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Abstract

Over the last thirty years, many interesting results have been discovered
in the categorical extension of 2-permutable varieties, called Mal’tsev
categories. Many of these results still hold in regular categories satis-
fying the strictly weaker property of 3-permutability, called Goursat
categories. A nice feature of regular Mal’tsev and Goursat categories
is that Gumm’s Shifting Lemma holds in these categories, a property
which allowed, for example, to develop commutator theory in universal
algebras. The aim of this thesis is twofold: on the one hand, we extend
to Goursat categories the main results obtained for the theory of projec-
tive covers and internal structures in Mal’tsev categories. In particular,
we give some characterizations of the categories which are the projective
covers of Goursat categories. Then, we show that the structure of inter-
nal connector is stable under quotients in any Goursat category. As a
consequence, the category of internal connectors in a Goursat category
is again a Goursat category. This implies that Goursat categories can
be characterized in terms of a simple property of internal groupoids and
internal categories. On the other hand, we study the Shifting Lemma in
regular Mal’tsev and Goursat categories. We prove that regular Mal’tsev
and Goursat categories can be characterized through suitable variations
of the Shifting Lemma. We also investigate two properties related to
the Shifting Lemma and called the Triangular Lemma and the Trape-
zoid Lemma in universal algebras. We establish some characterizations
of regular Mal’tsev and Goursat categories with distributive lattice of
equivalence relations through variations of the Triangular Lemma and
Trapezoid Lemma.
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Introduction

A. I. Mal’tsev (1909-1967) E. Goursat (1858-1936)

A bit of history

In his 1954 paper [75], A. I. Mal’tsev proved that, for a variety V of
universal algebras, the following conditions are equivalent:

1. for any pair of congruences R and S on the same algebra X in V,
the equality RS = SR holds;

2. the algebraic theory of V contains a ternary operation p satisfying
the equations (

p(x, y, y) = x

p(x, x, y) = y

11



12 Introduction

where

RS={(x, z)2X ⇥X | 9y 2 X : (x, y) 2 S ^ (y, z) 2 R }

and

SR={(x, z)2X ⇥X | 9y 2 X : (x, y) 2 R ^ (y, z) 2 S }

are the usual composites of congruences. A variety of universal algebras
satisfying these conditions is now called a Mal’tsev variety (or 2-

permutable variety), and such an operation p a Mal’tsev operation.
Many classical varieties of algebras are Mal’tsev varietes: for instance,
the theory of the varieties of groups contains a Mal’tsev operation given
by p(x, y, z) = xy

�1
z.

In his 1976 book [88], J. Smith introduced and developed the notions
of centrality and commutator of congruences in Mal’tsev varieties. In the
case of groups, for instance, the commutator [A,B] of two normal sub-
groups A and B of a group G is the usual (normal) subgroup generated
by all elements [a, b] = a

�1
b
�1

ab, such that a 2 A, b 2 B. Similarly for
rings, the commutator [I, J ] of two ideals I and J of a ring R is the ideal
generated by all elements [i, j] = ij + ji, such that i 2 I, j 2 J . This
theory was extended to congruence modular varieties by J. Hagemman
and C. Hermann in [52] by using a "lattice-theoretic approach". But
in doing so, the "geometrical intuition" that was present in J. Smith’s
lecture notes became less visible. A variety of universal algebras is (con-

gruence) modular when for any congruences R, S and T on the same
object X 2 V such that R 6 T , one has: R _ (S ^ T ) = (R _ S) ^ T.

The notion of Mal’tsev variety was extended to Mal’tsev categories
by A. Carboni, J. Lambek, M. C. Pedicchio in [23] by replacing con-
gruences with internal equivalence relations, allowing one to explore
some interesting new (non-varietal) examples, and to establish some new
versions of the classical homological lemmas in a non-abelian categori-
cal context [13]. Among the fundamental examples of Mal’tsev cate-
gories, one has the above mentioned categories Grp of groups and Rng

of rings, but also Heyt of Heyting algebras. As examples of regu-
lar Mal’tsev categories that are not (finitary) varieties of algebras we
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list, for instance, any abelian category and the non-abelian categories of
C⇤-algebras, HopfK,coc of cocomutative Hopf algebras over a fixed field
K [49], and the dual category of any elementary topos [21].

One of the results that A. Carboni, J. Lambek, M. C. Pedicchio had
in mind in [23] was the extension to Mal’tsev categories of the Goursat
Lemma [33], due to E. Goursat and stated in the category of groups as
follows: every subgroup of the direct product of two groups determines an
isomorphism between factor groups of subgroups of the given groups; this
means that, given a homomorphic relation R from a group G to a group
H, the following quotient groups are isomorphic:

GR/R
�
R ⇠= RH/RR

�

where GR= {h 2 H | 9g 2 G, gRh}, RH = {g 2 G | 9h 2 H, gRh},
and R

� is the opposite relation to R.

This result was used to obtain general forms of the Zassenhaus lemma
and the Jordan-Hölder-Schreier theorem for normal series in [91] and was
generalized to Mal’tsev varieties by J. Lambek in [73]. After an in-depth
analysis, A. Carboni, J. Lambek and M. C. Pedicchio proved that this
result of E. Goursat holds not only in the Mal’tsev categories but also
in those regular categories wherein each relation P from A to B satisfies
the equality

PP
�
PP

� = PP
�
. (1)

That is how Goursat categories were born: these are the regular cat-
egories in which each relation P satisfies the condition (1).

In 1993, A. Carboni, M. Kelly and M. C. Pedicchio observed in [21]
that the condition (1) is in fact strictly weaker than the difunctionality
PP

�
P = P equivalent to the Mal’tsev condition RS = SR in regu-

lar categories. They also observed that condition (1) is equivalent in a
regular category to the 3-permutability of equivalence relations

RSR = SRS, (2)

for any pair of equivalence relations R and S on the same object. This
justifies the fact that the 3-permutable categories are still called Goursat
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categories. Thus, the Mal’tsev and Goursat conditions are "similar",
this suggests that some properties which were known to hold in the
Mal’tsev context also hold in the weaker Goursat context. This was one
of our motivations to study Goursat categories. As examples of Goursat
categories that are not regular Mal’tsev categories we have the category
ImplAlg of implication algebras [78] and the category RCSGrp of right
complemented semigroups [53].

An important property common to regular Mal’tsev and Goursat
categories is that the lattice of equivalence relations on the same object is
modular [21], a property playing a crucial role in commutator theory [32,
51], and that distinguishes them from general n-permutable categories.
This property was also useful to simplify and improve some results in
categorical Galois theory. A general notion of central extensions was
investigated (see [61]).

Over the last thirty years, Mal’tsev categories were widely studied
in connection with the theory of commutators, centrality, and central
extensions (see [5, 7, 15, 31, 34, 35, 61, 64, 79, 80], for instance, and
references therein). In his habilitation’s thesis [51], H. P. Gumm intro-
duced a geometrical approach to congruence modularity, which allowed
him to prove all the main properties of commutators in modular varieties:
the purely algebraic manipulations previously used by J. Hagemann and
C. Herrman to prove the properties of the modular commutator became
more intuitive, thanks to this geometrical approach. He also introduced
a new property, called the Shifting Lemma, and proved that a variety
of universal algebras satisfies the Shifting Lemma precisely when it is
congruence modular. For a variety V of universal algebras, the Shifting

Lemma is stated as follows: given congruences R,S and T on the same
algebra X in V such that R ^ S 6 T , whenever x, y, u, v are elements
in X with (x, y) 2 R ^ T , (x, u) 2 S, (y, v) 2 S and (u, v) 2 R, it then
follows that (u, v) 2 T . We display this condition as

x
S

RT

u

R T

y
S

v.

(3)
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In any regular category it is easy to see that congruence modularity im-
plies that the Shifting Lemma holds. Since regular Mal’tsev and Goursat
categories are such that their lattices of equivalence relations on any ob-
ject are modular, then the Shifting Lemma holds in both contexts.

In [79] M. C. Pedicchio developed a categorical approach to com-
mutator theory in exact Mal’tsev categories with coequalizers thanks
to the notions of pregroupoid in the sense of Kock [70, 71]. Motivated
by their work on internal categories and internal groupoids in [63], this
categorical approach to commutator theory was generalized in general
categories by G. Janelidze and M. C. Pedicchio in [64] by introducing
the notion of internal pseudogroupoid. However, the main results were
actually obtained only in the varietal context.

In [14], D. Bourn and M. Gran introduced a categorical version of the
Shifting Lemma, called the Shifting Property, in any finitely complete
category, and this leads to the notion of a Gumm category. They also
proved that, whenever a finitely complete category satisfies the categori-
cal formulation of Gumm’s Shifting Lemma, a pseudogroupoid structure
is unique, when it exists. So, for two equivalence relations R and S hav-
ing a pseudogroupoid structure becomes a property, and the path to an
entirely categorical approach to commutator theory (in full generality)
was open. Indeed, the existence of pseudogroupoid structure is equiv-
alent to the triviality of the modular commutator. The pseudgroupoid
structure can be simplified in Gumm categories and it has some good
properties reflecting those of commutators in the modular context.

In [15] D. Bourn and M. Gran developed a new categorical approach
to centrality, by emphasizing the role of the notion of internal connector
between two equivalence relations introduced in [16]. If (R, r1, r2) and
(S, s1, s2) are two equivalence relations on an object X and R ⇥X S

the pullback of r2 along s1, a connector between R and S is an arrow
p : R⇥X S �! X in C

R⇥X S

p

$$

p2
//

p1
✏✏

S

s1
✏✏

R r2
// X,
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such that

1. xSp(x, y, z)Rz;

2. p(x, x, y) = y;

3. p(x, y, y) = x;

4. p(x, y, p(z, u, v)) = p(p(x, y, z), u, v),

when each term is defined.
The notion of connector is deeply related to the notion of pregrou-

poid. In fact, given two regular epimorphisms d : X ! Y and c : X ! Z,
a connector on the effective equivalence relations Eq(d) and Eq(c) is the
same thing as an internal pregroupoid (see also the introduction of [15],
for instance, for a comparison between these two related notions and
some additional references). So, the notion of connector allows to study
the centrality of all equivalence relations, even of those that are not ef-
fective. In [15], the authors used this notion of connector to prove the
important basic centrality properties corresponding to the classical prop-
erties of the commutator in the context of regular Mal’tsev categories.
They also gave some new characterizations of regular Mal’tsev categories
in terms of properties of internal categories and internal groupoids. In
this thesis we generalize these results to the context of Goursat cate-
gories.

All the previous results in the regular Mal’tsev and Goursat cate-
gories in terms of properties of connectors were obtained thanks to the
validity of the Shifting Lemma in both contexts. For this reason we also
thoroughly investigate the Shifting Lemma in this thesis: it allows us to
show that regular Mal’tsev and Goursat categories can be characterized
through suitable variations of the Shifting Lemma. These results are
new, even in the context of universal algebras.

In 2000, motivated by the Shifting Lemma characterizing congru-
ence modular varieties, J. Duda introduced in [29, 30] other properties
related to the Shifting Lemma and that characterize congruence distribu-
tive varieties. These properties are called the Triangular Lemma and the
Trapezoid Lemma in the varietal context. A variety V of universal al-
gebras satisfies the Triangular Lemma [27] if, given congruences R,S
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and T on the same algebra X in V such that R^S 6 T , whenever y, u, v
are elements in X with (u, y) 2 T , (y, v) 2 S and (u, v) 2 R, it then
follows that (u, v) 2 T . We display this condition as

u

R
T

T

y
S

v.

(4)

A variety V of universal algebras satisfies the Trapezoid Lemma [27]
if, given congruences R,S and T on the same algebra X in V such that
R ^ S 6 T , whenever x, y, u, v are elements in X with (x, y) 2 T ,
(x, u) 2 S, (y, v) 2 S and (u, v) 2 R, it then follows that (u, v) 2 T .
We display this condition as

x

T

S
u

R T

y
S

v.

(5)

In their 2003 paper [27], I. Chajda, G. Czédli, E. Horváth studied
these properties and proved that, for a variety V of universal algebras,
the fact that both the Shifting Lemma and the Triangular Lemma hold in
a variety V is equivalent to V being a congruence distributive variety, and
this is also equivalent to the fact that the Trapezoid Lemma holds in V.
Consequently, by considering stronger versions of the Triangular Lemma
we were hoping to get at once 2-permutability (or 3-permutability) and
congruence distributivity in a varietal context, and to extend these ob-
servations to a categorical context.

Explaining how this is indeed possible is one of the results of this
thesis, where suitable variations of the Triangular Lemma and of the
Trapezoid Lemma are shown to be the right properties to character-
ize equivalence distributive categories (the natural generalization of
congruence distributive varieties). This also led us to give some new
characterizations of equivalence distributive Mal’tsev and Goursat cate-
gories through variations of the Triangular Lemma and of the Trapezoid
Lemma. As examples of equivalence distributive categories we list, for
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instance, the categories Heyt, BoolAlg of boolean algebras. The dual
category of any elementary topos and more generally any arithmetical
category [80] are equivalence distributive categories.

Over the past, Mal’tsev categories were also studied in the theory
of regular and exact completions [26]. In particular, J. Rosický and E.
Vitale studied Mal’tsev categories in relationship with the construction
of the free exact and regular completion of a category with weak finite
limits (weakly lex ) in [86].

An important aspect in the study of these completions concerns the
possibility of characterizing projective covers of certain algebraic cat-
egories through simpler properties involving projectives, and to relate
those properties to the known varietal characterizations in terms of the
existence of operations and identities of their varietal theories. Such kind
of studies have been done for the projective covers of categories which
are: Mal’tsev [86], protomodular and semi-abelian [37], (strongly) unital
and subtractive [42]. In this thesis, we give a characterization of those
categories with weak finite limits which are projective covers of Gour-
sat categories. This result also applies to 3-permutable (quasi)varieties,
yielding a Mal’tsev condition characterization.

Overview of the contents

In Chapter 1, we introduce the basic categorical notions and results we
shall need in the following chapters. In particular we recall the relation-
ship between some special epimorphisms such as strong epimorphisms,
regular epimorphisms and split epimorphisms. We then recall some ba-
sics facts about regular categories and relations in regular categories.
We also recall the notion of projective cover, and Barr’s Methatheorem
concerning the internal logic of regular categories (Theorem 1.23, 1.24).

In Chapter 2, we begin by recalling the definition and some impor-
tant characterizations of Goursat categories such as the characterization
through the (denormalized) 3-by-3 Lemma, the characterization through
a special kind of pushouts, called Goursat pushouts, and the charac-
terization in terms of fibrations of points. We then introduce the notion
of weak Goursat category and give the characterization of the categories
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with weak finite limits whose regular completion is a Goursat category
(Propositions 2.25 and 2.27). As an application, we relate them to the
existence of the quaternary operations which characterize the varieties
of universal algebras which are 3-permutable (Proposition 2.28).

In Chapter 3, we study some internal structures such as internal con-
nectors, internal categories and internal groupoids in Goursat categories.
We show that, for any Goursat category C, the category Equiv(C) of
equivalence relations in C is also a Goursat category (Proposition 3.3).
We use this result to prove some properties of Goursat categories in terms
of connectors. More precisely, we show that, when C is a Goursat cate-
gory, then connectors are stable under quotients in C (Proposition 3.9),
and this implies that the category Conn(C) of connectors in C is again
a Goursat category (Theorem 3.12). As a consequence, we show that
Goursat categories can be characterized in terms of properties of inter-
nal groupoids and internal categories (Theorem 3.19). It turns out that
a regular category C is a Goursat category if and only if the category
Grpd(C) of internal groupoids (equivalently, the category Cat(C) of in-
ternal categories) in C is closed under quotients in the category RG(C)
of reflexive graphs in C. The main results of this chapter are summarized
in Table 3.1.

In Chapter 4, we study the Shifting Lemma in regular Mal’tsev and
Goursat categories. We begin by giving some new characterizations of
regular Mal’tsev and Goursat categories in terms of positive relations
(Theorems 4.6 and 4.7). We then use these characterizations to show that
Mal’tsev and Goursat categories can be characterized through variations
of the Shifting Lemma. More precisely, we prove that a regular category
C is a Mal’tsev category if and only if the Shifting Lemma holds for
reflexive relations on the same object in C (Theorems 4.11 and 4.12).
Moreover, we prove that a regular category C is a Goursat category
if and only if the Shifting Lemma holds for a reflexive relation S and
reflexive and positive relations R and T in C (Theorem 4.17).

In Chapter 5, we study the Triangular and Trapezoid Lemma in reg-
ular Mal’tsev and Goursat categories. We introduce the notion of equiv-
alence distributive category and show that when C is a regular Mal’tsev
category, or even a Goursat category, the Triangular Lemma is equiva-
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lent to the Trapezoid Lemma, and both of these properties are equiv-
alent to C being equivalence distributive (Propositions 5.7 and 5.10).
We then give some new characterizations of equivalence distributive
Mal’tsev and Goursat categories through variations of the Triangular
and Trapezoid Lemmas involving reflexive and positive relations (Theo-
rems 5.13 and 5.19).

We conclude the thesis in Chapter 6 with some directions for future
research.



Chapter 1

Preliminaries

In this chapter, we recall some elementary categorical notions and prop-
erties needed in the subsequent chapters.

1.1 Special epimorphisms

In this section, we examine various types of epimorphisms in order to
understand the notions of regular and exact categories.

Definition 1.1. A morphism f : X �! Y in a category C is an epimor-
phism if, for any pair of parallel arrows u, v : Y �! Z such that uf = vf ,
one has u = v.

In the category Set of sets, the epimorphisms are precisely the sur-
jective maps. In the category Grp and Ab of abelian groups, the epi-
morphisms are the surjective homomorphisms.

The notion of monomorphism is defined dually:

Definition 1.2. A morphism f : X �! Y in a category C is a mono-
morphism if, for any pair of parallel arrows u, v : W �! X such that
fu = fv, one has u = v.

Monomorphisms in Set are the injective maps, in Grp and in Ab the
injective homomorphisms, in Top (the category of topological spaces)
the continuous injective maps.

21
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We shall generally use the arrow f : X ⇢ Y to express the fact that
f is a monomorphism.

For an object X in a category C and two monomorphisms m : M ⇢ X

and n : N ⇢ X we say that m factors through n (and we will write
m 6 n) when there exists s : M ! N such that m = ns. A subobject
of an object X in C is an equivalence class of monomorphisms with
codomain X, where two monomorphisms m : M ⇢ X and n : N ⇢ X

are equivalent if and only if m 6 n and n 6 m.

Definition 1.3. An epimorphism f : X �! Y in a category C is a strong
epimorphism if, given any commutative square

X
f
//

g
✏✏

Y

h
✏✏

W //

m
// Z,

where m is a monomorphism, then there exists a unique arrow
t : Y �! W such that mt = h and tf = g.

Strong epimorphisms have the following properties:

1. if f : X �! Y and g : Y �! Z are two strong epimorphisms, then
gf : X �! Z is a strong epimorphism.

2. if f : X �! Y and g : Y �! Z are such that gf : X �! Z is a
strong epimorphism, then g : Y �! Z is a strong epimorphism.

Definition 1.4. A morphism f : X �! Y in a category C is a regular
epimorphism if there exist two arrows u, v : C ! X in C

C
u
//

v
// X

f
// Y,

such that f is the coequalizer of u and v.

We shall generally use the arrow f : X ⇣ Y to express the fact that
f is a regular epimorphism.

For an object X in a category C and two regular epimorphisms
p : X ⇣ Y and q : X ⇣ Z we will write p 6 q when there exists
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e : Z ! Y such that p = eq. A quotient object of an object X in C is
an equivalence class of regular epimorphisms with domain X, where two
regular epimorphisms p : X ⇣ Y and q : X ⇣ Z are equivalent if and
only if p 6 q and q 6 p.

Definition 1.5. A morphism f : X �! Y in a category C is a split
epimorphism if there is an arrow i : Y �! X such that fi = 1Y .

In a category C, regular, strong and split epimorphisms are linked as
follows:

Proposition 1.6. In any category C, the following properties hold.

• every split epimorphism is regular;

• every regular epimorphism is strong.

1.2 Regular categories

Definition 1.7. A finitely complete category C is called regular [4] if

• every kernel pair has a coequalizer;

• regular epimorphisms are pullback stable, that is, in any pullback

X ⇥Z Y
p2
// //

p1
✏✏

Y

f
✏✏

X g
// // Z,

the morphism p2 : X ⇥Z Y �! Y is a regular epimorphism when-
ever g : X �! Z is a regular epimorphism.

Example 1.8. The categories Set of sets, Grp of groups, Ab of abelian
groups, Mon of Monoids, Rng of rings, Mod-R of modules over some
fixed ring R are regular categories. More generally, any variety of uni-

versal algebras is a regular category, where regular epimorphisms are
surjective homomorphisms, and finite limits (in particular, pullbacks)
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are computed as in the category of sets. The same is true for any quasi-

variety of algebras (see [81], for example). As examples of regular cate-
gories that are not (finitary) varieties of universal algebras we have: the
categories CGrp of compact groups, Grp(Top) of topological groups.

