therefore Γ≶ ∝ Π≶

satisfy the KMS (1.88) or detailed balance relation Γ>/Γ< = eΩ/T , such that

f̄ = fB is the Bose-Einstein distribution. Therefore Γ(t; p) is the interaction

rate that brings the nonequilibrium distribution function f back to its equilib-

rium value f̄ . For readers used to kinetic theory and Boltzmann equations, it

may seem odd that the right hand side of (4.34) only depends linearly on f

while we started out with Z2-symmetric interactions. However, one has not to

forget here that Γ(t; p) is the inclusive thermal damping rate for a quasiparticle

of given momentum, to which all scattering processes and decays in the plasma

contribute, it e.g. includes selfscatterings and is itself a functional of f . When

all loop integrals are properly taken into account, the right hand side of (4.34)

will eventually be at least quadratic in f , as one would clasically expect.

All relations presented here essentially rely on two major assumptions. First,

we assumed that quantum selfenergies Π(t, t′) act as window functions of finite

supports which suppress memory integrals for domains which take either of

the two arguments away from the other by an amount larger than τint. Then,

the WKB Ansatz (4.25) subtly relies on a peaked Breit-Wigner approximation,

which assumes that phase space integrals are primarily dominated by the poles

of the spectral function. A more careful discussion of how good approximations

they are can e.g. be found in Refs. [14, 56].

Adiabatic distribution function. Again using our adiabaticity assump-

tion, we can further simplify the statistical propagator, which we recall is of

uttermost importance to evaluate the one-loop equation of motion for ϕ.

First let us rewrite the Eq. (4.34) as

f(t,p) = f̄(t,p)− ḟ(t,p)

Γ(t; p)
. (4.36)
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Taking an iterative approach to solve this equation, a solution reads

f = f̄ −
˙̄f

Γ
+

¨̄f

Γ2
− Γ̇ ˙̄f

Γ3
+ · · · (4.37)

where · · · includes an infinite series in powers of time derivatives of f̄ . In

an adiabatically evolving background, those are suppressed and we ignore all

terms beyond the second order one to find the approximate solution of (4.34)

f(t,p) ' f̄(t,p)−
˙̄f(t,p)

Γ(t; p)
. (4.38)

This truncation always is justified for a sufficiently large temperature and in

particular in appendix B.4, we show how large the temperature should be for

a field evolving in a harmonic potential. This can be interpreted as

f(t,p) ' f̄(t− 1/Γ(t; p); p) , (4.39)

where 1/Γ plays the role of a delay factor between the distribution functions

of the bath and the one of the system. A more formal but longer proof of this

is presented in appendix B.3. As a final result for this subsection, by plugging

Eq. (4.38) into Eq. (4.26), we get the statistical propagator

∆+(t1, t2; p) '
cos
( ∫ t1

t2
dt′Ω(t′; p)

)
e−

1
2

∣∣ ∫ t1
t2

dt′Γ(t′;p)
∣∣

2
√

Ω(t1; p)Ω(t2; p)

×
(

1 + 2f̄(tB ; p)− 2 ˙̄f(tB ; p)

Γ(tB ; p)

)
. (4.40)

Local thermal equilibrium in a large reservoir. Assuming a local ther-

mal equilibrium, we locally satisfy the KMS or detailed balance condition

Γ>/Γ< = eΩ/T in Eq. (4.35) that go in loop integrals, so as to have f̄(t,p) =

fB(Ω(t; p)) in Eq. (4.40). Therefore, Eq. (4.39) rewrites

f(t,p) ' fB(Ω(t; p))− ḟB (Ω(t; p)))

Γ(t; p)
. (4.41)

We shall be interested in the regime where ḟB(Ω)/Γ in Eq. (4.41) is a small

perturbation, which describes a local quasiequilbrium situation. This is in

particular valid when the time scale 1/Γ(t; p) on which the distribution is

brought to its thermal one is very short. Mathematically, this is stated as

ḟB(Ω)

Γ
. fB(Ω) , (4.42)
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which, we note in passing, is the condition used to derive Eq. (4.38). The factor

ḟB(Ω) is very complicated to deal with in a generic nonequilibrium situation

where many quantities have nontrivial time-evolutions. In a local thermal

equilibrium situation wherein a time-dependent temperature can be defined,

we get for the problem at hand

ḟB(Ω) =
dfB(Ω)

dΩ

dΩ

dϕ
ϕ̇+

dfB(Ω)

dT
Ṫ . (4.43)

Now further assuming that the plasma of χ-particles acts as a large thermal

reservoir of constant temperature, the second term of the previous equation

vanishes and one obtains

ḟB(Ω(t; p)) =
−1

2T (cosh(Ω(t; p)/T )− 1)

dΩ(t; p)

dϕ(t)
ϕ̇(t) . (4.44)

The terms proportional to ϕ̇(t) will give rise to dissipation and are therefore of

great importance. To compute dΩ
dϕ , we focus on the tree level contribution and

neglect that from the self-energy, which is suppressed by an extra power of the

relevant coupling constant, as well as by a loop factor. Using (4.23), we find

dΩa
dϕ
' dΩa
dωa

dωa
dϕ
' ωa

Ωa

gaϕ/2

ω
=
gaϕ

2Ωa
, (4.45)

where gφ = λφ and gχ = h. Using Eq. (4.45) in (4.44), Eq. (4.38) becomes

fa(t,p) ' fB(Ωa(t; p)) +
gaϕ(t) ϕ̇(t)

4T Ωa(t; p)Γa(t; p)
(

cosh
(

Ωa(t;p)
T

)
− 1
) . (4.46)

And finally using Eqs. (4.46) and (4.38), Eq. (4.40) reads (t→ tB)

∆+
a (t1, t2; p) '

cos
( ∫ t1

t2
dt′Ωa(t′; p)

)
e−

1
2

∣∣ ∫ t1
t2

dt′Γa(t′;p)
∣∣

2
√

Ωa(t1; p)Ωa(t2; p)
×


1 + 2fB(Ωa(tB ; p)) +

ga ϕ(tB) ϕ̇(tB)

2T Ωa(tB ; p)Γa(tB ; p)
(

cosh
(

Ωa(tB ;p)
T

)
− 1
)


 .

(4.47)

While the first two terms of this equation correspond to nothing but the quasi-

particle approximation to the equilibrium statistical propagator, the third one

is a purely out-of-equilibrium feature due to the breaking of time translation

invariance from ϕ. Hence, the latter multiplies ϕ̇ and will eventually generate

dissipation. We shall carefully study this in the next section.
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4.4 The leading order equation of motion for
the condensate ϕ

Plugging our approximated statistical propagator of Eq. (4.47) in the leading

order (in the coupling constant) equation of motion for ϕ (3.9), we find

ϕ̈(t) + ϕ̇(t)ΓLO
ϕ + V ′(ϕ) = 0. (4.48)

with

V ′(ϕ) = m2
φϕ(t)+

λφ
6
ϕ(t)3+

∑

a=φ,χ

gaϕ(t)

2

∫
d3p

(2π)3

(1 + 2fB(Ωa(t; p)))

2Ωa(t; p)
, (4.49)

where gφ = λφ and gχ = h , and with

ΓLO
ϕ =

∑

a=φ,χ

g2
aϕ(t)2

8T

∫
d3p

(2π)3

1

Ωa(t; p)2Γa(t; p)
(

cosh
(

Ωa(t;p)
T

)
− 1
) . (4.50)

This last equation is precisely the result of (4.18) which was obtained from the

Markovian method described in chapter 2. Here, we have derived it from the

WKB for the propagators, and have particularised it to the two-real-scalar the-

ory (3.6) and have provided the defining equations for the effective dispersion

relations (4.30) and widths (4.31). These last two ingredients are the remaining

unknowns to be evaluated before having finally derived the master equation for

an adiabatically evolving condensate.

4.4.1 The effective frequency and effective potential

The effective frequencies are determined from the Kadanoff-Baym equations

(4.21) and (4.22) which yield Eq. (4.30), that is

Ω2
a(t; p) = ω2

a(t; p) + ReΠ̃−a (t, Ω̂; p), (4.51)

where ω2
a(t; p) is the effective frequency which gets quantum and thermal cor-

rections from the tree-level and local selfenergy insertions, cf. Eq. (4.23). These

equations, together with the effective potential (4.49), namely

V ′(ϕ) = m2
φϕ(t)+

λφ
6
ϕ(t)3+

∑

a=φ,χ

gaϕ(t)

2

∫
d3p

(2π)3

(1 + 2fB(Ωa(t; p)))

2Ωa(t; p)
, (4.52)
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form a set of divergent transcendental equations that ought to be renormalised

selfconsistently, accounting for the presence of time-dependent divergences, be-

cause of the time-dependence of a priori both the temperature and the back-

ground condensate. In Appendix C, we explicitly solve the relevant leading-

order one-loop integrals and selfconsistently renormalise the effective frequen-

cies and potential. The time-dependent divergences of the Kadanoff-Baym

equations fix all counterterms of the effective potential but both conspire to

simultaneously be finite at all times. In Appendix C, we provide expressions

for all counterterms and for the finite effective frequencies and potential, im-

posing renormalisation conditions at arbitrary temperature T0, background ϕ0

and renormalisation scale2 µ, e.g. cf. Eq. (C.32), such that the Lagrangian

parameter ma = mphys
a (ϕ0, T0) is the physical mass of particle excitations of

species a = φ, χ. While this numerically avoids the presence of large loga-

rithms, the expressions are analytically on the longer side of the spectrum and

the physical origins of the different terms are less isolated. Therefore, we here

only present the effective frequency and potential renormalised at vanishing

temperature and background, which, neglecting finite terms from the one-loop

crab diagrams, read

Ω2
a(t; p) = p2 +m2

a +
ga
2
ϕ2(t) + T 2

∑

b=φ,χ

cabFb(t) (4.53)

+
∑

b=φ,χ

cab
2(4π)2

(
M2
b (t) ln

(
Mb(t)

2/µ2
)
−m2

b ln
(
m2
b/µ

2
))
,

V ′(ϕ) = m2
φϕ(t) +

λφ
6
ϕ3(t) + ϕ(t)T 2

∑

a=φ,χ

gaFa(t) (4.54)

+ ϕ(t)
∑

a=φ,χ

ga
2(4π)2

(
M2
a (t) ln

(
Ma(t)2/µ2

)
−m2

a ln
(
m2
a/µ

2
))
,

and ma = mphys
a is the vacuum physical mass for particle excitations of the field

species a. Here we have introduced gφ = λφ, gχ = h and cab a 2× 2 matrix of

couplings such that caa = λa and cab = h, cf. (3.13)(3.14). The time-dependent

effective mass Ma(t) takes the generic form

M2
a (t) = m2

a,r +
ga
2
ϕ2(t) + T 2

∑

b=φ,χ

cabF
tree
b (t) , (4.55)

with the time-dependent function

F tree
b (t) =

1

(2π)2

(
Li2

(
e−M

tree
b (t)/T

)
− M tree

b (t)

T
log
(

1− e−Mtree
b (t)/T

))

2We keep the renormalisation scale as an arbitrary parameter µ in the equations but

whenever needed for plots or numerical analysis, we take µ2 = m2
φ/e such that lnm2

φ/µ
2 = 1.
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(4.56)

and identically without the “tree” superscript. The latter is an estimate of

the finite-temperature tadpole, 1
T 2

∫
d3q

(2π)3
fB(ωtree

b (t;q))
ωtree
b (t;q)

which is commonly en-

countered in field theory [21], cf. Eq. (C.28). Our analytic approximation

exactly interpolates the low temperature M tree/T � 1 and high temperature

limit M tree
b /T → 0 for which the standard result is known in the literature

F |Mtree
b /T→0 = 1/24 [21], with a maximal 15% error in the (narrow) interme-

diate regime where the field-dependent mass and temperature are comparable.

Defining Ω2
a(t; p) = p2 + M eff

a (t)2, we have a definition for a physical, quasi-

particle effective mass given by the following expression

M eff
a (t)2 = m2

a +
ga
2
ϕ2(t) + T 2

∑

b=φ,χ

cabFb(t) (4.57)

+
∑

b=φ,χ

cab
2(4π)2

(
M2
b (t) ln

(
Mb(t)

2/µ2
)
−m2

b ln
(
m2
b/µ

2
))
,

which will be plugged in the loop integrals to evaluate the particle thermal

widths (4.31) that feed into the condensate damping rate (4.50).

In Fig. 4.1 we depict the effective force V ′(ϕ) as a function of the background ϕ

for various temperatures. We used a logarithmic scale on both axis to carefully

display the role of the temperature in the low field regime, and the deviation

from the polynomial behaviour in the intermediate regime where the temper-

ature T is comparable to the background ϕ. In the large field regime, the

temperature is negligible and all cases collapse onto one single value, that of

the large-field-valued potential. This qualitative behaviour is independent of

the choice for the couplings but the plot was made for λφ = 10h = 10λχ,

because this case study will be shown to be of greater relevance shortly.

In Fig. 4.2 we depict the effective force V ′(ϕ) normalised to its classical counter-

part mφϕ+λφϕ
3/6 as a function of the background ϕ for various temperatures.

Again, the logarithmic scale on both axis clearly shows that thermal corrections

matter when T > ϕ. In the large field regime, they can however be neglected,

and the larger ϕ, the less important the quantum and thermal corrections, and

both the effective and classical forces eventually equate. Again, this qualitative

behaviour is independent of the choice for the couplings, and the plot was made

for λφ = 10h = 10λχ, because it will be shown of greater relevance shortly.
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Figure 4.1: The effective force V ′(ϕ) of Eq. (4.54) vs. the background field

ϕ, both normalised to the mass mφ, and for various temperatures, with a

logarithmic scale on both axis.
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Figure 4.2: The effective force V ′(ϕ) of Eq. (4.54) normalised to its classical

counterpart mφϕ+ λφϕ
3/6 vs. the background field ϕ and for various temper-

atures, with a logarithmic scale on both axis.

4.4.2 The leading order thermal width Γ(t; p)

Let us determine the leading order thermal width Γ(t; p) defined via Eq. (4.31).

Again, this a priori constitutes a very complicated transcendental equation.
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We shall simplify the right hand side of the equation as follows. First, we shall

employ zero-width propagators evaluated at the one-loop effective frequency

(4.53) which includes both the leading-order condensate backreaction and tem-

perature corrections. Second, and only within loop integrals, we shall assume

that ϕ is constant and evaluated at the time t which is set by the time we

evaluate Γ(t; p) at. We denote this value of ϕ as ϕ(t) = ϕ̄. This is justified

because selfenergies act as window functions of finite supports which widths is

some positive power of τint and because all along this chapter, ϕ was assumed

to vary slowly with respect to that time scale. Under these approximations,

time translation invariance is restored under loop integrals and our WKB prop-

agators (4.25)(4.26) are only a function of z = t1 − t2

∆̄−(t1, t2; p) ' sin
(
Ω̄(p)z

)

Ω̄(p)
, ∆̄+(t1, t2; p) ' cos

(
Ω̄(p)z

)

2Ω̄(p)

(
1+2fB(Ω̄)

)
.

(4.58)

We emphasise that the use of these propagators restores time translation in-

variance, and therefore Π̃−(t,Ω; p) = ΠR(Ω,p) is precisely the four-dimensional

Fourier transform of the retarded selfenergy, and therefore 2iImΠ̃−(t, Ω̂; p) =

Π−(p) where Π−(p) is the four-dimensional Fourier transform of those spectral

selfenergies of Eqs. (3.13)-(3.18), which we shall compute using the aforemen-

tioned WKB propagators. Under all these assumptions, we therefore find

Γa(t; p) ' − Π̄−a (Ω̄a; p)

2iΩ̄a(p)
, (4.59)

where Ωa is defined in Eq. (4.53) and the overbar notation designates that all

occurencies of ϕ are to be evaluated at a constant ϕ̄ = ϕ(t) in loop integrals, as

explained above. Π−a gets a contribution from the crab and the sunset diagrams

separately, see Eqs. (3.13)-(3.18). Therefore we split

Γa(t; p) = Γcrab
a (t; p) + Γsun

a (t; p) (4.60)

and we now focus on these separate contributions. The cuts through both

are depicted in Fig. 4.3. The crab widths are associated with ϕ-enhanced

φ↔ χχ (inverse) decays and the sunset ones with finite-temperature aa↔ bb

scatterings, with a, b = φ, χ.
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× ×

Figure 4.3: Cutkosky cuts through the crab and sunset selfenergies for χ-

particles. Similar diagrams can be drawn for the φ-case.

The crab widths. We evaluate the crab widths in appendix D and get

Γcrab
χ (t; p) = θ(M̄φ − 2M̄χ)

h2T ϕ̄2

16π|p|Ω̄χ(p)
log

(
fB(ω−χφ)fB(ω+

φχ)

fB(ω+
χφ)fB(ω−φχ)

)
,

(4.61)

Γcrab
φ (t; p) = θ(M̄φ − 2M̄χ)

h2T ϕ̄2

32π |p| Ω̄φ(p)
log

(
fB(ω−φ )fB(−ω−φ )

fB(ω+
φ )fB(−ω+

φ )

)
,

(4.62)

with

ω±χφ =
(M̄2

φ − 2M̄2
χ)
√
|p|2 + M̄2

χ ± |p|M̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
χ

, (4.63)

ω±φχ =
M̄2
φ

√
|p|2 + M̄2

χ ± |p|M̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
χ

, (4.64)

ω±φ =
M̄2
φ

√
|p|2 + M̄2

φ ± |p|M̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
φ

. (4.65)

Here the overbarred masses are those effective masses from (4.57) where their

time-dependence is evaluated at the reference time t for which ϕ(t) = ϕ̄, i.e.

M̄a = M eff
a (t). The Heaviside step function θ(M̄φ − 2M̄χ) is nothing but

the kinematic threshold for the on-shell decays and annihilations φ ↔ χχ

from the Cutkosky cuts through the crab diagram, as depicted in Fig. 4.3.

Cut lines can be reoriented at finite temperature. In contrast to (4.61) which

corresponds to the annihilation rate, the creation rate (4.62) is non-vanishing

at zero temperature and reads

lim
T→0

Γcrab
φ = θ(M̄η − 2M̄χ)

h2ϕ̄2

32π Ω̄φ(p)

√
1− 4M̄2

χ

M̄2
φ

, (4.66)

which is the vacuum result for the decay rate of φ→ χχ, cf. Eq. (D.27).
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While the above finite temperature crab widths are known in the context of

triscalar interactions with dimensionful couplings, see e.g. [71], they are very

much less so when they are obtained from a time-dependent condensate-induced

vertex, as it is the case here. In that sense, our results are qualitatively new and

as a matter of fact, these contributions to the particle widths have been ommit-

ted in the literature in multiple occasions. For instance, see e.g. Ref. [62] where

they perform a similar analysis to the one presented here, except it is using

the 1PI effective action. More interestingly, and again using the 1PI formal-

ism, the state-of-the-art analytic investigation on the feasibility of two-scalar

warm inflation [17] also misses that contribution. Therefore, it goes without

saying that it is of great interest to understand the parametric regimes where

the crab widths prevail, as those will potentially contain qualitatively different

results than [17, 62]. Once identified, we will particularise the discussion to

those regimes where the crab widths dominate.

In order to maximise the effects of the crab widths, they better be kinematically

allowed to start with, and we want θ(M̄η − 2M̄χ) = 1. A priori, we have a 5-

dimensional space for the Lagrangian parameters, namely {mφ,mχ, λφ, λχ, h},
hence leading to a rich phenomenology as ϕ and T evolve and feed in the

quantum corrected masses (4.57).3

For the problem at hand, we want to find model parameters that maximise the

impact of the crab widths over a wide range of temperature and background

elongations. As far as θ(M̄η−2M̄χ) is concerned, numerically scanning through

our 5-dimensional parameter space, we see that maintaining θ(M̄η − 2M̄χ) = 1

requires

mφ & 2mχ, λφ & 4.1h, h = λχ. (4.67)

The important point here is that when λφ falls below 4.1h, then, at fixed

temperature, the kinematic condition Mφ > 2Mχ is not always fulfilled and

the transition happens between 4h < λφ < 4.1h.

When T and ϕ are large, they effectively make the bare masses irrelevant, and

we shall always pick mφ/mχ = 102 in this work, which by the way satisfies

(4.67). This choice is motivated by inflationary cosmology where the heavy

inflaton decays into radiation. Nevertheless, we emphasise that this will not

3For instance, one could e.g. imagine that mχ � mχ and λφ = λχ > h such that

θ(M̄η − 2M̄χ) = 1 only once we go beyond a certain value for ϕ. One could even potentially

imagine pathological situations where the kinematic window M̄η − 2M̄χ > 0 is open to start

with, then closes and reopens again, as T and ϕ evolve. These cases would clearly display

the discontinuous nature of the crab width, due to the kinematic thresholds associated with

the (inverse) decays φ↔ χχ.
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have much influence on θ(M̄η − 2M̄χ) as once T or ϕ become somewhat sig-

nificant, say e.g. T/mφ = ϕ/mφ = 10, then the vacuum masses barely affect

the effective ones. That said, we are effectively left with 3 parameters, namely

{λφ, λχ, h} and we conclude that in order for our crab width to contribute to

start with, (4.67) is a necessary condition. Then comes the question whether

or not it is a significant contribution to the full thermal width (4.60). In order

to try and understand this, we must first evaluate the second term of (4.60),

namely the sunset widths.

The sun widths. The contribution from the sunsets to the thermal width

(4.60) were evaluated in [17,62,76] in the large temperature (vs. thermal mass)

regime, T �Ma, for a = φ, χ and they read

Γsun
a (t; p) =

(
λ2
a + 3h2

)
T 2

1536πΩ̄a(p)
. (4.68)

Those do not involve kinematic thresholds as the finite temperature Cutkosky

cut lines can be reoriented, and for the sake of the sunset diagrams, those

correspond to aa ↔ bb scatterings which are always allowed. This is a pure

finite temperature effect and as a matter of fact, in vacuum, the sunset widths

would vanish because a particle cannot decay into one of its peers, plus two

other particles. Therefore, it is well justified to only evaluate the sunset widths

when T � Ma, since they are exponentially Boltzmann suppressed otherwise,

as thermal effects always are. For this reason, even though our analytic ap-

proximation T � Ma breaks down at some point, we expect that our results

can be extrapolated to beyond T � Ma by interpolating our solution with a

Boltzmann-suppressed decaying exponential. Eventually, note that the 1/Ωa
factor is physically well-posed to. It indicates that in its rest frame, a particle

has a shorter life time. This is due to nothing but relativistic time dilation.

Comparing the crab and sunset widths. It is now interesting to try

and compare the parametric dependence of Γcrab
φ vs. Γsun

φ , as functions of the

temperature and the background field. These of course can only be compared

if Γcrab
φ , or φ→ χχ is not kinematically forbidden to begin with. Therefore, we

shall choose model parameters that ensure Mφ > Mχ, cf. (4.67). In Figs. 4.4

and 4.5 we depict Γcrab
φ and Γsun

φ as functions of ϕ, both normalised to mφ =

102mχ, for various temperatures, and for a reference momentum4 |p| = 〈|p|〉 '
4We chose it to be the statistical average momentum 〈p〉 for a massive scalar, which

can be evaluated numerically, and for any mass or temperature with m < T , lies within

〈p〉 ∈ [2.7T, 3T ]. This choice is justified for two reasons. First because this tells us what
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3T , respectively for λφ/λχ = λφ/h = 10 and for λφ/λχ = λφ/h = 102, chosen

to ensure Mφ > 2Mχ at all times.
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Figure 4.4: The widths Γcrab
φ and Γsun

φ normalised to the mass mφ vs. the back-

ground field ϕ with a logarithmic scale on both axis, for various temperatures

and for the parameter hierarchy λφ/λχ = λφ/h = 10. The Γsun
φ lines go from

solid to dashed styles when the approximation T > Mφ breaks down.

These figures display precisely what we expect from just glancing at the para-

metric dependence of Γcrab
φ (cf. Eq. (4.62)) and Γsun

φ (cf. Eq. (4.68)). For low

field values versus the temperature, the sun width dominates but as ϕ increases

Γcrab
φ becomes larger than Γsun

φ , primarily because its vertices are ϕ-enhanced.

The crab width grows polynomially, as a straight line on the logarithmic scale,

as expected from Eq. (4.62), except for the intermediate regime where T and

ϕ are comparable. Eventually, all lines collapse to the large-field-valued crab

width. Closely looking at Eq. (4.62), only the temperature dependence may

be suprising as it decreases with T . This is because we chose |p| ' 3T such

that T/|p| in Eq. (4.62) is constant, and the overall crab width decreases as T

grows, because of the remaining 1/Ωφ factor.

The sun width decreases polynomially with ϕ, as expected from the 1/Ωφ in

Eq. (4.68), though once it becomes dashed, it should actually be more abrupt,

is the crab-lifetime of most particles, since those have momentum 〈p〉. Second, because we

know that the widths evaluated in this section are meant to be plugged in the condensate

damping rate Eq. (4.50). Its integrand is peaked around p ' 3T , because of the hyperbolic

cosine, which is nothing but a remnant of the Bose-Einstein distribution.
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Figure 4.5: The widths Γcrab
φ and Γsun

φ normalised to the mass mφ vs. the back-

ground field ϕ with a logarithmic scale on both axis, for various temperatures

and for λφ/h = 102. The Γsun
φ lines go from solid to dashed styles when the

approximation T > Mφ breaks down.

if not exponentially Boltzmann suppressed. When this suppression starts, the

crab widths should always dominate because those are not suppressed.

Comparing Figs. 4.4 and 4.5, we see that increasing λφ has two major conse-

quences. First, it increases Mφ and the approximation T > Mφ on which Γsun
φ

relies, breaks down quicker. Second, it drastically increases the value of ϕ for

which Γsun
φ becomes subdominant. This is not a problem when h/λφ = 10,

i.e. for Fig. 4.5 because the approximation breaks down when the sunset con-

tribution is subdominant. Actually in that case, the presence of the crab width

even extends the range of validity of the analytic formula for our total width

(4.60) to any value of T . Even more so because when the lines go dashed, they

should be exponentially suppressed. However, it is an issue when h/λφ = 102,

precisely because the contrary is observed. Therefore, in order to maximise

the effect of the crab widths, and in order to extend the range of validity of

our (4.60) to beyond the T > Mφ regime, we shall pick h/λφ ' 10 for the

remainder of this work.

That said, let us now move on to the computation of the condensate damping

rate (4.50), which is the final quantity that we are after in this work, and the

one that plays the most important role when it comes to the feasibility of warm

inflation models.
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4.4.3 The leading-order damping rate of the condensate

Let us recall our master formula for the leading order damping rate of the

condensate (cf. Eq. (4.50)), the latter reads

ΓLO
ϕ =

∑

a=φ,χ

g2
aϕ(t)2

8T

∫
d3p

(2π)3

1

Ωa(t; p)2Γa(t; p)
(

cosh
(

Ωa(t;p)
T

)
− 1
) (4.69)

where gφ = λφ and gχ = h, and with our approximate Ωa and Γa which

respectively are to be found in (4.53) and (4.60). We now are in a good position

to evaluate it. Temporarily forgetting about the obvious time and momentum

dependencies, it reads

ΓLO
ϕ =

∑

a=φ,χ

g2
aϕ(t)2

8T

∫
d3p

(2π)3

1

Ω2
a (Γcrab

a + Γsun
a ) (cosh (Ωa/T )− 1)

, (4.70)

where analytic expressions for the crab and sun widths are to be found in the

previous section 4.4.2. Unfortunately, the integral in (4.70) cannot be evaluated

analytically in the more interesting case where the crab widths or φ↔ χχ are

kinematically allowed.5

Therefore, let us solve the integral numerically and display in Fig. 4.6 the

results under the hierarchy λφ/h = λφ/λχ = 10 and mφ/mχ = 102.

First and quite importantly, note the absence of dashed lines because the sunset

diagram is subdominant when its analytic approximation is not longer valid,

cf. Fig. 4.4, and the presence of the crab width enhances the range of appli-

cability of our analytic results. For low field values, the friction rate displays

a polynomial dependence on the background field, as expected from the ϕ2 of

Eq. (4.70). This is also confirmed by Fig. 4.4, because for those values, the crab

has not yet kicked in and the sunset width primarily dominates the integrand.

For very large field values, the damping rate abruptly drops down. This is

due to a Boltzmann exponential suppression because of the hyperbolic cosine

in the denominator of the integrand of Eq. (4.70). The value of ϕ for which

the Boltzmann suppression occurs increases with the temperature. Eventually,

we shall comment on the wavy features in the intermediate regime. Those are

best understood by studying separately the cases when the crab width is and

is not accounted for in the denominator of (4.70). In Fig. 4.7, we depict the

leading-order damping rate (4.70), comparing the previous case of Fig. 4.6 and
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Figure 4.6: The condensate friction rate ΓLO
ϕ of Eq. (4.54) vs. the background

field ϕ, both normalised to the mass mφ, and for various temperature with

logarithmic scales on both axis, with λφ/λχ = λφ/h = mφ/mχ = 102.
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Figure 4.7: The condensate friction rate ΓLO
ϕ of Eq. (4.54) with (solid) and

without (dotted) the crab width vs. the background field ϕ, for various tem-

peratures with logarithmic scales on both axis, with λφ/h = mφ/mχ = 102.

its counterpart where we by hand removed the contribution of the crab width

in (4.70), for the same choice of couplings and two distinct temperatures.

5When they are not, our results precisely reproduce those of [62] and we shall not repeat

their analysis.
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Here a few comments are in order. First, it has now become clear that the

wiggly features of Fig. 4.6 are to be attributed to the crab widths. The latter

lower the full damping rate by increasing the denominator of the integrand of

Eq. (4.70), and the lower the temperature, the lower the field value for which the

crab widths matter. To the best of our knowledge and due to the kinematic

nature of the crab widths, we believe that the somewhat narrow downward

peaks correspond to momentum-dependent kinematically favoured phase space

factors that open and close. The finite-temperature kinematic windows are

hard to read from e.g. Eq. (4.62) because they are hidden in the logarithms

of those expressions. Comparing Figs. 4.6 and 4.7, we see that when it is

not Boltzmann suppressed, the crab width dominates in the intermediate and

large-ϕ side of the spectrum (see Fig. (4.4)) and indeed significantly enhances

the denominator of our condensate damping rate, hence significantly lowering

the latter by several orders of magnitude. This closes the discussion about the

numerical integration of (4.69).

4.5 The NLO equation of motion

The leading-order equation of motion (4.48) gets corrected by the two-loop

term that is present in (4.20), namely

∫ t

−∞
dt′Π−sun

φ (t, t′; p = 0)ϕ(t′), (4.71)

and Π−sun
φ is given in Eq. (3.10). We can use the slow-roll approximation

ϕ(t′) ' ϕ(t) + (t − t′)ϕ̇(t) to Markovianise this term, and the associated cor-

rections to V ′(ϕ) and Γϕ read

V ′sun(ϕ) = ϕ(t) ReΠ̃sun
φ (t, ω = 0; p = 0) , (4.72)

Γsun
ϕ = − lim

ω→0

ImΠ̃−sun
φ (t, ω; p = 0)

ω
. (4.73)

Using diagrammatic arguments, we can see that V ′sun(ϕ) will not qualitatively

affect the functional shape of the leading order V ′(ϕ) (4.54), rather it will only

merely shift the leading order “coefficients of the polynomial expansion”, in

a parametrically supressed manner. Hence, it shall be neglected and we shall

just keep (4.54) as our final effective potential. However, using diagrammatic

arguments again, Γsun
ϕ is expected to change the qualitative behavior6 of the

6This is best understood when we realise that the integrals to be solved are very similar

to those that determine (4.68) and therefore should go like limp→0 T 2/Ω = T 2/M .
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full ΓNLO
ϕ = ΓLO

ϕ + Γsun
ϕ , though the former is suppressed by both the loop

and coupling constant expansions. The friction rate Γsun
ϕ which arises from the

selfinteracting λφφ
4/4! and biscalar hφ2χ2 sunset diagrams was studied in the

past, see e.g. Ref. [62], wherein they obtained the following high T result7,8

Γsun
ϕ ' h2 T 2

(4π)3Ma
log

(
Ma

Mb

)
, for T �Ma �Mb and a 6= b. (4.74)

Note the similar structure to (4.68) which simply is due to the fact that the

selfenergy that are computed to evaluate the friction rate Γsun
ϕ (4.73) vs. the

thermal width Γsun
φ (4.31) are strictly equivalent, cf. the discussion below (3.10).

Actually, the same arguments regarding the range of applicability of (4.68)

apply to (4.74). We can slightly extrapolate it and for large ϕ, it should be

exponentially suppressed. Also, note that this NLO contribution to the field

damping rate was not studied in Ref. [17], and therefore it will be interesting

to see its implications for warm inflation, as we shall do in the next chapter.

In Fig. (4.8), we depict the sunset friction rate Γsun
ϕ as a function of the back-

ground field ϕ, for various temperatures and for the more interesting case where

φ→ χχ is kinematically allowed, i.e. when λφ/h = 10 = λφ/λχ.

As expected from Eq. (4.74), it grows with the temperature, decreases with

the background field, and nonpolynomial behaviours are encountered in the

intermediate regime where ϕ ' T .

At this stage, the full next-to-leading order (NLO) friction rate and effective

potential therefore read

V ′(ϕ) = m2
φϕ(t) +

λφ
6
ϕ3(t) + ϕ(t)T 2

∑

a=φ,χ

gbFb(t) (4.75)

+ ϕ(t)
∑

a=φ,χ

gb
2(4π)2

(
M2
b (t) ln

(
Mb(t)

2/µ2
)
−m2

b ln
(
m2
b/µ

2
))

ΓNLO
ϕ = ΓLO

ϕ + Γsun
ϕ (4.76)

=
∑

a=φ,χ

g2
aϕ(t)2

8T

∫
d3p

(2π)3

1

Ω2
a (Γcrab

a + Γsun
a ) (cosh (Ωa/T )− 1)

+ Γsun
ϕ

7For vanishing external four-momenta, the two-to-two scatterings aa ↔ bb that are de-

scribed by the imaginary sunset diagrams are nothing but the (inverse) decays a → bb or

b→ aa. Therefore, that contribution is kinematically forbidden for selfinteractions.
8Later we will see that this analytic approximation is more than sufficient because the

moment it breaks down takes place in a regime where this term is suppressed by multiple

orders of magnitude anyway, cf. Fig. 4.9.
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Figure 4.8: The damping rate Γsun
ϕ of Eq. (4.74) vs. the background field ϕ,

both normalised to the mass mφ, for various temperatures and with logarithmic

scales on both axis. Choices for the model parameters are identical to Fig. 4.6

and lines go from solid to dashed when the assumption T > Ma breaks down.

where the time- and temperature-dependent frequencies Ωa and masses Ma are

respectively given in Eqs. (4.53)(4.57) and ΓLO
ϕ is the leading order friction rate

which was derived in Eq. (4.70), where the thermal widths that appear in its

denominator are given in Eqs. (4.61)(4.62)(4.68) and Γsun
ϕ was just derived in

Eq. (4.74). In Fig. 4.9, we separately depict the background field dependence of

the two contributions to the NLO damping rate (4.76) for various temperatures

and for the more interesting case where λφ/h = λφ/λχ = 10 and mφ/mχ = 102.