The categories Top of topological spaces, Cat of small categories,
for instance, are not regular categories, since regular epimorphisms are
not always pullback stable in these categories.

In any regular category C, regular epimorphisms have the following
properties:

Proposition 1.9. Let C be a regular category, then the following prop-
erties hold:

1. given regular epimorphisms f : X ⇣ Y and g : X 0 ⇣ Y
0, their

product f ⇥ g : X ⇥ X
0 �! Y ⇥ Y

0 is a regular epimorphism as
well;

2. the notions of regular epimorphism and strong epimorphism are
equivalent;

3. a morphism which is both a monomorphism and a regular epimor-
phism is an isomorphism.

The notion of regular category can be also reformulated as follows:

Theorem 1.10. Let C be a finitely complete category. Then C is a
regular category if and only if

1. any arrow f : X ! Y has a (unique up to isomorphism) factoriza-
tion as a regular epimorphism p : X ! I followed by a monomor-
phism m : I ! Y ,

X
f

//

p
��

��

Y

I

??

m

??

2. these factorizations are pullback stable.
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The subobject determined by the monomorphism m : I ⇢ Y is uni-
que, and it is called the regular image of the arrow f .

In Grp, for instance, the factorization is obtained as follows: given
a group homomorphism f : A ! B, consider the kernel pair of f which
is the equivalence relation Eq(f) = {(x, y) 2 A ⇥ A | f(x) = f(y)} also
obtained by building the pullback of f along f

Eq(f)
f2
//

f1
✏✏

A

f
✏✏

A
f
// B.

The canonical quotient p : A ! A/Eq(f) is a group homomorphism and
allows one to get the following commutative diagram in Grp

Eq(f)
f1

//

f2
// A

f
//

p
##

##

B.

A/Eq(f)

m

;;

The canonical quotient p : A ! A/Eq(f) is actually the coequalizer of
f1 and f2 and thus a regular epimorphism in Grp and the induced
morphism m : A/Eq(f) ! B is a monomorphism since it is injective.

The construction of the factorization is performed similarly in any
regular category.

1.3 Relations in regular categories

Regular categories provide a good context for the calculus of relations.
As usual, a relation R from X to Y is a subobject hr1, r2i : R ⇢ X⇥ Y .
The opposite relation of R, denoted R

o, is the relation from Y to X given
by the subobject hr2, r1i : R ⇢ Y ⇥ X. A relation R from X to X is
called a relation on X. We shall identify a morphism f : X �! Y with
the relation h1X , fi : X ⇢ X⇥Y and write fo for its opposite relation. In
particular, the identity arrow 1X : X �! X yields the identity relation,
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denoted by 1X , given by h1X , 1Xi : X ⇢ X⇥X. An important aspect of
regular categories is that in these categories one can define a composition
of relations. In Set, if R ⇢ X ⇥ Y is a relation from X to Y , and
S ⇢ Y ⇥ Z a relation from Y to Z, one usually defines the relation
SR ⇢ X ⇥ Z by setting

SR={(x, z)2X ⇥ Z | 9y 2 Y : (x, y) 2 R ^ (y, z) 2 S}.

Thanks to the existence of regular images (see Theorem 1.10), this
construction is actually possible in any regular category C. In fact, given
two relations hr1, r2i : R ⇢ X ⇥ Y and hs1, s2i : S ⇢ Y ⇥Z in a regular
category C, to construct the relational composite SR ⇢ X ⇥Z, we first
build the pullback of r2 and s1,

R⇥Y S

p1

{{

p2

##

R

r2

$$

r1

~~

S

s2

��

s1

{{

X Y Z

and the composite relation SR of S and R is given by the regular image
of the arrow hr1p1, s2p2i : R⇥Y S �! X ⇥ Z,

R⇥Y S
hr1p1,s2p2i

//

p
((

((

X ⇥ Z.

SR

66

66

This composition is then associative, thanks to the fact that regular epi-
morphisms are assumed to be pullback stable. With the above notation,
any relation hr1, r2i : R ⇢ X⇥Y can be seen as the relational composite
r2r

o
1.
Relations are partially ordered by the usual inclusion of subobjects.

The following properties are well known and easy to prove (see [21] for
instance); we collect them in the following lemma:

Lemma 1.11. Let f : X �! Y be an arrow in a regular category C, and
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let f = ir be its (regular epimorphism, monomorphism) factorization.
Then:

1. f
o
f is the kernel pair of f , thus 1X 6 f

o
f ; moreover, 1X = f

o
f if

and only if f is a monomorphism;

2. ff
o is hi, ii, thus ffo 6 1Y ; moreover, ffo = 1Y if and only if f is

a regular epimorphism;

3. ff
o
f = f and f

o
ff

o = f
o.

Definition 1.12. A relation (R, r1, r2) on an object X is said to be:

• reflexive when 1X 6 R, i.e. there is an arrow r : X �! R such
that r1r = 1X = r2r;

• symmetric when R
� 6 R, i.e. there is an arrow � : R �! R such

that r2 = r1� and r1 = r2�;

• transitive when RR 6 R, i.e. by considering the pullback
(R ⇥X R, p1, p2) of r2 and r1, there is an arrow t : R⇥X R �! R

such that the diagram

R

r2

⌘⌘

r1

��

R⇥X R

t

OO

p1

{{

p2

$$

R

r2

$$

r1

~~

R

r2

  

r1

zz

X X X

commutes;

• an equivalence relation if R is reflexive, symmetric and transitive.

In particular, the kernel pair hf1, f2i : Eq(f) ⇢ X⇥X of a morphism
f : X �! Y (obtained by building the pullback of f along f) is an
equivalence relation. The equivalence relations that occur as kernel pairs
of some morphism in a category C are called effective.
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We denoted by Equiv(C) the category whose objects are equivalence
relations in C and arrows from hr1, r2i : R ⇢ X⇥X to hs1, s2i : S ⇢ Y ⇥
Y are pairs (f, g) of arrows in C making the following diagram commute

R
g
//

r2
✏✏

r1
✏✏

S

s2
✏✏

s1
✏✏

X
f
// Y,

i.e. s1g = fr1 and s2g = fr2.

Definition 1.13. [2] A category C is said to be exact if it is regular
and every equivalence relation in C is effective.

Example 1.14. The category Set is exact: each equivalence relation R

on a set A is the kernel pair of the canonical quotient ⇡R : A �! A/R.

Similarly, the categories Grp, Rng, Mon and, more generally, any va-
riety of universal algebras are exact categories. The category CMon of
cancellative monoids is regualr, but not exact. The same is true more
generaly for any quasi-variety [81].

Definition 1.15. Let C be a regular category, (R, r1, r2) a relation on X

and f : X ⇣ Y a regular epimorphism. We define the regular image of R
along f : X �! Y to be the relation f(R) on Y induced by the (regular
epimorphism, monomorphism) factorization hs1, s2i of the composite
(f ⇥ f)hr1, r2i:

R
 
// //

✏✏

hr1,r2i
✏✏

f(R)
✏✏

hs1,s2i
✏✏

X ⇥X
f⇥f
// // Y ⇥ Y.

Note that the regular image f(R) can be obtained as the relational
composite f(R) = fRf

o = fr2r
o
1f

o. When R is an equivalence relation,
f(R) is also reflexive and symmetric. In a general regular category f(R)

is not necessarily an equivalence relation. This is the case in a Goursat
category (Theorem 2.4).

By using the previous definition and Lemma 1.11 we prove the fol-
lowing:
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Proposition 1.16. Let C be a regular category. Given the commutative
diagram

R
g
//

r2
✏✏

r1
✏✏

S

s2
✏✏

s1
✏✏

X
f
// // Y.

where R and S are relations and f a regular epimorphism, the morphism
g is a regular epimorphism if and only if S = f(R).

Proof. Suppose g to be a regular epimorphism; one has:

f(R) = fr2r
�
1f

�

= s2gg
�
s
�
1 (since fr2 = s2g and fr1 = s1g)

= s2s
�
1 (since g is a regular epimorphism)

= S

For the converse, if S = f(R), then g is a regular epimorphism by
the definition of the regular image of R.

1.4 Projective cover

Here, we recall the notion of projective cover and the construction of the
free regular completion of a weakly lex category.

The construction of the free exact category over a category with finite
limits was introduced in [20]. It was later improved to the construction
of the free exact category over a category with finite weak limits (weakly
lex ) in [26]. This was possible because the uniqueness requirement in the
definition of finite limits of the original category was never used in the
construction, but only the existence requirement. In [26], the authors
also considered the free regular category over a weakly lex one.

An important property of the free exact (or regular) construction is
that such categories always have enough (regular) projectives. In fact,
an exact category A may be seen as the exact completion of a weakly lex
category if and only if it has enough projectives. If so, then A is the exact
completion of any of its projective covers. Such a phenomenon is captured
by varieties of universal algebras: they are the exact completions of their
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full subcategory of free algebras.

Definition 1.17. An object P in a category is (regular) projective if,
for any arrow f : P �! X and for any regular epimorphism g : Y ⇣ X,
there exists an arrow h : P �! Y

P

f
✏✏

h

~~

Y g
// // X

such that gh = f .

We say that a full subcategory C of A is a projective cover of A if
two conditions are satisfied:

• any object of C is regular projective in A;

• for any object X in A, there exists a (C-)cover of X, that is an
object C in C and a regular epimorphism C ⇣ X.

When A admits a projective cover, one says that A has enough projec-
tives.

The following property holds in any category:

Lemma 1.18. Any regular epimorphism with a projective codomain is
a split epimorphism.

Proof. Let f : X ⇣ Y be a regular epimorphism in a category such that
Y is a projective object. Since Y is projective, there exists an arrow
h : Y ! X

Y

1Y
✏✏

h

~~

X
f
// // Y

such that fh = 1Y , and then f is a split epimorphism.

By dropping the assumption of uniqueness of the factorization in the
definition of a limit, one obtains the definition of a weak limit. So, weak
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limits are not unique in general (not even up to isomorphisms). We call
weakly lex a category with weak finite limits.

We shall generally use the arrow X
f
//

Yoo to express the fact that
f is a split epimorphism in a weakly lex category.

Remark 1.19. If C is a projective cover of a weakly lex category A,
then C is also weakly lex [26]. For example, let X and Y be objects in
C and X Woo // Y a weak product of X and Y in A. Then, for any
cover W̄ ⇣ W of W , X W̄oo // Y is a weak product of X and Y in
C. Furthermore, if A is a finitely complete category and X ⇥ Y is the
usual product of X and Y , then the induced morphism W ⇣ X ⇥ Y is
a regular epimorphism. Similar remarks apply to all weak finite limits.

Definition 1.20. [26] Let C be a weakly lex category:

1. a pseudo-relation on an object X of C is a pair of parallel arrows

R
r1
//

r2
// X ; a pseudo-relation is a relation if r1 and r2 are jointly

monomorphic;

2. a pseudo-relation R
r1
//

r2
// X on X is said to be:

• reflexive when there is an arrow r : X �! R such that
r1r = 1X = r2r;

• symmetric when there is an arrow � : R �! R such that
r2 = r1� and r1 = r2�;

• transitive if by considering a weak pullback

W
p2
//

p1
✏✏

R

r1
✏✏

R r2
// X,

there is an arrow t : W �! R such that r1t = r1p1 and
r2t = r2p2.

• a pseudo-equivalence relation if it is reflexive, symmetric and
transitive.
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Remark that the transitivity of a pseudo-relation R
r1
//

r2
// X does

not depend on the choice of the weak pullback of r1 and r2; in fact, if

W̄
p̄2
//

p̄1
✏✏

R

r1
✏✏

R r2
// X,

is another weak pullback, the factorization W̄ �! W composed with the
transitivity t : W �! R ensures that the pseudo-relation is transitive also
with respect to the second weak pullback.

Example 1.21. Any weak kernel pair in a weakly lex category is a
pseudo-equivalence relation.

It was proved in [26] that regular categories with enough projectives
are the regular completions of their full subcategories of projective ob-
jects. Note that the free regular completion Creg of a weakly lex category
C is built as follows:

• objects: an object in Creg is a finite family of arrows
(fi : X ! Xi)i2I in C (all the arrows fi of the family have the same
domain)

• arrows: an arrow between two objects (fi : X ! Xi)i2I and
(gj : Y ! Yj)j2J is an equivalence class of arrow h : X ! Y in C
such that gjht1 = gjht2

X̄

t2
✏✏

t1
✏✏

X
h
//

fi
✏✏

Y

gj
✏✏

Xi Yj

where X̄
t1
//

t2
// X is a weak joint kernel pair of the family

(fi : X ! Xi), i.e. it is weakly universal with respect to the pro-
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perty fit1 = fit2, 8i 2 I. Two arrows of this kind h : X ! Y and
k : X ! Y are said to be equivalent if 8j 2 J , gjk = gjh.

Theorem 1.22. [26] When C has weak finite limits, then the category
Creg is regular.

1.5 The Yoneda embedding

In this section, we recall two important results due to Yoneda and Barr
which will allow us to partially use set-theoretic terms to develop proofs
in a regular category.

Let C be a small category. The Yoneda embedding of C is the functor

YC : C �! [Cop
,Set], C 7! C(�, C).

This functor YC is a full and faithful embedding of C in the category
[Cop

,Set] of contravariant functors from C to Set and natural transfor-
mations between them. Each functor C(�, C) preserves limits. This
implies that the Yoneda embebbing preserves all limits which exits in C.
As a consequence, these properties of the Yoneda embedding allow us to
reduce the proofs of statements about finite limits in any finitely com-
plete category to a proof in the category of sets. However, statements
about specific arrows being regular epimorphisms cannot be proved in
the same way, since the Yoneda embedding does not preserve regular
epimorphisms. Also, the Yoneda embedding does not allow one to prove
the existence of some arrow in a category directly in the category of sets.
Thanks to the Yoneda embedding, Barr proved an important theorem
(also called "Barr’s embedding thereom") which allowed to develop
part of the internal logic of a topos in any regular category. It also allows
to reduce the proofs about finite limits and regular epimorphisms in a
regular category by just proving them in the category of sets.

Theorem 1.23. [3] For every small regular category C, there is a small
category D and a full and faithful embedding

Z : C �! [Dop
,Set],
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which preserves and reflects finite limits and regular epimorphisms.

This theorem has been adapted to the context of a regular category
by Borceux and Bourn as follows:

Metatheorem 1.24. [7] Consider a statement of the form A =) B,
where A and B are conjunctions of properties which can be expressed
as:

• some finite diagram is commutative;

• some morphism is a monomorphism;

• some morphism is a regular epimorphism;

• some morphism is an isomorphism;

• some finite diagram is a limit diagram;

• some arrow factors through some specified monomorphism.

If the statement A =) B is true in the category of sets, then it is also
true in every regular category.

As an application, we will partially use this result in the proof of The-
orems 5.16 and 5.20. In a regular context, thanks to Barr’s Metatheorem
(Theorem 1.24), one can use set-theoretic terms, so that the properties
given in the diagrams (3), (4) and (5) may still be expressed by using
generalized elements.



Chapter 2

Goursat categories

In this chapter, we recall the definition of Goursat categories introduced
by A. Carboni, M. Kelly, J. Lambek and M. C. Pedicchio in [21, 23] and
investigate some of their properties. We then introduce the notion of
weak Goursat categories and give some characterizations of categories
with weak finite limits whose regular completion is a Goursat category.

2.1 Definition and examples

As mentioned in the Introduction, Goursat categories were discovered
by A. Carboni, J. Lambek and M. C. Pedicchio in [23] but were defined
explicitely and first studied by A. Carboni, M. Kelly, and M. C. Pedicchio
in [21].

Definition 2.1. [23, 21] A regular category C is called a Goursat cate-
gory when the equivalence relations in C are 3-permutable, i.e. RSR =

SRS for any pair of equivalence relations R and S on the same object.

Goursat categories are also characterized by other properties on
(equivalence) relations, as follows:

Theorem 2.2. [21] Let C be a regular category. The following condi-
tions are equivalent:

(i) C is a Goursat category;

(ii) 8R,S 2 Equiv(X), RSR 2 Equiv(X), for any object X in C;

35
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(iii) 8R,S 2 Equiv(X), R_S = RSR(= SRS), for any object X in C;

(iv) any relation P is such that PP
�
PP

� = PP
�;

(v) for any reflexive relation E, the relation EE
� is an equivalence

relation;

(vi) for any reflexive relation E, EE
� = E

�
E.

From this theorem it follows that, for any object X of a Goursat
category C, the lattice of equivalence relation on X is modular (Propo-
sition 3.3 [21]).

Example 2.3. There are many important algebraic examples of Goursat
categories. Indeed, by a classical theorem in [53], a variety of universal
algebras is a Goursat category precisely when it is a 3-permutable variety:
this property is known to be equivalent to the existence of two ternary
operations r and s satisfying the following the identities:

8
><

>:

r(x, y, y) = x

r(x, x, y) = s(x, y, y)

s(x, x, y) = y.

We shall see in Proposition 2.28 another algebraic characterization of
3-permutable varieties via quaternary operations. Accordingly, the va-
riety of groups with the operations r(x, y, z) = xy

�1
z and s(x, y, z) = z,

the category Ab, Mod-R, Rng, Hey, X-Mod of crossed modules,
QGrp of quasi-groups, AssAlg of associative algebras, and ImplAlg

of implication algebras are all Goursat categories. As examples of Gour-
sat categories that are not (finitary) varieties of universal algebras we
have: the categories CGrp of compact groups, Grp(Top) of topologi-
cal groups [68], HopfK,coc [49], the dual category of sets Set

op and more
generaly the dual category of any topos [21].

Another characterization of Goursat categories in terms of (equi-
valence) relations is given by the preservation of equivalence relations
through the regular image by a regular epimorphism as follows:
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Theorem 2.4. [21] A regular category C is a Goursat category if and
only if for any regular epimorphism f : X ⇣ Y and any equivalence
relation R on X, the regular image f(R) = fRf

o of R along f is an
equivalence relation.

Proof. The relation f(R) is always reflexive and symmetric in a regular
category C since

1Y = ff
� 6 fRf

� = f(R)

and
(f(R))� = (fRf

�)� = fR
�
f
� = fRf

� = f(R).

For the transitivity, one has:

f(R)f(R) = fRf
�
fRf

�

= ff
�
fRf

�
ff

� (by assumption)
= fRf

� (by Lemma 1.11 3.)
= f(R)

For the converse, let E = e2e
�
1 be a reflexive relation, we are going

to prove that EE
� is an equivalence relation (Theorem 2.2 (v)).

One has
EE

� = e2e
�
1e1e

�
2 = e2(Eq(e1))

so, EE
� is the regular image of the equivalence relation Eq(e1) along

the regular epimorphism e2 and is then, by assumption, an equivalence
relation.

2.2 Properties of Goursat categories

There are many interesting known properties of Goursat categories. In
this section, we present some of these properties in terms of a special kind
of pushout, through a specific stability property of regular epimorphisms
with respect to pullbacks and in terms of fibrations of points.
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2.2.1 The 3-by-3 Lemma

Here, we observe that the (denormalized) 3-by-3 Lemma holds in any
regular Goursat category.

In any abelian category, the classical 3-by-3 Lemma is stated as fol-
lows:

Theorem 2.5. [7] (The 3-by-3 Lemma)
Let C be an abelian category. Then "The 3-by-3 Lemma" holds in C:
given a commutative diagram of short exact sequences

0

✏✏

0

✏✏

0

✏✏

X

✏✏

// Y

✏✏

// Z

✏✏

X
0

✏✏

f 0
// Y

0

✏✏

f
// Z

0

✏✏

X
00

✏✏

// Y
00

✏✏

// Z
00

✏✏

0 0 0

where ff
0 = 0, then if any two rows are short exact sequences, then so

is the third.

We refer the reader to [6, 7, 19] for more details about the 3-by-3
Lemma and abelian categories.

In a category which is not pointed, the 3-by-3 Lemma has a "de-
normalized version" where short exact sequences are replaced by "exact
forks": these are diagrams of the form

Eq(r)
r1

//

r2
// X

r
// // Y

in which (Eq(r), r1, r2) is the kernel pair of its coequalizer r. The corre-
sponding 3-by-3 Lemma, called "The denormalized 3-by-3 Lemma" [13],
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would then concern a diagram

Eq(')

'1

✏✏

'2

✏✏

h̄1
//

h̄2

//

Eq(f) h̄
//

f1

✏✏

f2

✏✏

Eq(g)

g2

✏✏

g1

✏✏

Eq(h)
h1

//

h2

//

'

✏✏

✏✏

A
h
// //

f

✏✏

✏✏

C

g

✏✏

✏✏

K

k1
//

k2
//

B
k

// D

(6)

satisfying the usual commutativity conditions in which the three columns
and the middle row are exact forks. The lemma states that the top row
is an exact fork if and only if the bottom row is an exact fork.

Note that the "middle" version of the denormalized 3-by-3 Lemma
(which states that top and bottom rows are exact fork imply that middle
row is an exact fork) always holds in a regular category.

From [13, 72], we have:

Proposition 2.6. Let C be a Goursat category. Then the denormalized
3-by-3 lemma holds in C.

It was proved in [13] that this result holds when a regular category C
satisfies the 2-permutability property, also known as the Mal’tsev prop-
erty: in this case, C is called a Mal’tsev category [21], that is a regular
category in which the composition of equivalence relations permute, i.e.
RS = SR for any pair of equivalence relations R and S on the same
object. A rich theory of Mal’tsev categories has been developed over the
past thirty years by various authors, whose mains features are collected
in [7, 9, 18]. For instance, the 2-permutable version of Theorem 2.2 is:

Theorem 2.7. [23] Let C be a regular category. The following condi-
tions are equivalent:

(i) C is a Mal’tsev category;

(ii) 8R,S 2 Equiv(X), RS 2 Equiv(X), for any object X in C;

(iii) 8R,S 2 Equiv(X), R _ S = RS(= SR), for any object X in C;
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(iv) any relation P is difunctional: PP
�
P = P ;

(v) any reflexive relation E is symmetric: E
� = E;

(vi) any reflexive relation E is an equivalence relation.

Theorem 2.7 implies that any regular Mal’tsev category is a Goursat
category. In fact, if C is a Mal’tsev category, one has

RSR = RRS (by assumption RS = SR)
= RS (by transitivity of R)
= RSS (by transitivity of S)
= SRS (by assumption RS = SR)

As examples of Goursat categories that are not regular Mal’tsev
categories we have the category ImplAlg of implication algebras [78]
and the category RCSGrp of right complemented semigroups [53].

2.2.2 Goursat pushout

In this subsection, we present a characterization of Goursat categories in
terms of a special kind of pushouts, called Goursat pushouts and some
of their useful consequences.

Theorem 2.8. [39] Let C be a regular category. The following condi-
tions are equivalent:

(i) C is a Goursat category;

(ii) any commutative diagram of type (I) in C, where ↵ and � are
regular epimorphisms and f and g are split epimorphisms

X

(I)

↵
// //

f
✏✏

U

g
✏✏

g↵=�f

↵s=t�

Y
�

// //

s

OO

W,

t

OO

(which is necessarily a pushout) is a Goursat pushout : the mor-
phism � : Eq(f) �! Eq(g), induced by the universal property of
kernel pair Eq(g) of g, is a regular epimorphism.
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In [39], the authors give a proof of the implication (i) ) (ii) in
terms of the calculus of relations and a diagrammatical proof for the
implication (ii) ) (i). Here we give a simple proof of the implication
(ii) ) (i) in terms of the calculus of relations.

Proof. (i) ) (ii) To prove that the induced morphism
� : Eq(f) �! Eq(g) is a regular epimorphism, by Proposition 1.16 it
suffices to prove that ↵(Eq(f)) = Eq(g). Since f and g are split epi-
morphisms, the induced factorization � : Eq(↵) �! Eq(�) is necessarly
a split epimorphism and then f(Eq(↵)) = Eq(�). One has

↵(Eq(f)) = ↵f
�
f↵

� (since Eq(f) = f
�
f)

= ↵↵
�
↵f

�
f↵

�
↵↵

� (by Lemma 1.11)
= ↵f

�
f↵

�
↵f

�
f↵

� (by Goursat property)
= ↵f

�
�
�
�f↵

� (since f(Eq(↵)) = Eq(�))

= ↵↵
�
g
�
g↵↵

� (�f = g↵)
= g

�
g (since ↵ is a regular epimorphism)

= Eq(g)

(ii) ) (i) Let R be an equivalence relation on X and f : X ⇣ Y a
regular epimorphism. We are going to prove that the regular image

R
g
// //

r2
✏✏

r1
✏✏

f(R) = S

s2
✏✏

s1
✏✏

X
f

// Y.

f(R) = S is an equivalence relation.
The relation S is always reflexive and symmetric. It remains to prove

that S is transitive. The following diagram is of the type (I)

R
g

// //

r1
✏✏

S

s1
✏✏

X
f

// //

eR

OO

W,

eS

OO

where eR and eS are given by the reflexivity of R and S, respectively.
So, by assumption the factorization � : Eq(r1) �! Eq(s1) is a regular
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epimorphism and then g(Eq(r1)) = Eq(s1). One has

SS = s2 s
�
1 s1 s

�
2 (since S is symmetric)

= s2 Eq(s1) s�2
= s2 g r

�
1 r1 g

�
s
�
2 (since g(Eq(r1)) = Eq(s1))

= f r2 r
�
1 r1 r

�
2 f

� (since s2 g = f r2)
= f R f

� (since R is symmetric and transitive)
= S

So, S = f(R) is transitive and then an equivalence relation, as desired.

Remark 2.9. Diagram (I) is a Goursat pushout precisely when the reg-
ular image of Eq(f) along ↵ is (isomorphic to) Eq(g). From Theorem 2.8,
it then follows that a regular category C is a Goursat category if and only
if for any commutative diagram of type (I) one has ↵(Eq(f)) = Eq(g).
So, Theorem 2.4 characterizes Goursat categories through the property
that regular images of equivalence relations are equivalence relations,
while Theorem 2.8 characterizes them through the property that regular
images of certain kernel pairs are kernel pairs.

Definition 2.10. In any regular category C, a commutative diagram of
regular epimorphisms

W
p1

// //

p2
✏✏

✏✏

Z

g
✏✏

✏✏

X
f

// // Y,

is said to be a regular pushout (or double extension as in [48]) when
the factorization t : W ! X ⇥Y Z towards the pullback of f along g is a
regular epimorphism.

Equivalently, this commutative diagram of regular epimorphisms is
a regular pushout if and only if p1po2 = g

o
f .

Remark 2.11. It was shown in [13] that regular Mal’tsev categories
can also be characterized by a diagram of type (I) as follows: a regular
category C is a Mal’tsev category if and only if any commutative diagram
of type (I) in C is a regular pushout : this means that the canonical
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factorization e : X �! Y ⇥W U induced by the universal property of the
pullback Y ⇥W U of � and g

X

e

%%

%%

↵

⌧⌧

⌧⌧

f

,,

Y ⇥W U
p1
// //

p2
✏✏

✏✏

U

g
✏✏

Y
�

// //

s

NN

W.

t

OO

is a regular epimorphism.

Goursat pushouts allowed to show that the validity of the (denor-
malized) 3-by-3 Lemma is actually equivalent to the Goursat property
as follows:

Theorem 2.12. [39] Let C be a regular category. Then the following
conditions are equivalent:

(i) C is a Goursat category;

(ii) the (denormalized) 3-by-3 Lemma holds in C;

(iii) the lower 3-by-3 Lemma holds in C: given any commutative dia-
gram (6), the lower row is an exact fork whenever the upper row
is an exact fork;

(iv) the upper 3-by-3 Lemma holds in C: given any commutative dia-
gram (6), the upper row is an exact fork whenever the lower row
is an exact fork.

Remark 2.13. Regular Mal’tsev categories can also be characterized by
a stronger version of the denormalized 3-by-3 Lemma, called the Cuboid
Lemma [43], by replacing the kernels pairs in the three exact columns in
(6) with pullbacks of regular epimorphisms along arbitrary morphisms.

Theorem 2.14. [43] Let C be a regular category and consider any
commutative diagram in C
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S

✏✏

&&

&&

//

//

U

✏✏

##

##

f
// A

""

""

✏✏

Eq(g)

✏✏

//

//

V

✏✏

g
// // B

✏✏

Eq(h)

&&

&&

//

//

Z

##

##

h
// // C

""

""

Y
//

//

W
k

// D

(7)

where the three diamonds are pullbacks of regular epimorphisms along
arbitrary morphisms and the two middle rows are exacts forks. Then
the following conditions are equivalent:

(i) C is a Mal’tsev category;

(ii) the Cuboid Lemma holds in C: given any commutative diagram
(7), the upper row is an exact fork whenever the lower row is an
exact fork.

Note that, this characterization is still true when the three diamonds
are pullbacks of split epimorphisms along arbitrary morphisms [43]; this
variation of the Cuboid Lemma is called split Cuboid Lemma.

Another application of Goursat pushouts is that they allow one to ob-
tain a characterization of Goursat categories through a stability property
of regular epimorphisms with respect to pullbacks of split epimorphisms
as follows:

Theorem 2.15. [41] Let C be a regular category. The following condi-
tions are equivalent:

(i) C is a Goursat category;
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(ii) for any commutative cube

X ⇥Y Z

✏✏

&&

�
// U ⇥W V

✏✏

&&

Z

l
✏✏

ff

�
// // V

h

✏✏

ff

X

OO

f
&&

↵
// // U

OO

g
&&

Y

k

OO

i
ff

�
// //W,

OO

j
ff

(8)

where the left and right faces are pullbacks of split epimorphisms
and ↵,� and � are regular epimorphisms (commuting also with the
splittings), then the comparison morphism � : X ⇥Y Z ! U ⇥W V

is also a regular epimorphism;

(iii) for any commutative cube

X ⇥Y Z

⇡X

✏✏

⇡Z
''

�
// // A

✏✏

$$

Z

l
✏✏

hil,1Zi
gg

�
// // V

h

✏✏

dd

X

h1X ,kfi

OO

f
&&

↵
// // U

OO

g
$$

Y

k

OO

i
ff

�
// //W,

OO

j
dd

(9)

where the left face is a pullback of split epimorphisms, the right face
is a commutative diagram of split epimorphisms and the horizontal
arrows ↵,�, �, � are regular epimorphisms (commuting also with
the splittings), then the right face is a pullback.

The previous theorem can also be expressed as a restricted Beck-
Chevalley condition, with respect to the fibration of points, for a special
class of commutative squares.

Let Pt(C) be the category whose objects are split epimorphisms with
a chosen splitting (also called points) and morphisms the commutative
squares between these data. When C has pullbacks of split epimor-
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phisms, the functor sending a point to its codomain

Pt(C) ! C

U
g
//W

j
oo 7! W

is a fibration, called the fibration of points [11]. Given a morphism
� : Y ! W , the change-of-base functor with respect to this fibration is
denoted by �⇤ : PtW (C) ! PtY (C). If C has, moreover, pushouts along
split monomorphisms, then any pullback functor �⇤ has a left adjoint

�! : PtY (C) ! PtW (C),

X
f
//Y

i
oo 7! �!(X)

�!(f)
//W

�!(i)
oo

where (�!(X),�!(f),�!(i)) 2 PtW (C) is determined by the right hand
part of the following pushout:

X
�
// �!(X)

Y
�
//

i

OO

W.

�!(i)

OO

Theorem 2.16. [41] Let C be a regular category with pushouts along
split monomorphisms. Then the following conditions are equivalent:

(i) C is a Goursat category;

(ii) for any regular epimorphism � : Y ⇣ W in C the functor
�! : PtY (C) ! PtW (C) preserves binary products;

(iii) for any commutative square

X
↵
// //

f
✏✏

U

g

✏✏

Y
�
// //

i

OO

W

j

OO

where f and g are split epimorphisms and ↵ and � are regular epimor-
phisms (commuting also with the splittings), the Beck-Chevalley condi-
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tion holds: there is a functor isomorphism ↵!f
⇤ ⇠= g

⇤
�!.

So, we can add Goursat categories to the list of (many) algebraic
categories characterized in terms of the fibration of points (see [10, 7] for
the case of protomodular, semi-abelian and Mal’tsev categories).

Remark 2.17. The equivalence (i) , (iv) in Theorem 2.7 allows to
study Mal’tsev categories in a finitely complete context, without the
assumption of regularity. Goursat categories can be also defined in a
finitely complete context, without the assumption of regularity, and such
that in a regular context it coincides with Definition 2.1, see [12]. But in
this thesis, we shall always work in regular Goursat categories that we
shall call Goursat categories for simplicity.

Remark 2.18. We observe a parallelism between certain properties of
Mal’tsev and Goursat categories:

Goursat categories Mal’tsev categories

RSR = SRS RS = SR

Goursat pushout Regular pushout
Denormalized 3-by-3 Lemma Cuboid Lemma

Regular Mal’tsev (2-permutable) and Goursat (3-permutable) cate-
gories are the first two in an infinite sequence of categories. In general,
if R and S are two equivalence relations on the same object X and
n > 0, we define the relation (R,S)n by: (R,S)0 = 1X , (R,S)1 = R,
(R,S)2 = RS , (R,S)3 = RSR, (R,S)4 = RSRS, ...

Definition 2.19. A regular category C is called n-permutable whenever
(R,S)n = (S,R)n for any pair of equivalence relations R and S on the
same object.

Regular Mal’tsev and Goursat categories differ from the others
n-permutable categories by the following property:

Proposition 2.20. [23, 21] In any regular Mal’tsev and Goursat cate-
gories, the lattice of equivalence relations on the same object is modular:



48 2. Goursat categories

given equivalence relations R, S and T on the same object X 2 C such
that R 6 T , one has:

R _ (S ^ T ) = (R _ S) ^ T.

In the 4-permutable case, for instance, this property does not hold.
In fact, it was shown in [28] that the Polin variety is 4-permutable but
the lattice of equivalence relations on the same object is not modular.

Note that the meet of equivalence relations (R, r1, r2) and (S, s1, s2)

on the same object X always exists in any finitely complete category and
it is defined by the following pullback:

R ^ S

✏✏

// S
✏✏

hs1,s2i
✏✏

R //

hr1,r2i
// X ⇥X.

A simple calculation shows that every n-permutable category is a
(n + 1)-permutable category. An n-permutable version of Theorem 2.2
is:

Theorem 2.21. [21] For any regular category C and for any n > 2, the
following conditions are equivalent:

(i) C is n-permutable;

(ii) 8R,S 2 Equiv(X), the relation (R,S)n 2 Equiv(X), for any object
X in C;

(iii) 8R,S 2 Equiv(X), R _ S = (R,S)n(= (S,R)n), for any object X

in C;

(iv) for any relation P ⇢ A⇥B in C we have (P, P o)n+1 = (P, P o)n�1;

(v) for any reflexive relation E ⇢ X⇥X in C, the relation (E,E
o)n�1

is an equivalence relation;

(vi) for any reflexive relation E ⇢ X ⇥X in C, we have (E,E
o)n�1 =

(Eo
, E)n�1.
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2.3 Weak Goursat categories

In this section, we introduce the notion of weak Goursat category and
characterize categories with weak finite limits whose regular completions
give rise to Goursat categories. This kind of characterizations have been
obtained for the projective covers of categories which are: Mal’tsev [86],
extensive [50], topos [77], (locally) cartesian closed [25, 85] , protomodu-
lar and semi-abelian [37], (strongly) unital and subtractive [42] and 2-star
permutable [1]. As an application, we then relate them to the existence
of the quaternary operations characterizing the varieties of universal al-
gebras which are 3-permutable varieties. Most results of this section
come from the joint paper with D. Rodelo [84].

The following property from [90] (Proposition 1.1.9) will be useful in
the sequel:

Proposition 2.22. [90] Let C be a projective cover of a regular category

A. Let R
r1
//

r2
// X be a pseudo-relation in C and consider its (regular

epimorphism, monomorphism) factorization in A

R
(r1,r2)

//

p
��

��

X ⇥X.

E

;;

(e1,e2)

;;

Then, R is a pseudo-equivalence relation in C if and only if E is an
equivalence relation in A.

In order to characterize the projective covers C of Goursat categories,
we should consider good properties characterizing Goursat categories
which could be translated to the weakly lex context. A possible transla-
tion of the property in Theorem 2.4 should replace equivalence relations
in A with pseudo-equivalence relations in C and regular epimorphisms in
A with split epimorphisms in C since a regular epimorphism in A with
a projective codomain is necessarily a split epimorphism (Lemma 1.18).
Thus, we introduce:

Definition 2.23. Let C be a weakly lex category. We call C a weak
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Goursat category if, for any pseudo-equivalence relation R
r1
//

r2
// X and

any split epimorphism X
f
//

Yoo , the composite R
fr1
//

fr2
// Y is also a

pseudo-equivalence relation.

Lemma 2.24. If C is a regular weak Goursat category, then C is a
Goursat category.

Proof. We shall prove that for any reflexive relation he1, e2i : E ⇢ X ⇥
X, EE

o is an equivalence relation (Theorem 2.2).

Consider the (pseudo-)equivalence relation Eq(e1)
⇡1
//

⇡2
// E and the

split epimorphism e2 (which is split by the reflexivity arrow). By as-

sumption Eq(e1)
e2⇡1

//

e2⇡2
// X is a pseudo-equivalence relation. Its

(regular epimorphism, monomorphism) factorization defines the regular
image e2(Eq(e1)) = EE

o

Eq(e1) // //

⇡2
✏✏

⇡1
✏✏

e2(Eq(e1)) = EE
o

✏✏✏✏

E
e2

// X;oo

thus EE
o is an equivalence relation.

We use Remark 1.19 repeatedly in the next results.

Proposition 2.25. Let C be a projective cover of a regular category
A. Then A is a Goursat category if and only if C is a weak Goursat
category.

Proof. Since C is a projective cover of a regular category A, C is weakly

lex. Suppose that A is a Goursat category. Let R
r1
//

r2
// X be a pseudo-

equivalence relation in C and let X
f
//

Yoo be a split epimorphism in C.
For the (regular epimorphism, monomorphism) factorizations of hr1, r2i
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and hfr1, fr2i we get the following diagram

R
hr1,r2i

//

p
��

��

X ⇥X

f⇥f

✏✏

✏✏

E

;; he1,e2i

;;

w
✏✏

S
## hs1,s2i

##

R

q
??

??

hfr1,fr2i
// Y ⇥ Y,

(10)

where w : E �! S is induced by the strong epimorphism p

R
p
// //

q
✏✏

✏✏

E

(f⇥f)he1,e2i
✏✏

w

zz

S //

hs1,s2i
// Y ⇥ Y.

Then w is a regular epimorphism and by the commutativity of the right
side of (10), one has S = f(E). By Proposition 2.22, we know that E

is an equivalence relation in A. Since A is a Goursat category and f

is a regular epimorphism (being a split one), then S = f(E) is also an
equivalence relation in A (Theorem 2.4) and by Proposition 2.22, we can

conclude that R
fr1
//

fr2
// X is a pseudo-equivalence relation in C.

Conversely, suppose that C is a weak Goursat category.

Let R
r1
//

r2
// X be an equivalence relation in A and f : X ⇣ Y a regular

epimorphism. We are going to show that f(R) = S

R
h
// //

r2
✏✏

r1
✏✏

f(R) = S

s2
✏✏

s1
✏✏

X
f

// // Y

is an equivalence relation; it is obviously reflexive and symmetric. In
order to conclude that A is a Goursat category, we must prove that S is
transitive.
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We begin by covering the regular epimorphism f in A with a split
epimorphism f̄ in C. For that we take a cover y : Ȳ ⇣ Y (with Ȳ 2 C),
consider the pullback of y and f in A and take a cover ↵ : X̄ ⇣ X ⇥Y Ȳ

X̄

↵

$$

$$

f̄=f 0↵

��

x=y0↵

++

++

X ⇥Y Ȳ
f 0

// //

y0
✏✏

✏✏

Ȳ

y
✏✏

✏✏

ss

X
f

// // Y.

Since f̄ = f
0
↵ is a regular epimorphism in A with a projective codomain,

it is a split epimorphism (Lemma 1.18). Note that the above outer
diagram is a regular pushout, so that

f
o
y = xf̄

o and y
o
f = f̄x

o (11)

(Definition 2.10).
Next, we take the inverse image x�1(R) in A, defined by the following

pullback
x
�1(R)

⇡R
// //

✏✏

h⇢1,⇢2i
✏✏

R
✏✏

hr1,r2i
✏✏

X̄ ⇥ X̄
x⇥x

// // X ⇥X,

which is an equivalence relation since R is, and cover it with an element
W 2 C to obtain a pseudo-equivalence W ◆ X̄ in C. By assumption

W
//

// X̄
f̄
// // Ȳ is a pseudo-equivalence relation in C so it factors

through an equivalence relation, say V
v1
//

v2
// Ȳ , in A. We have the
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commutative diagram

W

w
✏✏

✏✏

W

✏✏

v

%%

%%

x
�1(R)
✏✏

h⇢1,⇢2i

✏✏

⇡R
''

''

�
// V
⇥⇥hv1,v2i

⇥⇥

�

%%

%%

R
✏✏

hr1,r2i

✏✏

h
// // S
✏✏

hs1,s2i

✏✏

X̄ ⇥ X̄

x⇥x ''

''

f̄⇥f̄
// // Ȳ ⇥ Ȳ

y⇥y

**

**

X ⇥X
f⇥f

// // Y ⇥ Y,

where � and � are induced by the strong epimorphisms w and v, respec-
tively

W
w

// //

v

✏✏

✏✏

x
�1(R)
✏✏

h⇢1,⇢2i
✏✏�

||

X̄ ⇥ X̄

f̄⇥f̄
✏✏

✏✏

V //

hv1,v2i
// Ȳ ⇥ Ȳ

and
W

v
// //

h⇡Rw

✏✏

✏✏

V
✏✏

hv1,v2i
✏✏

�

{{

Ȳ ⇥ Ȳ

y⇥y
✏✏

✏✏

S //

hs1,s2i
// Y ⇥ Y.