In Fig. 4.9, we can clearly recognise the separate contributions from the leading-

order ΓLO
ϕ of Eq. (4.70) and Fig. 4.6 and that of Γsun

ϕ of Eq. (4.74) and Fig. 4.8.

The growing upper lines are the LO damping rates and the decreasing lower

ones, which go from solid to dashed when the assumption T > Ma breaks

down, are the sunset damping rates. Even though the latter are parametrically

suppressed, they strongly dominate the former in the T � ϕ regime. Then,

the LO damping prevails whenever the background field is somewhat significant

(even when ϕ is two orders of magnitudes smaller than T , because of the loop

and coupling constant suppression of the NLO term ∼ h2), up until it gets

exponentially Boltzmann suppressed in the very large field limit. Remember

that Γsun
ϕ ought to be Boltzmann suppressed, too, such that in that regime,
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Figure 4.9: The separate contributions to the damping rate ΓNLO
ϕ vs. the back-

ground field ϕ, both normalised to the mass mφ, for various temperatures and

with logarithmic scales on both axis. Choices for the model parameters are

identical to Fig. 4.6 and again, the Γsun
ϕ lines go from solid to dashed when the

assumption T > Ma breaks down.

there is no more condensate damping rate whatsoever, everything is Boltzmann

suppressed.

Armed with those expressions, interpretations and knowledge, we are now

in good position to question the feasibility of warm inflation within our Z2-

symmetric two-real-scalar model.
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Chapter 5
On the feasibility of warm
inflation

In this chapter, we review and introduce the main ingredients to understand

the need for (warm) inflation models as solutions of the isotropy, homogene-

ity, flatness and horizon problems [8] of hot big-bang cosmologies, both from

a theoretical and observational perspective. Then, we shall describe how the

feasibility of inflation models can be examined via the so-called slow-roll pa-

rameters. Eventually, we shall particularise the discussion to the Z2-symmetric

scalar theory studied in the previous two chapters to comment on their viability

as warm inflation candidates.

5.1 Observational evidence for non-standard cos-
mology and possible explanations

As a matter of fact, the observational evidence which call for inflation are

numerous and rather compelling. They mostly come from measurements of

the Cosmic Microwave Background (CMB) temperature power spectrum [1,

9, 77, 78]. That is, the temperature power spectrum of the oldest photons

we can detect, dating from a time where the Universe had cooled enough so

that neutral elements formed and photons no longer scattered. Of particular

relevance for this work are the following properties of our Universe:

• The spatial curvature of the observable Universe is flat.

97



98 Chapter 5. On the feasibility of warm inflation

• The angular temperature distribution across the sky is almost homoge-

neous and isotropic, up to tiny distortions across the entire spectrum of

wavelengths and in particular, super-Hubble modes1 are primarily ob-

served in the CMB.

• The spectrum is nearly scale invariant, i.e. there are almost as many

large-wavelength fluctuations as short-wavelength perturbations, with a

red tilt.

• The fluctuations are nearly Gaussian, i.e. their amplitudes follow a Gaus-

sian distribution eS , where S is at most quadratic in the fluctuations. As

a result, n-point functions in the power spectrum are in good approxima-

tion entirely determined by the 2-point functions.

On top of these, the fluctuations are consistent with the hypothesis that they

were solely sourced by adiabatic/curvature perturbations, i.e. primordial total

density perturbations, which eventually equally perturb all species that consti-

tute the cosmological fluid2. Although these have been known for long [78–80],

they were more accurately re-discovered and precisely measured by the space-

based Planck mission in 2013 [9, 77], and the associated full-sky map of the

(CMB) power spectrum, cf. Fig. 5.1.

These peculiarities of our Universe cannot be understood within standard cos-

mology and they actually all eventually tie to one of the aforementioned three

problems of the standard model of cosmology. Therefore, the latter needs to

be supplemented by other mechanisms such as cosmic inflation [8] to try and

describe those phenomena theoretically.

5.1.1 A simple solution to all problems: cosmic inflation

Cosmic inflation is a simple field-theoretical extension of standard cosmology

which naturally accounts for the aforementioned yet-to-be-understood features

of our Universe. In its simplest form, it is realised by one (or several) homoge-

neous scalar field φ, the inflaton, of canonical action S[φ], which rolls down the

slope of its potential. For inflation to occur, the scalar potential energy ought

to dominate the energy density of the Universe and its kinetic energy ought to

1Fluctuations which wavelengths exceed the Hubble radius, the distance beyond which

objects receed from an observer at a rate faster than the speed of light [1].
2In contradistinction, isocurvature perturbations only excite certain number densities at

constant total energy density.



5.1. Observational evidence for non-standard cosmology and possible explanations99

Figure 5.1: Full-sky measurement of the CMB temperature power spectrum –

T = 2.726± 10−5K – Planck Mission 2013 results [9].

be subdominant, too. This realises a negative equation of state obtained from

the scalar energy-momentum tensor Tµν as

Tii
T00

=
P

ρ
' −1. (5.1)

The latter in turn triggers an ongoing phase of quasi-exponentially acceler-

ated expansion of the Universe, which, provided that it lasts for long enough,

explains the flatness, homogeneity and isotropy and horizon problems of the

observable Universe [1,8]. By inflating the scale factor, or the radius of the Uni-

verse, by multiple orders of magnitude, the spatial curvature of the Universe is

flattened and unseen by an observer which lives in the inflated Universe, just

as an ant cannot see the curvature of the earth (flatness problem). Then, it

effectively wipes out any matter content in the Universe by diluting it away

(homogeneity and isotropy problem). Eventually, it widens the past horizons,

hence causally reconnecting structure that would otherwise be disconnected

(horizon problem). This phase is commonly referred to as slow-roll inflation,

wherein the inflaton must slowly roll down, so as to make it stay sufficiently

long at the large-valued side of its potential, where it dominates the energy

density of the Universe. As explained in more detail in the introduction, to
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the best of our knowledge, there are only two distinguished ways of ensuring

that the duration of the inflationary era is long enough. It is either enforced

by the flatness of the potential, as was originally proposed in the commonly-

accepted standard paradigm [8], or it is dissipation-enforced via quantum and

thermal interactions of the inflaton, as was more recently proposed in the the-

ory of “Warm Inflation” [5]. In this thesis, we are particularly interested in the

scenario where thermal effects alone enforce the slow-rolling of the field, the

potential need not be flat whatsoever.

As we shall explain in detail now, be it cold or warm, inflation naturally enforces

the CMB temperature power spectrum perturbations to be adiabatic and scale

invariant, and made of super-Hubble modes distributed according to a Gaussian

statistics. In the framework of cosmological perturbations [1], the latter are

sourced by the scalar quantum fluctuations δφ through metric perturbations

in the Einstein equations (which we review in section 6.2), via the associated

perturbed energy-momentum tensor δTµν . By virtue of φ being a canonical

scalar, it is well known [1] that its quantised mode functions in an inflating (de

Sitter) background evolve as follows:

• Sub-Hubble modes oscillate as their wavelengths are stretched with the

expansion of the Universe, until they all eventually become super-Hubble.

• Super-Hubble modes behave as a classical stochastic background noise

which amplitudes are distributed according to the nearly Gaussian statis-

tics eS[φ], up to corrections from quantum interactions.

Therefore, the associated power spectrum of two-point correlation functions is

nearly scale-invariant and Gaussian, and since they solely source CMB fluc-

tuations through Tµν , they are automatically adiabatic, too. Here, note that

quantum corrections may be a source of non-Gaussianities, but these are highly

suppressed during standard inflation because the associated potentials are typ-

ically very flat and interactions are negligible3.

While this so far sounds ideal as far as cosmological problems are concerned

and despite its many successes, cosmic inflation of course has its shortcomings.

Despite not everybody agrees on what is a problem and what is not, here we

list a few that are considered issues in the community, at least by the critics

of inflation. First, cosmic inflation does not provide a complete history of the

3Since warm inflation potentials in principle need not be flat, if a model of warm inflation

were shown viable at the background level, it would be very interesting to study whether

it releases sizeable non-Gaussianities in the CMB power spectrum, which would potentially

make it observationally distinguishable from other models of inflation, as was e.g. claimed

in [81–83].
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Universe. One may still ask the questions: What happened before? How did

it start? Not only that, but also one can formally prove that ever-expanding

spacetimes must have an initial spacetime singularity [84, 85]. It goes without

saying that many complicated physical and philosophical questions tie to this

singularity, starting with the question of the origin of time and space itself.

Second it is also proven that successive quantum fluctuations during inflation

may in some places in the Universe be so large that inflation would actually

never stop there, leading to runaway behaviours and eternal inflation [86, 87].

Hence, ever-inflating causally disconnected patches or multiverses are created.

To these eternally-inflating bubbles are associated divergences [88] which come

from nothing but the ever-growing sizes of these Universes and the associ-

ated volume integration measures. According to [89], when these cannot be

regularised, the theory loses its prediction power. Another complication as-

sociated with the magnitude of certain quantum fluctuations is known as the

trans-Planckian problem for cosmological fluctuations [90]. It is stated as fol-

lows. If inflation lasted slightly longer than its minimal duration, then, taking

into account inflation and the associated stretching of lengths, all fluctuation

wavelengths at the time of inflation would have to be shorter than the Planck

length [91]. Since we do not have a fundamental theory that is valid below

the Planck scale, people criticise precisely this fact: if wavelengths are sub-

Planckian, who knows what theory should be used to describe them to begin

with4. In order to avoid these complications, inflation models must be fine-

tuned to make sure their durations fall right in the window where they solve

the cosmological problems (this sets the lower bound), but where their quan-

tum fluctuations are not trans-Planckian (this sets the upper bound). Speaking

of fine-tuning, inflation is also criticised because its initial conditions are very

specific: it requires an initial slowly-rolling homogeneous field everywhere in a

patch that is a billion times bigger than the Planck length [89], and therein,

the field value must be large enough that its potential dominates the energy

density of the Universe. Based on entropic arguments and the configurations

number in the Universe, it has been argued that this is very unlikely [92]. Then,

even if it were realised, it is shown that despite inflation is an attractor solu-

tion, short inflations which do not solve the flatness and horizon problems are

preferred [93]. Eventually, standard inflation is sometimes criticised because

the flat potential it requires is hard to embed in natural theories of particle

physics.

4One may argue that this is not a problem, and simply assume Bunch-Davies initial

conditions [1] for the observed modes, which choice can be justified with Ockham’s razor

principle.
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5.1.2 Alternatives to standard cosmic inflation

In light of these issues, the critics of cosmic inflation of course have found

alternatives which we wish to briefly comment on. Substitutes to inflation as

primordial cosmologies that explain the CMB power spectrum include bouncing

cosmologies, e.g. cyclic Ekpyrosis [89,94], matter-bouncing cosmologies [95–97]

or string gas cosmologies [98, 99], see e.g. [100–102] for detailed reviews, and

more importantly for this work, they include warm inflation models.

“Big-Bounce” cosmology. Bouncing cosmologies are typically characterised

by scalar-field-driven phases of slow contraction which are continuously con-

nected to the standard cosmological expanding phase. They bounce from a

contracting phase to an expanding phase, hence their names. Again, it is the

primordial quantum fluctuations of the scalar field during and before the bounce

which source fluctuations in the CMB power spectrum. These can be shown to

solve the cosmological puzzles in a manner that is consistent with observations,

and avoiding the aforementioned inflationary problems. In particular, they re-

solve the trans-Planckian and multiverse issues, and more importantly they

provide a singularity-free and complete history of the Universe, by smoothly

connecting the contracting phase to the standard Hubble expansion. Despite

their successes, unsurprisingly these bouncing scenarios come with their own

shortcomings and challenges, too, in particular when it comes to their mod-

ellings at the background level. They typically require us to modify Einstein’s

gravity and/or violate the null energy condition ρ + P ≥ 0, hence giving rise

to field degrees of freedom of negative kinetic energy, also known as ghosts,

which come accompanied by states of negative norms which violate unitarity.

Writing down quantum field theoretical models of bouncing cosmologies which

are ghost-free is very challenging and usually summons controversial arguments

motivated by string theory and extra spacetime dimensions, theories of quan-

tum gravity or modified theories of Einstein’s General Relativity (both with

nonstandard geometric or matter sectors), see e.g. [101] for a review. Other

issues of non-singular bouncing cosmologies also relate to the potential un-

wanted and unstable growth of curvature and anisotropic fluctuations which

would spoil their viability as explanations for the CMB power spectrum.

Inflation vs. bouncing cosmologies: the observational differences.

The major differences between cosmic inflation and bouncing alternatives are

associated with the Gaussian nature of the spectrum of perturbations, as well

as with the generation (or not) of primordial gravity waves. On one hand,
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bouncing potentials need not be flat as is the case for inflationary poten-

tials, hence potentially leading to an amount of non-Gaussianities which can

be orders of magnitude larger than that observed in standard inflation, see

e.g. [89] for a comparison between single-field inflation and a simple two-scalar

ekpyroptic model. However, multi-field inflation can accommodate larger non-

Gaussianities [103], too, such that we believe these would not constitute a solid

smoking-gun signature for bouncing cosmologies. On the other hand, leading-

order gravitational waves are not directly sourced by the fluctuations of the

scalar field δφ, rather they only grow with the size of the Universe. There-

fore, bouncing cosmologies present a spectrum of tensor fluctuations that is

a lot bluer than that of inflation, as the latter stretched the wavelengths to

the darker-red side of the spectrum. Therefore, the detection of a spectrum of

primordial gravitational waves potentially constitutes an observational way of

discriminating inflation from bouncing cosmologies. As a matter of fact, there

are dedicated experiments to the measurements of such primordial gravitational

waves, e.g. the BICEP/KECK experiment [104], a ground-based mission in the

south pole that focuses on measurements of the B-mode polarisation (typical

cross-shaped polarisation of gravity waves) in the CMB. As of today, these to-

gether with the Planck collaboration [105,106] thus far have established rather

strong non-observation bounds which quite interestingly already rule out many

long-preferred models of inflation, e.g. monomial potentials [91,106].

Warm inflation cosmology. Warm inflation scenarios solve the cosmologi-

cal problems as standard inflation does, except it maintains a sufficiently long

ongoing phase of slow-roll inflation in the Universe through important quantum

and thermal dissipative effects on the inflaton dynamics. If these are strong

enough, it is even argued that they could alleviate some of the aforementioned

complications of inflationary cosmology. On one hand, warm inflation poten-

tials need not necessarily be flat, hence making them easier to embed in more

natural quantum field theoretical models. On the other, it has been claimed in

the literature that they may solve the trans-Planckian problem of cosmological

fluctuations [107]. The main complications of warm inflation are the follow-

ing. For one, its feasibility at the background level is highly disputed, as we

shall review in detail shortly. Then, even if it were possible, it is not yet clear

whether it leaves an observable signature that would make it distinguishable

from cold inflation anyway.

Despite we doubt their claims because of the vast landscape of cold inflation

models [103], we comment on the smoking guns proposed by the pionees of

warm inflation to distinguish the cold from the warm paradigm. In e.g. [108]

or more recently [83], it is argued that the presence of thermal radiation during
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warm inflation generically lowers the amount of primordial tensor perturba-

tions. However, we believe that almost any experimentally consistent tensor-

to-scalar ratio can be accommodated by other models of cold inflation [103].

Hence, we conclude that this by itself does not constitute a decisive evidence

that would discriminate cold from warm inflation. Then, it was claimed in [81]

and more formally in [82] that distinct non-Gaussianities appear in the strong

dissipative regimes needed for warm inflation, cf. 3. Again, these suffer from

the same complaint, cold inflation models can accommodate almost any type

of viable non-Gaussianities [103], thus they probably do not consitute discrim-

inating evidence for cold or warm finatlion. Eventually, in [109–111], it is

argued that baryon asymmetry can be generated through the dissipative ef-

fects of warm inflation. This primordial baryon asymmetry in turn generates

extra isocurvature/entropy/non-adiabatic CMB fluctuations which are claimed

to be potentially measurable by future experiments. As emphasised above, we

believe these questions should be addressed if warm inflation is shown viable at

the background level, i.e. from first principles of quantum field theory, which

is what we turn to next.

5.2 Slow-roll parameters

At the background level, the feasibility of cosmic inflation models, be it warm

or cold, is primarily constrained by the duration of the inflationary regime. It

ought to last long enough to solve all “problems” of hot big-bang cosmologies,

as explained above. The duration of inflation is customarily expressed in terms

of a number of e-foldings Ne(t). If a(t) is the so-called scale factor, commonly

intepreted as the spatial radius of our Universe, and tb is the time associated

with the beginning of inflation, it characterises the Universe growth by the

later time relation given by a(t > tb) = a(tb)e
Ne(t). It is defined as [1, 17]

Ne(t) =

∫ ϕt

ϕb

dφ

φ
H(t), (5.2)

where H(t) = ȧ(t)/a(t) is the Hubble expansion parameter, the dynamics of

which is dictated by Einstein’s equations of General Relativity, and hence the

field content under consideration, as we shall review in section 6.2. In order

to solve all three homogeneity and isotropy, flatness and horizon problems, the

number of e-foldings must at least be of order Ne ∼ 50-70 [1]. This necessary

condition for inflation can be expressed in terms of so-called slow-roll parame-

ters, usually denoted ε, η which ensure that the dynamics of the scalar field is

slowly evolving and maintains the Universe in its inflation era for a sufficiently
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extended period. In a nutshell, maintaining ε < 1 guarantees that the equation

of state of the Universe is negative as in (5.1), while maintaining η < 1 ensures

the dynamics to be adiabatically evolving. While the slow-roll parameters are

well-known for the traditional inflationary dynamics wherein the friction rate

we payed so much attention to can be neglected, they are very much less so in

the warm inflation scenario [6,112] where the general shape of the equation of

motion reads

ϕ̈(t) + (3H + Γϕ)ϕ̇(t) + V ′(ϕ) = 0. (5.3)

This equation is the curved-spacetime generalisation of the dynamical equa-

tion (4.48). In principle, the transport coefficients that govern it ought to be

determined from quantum field theory in curved spacetime, too, if we were to

remain fully selfconsistent. In the existing literature, see e.g. Refs. [7, 13, 15],

it is sometimes argued that the microphysics that governs the transport co-

efficients unfolds on time scales which are insensitive to spacetime curvature.

For the case of warm inflation, the hot temperature and large background field

make the quasiparticle effective masses heavier than the Hubble rate, hence

curvature corrections are expected to be negligible. In this thesis, we shall

work under that assumption too, and leave a more refined treatment of the

curvature effects for future work.

In the next sections, we first review the current status of the feasibility of warm

inflation and carefully explain to what extent our results are innovative with

regards to the existing literature on two-real-scalar models. Then, we derive

the flat-space slow-roll parameters of (4.48) and express them in terms of the

effective force V ′(ϕ) and damping rate Γϕ. Eventually, we investigate whether

or not there exists a corner in parameter space where V ′(ϕ) (4.75) and Γϕ
(4.76) at least verify the necessary conditions that the field is slowly rolling for

a sizeable amount of time. Were this to be the case, it warrants a more fool-

proof investigation of the feasibility of warm inflation, including the derivation

and computation of the slow-roll parameter associated with the equation of

state of the Universe. The equation of state, or energy-momentum tensor, is

tedious to derive and renormalise from first principles of nonequilibrium QFT

and we unfortunately have not had the time to study it in detail yet. We shall

leave this for future work but comment on our strategy to address this issue.
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5.3 The viability of warm inflation: state of the
art

Ever since its invention [5] in 1995, the feasibility of warm inflation has been

under careful investigation and its viability has been controversial. In partic-

ular, quickly after [5], [17] proved from very simple analytic arguments that

the simplest quantum field theoretical models can hardly sustain a consistent

scenario of warm inflation for a few tens of e-folds. This is primarily because

the large quantum and thermal damping coefficient needed for warm inflation

is typically accompanied by even larger radiative corrections to the slope of the

potential, as we shall carefully explain in the next section. Also, warm inflation

has been criticised in e.g. [16], because it relies on fine-tuned models wherein

seemingly unrelated quantities (like the temperature and coupling constants)

conspire and align at initial time so as to ensure an ongoing inflationary era.

Subsequent to those criticisms have followed a cascade of very interesting pa-

pers with more complicated models and phenomenological studies, see e.g. [7]

that followed [17] in its wake, or the more recent [83,112–114]. These typically

summon a protective symmetry that prevents the inflaton potential from large

radiative corrections [83,113] or complicated off-shell damping mechanisms [14].

What became quickly clear at the time is that warm inflation models were lack-

ing quantum field theoretical rigour in their formulations. Therefore, the pio-

neers of warm inflation have consequently worked on a series of papers wherein

they performed a more fool-proof analysis of the microphysics underlying warm

inflation models, see e.g. [6, 13,14,55,115], and the most recent [15].

As far as our two-scalar model is concerned, its viability as warm inflation

candidate has been carefully studied in the literature, in particular see e.g. [17]

where they perform an analytic study, based on similar assumptions to ours.

Using very rough parametric arguments, they concluded that warm inflation

can hardly be realised by Z2-symmetric scalar theories, precisely because they

showed that it cannot sustain an inflationary regime for Ne ∼ 50-70. That

conclusion was almost independent of the number of χ fields that the would-be

inflaton φ couples to, be it very large or just equal to one. However, the analysis

of the authors of [17] has the following two shortcomings. First, it is rather

rough. They did not compute the effective potential or the damping rate with

the degree of precision that we did. Second, this part of the thesis presented

two new ingredients that were not accounted for in their work. They omitted:

I. Thee NLO equation of motion, see section 4.5.

II. The crab widths (4.61)(4.62) in the LO dissipation coefficient (4.70).
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Except for those ingredients, their damping rate and effective potential are

qualitatively identical to ours (up to different prefactors), and therefore we

shall only carefully investigate the slow-roll parameters in those regimes where

the new terms matter, otherwise they will just act as mild corrections to what

the authors of [17] studied. We shall precisely determine what hierarchy in the

model parameters should be assumed to precisely lie in the regions where I.

and II. significantly alter the inflaton dynamics.

In order to study the feasibility of warm inflation in these limiting cases, we will

not use the slow-roll conditions obtained in [6] or [17], rather we will first derive

our own slow-roll parameters in a more generic differential equation setting.

5.4 Flat-space slow-roll parameters

The η parameter. Let us introduce a formal expansion parameter α into

the equation of motion

αϕ̈+ Γϕϕ̇+ V ′(ϕ) = 0 , (5.4)

which controls the smallness of ϕ̈ versus the other terms in the equation. For

slow-roll to be justified to start with, ϕ̈ ought to be suppressed. At leading

order in α, the solution of this would be

ϕ̇ ∼ − V
′

Γϕ
+O(α) . (5.5)

Then, we can use this leading order solution to reduce the derivative order by

taking its time derivative, multiplying it by α and equating it to αϕ̈

αϕ̈ = −αϕ̇ d

dϕ

(
V ′

Γ

)
+O(α2) = α

V ′

Γϕ

d

dϕ

( V ′
Γϕ

)
+O(α2) . (5.6)

Now let us use this to correct the equation (5.4), we find

ϕ̇ ∼ − V
′

Γϕ

[
1 +

α

Γϕ

d

dϕ

(
V ′

Γ

)]
+O(α2). (5.7)

It follows that the condition for slow-roll dynamics reads

η =
1

Γϕ

d

dϕ

(
V ′

Γϕ

)
� 1 . (5.8)

This requirement essentially tells us how strong the condensate damping rate

has to be when the inflaton descends the slope of the potential, so as to main-

tain a slowly rolling dynamics. If slow-roll is to be realised, then the steeper
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the slope, the stronger the damping, and (5.8) ought to be viewed as a nec-

essary condition for warm inflation models. However, note that at this point

(5.8) has nothing to do with inflation. It only is a statement about adiabatic

dynamics and we should bare in mind that while (5.8) is a necessary condition

for warm inflation models, it is not a sufficient one. In principle, other slow-roll

parameters are to be fulfilled for inflation to occur, e.g. the one that ensures

the energy density of the Universe to be precisely dominated by a cosmological-

constant-like content which triggers inflation, the so-called ε parameter.

The ε parameter. The latter ought to be found from the inflaton equation

of state by imposing Pϕ/ρϕ = −1, and demand it to generate negative pressure

for sufficiently long. Assuming that the effective energy and pressure densities,

which descend from the energy-momentum tensor of our scalar theory, can be

put under the conventional form

ρϕ =
1

2
ϕ̇2 + Veff , Pϕ =

1

2
ϕ̇2 − Veff , (5.9)

where Veff is an effective potential that is a priori different from the effective

potential V ′ that drives the condensate dynamics via (5.5). Although we prob-

ably already have computed all relevant diagrams, we even expect them to be

different because derivatives of the (effective) action with respect to the metric

need not be identical to derivatives with respect to the condensate. This is only

true at leading order in perturbation theory. That said, imposing Pϕ/ρϕ = −1

yields ϕ̇2/2Veff � 1, or equivalently, upon using (5.5), this gives

ε =
(V ′)2

2Γ2
ϕVeff

� 1, (5.10)

which is a second slow-roll parameter to be studied carefully. However, deriving

a quantum field theoretical equation of state from first principles, or in this case

finding Veff and the associated slow-roll parameter (5.10), is a very complicated

exercise in itself. This will e.g. address the question of a suitable definition for

the energy-momentum tensor in a 2PI framework [116]. Then, it is even harder

to simultaneously perform a numerical scan and solve the dynamical equations

that govern the dynamics of the time-dependent quantities that constitute the

slow-roll parameters (5.8) and (5.10), to try and show if those can be maintained

low for a few 50-70 e-folds (see e.g. [117,118] for the dynamical equations).

We should comment that (5.8) and (5.10) are particularily hard to achieve

when the interactions that are responsible for the damping of the modes also

are responsible for the thermal screening of the particle masses or potentials.
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In those cases, typically, large damping rates imply even larger screening ef-

fects, as the former arise at higher perturbative orders than the latter. We

shall shortly experience precisely these issues for our model and as a matter

of fact, it is commonly encountered in quantum field theories. As a conse-

quence, simple models very hardly fulfill (5.8) and (5.10), unless one summons

a protective symmetry that prevents the potential from large radiative correc-

tions to. For instance, see the “Warm Little Inflation” papers [112–114], where

the inflaton is the Nambu-Goldstone boson of a broken gauge symmetry. See

also the very recent and interesting “Minimal Warm Inflation” [83], where the

shift symmetry of an axion-like coupling protects the effective potential from

too large radiative corrections, and the inflaton damping rate arises from the

production of sphalerons, as e.g. computed in Refs. [119,120].

That said, for the present discussion, we shall proceed step by step and first

focus on the slow-roll parameter η of Eq. (5.8). If the latter can be shown

smaller than unity for one of those cases that were omitted by [17], then two

conclusions can be drawn. On one hand, it will prove that slow-roll can be

achieved in flat space for a Z2-symmetric theory of interacting scalars, which

is an interesting result in itself. And on the other, it will possibly revive the

feasibility of warm inflation in that model, too. Were this to be the case,

we leave for future work the more refined analysis of the feasibility of warm

inflation, including the first principles derivation of the 2PI effective equation of

state for our two-real-scalar model and the investigation of whether conditions

(5.10) and (5.11) can be simultaneously satisfied for a few tens of e-folds.

5.5 Slowly rolling with Z2-symmetric scalars

From the previous section, we obtained our slow-roll condition

η =
1

Γϕ

d

dϕ

(
V ′

Γϕ

)
=

1

Γ2
ϕ

(
V ′′ − (ln Γϕ)′

)
< 1, (5.11)

and we want to investigate whether our transport coefficients V ′ of (4.75) and

Γϕ of (4.76) can sustain η < 1 over a sizeable period of time. In particu-

lar, we want to study them in the limiting cases I. and II. (see section 5.3)

independently, which both were missed in the analysis of Ref. [17].
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5.5.1 Case I.: ΓNLO
ϕ ' Γsun

ϕ

Closely looking at all relevant equations that feed into (4.76) as well as at

Fig.4.9, we see that this limiting case I. is fulfilled by the conditions:

λχ � h� λφ, T � ϕ,Ma for a = φ, χ, (5.12)

wherein we set ourselves in a very high temperature regime and study a very

warm inflation scenario. Indeed, the coupling hierarchy is such that Mχ > Mφ,

cf. (4.57), unless the bare masses are fine tuned and hence the crab widths are

likely kinematically forbidden. In the pathological case where they are not,

they can only be so in the low field regime where they are highly suppressed

anyway since λχ � h, λφ, and T � ϕ,Ma, see also Fig. 4.5. Thus, they

are neglected in this analysis and in that sense, I. is the antipode of II. in

parameter space, since II. wants the crab width to dominate. According to I.

thus far, the full damping rate ΓNLO
ϕ is solely composed of two terms, namely

ΓLO
ϕ in absence of crab widths and the two-loop sunset contribution (4.74).

In a high temperature regime and given our coupling hierarchy the former is

suppressed compared to the latter, and indeed, isolating the contribution from

I. effectively sets ΓNLO
ϕ ' Γsun

ϕ of (4.74). Under these assumptions regarding the

model parameters and associated hierarchies, the one-loop thermal corrections

to both the effective masses (4.57) and potential (4.54) take the usual large T

value, namely λT 2/24 where λ is a generic coupling. Therefore, we obtain the

high temperature limit of Γsun
ϕ of (4.74) and the effective force as5

V ′(ϕ) ' m2
φϕ+

(λφ + h)

24
T 2ϕ, (5.13)

Γϕ '
h2

(4π)3

T 2

Mχ
log

(
1 +

λχ
h

)
. (5.14)

Plugging these in our slow-roll conditions (5.11), we immediately see that these

cannot sustain a high-temperature slow-roll regime, because

η ∝ (4π)6

h2 log2(1 + λχ/h)

(
(λφ + h)(λχ + h)

h2
+O(m2

φ/T
2, (ln Γϕ)′/T 2)

)
, (5.15)

which makes it impossible to satisfy η < 1 for our assumptions I. This is simply

because I. corresponds to a very high temperature regime, wherein both the

damping rate and effective potential grow with a positive power of the tem-

perature. Therefore, it is impossible to generate the large friction needed for

5In the high T limit, the terms in the effective force (C.40) that depend on the renormal-

isation scale essentially behave like the leading-order finite temperature correction T 2/24,

except they are of second order in the loop and coupling constant expansions, hence para-

metrically suppressed and neglected.
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slow-roll dynamics without simultaneously generating large screening effects on

the slope of the potential, which eventually dominate and make the field roll

quickly. Not only that, but also the finite temperature corrections to the po-

tential and damping rate arise at different orders in both the loop and coupling

constant expansions. Hence, those of the damping rate (∝ h2/(4π)3) are both

coupling constant and phase-space suppressed vs. those of the effective poten-

tial (∝ h/24). We are precisely in the situation commented on at the end of

the previous section where large screening effects cannot be avoided when large

damping effects are wanted simultaneously. We conclude that in the limiting

case I., warm inflation cannot be realised, because even slow-roll cannot.

5.5.2 Case II.: Crab widths dominate

Comparing Γcrab
a and Γsun

a which respectively are given in Eqs. (4.61)(4.62) and

(4.68), we see that a first necessary condition for Γcrab
a � Γsun

a to be fulfilled is

the following hierarchy for the effective masses Mφ > 2Mχ, otherwise Γcrab
a is

simply kinematically forbidden. This mass hierarchy can e.g. be arranged by

having a large Lagrangian mass for the inflaton and having ultrarelativistic χ

fields: mφ � mχ, or by tuning the couplings so that the φ case of Eq. (4.57)

dominates over its χ counterpart. As explained in section (4.4.2), this is best

realised by demanding ϕ > T and λφ & λχ = h. For consistency with those

sections, we shall pick λφ/h = λφ/λχ = 10 and mφ/mχ = 102, as for Fig. 4.6.

Then, again looking at Eqs. (4.61)(4.62) and (4.68) or even better Fig. 4.4, we

note that the requirement ϕ > T readily favors Γcrab
a � Γsun

a . Therefore, we

set ourselves in case I. by assuming the following very conservative conditions

λφ � λχ, h, h2ϕ� λ2
φT/(4π)2, (5.16)

such that Γcrab
a is kinematically allowed and strongly dominates Γsun

a . Note that

this regime also tends to favour inflation itself as the latter usually requires

a large potential for the energy density of the Universe to be cosmological-

constant-like. Also note that this corner in parameter space is precisely the

one where case I. is highly suppressed, and the sunset two-loop contribution to

ΓNLO
ϕ can be neglected. In Fig. 5.2, we depict the slow-roll parameter η (5.11),

as a function of the background field ϕ and for various temperatures, neglecting

the NLO contribution to the friction rate, and the logarithmic derivative in

Eq.(5.11) (both of which would just lower η).

We find that η is maintained below unity for a wide range of field values and

temperatures and slow-roll, in the sense of (5.11), is achievable for an extended
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Figure 5.2: The slow-roll parameter η of Eq. (5.11) vs. the background field

ϕ normalised to the mass mφ, and for various temperature with logarithmic

scales on both axis. The black dashed line is the unity line.

period6, even in flat space. As a matter of fact, varying the couplings λφ, λχ, h,

we find that there is always a sizeable window for which the slow-roll condition

(5.11) is satisfied, regardless of whether or not the crab widths are kinematically

allowed. Only the range of validity is a priori reduced when the crab width does

not dominate quickly enough, though it can potentially be extended if we by

hand introduce a Boltzmann suppressing exponential, cf. section 4.4.2. These

results are very comforting because they constitute a solid selfconsistency check

and proof that a posteriori all approximations used throughout the previous

chapter were indeed justified. They are physically interesting too, because we

have just proven that a scalar condensate undergoes a phase of overdamped

motion, even in flat space, and for a sizeable budget of our model’s parameters.

While this does not prove the feasibility of warm inflation in our model, it for

sure warrants investigation as to whether our effective potential and damping

rate can simultaneously realise (5.8), and a negative equation of state (5.10) for

an extended time period. At this stage, we can only say that we unfortunately

doubt that it will be viable because the damping rates resulting from the addi-

tionnal cases I. and II. were either shown of NLO and incapable of generating

slow-roll to begin with (I.), or they just lower the already existing damping

rate (II.). Given that [17] claims warm inflation not to be feasible with our

6The wavy features in Fig 5.2 are precisely those we see in Fig. 4.6 and owe their presence

to the crab widths. These lower the full damping rate and hence as a result enhance η.
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model because the latter cannot sustain inflation for long enough, we believe

that lowering further the damping rate (via the crab widths of II.) will not help

with this matter, we even expect it to make it worse. However, more closely

looking at [17], it appears that the most problematic assumptions are T �Ma

and Γa � ϕ̇/ϕ, both of which are more easily realised thanks to II. Therefore,

in order to provide a definitive answer, only a first principles analysis à la [17]

would do. As emphasised earlier, this requires (a) condition (5.11), (b) the

first principles derivation of the equation of state (or 2PI energy-momentum

tensor [116]) and the relevant condition (5.10) for our Z2-symmetric two-field

model, (c) numerically solving the dynamical equations that connect the tem-

perature T , the background ϕ and the Hubble rate H [117,118], for a window

of at least 50-70 e-folds, and (d) check that the range of validity of our results

extend to that window. We leave this tedious, yet very interesting, task for

future work.
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Conclusion and Outlook

Conclusion

In the first part of this thesis, we have studied the nonequilibrium and dissipa-

tive dynamics of real scalar fields which interact via Z2 symmetric renormalis-

able interactions, from first principles of the 2PI effective action formalism and

the Schwinger-Keldysh formulation of nonequilibrium field theory.

In chapter 2, under the assumption that microphysics time scales are much

shorter than those that characterise bulk properties of the system, we have

shown in a model- and contour-independent fashion that the equation of motion

for a field condensate ϕ can always be localised and brought into the generic

form ϕ̈ +
∑+∞
n=1 Γ

(n)
ϕ ϕ̇n + V ′(ϕ) = 0. The dissipation coefficients Γ

(n)
ϕ and the

effective force V ′(ϕ) are computed from Feynman diagrams.

In the next chapters 3-4, we have then computed Γ
(1)
ϕ and V ′(ϕ) for our spe-

cific Z2-symmetric model, including quantum and thermal corrections to sec-

ond order in perturbation theory. These computations rely on formal adiabatic

solutions of the quantum kinetic equations that govern the nonequilibrium dy-

namics of quasiparticles, carefully including the backreaction of the condensate.

The question of renormalisation in time-dependent backgrounds was scrupu-

lously adressed, too. Our results for the damping rates have a significatively

increased range of validity compared to the state-of-the-art computations, be-

cause we accounted for contributions that had been ommitted in the existing

literature, see e.g. [17, 62].

Eventually in the last chapter 5, we have provided a selfconsistency check

and proven that slow-roll is indeed realised for a wide subset of the model

parameters (even in flat space), hence justifying our assumptions a posteriori.

115
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We also reviewed the state of the art of the feasibility of warm inflation and

commented on the implications of our results for it. Despite our innovative

results, extended range of validity and improved accuracy, we expect warm

inflation not to be feasible in the model presented here. However, we emphasise

that only a fool-proof analysis of the feasibility of warm inflation that includes

the two-scalar equation of state would (in)validate these claims for good.

Outlook

As we just emphasised, among the natural future perspectives to this work

of course lies the in-depth study of the feasibility of warm inflation in our

two-field model. This requires the first principles derivation of the 2PI energy-

momentum tensor, or equation of state, and a numerical scan through the

model parameters to determine whether slow-roll inflation can be maintained

for a few tens of e-folds. This ought to be not too demanding because we expect

the diagrams that constitute the equation of state to be already evaluated and

the remainder should be nothing but a numerical analysis based on a readily

existing code. Whatever the outcome of this analysis, we also find the “Warm

Little Inflation” [112–114] and “Minimal Warm Inflation” [83] models very

interesting and it would be a nice continuation to then try and study their

viability from first principles. Eventually, repeating all these steps using curved

spacetime quantum field theory also is an obvious future prospect of this work.

Another natural extension which we wish to comment on concerns the Breit-

Wigner or quasiparticle approximation, heavily used throughout this work. As

mentioned in chapter 4, this approximation of course has its limitations when-

ever off-shell processes are significant. In particular, it has been claimed that

off-shell decays and scatterings can be responsible for the overdamped motion

of the inflaton, in the so-called two-stage mechanism [13,14] of warm inflation,

wherein the inflaton couples to radiation via a heavy mediator. Checking these

claims from first principles and understanding the range of validity of the Breit-

Wigner approximation, as well as its role in warm inflation computations, is of

great interest and a logical continuation to this work.

Eventually, although primarily motivated by warm inflation, our results po-

tentially have a wider range of applicability than just it. They can likely be

applied to study perturbative cosmic reheating or the fate of a scalar in the

early Universe, for instance in scenarios where the Higgs couples to the infla-

ton, see e.g. [121] where the inflaton is natural dark matter candidate, hence

constituting a model which interactions resemble the ones studied here.
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Introduction

The standard model of cosmology, or ΛCDM cosmology very succesfully de-

scribe the Universe, from its very early times when it was constituted of a hot

primordial plasma, to its current content on the largest scale. On top of those

that compose Standard Model (SM) of particle physics, ΛCDM cosmologies

rely on six fundamental parameters, namely the reduced Hubble expansion pa-

rameter h, the dark matter and baryon densities, ωc and ωb, the amplitude and

spectral index of the primordial curvature power spectrum, As and ns, together

with the optical depth to reionisation τ . All these parameters have been mea-

sured to better than 1% accuracy by the recent WMAP [78] and Planck [122]

missions. Accurately inferring those ΛCDM parameters however crucially relies

on one theoretical input: the post-e± → γγ-annihilation neutrino to photon

energy density ratio ρν/ργ . The latter is customarily parametrised by the so-

called effective number of cosmological neutrinos Neff. The degree of precision

to which the ΛCDM parameters can be inferred from experiments closely ties

to the level of accuracy to which Neff is theoretically predicted.

Within the realm of standard model physics, the leading-order value is Neff

= 3, which is nothing but the number of massless, left-handed neutrinos in

the SM, hence its name. In the SM, δNeff from Neff = 3 come at the per-

cent level and they primarily find their origins in neutrino energy transport

and oscillations [123–128], and finite-temperature quantum electrodynamics

(FTQED) [129–132]. With improved numerical methods and modelling of the

transport equations that govern the neutrino dynamics, together with O(e2)

FTQED corrections, with e the elementary electric charge, the recently (2019)

revised and most quoted theoretical value of value for Neff is Neff =3.044, to

better than per-mille accuracy [133]. While this is currently too small to alter

our ΛCDM parameter inference7, future experiments are expected to narrow

down the uncertainties to subpercent level. For instance, the ground-based

CMB-S4 experiment which construction should start in 2021, is expected to

improve the 1σ sensitivity to σ(Neff) ' 0.02 → 0.03 [134]. For these rea-

sons, it is timely to beat down the remaining theoretical and computational

uncertainties on Neff to below the fourth significant digit. In this part of the

thesis, including FTQED effects of unprecedented accuracy and aiming for a

four-digit precision, we compute the state-of-the-art SM value of Neff within

the instantaneous decoupling approximation, and provide the necessary ana-

lytic ingredients to numerically determine it, when including neutrino energy

transport and oscillations.

7The current best observational constraint on Neff is Neff = 2.99+0.34
−0.33 (95% C.I.) [122].
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Chapter 6
Neff and cosmological
thermodynamics

The effective number of cosmological neutrinos Neff finds its exact definition in

the framework of cosmological thermodynamics. In this chapter, following the

excellent books [1, 135], we briefly review the main ingredients to describe the

thermodynamics of relativistic particles in an expanding Friedmann-Lemâıtre-

Robertson-Walker (FLRW) spacetime, and describe what theoretical inputs

enter a precision computation of Neff in the Standard Model of cosmology and

particle physics. In particular, we re-evaluate the neutrino decoupling temper-

ature. Eventually, we review the current status of experimental measurements

of Neff and comment on future experiments to come.

6.1 Kinematics in FLRW spacetimes

The cosmological principle, which is in very good accordance with observation,

stipulates that the Universe we live in is homogeneous and isotropic on large

scales. As a result, cosmological spacetimes are described by the so-called

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric gµν which reads

ds2 = gµνdxµdxν = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (6.1)
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with a(t) the scale factor1, k = 0, ±1, the curvature parameter and dΩ the in-

finitesimal, three-dimensional solid angle. One distinguishes three qualitatively

different spacetimes for three different values of k = 0, k = 1 and k = −1.

These respectively correspond to flat, spheric and hyperbolic geometries. Lo-

cally, those geometries are all equivalent, and for the present discussion we

shall always set k = 0, which turns out to also be the experimentally favoured

geometry, although all are a priori allowed.

The Hubble law. In such spacetimes, denoting L(t) the instantaneously

measured physical distance between two point-like observers of same local an-

gular coordinates, we have

L̇(t) = H(t)L(t), with H(t) =
ȧ(t)

a(t)
, (6.2)

the Hubble rate, experimentally measured positive H(t) > 0 in our Universe.

This inevitably leads to the striking observation that not only is our Universe

expanding, but also the larger L(t), the speedier the distancing velocity.

The redshift. Also, if a photon is emitted at time t0 and measured at time

t > t0, its emitted and measured frequencies are related by the formula

ω0

ω
=

a(t)

a(t0)
= (1 + r). (6.3)

Since the Universe is expanding, a(t) > a(t0) and the photon’s wavelength got

stretched to the longer wavelengths of the optical spectrum, hence we define

r > 0 as the so-called redshift parameter.

The physical momentum. Another physically relevant consequence of the

presence of the scale factor in the FLRW metric is the modified mass-shell

equation. If pµ is the four-momentum of a particle, then the latter reads

gµνp
µpν = m2 ⇒ (p0)2 − a2p2 = m2, (6.4)

and the FLRW energy, as measured by the comoving observer, is given by ω =√
m2 + a2p2, which is valid for both massive and massless particles. From this

definition, it is tempting to define the so-called physical momentum p = a|p|,
such that ω takes the usual form ω =

√
m2 + p2. Let us try to understand and

1Though it really is an arbitrary local coordinate, the latter is commonly interpreted as

the radius of the spatial size of the Universe. When the scale factor grows (resp. decreases),

the Universe expands (resp. contracts).
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interpret the meaning of this physical momentum. For this purpose, let λ be

an affine parameter along a particle worldline such that, if qµ(λ) is its position

vector, dqµ/dλ = pµ, where pµ = (ω,p)T is its four-momentum. This choice of

affine parameter gives a free geodesic equation in terms of pµ which reads

dpµ

dλ
= −Γµαβp

αpβ (6.5)

where the Christoffel symbols are

Γµαβ =
1

2
gµν (gνβ,α + gνα,β − gαβ,ν) , (6.6)

with the usual notation gαβ,µ =
∂gαβ
∂qµ . Using the Christoffel symbols of the

FLRW metric, the spatial components of the geodesic equation give [135]

dpi

dt
+ 2Hpi = 0 ⇒

{ |p| ∝ a−2,

p ∝ a−1.
(6.7)

For this reason, p is called as the physical momentum because it is the one that

redshifts just like the physical energy ω measured by the comoving observer.

For massless particles, this also reproduces the redshift of photons (6.3).

6.2 Dynamics in FLRW spacetimes

In order to properly understand the expansion of the Universe which causes

structures to move apart and photons to redshift, one has to study the dynamics

of particles in the FLRW metric, and the dynamics of the metric itself. In

homogeneous and isotropic geometries, the only time-dependent quantity which

dictates the spacetime expansion is the scale factor a(t). Its time evolution is

governed by the Einstein equations for the metric. In terms of the scale factor

a(t), they are the so-called Friedmann equations

H2 =
Λ

3
+

ρtot

3M2
pl

, (6.8)

ä

a
=

Λ

3
− (ρtot + 3Ptot)

6M2
pl

, (6.9)

where Λ > 0 is the cosmological constant measured positive, ρtot and Ptot are

the total energy and pressure densities of the cosmological fluid under consider-

ation, and Mpl = 2.435×108 GeV is the reduced Planck mass. Those equations

are supplemented by the continuity equation in an expanding spacetime

ρ̇tot + 3H(ρtot + Ptot) = 0. (6.10)
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The latter can be solved analytically for barotropic2 fluids of equation of state

P = wρ and we find

ρ̇+ 3(1 + w)Hρ = 0 ⇒ ρ ∝ a−3(1+w). (6.11)

Non-relativistic also known as matter (m) fluids have negligible kinetic energies

compared to their mass energies, hence Pm = 0 and wm = 0 and they see their

energy densities get diluted with the three-dimensional spatial volume

ρm ∝
1

a3
. (6.12)

On the other hand, relativistic fluids, also known as radiative (r) fluids, satisfy

Pr = ρr
3 , hence wr = 1

3 and relativistic energy densities get diluted with the

four-dimensional volume

ρr ∝
1

a4
. (6.13)

Massless particles (e.g. photons) redshift quicker than massive ones (e.g. elec-

trons) in an expanding FLRW spacetime and the associated energy density

dilutes quicker, too.

6.3 Thermodynamics in FLRW spacetimes

Turning the arrow of time, the expansion of the Universe becomes its con-

traction. Therefore, very early on, our Universe was made of nothing but a

hot primordial plasma of Standard Model particles maintained at equilibrium

through their gauge interactions. As long as a species interaction rate Γ is

larger than the expansion rate H, the associated particles are kept in local (in

time) thermal equilibrium and their distribution function can be described by

their equilibrium ones (cf. Eqs. (1.41)(1.104))

f(t, ω) =

(
exp

(
ω

T (t)

)
± 1

)−1

, (6.14)

with T (t) is the time-dependent temperature, adiabatically cooling down with

the growth of the scale factor. Indeed, as the Universe expands, its content gets

diluted, hence adiabatically lowering the local thermal agitation of the system.

As long as this picture holds, the leading order thermodynamic pressure and en-

ergy densities are given by Eqs. (1.44)(1.45) for bosons and Eq. (1.112)(1.113)

2Fluids which pressure and density profiles have identical constant-pressure (isobaric) and

constant-density (isopycnic) hypersurfaces.
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for fermions. The general expressions, weighted with g, the number of rela-

tivistic degrees of freedom of the species under consideration and integrated

over their physical momenta, read

P = g

∫
d3p

(2π)3

p2

3ω
f(t, ω), ρ = g

∫
d3p

(2π)3
ωf(t, ω). (6.15)

However this smoothly-evolving quasiequilibrium phase unfortunately does not

last forever. As the Universe expands and the constituents of the Universe

dilute, they start interacting less and less frequently. Their interaction rate Γ

decreases with the temperature and becomes lower than the expansion rate Γ <

H, it no longer suffices to maintain species at equilibrium in a rapidly expanding

spacetime. The particles undergo a phase of far-from-equilibrium evolution

during which species, one by one, decouple from the primordial plasma as their

interactions freeze out with the Hubble expansion. Feebly interacting species,

e.g. neutrinos, decouple first.

In most cases, the decoupling of species is sufficiently well approximated by the

so-called instantaneous decoupling scenario wherein particles instantaneously

transit from one equilibrium phase with the primordial plasma to another one

where they are entirely decoupled and free-streaming. In that case, the decou-

pling temperature Td is usually estimated by demanding

Γ(Td) = H(Td) (6.16)

which refers to the instant where the interaction and expansion rates precisely

equate. As an exercise of primordial relevance for Neff (which precision com-

putation is the ultimate goal of this part of the thesis) we shall compute the

temperature at which weakly interacting neutrinos decouple from a quantum

electrodynamical (QED) plasma of interacting (anti)electrons and photons.

Obviously, for certain cosmological observables which ought to be accurately

predicted because they are accurately measured, the instantaneous decoupling

approximation is unfortunately not sufficient. This is e.g. the case for Neff or

the most famous freeze-out relic, the Cosmic Microwave Background (CMB),

which is nothing but the free-streaming photon fluid which decoupled from

the primordial plasma. The latter is extremely well-measured and in order to

theoretically match the level of experimental precision and extract as much

information as possible from the CMB, we need to go beyond the instanta-

neous decoupling limit. We need to be able to accurately track and describe

the (non)equilibrium thermodynamic evolution of species as time evolves and

the Universe expands, including those moments where distributions are far

from equilibrium. We emphasise, many cosmological observables depend on it,
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including the CMB and most relevant for this work, the effective number of cos-

mological neutrinos Neff . This time evolution is encapsulated in the so-called

Boltzmann equations for the distribution functions, which we shall describe in

the following section.

For this purpose, let f(qµ, pµ) be the phase space distribution function of a

certain particle species and λ be an affine parameter along the particle worldline

such that dqµ/dλ = pµ, where qµ(λ) = (t,x)T is the particle position four-

vector and pµ = (ω,p)T is its four-momentum.

The collisionless Boltzmann equation. If the particle is free-streaming

and does not encounter any obstacle along its worldline, then its distribution

function satisfies df
dλ = 0 and the geodesic equation (6.5) holds along that

worldline. Therefore, we compute

df

dλ
= 0 ⇒ L[f ] = pµ

∂f

∂qµ
− Γµαβp

αpβ
∂f

∂pµ
= 0, (6.17)

where L = pµ ∂
∂qµ − Γµαβp

αpβ ∂
∂pµ is the Liouville operator. In a spatially flat,

isotropic and homogeneous spacetime, f(qµ, pµ)→ f(q0 = t, p0 = ω) and upon

evaluation of the FLRW Christoffel symbols, we find for the previous equation

(
ω
∂

∂t
−Hp2 ∂

∂ω

)
f(t, ω) = 0 (6.18)

Changing variables from (t, ω) → (a(t), p(ω) =
√
ω2 −m2) where p is the

physical momentum, and using the FLRW mass invariant, we find

(
a
∂

∂a
− p ∂

∂p

)
f̃(a, p) = 0, (6.19)

with f̃(a, p) = f(t(a), ω(p)). Any solution of this equation must be of the form

f̃(a, p) = g(a · p) and for any reference time t̄ of associated ā = a(t̄), this

condition gives

f(t, ω) = g(a · p) = g

(
ā · a(t)p

ā

)
= f

(
t̄, ω

(
a(t)p

ā

))
. (6.20)

Therefore the form of the phase space distribution function f(t, ω) does not

change along a collisionless wordline, only its spatial momentum gets redshifted.

In particular, assuming that the decoupling of a species i takes place instan-

taneously and that from the decoupling instant td, the species is in thermal
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equilibrium, be it a Dirac fermion (+) or a boson (−), we have (cf. Eq. (6.14))

fi(t > td, ω) =

(
exp

[
1

Td
ω

(
a(t)p

ā

)]
± 1

)−1

, (6.21)

where ω is the FLRW energy ω(p) = m2
i+p

2. Using its approximated expression

for matter (m) and relativistic fluids (r), respectively ωm(p) ' mi + p2

2m and

ωr(p) = p, we find

fi(t > td, ωm) =

(
e
mi
Td exp

[
p2

2miTm(t)

]
± 1

)−1

, Tm(t) =

(
ad
a(t)

)2

Td,

(6.22)

fi(t > td, ωr) =

(
exp

[
p

Tr(t)

]
± 1

)−1

, Tr(t) =
ad
a(t)

Td. (6.23)

This suggests that from the moment they decouple, particles follow their equi-

librium distribution function with adiabatically evolving temperatures which

dynamics depends on their (non)relativistic nature. The temperature of matter

particles Tm(t) ∝ 1
a2(t) redshifts quicker than that of radiation Tr(t) ∝ 1

a(t) . In

particular for ultrarelativistic species, this gives (see Eq. (1.46) for bosons (B)

and Eq. (1.114) for Dirac fermions (D))

ρi = ρr = gi
π2

30
T 4
r (t) = 3Pi, if i is a boson, and (6.24)

ρi = ρr,ψ = gi
7

8

π2

30
T 4
r (t) = 3Pi, if i is a fermion. (6.25)

Here gi is the number of relativistic degrees of freedom of the particle species i.

In the cosmological literature, it is customary to distinguish a particle from its

antiparticle and their contributions to thermodynamic quantities are accounted

for separately3. Therefore, gi here only counts the internal spin degrees of

freedom. For spin 1/2 fields, e.g. neutrinos or (anti)electrons, gν = ge± = 2.

For massless gauge bosons, e.g. for photons gγ = 2 and for massive ones, e.g. for

the W bosons, gW± = 3. Scalars have no spin degrees of freedom, cf. Eq. (1.46).

Note that Eqs. (6.24)(6.25) consistently reproduce the conclusions drawn as to

how radiative energy densities ought to depend on the FLRW scalar factor,

see Eq. (6.13). A similar discussion for nonrelativistic matter particles can be

held, too, and we would have recovered the expected behavior (6.12). That

said, let us now move on to the more interesting case where the particle under

consideration is subject to interactions along its worldline.

3Note however that this is not the case when derived from first principles in quantum

field theory, where spin and antiparticles are readily built in features of the formalism, see

e.g. Eq. (1.111) and the discussion below.
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The Boltzmann equation. However, if the particle does not free-stream

and does scatter with other constituents of the Universe, its equation of motion

takes the form (see. Eq. (6.17))

L[fi] = C[fi] (6.26)

where C[fi] encapsulates all collision and scattering events that alter the FLRW

free-streaming evolution of particles of type i. It is commonly referred to as

the collision term and ought to be determined from first principles of quantum

field theory, as it arises from the interactions between the particles associated

to the fundamental fields. Say the species i is subject to scatterings of the form

i+j ↔ k+`, where i is the particle which evolution is tracked by the Boltzmann

equation (6.26), and j, k, ` are other particles. Then, the full collision term is

given by the difference between a production and a destruction rate

C[fi] = Ck`→ij [fi]− Cij→k`[fi], (6.27)

such that, in this particular case

C[fi] =(2π)4



∫ ∏

a=j,k,`

gad3pa
2ωa,p(2π)3


 δ(4)(pk + p` − pi − pj)×

× |Mk`↔ij |2
[
fkf`(1± fi)(1± fj)− fifj(1± fk)(1± f`)

]
, (6.28)

where |Mk`↔ij |2 is the squared quantum field theoretical probability ampli-

tude, also known as matrix element, for the process k` ↔ ij and the ± phase

space factor gives either a Pauli blocking factor (−) or a Bose-enhanced stim-

ulated emission (+) for the particles in the final state. Later in this thesis, we

shall precisely derive the relevant Boltzmann equations for this work, from first

principles of nonequilibrium quantum field theory.

These last expressions and equations close the general discussion about Boltz-

mann equations and thermodynamics in FLRW spacetimes. Combining the

last two sections together with the Standard Model of particle physics as

well as an additional Cold4 Dark Matter (CDM) relic, provide a rock solid

theoretical description of the thermal history of the Universe, from today

(T ∼ 2.7K ∼ 2.3 · 10−4 eV) up to the Planck time, 10−43 sec (T ∼ 1019 GeV)

after the big-bang singularity. It is known as the ΛCDM cosmology or standard

model of cosmology. Computing accurate predictions from that framework is

of great importance if one wants to pinpoint where exactly standard cosmology

fails to describe the Universe we live in and where there are deviations from

4A relic species is referred to as a cold relic if its mass exceeds its decoupling temperature.
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it. The effective number of cosmological neutrinos Neff , amongst others, is

one of these cosmological observables one can accurately predict within the

theoretical framework presented here. In the coming section, we explain how

its definition arises in the context of cosmological thermodynamics and how to

compute it efficiently and accurately.

6.4 Neff from FLRW thermodynamics

Within the standard model of cosmology, at temperatures of around 10 MeV,

the Universe was constituted of a hot plasma made of QED particles, that

is electrons/positrons e± and photons γ, together with three generations of

left-handed neutrinos, all maintained at equilibrium through their QED and

weak interactions. Starting at around T ∼ 10 MeV, the Universe expansion

which lessens the interaction rates, consequently triggers two physically relevant

phenomena as far as Neff is concerned:

• Neutrino decoupling: At T ∼ 1 MeV, the neutrino weak interaction

rate drops below the Hubble rate5 and the neutrinos decouple from the

equilibrium QED plasma and consequently their temperature Tν evolves

independently of Tγ , the temperature of the γ/e± QED sector.

• Electron/positron e+e− → γγ annihilations: At T ∼ 0.5 MeV, lower

than the electron mass me = 0.511 MeV, the electron/positron annihi-

lation into photon pairs, e+e− → γγ, is kinematically favoured, hence

leading to a nonnegligible net energy transfer from the e± sector to the

photon population, effectively reheating the photon fluid.

As a result of these two events, the relic neutrinos end up cooler than the relic

photons. How exactly cooler they are is however a tough question to address

accurately as it relies on a careful analysis of the quantum out-of-equilibrium

dynamics of the ν-QED fluid, all the way from T ∼ 10 MeV to temperatures

that are negligible vs. me, i.e. when T/me → 0. As a matter of fact, Neff

precisely relies on that, too, as it is defined through

ρν
ργ

∣∣∣∣
T/me→0

= Neff
7

8

(
4

11

)4/3

, (6.29)

in relation to the post-e± → γγ-annihilation neutrino to photon energy density

ratio. This definition for Neff and the associated prefactors will become crystal

5In the next section, we will precisely show at what temperature this neutrino decoupling

occurs, which of course will be shown to be consistent with Td ∼ 1 MeV.
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clear in the next analysis where we explain how to calculate the leading-order

value of Neff , from the conservation of the comoving entropy.

6.4.1 Neff in the SM from entropy conservation arguments

For the time being, let us first list the following three approximations:

(I) Instantaneous decoupling approximation. The moment the neutri-

nos decouple is localised in time and instantaneously occurs at T = Td.

(II) Ideal gas approximation. All particles distribution functions are either

exact Bose-Einstein or Fermi-Dirac distributions, cf. Eq. (6.14), and their

energy densities and pressures are given by their leading-order ones (6.15).

(III) Neutrino-never-coupled approximation. The electrons (and positrons)

are ultrarelativistic at Td, as if neutrinos were never coupled and decou-

pled in the infinite past Td/me →∞.

Under (I), the QED entroy density6 s(a) which we denote as a function of the

scale factor, is conserved and fulfills the relation

s(a1)a3
1 = s(a2)a3

2, (6.30)

from the moment the neutrinos decouple, i.e. for a1, a2 ≥ ad.

Now let a1 = ad be the scale factor at the decoupling instant and therefore

Tν(a1) = T (a1) = Td. Using Eq. (1.10) and the relativistic energy densities for

bosons and fermions (6.24)(6.25), the QED entropy densities read

s(a1) = s(0)
∣∣∣
Td/me→∞

+ δs (6.31)

where

s(0)
∣∣∣
Td/me→∞

=

(
2 + 2 · 2 · 7

8

)(
1 +

1

3

)
π2

30
T 3
d =

11π2

45
T 3
d , (6.32)

is the QED entropy density of an ideal gas (represented by superscript “(0)”)

in the limit where Td/me → ∞, i.e. under the assumptions (II) and (III).

δs captures all deviations from (II) and (III) under the assumption that the

entropy density is conserved, which is a consequence of (I).

6Unless explicitly labelled by e, γ or ν, all thermodynamic quantities in this section are

those of the QED bath.
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Then, let a2 be a certain scale factor well after the neutrinos decoupling, where

electrons and positrons are completely nonrelativistic T (a2)/me → 0. Then,

the energy and pressure densities of the electrons and positrons are negligible,

as those of matter particles, and the QED entropy density at that time reads

s(a2) = 2 · 2π2

45
T 3(a2), (6.33)

Now, remembering that after they decouple, the temperature of ultrarelativistic

particles, such as that of neutrinos, follows Tν(a) = ad
a Td, (cf. (6.23)). This

immediately leads to the relation Tν(a2) = (a1/a2)Tν(a1) = (a1/a2)T (a1).

Thanks to (I), we can equate (6.31) with (6.33) and it gives

Tν(a2)

T (a2)
=

(
4

11

)1/3
(

1 +
δs

s(0)
∣∣
Td/me→∞

)−1/3

, (6.34)

which is equivalently rewritten as the energy density ratio

ρν
ργ

∣∣∣∣
T/me→0

= 3 ·
(

1 +
δs

s(0)
∣∣
Td/me→∞

)−4/3
7

8

(
4

11

)4/3

, (6.35)

where the prefactor 3 comes from assuming three generations of neutrinos. This

equation is what historically led to the following general definition of Neff as

ρν
ργ

∣∣∣∣
T/me→0

= Neff
7

8

(
4

11

)4/3

, (6.36)

since under the assumptions (I)-(III), we can use (6.35) with δs = 0 and find

Neff = 3. Note that the equations established here allow us to go further and

relax (II) and (III) but keep (I). Then, we can define Neff = 3 + δNeff , and find

δNeff = 3



(

1 +
δs

s(0)
∣∣
Td/me→∞

)−4/3

− 1


 , (6.37)

which is the change in Neff due to refining (II) and (III) within (I). Indeed, (I)

is crucial as it ensures entropy conservation (6.30) from Td onwards and avoids

the complications of having to track the out-of-equilibrium time evolution of

the neutrino fluid during their decoupling phase. Going beyond (I) requires the

numerical solution of generalised Boltzmann equations, also known as quantum

kinetic equations, to precisely describe the non-instantaneous decoupling phase

of the neutrinos, as well as their mixing through oscillations. In the next

discussion, we argue how to do so and estimate Neff by numerically solving the

Boltzmann equation for the neutrino sector.
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6.4.2 Neff from the continuity equation

When the entropy density is not conserved, Neff is computed by solving and

integrating the continuity equation (6.10). Following the notation of Refs. [127,

132], it rewrites

d

dx
ρ̄t(x, z(x)) =

1

x

[
ρ̄t(x, z(x))− 3P̄t(x, z(x))

]
, (6.38)

where the dimensionless time variable is defined as x = meR(t), with R(t) =

a(t)/[a(td)Tν(td)] an inverse temperature parameter normalised to the neutrino

decoupling temperature Td,
7 ρ̄t = ρt · (x/me)

4 and P̄t = Pt · (x/me)
4 are the

dimensionless comoving total energy and pressure densities, where

ρt = ργ + ρe + ρν = ρ+ ρν ,

Pt = Pγ + Pe + Pν = P + Pν ,
(6.39)

sum over all relevant particle species for the neutrino and QED sectors. Associ-

ated to those and relevant for this work are the comoving momentum y = pR(t)

and rescaled photon temperature z = T (t)R(t).

When it comes to computing Neff , we are after the late time energy density

ratio ρν/ργ as T/me → 0 (i.e. as x → ∞), cf. Eq. (6.36). Assuming that the

QED sector remains at equilibrium during the entire time frame of interest,

and provided that the distortions to the neutrino phase space distribution are

negligible, the latter is fully determined by the temperature ratio Tν/T . In

the instantaneous decoupling limit, this is strictly identical and equivalent to

solving the continuity equation (6.38) with the boundary conditions zfin =

z(xfin →∞) and zini = z(xini = me/Td) = 1. Since z determines the initial and

late-time asymptotic boundary conditions under which we solve the continuity

equation (6.38), it is suitable to appropriately rewrite it as a dynamical equation

of motion for z. Using d / dx = ∂/∂x+ (dz /dx)∂/∂z, this exercise gives

dz

dx
=

1
2z3

[
1
x (ρ̄(0) − 3P̄ (0))− ∂ρ̄(0)

∂x − d
dx ρ̄ν + 1

x (δρ̄− 3δP̄ )− ∂δρ̄
∂x

]

1
2z3

(
∂ρ̄(0)

∂z + ∂δρ̄
∂z

) , (6.40)

where we have split the comoving QED energy and pressure densities into an

ideal gas component, ρ̄(0) and P̄ (0), plus quantum field theoretical corrections

7This normalisation is slightly different to that used in e.g. Ref. [133], where R(t) is

normalised so as to have R(t)→ 1/T at times well before neutrino decoupling. Our definition

gives R(t) = 1/Tν(t) at all times after neutrino decoupling, in the limit of instantaneous

decoupling.
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δρ̄ and δP̄ . Evaluating the ideal gas terms explicitly yields

dz

dx
=

(
x
z

)
J(x/z) − d

dx ρ̄ν +G1(x, z)(
x2

z2

)
J(x/z) + Y (x/z) + 2π2

15 +G2(x, z)
, (6.41)

with the special functions

J(τ) =
1

π2

∫ ∞

0

dω ω2 exp
(√
ω2 + τ2

)

[exp
(√
ω2 + τ2

)
+ 1]2

,

Y (τ) =
1

π2

∫ ∞

0

dω ω4 exp
(√
ω2 + τ2

)

[exp
(√
ω2 + τ2

)
+ 1]2

,

(6.42)

and

2z3G1(x, z) =
1

x
(δρ̄− 3δP̄ )− ∂δρ̄

∂x
,

2z3G2(x, z) =
∂δρ̄

∂z

(6.43)

represent the yet-to-be-specified corrections to the leading-order ideal gas ther-

modynamic contributions.

The Boltzmann equations kick in Eq. (6.41), via the time-derivative of the neu-

trino distribution function dρ̄ν/dx which, we note in passing, is the only remain-

ing total derivative. As explained in section 6.3, those Boltzmann equations

govern the dynamics of the distribution functions that define bulk thermody-

namic quantities, based on the interactions that the corresponding particles are

subject to. For the sake of neutrinos, their collisional right hand sides are thus

determined from the weakly interacting sector of the Standard Model of particle

physics. Under general circumstances, the contributions from the Boltzmann

equations cannot ever be neglected, unless interactions are insignificant or if

they are argued at equilibrium at all times. This is for instance the case in

the instantaneous decoupling limit, where neutrinos very promptly transit be-

tween neutrinos at equilibrium with the QED bath, to a QED-independent

background of free-streaming neutrinos, and with dρ̄ν/dx = 0 at all times.

In a realistic scenario, there is of course a transition regime where dρ̄ν/dx is

nonvanishing which ought to be accounted for in a precision theoretical predic-

tion of Neff and that requires numerical solutions of the generalised Boltzmann

equations in the neutrino sector.

As a cross-check for the validity of this method, one can solve Eq. (6.41) for

dρ̄ν/dx = 0 (instantaneous decoupling approximation (I)) and G1 = G2 = 0

(ideal gas approximation (II)) with the initial condition zini = 1 set at xini =

limTd/me→∞(me/Td) = 0 (neutrino-never-coupled approximation (III)). This
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exercise yields

zfin =

(
11

4

)1/3

= z
(0)
fin

∣∣∣
xini=0

, (6.44)

from which we infer the expected Neff = 3 from the previous section. Dropping

the aforementioned assumptions, we find the general formula for δNeff

δNeff = 3



(
z

(0)
fin

∣∣∣
xini=0

zfin

)4

− 1


 . (6.45)

In the limit dρ̄ν/dx = 0, equation (6.45) has to precisely reproduce the same

result as that of the entropy conservation estimate (6.37), under the same

set of assumptions. In the next chapter, we shall go beyond the assumptions

(II) and (III), discuss where corrections to them come from, and report the

resulting changes to the standard value Neff = 3. That said, let us now evaluate

the neutrino decoupling temperature Td from first principles of nonequilibrium

quantum field theory, as we know from past considerations that it enters all

theoretical computations of Neff .