Since � is a regular epimorphism, we have V = f̄(x�1(R)). Since � is
a regular epimorphism, we have S = y(V ). One also has V = y

�1(S)



54 2. Goursat categories

because
y
�1(S) = y

o
Sy

= y
o
f(R)y

= y
o
fRf

o
y

= f̄x
o
Rxf̄

o (by (11))
= f̄(x�1(R))

= V.

Finally, S is transitive since

SS = yy
o
Syy

o
Syy

o (Lemma 1.11(2))
= yy

�1(S)y�1(S)yo

= yV V y
o

= yV y
o (since V is transitive)

= y(V )

= S.

We may also consider weak Goursat categories through a property
which is more similar to the one mentioned in Theorem 2.4:

Lemma 2.26. Let C be a projective cover of a regular category A. The
following conditions are equivalent:

(i) C is a weak Goursat category;

(ii) For any commutative diagram in C

R
'
//

r2
✏✏

r1
✏✏

Soo

s2
✏✏

s1
✏✏

X
f
// Y

oo

(12)

such that f and ' are split epimorphism and R is a pseudo-equivalence
relation, then S is a pseudo-equivalence relation.

Proof. (i) ) (ii) Since R
r1
//

r2
// X is a pseudo-equivalence relation, by

assumption R
fr1
//

fr2
// X is also a pseudo-equivalence relation and then
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its (regular epimorphism, monomorphism) factorization gives an equiva-

lence relation E
e1
//

e2
// Y in A (Proposition 2.22). We have the following

commutative diagram

R

r2

✏✏

r1

✏✏

R

fr2

✏✏

fr1

✏✏

'
//

⇢

  

  

Soo

�
��

s2kk

s1
kk

E

e2
~~

e1

~~

X
f
// Y

oo

where � : S �! E is induced by the strong (split) epimorphism '

R
'

//

⇢
✏✏

✏✏

Soo

hs1,s2i
✏✏

�

zz

E //

he1,e2i
// Y ⇥ Y.

Then � is a regular epimorphism and S
s1
//

s2
// Y is a pseudo-equivalence

relation (Proposition 2.22).

(ii) ) (i) Let R
r1
//

r2
// X be a pseudo-equivalence relation in C

and X
f
//

Yoo a split epimorphism. The following diagram is of the
type (12)

R

r2
✏✏

r1
✏✏

R

fr2
✏✏

fr1
✏✏

X
f
// Y.

oo

Since R
r1
//

r2
// X is a pseudo-equivalence relation, then by assumption

R
fr1
//

fr2
// Y is also a pseudo-equivalence relation.

Alternatively, weak Goursat categories can be characterized through
a property more similar to the one mentioned in Remark 2.9. A diagram
of type (I) in a weakly lex context should have the regular epimorphisms
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↵ and � replaced by split epimorphisms; we call it of type (II):

X

(II)

↵
//

f
✏✏

Uoo

g
✏✏

g↵=�f

↵s=t�

Y
�

//

s

OO

W.

t

OO

oo

Note that such a diagram does not necessarily commute with the left
ward splittings of ↵ and �.

Proposition 2.27. Let C be a projective cover of a regular category A.
The following conditions are equivalent:

(i) A is a Goursat category;

(ii) C is a weak Goursat category;

(iii) For any commutative diagram of type (II) in C

F

�2
✏✏

�1
✏✏

�
//

Goo

⇢2

✏✏

⇢1

✏✏

X

(II)

↵
//

f

✏✏

Uoo

g

✏✏

Y
�

//

s

OO

W

t

OO

oo

where F is a weak kernel pair of f and � is a split epimorphism,
then G is a weak kernel pair of g.

Proof. (i) , (ii) By Proposition 2.25.

(i) ) (iii) If we take the kernel pairs of f and g, then the induced
morphism ↵̄ : Eq(f) �! Eq(g) is a regular epimorphism by Theorem 2.8.
Moreover, the induced morphism ' : F �! Eq(f) is also a regular epi-
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morphism (Remark 1.19). We get the commutative diagram

F
�

//

'
✏✏

✏✏

Goo

!
✏✏

⇢2

vv

⇢1

vv

Eq(f)

f2
✏✏

f1
✏✏

↵̄
// // Eq(g)

g2
✏✏

g1
✏✏

X
↵

//

f
✏✏

Uoo

g
✏✏

Y
�

//

s

OO

W,
oo

t

OO

where w : G �! Eq(g) is induced by the strong (split) epimorphism �

F
�

//

↵̄.'
✏✏

✏✏

Goo

h⇢1,⇢2i
✏✏

w

yy

Eq(g) //
hg1,g2i

// U ⇥ U.

This implies that ! is a regular epimorphism and then G
⇢1
//

⇢2
// U is a

weak kernel pair of g.

(iii) ) (ii) Consider diagram (12) in C where R
r1
//

r2
// X is a pseudo-

equivalence relation. We want to prove that S
s1
//

s2
// Y is also a pseudo-

equivalence. Take the (regular epimorphism, monomorphism) factoriza-
tion of R and S in A and the induced morphism µ making the following
diagram commute

R
'

//

r2

✏✏

r1

✏✏

⇢

  

  

Soo

�

  

  

s2

✏✏

s1

✏✏

U µ
//

u2
~~

u1

~~

V

v2
~~

v1

~~

X
f

// Y.
oo

Since µ is a regular epimorphism, V = f(U) and consequently, V is
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reflexive and symmetric, as the regular image of the equivalence relation
U .

To conclude that S is a pseudo-equivalence relation, we just need to
prove that V is transitive. We apply our assumption to the diagram

F
�=�0�

//

�=↵0�

✏✏

✏✏

�
))

))

Goo

↵

✏✏

✏✏

Eq(r1)⇥'(Eq(r1)) G

�0 55

55

↵0

vv

vv

Eq(r1) �
// //

✏✏ ✏✏

'(Eq(r1))

✏✏✏✏

R

(II)

'
//

r1
✏✏

Soo

s1
✏✏

X
f

//

eR

OO

Y
oo

eS

OO

where G is a cover of the regular image '(Eq(r1)) and F is a cover
of the pullback Eq(r1) ⇥'(Eq(r1)) G. Note that � = �

0
� is a regular

epimorphism in A with a projective codomain, so it is a split epimorphism
(Lemma 1.18). Since � is a regular epimorphism, then F

//

// R is a
weak kernel pair of r1. By assumption G

//

// S is a weak kernel pair
of s1, thus '(Eq(r1)) = Eq(s1). We then have

V V = v2v
o
1v1v

o
2 (since V is symmetric)

= v2��
o
v
o
1v1��

o
v
o
2 (Lemma 1.11 2)

= s2s
o
1s1s

o
2 (vi� = si)

= s2'r
o
1r1'

o
s
o
2 ('(Eq(r1)) = Eq(s1))

= fr2r
o
1r1r

o
2f

o (si' = fri )
= fu2⇢⇢

o
u
o
1u1⇢⇢

o
u
o
2f

o (ui⇢ = ri)
= fu2u

o
1u1u

o
2f

o (Lemma 1.11 2)
= fUUf

o (since U is symmetric)
= fUf

o (since U is transitive)
= V. ( f(U) = V )
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As an application of these results, one obtains the existence of the
quaternary operations which characterize the varieties of universal alge-
bras which are 3-permutable.

Proposition 2.28. Let A be a variety of universal algebras and C its full
subcategory of free algebras. Then the following conditions are equiva-
lent:

(i) A is a Goursat category;

(ii) C is a weak Goursat category;

(iii) the algebraic theory of A contains two quaternary operations p and
q satistying 8

><

>:

p(x, y, y, z) = x

p(x, x, y, y) = q(x, x, y, y)

q(x, y, y, z) = z.

Proof. By assumption C is a projective cover of A, thus conditions (i)

and (ii) are equivalent by Proposition 2.25.
(ii) ) (iii) Let X denote the free algebra on one element. Diagram

(II) below belongs to C

F

µ
✏✏

✏✏

F

�µ
✏✏

✏✏

Eq(r2 +r2)

⇡2
✏✏

⇡1
✏✏

�
// Eq(r3)

✏✏✏✏

4X

(II)

1X+r2+1X
//

r2+r2
✏✏

✏✏

3Xoo

r3
✏✏

✏✏

2X
r2

//

◆2+◆1

OO

X.
oo

◆2

OO

Here ri denotes the codiagonal from the i-indexed copower of X to X

and ◆k the k-th injection into a copower. If F is a cover of Eq(r2+r2),
then F

//

// 4X is a weak kernel pair of r2 + r2. By assumption
F

//

// 3X is a weak kernel pair of r3, so that �µ is surjective. We
then conclude that � is surjective.
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The terms p1(x, y, z) = x and p2(x, y, z) = z are such that
(p1, p2) 2 Eq(r3). By surjectivity of �, 9(p, q) 2 Eq(r2 + r2) such
that p(x, y, y, z) = p1(x, y, z) = x, q(x, y, y, z) = p2(x, y, z) = z and
p(x, x, y, y) = q(x, x, y, y) since (p, q) 2 Eq(r2 +r2).

(iii) ) (i) It suffices to prove that A is a 3-permutable variety
(see [53] and the references therein). Let R and S be two congruences on
the same algebra X in A, we are going to prove that RSR = SRS. For
that it suffices to prove that RSR 6 SRS. Suppose that (x, v) 2 RSR,
then there exist elements y and u such that (x, y) 2 R, (y, u) 2 S and
(u, v) 2 R

One has
xSx

ySy

ySu

vSv,

and by applying the quaternary operations p and q, one obtains
xSp(x, y, u, v) and vSq(x, y, u, v).

One also has
xRy

yRy

uRv

vRv,

and by applying the quaternary operations p and q, on obtains
p(x, y, u, v)Rp(y, y, v, v) and q(x, y, u, v)Rq(y, y, v, v).
Since q(y, y, v, v) = p(y, y, v, v), it the follows that

xSp(x, y, u, v)Rq(x, y, u, v)Sv,

and then (x, v) 2 SRS.

Remark 2.29. The Proposition 2.28 is also true for quasi-varieties.



Chapter 3

Internal structures in
Goursat categories

In [16] D. Bourn and M. Gran introduced the notion of connector be-
tween two internal equivalence relations which is deeply related to the
notion of pregroupoid [70, 71] and then to Commutator Theory. One of
the main interests of the notion of connector is that it enables us to un-
derstand centrality even without defining the commutator of equivalence
relations. Indeed, thanks to this notion one can prove the important ba-
sic centrality properties which correspond to the classical properties of
the commutator. In [15] Bourn and Gran developed this notion of con-
nector in the context of Mal’tsev categories and used it to characterize
Mal’tsev categories. In this chapter, we establish some basic properties
of Goursat categories in terms of connectors, as it was done in [15] for
the case of Mal’tsev categories. These results have turned out to be use-
ful to develop a monoidal approach to internal structures [38]. We then
give a new characterization of Goursat categories in terms of properties
of internal categories and internal groupoids, on the model of what was
done in [36] in the case of Mal’tsev categories. The main results of this
chapter come from the joint paper with M. Gran and D. Rodelo [45].

61
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3.1 Equivalence relations in Goursat categories

In this section we investigate the category Equiv(C) of internal equiv-
alence relations in a regular category C. We show that Equiv(C) is a
Goursat category whenever C is.

The category Equiv(C) is finitely complete whenever C is: any finite
limit in Equiv(C) is computed "levelwise". In particular, the terminal
object in Equiv(C) is the discrete equivalence relation

1 //

// 1

on the terminal object 1 of C. The kernel pair of a morphism (f, g) in
Equiv(C) is given by the kernel pairs Eq(f) of f and Eq(g) of g in C

Eq(g)
g1

//

g2
//

r̄2
✏✏

r̄1
✏✏

R
g
//

r2
✏✏

r1
✏✏

S

s2
✏✏

s1
✏✏

Eq(f)
f1

//

f2
// X

f
// Y.

(13)

Consequently, a morphism (f, g) is a monomorphism in Equiv(C) if and
only if both f and g are monomorphisms in C. When C is a Goursat
category, a similar property holds with respect to regular epimorphisms:

Lemma 3.1. Let R and S be two equivalence relations in a Goursat
category C and (f, g) : R ! S a morphism

R
g
//

r2
✏✏

r1
✏✏

S

s2
✏✏

s1
✏✏

X
f
// Y

(14)

in Equiv(C). Then (f, g) is a regular epimorphism in Equiv(C) if and
only if both f and g are regular epimorphisms in C.

Proof. When f and g are regular epimorphisms in C, it is not difficult
to check that (f, g) is necessarily the coequalizer of its kernel pair in
Equiv(C) given in (13) (one uses the fact that g = coeq(g1, g2) and
f = coeq(f1, f2) in C).
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Conversely, let (f, g) be a morphism in Equiv(C) as in (14) that is
a regular epimorphism in Equiv(C). Consider the kernel pairs of f and
g, the (regular epimorphism, monomorphism) factorization f = iq of f ,
and the regular image (q(R), t1, t2) of (R, r1, r2) along q. We obtain the
following commutative diagram

Eq(g)
g1

//

g2
//

r̄2

✏✏

r̄1

✏✏

R

↵
!!

!!

g
//

r2

✏✏

r1

✏✏

S

s2

✏✏

s1

✏✏

q(R)

t2

✏✏

t1

✏✏

j

==

Eq(f)
f1

//

f2
// X

q
!!

!!

f
// Y,

Z

==

i

==

(15)

where (q(R), t1, t2) 2 Equiv(C) (by Theorem 2.4) and (i, j) is the mor-
phism in Equiv(C) such that (i, j)(q,↵) = (f, g). Note that j is induced
by the fact that (i ⇥ i)ht1, t2i↵ is the (regular epimorphism, monomor-
phism) factorization of hs1, s2ig, thus it is a monomorphism

R
↵
// //

g

✏✏

q(R)
✏✏

(i⇥i)ht1,t2i
✏✏

{{

j

{{

S //

hs1,s2i
// Y ⇥ Y.

From the fact that (f, g) is the coequalizer of its kernel pair in Equiv(C)
and that (q, ↵) is the coequalizer of (f1, g1) and (f2, g2) in Equiv(C)
(since (i, j) is a monomorphism), it easily follows that (i, j) is an isomor-
phism in Equiv(C). This implies that f and g are regular epimorphisms
in C.

Proposition 3.2. Let C be a Goursat category. Then the category
Equiv(C) is a regular category.

Proof. As mentioned above, the category Equiv(C) is finitely complete
because C is so. Lemma 3.1 implies that regular epimorphisms in
Equiv(C) are stable under pullbacks since regular epimorphisms are sta-
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ble in C, and regular epimorphisms in Equiv(C) are “levelwise” regular
epimorphisms. The existence of the (regular epimorphism, monomor-
phism) factorization of a morphism (f, g) as in (14) in the category
Equiv(C) follows from the construction of diagram (15): the (regular
epimorphism, monomorphism) factorization f = iq of f in C gives rise
to the (regular epimorphism, monomorphism) factorization g = j↵ of
g in C. Thus (i, j)(q,↵) is the (regular epimorphism, monomorphism)
factorization of (f, g) in Equiv(C).

Proposition 3.3. Let C be a Goursat category. Then the category
Equiv(C) is a also a Goursat category.

Proof. Let (R, (p1, q1), (p2, q2)) be an equivalence relation on (S, s1, s2)

in the category Equiv(C) and f = (f1, f2) a regular epimorphism in
Equiv(C). We must prove that f(R) is an equivalence relation in
Equiv(C). The relation f(R) is obtained through the following diagram

R
t

// //

r2

��

r1

��

p2

✏✏

p1

✏✏

U

↵2

✏✏

↵1

✏✏

�2

  

�1

  

X

q2

✏✏

q1

✏✏

k
// // V

b

✏✏

a

✏✏

S
f2

// //

s2

��

s1

��

W

d

  

c

  

Y
f1

// // Z,

(16)

where U = f2(R) and V = f1(X) are the regular images in C.
One has:

akr1 = f1q1r1

= f1s1p1

= cf2p1

= c↵1t
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and in the same way bkr1 = c↵2t, thus the following diagram commutes:

R
t

// //

kr1
✏✏

U

hc↵1,d↵2i
✏✏

V //

ha,bi
// Z ⇥ Z.

Since t is a strong epimorphism and ha, bi is a monomorphism, there
exists �1 : U ! V such that ha, bi�1 = hc↵1, c↵2i. The existence of �2 is
obtained similarly. Since (ha, bi⇥ha, bi)h�1,�2i = hc⇥c, d⇥dih↵1,↵2i, it
follows that h�1,�2i : U ! V ⇥V is a monomorphism and thus (U,�1,�2)
is a relation on V . All parallel morphisms of the left face represent equiv-
alence relations and all horizontal morphisms are regular epimorphisms,
so that all parallel morphisms of the right face also represent equiva-
lence relations (Theorem 2.4), and then f(R) is an equivalence relation
in Equiv(C).

Remark 3.4. Lemma 3.1 and Proposition 3.2 were proved in [40, 45]
and, independently, in [12].

3.2 Connectors in Goursat categories

In this section we prove that connectors are stable under quotients in any
Goursat category C. We then define the category Conn(C) of connectors
in C whose objects are pairs of equivalence relations equipped with a
connector, and prove that Conn(C) is a Goursat category whenever the
base category C is.

Definition 3.5. Let (R, r1, r2) and (S, s1, s2) be two equivalence rela-
tions on an object X and (R ⇥X S, p1, p2) the pullback of r2 along
s1

R⇥X S
p2
//

p1
✏✏

S

s1
✏✏

R r2
// X.

A connector [15] between R and S is an arrow p : R ⇥X S �! X in
C satisfying:



66 3. Internal structures in Goursat categories

1. xSp(x, y, z)Rz;

2. Mal’tsev identities: p(x, x, y) = y and p(x, y, y) = x;

3. associativity: p(x, y, p(z, u, v)) = p(p(x, y, z), u, v),

when each term is defined.

Example 3.6. 1. If rX is the largest equivalence relation on an ob-
ject X, then an associative Mal’tsev operation

p : X ⇥X ⇥X �! X

is precisely a connector between rX and rX .

2. Let X and Y be two objects in a finitely complete category C and
(X ⇥ Y, pX , pY ) their product. Then the canonical arrow
p : X ⇥X ⇥ Y ⇥ Y ! X ⇥ Y defined by

p(x, x0, y, y0) = (x0, y)

is a connector between the kernel pairs Eq(pX) and Eq(pY ) of the
product projections pX and pY .

It is well known that Goursat categories satisfy the so-called Shifting
Property [51, 14]. In this context connectors are unique when they exist
(Theorem 2.13 and Proposition 5.1 in [14]): accordingly, for a given pair
of equivalence relations on the same object in a Goursat category the
fact of having a connector becomes a property.

The notion of connector is also related to double equivalence rela-
tions.

Definition 3.7. Let R and S be two equivalence relations on an object
X. A double equivalence relation on R and S is an internal equiva-
lence relation from R to S in the category of internal equivalence re-
lations, i.e. an object C 2 C equipped with two equivalence relations
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(⇡1,⇡2) : C ◆ S and (p1, p2) : C ◆ R such that the following diagram

C
⇡1
//

⇡2
//

p2
✏✏

p1
✏✏

S

s2
✏✏

s1
✏✏

R
r1
//

r2
// X

commutes (in the "obvious” way).

A double equivalence relation C on R and S is called a centralizing
relation [24] when the square

C
⇡1
//

p1
✏✏

S

r1
✏✏

R s1
// X

is a pullback.
By the symmetry of the equivalence relations it follows that any of

the four commutative squares in the definition of a centralizing relation
is a pullback.

The definition of connectors in terms of centralizing relations is given
by the following lemma.

Lemma 3.8. [15] If C is a category with finite limits and R and S

are two equivalence relations on the same object X, then the following
conditions are equivalent:

(i) there exists a connector between R and S;

(ii) there exists a centralizing relation on R and S.

Proof. (i) ) (ii) Let p : R⇥X S �! X be a connector between R and S.
Then by defining the arrows �1 : R ⇥X S �! S and �2 : R ⇥X S �! R

by �1(x, y, z) = (x, p(x, y, z)) and �2(x, y, z) = (p(x, y, z), z), one obtains
the following centralizing relation on R and S:

R⇥X S

�1
//

p2
//

�2
✏✏

p1
✏✏

S

s2
✏✏

s1
✏✏

R
r1

//

r2
// X
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(ii) ) (i) Let

C
⇡1
//

⇡2
//

p2
✏✏

p1
✏✏

S

s2
✏✏

s1
✏✏

R
r1
//

r2
// X

be a centralizing relation on R and S, then the morphism
r1p1 : C = R⇥X S �! X defines a connector between R and S.