6.5 Estimate of the neutrino decoupling tem-
perature Td

As carefully explained around Eq. (6.16), the decoupling temperature is defined

through Γν(Td) = H(Td), where Γν(T ) is the neutrino weak interaction rate

per neutrino with the QED thermal bath from which it decouples, and H(T )

is the Hubble expansion rate. The latter is given by Eq. (6.8) and since at the

relevant temperatures for Neff , the Universe is solely constituted by a QED

bath and neutrinos, it reads

H(T )2 =
1

3M2
pl

[ρ(T ) + ρν(T )] (6.46)

where within (I), neutrinos always are at equilibrium and ρν reads

ρν = 3 · 7

8

π2

30
gνT

4
ν . (6.47)

Now, just as in the scalar case discussed in section 4.3, it can be shown from

first principles of real-time nonequilibrium field theory that the neutrino, or
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fermionic in general, distribution functions follow a generalised Boltzmann

equation [136,137], which in absence of oscillations takes the form [33]

dfν,p
dt

= (1− fν,p)Γ<p − fν,pΓ>p , (6.48)

where8

Γ≷p =
∓1

2p0
Tr[/pΣ

≷(p)]

∣∣∣∣
p0=Ων,p

(6.49)

are the production (<; “gain”) and destruction (>; “loss”) terms, respec-

tively, which are functionals of the relevant distribution functions that enter the

finite-temperature neutrino Wightman self-energies Σ≷ of opposite Schwinger-

Keldysh polarities.9,10,11

Note that Eq. (6.48) governs the dynamics of distribution functions, just as the

Botlzmann equation (6.26) does and as a matter of fact, we show in Appendix

E.1 that they indeed are strictly equivalent in the flat space limit. Eq. (6.48)

encapsulates all relevant quantum field theoretical collision terms at all orders

in the couplings, provided that perturbation theory can be applied and that

bulk properties of the plasma change only adiabatically [33].

For temperatures above Td, both the neutrino and QED sectors are at thermal

equilibrium, hence Σ≶ can be computed from equilibrium propagators, and

they satisfy the fermionic Kubo-Martin-Schwinger (KMS) relation (1.102)

Σ>(p) = −eΩp/TΣ<(p), (6.50)

where Ων,p is the effective frequency which determines the neutrino dispersion

relation. As a result, the production and destruction rates (6.49) obey the

detailed balance condition Γ>p /Γ
<
p = eβΩp , and Eq. (6.48) can be written as

dfν,p
dt

= −Γp [fν,p − fD(Ων,p)] , (6.51)

where we have defined a mode-dependent interaction rate,

Γp = Γ>p + Γ<p =
1

2p0fD(p0)
Tr
[
/pΣ

<(p)
]∣∣∣∣
p0=Ων,p

. (6.52)

8Here, the operator Tr performs the trace over the Dirac matrices.
9Note here that this is a flat space result, wherein there is no distinction between the

usual spatial momentum and the physical one, and we temporarily went back to the notation

of chapter 1, and denoted the full four-momentum p = (p0,p)T .
10The Wightman selfenergies are reviewed and presented in Sec. 1.1.9.
11Note the difference in signs between this expression and its scalar counterpart (4.33)

in section 4.3, which is due to the difference in signs between bosonic and fermionic KMS

relations.
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When put under this form, the differential equation (6.51) indicates that the

rate at which the distribution function fν,p is driven back to its equilibrium

value is dictated by Γp. Therefore, Γp is the interaction rate per neutrino Γν
to be equated to the Hubble rate to determine the decoupling temperature12

6.5.1 The neutrino–QED plasma interaction rate from Fermi
theory

For the sake of neutrino decoupling from a QED plasma, only those weak

interactions that connect neutrinos to the QED sector matter. These are

νeν̄e → e+e−,

νee
± → νee

±,

ν̄ee
± → ν̄ee

±,

(6.54)

where we disregard those processes which involve a muon or tau neutrinos. We

assumed that they are maintained in thermal equilibrium with the electron

neutrinos via large-angle flavour oscillations and neutrino-neutrino scatterings,

both of which typically remain efficient beyond Td, see Ref. [138].

Having in mind the optical theorem and the associated cutting rules, see foot-

note 12, the relevant selfenergies are depicted in Fig. 6.1. Following SM Feyn-

man rules [139] and integrating out the massive gauge bosons within the Fermi

12Γp can also be related to the spectral selfenergy and retarded selfenergy at the quasipar-

ticle pole using Eqs. (1.71)(1.79), and we find the usual relation

Γp = − 1

p0
ImTr

[
/pΣ

R(p)
]∣∣∣∣
p0=Ων,p

(6.53)

which arises from nothing but the cutting rules and optical theorem at finite temperatue, see

Refs. [64, 67–69] and section 4.3 for a more refined discussion.
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(c)

Zν

Zµ

νe

`− p

νe

e; q

e

q + ` − p `− p
νepp

(d)

q − pW ν

q − p
Wµ

q + ` − p

νe
e

νe; `

e

νepp

νe
p p

Zν
→p−`

(a)

→p−q
Wµ

νe νe
p p

W ν

→p−q

(b)

→p−`
Zµ

νe

Figure 6.1: Leading-order weak selfenergy diagrams that contribute to the

processes listed in (6.54). For notational simplicity we have not labelled every

internal fermion line and momentum. The former can be deduced from the

bosons connected to the vertices. Momentum is taken to flow in the same

direction as the fermion number flow.

effective field theory, we find the associated real-time expressions

Tr
[
/pΣ

ba
(a)(p)

]
= −2

(
GF√

2

)2 ∫
d4`d4q

(2π)8
Tr

[
/pγ

µ(1− γ5)Sbae (q)γν

× (gV,e − gA,eγ5)Sabe (`+ q − p)γµ(1− γ5)Sbaν (`)γν(1− γ5)

]
,

(6.55)

Tr
[
/pΣ

ba
(b)(p)

]
= −2

(
GF√

2

)2 ∫
d4`d4q

(2π)8
Tr

[
/pγ

µ(1− γ5)Sbaν (`)γν(1− γ5)

× Sabe (`+ q − p)γµ(gV,e − gA,eγ5)Sbae (q)γν(1− γ5)

]
,

(6.56)
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Tr
[
/pΣ

ba
(c)(p)

]
= 4

(
GF√

2

)2 ∫
d4`d4q

(2π)8
Tr
[
/pγ

µ(1− γ5)Sbaν (`)γν(1− γ5)
]

× Tr
[
γµ(gV,e − gA,eγ5)Sbae (q)γν(gV,e − gA,eγ5)Sabe (`+ q − p)

]
,

(6.57)

Tr
[
/pΣ

ba
(d)(p)

]
=

(
GF√

2

)2 ∫
d4`d4q

(2π)8
Tr
[
/pγ

µ(1− γ5)Sbae (q)γν(1− γ5)
]

× Tr
[
γµ(1− γ5)Sbaν (`)γν(1− γ5)Sabe (`+ q − p)

]
, (6.58)

where the superscripts a, b = ± are Schwinger-Keldysh contour labels, gV,e =

− 1
4 + sin2 θW , gA,e = − 1

4 , and gνV,e = gνA,e = 1
4 . The Schwinger-Keldysh

fermionic propagators are carefully reviewed in section 1.1.10. The loop mo-

menta were chosen so that the internal neutrino always has momentum ` and

the electrons q and `+q−p, this will come in handy for the coming calculations.

The total selfenergy is the sum of these four contributions.

We want to evaluate Σ<(p). This corresponds to setting the contour indices

to a = − and b = +, as Σ+−(p) = Σ<(p), and only Wightman propagators

S
+−
−+
ψ = S

≶
ψ , where ψ = νe, e, contribute in Eqs. (6.55)-(6.58). These Wightman

fermionic propagators can be related to the full spectral function in momentum

space and the relations read (cf. Eq. (1.103), dropping the (eq) as everything

is in equilibrium for the problem at hand anyway)

S>ψ (p) = (1− fD(p0))℘ψ(p),

S<ψ (p) = −fD(p0)℘ψ(p),
(6.59)

where ℘ψ(p) is the spectral density. For the present calculation we use the

leading-order spectral density detailed in section 1.1.10, and the spectral den-

sity of a free fermion of mass mψ reads

℘ψ,0(p) = (2π)sgn(p0)(/p+mψ)δ(p2 −m2
ψ), (6.60)

which has only one sharp peak at p2 = m2
ψ, at the vacuum particle mass shell.

These delta functions put the internal fermion lines of the selfenergy diagrams

on shell. The associated Wightman propagators also involve the delta functions

and read

S
≶
ψ,0(p) = −(fD(|p0|)− θ(∓p0))(2π)(/p+mψ)δ(p2 −m2

ψ), (6.61)

where θ(p0) denotes a Heaviside step function. Putting internal particles pre-

cisely on their mass shells through the delta functions effectively cuts through

all internal fermion lines, as shown in Fig. 6.2 and the products of these cuts
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Figure 6.2: Finite temperature Cutkosky cuts of the self-energies.

are nothing but the 2 → 2 scattering processes of (6.54) and their complex

conjugates, just as demands the optical theorem.

In other words, the scattering rate obtained here from first principles of nonequi-

librium field theory is precisely that usually presented in textbooks [1], follow-

ing the approach of kinetic theory and collisional integrals. In appendix E.1,

we demonstrate in detail the correspondence between the two approaches at

leading-order. The advantage of our first principles method over the usual

2 → 2 scattering approach is that it provides a more self-consistent and sys-

tematic tool to implement higher order corrections, e.g. relevant for precision

computations of Neff .

6.5.2 The neutrino decoupling temperature

Evaluating the selfenergy contributions (6.55) to (6.58) assuming a free fermion-

spectral density (6.60) for both ψ = νe, e, we find the interaction rate

Γp(T ) =
(e|p|/T + 1)

2|p|
∑

i=a,b,c,d

Ci G2
F

4(2π)4

∫∫ ∞

0

d|p|d|`| |p|
2|`|
Eq

∫ +1

−1

d cosα

×
∑

ε,τ=±1

{
πθ(b̃2 − 4ãc̃)√

|ã|
[
fD(|`0|)− θ(−`0)

][
fD(|q0|)− θ(−q0)

]

×
[
fD(|`0 + q0 − p0|)− θ(`0 + q0 − p0)

]

×
∑

(mn)

Ai(mn)

[
G0

(mn) +
b̃

2|ã|G
1
(mn) +

(
3b̃2 + 4c̃|ã|

8ã2

)
G2

(mn)

]


∣∣∣∣∣∣q0=εωq

`0=τ |`|

.

(6.62)

The definitions of the coefficients Ci, Ai(mn), and Gi(mn) are gathered in Tables

E.1 and E.2, and ã, b̃, and c̃ are ε- and τ - dependent functions of |p|, |q|, |`|,
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with cosα given in Eqs. (E.30) to (E.32). We detail the full calculation of

Γp(T ) in appendix E.2.

To estimate the interaction rate per neutrino from the momentum-dependent

Γp to the interaction rate per neutrino Γν , we evaluate Γp at some represen-

tative mean momentum 〈|p|〉 ' 3.15T . Fig. 6.3 shows the interaction rate

Γν(T ) = Γ〈|p|〉 as a function of T , together with the Hubble expansion rate

H(T ) as a function of T as well, assuming the QED plasma to be an ideal

gas. The neutrino decoupling temperature is obtained when the lines cross and

solving Γν(Td)−H(Td) = 0 for Td, we obtain

Td = 1.3453 MeV. (6.63)

This neutrino decoupling temperature is consistent with the state-of-the-art

findings of Ref. [140] to about 5%, the difference being attributed to their

different definition of Γν and approximations13 to estimate it. In this work,

Γν is the mode-dependent rate Γp evaluated at |p| = 〈|p|〉 ' 3.15T , while in

Ref. [140], they defined Γν as the momentum-averaged destruction rate 〈Γ>p 〉.

Finite temperature QED corrections to the decoupling temperature.

Relevant for a precision computation of Neff are corrections to this value of

Td, which is sensitive to higher-order corrections to the selfenergy diagrams of

Fig. 6.1 and to the Hubble rate (6.46). The leading-order corrections relevant

for Neff are FTQED corrections to Γp and H.

On one hand, H gets modified through a QED-corrected equation of state which

alters the total pressure and energy density and consequently H, cf. (6.46). We

shall examine that in detail in section 7.3, and therefore do not repeat the

analysis here. For the time being, we shall just plot the associated thermally

(“th”) corrected Hth as a function of the temperature in Fig. 6.3.

On the other, we distinguish two types of FTQED corrections to the interaction

rate Γp that describes 2→ 2 neutrino–electron scattering at leading order: (a)

modification to the dispersion relation, and (b) vertex corrections. These are

illustrated diagrammatically in Fig. 6.4.

Contributions of the type (a) amount to dressing the fermionic QED-charged

propagator with a photon [141], which can be effectively implemented by replac-

ing free propagators by partially resummed ones, wherein the (vacuum) particle

13The authors of Ref. [140] averaged out the final state Pauli blocking factors before per-

forming the phase space integrals whereas we did not make any approximation to perform

them. Therefore, our computations should me more realistic.
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Figure 6.3: Interaction rate per neutrino with the QED plasma Γν (solid lines)

versus the Hubble expansion rate H (dashed lines) as functions of the temper-

ature of the QED plasma T . Rates without FTQED corrections are indicated

in red, while those with FTQED corrections are in blue.
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Figure 6.4: The only two qualitatively different finite-temperature QED cor-

rections to the weak scattering rates, (a) dispersion relation modifications due

to selfinteractions, and (b) vertex corrections due to photon exchanges.

mass is shifted to its thermal counterpart. For the problem at hand, this can

be implemented by replacing all occurrences of m2
e in the mode-dependent in-

teraction rate Γp by its thermal counterpart m2
e + δm2

e,T (p), where we take

δm2
e,T (p) to be the O(e2), one-loop selfenergy-induced mass given by [140,142]
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δm2
e,T (p) =

e2T 2

6
+
e2

π2

∫ ∞

0

dp̃
p̃2

ωp̃
f̃D−

m2
ee

2

2π2p

∫ ∞

0

dp̃
p̃

ωp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ f̃D, (6.64)

where f̃D = fD(ωp̃). This is particularly straightforward if we discard the

momentum-dependent piece in δm2
e,T (p), which on average constitutes less than

10% of the total δm2
e,T (p). Indeed, in that case, the analytic reduction of all

loop integrals in Γp proceeds identically as in the case with bare propagators.

Contributions of the type (b) can unfortunately not be dealt with similarly, they

would require an explicit computation of each individual diagram involving a

photon exchange, a very demanding task that we leave for future work.

Fig. 6.3 shows the thermal-mass-corrected interaction rate Γmth
ν (T ) as a func-

tion of the QED plasma temperature, together with the thermally-corrected

Hubble expansion rate Hth(T ). Solving Γmth
ν (Tmth

d ) − Hth(Tmth

d ) = 0 for the

thermal-mass-corrected neutrino decoupling temperature Tmth

d , we find

Tmth

d = 1.3467 MeV, (6.65)

that is a deviation of 0.1% from the uncorrected Td, which is consistent with

the findings of [140]14. Before moving to our precision computations of Neff , we

shall first review the past, current and future status of experimental measure-

ments on Neff, which will set an accuracy goal for our theoretical predictions

for the deviations from Neff = 3.

6.6 Measuring Neff in the Standard Model: a
quick overview

In this section, we briefly review the different measurements and experimental

bounds obtained on the value of Neff in the Standard Model today, and what

will hopefully be achieved in the future.

6.6.1 Measuring Neff: the state of the art

Past measurements. The number of light neutrino species in the Standard

Model has been known to be 3 for a long time, e.g. from the LEP experiment

14Note that [140] always assumed ideal gases when evaluating H(T ). Their thermally-

corrected neutrino decoupling temperature therefore corresponds to the intersection of the

red dashed and blue solid lines in figure 6.3, which generally returns a higher value of Td
than the intersection of the two blue lines.
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in the 90s [143] and more accurately since the precision measurement of the Z

pole in 2012 [144]. Prior to that, cosmology alone was only able to put bounds

from primordial big-bang nucleosynthesis (BBN) [145–148], i.e. from the for-

mation of light elements. The main idea behind these bounds is the following.

If neutrinos exist, they are abundantly produced in the early Universe, hence

they contribute to the its total energy density via Eq. (6.8) and speed up its ex-

pansion. Increasing the expansion of the Universe e.g. increases the abundance

of Helium that is created during BBN, thus the more numerous the neutrinos,

the more important the helium abundance. Therefore, measuring the amount

of Helium in the early Universe puts bounds on the effective number of neutri-

nos in the cosmos. These serve as powerful independent bounds on Neff that

supplements the current best Neff measurements, rely on less assumptions and

overcome parameter degeneracies, as we shall comment on later in more detail.

Nowadays, measurements of Neff are best obtained from the matter and CMB

power spectrum, i.e. using combined data from BOSS [149] which measures

the matter power spectrum, and Planck [77] or WMAP [78] missions which

both measure the CMB power spectrum anisotropies. Therefore, in order to

understand how Neff is currently determined, we need to understand in detail

how Neff and neutrinos in general affect the the matter and CMB power spectra.

CMB physics in a nutshell. At temperatures relevant for neutrino-CMB

physics, four major events occur, neutrino decoupling, recombination, matter-

radiation equality (EQ) and photon decoupling or photon last scattering surface

(LSS). As the scale factor a(t) grows, the Universe expands and the temperature

T cools down. Neutrinos decouple first at around Td ' 1.35 MeV during the

radiation era. During the same epoch, the e± → γγ recombination occurs at

around T ' me = 0.511 MeV. Then the Universe switches from the radiation-

dominated era (ρt ' ρr ∝ a−4) to the matter-dominated one (ρt ' ρm ∝ a−3)

at equality ρr = ρm, when TEQ ' 0.7 eV [135], and eventually photons decouple

at TLSS ' 0.26 eV and free-stream in a curved background.

From recombination onwards, the cosmological fluid is essentially made of pho-

tons and baryons (matter), hence referred to as the photon-baryon (p-b) fluid.

Neutrinos and cold dark matter have decoupled. Roughly speaking, the p-b

fluid behaves according to two competing effects. The gravitational attraction

developed by the baryons/matter, vs. the radiation pressure exerted by the

photons which try and escape the baryonic gravitational pull. In the inho-

mogeneous overdense region seeded by inflation or alternatives, the pressure

is higher than outside, and spherical outward-propagating sound waves escape

these at the sound speed cs, just as sound waves arise from pressure differences
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in the air. The sound speed

c2s =
1

3(1 + 3ρb/4ργ)
(6.66)

is much higher in the radiation than in the matter era, because most of the

pressure and density is made of photons there. In the matter era, the sound

speed eventually drops to zero, as 3ρb/4ργ →∞.

These acoustic oscillations in the plasma are nothing but p-b density waves

that propagate to equilibrate the cosmological fluid and are precisely what give

rise to CMB and matter fluctuations, also known as baryon acoustic oscillations

(BAO). In practice the degrees of freedom of the perturbations are decomposed

in spherical harmonics of certain amplitudes, wave numbers k ∼ 1/λ and mul-

tipoles `. These quantities and their dynamics coupled to metric perturbations

are what determine the CMB and matter power spectra. They are described by

a set of coupled Boltzmann and Einstein equations derived in the framework of

cosmological perturbation theory [1]. Solving and understanding these is of the

greatest importance to understand the shape of the power spectra, but doing it

in detail is very tedious. It involves a very complicated interplay between many

gravitational, geometric, quantum and thermal effects that compete across a

broad range of temperatures. It is even more complicated to try and isolate the

effects of neutrinos alone [135,150,151]. However, since neutrinos are not cou-

pled to the p-b fluid, they will only affect CMB physics through changes in the

pre-recombination history, or changes in the (perturbed) Einstein/Friedmann

equations, and these can be organised into background and perturbation effects.

The former directly alter the evolution of the scale factor, and the latter di-

rectly impact the CMB anisotropies by modifications of the linearised Einstein

equations for the metric perturbations, which in turn backreact on the p-b fluid

fluctuations. Background effects are usually hard to associate to one species in

particular. Perturbation effects, however, can be peculiar to a certain species.

Matter-radiation equality. The most significant (background)Neff -induced

effect on the CMB and matter power spectrum has to do with the matter-

radiation equality. More precisely, it relates to the way acoustic waves prop-

agate during the radiation and matter eras, and how Neff has an effect on

that. First, clearly the sound speed is different in these two epochs: it is 1/
√

3

during the radiation era, while it continuously drops down to zero in the mat-

ter era. This affects the phase shifts and locations of the peaks in the CMB
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power spectrum by modifications of the sound horizon15 at the last scattering

surface [135, 150, 151]. Then, in the radiation era, fluctuations of wavelengths

within the sound horizon oscillate and propagate with an almost constant am-

plitude. Super-sound-horizon modes barely propagate, they just stay frozen to

their initial state. Metric perturbations and gravitational potential wells decay

over time. In the matter era the p-b fluid starts coupling more and more to

gravity keeping the same amount of total pressure: structure formation and

clustering start. From equality to decoupling, matter density perturbations

grow while radiative pressure waves escape less and their amplitudes lessen,

they get gravitationally damped. Eventually, beyond the LSS, photons and

their remaining perturbations free-stream in the perturbed metric background.

As a result of these two distinguished phases, the overall amplitude, phase

shifts and peak locations of the CMB power spectrum crucially depends on

the amount of time or temperature ∆TLSS
EQ = TEQ − TLSS that the matter era

lasts for, before photons eventually decouple and their fluctuations free-stream.

Determining ∆TLSS
EQ accurately requires the precise computations of matter-

radiation equality and photon decoupling. The photon decoupling temperature

is very well known from both theory and experiments [1], hence ∆TLSS
EQ actually

solely depends on the precise moment of the matter-radiation equality which

itself is defined by ρm|TEQ
= ρr|TEQ

. Now since TEQ � me, and using the

definition of Neff in Eq. (6.36), we find that

ρm|TEQ
= ρr|TEQ

= ργ

(
1 +Neff

7

8

(
4

11

)4/3
)
, (6.67)

hence Neff plays a major role in determining the matter-radiation instant.

This is how Neff primarily affects the CMB and matter power spectra, and

hence structure formation [135, 150–153], i.e. via modifications of the matter-

radiation Eq. (6.67). Striking consequences of varying Neff and the time of

matter-radiation equality are direct and significant changes in the location of

the turnover point of the matter power spectrum [154], or in the CMB power

spectrum amplitudes (this depends on the duration of the matter vs. radia-

tion eras before decoupling), peak locations and phase shifts (these are directly

related to the physical sound speed and horizon at LSS).

Silk damping. Neff then affecs the power spectra via a perturbation effect

called Silk or diffusion damping [155]. It is the fact that random photon scatter-

ings in the p-b fluid tend to erase fluctuations which wavelengths are below the

15The distance travelled by an acoustic wave front since some initial time deep in the

radiation era. Provided that the initial is far enough in the past, the sound horizon is

independent of its exact value.
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photon mean free path. The more scattering events, the more these fluctuations

are damped. Neutrinos scatter with electrons and photons, in particular before

recombination, hence they contribute to Silk damping, and in particular, the

higher Neff and the more neutrino species, the more scatterings and the more

Silk damping . As emphasised above, this mechanism is particularly effective

before and around the time of recombination where interactions and scatterings

between electrons and photons are kinematically highly favoured. This eventu-

ally results in a reduction of the photon power spectrum in its high multipole

side [150, 151], in the so-called damping tail. The contributions of neutrinos

there can very well be isolated [151], hence this constitutes a smoking-gun for

the contributions of neutrinos to the CMB power spectrum.

Anisotropic stress. Collisionless neutrinos cannot be treated as a perfect

fluid of vanishing anisotropic stress, simply because they have no interactions

and collisions which over time kill the initial anisotropies, as e.g. Compton

scatterings do for the p-b(-e±) fluid [1]. A careful analysis of the evolution

of neutrino perturbations [150] shows that these neutrino anisotropic stresses

produce a perturbation effect that reduces the amplitude and shift the peaks of

the high-` CMB anisotropy spectrum [156]. In particular, it affects the third

peak most significantly. In standard ΛCDM cosmologies, there is no other

species that releases such an anisotropic stress tensor16, this hence constitutes

a direct probe of the neutrino sector through CMB measurements.

The free-streaming length, weak lensing and neutrino masses. De-

coupled species, as e.g. neutrinos, free-stream and are characterised by their

free-streaming length: λfs(t) ∼ cν(t)/H(t), where tH = H−1 is the Hubble

time. This determines what length scale in the p-b-ν perturbed equations are

not influenced by the free-streaming neutrinos at a given time17. Wavelengths

below λfs(t) are effectively not influenced by the perturbations of free-streaming

neutrinos. For instance, potential wells which widths exceed λfs will capture

and interact neutrinos whereas these would just fly by thinner potential wells.

The same goes for other perturbations. In practice, these effects of the free-

streaming length are observed through weak lensing effects18. CMB measure-

ments can distinguish the gravitational potential wells which were sensitive

16For instance, one may wonder about cold dark matter is a collisionless decoupled species

too, but it is nonrelativistic matter and it hence generates no pressure whatsoever.
17A similar but better quantity to evaluate this is the integrated free-streaming horizon

hfs(t) which tells which wavelengths scale never were affected by the free-streaming neutrinos.
18These geometric effects bend the geodesic of CMB photons towards the line of sight of

an observer, simply because there is gravitating matter between the place where the photon

was emitted and the position of the observer.
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to neutrinos from the others through precision measurements of weak lensing

effects in the angular distribution of the CMB power spectrum.

Since a species’ free-streaming length depends on its mass, this also provides a

way for precision cosmology to put bounds on the sum of the neutrino masses.

If neutrinos are massless, their free-streaming speed is 1, hence λfs ' H−1. If

they are massive, their speed is lower and they become nonrelativistic when

their masses exceed their average momentum 〈p〉 = 3.15Tν . For sub-eV masses,

as e.g. is the case for active left-handed neutrinos, this nonrelativistic transition

happens in the matter dominated era and the neutrino free-streaming speed and

Hubble rate take well-defined forms in terms of the matter energy density [1,

135]. This precisely determines which modes and potential wells are affected by

neutrinos and which are not, and gives a way to probe the neutrino masses from

their imprints on certain specific modes in the CMB spectrum of anisotropies.

Expansion rate modifications. Another way that neutrinos and Neff can

affect the evolution of perturbations is via modifications of the expansion rate.

This can be achieved with both background or perturbation effects.

On one hand, they induce changes on the background scale factor itself, by

modifying the expansion rate through the unperturbed Einstein equations. The

neutrino energy density increases the expansion rate. This has an impact on

the way both the p-b fluid and its fluctuations evolve. First, it further cools

down the overall CMB temperatures via the integrated Sachs-Wolfe (ISW)

effect [157]. The ISW effect is a geometric and gravitational effect on the CMB

temperature due to the expansion of the Universe and time dilation on an

observer of the CMB. Starting at LSS, and all along its geodesic or line of sight,

a photon observed today was continuously redshifted by the expanding metric

background in a time-dependent manner as the background changes over time

according to Einstein’s equations. In order to fully account for these cumulated

effects, one must integrate the gravitational contributions of time dilation and

temperature shifts all along the geodesic, from the last scattering surface, all the

way to today. Second, increasing the background expansion rate also decreases

the baryonic gravitational pull on the photon perturbations, because physical

distances between gravitating objects is stretched quicker. In the same way,

this affects any length scale defined with the integrated Hubble rate, as e.g. the

sound horizon. These background effects can typically not be attributed to

neutrinos alone and do not constitute a discriminating smoking-gun.

On the other, neutrinos can have a direct perturbation effect on the metric fluc-

tuations (respecting the free-streaming length condition) which in turn back-

reacts on the fluctuations of the p-b fluid via the equations of cosmological
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perturbations. These can lead to all sorts of distortions, both cumulatively

redshifting and blueshifting the final CM power spectrum.

Neff and degeneracies. A problem with Neff measurements from the CMB

is its degeneracy with other cosmological parameters. First and foremost, it is

degenerate with the matter energy density fraction ωm = ωb + ωdm [128, 156].

This is because observations of CMB anisotropies, in particular the ratio of the

first to the third acoustic peaks, only fixes the the matter-to-radiation energy

density, cf. Eq. (6.67). Then, Neff is degenerate with the age of the Universe

or the present-day Hubble rate H0 [156, 158, 159], which is not ideal given the

current H0 tension in the community [160]. These were potential problems for

WMAP [156], because they did not have access to precision measurements of

higher Neff -sensitive peaks in the CMB anisotropies19. However, it is argued

that the peculiar anisotropic stresses and Silk damping effects left by neutrinos

in the CMB anisotropies (cf. the previous paragraphs), as measured by WMAP

[161, 162] or Planck [156] can already provide an independent handle on Neff

and overcome these degeneracies by WMAP or Planck [122] data alone. The

anisotropic stress puts the lower bound, and the Silk damping the upper one.

Moreover, the Atacama Cosmology Telescope (ACT) and South Pole Telescope

(SPT) also provide independent measurements of Neff [156] due to neutrino Silk

damping in the high-` spectrum [151].

Other Neff degeneracies include the primordial Helium YP [151, 156] and the

couplings and masses of WIMPs (weakly interacting massive particles) dark

matter candidates. Again, independent measurements of BBN light abundan-

cies [163] and of WIMP properties [164] would break these degeneracies.

Because of these degeneracies, certain combinations of degeneate parameters

are experimentally undistinguishable from a single data set and therefore iso-

lating effects of Neff alone on the CMB is very hard and one has to be careful

when reading strong statements about the effect of Neff on the power spec-

trum. One has to make sure what other parameters are being played with

simultaneously. In this context, one physically interesting question that can

be addressed easily is the following: What happens if we vary Neff but keep all

other cosmological parameters constant? The answer is that it increases the

overall amplitude in the CMB peaks, slightly shift their locations and their

phases, as can e.g. be seen in Fig. 5.3 of Ref. [135]. The explanation for that

is fairly simple and rather illuminating. If all parameters are kept constant,

then increasing Neff primarily increases the radiative energy density. This has

19Unlike WMAP, Planck does have access to the Neff -sensitive higher peaks and provides

independent measurements of Neff which break these degeneracies.
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the the following effects. It increases the expansion rate via the Friedmann

equations, delays matter-radiation equality and reduces gravitational effects in

the entire history of the Universe, as explained above. As a result, it widens

physical distances between gravitating objects, shortens the duration of the

matter era before photon decoupling and thus the amplitude of CMB fluctu-

ations are less damped and less trapped by gravity, they escape more. As a

result, the amplitudes of the CMB anisotropies are bigger. Unfortunately, this

is an effect that cannot be attributed to Neff alone, precisely because of the

above-mentioned Neff -ωm and Neff -H0 degeneracies. What really is an Neff

smoking-gun signature in the CMB is the phase shift in the third peak from

the anisotropic stress release from the free-streaming neutrinos, and the Silk

damping of neutrinos in the CMB damping tail.

These types of changes in the CMB and matter power spectra are precisely

what experiments are after when doing cosmological parameter inference, and,

from a very simplified perspective, this is how Neff is determined from observing

the CMB and matter power spectrum.

Most recent and precise measurement of Neff in the standard model.

To this date, the most precise measurement of Neff, considering it a free pa-

rameter in a standard ΛCDM cosmology, was performed by the data of both

the CMB Planck [122] and the BAO BOSS [149] missions. They obtained

Neff = 2.99+0.34
−0.33 (95% C.I.), (6.68)

that is Neff = 3, plus decimal corrections. This value is obtained under the

assumptions that we live in a ΛCDM cosmology coupled to the Standard Model

of Particle Physics. Obviously BSM cases are worth investigating too, both

theoretically and experimentally. We shall comment on them when discussing

deviations from N eff = 3 in the next chapter.

6.6.2 Measuring Neff: the future

The most promising upcoming experiment that would improve on the precision

at which Neff is measured is the ground-based CMB-S4 mission [134,165] which

construction should start in 2021. In short, the goals of this experiment is

to perform measurements of the CMB power spectrum and anisotropies of

unprecedented accuracy to put constraints on deviations of the thermal and

gravitational history of the Universe as predicted from the Standard Model.

Most relevant for this work is the expected precision they will achieve on Neff,

which in its most conservative version reaches σ(Neff) = 0.02− 0.03 [134,165],
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that is, they will resolve percent level corrections. That said, it is timely to

beat down the remaining theoretical uncertainties on Neff to below the fourth

significant digit, so that these are negligible in the error progression. These are

precisely what we turn to next.



Chapter 7
Corrections to Neff = 3

In the previous chapter, we discussed and studied in detail the standard value

Neff = 3, which we recall is a result of a standard-model computation, and

of making the three assumptions: (I) the instantaneous decoupling approxi-

mation, (II) the ideal gas approximation and (III) the neutrino-never-coupled

approximation, cf. section 6.4.1. Therefore we distinguish two types of correc-

tions to Neff = 3, beyond the Standard-Model (BSM) corrections, and devia-

tions from dropping (I)-(III).

BSM corrections. Any BSM ingredient that modifies the radiative energy

density, distorts the distribution functions of the relativistic plasma or changes

the expansion history, be it at tree or loop level, will eventually alter Neff via

ρrad = ργ + ρν + (BSM physics) =
π2

15
T 2

(
1 +Neff

7

8

(
4

11

)4/3
)
. (7.1)

In the first section of this chapter, we discuss some BSM effects which impact

Neff and hence also comment on which are experimentally (dis)favoured if a

change in Neff were observed.

Deviations from (I)-(III). Any deviation from (I)-(III) leads to a change

δNeff in the effective number of cosmological neutrinos Neff , which brings it

away from its standard value 3. Eqs. (6.37) and (6.45) are our master formulae

to compute δNeff , when adopting (I) in the computations. In this chapter, we

shall step by step drop (III) and (II). For both, the resulting δNeff is computed

151
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using Eqs. (6.37) and (6.45), however, we also provide the necessary ingredients

to fully estimate from solving the Boltzmann equations. Indeed we know that

once (I) is dropped, Eqs. (6.37) and (6.45) no longer hold. Therefore, simul-

taneously relaxing all three conditions and studying their interplay, which we

ultimately ought to do to consistently predict Neff , must be performed using

the method explained in section 6.4.2, and the associated analytic G-functions

are computed here. Eventually, we comment on the errors made on Neff due

to the uncertainties on the measured parameters that potentially feed into our

computations.

7.1 BSM corrections: a theoretical and experi-
mental overview

As argued in Eq. (7.1), Neff can serve as a way of parametrising BSM effects

in the the thermal history of the Universe. Of course, the list of BSM effects

that alter Neff is infinite, because literally anything that modifies the expansion

rate, modifies the radiative energy density, and distorts the equilibrium distri-

bution functions will eventually alter it. Here, we list a few well-motivated and

well-studied BSM particles and models that affect Neff and comment on their

viability based on current and future experimental bounds.

Neff and neutrino masses and oscillations. The most obvious and well-

established BSM ingredient that corrects Neff is the effect of neutrino masses

and oscillations, which is not part of the SM strictly speaking. In fact, account-

ing for neutrino masses and oscillations in the transport equations that deter-

mine Neff is a well-established field [123–128] and these corrections can lower

Neff by as much as δNosc
eff ' −0004 [127] or in the fifth significant digit [166].