In [15] D. Bourn and M. Gran established some basic centrality prop-
erties in a Mal’tsev category. In particular, they proved that when C is
a Mal’tsev category, R and S are equivalence relations on an object X

with a connector and i : I ⇢ X is a monomorphism, then the inverse
images i

�1(R) and i
�1(S) also have a connector. By Theorem 12 in

[10] it follows that the converse of this result is also satisfied. We es-
tablish a similar property for Goursat categories, with respect to regular
epimorphisms:

Proposition 3.9. Let C be a Goursat category, R and S two equivalence
relations on an object X, and let f : X ⇣ Y be a regular epimorphism. If
there exists a connector between R and S, then there exists a connector
between the regular images f(R) and f(S).

Proof. Suppose that there exists a connector between R and S. This
implies that there exists a centralizing relation (C, (⇡1,⇡2), (p1, p2)) on
R and S. Consider the regular image (f(R), a, b) and (f(S), c, d) of R
and S along f . We obtain the following diagram

C
↵

// //

⇡2

��

⇡1
��

p2

✏✏

p1

✏✏

fR(C)

↵2

✏✏

↵1

✏✏

�2

##�1
##

R

r2

✏✏

r1

✏✏

fR
// // f(R)

b

✏✏

a

✏✏

S
fS
// //

s2

��

s1
��

f(S)
d

$$

c
$$

X
f

// // Y,

(17)
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where (fR(C),�1,�2) is the regular image of the equivalence relation
(C,⇡1,⇡2) along the regular epimorphism fR. The fact that the square

C
↵
// //

fSp1
✏✏

fR(C)

ha�1,a�2i
✏✏

↵1

zz

f(S) //

hc,di
// Y ⇥ Y

commutes, ↵ is a strong epimorphism and hc, di is a monomorphism,
implies the existence of an arrow ↵1 : fR(C) �! f(S) making the above
diagram commute. Similarly, from the commutativity

C
↵
// //

fSp2
✏✏

fR(C)

hb�1,b�2i
✏✏

↵2

zz

f(S) //

hc,di
// Y ⇥ Y

we obtain an arrow ↵2 : fR(C) �! f(S).
The relations (fR(C),�1,�2), (f(R), a, b) and (f(S), c, d) are all equi-

valence relations by Theorem 2.4. It is then easy to check that the
relation (fR(C),↵1,↵2) is an equivalence relation on f(S). In fact, the
morphism h↵1,↵2i : fR(C) ! f(S) ⇥ f(S) is a monomorphism since
hc ⇥ c, d ⇥ dih↵1,↵2i = ha, bi ⇥ ha, bih�1,�2i. So, h↵1,↵2i is the regular
image of hp1, p2i along fS , thus it is an equivalence relation on f(S) by
Theorem 2.4.

By assumption all the left squares of (17) are pullbacks and all the
horizontal morphisms are regular epimorphisms, so it follows that all
the right squares of (17) are pullbacks as well by Theorem 2.15 (iii). It
then follows that (fR(C), (↵1,↵2), (�1,�2)) is a centralizing relation on
f(R) and f(S). By Lemma 3.8 there is a connector between f(R) and
f(S).

We are now going to show that the category whose objects are pairs
of equivalence relations equipped with a connector is a Goursat category
whenever the base category is a Goursat category. For this, let us first fix
some notation: if C is a finitely complete category, we write 2-Eq(C) for
the category whose objects (R,S,X) are pairs of equivalence relations R
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and S on the same object X, R
r1
//

r2
// X S,

s2
oo

s1
oo and arrows are triples

(fR, fS , f) making the following diagram commute:

R
r1
//

r2
//

fR
✏✏

X

f
✏✏

S
s2
oo

s1
oo

fS
✏✏

R̄
r̄1
//

r̄2
// X̄ S̄.

s̄2
oo

s̄1
oo

(18)

We write Conn(C) for the subcategory of 2-Eq(C) whose objects
(R,S,X, p) are pairs of equivalence relations R and S on an object X

with a given connector p : R ⇥X S ! X; arrows in Conn(C) are ar-
rows in 2-Eq(C) respecting the connectors. This means that, given a
diagram (18) where both (R,S,X) and (R̄, S̄, X̄) are in Conn(C), with
p : R⇥X S ! X and p̄ : R̄⇥X̄ S̄ ! X̄ the corresponding connectors, then
the diagram

R⇥X S
fR⇥XfS

//

p

✏✏

R̄⇥X̄ S̄

p̄
✏✏

X
f

// X̄

commutes, where fR ⇥X fS is the natural map induced by the universal
property of the pullback R̄⇥X̄ S̄.

We say that a subcategory P is closed under (regular) quotients in a
category Q if, for any regular epimorphism f : A ⇣ B in Q such that
A 2 P, then B 2 P.

Proposition 3.10. If C is a Goursat category, then Conn(C) is a full
subcategory of 2-Eq(C), that is closed in 2-Eq(C) under quotients.

Proof. The fullness of the forgetful functor Conn(C) ! 2-Eq(C) follows
from Corollary 3.2 in [14], by taking into account the fact that any
Goursat category satisfies the Shifting Property.

Let us then consider a regular epimorphism in 2-Eq(C)

R
r1
//

r2
//

fR
✏✏

✏✏

X

f
✏✏

✏✏

S
s2
oo

s1
oo

fS
✏✏

✏✏

R̄
r̄1
//

r̄2
// X̄ S̄

s̄2
oo

s̄1
oo
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(this means that f , fR and fS are regular epimorphisms in C) such that
its domain (R,S,X) belongs to Conn(C). The equalities f(R) = R̄

and f(S) = S̄, together with Proposition 3.9, imply that there exists a
connector between R̄ and S̄.

Lemma 3.11. Let D be a finitely complete category, and C a full sub-
category of D closed in D under finite limits and quotients. Then:

1. C is regular whenever D is regular.

2. C is a Goursat category whenever D is a Goursat category.

Proof. The (regular epimorphism, monomorphism) factorization in D
of an arrow in C is also its factorization in C, since C is closed in D
under quotients. Since finite limits in C are calculated as in D, it follows
that regular epimorphisms are stable under pullbacks. Now the second
statement easily follows from the fact that the composition of relations
is computed in the same way in C and in D.

Theorem 3.12. If C is a Goursat category then Conn(C) is a Goursat
category.

Proof. Using similar arguments as those given in the proof of Proposi-
tion 3.3 with respect to Equiv(C), one may deduce that 2-Eq(C) is a
Goursat category. The result then follows from Proposition 3.10 and
Lemma 3.11.

3.3 Internal groupoids in Goursat categories

In this section, we give a new characterization of Goursat categories in
terms of properties of internal categories and internal groupoids.

Definition 3.13. An internal reflexive graph in a category C is a dia-
gram of the form

X1

d
//

c
//

X0eoo

such that d e = 1X0 = c e.
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We write RG(C) for the category of internal reflexive graphs in C
with obvious morphisms.

Definition 3.14. An internal category in a category C with pullbacks
is a reflexive graph with a morphism m : X1 ⇥X0 X1 ! X1

X1 ⇥X0 X1

p1
//

p2
//

m // X1

d
//

c
//

X0,eoo

where (X1 ⇥X0 X1, p1, p2) is the pullback of d and c

X1 ⇥X0 X1
p2
//

p1
✏✏

X1

d
✏✏

X1 c
// X0

and such that:

• dm = dp1, cm = cp2;

• mhed, 1X1i = 1X1 = mh1X1 , eci;

• m(1X1 ⇥X0
m) = m(m⇥X1

1X1).

The object X0 is called the "object of objects", X1 the "object of
arrows", X1 ⇥X0 X1 the "object of composable pairs of arrows". The
morphisms d and c are called "domain" and "codomain" respectively,
e is the "identity", and m is the "composition".

Definition 3.15. An internal category in a category C with pullbacks

X1 ⇥X0 X1

p1
//

p2
//

m // X1

d
//

c
//

X0,eoo

is an internal groupoid when there is an additional morphism
i : X1 �! X1, called "inversion", satisfying the axioms:

• di = c, ci = d;

• mhi, 1X1i = ec and mh1X1 , ii = ed.
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Example 3.16. An internal category in the category Set is a small
category. An equivalence relation is a special kind of groupoid, where
its domain and codomain morphisms are jointly monomorphic; also any
reflexive and transitive relation, that is a preorder, is in particular an
internal category.

We write Cat(C) and Grpd(C) for the categories of internal cate-
gories and internal groupoids in C, respectively. The morphisms in these
categories are called internal functors: they are pairs of arrows (f0, f1)

in C, as in the diagram

X1 ⇥X0 X1

mX

✏✏

f2
// X

0
1 ⇥X0 X

0
1

mX0

✏✏

X1
f1

//

c

✏✏

d
✏✏

X
0
1

c0

✏✏

d0

✏✏

X0

e

OO

f0
// X

0
0,

e0

OO

such that:

• f0 d = d
0
f1, f0 c = c

0
f1

• f1 e = e
0
f0, f1 mX = mX0 f2

(where f2 is the arrow induced by the universal property of the pullback).
Connectors provide a way to distinguish groupoids amongst reflexive

graphs:

Proposition 3.17. [24] Given a reflexive graph

X1

d
//

c
//

X0eoo

in a finitely complete category C, the connectors between Eq(c) and
Eq(d) are in bijection with the groupoid structures on this reflexive
graph.

In fact, if p is a connector between Eq(d) and Eq(c) then the arrow
m : X1 ⇥X0 X1 ! X1 (internally) defined by: 8(x, y) 2 X1 ⇥X0 X1,



74 3. Internal structures in Goursat categories

m(x, y) = p(y, (ec)(x), x) gives the composition of a groupoid structure.
Conversely, if X is equipped with a groupoid composition m and an
inversion i, a connector p between Eq(c) and Eq(d) is obtained by setting
p(x, y, z) = m(m(z, i(y)), x) for any (x, y, z) 2 Eq(c)⇥X1 Eq(d).

To obtain our new characterization of Goursat categories, the follow-
ing theorem will be useful:

Theorem 3.18. [76] Let C be a regular category, then the following
conditions are equivalent:

(i) all reflexive and transitive relations in C are equivalence relations;

(ii) all internal categories in C are internals groupoids.

Also, (i), (ii) hold if C is n-permutable, n > 2

It then follows that if C is a Goursat category, then any reflexive and
transitive relation is an equivalence relation or, equivalently, any internal
category is a groupoid. Then Theorem 2.4, which could equivalently be
stated through the property that Equiv(C) (or the category of reflexive
and transitive relations in C) is closed in the category of reflexive re-
lations in C under quotients, has an extended counterpart given below.
This characterization leads to the observation that the structural aspects
of Goursat categories mainly concern groupoids (rather than equivalence
relations).

We are now ready to prove the main theorem of this section.

Theorem 3.19. Let C be a regular category. Then the following con-
ditions are equivalent:

(i) C is a Goursat category;

(ii) Grpd(C) is closed in RG(C) under quotients;

(iii) Cat(C) is closed in RG(C) under quotients.

Proof. (i) ) (ii) Let
X1

g
// //

c

✏✏

d
✏✏

X
0
1

c0

✏✏

d0

✏✏

X0

e

OO

f
// // X

0
0

e0

OO
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be a regular epimorphism (f, g) in RG(C) (which means that f and g

are regular epimorphisms in C), with

X1

d
//

c
//

X0eoo

a groupoid in C. Let Eq(d), Eq(c), Eq(d0) and Eq(c0) be the kernel pairs
of the arrows d, c, d

0 and c
0, respectively. By Proposition 3.17, there

exists a connector between Eq(d) and Eq(c). Let � : Eq(d) ! Eq(d0) and
� : Eq(c) ! Eq(c0) be the arrows induced by the universal property of
kernel pairs Eq(d0) and Eq(c0), respectively. By Theorem 2.8, � and � are
regular epimorphisms, so that g(Eq(d)) = Eq(d0) and g(Eq(c)) = Eq(c0).
By Proposition 3.9 there is then a connector between Eq(d0) and Eq(c0),
thus

X
0
1

d0
//

c0
//

X
0
0e0oo

is a groupoid (Proposition 3.17).
(ii) ) (i) This implication follows from Theorem 2.4 and the fact

that equivalence relations are in particular groupoids (whose domain
and codomain morphisms are jointly monomorphic).

(i) ) (iii) This implication follows from (i) ) (ii) and the fact that
Grpd(C) ⇠= Cat(C) in a Goursat context (Theorem 3.18).

(iii) ) (i) Let (R, r1, r2) be an equivalence relation on X, f : X ⇣ Y

a regular epimorphism and (f(R), t1, t2) the regular image of R along f

R
g
// //

r2
✏✏

r1
✏✏

f(R)

t2
✏✏

t1
✏✏

X
f
// // Y.

(f(R), t1, t2) is reflexive and symmetric being the image of the equiva-
lence relation R along a regular epimorphism f . By assumption,
(f(R), t1, t2) is an internal category, thus it is transitive and then an
equivalence relation. It follows that C is a Goursat category (by Theo-
rem 2.4).

Remark 3.20. Observe that Theorem 3.19 implies that Grpd(C) and
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Cat(C) are Goursat categories whenever C is, again thanks to
Lemma 3.11 (the category RG(C) obviously being a Goursat category
since it is a functor category). This simplifies and slightly extends Propo-
sition 4.3 in [40], where the existence of coequalizers in C was assumed.
Also, Theorem 3.19 implies that the converse of Proposition 3.9 is also
satisfied.

Remark 3.21. A result analogous to Theorem 3.19 holds in the Mal’tsev
context: a category C is a Mal’tsev category if and only if Grpd(C) (or,
equivalently, Cat(C)) is closed in RG(C) under subobjects [10]. To-
gether with the comments made before Proposition 3.9 we observe the
existence of a sort of "duality" between Mal’tsev categories and Goursat
categories: similar results hold for Mal’tsev categories with respect to
monomorphisms and for Goursat categories with respect to regular epi-
morphisms as shown in the following table (with R and S two equivalence
relations on the same object in a regular category C):

Goursat category C Mal’tsev category C

RSR = SRS RS = SR

If there exists a connector be-
tween R and S, then there ex-
ists a connector between the reg-
ular images f(R) and f(S), for a
regular epimorphism f

If there exists a connector be-
tween R and S, then there exists
a connector between the inverse
images i

�1(R) and i
�1(S), for a

monomorphism i

Conn(C) closed in 2-Eq(C) under
quotients

Conn(C) closed in 2-Eq(C) un-
der subobjects

Grpd(C) closed in RG(C) under
quotients

Grpd(C) closed in RG(C) under
subobjects

Cat(C) closed in RG(C) under
quotients

Cat(C) closed in RG(C) under
subobjects

Conn(C), RG(C), Grpd(C) and
Cat(C) are Goursat whenever C
is

Conn(C), RG(C), Grpd(C) and
Cat(C) are Mal’tsev whenever C
is

Table 3.1: "Duality" between Mal’tsev and Goursat categories.



Chapter 4

Shifting Lemma and Goursat
categories

In Chapter 3, we have seen that the structure of internal connector is
unique in Goursat categories because the categorical version of Gumm’s
Shifting Lemma holds in any Goursat category. Many other important
results and properties hold in regular Mal’tsev and Goursat categories
thanks to the validity of the Shifting Lemma in these categories; as ex-
amples: the admissibility in the sense of Galois theory of the subcategory
of abelian objects in any Mal’tsev category [34], the uniqueness of the
pseudogroupoid structure on two equivalence relations (when it exists)
in any Mal’tsev or Goursat category [14], the characterization of Goursat
categories given in Theorem 2.15, the validity of some properties in com-
mutator theory [32, 51]. In this chapter, we focus our attention on the
Shifting Lemma. More precisely, we study some variations of the Shifting
Lemma in order to obtain new characterizations of regular Mal’tsev and
Goursat categories. These results apply in particular to 2-permutable
and 3-permutable quasi-varieties, since these latter categories are known
to be regular. The main results of this chapter (in section 2 and 3) are
joint work with M. Gran and D. Rodelo [46].

77



78 4. Shifting Lemma and Goursat categories

The Shifting Lemma

For a variety V of universal algebras, Gumm’s Shifting Lemma [51] is
stated as follows. Given congruences R,S and T on the same algebra X

in V such that R ^ S 6 T , whenever x, y, u, v are elements in X with
(x, y) 2 R ^ T , (x, u) 2 S, (y, v) 2 S and (u, v) 2 R, it then follows that
(u, v) 2 T . We display this condition as

x
S

RT

u

R T

y
S

v.

(19)

A variety V of universal algebras satisfies the Shifting Lemma precisely
when it is congruence modular [51], this means that the lattice of con-
gruences on any algebra in V is modular: given congruences R, S and T

on the same object X 2 V such that R 6 T , one has:

R _ (S ^ T ) = (R _ S) ^ T.

In a finitely complete category, the validity of the Shifting Lemma
is equivalent to the following property, called the Shifting property [14].
In a finitely complete category C, given two equivalence relations R and
S on the same object, we write R⇤S for the largest double equivalence
relation on R and S given by the following pullback

R⇤S
✏✏

h⇡13,⇡24i
✏✏

//

h⇡12,⇡34i
// S ⇥ S
✏✏

hs1,s2i⇥hs1,s2i
✏✏

R⇥R //

hr1⇥r1,r2⇥r2i
// X ⇥X ⇥X ⇥X.

We have that (a, b, c, d) 2 X
4 belongs to the double equivalence relation

R⇤S if and only if
a

S

R

b

R

c
S

d.
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Definition 4.1. [14] A finitely complete category C satisfies the Shifting
property and is called Gumm category if for any equivalence relation R,
S and T on the same object X 2 C with R ^ S 6 T 6 R, the canonical
inclusion of equivalence relations (i, j) : T⇤S ! R⇤S

T⇤S //

j
//

⇡2
✏✏

⇡1
✏✏

R⇤S

�2
✏✏

�1
✏✏

T //

i
// R,

(20)

is a discrete fibration: this means that any of the commutative squares
in (20) is a pullback.

Lemma 4.2. [14] A finitely complete category C satisfies the Shifting
Lemma if and only if it satisfies the Shifting property.

The Shifting Lemma can then be expressed in any category with
finite limits.

In a regular context one can show that the lattice of equivalence
relations in any Goursat category is modular [21], and that this latter
property implies that the Shifting Lemma holds. However it is not true
that the Shifting Lemma implies modularity in general. For instance,
in the case of a variety of infinitary algebras there is a counterexample
given by G. Janelidze in Example 12.5 in [60].

Remark 4.3. In some formulations of the Shifting Lemma, one may find
the assumption R ^ S 6 T 6 R on the equivalence relations instead of
the usual R^S 6 T , as above. However, both statements are equivalent,
as observed in [14]. In fact, if the properties hold when R^S 6 T , then
it obviously holds for R ^ S 6 T 6 R. Conversely, consider T

0 = R ^ T ,
which is such that R ^ S 6 T

0 6 R. By applying the assumption to R,
S and T

0,
x

S

RT 0

u

R T 0

y
S

v

one concludes that uT
0
v, thus uTv.
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In the varietal context, H.-P. Gumm has also considered a slight
variation of the Shifting Lemma called the Shifting Principle [51]: given
congruences R and T and a reflexive, symmetric and compatible relation
S on the same algebra X such that R^S 6 T 6 R, whenever x, y, u, v are
elements in X with (x, y) 2 R^T , (x, u) 2 S, (y, v) 2 S and (u, v) 2 R as
in (19), it then follows that (u, v) 2 T . The Shifting Principle, although
apparently stronger, turns out to be equivalent to the Shifting Lemma
in the varietal case.

With this observation in mind, it seems reasonable to expect that
considering variations on the assumptions on the relations R,S or T ap-
pearing in the Shifting Lemma might provide characterizations of other
types of categories. The variations we have in mind for R,S and T are
to make those assumptions weaker, so that they give stronger versions
of the Shifting Lemma. This idea comes from the well known charac-
terization of Mal’tsev categories through the fact that reflexive relations
are equivalence relations (Theorem 2.7), and from a more recent one of
Goursat categories in terms of positive relations (Theorem 4.7).

We first investigate this notion of positive relation which allows us to
obtain some new characterizations of regular Mal’tsev and Goursat Cat-
egories. We then use these results to show that stronger versions of the
Shifting Lemma characterize regular Mal’tsev and Goursat categories.

In this chapter, we always assume that the base category in which
we are working is a regular category, thus the proofs are partially given
in set-theoretical terms (Theorem 1.23 and 1.24).

4.1 Positive relations and n-permutable categories

Here, we first simplify a result in [89] to give a new characterization
of Mal’tsev categories in terms of positive relations. Then we also give
a new characterization of Goursat categories and more generally of n-
permutable categories in terms of positive relations.

Definition 4.4. A relation E on X is called positive [87] when it is of
the form E = R

o
R for some relation R ⇢ X ⇥ Y .

Positive relations have the following properties:
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Lemma 4.5. Let C be a regular category. Then:

(i) any positive relation is symmetric;

(ii) any equivalence relation is positive.

(iii) positive relations are stable under regular images.

Proof. (i) Let E be a positive relation and R a relation such that
E = R

o
R. One has E

o = (Ro
R)o = R

o
R = E.

(ii) When R is an equivalence relation, one has R = R
o
R.