Neff and right-handed neutrinos. In order to explain the tiny masses and

oscillations of the active left-handed neutrinos, probably the most natural and

popular explanation is that they come accompanied by one or several sterile

right-handed counterparts, which explain the light active neutrino masses via a

seesaw mechanism [167–171], and see e.g. [156,172–174] and references therein

for detailed theoretical, phenomenological and experimental reviews and in-

troductions on right-handed neutrinos. Their mixing with active neutrinos

augment Neff and as such, they can be constrained by cosmological data and

must be consistent with them.
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The original high-scale seesaw mechanism [167–171] proposed very heavy Ma-

jorana right-handed neutrinos with masses well above the electroweak scale

(∼ 200 GeV), just below the Grand Unified Theories (GUT) scale (1016 GeV).

These can explain the baryon asymmetry in the Universe (BAU) through ther-

mal leptogenesis and CP-violating decays of the right-handed neutrinos [175].

These very heavy particles are not present in the Universe at all times relevant

for Neff and CMB physics, and hence do not affect them at all. This makes

them experimentally inaccessible from cosmology.

Then, low-scale seesaw models were proposed wherein right-handed neutrinos

have masses below the TeV scale. These are particularly interesting because

they can realise leptogenesis (via CP-violating decays and/or resonant oscil-

lations) [176–179], and their properties can be probed at laboratory experi-

ments, see e.g. [180] for a summary of bounds. Sub-GeV masses are parametri-

cally allowed and these would eventually affect Neff slightly [181–185], through

nonequilibrium distortions and entropy injections during, before and after BBN

as follows.

The production rate and lifetime of the heavy neutrinos are both proportional

to the square of their mixing angles with ordinary neutrinos. The lifetime is

proportional to the fifth power of their mass. This implies that seesaw right-

handed neutrinos with masses below 100 MeV are ruled out by a combination

of neutrino oscillation data, direct searches, BBN and Neff [182]. For mixing

angles that are large enough to explain the masses of the heavier two SM

neutrinos, such sterile neutrinos necessarily come into equilibrium in the early

universe. Upper bounds on their mixing angles obtained from experiments

then imply that their lifetime is long enough to either disturb BBN or affect

the primordial plasma after BBN in a way that is visible in the light element

abundances and/or Neff. Assuming a standard cosmological history, the only

ways to avoid this is to either give the right-handed neutrinos a very tiny mixing

angle (in which case they cannot explain the SM neutrino masses alone) or to

suppress their production in the primordial plasma with new interactions. In

the keV mass range, right-handed neutrinos with tiny mixings give rise to

stable long-lived right-handed neutrinos which constitute viable dark matter

candidates [186]. These contribute as relativistic particles to Neff around BBN

and neutrino decoupling, and act as matter at times relevant for CMB physics.

However, their number densities at BBN and neutrino decoupling are so low

that their effect on Neff falls within current bounds on Neff, see e.g. [187] for a

review.

Eventually, even lighter eV-mass right-handed neutrinos are highly constrained

by Neff. If they are in equilibrium around BBN and neutrino decoupling, they



154 Chapter 7. Corrections to Neff = 3

are simply ruled out by Planck data [156], because they would increase the

amount of hot dark matter by too much [188, 189], and more importantly any

extra relativistic species at that time contributes δNeff = 1. Therefore, extra

interactions must bring them out of equilibrium and/or highly depopulate their

number densities at the relevant temperatures. Low-mass right-handed neutri-

nos are actually motivated by the excess signal for ν̄µ → ν̄e and νµ → νe flavor

conversions, respectively in the LSND [190] and more recently MiniBooNE ex-

periments [191]. If interpreted by flavor oscillations through sterile states, these

anomalies (and others, see e.g. sections 3.1, 4.2 and 4.3 in [173]) could indeed be

explained by low-mass right-handed neutrinos [173, 174, 192]. However, these

require large mixing angles that would bring the sterile neutrinos in thermal

equilibrium early in the Universe, hence causing the above-mentioned tensions

with precision cosmology. These can precisely be resolved if the sterile neutri-

nos have non-standard interactions [193], or if cosmology itself is modified by

e.g. additionnal radiation [188, 189]. The experimental neutrino research pro-

gram DUNE [194] initially designed to measure CP violation in the neutrino

mixing matrix is sensitive to these non-standard interactions of right-handed

neutrinos and hence can potentially probe them.

Neff and other additional light species. As emphasised above, additional

light particles increase the radiation energy density, and hence they increase

Neff and the authors of [195] carefully study the possibility that the Planck

mission [122] probes or rules out the associated deviations in Neff. As argued

there, only thermal light particles which decouple at T . 200 MeV are within

the reach of the Planck mission, cf. Fig. 3 in [195], hence [195] focuses on these

species which have been in equilibrium with the SM through the QCD phase

transition (T ' 200 MeV), see e.g. [196]. Prior to that, the quarks constitute

most of the relativistic degrees of freedom in the Universe, hence bringing Neff

to a much larger value that is insensitive to small changes. The results of [195]

are summarised in table 1 therein, and we shall briefly review them throughout

the next paragraphs.

Neff and axion-like particles. Light spin 0 Goldstone bosons that are in

equilibrium with the SM through the QCD phase transition, e.g. axion-like

particles (ALPs) which were also studied in Ref. [197], are highly constrained

by non-observation bounds obtained from star and supernovae cooling [198–

200]. Indeed, if they existed, these ALPs would be produced in star cores and

interact weakly enough to actually escape them, hence we should see them. As

a consequence of these astrophysical bounds, their effects on the CMB either

fall well below Planck sensitivity [195, 197], or their couplings to muons and
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taus are fine-tuned and much stronger than their couplings to any other SM

fields. In that case, they can lead to a change in Neff of as much as ∆Neff = 0.2-

0.6 [195,197].

Neff and dark photons. Massless spin 1 gauge bosons A′µ are consistent with

Planck, because their long-rage forces/couplings to SM fermions are greatly

restricted to be too weak to significantly alter Neff [201]. Typically, only tiny

kinetic mixings L ⊃ −εF ′µνFµν between the new and SM gauge bosons are

allowed, as e.g. is the case for a dark photon [202], and corrections to Neff

arise from a new fermionic content, say χ, a potential dark matter candidate,

see [203] and references therein. For a massless dark photon, the parameters of

these models are constrained by Planck and astrophysical data [195], and must

comply to ε < 10−8 and 10 MeV < mχ < 150 MeV. Lower mχ are restricted

from astrophysics and higher masses cause the dark photon to decouple before

the QCD phase transition, hence bringing it below Planck’s sensitivity.

Higher MeV masses of freeze-in dark photons have been studied in [202]. These

do not couple to neutrinos directly and only heat up the e±-γ fluid after neu-

trino decoupling, hence reducing Neff cf. Eq. (6.36). Planck already constrains

their masses to mA′ > 8.5 MeV and their kinetic mixings to SM gauge bosons

to below ε . 10−9.5. The maximal induced change in Neff reads δNdγ
eff ' −0.3

and decreases with the dark photon mass, cf. Fig. 3 in [202]. The CMB S-4

experiment [134] is expected to increase the sensitivity to dark photon masses

to 17 MeV [202], cf. Fig. 3 in [202].

Neff and modified theories of gravity. Massless higher spins usually sum-

moned in modified theories of gravity, as e.g. the gravitino (3/2) in supergrav-

ity [204] and gravitons (2). Both decouple at very high temperatures. The

effects of massive gravitinos on Neff are studied in [205] wherein constraints on

Neff put bounds on the gravitino-to-photons decays (which lower Neff) rates.

According to [195], current (Planck) and near-future (CMB-S4) CMB experi-

ments will not resolve the induced changes in Neff. Eventually, it has recently

been suggested in [159] that scalar-tensor theories help reduce the H0 ten-

sion [160] and lead to smaller values of Neff down to Neff = 2.8. These are

experimentally disfavoured.

Neff and thermal freeze-out dark matter. Weakly Interacting Massive

Particles (WIMPs) are well-motivated dark matter candidates [206] which gener-

ically decouple from the cosmological plasma at T ∼ mWIMP/20 MeV, i.e. they

are nonrelativistic. Therefore, as soon as mWIMP . 20 MeV, they contribute
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to neutrino decoupling and alter Neff and their impact was studied in [128,207].

Using CMB and BBN constraints on Neff, they show that mWIMP & 3.7 MeV

and future CMB missions will improve the bounds up to mWIMP & 10 − 15

MeV.

Having covered a wide range of BSM effects that could potentially impact Neff,

let study the deviations from Neff that come from dropping (I)-(III) within the

Standard Model alone, bearing in mind that we have a four significant digit

accuracy goal.

7.2 The neutrino-never-coupled (NNC) approx-
imation

The “neutrino-never-coupled” (NNC) assumption (III) approximates Td/me →
∞. This approximation is very rough since neutrino decoupling is expected to

occur around Td ∼ 1 MeV and me = 0.511 MeV. As a result, the deviation

δs /NNC from dropping this assumption is the most significant source of changes

in Neff studied in this work.

As explained previously, a finite Td/me enters the standard estimate of Neff by

changing the QED entropy density at the time of neutrino decoupling by the

amount (cf. Eqs. (1.10)(6.15))

δs /NNC =
ge

2π2Td

∫ ∞

0

dp p2

(
ωe +

p2

3ωe

)
fD(ωe)

∣∣∣∣
Td/me

Td/me→∞
, (7.2)

where we recall fD(ω) = [exp(ω/T ) + 1]−1 is the Fermi–Dirac distribution,

ω2
e = p2 + m2

e is the electron energy, and p is the physical momentum which

scales as p ∝ a−1. It is straightforward to evaluate (7.2) numerically for any

neutrino decoupling temperature Td. With our estimate Td = 1.3453 MeV from

Sec. 6.5, we find δs /NNC/ s(0)
∣∣
Td/me→∞ ' −0.009859. Plugging it in Eq. (6.37)

gives the correction to Neff

δN
/NNC

eff ' 0.039895 (7.3)

from dropping the NNC approximation (III). Figure 7.1 depicts δN
/NNC

eff versus

the neutrino decoupling temperature Td.

In terms of the continuity equation (6.40) and the method of Sec. 6.4.2, drop-

ping (III) corresponds to not having xini ≡ me/Td = 0 anymore, but still

keeping G1 = G2 = 0 and dρ̄ν/dx = 0 as those arise from relaxing (II) and (I).
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Figure 7.1: Corrections to Neff = 3 due to relaxing various assumptions, as

a function of the neutrino decoupling temperature Td. The gold/dot-dash

line denotes dropping the neutrino-never-coupled approximation (x = /NNC),

the red/solid line includes in addition the log-independent O(e2) FTQED cor-

rection to the QED equation of state (x = /NNC + (2) /ln), the blue/dashed

line includes the full O(e2) FTQED correction (x = /NNC + (2)), and the

green/dotted line contains FTQED corrections up to and including O(e3)

(x = /NNC + (2) + (3)). The vertical grey/dotted line marks Td = 1.3453 MeV.
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7.3 Finite-temperature corrections to the QED
equation of state

Finite temperature field theory enters a theoretical computation of Neff in many

different instances, including the QED equation of state, the neutrino inter-

action rate and collision integrals, etc. We here focus on finite-temperature

corrections to the QED equation of state which is expected to be the correc-

tion that dominates δNeff next. In this section, we investigate the departure

from the ideal gas behaviour which originates from the interactions amongst

its constituents, and relax (II) in the QED sector .

These corrections have been widely considered in the literature, see e.g. [130–

132,208], wherein the deviations from the ideal gas picture had been unfailingly

attributed to the acquisition of thermal masses by the QED particles. While

this interpretation is correct to some degree, it has led to misinterpretations

when it comes to computations of thermodynamic bulk quantities [209].

As we know very well from section 1.1 (more precisely sections 1.1.7 and 1.1.8),

a more fool-proof calculation starts with the partition function Z for QED at

finite temperature, for which a systematic expansion of lnZ in powers of the

QED coupling constant e (i.e., the elementary electric charge) can be consis-

tently formulated in the framework of real-time equilibrium field theory as

lnZ = lnZ(0) + lnZ(2) + lnZ(3) + · · · (7.4)

where lnZ(n) ∝ en. This expansion is well established up to n = 3 for non-

vanishing electron mass me and chemical potential µ [22] and to n = 5 in the

limit where me = µ = 0 [210, 211]. At each order n in the power expansion,

standard thermodynamics relations (1.8)-(1.10) hold and are used to go from

lnZ(n) to the corresponding pressure P (n), energy density ρ(n), and entropy

density s(n)

P (n) =
T

V
lnZ(n), (7.5)

ρ(n) =
T 2

V

∂ lnZ(n)

∂T
= −P (n) + T

∂P (n)

∂T
, (7.6)

s(n) =
1

V

∂
[
T lnZ(n)

]

∂T
=
ρ(n) + P (n)

T
, (7.7)
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where T and V are the temperature and volume of the system respectively. At

zeroth order, the QED pressure and energy density are

P (0) =
T

π2

∫ ∞

0

dp p2 ln

[
(1 + e−ωe/T )2

(1− e−ωγ/T )

]
, (7.8)

ρ(0) =
1

π2

∫ ∞

0

dp p2

[
2ωe

eωe/T + 1
+

ωγ
eωγ/T − 1

]
, (7.9)

cf. Eqs. (6.15), which describe nothing but an ideal gas of photons and elec-

trons/positrons, with ωγ = p and ω2
e = p2 +m2

e.

7.3.1 O(e2) FTQED

lnZ(2) = − 1
2

Figure 7.2: The O(e2) correction to the partition function lnZ.

The lowest order correction to the QED partition function comes at order O(e2)

and is diagrammatically given by the two-loop diagram depicted in Fig. 7.2.

Its contribution to the partition function is well-known and the corresponding

lnZ(2) is e.g. given in Eq.(5.58) of Ref. [22]. For an isotropic and CP -symmetric

medium such as that under consideration, the chemical potentials vanish, the

angular integral can be performed and the expression simplifies to

P (2) =
T

V
lnZ(2) =− e2T 2

12π2

∫ ∞

0

dp
p2

ωp
nD −

e2

8π4

(∫ ∞

0

dp
p2

ωp
nD

)2

+
e2m2

e

16π4

∫∫ ∞

0

dp dp̃
pp̃

ωpωp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nDñD,
(7.10)

where we have introduced nD = 2fD(ωp), and ñD = 2fD(ωp̃). Under (III), i.e.

T/me →∞, Eq. (7.10) evaluates to P (2) = −5e2T 4/288.

Putting Ref. [208] aside, state-of-the-art theory predictions of Neff have only

implemented the first two, “log-independent” terms of Eq. (7.10), following

Ref. [132], itself based on Ref. [130]. The “log-dependent” term is usually

disregarded, due to it being shown too insignificant to warrant a detailed in-

vestigation on its contribution to Neff , see e.g. Ref. [131, 132]. We study both

in what follows.
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Log-independent contribution ( /ln). Solely considering the first two “log-

independent” terms of equation (7.10), we find the energy and entropy density

corrections

ρ(2) /ln =− e2T 2

12π2

∫ ∞

0

dp
p2

ωp
(nD + T∂TnD) +

e2

8π4

(∫ ∞

0

dp
p2

ωp
nD

)2

− e2

4π4

(∫ ∞

0

dp
p2

ωp
nD

)(∫ ∞

0

dp
p2

ωp
T∂TnD

)
, (7.11)

s(2) /ln =− e2T

12π2

∫ ∞

0

dp
p2

ωp
(2nD + T∂TnD)

− e2

4π4

(∫ ∞

0

dp
p2

ωp
nD

)(∫ ∞

0

dp
p2

ωp
∂TnD

)
. (7.12)

In general, those need to be evaluated numerically. In the limit where T/me →
∞, they analytically evaluate to ρ(2) /ln = −5e2T 4/96 and s(2) /ln = −5e2T 3/72,

respectively.

Let us now compute the associated δNeff from entropy conservation arguments,

and first read off the δs of Eq. (6.37) with the definition

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

, (7.13)

where δs /NNC is the change in the QED entropy density at T = Td from dropping

(III), which is given in Eq. (7.2). Evaluating δs from our estimated Td = 1.3453

MeV, we obtain δs/ s(0)
∣∣
Td/me→∞ ' −0.012324, and hence

δN
/NNC+(2) /ln

eff ' 0.050015, (7.14)

where the fine structure constant value is α = e2/4π = 1/137. Subtracting

the correction (7.3) from (7.14) due to dropping (III), we find a net O(e2)

log-independent FTQED correction of the following significant magnitude

δN
(2) /ln
eff = δN

/NNC+(2) /ln
eff − δN /NNC

eff ' 0.010121 (7.15)

for Td = 1.3453 MeV, which ought to be compared with the often-quoted

δN
(2) /ln
eff ' 0.010594 from Ref. [131] calculated from the same FTQED correc-

tion but within (III). Fig. 7.1 displays δN
/NNC+(2) /ln

eff for a range of neutrino

decoupling temperatures and Fig. 7.3 shows the correction δN
(2) /ln
eff alone (i.e.,

with the /NNC contribution deduced from δN
/NNC+(2) /ln

eff ).

Then, keeping in mind that we should eventually drop (I) for which entropy

conservation arguments cannot be applied, we read off δρ̄ = ρ(2) /ln × (x/me)
4
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Figure 7.3: Effective corrections to Neff = 3 due to FTQED effects on the

QED equation of state alone (i.e., with the /NNC contribution subtracted), as a

function of the neutrino decoupling temperature Td. The red/solid line denotes

the log-independent O(e2) contribution (x = /NNC + (2) /ln), the blue/dashed

line the full O(e2) correction (x = /NNC + (2)), and the green/dotted line

includes corrections up to and including O(e3) (x = /NNC + (2) + (3)). The

vertical grey/dotted line marks Td = 1.3453 MeV.

and δP̄ = P (2) /ln × (x/me)
4 from our corresponding log-independent terms

and Eq. (6.43) gives the associated G1(x/z) and G2(x/z) functions for the
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continuity equation (6.40)

G
(2) /ln
1 (τ) =

e2

2

[
1

τ

(
K(τ)

3
+ 2K(τ)2 − J(τ)

6
− J(τ)K(τ)

)
+
K ′(τ)

6

−K(τ)K ′(τ) +
J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

]
,

(7.16)

G
(2) /ln
2 (τ) =

e2

2

[
2J(τ)K(τ)− J(τ)2 − (K(τ) + J(τ))

3

+

(
τJ ′(τ) +

1

τ
Y ′(τ)

)(
K(τ) +

1

6

)]
, (7.17)

where (· · · )′ = ∂τ (· · · ), and the newly defined function K(τ) reads

K(τ) =
1

π2

∫ ∞

0

dω
ω2

√
ω2 + τ2

1

exp
{

(
√
ω2 + τ2)

}
+ 1

, (7.18)

while J(τ) and Y (τ) are given in Eq. (6.42).

Observe that (7.16) is strictly identical to Eq.(18) of Ref. [132]. Our expression

for G
(2) /ln
2 , on the other hand, is analytically different from the result reported

in Eq.(19) of Ref. [132], but numerically equivalent to within machine precision

for a range of τ values. With the exception of Ref. [208], all recent precision

calculations of Neff , see e.g. [127, 133, 166, 212] implement FTQED effects on

the QED equation of state by solving the continuity equation (6.40) modified

with Eqs. (7.16)(7.17) (or their numerically equivalent counterparts presented

in Ref. [132])1.

Logarithmic contribution (ln). The energy and entropy density correc-

tions corresponding to the third, log-dependent term of Eq. (7.10) read

ρ(2) ln =
e2m2

e

16π4

∫∫ ∞

0

dp dp̃
pp̃

ωpωp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nD (2T∂T ñD − ñD) , (7.19)

s(2),ln =
e2m2

e

8π4

∫∫ ∞

0

dp dp̃
pp̃

ωpωp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nD∂T ñD, (7.20)

both of which vanish in the limit T/me →∞. It is usually argued that even at

a finite T/me, the significance of these terms amounts to less than 10% of the

1The often-quoted δN
(2) /ln
eff ' 0.010594 corresponds to zfin ' 1.39979 through Eq. (6.45),

and can be obtained from a numerical solution of the continuity equation (6.40) with the

initial conditions set at xini = 0. The number cited in Ref. [132, 166], i.e. zfin = 1.39975,

corresponds to setting the initial conditions at xini = 0.0341, or, equivalently, Td = 15 MeV.
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log-independent term from previous discussion, see e.g. Ref. [132]. As such,

they are usually discarded.

To assess this claim and estimate the corresponding correction to Neff , we

identify the entropy deviation at neutrino decoupling with

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

+ s(2) ln
∣∣∣
T=Td

. (7.21)

Then, for a decoupling temperature Td = 1.3453 MeV, we find δs/ s(0)
∣∣
Td/me→∞

' −0.012312, leading to a correction to Neff of

δN
/NNC+(2)

eff ' 0.049965, (7.22)

or, equivalently, a net O(e2) FTQED contribution of

δN
(2)
eff = δN

/NNC+(2)
eff − δN /NNC

eff ' 0.010070, (7.23)

of which

δN
(2) ln
eff = δN

(2)
eff − δN

(2) /ln
eff ' −0.000050, (7.24)

and about 0.5% of δN
(2)
eff , comes from the O(e2) logarithmic term on its own.

Thus, the logarithmic contribution appears to be even less significant than

previously envisaged.

Nevertheless, for completeness we report here the associated would-be G1 and

G2 functions to be used in the continuity equation

G
(2) ln
1 (τ) =

e2x

16π4z3

∫∫ ∞

0

dy dỹ
y√

y2 + x2

ỹ√
ỹ2 + x2

ln

∣∣∣∣
y + ỹ

y − ỹ

∣∣∣∣×

×
{
− nDñD − znD∂zñD

− x [z (∂xnD∂zñD + nD∂x∂zñD)− nD∂xñD] (7.25)

+
x2(y2 + x2 + ỹ2 + x2)

2(y2 + x2)(ỹ2 + x2)
(2znD∂zñD − nDñD)

}
,

G
(2) ln
2 (τ) =

e2x2

16π4z2

∫∫ ∞

0

dy dỹ
y√

y2 + x2

ỹ√
ỹ2 + x2

ln

∣∣∣∣
y + ỹ

y − ỹ

∣∣∣∣×

× ∂z (nD∂zñD) . (7.26)

We solved the continuity equation including these corrections for a range of

neutrino decoupling temperatures and shown the results in Figs. 7.1 and 7.3.

They again confirm the irrelevance of the O(e2) logarithmic term as compared

with both the total O(e2) FTQED contribution, and our four-significant-digit

accuracy goal. As a conclusion, the logarithmic O(e2) finite temperature QED

correction to the QED equation of state can indeed be disregarded.



164 Chapter 7. Corrections to Neff = 3

7.3.2 O(e3) FTQED

The next-to-leading-order QED correction to the ideal gas partition function

is of a noninteger power of the QED fine structure constant. It is of order

O(e3) and comes from resumming the infinitely many insertions of the so-

called ring diagrams, depicted on Fig. 7.4. The ring diagrams are the 1PI finite

temperature QED selfenergies for the photons and they effectively shift the pole

of the photon propagators in a temperature-dependent fashion. The photon

acquires a thermal mass, or Debye-mass, from screening effects in the plasma,

which regularises the infrared divergence of its associated thermal propagator,

due to the presence of an extra power of e in its denominator.

lnZ(3) = 1
2

[
1
2

− 1
3

+ 1
4

+ · · ·
]

Figure 7.4: Diagrammatic expression for the O(e3) correction to the FTQED

partition function. Filled black circles denote the 1PI photon selfenergy.

At that order in the QED coupling constant expansion, the pressure is well-

known and was e.g. computed in Ref. [22], it reads

P (3) =
T

V
lnZ(3) =

e3T

12π4
I3/2(T ), (7.27)

with

I(T ) =

∫ ∞

0

dp

(
p2 + ω2

p

ωp

)
nD. (7.28)

In the nonrelativistic limit where the Fermi-Dirac distribution can be replaced

by its Maxwell-Boltzmann counterpart, P (3) is nothing but the Debye-Hückel

pressure correction due to the screening of the static Coulomb potential [22,130]

in a thermal plasma. The associated energy and entropy corrections are

ρ(3) =
e3T 2

8π4
I1/2∂T I, (7.29)

s(3) =
e3

24π4

(
2I3/2 + 3I1/2T∂T I

)
. (7.30)

In the limit T/me → ∞, these expressions evaluate to P (3) = e3T 4/(36
√

3π),

ρ(3) = e3T 4/(12
√

3π), and s(3) = e3T 3/(9
√

3π).
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Following the same spirit as for the previously analysed corrections and writing

the full entropy correction as

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

+ s(2) ln
∣∣∣
T=Td

+ s(3)
∣∣∣
T=Td

, (7.31)

we find δs/ s(0)
∣∣
Td/me→∞ ' −0.012081 for Td = 1.3453 MeV. Then, Eq. (6.37)

yields a correction

δN
/NNC+(2)+(3)

eff ' 0.049013, (7.32)

or, equivalently, a net O(e2) +O(e3) FTQED contribution of magnitude

δN
(2)+(3)
eff = δN

/NNC+(2)+(3)
eff − δN /NNC

eff ' 0.009119, (7.33)

of which

δN
(3)
eff = δN

/NNC+(2)+(3)
eff − δN /NNC+(2)

eff ' −0.000952 (7.34)

stems from the O(e3) correction of this section. The associated G1 and G2

functions, relevant for solving the continuity equation, are given by

G
(3)
1 (τ) =

e3

4π

(
K +

τ2

2
k

)1/2
[

1

τ

(
2J − 4K

)
− 2J ′ − τ2j′

− τ
(

2k + j
)
−
(
2J + τ2j

)(
τ
(
k − j

)
+K ′

)

2
(
2K + τ2k

)
]
,

G
(3)
2 (τ) =

e3

4π

(
K +

τ2

2
k

)1/2[ (
2J + τ2j

)2

2
(
2K + τ2k

) − 2

τ
Y ′ − τ

(
3J ′ + τ2j′

)]
,

with the special functions

k(τ) =
1

π2

∫ ∞

0

dω
1√

ω2 + τ2

1

exp
{

(
√
ω2 + τ2)

}
+ 1

,

j(τ) =
1

π2

∫ ∞

0

dω
exp
(√
ω2 + τ2

)

(exp
(√
ω2 + τ2

)
+ 1)2

,

(7.35)

and J(τ), Y (τ), and K(τ) given in Eqs. (6.42)) and (7.18). Figures 7.1 and 7.3,

as before, display the correction to Neff as a function of the neutrino decoupling

temperature Td.

Here a few comments are in order. First and most notably, the change in

Neff from O(e3) FTQED is negative. As a result, it goes in the opposite

direction to the O(e2) and balances them out to a small extent. The O(e3)
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FTQED contributions lessen the correction to Neff obtained from the lower

order corrections. The microphysical reasons for it are unclear and to the best

of our knowledge, we can only attribute them to the regularisation of infrared-

sensitive loop corrections, since they arise from the resummation of the ring

diagrams of Fig. 7.4 which gave the photons an effective thermal mass.

Second, having in mind our four-significant-digit accuracy goal, we conclude

that our O(e3) FTQED corrections not only are sizeable and should not be

disregarded, but also they are comparable to the neutrino-oscillations-induced

change in Neff , if not larger. Indeed, Ref. [127] reports a correction of up

to δNosc
eff ' −0.0004 when neutrino oscillations are consistently included in the

energy transport calculation, while Ref. [166] finds a shift in the fifth significant

digit. Therefore, while neutrino oscillations invariably have been acknowledged

as key ingredients in standard Neff computations, we here have shown that

O(e3) FTQED corrections should have been, too. For all these reasons, we

insist that any future precision computation of Neff with a four-significant-digit

accuracy goal should consider the latter as a standard input.

7.3.3 O(e4) FTQED

For the sake of completeness and to provide a measure of the theoretical un-

certainty, we study the O(e4) FTQED correction to the equation of state and

its impact on Neff in the limit T/me → ∞. The O(e4) pressure correction

reads [210]:

P (4)
∣∣∣
T/me→∞

=
T

V
lnZ(4)

∣∣∣
T/me→∞

' −0.0611
e4

π6
T 4, (7.36)

where, we discarded a 5% uncertainty in the numerical prefactor and taken

the renormalisation scale at that of the temperature. We obtain the associated

energy and entropy densities using the usual standard thermodynamic rela-

tions, and find ρ(4) ' −0.1833 e4T 4/π6 and s(4) ' −0.2444 e4T 3/π6. Using

Eq. (6.37), we estimate the resulting change in Neff and find

δN
(4)
eff ' 3.5× 10−6. (7.37)

Putting aside Hubble-volume surveys, which in the most idealised and opti-

mistic circumstances may have the accuracy to resolve Neff at the level of 10−6

corrections [213], such a change in Neff will not be probed in the near future.

We therefore conclude that the O(e4) FTQED correction to the QED equation

of state is, for the time-being, unnecessary.
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7.3.4 Finite temperature correction to Td

In section 6.5.2, we studied the change in Td from those FTQED corrections to

the neutrino decoupling temperature (and the weak rates) that could simply

be implemented by shifting the electron mass to its thermal counterpart and

computing the Hubble rate using the O(e2) equation of state. This of course

affects Neff and reading off Figs. 7.1 and 7.3, it merely shifts the final Neff by

δNmth

eff ' −0.000080. (7.38)

Though larger than the O(e2) logarithmic correction to the QED equation of

state discussed in section 7.3.1, it still is an order of magnitude smaller than

the O(e3) correction of section 7.3.2 which demonstrates that, on its own, this

contribution has an irrelevant impact on Neff .

7.4 Results within the instantaneous decoupling
approximation (I)

Let us summarise the results for δNeff obtained from entropy conservation

arguments, i.e. only valid within the instantaneous decoupling approximation

(I). They ought to be interpreted as estimates of how large corrections will be

in the more realistic computation where (I) is dropped too. In table 7.1 are

gathered the δNeff changes obtained from dropping (III) the neutrino-never-

coupled (NNC) and (II) the ideal gas approximations for the QED equation of

state, within the instantaneous decoupling limit (I).

A few comments are in order. As expected and emphasised before, the dom-

inant deviation from Neff = 3 comes from relaxing (II) which allows for some

entropy of the e±-annhiliation to be transferred between the QED and neu-

trino sectors for a longer time than within (II). Then, the finite temperature

QFT effects come into play when (III) is relaxed and alter the QED equation

of state via a power coupling expansion in the QED coupling constant e. At

order O(e2), the corrections to Neff are of the same order of magnitude as

those obtained from letting go of (II) and are primarily obtained from the log-

independent part. The log-dependent bit is almost negligible, it falls below the

order O(e3) correction which is however of particular relevance. Indeed, the

latter provides a sizeable contribution to Neff across a broad range of possible

decoupling temperatures, which we estimated more significant than the effect

of including neutrino oscillations, always considered as a standard input in
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x δNx
eff (Td = 1.3453 MeV) δNx

eff (Tmth

d = 1.46 MeV)

QED equation of state corrections

/NNC 0.039895 0.033903

(2) /ln 0.010121 0.010173

(2) ln −0.000050 −0.000043

(3) −0.000952 −0.000951

(4) ' 3.5× 10−6 ' 3.5× 10−6

Weak rate corrections

mth −0.000080 −0.000067

Total 0.048937 0.043019

Table 7.1: Summary of the various SM contributions to Neff considered thus

far, within the instantaneous decoupling approximation (I). The (instanta-

neous) neutrino decoupling temperature Td = 1.3453 MeV is that established

in section 6.5, while Tmth

d = 1.46 MeV has been obtained from matching

δN
/NNC+(2) /ln

eff + δNmth

eff to 0.044 [133].

Neff computations. On the contrary, FTQED corrections of order O(e3) so far

never were and one major consequence of this piece of work within (I) is that

we demonstrated that they should be. Analytic ingredients to implement them

when including neutrino energy transport and oscillations have been computed,

too. By matching known corrections δN
/NNC+(2) /ln

eff + δNmth

eff to the most recent

such calculation [133], we infer that in comparison to Neff = 3.044 [133], the

new FTQED corrections studied in this work lower it to

Neff = 3.043. (7.39)

Higher order FTQED corrections and their impact on Neff on the other hand,

is too low to be resolved in near-future experiments. Before moving to the

final conclusions regarding this part of the thesis, we wish to comment on the

potential experimental errors that tarnish all theoretical computations of Neff.

7.5 Theoretical uncertainties from errors on mea-
surements

Of course, to all theory predictions which rely on experimentally measured

parameters, e.g. the QED coupling constant e or the Fermi constant GF , are

associated uncertainties which eventually impact the theory predictions. We
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Parameter [Units] Value ± 1σ uncertainty Reference

W
ea

k sin2 θW 0.23122± 0.00004 [215]

GF[10−5GeV−2] 1.1663787± 0.0000006 [215]

mW [GeV] 80.379± 0.012 [215]

N
eu

tr
in

o

sin2 θ12/10−1 3.20+0.20
−0.16 [216]

sin2 θ13/10−2 2.160+0.083
−0.069 [216]

sin2 θ23/10−1 5.47+0.20
−0.30 [216]

∆m2
21[10−5eV2] 7.55+0.20

−0.16 [216]

|∆m2
31|[10−3eV2] (NO) 2.50± 0.03 [216]

|∆m2
31|[10−3eV2] (IO) 2.42+0.03

−0.04 [216]

Table 7.2: Central values and 1σ uncertainties of the weak sector physical

constants. The neutrino parameter values have been derived in the global

fit [216] assuming a normal mass ordering (NO), with the exception of the last

entry marked which assumes an inverted mass ordering (IO). Inverting the mass

hierarchy induces variations in the global best-fit values which are statistically

insignificant (< 1σ) [216,217].

briefly review how large these uncertainties potentially are in the context of

neutrino cosmology, and more precisely Neff which is primarily sensitive to the

QED and weak sectors of the Standard Model.

Measurement errors in the QED sector. Relevant for Neff are the elec-

tron mass me and the fine structure constant α = e2/4π. These are experi-

mentally measure to nine significant digits [214], and are in that sense infinitely

well-known, as far as Neff computations are concerned.

Measurement errors in the weak sector. Unlike the QED sector, physi-

cal constants in the weak sector, which we summarise in table 7.2, are far less

well-measured. As far as we work under the instantaneous decoupling approxi-

mation, and neglect neutrino masses and oscillations, the weak sector is, again,

very well-known, cf. the first three rows of table 7.2. Once neutrino oscillations

are turned on, the neutrino mass splittings ∆m2
ij are relatively well-known and

the least well-measured parameters are the solar neutrino mixing angle sin2 θ12

and the atmospheric one sin2 θ23, each have a 1σ-uncertainty of about 6%.

Resulting uncertainties on computations of Neff. As emphasised above,

instantaneous decoupling computations are merely affected by experimental
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uncertainties, because they do not depend on the poorly-measured oscillation

parameters. In particular, QED parameters are infinitely well-known and only

the Fermi constant and W and Z boson masses affect Neff through the neutrino

weak rates and decoupling temperature. As a rule of thumb, we know from

our previous analysis and e.g. Fig. 7.1 that changing the neutrino decoupling

temperature Td by an amount ∼ 10−3 induces a shift of |δNeff| . 10−4. Then,

we evaluate from power counting that changing sin2 θW and GF, within their

3σ measurement error bands, that is to say relative changes of ∼ ±5 × 10−4

and ∼ ±10−6 respectively (see table 7.2), cannot modify Td fractionally by

more than ∼ 10−4, and hence Neff by more than |δNeff| ∼ 10−5. The impact

of varying the W boson mass is even less significant. Therefore, errors on

measurements are insignificant as far as instantaneous decoupling computations

of Neff are concerned.

As we very well know, dropping the instantaneous decoupling approximation

is a complicated exercise that includes solving the neutrino Boltzmann equa-

tions numerically. This is currently under investigation, with the help of our

colleagues S. Pastor, P. de Salas and S. Gariazzo who provide expertise on

the numerical side2. We already have studied dependence of Neff on these un-

certainties for the measurements of physical constants in the weak sector and

here, we only shortly present the results and underlying physics. We leave the

presentation of the more refined analysis for a future publication.

In a nutshell, our results are the following. First and foremost, numerical insta-

bility and uncertainties dominate the errors that result from measurements of

physical constants. Then, despite the large errors on the mass splittings, these

do not affect Neff much. This is simply because the typical neutrino oscillation

frequencies ∆m2
ij/2〈p〉 are much faster than the Hubble rate around neutrino

decoupling [218]. Hence, since the integration of Boltzmann equations is per-

formed over a Hubble time (or more) around neutrino decoupling, these effects

are averaged out and Neff solely effectively depends on the relative mixing an-

gles sin2 θij . Second, we find no strong dependence on sin2 θ23, despite the large

1σ error bar. Physically, this is simply because that mixing angle only affects

the µ and τ neutrino populations alone, and effectively swaps them around.

These populations enter Neff computations in an identical manner [219], hence

varying the νµ ↔ ντ swapping rate sin2 θ23 does not change the final outcome

of the Neff computations by much. Eventually, we do obtain that Neff presents

a sensitivity on sin2 θ12, and to a smaller extent, on sin2 θ13 as well. Physi-

cally, this is because these mixing angles govern the conversion rates between

electron neutrinos and the other two neutrino populations. Since the electrons

2They are the developpers of FortEPiaNO [133], a fully momentum-dependent decoupling

code that accepts up to 3 active + 3 sterile neutrino flavours.
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neutrinos are in direct contact with the e±−γ QED plasma, swapping electron

neutrinos for other neutrino species changes the QED interactions between the

neutrino and QED sectors, hence affecting Neff directly. For ∼ ±20% varia-

tions in sin2 θ12, i.e. a 3σ error band, Neff can change by ±10−4. For similar

variations in sin2 θ13, the resulting changes in Neff are an order of magnitude

smaller, but that is simply because sin2 θ13 itself is already an order of magni-

tude smaller than sin2 θ12. Again, we emphasise that while these uncertainties

are sizeable, the final uncertainties on Neff still primarily stem from numerics.
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Conclusion and Outlook

Conclusion

In the second part of this thesis, we first reviewed the theoretical inputs needed

to properly define Neff in the context of cosmological thermodynamics.

Then, we addressed the question of the departure from Neff = 3, within the

Standard Model of particle physics and cosmology. The prominent reason for

this arises from dropping the assumption that electrons and photons are rela-

tivistic at neutrino decoupling, i.e. from dropping the “neutrino-never-coupled”

(NNC) approximation.

From first principles of real-time finite-temperature field theory, we then stud-

ied corrections to the QED equation of state starting from the QED partition

function, including effects of up to O(e4). We have accurately quantified their

impact on Neff , i.e. we evaluated to which degree they drive it away from 3

within the instantaneous decoupling approximation (I). At leading-order O(e2),

we recovered the state-of-the-art result δN
(2) /ln
eff ' 0.01. We even went further,

and studied a so-far-neglected O(e2) logarithmic contribution, and found its

contribution to Neff , namely δN
(2) ln
eff ' −5× 10−5, to be even more negligible

than initially expected. With a four-significant-digit precision goal, this O(e2)

logarithmic correction and the O(e4) correction (which δN
(4)
eff ' 3× 10−6) can

be considered optional to unnecessary in future calculations.

In contradistinction, the O(e3) correction to the QED equation of state is of

great relevance, as it contributes δN
(3)
eff ' 0.001 across a wide range of realistic

neutrino decoupling temperatures. The magnitude of this correction to Neff = 3

is not only sizeable with respect to our four-significant-digit accuracy goal, but

also with respect to the change in Neff obtained from the neutrino oscillations
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(up to δNosc
eff ' −0.0004, depending on decoupling code). As a result, the O(e3)

correction to the QED equation of state should be considered a necessary input

in future precision computations of Neff .

Eventually, we provided estimates for the neutrino decoupling temperature Td
from first principles of real-time nonequilibrium field theory. At leading order,

we obtained Td = 1.3453 MeV, which is consistent with the results of [140] to

5%.

Outlook

A natural continuation of this work is a more fully fledged investigation of the

impact on Neff of the different effects considered in this work, one that would

include neutrino energy transport and oscillations. This is achieved by nu-

merically solving the quantum kinetic equations, or Boltzmann equations, that

govern the nonequilibrium dynamics of the distribution functions, as e.g. pre-

sented in [133,166].

As a matter of fact, joining forces with S. Pastor, P. de Salas and S. Gariazzo

who provide expertise on the numerical side, we are on the verge of announc-

ing a state-of-the-art SM benchmark Neff , in a very-near-future publication

that includes the interplay between the above mentioned FTQED effects to-

gether with neutrino energy transport and oscillations. This will also include

a careful examination of the remaining uncertainties on our SM benchmark

Neff , as a result of observational error bars in the physical constants (e.g. the

Fermi constant), approximations in the weak collision integrals that feed in the

Boltzmann equations, and the current numerical precision.
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Appendix A
The 2PI effective action at
1-loop order

Let us first calculate the so-called 1PI one-loop effective action for a single real

scalar field degree of freedom φ(x). The associated one-loop 2PI effective action

can then be determined from Eqs. (1.119)(1.121).

As far as 1PI computations are concerned, R(x, y) can temporarily be disre-

garded and set to zero. Indeed, all our results are determined from the action

functional. As discussed above Eq. (1.119), at the level of the 1PI effective

action, R(x, y) can just be interpreted as a spacetime dependent mass shift.

Thus we can neglect it for the time being and reinsert it at the end of the day

by making the replacement

S[φ]→ S[φ,R] = S[φ] +
1

2

∫

x,y

R(x, y)φ(x)φ(y). (A.1)

This means that we can restrict ourselves to the usual 1PI effective action

Γ[ϕ] = W [J ]−
∫

x

J(x)ϕ(x) ⇔ W [J ] = Γ[ϕ] +

∫

x

J(x)ϕ(x) (A.2)

and generating functional

Z[J ] =

∫
Dφ exp

i

~

[
S[φ] +

∫

x

J(x)φ(x)

]
= exp

[
i

~
W [J ]

]
. (A.3)

Though called the one-loop effective action, it actually is the effective action

at order ~, hence we explicitly account for the presence of ~ in this appendix.
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The connection between quantum power expansions in ~ and the diagrammatic

loop expansion will be explained, too.

Let us study leading (LO) and next-to-leading order (NLO) quantum devia-

tions around the classical path φcl and their associated effective actions. By

definition φcl satisfies the stability condition

δS[φ]

δφ(x)

∣∣∣∣
φcl

= −J(x). (A.4)

Strictly speaking, this equation makes φcl a functional of J , i.e. φcl[J ]. A priori,

it is to be distinguished from ϕ = 〈φ〉. φcl is that path that dominates the

functional integral in the limit where ~ → 0. It satisfies the classical equation

of motion. ϕ is the full one-point function, the quantum and statistical average

of the full quantum field φ. It satisfies

δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ

= −J(x), (A.5)

with the usual abuses of notation.

A.1 Leading order 1PI effective action

At lowest order in ~, i.e. neglecting quantum fluctuations about φcl, we simply

evaluate the functional integral within Z[J ] in the limit where ~ → 0, φcl ex-

tremises the exponential and we obtain the leading order generating functional

ZLO[J ] = e
i
~ (S[φcl]+

∫
x
J(x)φcl(x)) = e

i
~ (ΓLO[ϕ]+

∫
x
J(x)ϕLO(x)) (A.6)

such that

WLO[J ] = ΓLO[ϕ] +

∫

x

J(x)ϕLO(x) = S[φcl] +

∫

x

J(x)φcl(x). (A.7)

In the particular case of the lowest order approximation, using Eq. (A.4), we

evaluate

ϕLO(x) =
δWLO[J ]

δJ(x)
=

δ

δJ(x)

[
S[φcl] +

∫

y

J(y)φcl(y)

]

=

∫

y

δS[φcl]

δφcl(y)

δφcl(y)

δJ(x)
+ φcl(x) +

∫

y

J(y)
δφcl(y)

δJ(x)
= φcl(x).

This being reintroduced in the previous equation yields

ΓLO[ϕ] = S[ϕ], ϕLO = φcl. (A.8)



A.2. Next-to-leading order 1PI effective action 179

A.2 Next-to-leading order 1PI effective action

The next-to-leading order (NLO) contribution in ~ is found by expanding

around φcl, i.e. we write φ(x) = φcl(x) +
√
~ η(x) and η(x) describes the

dimensionless functional quantum fluctuations around φcl. Expanding the ac-

tion functional about φcl(x) to order ~ thus gives

S[φ] = S[φcl]+
√
~
∫

x

δS[φ]

δφ(x)

∣∣∣∣
φcl

η(x)+
~
2

∫

xy

δ2S[φ]

δφ(x)δφ(y)

∣∣∣∣
φcl

η(x)η(y)+O(
3
√
~)

(A.9)

which, using the stability condition (A.4) implies linear order in ~

S[φ]+

∫

x

J(x)φ(x) ' S[φcl]+

∫

x

J(x)φcl(x)+
~
2

∫

xy

δ2S

δφ(x)δφ(y)

∣∣∣∣
φcl

η(x)η(y).

(A.10)

There is no contribution proportional to
√
~ because of the stability condition

(A.4). Hence, the next-to-leading order generating functional is given by

ZNLO[J ] = e
i
~ (S[φcl+

∫
x
J(x)φcl(x))

∫
D(
√
~η) exp

[
i

2

∫

xy

δ2S

δφ(x)δφ(y)

∣∣∣
φcl
η(x)η(y)

]
.

(A.11)

The path integral can be evaluated using the following functional Gaussian

integral theorem, which we prove first.

Digression on Gaussian functional integrals. Let A be a real symmetric

matrix, then we will show

∫ ∞

−∞

(
ΠN
i=1dηi

)
exp


 i

2

N∑

i,j=1

ηiAijηj


 =

(2π)N√
det(−iA)

(A.12)

where {η} is a set of real variables.

Since A is symmetric, it is diagonalizable,

N∑

i,j=1

ηiAijηj = ηTAη = (Oξ)TA(Oξ) =

N∑

i=1

ξ2
iDii, (A.13)

and O performs the linear transformation from {ξ} to {η} with the elements

of the diagonal matrix D = OTAO being the eigenvalues of A. Since the
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transformation is linear, one can switch from {ξ} to {η} in the integration

variables and the price to pay is just a constant Jacobian J =
∣∣∣det

(
∂ξi
∂ηj

)∣∣∣ =

|detO| = 1, such that

∫ ∞

−∞

(
ΠN
i=1dηi

)
exp

i

2

N∑

i,j=1

ηiAijηj =

∫ ∞

−∞

(
ΠN
i=1dξi

)
exp

(
i

2

N∑

i=1

ξ2
iDii

)

= ΠN
i=1

∫ ∞

−∞
dξi exp

(
i

2
ξ2
iDii

)

=

√
(2π)N

ΠN
i=1 − iDii

because
∫∞
−∞ dξi exp

(
i
2ξ

2
iDii

)
=
√

2π
−iDii provided that Im(Dii) > 0. If Im(Dii) =

0, the convergence of the integral is ensured by Dii → Dii + iε.

Back to the calculation. Now let us define A(x, y) = δ2S[φ]
δφ(x)δφ(y)

∣∣∣
φcl

where x

and y act as matrix indices. By definition, A is diagonal as our action functional

is local, hence A = D. On the CTP, the convergence of the Gaussian functional

integral is piecewise ensured with the requirements that ImD(x, x) > 0 on the

forward contour and ImD(x, x) < 0 on the backward contour. Those amount to

nothing but demanding that A = iG−1
0 is the contour-ordered Green’s function

(1.125). Then, we can perform the functional Gaussian integral in (A.11) and

the result, up to a normalisation factor, reads

ZNLO[J ] = exp

[
i

~

(
(S[φcl] +

∫

x

J(x)φcl(x)

)]
det
[
G−1

0

]−1/2

= exp

[
i

~

(
(S[φcl] +

∫

x

J(x)φcl(x)

)]
exp

[
−1

2
Tr lnG−1

0

]

= exp

[
i

~

(
S[φcl] +

∫

x

J(x)φcl(x) +
i~
2

Tr lnG−1
0

)]
.

The Tr operator here performs integrals
∫
xy

as the entries of the matrices

under consideration here are specified by spacetime arguments x and y. Up to

an additive constant, we find for the next-to-leading order effective action

ΓNLO[ϕ] +

∫

x

J(x)ϕ(x) = S[φcl] +

∫

x

J(x)φcl(x) +
i~
2

Tr lnG−1
0 . (A.14)

From these past equations we know that we can parametrise ϕ = φcl + ~ϕ(1) +

O( 3
√
~) as there is no

√
~ correction to the effective action and ϕLO = φcl. Now

we compute the right hand side of the previous equation using Eq. (A.4)

S[ϕ(x)− ~ϕ(1)(x))] +

∫

x

J(x)(ϕ(x)− ~ϕ(1)(x)) +
i~
2

Tr lnG−1
0 [ϕ− ~ϕ(1)]
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= S[ϕ] +
i~
2

Tr lnG−1
0 [ϕ] +

∫

x

J(x)ϕ(x) +O(~2)

to finally arrive at

ΓNLO[ϕ] = S[ϕ] +
i~
2

Tr lnG−1
0 [ϕ]. (A.15)

Though this really is the next-to-leading order effective action ΓNLO in ~, it

is known as the one-loop effective action. This terminology comes from the

diagrammatic interpretation of the contribution Tr lnG−1
0 [ϕ]. It is a closed loop

which resums infinitely vertex insertions made of couplings to the background

ϕ. Using Eqs. (1.49)(1.125), we find the one-loop truncated 1PI effective action

ΓNLO[ϕ] = S[ϕ] +
i~
2

Tr lnG−1
f +

i~
2

Tr ln

[
I−Gf

iδ2Lint[φ]

δφ2

∣∣∣∣
ϕ

δC

]

= S[ϕ] +
i~
2

Tr lnG−1
f −

i~
2

∞∑

n=1

1

n
Tr

[(
Gf

iδ2Lint[φ]

δφ2

∣∣∣∣
ϕ

δC

)n]
,

making the diagrammatic interpretation explicit.

A.3 The one-loop 2PI effective action.

In order to find the associated one-loop 2PI effective action (1.124), we first

start from Eq. (A.15) and make the replacement S[φ]→ S[φ,R] using Eq. (1.119),

hence computing the R-dependent 1PI effective action. We find

ΓNLO[ϕ,R] = S[ϕ,R] +
i

2
Tr ln

[
G−1

0 [ϕ]− iR
]
. (A.16)

Now using Eqs. (1.121)(1.123) and explicitly injecting Eq. (1.119), we find the

one-loop 2PI effective action

ΓNLO[ϕ,∆] = S[ϕ] +
i

2
Tr ln

[
G−1

0 [ϕ]− iR
]
− 1

2
Tr[∆R]. (A.17)

At this order, the solution of the equation of motion for the propagator is

∆−1 = G−1
0 − iR. Plugging this back into the previous equation, we obtain

ΓNLO[ϕ,∆] = S[ϕ] +
i

2
Tr ln

[
∆−1

]
+
i

2
Tr
[
∆G−1

0

]
− i

2
Tr
[
∆∆−1

]
, (A.18)

where − i
2 Tr

[
∆∆−1

]
is an irrelevant constant when it comes to 2PI equa-

tions of motion. Higher order contribution to the full effective action are then
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parametrised by Γ2[ϕ,∆], where 2 stands for two or more loops. Up to an

irrelevant additive constant, the full 2PI effective action reads

Γ[ϕ,∆] = ΓNLO[ϕ,∆] + Γ2[ϕ,∆],

= S[ϕ] +
i

2
Tr ln

[
∆−1

]
− i

2
Tr
[
∆G−1

0

]
+ Γ2[ϕ,∆] (A.19)

from where one can read off Eq. (1.124) using Eq. (1.123).



Appendix B
Adiabatic propagators

Under the assumption that the breaking of time-translation invariance is only

driven by ϕ(t) which itself is slowly rolling, it seems sensible to assume that

the out-of-equilibrium time-dependence of the propagators is mild and adia-

batic. In the next two sections, we comment and derive the main conclusions

one can draw from assuming an adiabatic time evolution of the time-dependent

quantities that enter the description of (quasi)particles through the associated

propagators. In particular, one solves the Kadanoff-Baym equations, and in-

terpret their solutions in terms of quasiparticles, which we then connect to the

kinetic theory.

B.1 Wentzel-Kramers-Brillouin solutions: deriva-
tion

In this section, we provide a derivation for the solutions of the KBEs (4.21)

and (4.22) in the WKB approximation, analogously to Ref. [33]. We start with

the first KBE (4.21). Given the boundary conditions ∆−(t1, t2; p)|t1=t2= 0

and ∂t1∆−(t1, t2; p)|t1=t2= 1, the WKB ansatz for the spectral function in the

mixed representation reads

∆−(t1, t2; p) '
sin
( ∫ t1

t2
dt′ Ωt′

)
e−

1
2

∣∣ ∫ t1
t2

dt′Γt′
∣∣

√
Ωt1 Ωt2

, (B.1)
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where we simplified the notation for Ωa(t; p)→ Ωt and similarly for Γ. Starting

out with that Ansatz, we then employ the following assumptions:

1) adiabaticity, i.e. |Ω̇t/Ω2
t | � 1 and |Γ̇t/Γ2

t | � 1

2) weak damping, i.e. |Γt/Ωt| � 1 due to weak coupling.

3) Π−(t1, t2; p) and Π+(t1, t2; p) have a finite support, i.e., they quickly

approach zero for |t1 − t2| & τint with τint being some characteristic time

scale of microscopic physics e.g. that of quantum scattering events.

4) Ωt and Γt can be approximately regarded as constants over the support

of Π−(t1, t2; p) and Π+(t1, t2; p).

Here Ωt and Γt are to be found such that Eq. (B.1) solves Eq. (4.21), i.e.

(
∂2
t1 + ωa(t1; p)2

)
∆−a (t1, t2; p) = −

∫ t1

t2

dt′Π−a (t1, t
′; p)∆−a (t′, t2; p) (B.2)

under such assumptions. To determine Ωt and Γt, it is convenient to decompose

∆−(t1, t2; p) as

∆−(t1, t2; p) = − i
2

(ρ+(t1, t2; p)− ρ−(t1, t2; p)) , (B.3)

where

ρα(t1, t2; p) =
eα i

∫ t1
t2

dt′Ωt′ e−
1
2

∣∣ ∫ t1
t2

dt′Γt′
∣∣

√
Ωt1Ωt2

, (B.4)

with α = ±. If ρ+(t1, t2; p) and ρ−(t1, t2; p) solve Eq. (B.2) separately, then

so does ∆−(t1, t2; p). Let’s consider the case of t1 > t2. Using Eqs. (B.3) and

(B.4) into Eq. (B.2), we obtain

ω2
t1 − Ω2

t1 − iαΩt1Γt1 ' −
∫ t1−t2

0

dzΠ−(t1, t1 − z)e
∫ t1−z
t1

dt′(iαΩt′− 1
2 Γt′ )

(B.5)

= −
∫ ∞

0

dz θ(t1 − t2 − z) Π−(t1, t1 − z)e
∫ t1−z
t1

dt′(iαΩt′− 1
2 Γt′ ) .

(B.6)

by neglecting Γa;t1/Ωa;t1 and Ω̇a;t1/Ω
2
a;t1 terms. Inserting the step function

into the integrand in the RHS of Eq. (B.6), we were able to extend the upper
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limit of the integral to the infinity. 1 By using integral representation of the

step function, the RHS of Eq. (B.6) becomes

−
∫ ∞

0

dz

∫ ∞

−∞

idω′

2π

e−iω
′(t1−t2−z)

ω′ + iη
Π−(t1, t1 − z; p)e

∫ t1−z
t1

dt′(iαΩt′− 1
2 Γt′ )

' −
∫ ∞

0

dz

∫ ∞

−∞

idω′

2π

e−iω
′(t1−t2−z)

ω′ + iη
Π−(t1, t1 − z; p)e(−iαΩt1+ 1

2 Γt1 )z

= −
∫ ∞

−∞

idω′

2π

e−iω
′(t1−t2)

ω′ + iη

∫ ∞

0

dzΠ−(t1, t1 − z; p)ei(ω
′−αΩt1− i

2 Γt1 )z

= −
∫ ∞

−∞

idω′

2π

e−iω
′(t1−t2)

ω′ + iη
Π̃−(t1, ω

′ + Ω̂αt1)

= −Π̃−(t1, Ω̂
α
t1) (B.7)

with Ω̂αt = −αΩt − i
2Γt. Ω̂t in the main text corresponds to Ω̂−t , i.e. Ω̂t = Ω̂−t .

To get the second line we used that Ωt′ and Γt′ are approximately constant over

the support of Π− and in the fourth line we introduced the one-sided Fourier

transform of Π−(t1, t2) expressed as

Π̃−(t, ω; p) =

∫ ∞

0

dz eizω Π−(t, t− z; p) . (B.8)

Note that we introduced tilded quantities when one deals with one-sided Fourier

transform. To pass to the last line, the residue theorem was employed. From

Eq. (B.8) we see that

Π̃−(t, Ω̂+
t ; p) = (Π̃−(t, Ω̂−t ; p))∗ . (B.9)

Plugging back Eq. (B.7) into Eq. (B.6) and using the relation (B.9), we obtain

Ωt =

√
ω2(t; p) + Re(Π̃−(t, Ω̂−t ; p)) , (B.10)

Γt = − Im(Π̃−(t, Ω̂−t ; p))

Ωt
. (B.11)

The case of t2 > t1 can be investigated analogously leading to the same results

as above. Eq. (B.1) with Eqs. (B.10) and (B.11) then determine ∆−(t1, t2; p).

1Ref. [33] separately considered the two cases when the time separation |t1− t2| is smaller

and larger than τint , see remarks below Eq. (9) of Ref. [33]. But this is not necessary when

one uses the step function in Eq. (B.6).
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The solution to the second KBE (ti → −∞)

(
∂2
t1 + ωa(t1; p)2

)
∆+
a (t1, t2; p) =−

∫ t1

−∞
dt′Π−a (t1, t

′; p)∆+
a (t′, t2; p)

+

∫ t2

−∞
dt′Π+

a (t1, t
′; p)∆−a (t′, t2; p)

(B.12)

is given by

∆+(t1, t2; p) =

∫ t1

−∞
dt′1

∫ t2

−∞
dt′2 ∆−(t1, t

′
1; p)Π+(t′1, t

′
2; p)∆−(t′2, t2; p) , (B.13)

which can be directly verified by plugging it into the second KBE (B.12). Define

tmax = max(t1, t2) and rewrite (B.13) as2

∫ tmax

−∞
dt′1

∫ tmax

−∞
dt′2 θ(t1−t′1)θ(t2−t′2)∆−(t1, t

′
1; p)Π+(t′1, t

′
2; p)∆−(t′2, t2; p) .

(B.14)

∆+(t1, t2; p) given above is apparently symmetric under t1 ↔ t2 as it should

be. Therefore, one can symmetrise the integrand of Eq. (B.14) as

1

2

[
θ(t1 − t′1)θ(t2 − t′2)∆−(t1, t

′
1; p)Π+(t′1, t

′
2; p)∆−(t′2, t2; p) + (t1 ↔ t2)

]
.

Then the integrand above is symmetric under t′1 ↔ t′2 due to the symmetry

and antisymmetry of the real-time Π+ and ∆−, and the spectral propagator

thus far reads

∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1− t′1)θ(t2− t′2)∆−(t1, t

′
1; p)Π+(t′1, t

′
2; p)∆−(t′2, t2; p)

+(t1 ↔ t2)

By substituting (B.3), the latter can be further decomposed as

∆+(t1, t2; p) = F+(t1, t2; p) + F−(t1, t2; p). (B.15)

Here F+(t1, t2; p) contains the contributions from the integrand of Eq. (B.15)

proportional to ραρα, while F−(t1, t2; p) contains the rest of the contributions,

2Note that the approach adopted here does not require the split of the integration region

that was made in [33], which led to D in Eq.(12) thereof, hence we have no D term and there

is no need to show that the D term is negligible.
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i.e. coming from ραρ−α terms. Assuming Γt ≥ 0, F−(t1, t2; p) becomes (when-

ever WKB assumptions 1)-4) are employed, we use ' instead of =)

F−(t1, t2; p) = −
∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1 − t′1)θ(t2 − t′2)Π+(t′1, t

′
2; p)

×
(
i

2

)2
e
i
∫ t1
t′1

dt′Ωt′− 1
2

∣∣∣∣∫ t1t′1 Γt′

∣∣∣∣
√

Ωt1Ωt′1

e
−i
∫ t′2
t2

dt′Ωt′− 1
2

∣∣∣∣∫ t′2t2 dt′Γt′

∣∣∣∣
√

Ωt′2Ωt2
+ c.c.+ (t1 ↔ t2)

= −
∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1 − t′1)θ(t2 − t′2)Π+(t′1, t

′
2; p)

×
(
i

2

)2
e
i
∫ t1
t′1

dt′Ωt′− 1
2

∫ t1
t′1

Γt′

√
Ωt1Ωt′1

e
−i
∫ t′2
t2

dt′Ωt′− 1
2

∫ t2
t′2

dt′Γt′

√
Ωt′2Ωt2

+ c.c.+ (t1 ↔ t2)

=
1

4
√

Ωt1Ωt2

∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1 − t′1)θ(t2 − t′2)Π+(t′1, t

′
2; p)

× e
i

(∫ tmin
t′1

+
∫ t1
tmin

+
∫ tmin
t′2

+
∫ t2
tmin

)
dt′(Ωt′+

i
2 Γt′)

√
Ωt′1Ωt′2

+ c.c.+ (t1 ↔ t2)

where into account the Heaviside step functions, in the second line we removed

the absolute value || as we assume that Γt′ is positive. Then, introducing

tmin = min(t1, t2), we have

=
1

4
√

Ωt1Ωt2

∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1 − t′1)θ(t2 − t′2)Π+(t′1, t

′
2; p)

× e
i

(∫ t1
tmin

+
∫ t2
tmin

+2
∫ tmin
t′1

+
∫ t′1
t′2

)
dt′(Ωt′+

i
2 Γt′)

√
Ωt′1Ωt′2

+ c.c.+ (t1 ↔ t2)

=
ei(
∫ t1
tmin

+
∫ t2
tmin

)dt′(Ωt′+
i
2 Γt′)

4
√

Ωt1Ωt2

∫ tmax

−∞
dt′1

∫ t′1

−∞
dt′2 θ(t1 − t′1)θ(t2 − t′2)

×Π+(t′1, t
′
2; p)

e
i

(
2
∫ tmin
t′1

+
∫ t′1
t′2

)
dt′(Ωt′+

i
2 Γt′)

√
Ωt′1Ωt′2

+ c.c.+ (t1 ↔ t2).
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Now changing variables to τ = t′1 and z = (τ−t′2), and using that Ω is positive,

too, we have

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmax

−∞
dτ

∫ τ−−∞

0

dz θ(t1 − τ)θ(t2 − τ + z)

× e2i
∫ tmin
τ

dt′Ω̂∗
t′+i

∫ τ
τ−z dt′Ω̂∗

t′

√
ΩτΩτ−z

Π+(τ, τ − z; p) + c.c.+ (t1 ↔ t2)

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmax

−∞
dτ θ(t1 − τ)

∫ ∞

0

dz

∫ +∞

−∞

i

2π
dω′×

e−iω
′(t2−τ+z)

ω′ + iη

e2i
∫ tmin
τ

dt′Ω̂∗
t′+i

∫ τ
τ−z dt′Ω̂∗

t′

√
ΩτΩτ−z

Π+(τ, τ − z; p) + c.c.+ (t1 ↔ t2)

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmax

−∞
dτ θ(t1 − τ) e2i

∫ tmin
τ

dt′Ω̂∗
t′

∫ +∞

−∞

i

2π
dω′

× e−iω
′(t2−τ)

ω′ + iη

∫ ∞

0

dz
ei(
∫ τ
τ−z dt′Ω̂∗

t′−ω
′z)

√
ΩτΩτ−z

Π+(τ, τ − z; p) + c.c.+ (t1 ↔ t2)

' ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmax

−∞
dτ θ(t1 − τ) e2i

∫ tmin
τ

dt′Ω̂∗
t′

∫ +∞

−∞

i

2π
dω′

× e−iω
′(t2−τ)

ω′ + iη

∫ ∞

0

dz
ei(Ω̂

∗
τ−ω′)z

Ωτ
Π+(τ, τ − z; p) + c.c.+ (t1 ↔ t2).

Now recalling the definition of the one-sided Fourier transform (B.8)

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmax

−∞
dτ θ(t1 − τ) e2i

∫ tmin
τ

dt′Ω̂∗
t′

×
∫ +∞

−∞

i

2π
dω′

e−iω
′(t2−τ)

ω′ + iη

Π̃+(τ, Ω̂∗ − ω′; p)

Ωτ
+ c.c.+ (t1 ↔ t2)

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

(∫ t2

−∞
+

∫ tmax

t2

)
dτ θ(t1 − τ)e2i

∫ tmin
τ

dt′Ω̂∗
t′

×
∫ +∞

−∞

i dω′

2π

e−iω
′(t2−τ)

ω′ + iη

Π̃+(τ, Ω̂∗ − ω′; p)

Ωτ
+ c.c.+ (t1 ↔ t2).
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Using the residue theorem, the second term vanishes and, using the symmetry

of our integrands, we finally evaluate

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ t2

−∞
dτ θ(t1 − τ) e2i

∫ tmin
τ

dt′Ω̂∗
t′

Π̃+(τ, Ω̂∗; p)

Ωτ

+ c.c.+ (t1 ↔ t2)

=
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
4
√

Ωt1Ωt2

∫ tmin

−∞
dτ e2i

∫ tmin
τ

dt′Ω̂∗
t′

Π̃+(τ, Ω̂∗; p)

Ωτ

+ c.c.+ (t1 ↔ t2),

and therefore

F−t1t2 =
ei|
∫ t1
t2

dt′Ωt′ |− 1
2 |
∫ t1
t2

dt′Γt′ |
2
√

Ωt1Ωt2

∫ tmin

−∞
dτ e2i

∫ tmin
τ

dt′Ω̂∗
t′

Π̃+(τ, Ω̂∗)
Ωτ

+ c.c. ,

(B.16)

where c.c stands for complex conjugate and Ω̂τ = Ωτ − i
2Γτ . A somewhat long

but similar derivation gives for F+(t1, t2; p)

F+
t1t2 '

− cos
(∫ t1

t2
dt′Ωt′

)
e−

1
2 |
∫ t1
t2

dt′Γt′ |
√

Ωt1Ωt2

∫ tmin

−∞
dτ e−

∫ tmin
τ

dt′ Γt′
ReΠ̃+(τ, Ω̂∗)

Ωτ
.

(B.17)

Comparing Eq. (B.16) and Eq. (B.17), we see that Eq. (B.16) is suppressed,

since it contains a rapidly oscillating term in the integrand which frequency is

Ωt′ . Hence, we ignore the contribution from F−(t1, t2; p) and find from (B.15)

∆+(t1, t2; p) '
− cos

( ∫ t1
t2

Ωt′
)
e−

1
2 |
∫ t1
t2

dt′Γt′ |
√

Ωt1Ωt2

∫ tB

−∞
dτ

ReΠ̃+(τ, Ω̂∗τ ; p)

Ωτ
e−
∫ tB
τ

dt′Γt′

(B.18)

where tB is the Boltzmann time defined as

tB = tmin = min(t1, t2) , (B.19)

which is the time variable for which a generalised Boltzmann holds, as we shall

show in the next discussion.
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B.2 The Boltzmann equation from QFT

Building on our previous experience of equilibrium field theory, let us define the

would-be out-of-equilibrium distribution function f(tB ; p) through the relation

1 + 2f(tB ; p) = −
∫ tB

−∞
dτ

2ReΠ̃+(τ, Ω̂∗τ ; p)

Ωτ
e−
∫ tB
τ

dt′Γt′ , (B.20)

such that

∆+(t1, t2; p) '
cos
( ∫ t1

t2
Ωt′
)
e−

1
2 |
∫ t1
t2

dt′Γt′ |
√

Ωt1Ωt2
(1 + 2f(t; p)) (B.21)

which is the WKB propagator quoted in Eq. (4.26). From these, together with

Γ = Γ> − Γ< and

2ReΠ̃+(t, Ω̂; p) = −Ω(t; p)(Γ>(t; p) + Γ<(t; p)), (B.22)

taking the derivative of the distribution function shows that it must obey the

local Boltzmann equation

df(tB ; p)

dt
= (1 + f(tB ; p))Γ<tB − f(tB ; p)Γ>tB (B.23)

which is equivalently written as

df(tB ; p)

dt
= −Γt(f(tB ; p)− f̄(tB ; p)) , (B.24)

where f̄(t; p) is defined as

f̄ = (Γ>/Γ< − 1)−1 . (B.25)

This closes the discussion regarding the adiabatic WKB propagators and the

associated Boltzmann equation as we just proved all relevant equations for

section 4.3. The physics discussion is established there.

B.3 The iterative solution of the Boltzmann equa-
tion

Here we provide an alternative proof of Eq. (4.38) which is the leading-order

adiabatic approximation to the Boltzmann equation. In terms of f̄(t) defined
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in Eq. (4.39), the statistical propagator (4.26) or (B.18) can be rewritten as

cos
( ∫ t1

t2
dt′Ωt′

)
e−

1
2

∣∣ ∫ t1
t2
dt′Γt′

∣∣

2
√

Ωt1Ωt2

∫ tB

−∞
dτ Γτ

(
1 + 2f̄(τ)

)
e−
∫ tB
τ

dt′Γt′ ,

'
cos
( ∫ t1

t2
dt′Ωt′

)
e−

1
2

∣∣ ∫ t1
t2
dt′Γt′

∣∣

2
√

Ωt1Ωt2

(
1 + 2

∫ tB

−∞
dτ Γτ f̄(τ) e−

∫ tB
τ

dt′Γt′

)
.