(iii) Let E be a positive relation on X, and R a relation such that
E = R

o
R. Given a regular epimorphism f : X ⇣ Y a regular epimor-

phism, one has f(E) = fEf
o = fR

o
Rf

o = (Rf
o)oRf

o.

In [89] positive relations were used to identify those n-permutable
categories which are actually Mal’tsev categories. Studying this article,
we noticed that regular Mal’tsev categories can be characterized through
the positivity of reflexive relations. As a consequence, condition (iv) of
Theorem 4 in [89] could be replaced by condition (ii) as follows:

Theorem 4.6. For a regular category C, the following conditions are
equivalent:

(i) C is a Mal’tsev category;

(ii) every reflexive relation in C is positive.

Proof. (i) ) (ii) Let E be a reflexive relation. By Theorem 2.7(v) E is
an equivalence relation and then a positive relation by Lemma 4.5 (ii).

(ii) ) (i) Let E be a reflexive relation. Then it is positive by as-
sumption. By Lemma 4.5 (i) E is symmetric, thus by Theorem 2.7 (iv),
C is a Mal’tsev category.

Still using the positivity of relations we also obtained the following
characterization for Goursat categories (which is a slight variation of
Theorem 2.2 (v)).

Theorem 4.7. For a regular category C, the following conditions are
equivalent:
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(i) C is a Goursat category;

(ii) any reflexive and positive relation in C is an equivalence relation.

Proof. (i) ) (ii) Let E be a reflexive and positive relation and R a
relation such that E = R

o
R. We are going to show that E is an

equivalence relation.
By Lemma 4.5 (i) E is symmetric. One has

EE = R
o
RR

o
R

= R
o
R (Theorem 2.2 (iv))

= E

Thus E is transitive and then an equivalence relation.
(ii) ) (i) Let R be an equivalence relation and f a regular epimor-

phism. We are going to prove that f(R) is an equivalence relation. By
assumption, it suffices to prove that f(R) is positive (f(R) is necessarily
reflexive). Since R is an equivalence relation, by Lemma 4.5 (ii) and (iii),
f(R) is positive.

The previous characterizations of regular Mal’tsev and Goursat cat-
egories can be extended to n-permutable categories.

Remark 4.8. For any relation E ⇢ X ⇥ Y and k > 1, one has:

(i) ((E,E
o)2k)o = (E,E

o)2k

(ii) ((E,E
o)2k+1)o = (Eo

, E)2k+1

Thanks to these observations, n-permutable categories can be char-
acterized in terms of positive relations as follows:

Theorem 4.9. For a regular category C and k > 1, the following con-
ditions are equivalent:

(i) C is a (2k)-permutable category;

(ii) for any reflexive relation E, the relation (E,E
o)2k�1 is positive.
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Proof. (i) ) (ii) Let E be a reflexive relation. By assumption the
relation (E,E

o)2k�1 is an equivalence relation (Theorem 2.21 (v)) and
then positive (Lemma 4.5 (ii)).

(ii) ) (i) Let E be a reflexive relation and R a relation such that
(E,E

o)2k�1 = R
o
R. One has

(Eo
, E)2k�1 = ((E,E

o)2k�1)o (Remark 4.8 (ii))
= (Ro

R)o

= R
o
R

= (E,E
o)2k�1

and then by Theorem 2.21 (vi), C is (2k)-permutable.

Theorem 4.10. For a regular category C and k > 1, the following
conditions are equivalent:

(i) C is a (2k + 1)-permutable category;

(ii) for any reflexive and positive relation E, the relation E
k is an

equivalence relation.

Proof. (i) ) (ii) Since E is reflexive, Ek is also reflexive (1 6 E 6 E
k).

Let R be a relation such that E = R
o
R. One has :

(Ek)o = ((Ro
, R)2k)o

= (Ro
, R)2k (Remark 4.8 (i))

= E
k
,

thus E
k is symmetric. One also has

E
k
E

k = (Ro
, R)2k(Ro

, R)2k

= (Ro
, R)2k+2(Ro

, R)2k�2

= (Ro
, R)2k(Ro

, R)2k�2 (Theorem 2.21 (iv))
= (Ro

, R)2k+2(Ro
, R)2k�4

= (Ro
, R)2k(Ro

, R)2k�4 (Theorem 2.21 (iv))
= .

= .

= .

= (Ro
, R)2k

= E
k
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Thus E
k is transitive and then an equivalence relation.

(ii) ) (i) Let E be a reflexive relation, by Theorem 2.21 (v), it suf-
fices to prove that the relation (E,E

o)2k is an equivalence relation. Since
E is reflexive, EE

o is also reflexive. Moreover, one has EE
o = (Eo)oEo,

thus the relation EE
o is positive and by assumption the relation

(EE
o)k = (E,E

o)2k is an equivalence relation.

4.2 Mal’tsev categories and the Shifting Lemma

Motivated by the fact that in a Mal’tsev category reflexive relations
coincide with equivalence relations, we are now going to show that regular
Mal’tsev categories can be characterized through a stronger version of
the Shifting Lemma where, in the assumption, the equivalence relations
are replaced by reflexive relations. Note that, for a diagram such as (19)
where R,S or T are not equivalence relations, the relations are always
to be considered from left to right and from top to bottom. To avoid
ambiguity with the interpretation of such diagram, from now on we will
write x

U
// y to mean that (x, y) 2 U , whenever U is a non-symmetric

relation.

Theorem 4.11. Let C be a finitely complete category. The following
conditions are equivalent:

(i) C is a Mal’tsev category;

(ii) The Shifting Lemma holds in C when R,S and T are reflexive
relations.

Proof. (i) ) (ii) This implication follows from the fact that reflexive
relations are necessarily equivalence relations and the Shifting Lemma
holds in any regular Mal’tsev category.
(ii) ) (i) We shall prove that every reflexive relation E is symmet-
ric (which suffices by Theorem 2.7(iv)). Suppose that (x, y) 2 E, and
consider the reflexive relations T and R on E defined by the following
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pullbacks
T
✏✏

ht1,t2i
✏✏

// E
✏✏

he1,e2i
✏✏

E ⇥ E
e1⇥e2

// X ⇥X

and
R //

✏✏

hr1,r2i
✏✏

E
✏✏

he1,e2i
✏✏

E ⇥ E
e2⇥e1

// X ⇥X
⇠=

h⇡2,⇡1i
// X ⇥X,

where ⇡1 : X⇥X ! X and ⇡2 : X⇥X ! X are the product projections.
We have (aEb, cEd) 2 T if and only if (a, d) 2 E, and (aEb, cEd) 2 R if
and only if (c, b) 2 E.

The third reflexive relation on E we consider is the kernel pair Eq(e2)
of e2, defined as the following pullback

Eq(e2) //

✏✏

E

e2
✏✏

E e2
// X.

Eq(e2) is an equivalence relation, with the property that Eq(e2) 6 R

and Eq(e2) 6 T , so that R ^ Eq(e2) = Eq(e2) 6 T . We can apply the
assumption to the following relations given in solid lines

xEy
Eq(e2)

//

R
✏✏

T

))

yEy

R
✏✏

T

uu

xEx
Eq(e2)

// xEx

(xEx and yEy by the reflexivity of the relation E). We conclude that
(yEy, xEx) 2 T and, consequently, that (y, x) 2 E.

In the proof of the implication (ii) ) (i) we only used two "genuine"
reflexive relations R and T . This observation gives:

Corollary 4.12. Let C be a regular category. The following conditions
are equivalent:
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(i) C is a Mal’tsev category;

(ii) The Shifting Lemma holds in C when R and T are reflexive rela-
tions and S is an equivalence relation.

Example 4.13. Let T be the algebraic theory of a Mal’tsev variety,
and T(Top) the category of topological Mal’tsev algebras. This category
is regular, essentially because the regular epimorphisms are the open
surjective homomorphisms [68], that are stable under pullbacks. The
category T(Top) is also a Mal’tsev category, so that T(Top) satisfies the
Shifting Lemma for reflexive relations (by Theorem 4.11). The same
is true for the exact Mal’tsev category T(Comp) of compact Hausdorff
Mal’tsev algebras.

4.3 Goursat categories and the Shifting Lemma

Here, thanks to Theorem 4.7, we prove that Goursat categories can be
characterized through a stronger version of the Shifting Lemma.

Remark 4.14. As already observed in Theorem 2.2, for any pair of
equivalence relations R and S on the same object X in a Goursat cat-
egory, one has that RSR is an equivalence relation, that is then the
supremum R _ S of R and S as equivalence relations on X

R _ S = RSR.

When C is a Goursat category, the lattice of equivalence relations on
the same object is modular [21] and, consequently, the Shifting Lemma
holds. Moreover, the Shifting Lemma still holds when S is just a reflexive
relation, as we show next. The following result is partly based on Lemma
2.2 in [69], and it gives a first step towards the characterization we aim
to obtain for Goursat categories.

Proposition 4.15. In any regular Goursat category C, the Shifting
Lemma holds when S is a reflexive relation and R and T are equivalence
relations.
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Proof. Let R and T be equivalence relations and let S be a reflexive
relation on an object X such that R ^ S 6 T . Suppose that we have
(x, y) 2 R ^ T , (x, u) 2 S, (y, v) 2 S and (u, v) 2 R as in (19). We
consider the two equivalence relations on S, R⇤S and W determined by
the following pullback

W
✏✏

h⇡13,⇡24i
✏✏

//

h⇡12,⇡34i
// S ⇥ S
✏✏

hs1,s2i⇥hs1,s2i
✏✏

T ⇥R //

ht1⇥r1,t2⇥r2i
// X ⇥X ⇥X ⇥X.

We have (aSb, cSd) 2 W if and only if

a
S

T

b

R

c
S

d.

Note that they are in fact equivalence relations on S since R and T are
both equivalence relations.
Given the equivalence relations R⇤S, Eq(s2) and W on S, Remark 4.14
yields the following description of the supremum of
R⇤S ^ Eq(s2) and W as equivalence relations on S:

(R⇤S ^ Eq(s2) ) _ W = (R⇤S ^ Eq(s2) )W (R⇤S ^ Eq(s2) )

= W (R⇤S ^ Eq(s2) )W.

Since
R⇤S ^ Eq(s2) 6 (R⇤S ^ Eq(s2) ) _ W

we can apply the Shifting Lemma to the following diagram

xSu
Eq(s2)

R⇤S(R⇤S^Eq(s2) )_W

uSu

R⇤S (R⇤S^Eq(s2) )_W

ySv
Eq(s2)

vSv.
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Note that, uSu and vSv by the reflexivity of S. We then obtain

(uSu, vSv) 2 (R⇤S ^ Eq(s2) ) _ W.

Using

(R⇤S ^ Eq(s2) ) _ W = (R⇤S ^ Eq(s2) )W (R⇤S ^ Eq(s2) )

this means that there exist a, b in X (Theorem 1.23 and 1.24 ) such that

(uSu) (R⇤S ^ Eq(s2)) (aSu)W (bSv) (R⇤S ^ Eq(s2)) (vSv),

i.e.
u

S

R

u

R

a
S

T

u

R

b
S

R

v

R

v
S

v.

Since aRu (R is symmetric), aSu and R ^ S 6 T , it follows that aTu;
similarly bTv. From uTa (T is symmetric), aTb and bTv, we conclude
that uTv (T is transitive), as desired.

Remark 4.16. The Shifting Lemma when S is a reflexive relation and
R and T are equivalence relations, as stated in Proposition 4.15, is the
categorical version of the Shifting Principle recalled at the beginning of
this chapter. Firstly, assuming that R^S 6 T is equivalent to assuming
that R ^ S 6 T 6 R for the property of diagram (19) to hold (Re-
mark 4.3). Secondly, going carefully through the proofs in [51], one may
check that the symmetry of S is not necessary. So the Shifting Princi-
ple could equivalently be stated by asking that S is just a reflexive and
compatible relation.

We now use Theorem 4.7 and Proposition 4.15 to obtain the char-
acterization of Goursat categories through a variation of the Shifting
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Lemma:

Theorem 4.17. Let C be a regular category. The following conditions
are equivalent:

(i) C is a Goursat category;

(ii) The Shifting Lemma holds in C when S is a reflexive relation and
R and T are reflexive and positive relations.

Proof. (i) ) (ii) This implication follows from the fact that reflexive
and positive relations are necessarily equivalence relations in the Goursat
context (Theorem 4.7) and from Proposition 4.15.
(ii) ) (i) We shall prove that for any reflexive relation E on X in C,
EE

� = E
�
E (see Theorem 2.2 (vi)). Suppose that (x, y) 2 EE

�. Then,
for some z in X, one has that (z, x) 2 E and (z, y) 2 E. Consider
the reflexive and positive relations R = EE

� and T = E
�
E, and the

reflexive relation E on X. From the reflexivity of E, we get E 6 EE
�

and E 6 E
�
E; thus EE

�^E = E 6 E
�
E. We can apply our assumption

to the following relations given in solid lines:

z
E

//

EE�

✏✏

E�E

--

x

EE�

✏✏

E�E

qqz
E

// y

(21)

to conclude that (x, y) 2 E
�
E. Having proved that EE

� 6 E
�
E for every

reflexive relation E, the inequality E
�
E 6 EE

� follows immediately.

In the proof of the implication (ii) ) (i) we used the relations EE
o

and E
o
E with E a reflexive relation. This observation gives:

Corollary 4.18. Let C be a regular category. The following conditions
are equivalent:

(i) C is a Goursat category;

(ii) The Shifting Lemma holds in C for a diagram as (21), with E any
reflexive relation.
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As an application, the fact that any quasi-variety is a regular cate-
gory [81] implies the following:

Corollary 4.19. Let V be a quasi-variety. The following conditions are
equivalent:

(i) V is 3-permutable;

(ii) The Shifting Lemma holds in V when S is a reflexive compatible
relation, and R and T are reflexive and positive compatible rela-
tions.

Remark 4.20. Theorem 4.11 holds in any finitely complete category,
and then gives a new characterisation of Mal’tsev categories without the
assumption of regularity. It is an open problem to compare condition
(ii) in Theorem 4.7 with the definition of Goursat category without the
assumption of regularity [12]. As observed by P.-A Jacqmin, Theorem
4.17 could then lead to a new definition of Goursat category without the
assumption of regularity.



Chapter 5

Equivalence distributivity in
Goursat categories

In Chapter 4, we proved that, for a regular category, the property of
being a Mal’tsev category, or of being a Goursat category, can be both
characterized through suitable variations of the Shifting Lemma. These
variations considered the Shifting Lemma for relations which were not
necessarily equivalence relations, but only reflexive or positive ones, thus
giving rise to stronger versions of the Shifting Lemma.

There are other properties similar to the Shifting Lemma and which
allow one to characterize congruence distributive varieties. These prop-
erties are related to the Shifting Lemma, and are called the Triangular
Lemma and the Trapezoid Lemma in the varietal context [27]. These
properties were first introduced by J. Duda in [29, 30] where the Trape-
zoid Lemma was called the Upright Principle. This led us to further
study the connections between these results and the property, for a reg-
ular Mal’tsev and Goursat category, of having distributive equivalence
relation lattices on any of its objects.

From [27] we know that, for a variety V of universal algebras, the
fact that both the Shifting Lemma and the Triangular Lemma hold in
V is equivalent to V being a congruence distributive variety, and is also
equivalent to the fact that the Trapezoid Lemma holds in V.

91
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Shifting Lemma + Triangular Lemma , Trapezoid Lemma
, Congruence distributivity

Consequently, by considering stronger versions of the Triangular Lemma
we were hoping to get at once 2-permutability (or 3-permutability) and
congruence distributivity in a varietal context, and to extend these ob-
servations to a categorical context.

Explaining how this is indeed possible is the main goal of this chap-
ter, where suitable variations of the Triangular Lemma and of the Trape-
zoid Lemma are shown to be the right properties to characterize equiv-
alence distributive categories (the natural generalization of congruence
distributive varieties). More precisely, when C is a regular Mal’tsev cat-
egory, or even a Goursat category, the Triangular Lemma is equivalent
to the Trapezoid Lemma, and both of them are equivalent to C being
equivalence distributive (Propositions 5.7 and 5.10). We also give new
characterizations of equivalence distributive Mal’tsev categories through
variations of the Triangular Lemma and of the Trapezoid Lemma (Theo-
rem 5.13), which then apply to arithmetical varieties [82] and arithmeti-
cal categories [80]. Inspired by the ternary Pixley term of arithmetical
varieties [82], we consider a condition for relations, stronger than difunc-
tionality [83], which captures the property for a regular category to be
a Mal’tsev and equivalence distributive one (Theorem 5.16). In the last
section we characterize equivalence distributive Goursat categories (The-
orem 5.19) through variations on the Triangular and Trapezoid Lemmas
involving reflexive and positive relations.

The main results of this chapter are joint work with M. Gran and D.
Rodelo [44].

5.1 Triangular Lemma and Trapezoid Lemma

Here, we recall the Triangular Lemma and Trapezoid Lemma in a varietal
context. We then give their interpretations in the context of regular
categories.
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The Triangular Lemma

A variety V of universal algebras satisfies the Triangular Lemma [27] if,
given congruences R,S and T on the same algebra X in V such that
R^S 6 T , whenever y, u, v are elements in X with (u, y) 2 T , (y, v) 2 S

and (u, v) 2 R, it then follows that (u, v) 2 T . We display this condition
as

u

R
T

T

y
S

v.

(22)

The Trapezoid Lemma

A variety V of universal algebras satisfies the Trapezoid Lemma [27] if,
given congruences R,S and T on the same algebra X in V such that R^
S 6 T , whenever x, y, u, v are elements in X with (x, y) 2 T , (x, u) 2 S,
(y, v) 2 S and (u, v) 2 R, it then follows that (u, v) 2 T . We display
this condition as

x

T

S
u

R T

y
S

v.

(23)

If the Trapezoid Lemma holds in a variety, then also the Shifting
Lemma and the Triangular Lemma hold. In fact, let R,S and T be con-
gruences on the same algebra X in V such that R^S 6 T . Suppose that
x, y, u, v are elements in X related as in (22). We apply the Trapezoid
Lemma to

u

T

S
u

R T

y
S

v.

to conclude that (u, v) 2 T and thus the Triangular Lemma holds. Sim-
ilarly, if x, y, u, v are elements in X related as in (19), we apply the
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Trapezoid Lemma to

x

T

S
u

R T

y
S

v.

to conclude that (u, v) 2 T and thus the Shifting Lemma holds.
One can easily check that both the properties expressed by the Trian-

gular Lemma and by the Trapezoid Lemma only involve finite limits. It
is then possible to speak of the validity of these properties in any finitely
complete category. So, in a regular category C, given equivalence rela-
tions R,S and T on the same object X such that R^S 6 T , the lemmas
recalled above can be interpreted as follows:

Shifting Lemma: R ^ S(R ^ T )S 6 T (SL)

Triangular Lemma: R ^ ST 6 T (TL)

Trapezoid Lemma: R ^ STS 6 T (TpL)

We would like to point out that in some recent papers the notion of
majority category has been introduced and investigated [55, 56]. This
notion is closely related to the validity of the properties just recalled.
For a regular category C, the property of being a majority category can
be equivalently defined as follows (see [55]): for any reflexive relations
R, S and T on the same object X in C, the inequality

R ^ (ST ) 6 (R ^ S)(R ^ T )

holds. We then observe that any regular majority category satisfies the
Trapezoid Lemma (and, consequently, also the weaker Triangular Lemma
and Shifting Lemma):

Lemma 5.1. [54] The Trapezoid Lemma holds true in any regular
majority category C .

Proof. Given equivalence relations R, S and T on the same object such
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that R ^ S 6 T , then

R ^ (STS) 6 (R ^ S)(R ^ (TS))

6 T (R ^ T )(R ^ S)

6 TTT

= T.

5.2 Equivalence distributivity

In this section, we introduce the notion of equivalence distributive cate-
gory and we prove that in any regular Mal’tsev or Goursat category C,
the Triangular Lemma is equivalent to the Trapezoid Lemma and both
of them are equivalent to C being equivalence distributive.

• A lattice L is called distributive when

a ^ (b _ c) = (a ^ b) _ (a ^ c), 8a, b, c 2 L.

Equivalently, L is distributive if and only if it satisfies the Horn
sentence

a ^ b 6 c ) a ^ (b _ c) 6 c. (24)

• A variety V of universal algebras is called (congruence) distributive
when the lattice Cong(X) of congruences on any algebra X in V
is distributive.

Definition 5.2. A regular category C is equivalence distributive when
the meet semilattice Equiv(X) of equivalence relations is a distributive
lattice, for all objects X in C.

Example 5.3. Any congruence distributive variety gives an example of
an equivalence distributive category. The varieties of Boolean algebras,
Heyting algebras and Von Neumann regular rings [47] are also exam-
ples. As categorical examples that are not varieties of universal algebras
one has the dual category of any (pre)topos. These are actually arith-
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metical categories [80], i.e. Barr-exact Mal’tsev equivalence distributive
categories.