(B.26)

where we used

∫ t

−∞
dτ Γτe

−
∫ t
τ
dt′Γt′ = e−

∫ t
τ
dt′Γt′

∣∣∣
τ=t

τ=−∞
= 1− e−

∫ t
−∞ dt′Γt′ ' 1 , (B.27)

assuming e−
∫ t
−∞ dt′Γt′ � 1 (or

∫ t
−∞ dt′Γt′ � 1). Let us focus on the integral in

Eq. (B.26) (sending tB → t for the time-being, for notational simplicity), and

define

f(t) =

∫ t

−∞
dτ Γτ f̄(τ) e−

∫ t
τ
dt′Γt′ . (B.28)

Applying a slow-roll condition to the distribution function3, similar to that

applied to ϕ, we get f̄(τ) ' f̄(t) + (τ − t) ˙̄f(t) and again using Eq. (B.27),

f(t) ' f̄(t) + ˙̄f(t)

∫ t

−∞
dτ (τ − t) Γτ e

−
∫ t
τ
dt′Γt′ . (B.29)

Integrating by parts, the above becomes

∫ t

−∞
dτ (τ − t) Γτ e

−
∫ t
τ
dt′Γt′ =

∫ t

−∞
d
(
e−
∫ t
τ
dt′Γt′

)
(τ − t)

= (τ − t) e−
∫ t
τ
dt′Γt′

∣∣∣
τ=−∞

−
∫ t

−∞
dτ e−

∫ t
τ
dt′Γt′ . (B.30)

Now assuming lim
τ→−∞

τ e−
∫ t
τ
dt′Γt′ → 0, which is always the case provided that

the integral
∫ t
−∞ dτ e−

∫ t
τ
dt′Γt′ is finite, then we get

∫ t

−∞
dτ (τ − t) Γτ e

−
∫ t
τ
dt′Γt′ ' −

∫ t

−∞
dτ e−

∫ t
τ
dt′Γt′ . (B.31)

3From Eq. (4.35) it follows that this approximation is justified as far as we assume an

adiabatic evolution for Γτ , i.e. |Γ̇τ/Γ2
τ | � 1, which was used for the WKB solution to KBEs

to begin with.
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Finally using the fact that the memory integral in the last equation is dom-

inated by the most recent past time interval (as the integrand is peaked at

τ = t), during which the time dependence of Γ can be neglected4, we get

∫ t

−∞
dτ (τ − t) Γτ e

−
∫ t
τ
dt′Γt′ ' −

∫ t

−∞
dτ e−Γt

∫ t
τ
dt′ = − 1

Γt
. (B.32)

Thus, Eq. (B.28) becomes

f(t) ' f̄(t)−
˙̄f(t)

Γt
. (B.33)

B.4 Gradient expansion of the distribution func-
tion

In this Appendix, we determine what constrains the requirement

˙̄f

Γ
< f̄ ⇔

˙̄f

f̄
< Γ (B.34)

imposes on our model’s parameters, assuming we are in thermal equilibrium.

In that case, we have

f̄a = fB(Ωa) = (eΩa/T − 1)−1 (B.35)

such that ˙̄f = dfB
dΩa

dΩa
dt , where, as a first order approximation, we only consider

the effective frequency Ωa =
√
m2
a + p2 + gaϕ2/2 + F(ϕ, T )(λa + h)T 2, where

one can find identify the function F(ϕ, T ), which arises from the one-loop

temperature correction, i.e. that of Eq. (4.56) but its precise form does not

really matter as it will cancel with itself later on. We compute

| ˙̄fa| =
f2
B(Ωa)eΩa/T

T

ga|ϕϕ̇|
2Ωa

. (B.36)

Taking the two-loop finite temperature width Γa =
λ2
aT

2

256π3Ωa
of Eq. (4.68) (as-

suming the masses are such that there is no one-loop width, for kinematic

reasons, as explained in Sec.4.4.2), we get to the requirement

fB(Ωa)eΩa/T

T

ga|ϕϕ̇|
2

<
λ2
aT

2

256π3
(B.37)

4We expect this to be a good approximation when Γt is varying slowly with time (i.e.

when Γ satisfies the adiabatic condition |Γ̇|/Γ2 � 1), which, again, we know was assumed in

the derivation of the WKB solutions.
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We study two limiting cases which we refer to as soft modes (Ω < T ) and hard

modes (Ω > T ), and Taylor expanding in the relevant small quantity, we find

|ϕϕ̇| < λ2
a

ga

ΩaT
2

128π3
, for soft modes, (B.38)

|ϕϕ̇| < λ2
a

ga

T 3

128π3
, for hard modes. (B.39)

If the requirement for soft modes holds, it automatically holds for hard modes

too. Therefore we only study further the soft condition. Now regardless

whether you are in a high ϕ or high T regime, if the field oscillates harmon-

ically ϕ(t) = Φ cos(ωϕt), its oscillation frequency is dominated by whatever

dominates the particles frequencies, too, such that

ωϕ '
√

(λφ + h)

(λa + h)
Ωa, if T dominates, (B.40)

ωϕ '
√
λφ
3ga

Ωa, if ϕ dominates. (B.41)

While for the temperature dominated part, the aforementioned prefactor F(ϕ, T )

exactly appears in both ωϕ and Ωa, there is a 1
3 factor difference when it comes

to the condensate dominated regime (see Eq. (??) vs. Eqs. (4.21)(4.22)). As

a result, starting from the soft mode condition, we get the following constrain

for the initial field value

Φ2 <

√
(λa + ga)

(λφ + h)

λ2
a

ga

T 2

128π3 sin(ωϕt) cos(ωϕt)
, if T dominates Ω,

(B.42)

Φ2 <

√
3ga
λφ

λ2
a

ga

T 2

128π3 sin(ωϕt) cos(ωϕt)
, if ϕ dominates Ω, (B.43)

which lead to the most conservative constrains

Φ2 <

√
(λa + ga)

(λφ + h)

λ2
a

ga

T 2

64π3
, if T dominates Ω, (B.44)

Φ2 <

√
3ga
λφ

λ2
a

ga

T 2

64π3
, if ϕ dominates Ω. (B.45)

As a conclusion, for a sufficiently large temperature, the gradient expansion of

the distribution function is justified, and if need be, even the couplings can be

adjusted so as to have Φ� T . Of course, a more realistic treatment would be

that of a damped harmonic oscillator, but in that case, we expect the conditions

to be less constraining.
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Appendix C
Renormalising the 2PI
equations of motion

With this Appendix we provide details regarding the self-consistent renormal-

isation (at finite temperature and non vanishing time-dependent background

ϕ) of the 2PI effective equations of motion and the corresponding divergences

appearing in the context of our Z2-symmetric model, under the approximation

scheme explained in chapter 4. In particular, we want to show that time-

dependent divergences can be consistently absorbed at all times, with time-

independent counterterms. We shall present it in detail at one-loop level.

C.1 Counterterms in the 2PI effective action

Expliciting the dependences on the model parameters, the classical action reads

S[φ, χ; {pa}] =

∫

x

−1

2
φ(�+m2

φ)φ−λφ
4!
φ4−1

2
χ(�+m2

χ)χ−λχ
4!
χ4−h

4
χ2φ2, (C.1)

where {pa} = {mφ,mχ, λφ, λχ, h} denotes the set of parameters of our model.

For the sake of the renormalisation procedure, we introduce the renormalised

195
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field strengths, masses and couplings as well as their associated counterterms

φ = Z
1/2
φ φr, (C.2)

χ = Z1/2
χ χr, Za = 1 + δZa, (C.3)

Zam
2
a = m2

a,r + δm2
a, (C.4)

Z2
aλa = λa,r + δλa, (C.5)

ZφZχh = hr + δhr. (C.6)

where a = {φ, χ}. In terms of those parameters the classical action becomes a

functional of the renormalised fields and parameters and rewrites

S[φ,χ; {ga}] = S[φr, χr; {ga,r}] +

∫

x

−1

2
φr(δZφ�+ δm2

φ)φr −
δλφ
4!

φ4
r

+

∫

x

−1

2
χr(δZχ�+ δm2

χ)χr −
δλχ
4!

χ4
r −

δh

4
χ2
rφ

2
r = Sr + δS (C.7)

The terms that add to the renormalised classical action S[φ, χ; {ga}] will be

referred to as classical counterterms in the coming computations.

We want to absorb the divergences which appear in the 2PI EOM for the

propagators ∆ab and ϕ and therefore want to express the 2PI effective action

in terms of the renormalised parameters. First, we note

ϕ = 〈φ〉 = Z
1/2
φ 〈φr〉 = Z

1/2
φ ϕr, (C.8)

∆ab(x, y) = 〈φa(x)φb(y)〉 − ϕa(x)ϕb(y) = Z1/2
a Z

1/2
b ∆ab,r(x, y). (C.9)

Then, we recall that the 2PI effective action is given by

Γ[ϕ,∆; {pa}] = S[ϕ, 0; {pa}] +
i

2
Tr ln ∆−1 +

i

2
TrG−1

0 [ϕ]∆ + Γ2[ϕ,∆; {pa}],
(C.10)

which terms will be studied one by one. First, we find

S[ϕ, 0; {pa}] = S[ϕr, 0; {pa,r}]+
∫

x

[
−1

2
ϕr(δZφ�+ δm2

φ)ϕr −
δλφ
4!

ϕ4
r

]
. (C.11)

Second, it is immediate to see that

i

2
Tr ln ∆−1 =

i

2
Tr ln ∆−1

r + (const). (C.12)

Third, the one-loop terms are found using

iG−1
0,a[ϕ](x, y) =

1

Za

δ2

δφr(x)δφr(y)

[
Sr + δS

]∣∣∣∣∣
(ϕr,0)
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=
1

Za

[
−(�+m2

a,r +
ga,r
2
ϕ2
r)δC(x− y)

︸ ︷︷ ︸
=iG−1

0,a,r[ϕr](x,y)

−(δZφ�+ δm2
a +

δga
2
ϕ2
r)δC(x− y)

︸ ︷︷ ︸
=iδG−1

0,a,r[ϕr](x,y)

]
.

Eventually, at second order in the coupling constant, the 2PI effective action

of two- or more-loop diagrams reads

Γ2[ϕ,∆; {ga}] ∼ λa∆2
aa + h∆φ∆χ + ϕ2λ2

φ∆3
φ + ϕ2h2∆φ∆2

χ

=
(λa,r + δλa)

Z2
a

Z2
a∆2

aa,r +
(hr + δh)

ZφZχ
Zφ∆φ,rZχ∆χ,r

+ (Z
1/2
φ ϕr)

2

(
λφ,r + δλφ

Z2
φ

)2

(Zφ∆φ,r)
3

+ (Z
1/2
φ ϕr)

2

(
hr + δh

ZφZχ

)2

(Zφ∆φ,r)(Zχ∆χ,r)
2 (C.13)

from which we conclude that Γ2[ϕ,∆; {ga}] = Γ2[ϕr,∆r; {ga,r + δga}], which

actually holds at all order. This result is crucial because it show that the

structure of the diagram in terms of the renormalised propagators is identical,

only the vertices get a counterterm counterpart. In the end, in terms of the

renormalised parameters and counterterms and up to an additive constant, the

2PI effective action splits as

Γ[ϕr,∆r, {ga,r + δga}] = S[ϕr, 0, {ga,r}] +
i

2
Tr ln ∆−1

r +
i

2
TrG−1

0,r[ϕr]∆r

+

∫

x

−1

2
ϕr(δZφ�+δm2

φ)ϕr−
δλφ
4!

ϕ4
r+

i

2
TrδG−1

0,r[ϕr]∆r+Γ2[ϕr,∆r, {ga,r+δga}].

C.2 Renormalising at one-loop

Renormalisation conditions usually are imposed on the propagators and n-point

functions (e.g. using an MS scheme) because they usually are the quantities

of interest in standard vacuum QFT. In this work, what we are after are the

(spatially homogeneous and isotropic) EOMs for ϕ and ∆ab. Therefore, we

naturally are led to impose renormalisation conditions on the divergences which

appear in those EOMs themselves and not on the n-point functions.

At the level of the EOMs level at second order in the coupling constant expan-

sion, only two quantities require renormalisation, namely the effective disper-

sion relations of the KBEs which determine the propagators (see Eq. (4.30)),
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and the ϕr-effective potential (which appears in the ϕr-EOM (4.49))1

Ω2
a,r(t; p) = p2 +m2

a,r + δm2
a +

(ga,r + δga)

2
ϕ2
r(t) + ReΠ̃−crab

a,r (t,Ωa,r; p)

+
∑

b=φ,χ

(cab,r + δcab)

2

∫
d3q

(2π)3

(
1 + 2fB(Ωb,r(t; q))

2Ωb,r(t; q)

)
, (C.14)

V ′(ϕr) = m2
φ,rϕr + δm2

φϕr +
(λφ,r + δλφ)

6
ϕ3
r

+ ϕr
∑

a=φ,χ

(ga,r + δga)

2

∫
d3p

(2π)3

(1 + 2fB(Ωa,r(t; p))

2Ωa,r(t; p)
(C.15)

where gφ = λφ, gχ = h and cab is a 2×2 matrix of couplings such that caa = λa
and cab = h, cf. (3.13)(3.14). The nonlocal self-energies shall be evaluated as

explained in section 4.4.2, wherein we neglect the time dependence of ϕ within

the loops integrals and restore time-translation invariance to find Π̃−a (t, ω; p) '∫∞
0
dz eiωz Π−a (z), where z = t− t′. The time-translation invariant selfenergies

read (cf. Eqs. (3.23) and (3.25))

Π−a,r(z) = −ϕ̄2
r

∑

b,c

`2abc,r

∫
d3q

(2π)3

∫ +∞

−∞
dz eiΩ̄a,r(p)z∆̄+

b,r(z; q) ∆̄−c,r(z;−q),

and `abc is a 2× 2× 2 matrix of couplings such that `φbc = (λφδbφ + hδbχ)δbc,

`χbb = 0 and `χχφ = `χφχ = h.2 From now on we shall first identify the

counterterms to ensure the finiteness of Eq. (C.14) i.e. that of the Kadanoff-

Baym equations (KBE) at all times, and then show that the counterterms

identified for it also ensure Eq. (C.15) to be finite at all times. A priori,

this is a very complicated exercise as they form a set of coupled transcendental

equations that ought to be renormalised simultaneously. In the coming sections,

we shall show its renormalisability under the assumption that Ωa,r on the right

hand sides of these equations can be written as3

Ω2
a,r(t; p) = p2 +M2

a,r(t), (C.16)

1A priori these expressions should also involve the field strength renormalisation pa-

rameters δZa but we will show that for the theory under consideration here, there is no

momentum-dependent divergence, such that we can freely put δZa = 1.
2At second order in the coupling constant expansion O(g2), we have `2abc = `2abc,r as we

shall demonstrate that δ`abc ∼ O(g2).
3This form for the effective frequency is only valid in two cases. Either when solely local

corrections are included and computed from the tree-level frequencies, e.g. those of the

tadpoles as Eq. (C.14) or when the nontrivial momentum dependence (which can typically

not be packed into the form of (C.16)) of the nonlocal corrections are neglected.
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with

M2
a,r(t) = m2

a,r +
ga,r
2
ϕ2
r(t) +

∑

b=φ,χ

cab,rT
2Fb (gb,rϕr(t);T ) (C.17)

a loop-induced time-dependent mass which potentially includes both the con-

densate backreaction and thermal corrections to its mass-shell, through the

dimensionless function Fb(gbϕr(t);T ). Its time-dependence only arises from

that of gbϕ
2
r(t), either through the effective dimensionful vertices, or through

the tree-level backreaction gbϕ
2
r(t) on the masses of the particles that run in the

loops, see Eq. (4.24). The point here is that it is accompanied by yet another

coupling constant, which will be of crucial importance later, when discussing

renormalisation at a given order in perturbation theory.

This form of the effective mass is encompassing because it includes both the

case where we approximate Ω2
a,r(t; p) by ωtree

a,r (t; p)2 (cf. (4.24)) but also goes

beyond just that as it allows for thermal corrections to be included as well.

In particular, the very high temperature limit of Fb is known and is given by

Fb = 1/24 [21]. Let us now focus on the Kadanoff-Baym equations (KBE) first,

and renormalise the associated effective frequency (C.14).

C.3 Computations of the loops diagrams in the
KBE

There are two expressions to be computed at the level of the KBE

(cab,r + δcab)

2

∫
d3q

(2π)3

(
1 + 2fB(Ωb,r(t; q))

2Ωb,r(t; q)

)
, (C.18)

and

Π−a,r(z) = −ϕ̄2
r

∑

b,c

`2abc,r

∫
d3q

(2π)3

∫ +∞

−∞
dz eiΩ̄a,r(p)z∆̄+

b,r(z; q) ∆̄−c,r(z;−q).

(C.19)

The divergences come from the fB-independent part, because the Bose-Einstein

regularises the potential ultraviolet divergences and we therefore shall focus

on the divergent fB-independent part first, before moving to the finite fB-

dependent bits.
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C.3.1 Tadpole divergence.

For the divergent fB-independent part of the tadpole, we will employ dimen-

sional regularisation as 4→ D → 4− 2ε and d4q → dDqµ2ε and

cabµ
2ε

2

∫
dD−1q

(2π)D−1

1

2Ωb,r(t,q)
=
cabµ

2ε

2

2
√
π
D−1

(2π)D−1Γ(D−1
2 )

∫ ∞

0

dq
qD−2

2
√
q2 +Mb,r(t)2

=
cabMb,r(t)

2

2(4π)2
(Nε + ln

(
Mb,r(t)

2/µ2
)

+O(ε)), (C.20)

where Nε = −1−ε−1− ln(4π)+γE where γE is the Euler-Mascheroni constant,

and the divergent contribution comes from ε−1.

C.3.2 Crab divergence.

Let us now compute the real part of the crab diagram, under the approximation

scheme presented in section 4.4.2. We evaluate

ReΠ̃−crab
a,r (Ωa,r) =

1

2

[∫ ∞

0

dz
(
eiΩa,rz + e−iΩa,rz

)
Π−crab
a,r (z)

]

=

∫ ∞

0

dz cos(Ωa,rz)Π
−crab
a,r (z)

= −ϕ2
r(t)

∑

b,c

`2abc,r

∫
d3q

(2π)3

( 1
2 + fB(Ωb,r(t,q))

Ωb,r(t,q)Ωc,r(t,−q)
(C.21)

×
∫ ∞

0

dz cos(Ωa,r(t,p)z) sin(Ωc,r(t,−q)z) cos(Ωb,r(t,q)z)

︸ ︷︷ ︸
=Iabc

where `abc is a 2×2×2 matrix of couplings such that `φbc = (λφδbφ+hδbχ)δbc,

`χbb = 0 and `χχφ = `χφχ = h, cf. Eqs. (3.23)(3.25). Introducing an upper

cut-off C (this is not a renormalisation cut-off, rather it helps evaluate Iabc
analytically), we can then calculate Iabc explicitly

Iabc = lim
C→+∞

1

4


 1

ωa b c
+−+

+
1

ωa b c
+++

− 1

ωa b c
++−

− 1

ωa b c
+−−


→ I 6=0

abc (C.22)

+
1

4


−

cos

(
Cωa b c

+−+

)

ωa b c
+−+

−
cos

(
Cωa b c

+++

)

ωa b c
+++

+

cos

(
Cωa b c

++−

)

ωa b c
++−

+

cos

(
Cωa b c

+−−

)

ωa b c
+−−
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(C.23)

where ωa b c
αβγ

(t,p,q) = αΩa,r(t,p) + βΩb,r(t,q) + γΩc,r(t,q). The first line is

made of nonnegligible contributions but the second of very quickly oscillating

cosines with infinite frequencies, which, once integrated w.r.t. q, effectively

cancel. With that expression, we can evaluate the divergent part of the crab

selfenergy using dimensional regularisation. We find

`2abc,r
2

∫
d3q

(2π)3

I 6=0
abc(p,q)

Ωb,r(t,q)Ωc,r(t,−q)

4→D−2ε
=

`2abc,rµ
2ε

2

2
√
π
D−1

(2π)D−1Γ(D−1
2 )

∫ ∞

0

dq
qD−2I 6=0

abc(q)

Ωb,r(t,q)Ωc,r(t,−q)
(C.24)

= −
`2abc,r

2(4π)2

(
Ωa,r(t; p)2 +Mb,r(t)

2 −Mc,r(t)
2

Ωa,r(t; p)2

)
Nε + (finite)abc.

The finite (finite)abc terms will be discussed shortly and at this point, we focus

on the divergence, which reads

Div
[
ReΠ̃−crab

a,r

]
= ϕ2

r(t)
∑

b,c

`2abc,r
2(4π)2

(
Ωa,r(t; p)2 +Mb,r(t)

2 −Mc,r(t)
2

Ωa,r(t; p)2

)
Nε

Recalling Eqs. (3.23)(3.25), the sum over field indices can be performed for

the divergent contributions and in both cases the b, c-dependent contributions

cancel and so does the momentum dependence on p, (hence proving that we

could indeed require δZa = 1, cf. footnote 1). We find

Div
[
ReΠ̃−crab

a (Ωa)
]

=
ϕ2
r(t)

2(4π)2
(g2
a,r + h2

r)Nε. (C.25)

Again, we end up with time-dependent divergences.

C.3.3 Finite tadpole

The finite contributions from the tadpole diagrams have two origins. On one

hand, there is the finite remainder of the fB-independent divergent integral,

that is the logarithmic contribution in Eq. (C.20), i.e.

cabMb,r(t)
2

2(4π)2
ln
(
Mb,r(t)

2/µ2
)
. (C.26)

On the other, there are the finite temperature-dependent corrections one has

to calculate from

(cab,r + δcab)

2

∫
d3q

(2π)3

fB(Ωb,r(t; q))

Ωb,r(t; q)
= (cab,r + δcab)T

2Fb,r(t), (C.27)
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where we introduced a formal function Fb,r(t) which is finite and can be ana-

lytically approximated4 as

Fb,r(t) =
1

(2π)2

(
Li2

(
e−Mb,r(t)/T

)
− Mb,r(t)

T
log
(

1− e−Mb,r(t)/T
))

, (C.28)

where Li2(x) is the polylogarithm of order 2 or dilogarithm. In particular, note

that in the limit where M tree
b (t)/T → 0, this precisely reproduces the standard

high temperature result since Fb,r(t)|Mb,r/T→0 = 1/24. Also, note that this very

function is a perfect candidate to try and selfconsistently implement thermal

corrections to the effective frequency (C.16) and mass (C.17), to solve the

transcendental equation (C.14), hence the similar notation.

C.3.4 Finite crab

The finite contributions from the crab diagrams have two origins too. On one

hand, there is the finite remainder of the fB-independent divergent integral,

that is the (finite)abc in Eq. (C.24). Those can be evaluated analytically and

read

(finite)abc =
ϕ2
e`

2
abc,r

2(4π)2

K2
abc

Ω2
a

ln

(
−Ω2

aM
2
b

K4
abc

)

−
ϕ2
r`

2
abc,r

2(4π)2

(
Ω2
a +M2

b −M2
c

)

Ω2
a

ln

(
M2
b

µ2

)

−
ϕ2
r`

2
abc,r

2(4π)2

2M2
b

K2
abc

2F
(0,0,1,0)
1

(
1

2
, 1, 2,−4Ω2

aM
2
b

K4
abc

)

−
ϕ2
r`

2
abc,r

2(4π)2

2M2
b

K2
abc

2F
(0,1,0,0)
1

(
1

2
, 1, 2,−4Ω2

aM
2
b

K4
abc

)

where 2F1 are hypergeometric functions and

K2
abc =

√
Ω4
a + (M2

b −M2
c )2 − 2Ω2

a(M2
b +M2

c ),

and Ωa = Ωa(t; p).

On the other hand, there are the finite, temperature-dependent fB-contribution

from integrating Iabc with the Bose-Einstein distribution function in Eq. (C.21).

Those were studied in Ref. [62]. The resulting corrections are finite and of the

generic form −`2abc,rTϕ2
r(t)/32πMc,r(t).

4At worst this analytic approximation overestimates the result by an amount of order

∼ 0.15% in the narrow regime where Mb,r and T are precisely comparable.
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Both these finite contributions from the crab diagrams are suppressed (com-

pared to the tree-level and local corrections computed above) from both the

loop and coupling constant expansion viewpoints and display no qualitatively

new parametric dependence on ϕ or T , hence will be neglected for the remain-

der of this work.

C.4 Renormalising the Kadanoff-Baym equations

The effective frequencies (C.14), including the divergences and computations

of the above finite terms and neglecting the crab ones, read

Ω2
a,r(t; p) = p2 +m2

a,r + δm2
a + (ga,r + δga)

ϕ2
r(t)

2
+

ϕ2
r(t)

2(4π)2
(g2
a,r + h2

r)Nε

+
∑

b=φ,χ

(cab,r + δcab)

(
Mb,r(t)

2

2(4π)2

(
Nε + ln

(
Mb,r(t)

2/µ2
))

+ T 2Fb,r(t)

)

and we now have bring it to a finite value by properly adjusting the Lagrangian

parameters or counterterms. The nontrivial, however crucial issues of this for-

mula are the time-dependent contributions that multiply Nε. The Lagrangian

parameters have to be adjusted so as to have a finite effective frequency at all

times. Let us recall the generic form for the time-dependence of the effective

masses (C.17)

M2
b,r(t) = m2

b,r +
gb,r
2
ϕ2
r(t) +

∑

d=φ,χ

cbd,rT
2Fd (gd,rϕr(t);T ) .

Whenever they multiply a divergence, the time-dependent functions Fd have

to be Taylor expanded in gd,rϕr(t) at the desired order in perturbation theory,

because we know that renormalisation only consistently works at each individ-

ual order of perturbation theory. For the problem at hand, the leading order

time-dependence obtained from this expansion is accompanied by yet another

coupling constant and can hence be neglected.5 Therefore, we realise that if

we wish to cancel the time-dependence of the divergences in Ω2
a, a minimal

prescription is obtained by solving the following set of linear equations

δga = −
(
g2
a,r + h2

r

)

(4π)2
Nε −

∑

b=φ,χ

(cab,r + δcab)

2(4π)2
gb,rNε, for a = φ, χ. (C.29)

This is a set of two equations that connect three variables, namely δλφ, h and

δλχ. A priori, it ought to be supplemented by a third equation in order to

5While this is not valid if the temperature were not constant, it is straightforward to

modify (C.29) in that more general case.
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be solved exactly. The missing third equation would precisely come from the

renormalisation of the Makovian equation of motion for the background of χ

and therefore, for the sake of this analysis, we can just set δλχ = 0 because we

assumed 〈χ〉 = 0. Thus, the relations above completely fix δga.

That said, a few comments readily are in order at this point. First, closely

looking at Eq. (C.29), we can assure that coupling counterterms δga = δλφ, δh

which satisfy it must be of second order in the renormalised coupling constants.

This has two crucial consequences. On one hand, as argued in footnote 2, this

ensures that `2abc = `2abc,r at second order in the coupling constants and on the

other, the time-dependent divergences coming from δcab ·Mb,r(t)
2 are neglected

at second order in the coupling constants. As a result, we can conclude that

the time-dependence of the divergences in Ω2
a,r(t; p) have been taken care of

and, baring in mind that we work at second order in perturbation theory, we

find

Ω2
a,r(t; p) = p2 +m2

a,r + δm2
a + ga,r

ϕ2
r(t)

2
(C.30)

+
∑

b=φ,χ

cab,r
2(4π)2


gb,rϕ

2
r(t)

2
+
∑

d=φ,χ

cbd,rT
2Fd(t)


 ln

(
M2
b,r(t)/µ

2
)

+
∑

b=φ,χ

cab,r

(
m2
b,r

2(4π)2
(Nε + ln

(
Mb,r(t)

2/µ2
)
) + T 2Fb,r(t)

)

+
∑

b=φ,χ

δcab

(
m2
b,r

2(4π)2
(Nε + ln

(
m2
b,r/µ

2
)
) + T 2Fb,r|ϕ=0)

)

where we only kept terms at second order in the coupling constants in the

products of δcab with Mb(t)
2 and Fb(t). The remaining time-independent di-

vergences are now controlled via mass renormalisation, by fixing δm2
a at given

ϕ0 = ϕr(t0), T0 and renormalisation scale µ. A minimal, and physically well

motivated subtraction scheme would e.g. require

δm2
a = −ga,r

ϕ2
0

2
(C.31)

−
∑

b=φ,χ

cab,r
2(4π)2


gb,rϕ

2
0

2
+
∑

d=φ,χ

cbd,rT
2
0Fd(t0)


 ln

(
M2
b,r(t0)/µ2

)

−
∑

b=φ,χ

cab,r

(
m2
b,r

2(4π)2

(
Nε + ln

(
Mb,r(t0)2/µ2

))
+ T 2

0Fb,r(t0)

)

−
∑

b=φ,χ

δcab

(
m2
b,r

2(4π)2

(
Nε + ln

(
m2
b,r/µ

2
))

+ T 2
0Fb,r|ϕ=0)

)
.
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This choice defines ma,r = mphys
a (ϕ0, T0) as the physical mass of particles of

type a at certain reference background ϕ0, temperature T0 and renormalisation

scale µ. The renormalised effective frequency then reads

Ω2
a,r(t; p) = p2 +m2

a,r +
1

2
ga,r(ϕ

2
r(t)− ϕ2

0) (C.32)

+
∑

b=φ,χ

cab,rgb,r
4(4π)2

(
ϕ2
r(t) ln

(
Mb,r(t)

2/µ2
)
− ϕ2

0 ln
(
Mb,r(t0)2/µ2

))

+
∑

b,d=φ,χ

cab,rcbd,r
2(4π)2

(
T 2Fd(t) ln

(
Mb,r(t)

2/µ2
)
− T 2

0Fd(t0) ln
(
Mb,r(t0)2/µ2

))

+
∑

b=φ,χ

cab,r

(
m2
b,r

2(4π)2
ln
(
Mb,r(t)

2/Mb,r(t0)2
)

+ T 2Fb,r(t)− T 2
0Fb,r(t0)

)
.

where we used ln (Mb,r(t)/Mb,r(t0)) = ln
(
Mb,r(t)

2/µ
)
− ln

(
Mb,r(t0)2/µ2

)
.

Renormalising at vanishing background and temperature ϕ0 = T0 = 0

Ω2
a,r(t; p) = p2 +m2

a,r +
1

2
ga,rϕ

2
r(t) +

∑

b=φ,χ

cab,rT
2Fb,r(t) (C.33)

+
∑

b=φ,χ

cab,r
2(4π)2

(
M2
b,r(t) ln

(
Mb,r(t)

2/µ2
)
−m2

b,r ln
(
m2
b,r/µ

2
))
,

and ma,r = mphys
a is the vacuum physical mass for particle excitations of the

field species a. Defining Ω2
a,r(t; p) = p2 + M eff

a,r(t)
2, we have a definition for a

physical, effective thermal mass given by the following expression

M eff
a,r(t)

2 = m2
a,r +

1

2
ga,rϕ

2
r(t) +

∑

b=φ,χ

cab,rT
2Fb,r(t) (C.34)

+
∑

b=φ,χ

cab,r
2(4π)2

(
M2
b,r(t) ln

(
Mb,r(t)

2/µ2
)
−m2

b,r ln
(
m2
b,r/µ

2
))
.

C.5 Renormalised Markovian equation of mo-
tion

At the level of the equation of motion for the background field (C.15), we have

to evaluate the following one-loop integrals

ϕr(t)
∑

a=φ,χ

(ga,r + δga)

2

∫
d3p

(2π)3

(1 + 2fB(Ωa,r(t; p)))

2Ωa,r(t; p)
. (C.35)



206 Chapter C. Renormalising the 2PI equations of motion

The structure of those is identical to the one-loop tadpoles that contributed to

the effective frequency (C.14) and we already have evaluated them. Therefore,

following the notation introduced in the previous sections, we obtain

ϕr(t)
∑

a=φ,χ

(ga,r + δga)

(
Ma,r(t)

2

2(4π)2
(Nε + ln

(
Ma,r(t)

2/µ2
)
) + T 2Fa,r(t)

)

= ϕr(t)
∑

a=φ,χ

ga,r

(
Ma,r(t)

2

2(4π)2
(Nε + ln

(
Ma,r(t)

2/µ2
)
) + T 2Fa,r(t)

)

+ϕr(t)
∑

a=φ,χ

δga

(
m2
a,r

2(4π)2
(Nε + ln

(
m2
a,r/µ

2
)
) + T 2Fa,r(t)|ϕ=0

)
.

At this point, the effective potential (C.15) rewrites

V ′(ϕr) = m2
φ,rϕr + δm2

φϕr +
(λφ,r + δλφ)

6
ϕ3
r (C.36)

+ ϕr(t)
∑

a=φ,χ

ga,r

(
Ma,r(t)

2

2(4π)2
(Nε + ln

(
Ma,r(t)

2/µ2
)
) + T 2Fa,r(t)

)

+ ϕr(t)
∑

a=φ,χ

δga

(
m2
a,r

2(4π)2
(Nε + ln

(
m2
a,r/µ

2
)
) + T 2Fa,r(t)|ϕ=0

)
.

The crucial point here is that the coupling and mass counterterms, respectively

δλφ and δmφ, have respectively already been fixed in Eqs. (C.29) and (C.31).

Particularising Eq. (C.29) for a = φ, for which cφb,r = gb,r, this equation only

ever summons δh and δλφ which are of second order in the couplings, therefore

δλφ = −
3(λ2

φr
+ h2

r)

2(4π)2
Nε = −

∑

a=φ,χ

3g2
a,r

2(4π)2
Nε (C.37)

which, once divided by 6 (cf. (C.36)) exactly cancel the time-dependent di-

vergence of the above expression and the 2PI equations of motion conspire to

simultaneously be finite at all times, despite the coupling counterterms are di-

vided by different prefactors. Plugging δλφ in the above effective potential, we
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have

V ′(ϕr) = m2
φ,rϕr + δm2

φϕr +
λφ,r

6
ϕ3
r

+ ϕr
∑

a=φ,χ

ga,r
2(4π)2

(
ga,rϕr(t)

2
+
∑

b

cab,rT
2Fb(t)

)
ln
(
M2
a,r(t)/µ

2
)

+ ϕr
∑

a=φ,χ

ga,r

(
m2
a,r

2(4π)2
(Nε + ln

(
Ma,r(t)

2/µ2
)
) + T 2Fa,r(t)

)

+ ϕr
∑

a=φ,χ

δga

(
m2
a,r

2(4π)2
(Nε + ln

(
m2
a,r/µ

2
)
) + T 2Fa,r(t)|ϕ=0

)
. (C.38)

Then, using cφb,r = gb,r in Eq. (C.31), we find for δmφ

δm2
φ = −λφ,r

ϕ2
0

2
(C.39)

−
∑

b=φ,χ

gb,r
2(4π)2

(
gb,rϕ

2
0

2
+
∑

d

cbd,rT
2
0Fd(t0)

)
ln
(
M2
b,r(t0)/µ2

)

−
∑

b=φ,χ

gb,r

(
m2
b,r

2(4π)2

(
Nε + ln

(
Mb,r(t0)2/µ2

))
+ T 2

0Fb,r(t0)

)

−
∑

b=φ,χ

δgb

(
m2
b,r

2(4π)2

(
Nε + ln

(
m2
b,r/µ

2
))

+ T 2
0Fb,r|ϕ=0)

)
.