Remark 5.4. The notion of equivalence distributive category is different
from the notion of distributive category defined by Carboni, Lack and
Walters in [22]: a category with finite products and sums is distributive
if the canonical arrow

↵ : A⇥B +A⇥ C ! A⇥ (B + C)

is an isomorphism.

The congruence distributive varieties can be characterized as follows:

Theorem 5.5. [27] Let V be a variety of universal algebras. The fol-
lowing conditions are equivalent:

(i) V is congruence distributive;

(ii) the Trapezoid Lemma holds in V;

(iii) the Shifting Lemma and the Triangular Lemma hold in V.

The equivalence between the Triangular Lemma and Trapezoid
Lemma holds for any algebra X which is congruence permutable, meaning
that 2-permutability holds "locally" in Cong(X):

Proposition 5.6. [27] Let V be a variety of universal algebras and X a
congruence permutable algebra. The following conditions are equivalent:

(i) the Triangular Lemma holds for X;

(ii) the Trapezoid Lemma holds for X;

(iii) Cong(X) is distributive.

This result can be extended to the context of regular categories. To
do so we apply Barr’s Metatheorem (Theorem 1.23) which allows us to
use part of the internal logic of a topos to develop proofs in a regular
category. In particular, finite limits can be described elementwise as
in the category of sets and regular epimorphisms via the usual formula
describing surjections (Theorem 1.24).
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Proposition 5.7. Let C be a regular Mal’tsev category. The following
conditions are equivalent:

(i) the Triangular Lemma holds in C;

(ii) the Trapezoid Lemma holds in C;

(iii) C is equivalence distributive.

Proof. (i) ) (ii) Let R,S and T be equivalence relations on an object
X such that R^S 6 T and suppose that x, y, u, v are related as in (23).
Since C is a Mal’tsev category, then TS is an equivalence relation on X

(Theorem 2.7(ii)). We can apply the Triangular Lemma to

u

TS
R TS

y
S

v

(R^S 6 T 6 TS), to conclude that (u, v) 2 TS(= ST ). So, there exists
a in X such that

u

T
R T

a
S

v.

Applying the Triangular Lemma again, we conclude that (u, v) 2 T .
(ii) ) (iii) We prove that (24) holds with respect to the lattice

Equiv(X) of equivalence relations on an object X. Let R, S and
T 2 Equiv(X) be such that R ^ S 6 T . Then

R ^ (S _ T ) = R ^ ST, by Theorem 2.7(iii)

6 R ^ STS

6 T, by (TpL).

(iii) ) (ii) Let R,S and T be equivalence relations in Equiv(X) such
that R ^ S 6 T . Then

R ^ STS 6 R ^ (S _ T )

6 T, by (24)
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thus (TpL) holds.
(ii) ) (i) Obvious.

Note that the implications (iii) ) (ii) ) (i) of Proposition 5.7 hold
in any regular category.

Remark 5.8. It is known from Corollary 3.2 in [55] that a regular
Mal’tsev category C is equivalence distributive if and only if C is a
majority category. That every Mal’tsev equivalence distributive cate-
gory is a majority category was already known from [56]. We remark
that the converse implication also easily follows from Lemma 5.1 and
Proposition 5.7.

Next we show that the same equivalent conditions hold in the weaker
context of Goursat categories. The most difficult implication to prove
is that a Goursat category which satisfies the Triangular Lemma also
satisfies the Trapezoid Lemma. We start by giving a direct proof of this
fact in the varietal context to then obtain a categorical translation of
the proof via matrix conditions [67]. Note that, for varieties, this result
actually follows from Theorem 1 in [27]; however, we give an alterna-
tive proof which is suitable to be extended to the categorical context of
regular categories.

Lemma 5.9. If V is a 3-permutable variety which satisfies the Triangular
Lemma, then the Trapezoid Lemma also holds in V.

Proof. Let R,S and T be congruences on the same algebra X in V such
that R ^ S 6 T . Suppose that x, y, u, v are elements in X related as
in (23). From the relations

xTxSxRx

xTxSuRu

xTySvRu

yTySyRy,

(25)

we can deduce the following ones by applying the quaternary operations
p and q (see Theorem 2.28 (iii)), respectively:

xTp(x, x, y, y)Sp(x, u, v, y)Rx
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and
yTq(x, x, y, y)Sq(x, u, v, y)Ry.

We apply the Triangular Lemma to

x

T
R T

p(x, x, y, y)
S

p(x, u, v, y)

(26)

and
y

T
R T

q(x, x, y, y)
S

q(x, u, v, y).

(27)

Next, we apply the Shifting Lemma to

x

RT (26)

S
u = p(u, u, u, v)

R T

p(x, u, v, y)
S

p(u, u, v, v)

(28)

and
y

RT (27)

S
v = q(u, u, u, v)

R T

q(x, u, v, y)
S

q(u, u, v, v).

(29)

From (28) and (29), we obtain uTp(u, u, v, v) = q(u, u, v, v)Tv; it follows
that (u, v) 2 T .

We adapt this varietal proof into a categorical one using an appropri-
ate matrix and the corresponding relations which can be deduced from
it (see [67] or [58] for more details). The kind of matrix we use trans-
lates the quaternary identities (Theorem 2.28 (iii)) into the property on
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relations given in Theorem 2.2 (iv):
 

x y y z x z

u u v v ↵ ↵

!
(30)

The first and second columns after the vertical separation in the matrix
are the result of applying p and q, respectively, to the elements in the
lines before the vertical separation. Thus, the introduction of a new
element ↵, to represent the identity p(u, u, v, v) = q(u, u, v, v)(= ↵). We
then “interpret” the matrix as giving relations between top elements and
bottom elements as follows. Whenever the relations before the vertical
separation in the matrix are assumed to hold, then we may conclude that
the relations after the vertical separation also hold. For this matrix, the
interpretation gives: for any binary relation P , if xPu, yPu, yPv and
zPv, then xP↵ and zP↵, for some ↵; this gives the property PP

�
PP

� 6
PP

�. Since PP
� 6 PP

�
PP

� is always true, we get precisely PP
�
PP

� =

PP
� from Theorem 2.2 (iv).

Proposition 5.10. Let C be a Goursat category. The following condi-
tions are equivalent:

(i) the Triangular Lemma holds in C;

(ii) the Trapezoid Lemma holds in C;

(iii) C is equivalence distributive.

Proof. (i) ) (ii) We extend the proof of Lemma 5.9 to a categorical
context by constructing an appropriate matrix of the type (30). In that
proof we applied p and q to the 4-tuples (x, x, x, y), (x, x, y, y), (x, u, u, y),
(u, u, u, v) and (u, u, v, v). We put them in the matrix so that (x, x, x, y),
(x, u, u, y) and (u, u, u, v) go to the top lines and (x, x, y, y) and (u, u, v, v)

go to the bottom lines as follows
0

BBBBBBBB@

x x x y x y

x u u y x y

u u u v u v

x x y y ↵ ↵

u u v v " "

1

CCCCCCCCA
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We also used the 4-tuple (x, u, v, y), but it does not “fit” into this type of
matrix; it will be used in the definition of the binary relation P . From
the matrix, we see that the relation P should be defined from X

3 to X
2.

The relations between the 4-tuples in the matrix above and (x, u, v, y)

given in (25), and the bottom and right hand relations in (28) and (29)
tell us that P should be defined as:

(a, b, c)P (d, e) , 9z such that aTdSzRb, zSe and eRc.

From the matrix we see that (x, x, u)PP
�
PP

�(y, y, v), from which we
conclude that (x, x, u)PP

�(y, y, v). It then follows that (x, x, u)P (↵, ")

and (y, y, v)P (↵, "), for some (↵, "), i.e. there exist � and � such that

xT↵S�Rx,�S" and "Ru

yT↵S�Ry, �S" and "Rv.

Next we apply the Triangular Lemma to

x

T R T

↵
S

�

(31)

and
y

T
R T

↵
S

�.

(32)

We now apply the Shifting Lemma to

x

T

S

R(31)

u

R T

�
S

"

(33)

and
y

T

S

R(32)

v

R T

�
S

".

(34)
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From (33) and (34) we obtain uT"Tv, thus (u, v) 2 T .
(ii) ) (iii) We prove that (24) holds with respect to the lattice

Equiv(X) of equivalence relations on an object X.
Let R,S, T 2 Equiv(X) be such that R ^ S 6 T . Then

R ^ (S _ T ) = R ^ STS, by Theorem 2.2(iii)

6 T, by (TpL).

The converse implications always hold in a regular context, as ob-
served after the proof of Proposition 5.7.

Remark 5.11. In a varietal context, we know that the validity of the
Shifting Lemma and the Triangular Lemma is equivalent to the validity of
the Trapezoid Lemma (Theorem 5.5). We do not know if this result can
be generalized to the context of a regular Gumm category [14, 17]. How-
ever, Propositions 5.7 and 5.10 show that this equivalence between the
validity of the Triangular Lemma and the Trapezoid Lemma does hold
under the stronger conditions that the base category is regular Mal’tsev
and Goursat, respectively.

Remark 5.12. Note that another characterization of regular Goursat
categories which are equivalence distributive is given in [8]. A regular
Goursat category is equivalence distributive if and only if the regular
image of equivalence relations preserves binary meets:

f(R ^ S) = f(R) ^ f(S),

for any regular epimorphism f : X ⇣ Y and R,S 2 Equiv(X).

5.3 Equivalence distributive Mal’tsev categories

In Chapter 4, we proved that regular Mal’tsev categories can be charac-
terized through variations of the Shifting Lemma. Thanks to the results
in the previous section we can now give some new characterizations of
equivalence distributive Mal’tsev categories and through similar varia-
tions of the Triangular and of the Trapezoid Lemmas.
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The variations of the Triangular and of the Trapezoid Lemmas that
we have in mind take R,S or T to be just reflexive relations. Note
that, for diagrams such as (19), (22) or (23), where R,S or T are not
symmetric, the relations are always to be considered from left to right
and from top to bottom. To avoid ambiguity with the interpretation of
such diagrams, from now on we will also write x

U
// y to mean that

(x, y) 2 U , whenever U is a non-symmetric relation.

Theorem 5.13. Let C be a regular category. The following conditions
are equivalent:

(i) C is an equivalence distributive Mal’tsev category;

(ii) the Trapezoid Lemma holds in C when R,S and T are reflexive
relations;

(iii) the Triangular Lemma holds in C when R,S and T are reflexive
relations.

Proof. (i) ) (ii) Since C is a Mal’tsev category, reflexive relations are
necessarily equivalence relations. Since C is also equivalence distributive,
by Proposition 5.7, the Trapezoid Lemma holds for any reflexive relations
in C.
(ii) ) (iii) is obvious.
(iii) ) (i) We follow the proof of Theorem 4.11 with respect to the
implication: if the Shifting Lemma holds in C for reflexive relations,
then C is a Mal’tsev category. The main issue is to fit the rectangle
to which we applied the Shifting Lemma in that result, into a suitable
triangle to which we shall now apply the Triangular Lemma (to get the
same conclusion that C is a Mal’tsev category).

To prove that C is a Mal’tsev category, we show that any reflexive
relation he1, e2i : E ⇢ X⇥X in C is also symmetric (Theorem 2.7 (iv)).
Suppose that (x, y) 2 E, and consider the reflexive relations T and R on
E defined as follows:

(aEb, cEd) 2 R if and only if (a, d) 2 E, and
(aEb, cEd) 2 T if and only if (c, b) 2 E.
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The third reflexive relation on E we consider is the kernel pair Eq(e2) of
the second projection e2. Eq(e2) is an equivalence relation, with the
property that Eq(e2) 6 R and Eq(e2) 6 T , so that R ^ Eq(e2) =

Eq(e2) 6 T . We can apply the assumption to the following relations
given in solid lines

xEx

T

ww

R
✏✏

T

uu

xEy
Eq(e2)

// yEy

(xEx and yEy by the reflexivity of the relation E). We conclude that
(xEx, yEy) 2 T and, consequently, that (y, x) 2 E, so that C is a
Mal’tsev category.

Since the Triangular Lemma holds in C, by Proposition 5.7 the cat-
egory C is equivalence distributive.

In the proof of the implication (iii) ) (i) we only used two “genuine”
reflexive relations R and T . This observation gives:

Corollary 5.14. Let C be a regular category. The following conditions
are equivalent:

(i) C is an equivalence distributive Mal’tsev category;

(ii) the Trapezoid Lemma holds in C when R and T are reflexive rela-
tions and S is an equivalence relation;

(iii) the Triangular Lemma holds in C when R and T are reflexive
relations and S is an equivalence relation.

Remark 5.15. An arithmetical category C is an equivalence distribu-
tive and Mal’tsev category which is, moreover, Barr-exact. Note that
in this thesis we do not assume the existence of coequalizers, differently
from what was done in Pedicchio’s original definition of arithmetical cat-
egory [80]. So, given a Barr-exact category C, the same equivalent con-
ditions stated in Theorem 5.13(ii), Theorem 5.13(iii), Corollary 5.14(ii)
and Corollary 5.14(iii) give characterizations of the fact that C is an
arithmetical category.
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We finish this section with a characterization of equivalence distribu-
tive Mal’tsev categories through a property on ternary relations which is
stronger than difunctionality (Theorem 2.7(v)). The difunctionality of a
binary relation D ⇢ X ⇥ U , DD

�
D = D can be pictured as

xDu

yDu

yDv

xDv.

Whenever the first three relations hold, we can conclude that the bottom
relation xDv holds.

Recall from [82] that an arithmetical variety is such that there exists
a Pixley term p(x, y, z) such that

8
><

>:

p(x, y, y) = x

p(x, y, x) = x

p(x, x, y) = y.

We translate these Mal’tsev conditions into a property on relations (fol-
lowing the technique in [65]) which is expressed for ternary relations
D ⇢ (X ⇥ A) ⇥ U , seen as binary relations from X ⇥ A to U . It may
be pictured as

(x, a)Du

(y, b)Du

(y, a)Dv

(x, a)Dv.

(35)

This condition on the relation D follows from applying the Pixley term
to each column of elements, and writing the result in the bottom line.
In a regular context, property (35) can be expressed as follows:

D(Eq(⇡A) ^D
�
DEq(⇡X)) 6 D.

Theorem 5.16. Let C be a regular category. The following conditions
are equivalent:
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(i) C is an equivalence distributive Mal’tsev category;

(ii) any relation D ⇢ (X ⇥A)⇥ U has property (35).

Proof. (i) ) (ii) Suppose that the first three relations in (35) hold. Con-
sider the equivalence relations Eq(d1),Eq(d2) and Eq(d3) on D given by
the kernel pairs of the projections of D. We have

(x, a, u) Eq(d2) (y, a, v) ) (x, a, u) Eq(d1)Eq(d2) (y, a, v)

(x, a, u) Eq(d3) (y, b, u) Eq(d1) (y, a, v) ) (x, a, u) Eq(d1)Eq(d3) (y, a, v).

By assumption,

Eq(d1)(Eq(d2) ^ Eq(d3)) = (Eq(d1)Eq(d2)) ^ (Eq(d1)Eq(d3))

(by distributivity and by Theorem 2.7(iii)). Thus

(x, a, u) Eq(d1)(Eq(d2) ^ Eq(d3)) (y, a, v),

i.e.
(x, a, u) Eq(d2) ^ Eq(d3) (y, a, u) Eq(d1) (y, a, v)

and, consequently, (y, a, u) 2 D. Now we use the difunctionality of D
(Theorem 2.7(v))

(x, a)Du

(y, a)Du

(y, a)Dv

(x, a)Dv,

to conclude that (x, a)Dv.
(ii) ) (i) The assumption applied to the case when A = 1, is pre-

cisely difunctionality of any binary relation, so C is a Mal’tsev category
(Theorem 2.7(v)).

Since C is a Mal’tsev category, we just need to prove the Triangular
Lemma to conclude that C is equivalence distributive (Proposition 5.7).
Consider equivalence relations R,S and T on an object X, such that
R ^ S 6 T and that the relations in (22) hold.

We consider a relation D ⇢ (X ⇥X)⇥X defined by

(a, b)Dc , 9d 2 X : dSa, dTb and dRc.
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We have the following first three relations for d = u, d = v and d = y,
respectively,

(u, y)Dv

(y, v)Dv

(y, y)Dy

(u, y)Dy;

by assumption, we conclude that (u, y)Dy. By the definition of D, there
exists w 2 X such that wSu, wTy and wRy. We can then apply the
Shifting Lemma to

w
S

RT

u

R T

y
S

v,

to conclude that uTv.

5.4 Equivalence distributive Goursat categories

In Chapter 4, we showed that Goursat categories can be characterized
through variations of the Shifting Lemma. Together with the results
from Section 5.3, we are going to characterize equivalence distributive
Goursat categories through similar variations of the Triangular and the
Trapezoid Lemmas. Such variations use the notion of positive relation.

Let us begin with the following observation:

Proposition 5.17. In any equivalence distributive Goursat category C,
the Trapezoid Lemma holds when S is a reflexive relation and R and T

are equivalence relations.

Proof. The proof of this result is based on that of Proposition 4.15 which
claims that a Goursat category satisfies the Shifting Lemma when S is
a reflexive relation and R and T are equivalence relations.

Let R and T be equivalence relations and let S be a reflexive relation
on an object X such that R ^ S 6 T . Suppose that we have (x, y) 2 T ,
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(x, u) 2 S, (y, v) 2 S and (u, v) 2 R

x

T

S
// u

R

y
S

// v.

We are going to show that (u, v) 2 T .

Consider the two relations P and W on S defined as follows:
(aSb, cSd) 2 P if and only if aRc and bRd:

a
S
//

R

b

R

c
S
// d

while (aSb, cSd) 2 W if and only if aTc and bRd:

a
S
//

T

b

R

c
S
// d

The relations P and W are equivalence relations on S since R and T are
both equivalence relations. Given the equivalence relations P , Eq(s2)

and W on S, since C is Goursat category, one has

(P ^ Eq(s2) ) _ W = (P ^ Eq(s2) )W (P ^ Eq(s2) )

= W (P ^ Eq(s2) )W,

which is an equivalence relation (Theorem 2.7 (iii)).

Since
P ^ Eq(s2) 6 (P ^ Eq(s2) ) _ W

and C is a Goursat and equivalence distributive category, by Proposi-
tion 5.10, we can apply the Trapezoid Lemma to the following diagram
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xSu

(P^Eq(s2) )_W

Eq(s2)
uSu

P (P^Eq(s2) )_W

ySv
Eq(s2)

vSv.

Note that, uSu and vSv by the reflexivity of S. We then obtain

(uSu, vSv) 2 (P ^ Eq(s2) ) _ W = (P ^ Eq(s2) )W (P ^ Eq(s2) ),

this means that there are a and b in X such that

(uSu) (P ^ Eq(s2)) (aSu)W (bSv) (P ^ Eq(s2)) (vSv),

i.e.
u

S
//

R

u

R

a
S
//

T

u

R

b

R

S
// v

R

v
S
// v.

Since aRu (R is symmetric), aSu and R ^ S 6 T , it follows that aTu;
similarly one checks that bTv. From uTa (T is symmetric), aTb and
bTv, we conclude that uTv (T is transitive), as desired.

Since the Trapezoid Lemma implies the Triangular Lemma, we get
the following:

Corollary 5.18. In any equivalence distributive Goursat category C,
the Triangular Lemma holds when S is a reflexive relation and R and T

are equivalence relations.

We are now ready to prove the main result in this section:

Theorem 5.19. Let C be a regular category. The following conditions
are equivalent:

(i) C is an equivalence distributive Goursat category;
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(ii) the Trapezoid Lemma holds in C when S is a reflexive relation and
R and T are reflexive and positive relations;

(iii) the Triangular Lemma holds in C when S is a reflexive relation
and R and T are reflexive and positive relations.

Proof. (i) ) (ii) Since C is a Goursat category, by Theorem 4.7, reflex-
ive and positive relations are necessarily equivalence relations. Since C is
also equivalence distributive, by Proposition 5.17, the Trapezoid Lemma
holds when S is a reflexive relation and R and T are reflexive and posi-
tive relations.
(ii) ) (iii) is obvious.
(iii) ) (i) We follow the proof of Theorem 4.17 with respect to the im-
plication: if the Shifting Lemma holds in C when S is a reflexive relation
and R and T are reflexive and positive relations, then C is a Goursat
category. The main issue is to fit the rectangle to which we applied the
Shifting Lemma in that result, into a suitable triangle to which we shall
now apply the Triangular Lemma (to get the same conclusion that C is
a Goursat category).

To prove that C is a Goursat category, we show that for any reflexive
relation E on X in C, EE

� = E
�
E (Theorem 2.2(vi)). Suppose that

(x, y) 2 EE
�. Then, for some z in X, one has that (z, x) 2 E and

(z, y) 2 E. Consider the reflexive and positive relations EE
� and E

�
E,

and the reflexive relation E on X. From the reflexivity of E, we get
E 6 EE

� and E 6 E
�
E; thus EE

� ^E = E 6 E
�
E. We can apply our

assumption (for R = EE
�
, S = E, T = E

�
E) to the following relations

given in solid lines:

x

EE�

✏✏

E�E

qq

E�E

vv

z
E

// y

to conclude that (x, y) 2 E
�
E. Having proved that EE

� 6 E
�
E for every

reflexive relation E, the equality E
�
E 6 EE

� follows immediately, and
then C is a Goursat category.