This precisely takes care of all divergences that appear in the effective potential

and again renormalising at vanishing background and temperature, we find

V ′(ϕr) = m2
φ,rϕr(t) +

λφ,r
6
ϕ3
r(t) + ϕr(t)T

2
∑

b=φ,χ

gb,rFb,r(t) (C.40)

+
∑

b=φ,χ

gb,r
2(4π)2

(
M2
b,r(t) ln

(
Mb,r(t)

2/µ2
)
−m2

b,r ln
(
m2
b,r/µ

2
))
.

This last expression closes the discussion on the renormalisation of the 2PI

equations of motion in a time-dependent background ϕr(t) and Eqs. (C.34)

and (C.40) provide the effective mass or frequency, together with the effective

potential, including quantum and thermal corrections in the 2PI framework

which allows for a consistent treatment of resummation and backreactions of

the time-dependent background.
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Appendix D
Evaluating the crab diagram

We here evaluate the crab diagram under the assumptions described in section

4.4.2 needed for the thermal width. Using (3.23) and (3.25), together with the

approximate WKB propagators (4.58) of section 4.4.2, we evaluate the Fourier

transforms as

Π−crab
a (p0,p) =

∫ +∞

−∞
dz eizp

0

Π−crab
a (z; p)

= −ϕ̄2
∑

b,c=φ,χ

`2abc

∫ +∞

−∞
dz eizp

0

∫
d3q

(2π)3
∆̄+
b (z; q) ∆̄−c (z; p− q)

= −ϕ̄2
∑

b,c=φ,χ

`2abc

∫
d3q

(2π)3

∫ +∞

−∞
dz eizp

0

∆̄+
b (z; q) ∆̄−c (z; p− q) , (D.1)

where tabc is a 2× 2× 2 matrix of couplings such that tφbc = (λφδbφ +hδbχ)δbc,

tχbb = 0 and tχχφ = tχφχ = h. Overbarred quantities are time-dependent

quantities considered as constant only within loop integrals, and then evaluated

at the relevant reference time set by the quantity of interest, e.g. the thermal

width Γa(t; p) = Π−(Ω̄a(p); p)/2iΩ̄a(p), as explained in section 4.4.2. The

209
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z-integral can be performed using Eq. (4.58) and we find

∫ +∞

−∞
dz eizp

0

∆+
b (z; q) ∆−c (z; p− q) =

=

∫ +∞

−∞
dz eizp

0
cos
(

Ω̄b(q) · z
)

sin
(

Ω̄c(p− q) · z
)

Ω̄b(q) Ω̄c(p− q)

(
1

2
+ fB(Ω̄b(q))

)

=

(
1
2 + fB(Ω̄b(q))

)

Ω̄b(q) Ω̄c(p− q)

∫ +∞

−∞
dz eizp

0

cos
(

Ω̄b(q) · z
)

sin
(

Ω̄c(p− q) · z
)

=
−πi

(
1 + 2fB(Ω̄b(q))

)

4 Ω̄b(q) Ω̄c(p− q)

[
δ
(
p0 + Ω̄b(q) + Ω̄c(p− q)

)

+ δ
(
− p0 + Ω̄b(q)− Ω̄c(p− q)

)

− δ
(
p0 + Ω̄b(q)− Ω̄c(p− q)

)

− δ
(
p0 − Ω̄b(q)− Ω̄c(p− q)

)]
. (D.2)

In light of Eqs. (D.2) and (D.1), let us consider the following abstract q-integral

I
(α,β)
abc (p0,p) =

∫
d3q

(2π)3

(
1 + 2fB(Ω̄b(q))

)

Ω̄b(q) Ω̄c(p− q)
δ
(
αp0 + βΩ̄b(q)− Ω̄c(p− q)

)
,

(D.3)

where α, β = ±1. Then Eq. (D.1) can be written as

Π−crab
a (p0,p) =

iπϕ̄2

4

∑

b,c=φ,χ

`2abc

(
I

(−1,−1)
abc +I

(−1,1)
abc −I(1,1)

abc −I
(1,−1)
abc

)
. (D.4)

One angle integral in Eq. (D.3) can be performed to yield (q = |q|)

I
(α,β)
abc =

∫ ∞

0

q2dq

(2π)2

∫ 1

−1

dx

(
1 + 2fB(Ω̄b(q))

)

Ω̄b(q) Ω̄c(|p− q|) δ
(
αp0 +βΩ̄b(q)− Ω̄c(|p−q|)

)

=

∫ ∞

0

q2dq

(2π)2

(
1 + 2fB(Ω̄b(q))

)

Ω̄b(q)

∫ 1

−1

dx
δ
(
αp0 + βΩ̄b(q)− Ω̄c(|p− q|)

)

Ω̄c(|p− q|) , (D.5)

where we replaced q→ q (similarly for p→ p) and p−q→ |p−q| in the argu-

ment for Ω and x is defined by x = p·q
|p||q| (so that |p− q| =

√
p2 + q2 − 2pqx).

The x-integral in Eq. (D.5) is

∫ 1

−1

dx
δ
(
αp0 + βΩ̄b(q)− Ω̄c(|p− q|)

)

Ω̄c(|p− q|) =
θ
(
αp0 + βΩ̄b(q)

)
θ(1− x2

0)[
αp0 + βΩ̄b(q)

]
|∂xΩ̄c(|p− q|)|x=x0

,

(D.6)
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where x0 is the solution of αp0+βΩ̄b(q)−Ω̄c(|p−q|) = 0, i.e. (using Eq. (4.23))

x0 =
M̄2
c (t)− ξ2

a − M̄2
b (t)− 2αβp0 Ω̄b(q)

2pq
, (D.7)

where the tree-level mass is defined in Eq. (3.2) where we defined

ξ2
a = p2

0 − p2 (D.8)

which determines whether the external particle is on- or off-shell and thus

carries the species label a. We now calculate

|∂xΩ̄c(|p− q|)|x=x0 =
pq

|Ω̄c(|p− q|)|x=x0

=
pq

|αp0 + βΩ̄b(q)| . (D.9)

Then x-integral (D.6) becomes

∫ 1

−1

dx
δ
(
αp0 + βΩ̄b(q)− Ω̄c(|p− q|)

)

Ω̄c(|p− q|) =
θ
(
αp0 + βΩ̄b(q)

)
θ(1− x2

0)

pq
(D.10)

and Eq. (D.5) becomes (using Eq. (4.23))

I
(α,β)
abc (p0,p) =

1

p

∫ ∞

0

qdq

(2π)2

(
1 + 2fB(Ω̄b(q))

)

Ω̄b(q)
θ
(
αp0 + βΩ̄b(q)

)
θ(1− x2

0)

=
1

p

∫ ∞

M̄b

dωb
(2π)2

(
1 + 2fB(ωb)

)
θ
(
αp0 + βωb

)
θ(1− x2

0) .

(D.11)

Due to the step functions and the lower limit of the integral, the above integral

is non-vanishing when there exists a range of ωb that satisfies

ωb > M̄b(t) , (D.12)

αp0 + βωb > 0 , (D.13)
(
M̄2
c (t)− ξ2

a − M̄2
b (t)− 2αβp0 ωb

)2

4p2
(
ω2
b − M̄2

b (t)
) < 1 . (D.14)

The inequality (D.14) can be rewritten as

4ξ2
a ω

2
b −4αβp0(M̄2

c − ξ2
a−M̄2

b )ωb+(M̄2
c − ξ2

a−M̄2
b )2 +4p2M̄2

b < 0 , (D.15)

This is equivalent to the inequality

ωb ∈ ]ω
(αβ)−
abc , ω

(αβ)+
abc [, if ξ2

a ≥ 0 (D.16)

ωb /∈ ]ω
(αβ)−
abc , ω

(αβ)+
abc [, if ξ2

a ≤ 0, (D.17)
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with (for αβ = ±1)

ω
(αβ)±
abc =

−αβ(ξ2
a + M̄2

b − M̄2
c ) p0 ± p

√(
ξ2
a − (M̄b + M̄c)2

) (
ξ2
a − (M̄b − M̄c)2

)

2ξ2
a

.

(D.18)

The quantities ω
(αβ)±
abc given in Eq. (D.18) can be real only when the term inside

the square root in Eq. (D.18) is real and positive, i.e. when

(
ξ2
a − (M̄b + M̄c)

2
) (
ξ2
a − (M̄b − M̄c)

2
)
≥ 0 . (D.19)

The on-shell case ξ2
a = M̄2

a or p0 = Ω̄a(p). Let us examine Eq. (D.19) in

the case where ξ2
a = M̄2

a . The equality clearly excludes the case a = b = c. The

inequality (D.19) also tells us that a = b 6= c (or a = c 6= b) is also excluded

unless M̄c > 2M̄a (or M̄b > 2M̄a). The case a 6= b 6= c need not be treated

because we are in a two-field system. Now let us investigate the following

relevant cases :

• Case a = b = c: This cannot contribute due to inequality (D.19).

• Case a = b 6= c: This can contribute when

M̄c > 2M̄a . (D.20)

• Case a = c 6= b: This can contribute when

M̄b > 2M̄a . (D.21)

• Case a 6= b = c: This can contribute when

M̄a > 2M̄b . (D.22)

To summarise, I
(α,β)
abc given in Eq. (D.11) (also in Eq. (D.3)) is non-vanishing

when there exists an interval of ωb, which simultaneously satisfies the inequal-

ities (D.12), (D.13) and (D.16) provided that the inequality (D.19) is satisfied.

Let us denote such an interval by (ω−, ω+). For given (α, β), one can find ω−

and ω+ by working out inequalities (D.12), (D.13) and (D.16) with Eq. (D.18),

and the result is shown in Table D.1. Note that for a given choice of (a, b, c),

only one choice of (α, β) can allow for such a non-empty interval.
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PPPPPPPP(α, β)

Case
a = b = c a = b 6= c a 6= b = c b 6= a = c

(1, 1) × ω± = ω
(1)±
abc × ×

(1,−1) × × ω± = ω
(−1)±
abc ×

(−1, 1) × × × ω± = ω
(−1)±
abc

Table D.1: Values of ω± for which the interval (ω−, ω+) that satisfies inequal-

ities (D.12), (D.13) and (D.16) allow for non-vanishing I
(α,β)
abc . Here × denotes

that such an interval does not exist. ω
(αβ)±
abc are given in Eq. (D.18) and they

are meant to be used only for those cases where the inequality (D.19) (i.e.

inequalities (D.20)-(D.22)) is satisfied.

Once one has found ω− and ω+ given in table D.1, the integral (D.11) becomes

I
(α,β)
abc (p) =

1

p

∫ ω+

ω−

dωb
(2π)2

(
1 + 2fB(ωb)

)

=
1

p(2π)2

[
ω− − ω+ + 2T log

(
fB(ω−)

fB(ω+)

)]
(D.23)

with a product of a proper Heaviside step function such as θ(M̄a−2M̄b) implied

(see inequalities (D.20)-(D.22)). Then, using (D.4), (D.23) and Table D.1, one

can compute Π−crab
χ and Π−crab

φ using (3.23) and (3.25). Π−crab
χ is given by

Π−crab
χ (Ω̄χ(p),p) =

∫ +∞

−∞
dz eizΩ̄χ(p) Π−crab

χ (z; p)

= i
π h2 ϕ̄2

4

(
I

(−1,1)
χbc − I(1,1)

χbc − I
(1,−1)
χbc

)
(b=χ, c=φ)

+ (b↔ c)

= −iπ h
2 ϕ̄2

4

(
I

(1,1)
χχφ − I

(−1,1)
χφχ

)

= −i θ(M̄φ − 2M̄χ)
h2 ϕ̄2

16πp

[
ω

(1)−
χχφ − ω

(1)+
χχφ + 2T log

(
fB(ω

(1)−
χχφ )

fB(ω
(1)+
χχφ )

)

−ω(−1)−
χφχ + ω

(−1)+
χφχ − 2T log

(
fB(ω

(−1)−
χφχ )

fB(ω
(−1)+
χφχ )

)]

= −i θ(M̄φ − 2M̄χ)
h2 ϕ̄2 T

8πp
log

(
fB(ω

(1)−
χχφ )fB(ω

(−1)+
χφχ )

fB(ω
(1)+
χχφ )fB(ω

(−1)−
χφχ )

)
. (D.24)
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Here ω
(1)±
χχφ and ω

(−1)±
χφχ are obtained from Eq. (D.18) by setting {a = b = χ, c =

φ, αβ = 1} and {a = c = χ, b = φ, αβ = −1}, respectively, i.e.

ω
(1)±
χχφ =

(M̄2
φ − 2M̄2

χ)
√

p2 + M̄2
χ ± pM̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
χ

, (D.25)

ω
(−1)±
χφχ =

M̄2
φ

√
p2 + M̄2

χ ± pM̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
χ

. (D.26)

In the same way as for Π−crab
χ we obtain Π−crab

φ as

Π−crab
φ (Ω̄φ(p),p) =

∫ +∞

−∞
dz eizΩ̄φ(p) Π−crab

φ (z; p)

= −i π ϕ̄
2

4
h2 I

(1,−1)
φχχ (p)

= −i ϕ̄2

16πp
h2 θ(M̄φ − 2M̄χ)

[
ω

(−1)−
φχχ − ω(−1)+

φχχ + 2T log

(
fB(ω

(−1)−
φχχ )

fB(ω
(−1)+
φχχ )

)]

(D.27)

= −i ϕ̄
2 T

16πp
h2 θ(M̄φ − 2M̄χ) log

(
fB(ω

(−1)−
φχχ )fB(−ω(−1)−

φχχ )

fB(ω
(−1)+
φχχ )fB(−ω(−1)+

φχχ )

)
(D.28)

with ω
(−1)±
φχχ being

ω
(−1)±
φχχ =

M̄2
φ

√
p2 + M̄2

φ ± pM̄φ

√
M̄2
φ − 4M̄2

χ

2M̄2
φ

. (D.29)

In the last equality of Eq. (D.28), we used ω = T log
(
−fB(−ω)
fB(ω)

)
. Eq. (D.28) is

consistent with the on-shell part of the result of Ref. [71].



Appendix E
The neutrino-QED interaction
rate

E.1 Connection of the damping rate to the Boltz-
mann collision term

We demonstrate in this section the correspondence, at leading order, between

the neutrino damping rate calculated from the retarded selfenergy represented

by figure 6.1, and the usual Boltzmann collision term for the 2→ 2 scattering

processes (6.54).

For brevity we illustrate in detail only the selfenergy diagram (b) in figure 6.1,

or, equivalently, equation (6.56); the correspondence between the two ap-

proaches for the other three selfenergy terms can be easily established in the

same manner. For a = − and b = + (hence ba =< and ab =>) and plugging

into equation (6.56) the Wightman propagators (6.59), we have

Tr
[
/pΣ

<
(b)(p)

]
= −2

(
GF√

2

)2 ∫
d4`d4q

(2π)8
fD(`0)(1− fD(`0 + q0 − p0))fD(q0)×

Tr

[
/pγ

µ(1− γ5)ρν(`)γν(1− γ5)ρe(`+ q − p)γµ(gV,e − gA,eγ5)ρe(q)γν(1− γ5)

]
,

(E.1)
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which is generally valid for any spectral density ρψ(p). At leading order we use

the free spectral density (6.60), so that equation (E.1) reduces to

Tr
[
/pΣ

<
(b)(p)

]
= −G2

F

∫
d4`d4q

(2π)5
fD(`0)(1− fD(`0 + q0 − p0))fD(q0)

× sgn(`0)sgn(`0 + q0 − p0)sgn(q0)δ(`2)δ((`+ q − p)2 −m2
e)δ(q

2 −m2
e)Trb,

(E.2)

where we have defined

Trb = Tr
[
/pγ

µ(1−γ5)/̀γν(1−γ5)(/̀+/q−/p+me)γµ(gV,e−gA,eγ5)(/q+me)γν(1−γ5)
]
,

(E.3)

which contains all of the Dirac algebra of the problem at hand. Using re-

summed spectral densities in (E.1) would correspond to dressing all particles

into quasiparticles with thermal masses and widths, which is a convenient way

to introduce some higher order FTQED corrections, in particular (but not only)

those assigned to thermal masses [70].

In order to connect to kinetic theory and the Boltzmann collision term, we

introduce a 4-dimensional Dirac delta distribution in u and then integrate over

u:

Tr
[
/pΣ

<
(b)(p)

]
=−G2

F

∫
d4`d4qd4u

(2π)9
(2π)4δ(4)(u− q − `+ p)fD(`0)(1− fD(u0))

× fD(q0) sgn(`0)sgn(u0)sgn(q0)δ(`2)δ(u2 −m2
e)δ(q

2 −m2
e)Trb.

(E.4)

Note that this step does not change the physics of the expression; it merely

recasts the expression in a more convenient form for our purposes. Then,
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cycling through all possible sign combinations of `0, u0, and q0 yields

Tr
[
/pΣ

<
(b)(p)

]
=−G2

F

∫
d3`d3qd3u

(2π)98ω`ωqωu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(ωu − ωq − ω` + p0)Tr+++

b

− f`(1− fu)(1− fq)δ(ωu + ωq − ω` + p0)Tr++−
b

− f`fufqδ(−ωu − ωq − ω` + p0)Tr+−+
b

− (1− f`)(1− fu)fqδ(ωu − ωq + ω` + p0)Tr−++
b

+ f`fu(1− fq)δ(−ωu + ωq − ω` + p0)Tr+−−
b

+ (1− f`)fufqδ(−ωu − ωq + ω` + p0)Tr−−+
b

+ (1− f`)(1− fu)(1− fq)δ(ωu + ωq + ω` + p0)Tr−+−
b

− (1− f`)fu(1− fq)δ(−ωu + ωq + ω` + p0)Tr−−−b

]
,

(E.5)

where we have defined

Trijkb = Trb|`0=iω`, u0=jωu, q0=kωq
, (E.6)

and used the vacuum dispersion relations ω` = |`|, ω2
u = |u|2 + m2

e, and

ω2
q = |q|2 + m2

e. The particle phase space distributions are labelled by their

4-momenta in the subscript, fx = fD(ωx), and we have used the relation

fD(−ω) = 1− fD(ω).

In the form (E.5), the physics of the selfenergy is immediately discernible: the

processes corresponding to each term can be identified by their initial and fi-

nal state particles. Specifically, initial state phase space distributions always

appear simply as a factor fx, while final state phase space distributions come

in the form of a Pauli-blocking factor (1 − fx). Furthermore, because we are

computing Tr
[
/pΣ

<
(b)(p)

]
, which is associated with the production rate Γ< and

hence accompanied by a Pauli-blocking factor (1−fp) in the generalised Boltz-

mann equation (6.48), the neutrino that carries the 4-momentum p should also

be interpreted as a final state particle. Then, the eight processes corresponding

to the eight terms of equation (E.5) are simply those shown in figure E.1 (read

from left to right, top to bottom).
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Figure E.1: Scattering processes corresponding to the eight terms in equa-

tion (E.5), read from left to right, top to bottom. Only the 2 → 2 processes

are kinematically allowed.

Clearly, not all of the processes of figure E.1 are allowed. Throwing away those

processes that are kinematically forbidden, we are left with

Tr
[
/pΣ

<
(b)(p)

]
=−G2

F

∫
d3`d3qd3u

(2π)98ω`ωqωu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(ωu − ωq − ω` + p0)Tr+++

b

+ f`fu(1− fq)δ(−ωu + ωq − ω` + p0)Tr+−−
b

+ (1− f`)fufqδ(−ωu − ωq + ω` + p0)Tr−−+
b

]
.

(E.7)

Repeating the calculation for the remaining three selfenergy contributions (6.55),

(6.57), and (6.58), we always find the same phase space structure, the differ-

ences being entirely contained in the trace terms and the coupling constant.

Then, collecting all contributions, the total mode-dependent production rate

can now be written as

Γ<p =
1

2p0
Tr


 ∑

i′=a,b,c,d

/pΣ
<
(i′)(p)




= − G2
F

2p0

∫
d3`d3qd3u

(2π)98ω`ωqωu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(ωu − ωq − ω` + p0)Tr+++

+ f`fu(1− fq)δ(−ωu + ωq − ω` + p0)Tr+−−

+ (1− f`)fufqδ(−ωu − ωq + ω` + p0)Tr−−+
]
,

(E.8)
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where Trijk =
∑
i′=a,b,c,d λi′Trijki′ , with coefficients λa = λb = 1, λc = −2, and

λd = −1/2. The traces have been evaluated to be

Tra = Tr
[
/pγ

µ(1− γ5)(/q +me)γ
ν(gV,e − gA,eγ5)

× (/u+me)γµ(1− γ5)/̀γν(gV,e − gA,eγ5)
]

= −128(gV,e + gA,e)(p · u)(` · q) + 64m2
e(gV,e − gA,e)(p · `),

(E.9)

Trb = Tr
[
/pγ

µ(1− γ5)/̀γν(1− γ5)(/u+me)γµ(gV,e − gA,eγ5)(/q +me)γν(1− γ5)
]

= −128(gV,e + gA,e)(p · u)(` · q) + 64m2
e(gV,e − gA,e)(p · `) = Tra,

(E.10)

Trc = Tr
[
/pγ

µ(1− γ5)/̀γν(1− γ5)
]

quad× Tr
[
γµ(gV,e − gA,eγ5)(/q +me)γν(gV,e − gA,eγ5)(/u+me)

]

= 64(g2
V,e + g2

A,e)
(

(p · q)(` · u) + (p · u)(` · q)
)
− 64m2

e(g
2
V,e − g2

A,e)(p · `)

− 128gV,egA,e

(
(p · q)(` · u)− (p · u)(` · q)

)
,

(E.11)

Trd = Tr
[
/pγ

µ(1− γ5)(/q +me)γ
ν(1− γ5)

]
Tr
[
γµ(1− γ5)/̀γν(1− γ5)(/u+me)

]

= 256(p · u)(` · q),
(E.12)

from which we conclude that the selfenergy diagrams (a) and (b) contribute

identically to the interaction rate.

The corresponding mode-dependent destruction rate Γ>p can be easily deduced

from Γ<p by (i) noting that, to turn Tr
[
/pΣ<(p)

]
into Tr

[
/pΣ>(p)

]
, we need

simply to replace the Wightman propagators S
≷
ψ → S

≶
ψ , which, through equa-

tion (6.59), amounts to swapping (1 − fx) ↔ −fx, and (ii) introducing an
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overall sign flip via the definition (6.49). Then,

Γ>p = − 1

2p0
Tr


 ∑

i′=a,b,c,d

/pΣ
>
(i′)(p)




= − G2
F

2p0

∫
d3`d3qd3u

(2π)98ω`ωqωu
(2π)4δ(3)(u− q− ` + p)

×
[
(1− f`)fu(1− fq)δ(ωu − ωq − ω` + p0)Tr+++

+ (1− f`)(1− fu)fqδ(−ωu + ωq − ω` + p0)Tr+−−

+ f`(1− fu)(1− fq)δ(−ωu − ωq + ω` + p0)Tr−−+
]
,

(E.13)

which together with Γ<p can be used to construct a collision term for fp,

C[fp] = (1− fp)Γ<p − fpΓ>p , (E.14)

based on the generalised Boltzmann equation (6.48).

In order to match the existing results in the literature, e.g, equation (8) and

table I of [208], we change the 4-momentum variables to Pi = (ωi,pi), i =

1, . . . , 4. Then, for f1 = fp, we find the collision term

C[f1] =
1

2ω1

∫
d3p2d3p3d3p4

(2π)98ω2ω3ω4
(2π)4δ(4)(P1 + P2 − P3 − P4)FrSr〈|Mr|2〉,

(E.15)

where Fr = (1− f1)(1− f2)f3f4 − f1f2(1− f3)(1− f4) is a phase space factor,

and the symmetrised squared matrix elements

Sr〈|Mr|2〉 = S1〈|Mνe+e−↔e−+νe |2〉+ S2〈|Mνe+e+↔e++νe |2〉 (E.16)

+ S3〈|Mνe+ν̄e↔e−+e+ |2〉 (E.17)

can be mapped to the traces of equations (E.8) and (E.13) via

G−2
F S1〈|Mνe+e−↔e−+νe |2〉 = − Tr+−−∣∣

P2=(ωq,−q),P3=(ωu,−u),P4=(ω`,`)
,

G−2
F S2〈|Mνe+e+↔e++νe |2〉 = − Tr+++

∣∣
P2=(ωu,u),P3=(ωq,q),P4=(ω`,`)

,

G−2
F S3〈|Mνe+ν̄e↔e−+e+ |2〉 = − Tr−−+

∣∣
P2=(ω`,−`),P3=(ωq,q),P4=(ωu,−u)

.

(E.18)

Thus, we have demonstrated that the neutrino damping rate calculated from

the two-loop retarded selfenergy at the (quasi)particle pole is indeed equivalent

at leading order to the the usual Boltzmann collision term for 2→ 2 scattering

from kinetic theory.
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E.2 Leading-order calculation of the damping
rate

We show in this section how to reduce the selfenergy expressions (6.55) to (6.58)

to the leading-order mode-dependent interaction rate (6.62). Plugging into

equations (6.55) to (6.58) the free-fermion Wightman propagators (6.61) and

the traces (E.9) to (E.12) with u = `− p+ q, the selfenergy contributions can

be written as

Tr
[
/pΣ

<
(i)(p)

]
=
Ci G2

F

(2π)5

∫
d4`d4q F(p0, q0, `0)δ(`2)δ(q2 −m2

e)δ((`− p+ q)2 −m2
e)

×
[
Ai(p`) m

2
e(p · `) +Ai(pq)(`p)(p · q)(` · p) +Ai(pq)2(p · q)2 +Ai(p`)2(p · `)2

]
,

(E.19)

where F(p0, q0, `0) reads

F =
[
fD(|`0+q0−p0|)−θ(`0+q0−p0)

][
fD(|`0|)−θ(−`0)

][
fD(|q0|)−θ(−q0)

]
,

(E.20)

and the various coefficients (Ci, Ai(p`), etc.) are given in table E.1.

i = a, b i = c i = d

Ci 64 −128 −128

Ai(p`) gV,e − gA,e −(g2
V,e − g2

A,e) 0

Ai(pq)(`p) −4(gV,e + gA,e) 2(gV,e + gA,e)
2 2

Ai(pq)2 −2(gV,e + gA,e) 2(g2
V,e + g2

A,e) 1

Ai(p`)2 −2(gV,e + gA,e) (gV,e + gA,e)
2 1

Table E.1: Coefficients appearing in the weak-rate and selfenergy inte-

grals (6.62), (E.19), and (E.35).

To simplify equation (E.19), observe that it is of the form

I =

∫
d4qd4` f(q, `, p) δ(`2)δ(q2 −m2

e)δ((`+ q − p)2 −m2
e)

=

∫
d3`d3q

4|`|ωq
∑

ε,τ=±1

f(q, `, p) δ((`+ q − p)2 −m2
e)

∣∣∣∣∣q0=εωq

`0=τ |`|

,
(E.21)

where ω2
q = |q|2 +m2

e, f(q, `, p) is a scalar function independent of the Lorentz

contraction ` ·q, and the second equality follows from the fact that the first two
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Dirac deltas in `2 and q2 simply put the corresponding particles on their mass

shells. To evaluate the remaining Dirac delta distribution, we first parametrise

the 3-momenta in spherical coordinates,

p = |p|(0, 0, 1)T ,

` = |`|(0, sinα, cosα)T ,

q = |q|(sin θ sinβ, sin θ cosβ, cos θ)T ,

(E.22)

so that the integral (E.21) becomes

I =
2π

4

∫∫ ∞

0

d|`|d|q|
∫ 2π

0

dβ

∫ +1

−1

d cosα d cos θ

× |q|
2|`|
ωq

∑

ε,τ=±1

f(q, `, p) δ((`+ q − p)2 −m2
e)

∣∣∣∣∣ q0=εωq

`0=τ |`|

.

(E.23)

Similarly, the Lorentz contractions can now be written as

` · p = τ |`||p| − |p||`| cosα,

p · q = εωq|p| − |p||q| cos θ,

` · q = ετωq|`| − |`||q|(sinα sin θ cosβ + cosα cos θ),

(E.24)

from which we immediately deduce that the integrand (E.23) depends on β

only through the Dirac delta distribution δ((`+ q − p)2 −m2
e).

Then, following [220], we can solve the β-integral in (E.23) by first identifying

δ((`+ q − p)2 −m2
e) = δ(g(β)), which can be further decomposed to

δ(g(β)) =
∑

i

1

|g′(βi)|
δ(β − βi) =

δ(β − β1) + δ(β − β2)

2|`||q|| sin θ sinα sinβ0|
. (E.25)

Here, βi denotes the roots of the function g(β): in this case, there are two, β1

and β2 = 2π − β1, on the interval β ∈ [0, 2π], given by

cosβi =
|q||p| cos θ − εωq|p|+ |`||p| cosα− τ |`||`|+ ετ |`|ωq − |`||q| cosα cos θ

|`||q| sin θ sinα
,

(E.26)

and | sinβ1| = | sinβ2| = | sinβ0|; the derivative g′(βi) is given by∂βg|βi =

−2|`||q| sin θ sinα sinβi. Then, substituting equation (E.25) into equation (E.23),

yields

I =
2π

4

∫∫ ∞

0

d|`|d|q|
∫ +1

−1

d cosα d cos θ
|q|2|`|
ωq

∑

ε,τ=±1

f(q, `, p) θ(1− cos2 β0)

|`||q|| sin θ sinα sinβ0|

∣∣∣∣∣ q0=εωq

`0=τ |`|
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(E.27)

where we have inserted a Heaviside step function θ(1− cos2 β0) to ensure that

the condition cos2 β0 ≤ 1 is respected.

The next step is to recognise that, in equation (E.27), the following two ex-

pressions are functionally equivalent:

θ(1− cos2 β0)

|`||q|| sin θ sinα sinβ0|
=
θ(|`|2|q|2 sin2 θ sin2 α (1− cos2 β0))√
|`|2|q|2 sin2 θ sin2 α (1− cos2 β0)

, (E.28)

where the r.h.s. expression has the desirable property that the Heaviside step

function and the square root take the same argument that is quadratic in

z = cos θ, i.e.,

|`|2|q|2(1− z2) sin2 α (1− cos2 β0) = ãz2 + b̃z + c̃, (E.29)

with coefficients

ã =− |q|2|`− p|2 ≤ 0, (E.30)

b̃ =− 2
[
− |`|2|p||q| cos2 α+ (|`||p|2|q|+ εωq|`||p||q|+ τ |`|2|p||q|

− ετωq|`|2|q|) cosα− εωq|p|2|q| − τ |`||p|2|q|+ ετωq|`||p||q|
]
,

(E.31)

c̃ =− |`|2(|p|2 + |q|2) cos2 α+ 2(εωq|`||p|2 + τ |`|2|p|2 − ετωq|`|2|p|) cosα

+ |`|2(|q|2 − |p|2)− ω2
q (|`|2 + |p|2) + 2εωq|`|2|p|+ 2τω2

q |`||p| − 2ετωq|`||p|2.
(E.32)

Because ã ≤ 0, the quadratic (E.29) represents a downward parabola with two

real and non-degenerate roots z±,

z± =
b̃

2|ã| ±

√√√√
(
b̃

2ã

)2

+
c̃

|ã| , (E.33)

whenever b̃2−4ãc̃ > 0 is satisfied. This also means that the Heaviside step func-

tion is nonzero only in the region between non-degenerate z±. Then, rewriting

the quadratic (E.29) in terms of its roots (E.33), equation (E.27) can now be

recast as

I =
2π

4

∫∫ ∞

0

d|`|d|q| |q|
2|`|
ωq

∫ +1

−1

d cosα
θ(b̃2 − 4ãc̃)√

|ã|

×
∫ z+

z−

dz
∑

ε,τ=±1

f(q, `, p)√
(z − z−)(z+ − z)

∣∣∣∣∣ q0=εωq

`0=τ |`|

.

(E.34)
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j = 0 j = 1 j = 2

Gj(p`) m2
e(τ |`||p| − |`||p| cosα) 0 0

Gj(pq)(`p) εωq|p|(τ |`||p| − |`||p| cosα) |q||p|(|`||p| cosα− τ |`||p|) 0

Gj(pq)2 ω2
q |p|2 −2εωq|p|2|q| |q|2|p|2

Gj(p`)2 (τ |`||p| − |`||p| cosα)2 0 0

Table E.2: Coefficients appearing in the weak-rate and selfenergy inte-

grals (6.62) and (E.36).

To further reduce the number of integrals, we apply (E.34) to the selfen-

ergy (E.19)

Tr
[
/pΣ

<
(i)(p)

]
=
Ci G2

F

4(2π)4

∫ ∞

0

d|`|d|q| |q|
2|`|
ωq

∫ +1

−1

d cosα
∑

ε,τ=±1

[
θ(b̃2 − 4ãc̃)√

|ã|
×

F(p0, q0, `0)
(
Ai(p`) I

z
(p`) +Ai(pq)(`p)I

z
(pq)(`p) +Ai(pq)2I

z
(pq)2 +Ai(p`)2I

z
(pl)2

)]∣∣∣∣∣ q0=εωq

`0=τ |`|
,

(E.35)

where, for (mn) = (p`), (pq)(`p), (pq)2, (p`)2, we have defined

Iz(mn) =

∫ z+

z−

dz

(
G0

(mn) + zG1
(mn) + z2G2

(mn)√
(z − z−)(z+ − z)

)

= π

[
G0

(mn) +
b̃

2|ã|G
1
(mn) +

(
3b̃2 + 4c̃|ã|

8ã2

)
G2

(mn)

]
,

(E.36)

with the z-independent coefficients Gj(mn), j = 0, 1, 2, given in table E.2.

Putting it all back into equation (E.35), and noting that the mode-dependent

interaction rate, as defined in equation (6.52), is equivalently

Γp =
(ep

0/T + 1)

2p0

∑

i

Tr
[
/pΣ

<
(i)(p)

]
, (E.37)

we obtain the final result (6.62) for p0 = |p|.
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