Since the Triangular Lemma holds in C, by Proposition 5.10 the
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category C is equivalence distributive.

We finish this section with a characterization of equivalence distribu-
tive Goursat categories through a property on ternary relations which is
stronger than property (iv)

P
�
PP

�
P = P

�
P (36)

of Theorem 2.2. The process to obtain such a characterization is similar
to what was done to obtain Theorem 5.16 for the Mal’tsev context. The
property (36) of a binary relation P ⇢ X ⇥ U , can be pictured as

xPu

yPu

yPv

zPv

xPw

zPw.

Whenever the first four relations hold, we can conclude that the bottom
relations xPw and zPw hold for some w in U .

Recall from [74] that a 3-permutable congruence distributive variety
is such that there exists ternary terms r(x, y, z) and s(x, y, z) such that

8
>>>><

>>>>:

r(x, y, y) = x

r(x, x, y) = s(x, y, y)

s(x, x, y) = y

r(x, y, x) = x = s(x, y, x).

It is easy to check that, equivalently, such varieties admit quaternary
terms p(x, y, z, w) and q(x, y, z, w) such that

8
>>>><

>>>>:

p(x, y, y, z) = x

p(x, x, y, y) = q(x, x, y, y)

q(x, y, y, z) = z

p(x, y, z, x) = x = q(x, y, z, x).

These Mal’tsev conditions translate into a property on relations (fol-
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lowing the technique in [66]) which is expressed for ternary relations
P ⇢ (X ⇥A)⇥ U , seen as binary relations from X ⇥A to U , as

(x, a)Pu

(y, b)Pu

(y, c)Pv

(z, a)Pv

(x, a)Pw

(z, a)Pw,

(37)

for some w in U .
In a regular context, property (37) means that:

Eq(⇡A) ^ P
�
PEq(⇡X)P �

P 6 P
�
P,

and one can prove the following:

Theorem 5.20. Let C be a regular category. The following conditions
are equivalent:

(i) C is an equivalence distributive Goursat category;

(ii) any relation P ⇢ (X ⇥A)⇥ U has property (37).

Proof. (i) ) (ii) Suppose that the first four relations in (37) hold. Con-
sider the equivalence relations Eq(d1),Eq(d2) and Eq(d3) on P given by
the kernel pairs of the projections of P . We have

(x, a, u) Eq(d2) (z, a, v) ) (x, a, u) Eq(d3)Eq(d2)Eq(d3) (z, a, v).

(x, a, u) Eq(d3) (y, b, u) Eq(d1) (y, c, v) Eq(d3) (z, a, v)

) (x, a, u) Eq(d3)Eq(d1)Eq(d3) (z, a, v).

By assumption,

Eq(d3)(Eq(d1) ^ Eq(d2))Eq(d3) =

(Eq(d3)Eq(d1)Eq(d3)) ^ (Eq(d3)Eq(d2)Eq(d3))

(by distributivity and by Theorem 2.2(iii)). Thus

(x, a, u) Eq(d3)(Eq(d1) ^ Eq(d2))Eq(d3) (z, a, v),
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i.e. (x, a, u)Eq(d3)(↵,�, u) Eq(d1) ^ Eq(d2) (↵,�, v) Eq(d3) (z, a, v)

and, consequently, (↵,�, u) 2 P and (↵,�, v) 2 P . Now we use the
property (36) of P

(x, a)Pu

(↵,�)Pu

(↵,�)Pv

(z, a)Pv

(x, a)Pw,

(z, a)Pw

to conclude that (x, a)Pw and (z, a)Pw for some w 2 U.

(ii) ) (i) The assumption applied to the case when A = 1 implies
property (36) of any binary relation, so C is a Goursat category (Theo-
rem 2.2(iv)).

Since C is a Goursat category, we just need to prove the Triangular
Lemma to conclude that C is equivalence distributive (Proposition 5.10).
Consider equivalence relations R,S and T on an object X, such that
R ^ S 6 T and that the relations in (22) hold.

We consider a relation P ⇢ (X ⇥X)⇥X defined by

(a, b)Pc , 9d 2 X : dSa, dTb and dRc.

We have the following first four relations for d = u, d = v, d = y and
d = y again, respectively,

(u, y)Pv

(y, v)Pv

(y, u)Py

(y, y)Py

(u, y)Pw

(y, y)Pw;

by assumption, we conclude that 9w 2 X such that(u, y)Pw and
(y, y)Pw. By the definition of P , there exists m,n 2 X such that mSu,
mTy, mRw; nSy, nTy, nRw.
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One has:
mTyTn ) mTn

mRwRn ) mRn

nSySv ) nSv.

We can then apply the Shifting Lemma to

m
S

RT

u

R T

n
S

v,

to conclude that uTv.



Chapter 6

Perspectives

Here, we present some directions for future research.

6.1 Centrality properties in Goursat categories

One of the main interests of the notion of connector is that it allows us to
understand centrality even without defining the commutator of equiva-
lence relations. Indeed, we can prove the important basic centrality
properties which correspond to the classical properties of the commuta-
tor. So, thanks to the properties of connectors in the Goursat categories
that we obtained, we then expect to prove some basic centrality proper-
ties which correspond to the classical properties of the commutator as it
was done in [15] for the case of Mal’tsev categories:

1. Symmetry: [R,S] = [S,R];

2. Monotonicity: if S1 6 S2, then [R,S1] 6 [R,S2];

3. Inclusion of the commutator in the intersection: [R,S] 6 R \ S;

4. Stability with respect to products: [R1 ⇥R2, S1 ⇥ S2] 6 [R1, S1]⇥
[R2, S2];

5. Stability with respect to restriction: if i : Y ⇢ X is a monomor-
phism, then [R,S] = �X implies [i�1(R), i�1(S)] = �Y , where
�X is the smallest equivalence relation on X;

115
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6. Stability with respect to joins: [R,S1 _ S2] = [R,S1] _ [R,S2].

(where R, R1, R2, S, S1 and S2 are equivalence relations on a given
object X).

The properties 1., 2. and 3. are always true in any regular category.
The property 5. cannot be true in Goursat categories since it character-
izes Mal’tsev categories. However, we think that the properties 4. and
6. could be true in Goursat categories.

These properties will then be useful for studying Smith-Pedicchio
commutators in the context of Goursat categories.

6.2 Abelian objects in Goursat categories

The new characterization of Goursat categories in terms of properties
of internal groupoids (Theorem 3.19) allows us to easily verify that the
subcategory CAb of abelian objects of any Goursat category C is closed
under quotients in C.

It is an open problem whether CAb is also closed under subobjects
in C. The characterization of Goursat categories in terms of positive
relations perhaps gives us a track to prove this property in a more general
framework by proving that the subcategory CAb of a Goursat category C
is a Birkhoff subcategory as in the case of exact Mal’tsev categories [35].

It is well-known that the subcategory CAb of abelian objects of any
factor permutable category [34] C is closed under subobjects in C (Corol-
lary 3.15 [34]). So, another way to solve the problem is to prove that
any Goursat category is a factor permutable category. This property is
true in a varietal context (Corollary 4.5 [51]). So, we can try to use some
of the known techniques to extend varietal proofs into categorical ones
such as the matrix technique [67], the embedding theoreoms [3, 57, 58].

We can then deduce that the subcategory of abelian objects CAb of
a Goursat category C is admissible from the point of view of categorical
Galois theory [61].
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6.3 n-permutable completions

In Section 2.3, we characterized categories with weak finite limits whose
regular completions give rise to Goursat categories and related them to
the existence of the quaternary operations characterizing the varieties of
universal algebras which are 3-permutable varieties. Such kind of studies
have been done for Mal’tsev categories in [86]. So, the natural question
that arises is: can we generalize these studies to n-permutable categories?

The characterizations of n-permutable categories in terms of positive
relations (Theorem 4.9 and 4.10) and through certain stability properties
of regular epimorphisms (Theorem 3.3 [59]) give us some interesting leads
to approach this question.

In the same direction, one could also try to find the categorical prop-
erties characterizing the projective covers of congruence distributive and
congruence modular varieties.





Bibliography

[1] V. Aravantinos Sotiropoulos, Projective covers of 2-star-permutable
categories, arXiv 1910.13735 (2019), accepted for publication in
Cah. Top. et Géom. Différ. Catég..

[2] M. Barr, Exact categories, Springer Lecture Notes in Math. 236

(1971), 1-120.

[3] M. Barr, Representation of categories, J. Pure Appl. Algebra, 41

(1986), 113-137.

[4] M. Barr, P. A. Grillet and D. H. van Osdol, Exact categories and
categories of sheaves, Springer Lecture Notes in Mathematics 236,
Springer-Verlag, (1971).

[5] C. Berger and D. Bourn, Central reflections and nilpotency in exact
Mal’tsev categories, J. Homotopy Relat. Structures 12 (4) (2017),
765-835.

[6] F. Borceux, Handbook of categorical algebra, volume 2, Cambridge
University Press (1994).

[7] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and
semi-abelian categories, Mathematics and its Applications, 566.
Kluwer Academic Publishers, Dordrecht, xiv+479 pp. ISBN: 1-
4020-1961-0 (2004).

[8] D. Bourn, Congruence distributivity in Goursat and Mal’tsev cat-
egories, Appl. Categ. Structures 13 (2005), 101-111.

119



120 Bibliography

[9] D. Bourn, From groups to categorial algebra, Compact Textbooks
in Mathematics. Birkhäuser/Springer, Cham, (2017).

[10] D. Bourn, Mal’cev categories and fibration of pointed objects, Appl.
Categ. Structures 4 (1996), 307-327.

[11] D. Bourn, Normalization equivalence, kernel equivalence and affine
categories, Springer Lecture Notes in Math. 1488 (1991), 43-62.

[12] D. Bourn, Suprema of equivalence relations and non-regular Gour-
sat categories, Cah. Top. et Géom. Différ. Catég. 59 vol. 2 (2018),
142–194.

[13] D. Bourn, The denormalized 3 ⇥ 3 lemma, J. Pure Appl. Algebra
177 (2003), 113-129.

[14] D. Bourn and M. Gran, Categorical Aspects of Modularity, Galois
Theory, Hopf Algebras and Semiabelian Categories, Fields Instit.
Commun., 43, Amer. Math. Soc., Providence RI (2004), 77-100.

[15] D. Bourn and M. Gran, Centrality and connectors in Maltsev cat-
egories, Algebra Universalis 48 (2002), No. 3, 309-331.

[16] D. Bourn and M. Gran, Centrality and normality in protomodular
categories, CT2000 Conference (Como). Theory Appl. Categ. 9

(2001/02), 151-165.

[17] D. Bourn and M. Gran, Normal sections and direct product decom-
positions, Comm. Algebra. 32 (2004), No. 10, 3825-3842.

[18] D. Bourn, P.-A. Jacqmin and M. Gran, On the naturalness of
Mal’tsev categories, Outstanding Contributions to Logic, Springer
(2020), to appear.

[19] D.A. Buchsbaum, Exact categories and duality, Trans. Amer.
Math. Soc. 80 (1955), 1–34.

[20] A. Carboni and R. Celia Magno, The free exact category on a left
exact one, J. Austr. Math. Soc. Ser., A 33 (1982), 295-301.



Bibliography 121

[21] A. Carboni, G.M. Kelly and M.C. Pedicchio, Some remarks on
Mal’tsev and Goursat categories, Appl. Categ. Structures 1 (1993),
No. 4, 385-421.

[22] A. Carboni, S. Lack and R. F. C. Walters, Introduction to extensive
and distributive categories, J. Pure Appl. Algebra 84 (1993), 145-
158.

[23] A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in
Mal’cev categories, J. Pure Appl. Algebra 69 (1991), 271–284.

[24] A. Carboni, M.C. Pedicchio and N. Pirovano, Internal graphs and
internal groupoids in Mal’cev categories, Category theory (1991)
(Montreal, PQ, 1991), 97-109, CMS Conf. Proc., 13, Amer. Math.
Soc., Providence, RI, (1992).

[25] A. Carboni and G. Rosolini, Locally cartesian closed exact comple-
tions, J. Pure Appl. Algebra 154 (2000), 103-116.

[26] A. Carboni and E. Vitale, Regular and exact completions, J. Pure
Appl. Algebra 125 (1998), 79-116.

[27] I. Chajda, G. Czédli and E. Horváth, Trapezoid Lemma and con-
gruence distributivity, Math. Slovaca 53 (2003), No. 3, 247-253.

[28] A. Day and R. Freese, A characterization of identities implying
congruence modularity I, Canad. J. Math. 32 (1980), 1140-1167.

[29] J. Duda, The Upright Principle for congruence distributive vari-
eties, Abstract of a seminar lecture presented in Brno, March,
(2000).

[30] J. Duda, The Triangular Principle for congruence distributive va-
rieties, Abstract of a seminar lecture presented in Brno, March,
(2000).

[31] T. Everaert, Higher central extensions in Mal’tsev categories, Appl.
Categ. Structures 22 (2014) 961-979.



122 Bibliography

[32] R. Freese and R. McKenzie, Commutator theory for congruence
modular varieties, Lond. Math. Soc. Lect. Notes Series 125,
Cambr. Univ. Press, (1987).

[33] E. Goursat, Sur les substitutions orhtogonales et les divisions
régulières de l’espace, Ann. Sci. Ec. Norm. Sup. 3 (1889), 9-102.

[34] M. Gran, Applications of categorical Galois theory in universal al-
gebra, in "Galois Theory, Hopf Algebras and Semiabelian Cate-
gories", The Fields Institute Communications Series 43 (2004),
243-280.

[35] M. Gran, Central extensions and internal groupoids in Mal’tsev
categories, J. Pure Appl. Algebra 155 (2001), 139-166.

[36] M. Gran, Internals categories in Mal’cev categories, Special volume
on the occasion of the 60th birthday of Professor Michael Barr
(Montreal, QC, 1997). J. Pure Appl. Algebra 143 (1999), No. 1-3,
221-229.

[37] M. Gran, Semi-abelian exact completions, Homology, Hom. Appl.
4 (2002), 175-189.

[38] M. Gran, C. Heunen and S. Tull, Monoidal characterization of
groupoids and connectors, Topology and its Applications 273

(2020), 1-25.

[39] M. Gran and D. Rodelo, A new characterization of Goursat cate-
gories, Appl. Categ. Structures 20 (2012), 229-238.

[40] M. Gran and D. Rodelo, A universal construction in Goursat cate-
gories, Cah. Topol. Géom. Différ. Catég. 49 (2008), No. 3, 196-208.

[41] M. Gran and D. Rodelo, Beck-Chevalley condition and Goursat
categories, J. Pure Appl. Algebra, 221 (2017), 2445-2457.

[42] M. Gran and D. Rodelo, On the characterization of Jónsson-Tarski
and of subtractive varieties, Diagrammes, Suppl. 67-68 (2012),
101-116.



Bibliography 123

[43] M. Gran and D. Rodelo, The Cuboid Lemma and Mal’tsev cate-
gories, Appl. Categ. Structures 22 (2014), No. 5, 805-816.

[44] M. Gran, D. Rodelo and I. Tchoffo Nguefeu, Facets of congruence
distributivity in Goursat categories, J. Pure Appl. Algebra 224

(2020), 1086380, 1-17.

[45] M. Gran, D. Rodelo and I. Tchoffo Nguefeu, Some remarks on
connectors and groupoids in Goursat categories, Logical Methods
in Computer Science 13 (2017), No. 14, 1-12.

[46] M. Gran, D. Rodelo and I. Tchoffo Nguefeu, Variations of the
Shifting Lemma and Goursat categories, Algebra Universalis 80

(2019), No. 2, 1-12.

[47] M. Gran and J. Rosický, Special reflexive graphs in modular vari-
eties, Algebra Universalis 52 (2004), 89-102.

[48] M. Gran and V. Rossi, Galois theory and double central extensions,
Homology homotopy Appli. 6 (2004), No. 1, 283-298.

[49] M. Gran, F. Sterck and J. Vercruysse, A semi-abelian extension of
a theorem by Takeuchi, J. Pure Appl. Algebra, 223 (2019), No. 10,
4171-4190.

[50] M. Gran and E.M. Vitale, On the exact completion of the homotopy
category, Cah. Top. Géom. Différ. Catég. 39 (1998), No. 4, 287-297.

[51] H.P. Gumm, Geometrical methods in congruence modular algebras,
Mem. Amer. Math. Soc. 45 (1983), No. 286.

[52] J. Hagemann and C. Herrmann, A concrete ideal multiplication
for algebraic systems and its relation to congruence distributivity,
Arch. Math. (Basel) 32 (1979), 234–245.

[53] J. Hagemann and A. Mitschke, On n-permutable congruences, Al-
gebra Universalis 3 (1973), 8-12.

[54] M. Hoefnagel, A categorical approach to lattice-like structures,
Ph.D thesis (2018).



124 Bibliography

[55] M. Hoefnagel, Characterizations of majority categories, Appl.
Categ. Structures 28 (2020), 113-134.

[56] M. Hoefnagel, Majority categories, Theory Appl. Categ. 34 (2019),
249-268.

[57] P.-A. Jacqmin, An embedding theorem for regular Mal’tsev cate-
gories , J. Pure Appl. Algebra 222 (2018), 1049–1068.

[58] P.-A. Jacqmin, Embedding theorems for Janelidze’s matrix condi-
tions, J. Pure Appl. Algebra 224 (2020), 469–506.

[59] P.A Jacqmin and D. Rodelo, Stability properties characterising n-
permutable categories, Theory and Applications of Categories 32

(2017), No. 45, 1563-1587.

[60] G. Janelidze, A history of selected topics in categorical alge-
bra I: From Galois theory to abstract commutators and internal
groupoids, Categories and General Algebraic Structures with Ap-
plications 5 (2016), No. 1, 1-54.

[61] G. Janelidze and G.M. Kelly, Galois theory and a general notion
of central extension, J. Pure Appl. Algebra 97 (1994), 135-161.

[62] G. Janelidze, L. Marki, and W. Tholen, Semi-abelian categories, J.
Pure Appl. Algebra 168 (2002), 367–386.

[63] G. Janelidze and M. C. Pedicchio, Internal categories and groupoids
in congruence modular varieties, Journal of Algebra 193 (1997),
552-570

[64] G. Janelidze and M. C. Pedicchio, Pseudogroupoids and commuta-
tors, Theory Appl. Categ. 8 (2001), No. 15, 405–456.

[65] Z. Janelidze, Closedness properties of internal relations I: a uni-
fied approach to Mal’tsev, unital and subtractive categories, Theory
Appl. Categ. 16 (2006), No. 12, 236–261.

[66] Z. Janelidze, Closedness properties of internal relations V: linear
Mal’tsev conditions, Algebra Universalis 58 (2008), 105-117.



Bibliography 125

[67] Z. Janelidze, D. Rodelo and T. Van der Linden, Hagemann’s theo-
rem for regular categories, J. Homotopy Relat. Structures 9 (2014),
No. 1, 55-66.

[68] P.T. Johnstone and M. C. Pedicchio, Remarks on continuous
Mal’cev algebras, Rend. Istit. Mat. Univ. Trieste 25 (1993), 277-
297.

[69] E. W. Kiss, Three remarks on the modular commutator, Algebra
Universalis 29 (1992), 455–476.

[70] A. Kock, Generalized fibre bundles, Lecture Notes in Mathematics
1348 Springer-Verlag (1988), 194-207.

[71] A. Kock, Fibre bundles in general categories, J. Pure Appl. Algebra
56 (1989), 233-245.

[72] S. Lack, The 3-by-3 lemma for regular goursat categories, Homol-
ogy, Homotopy, and Applications 6 (2004), No. 1, 1-3.

[73] J. Lambek, Goursat’s theorem and the Zassenhaus lemma, Cana-
dian Journal of Mathematics 10 (1958), 45-56.

[74] P. Lipparini, n-Permutable varieties satisfy non trivial congruence
identities, Algebra Universalis 33 (2018), 159-168.

[75] A.I. Mal’tsev, On the general theory of algebraic systems, Matem-
aticheskii Sbornik, N.S. 35 (1954), No. 77, 3–20.

[76] N. Martins-Ferreira, D. Rodelo and T. Van der Linden, An obser-
vation on n-permutability, Bull. Belg. Math. Soc. Simon Stevin 21

(2014), No. 2, 223-230.

[77] M. Menni, A characterization of the left exact categories whose
exact completions are toposes, J. Pure Appl. Algebra 177 (2003),
287-301

[78] A. Mitschke, Implication algebras are 3-permutable and 3-
distributive Algebra Universalis 1 (1971), 182-186.



126 Bibliography

[79] M. C. Pedicchio, A categorical approach to commutator theory,
Journal of Algebra 177 (1995), 647–657.

[80] M. C. Pedicchio, Arithmetical categories and commutator theory,
Appl. Categ. Structures 4 (1996), 297-305.

[81] M.C. Pedicchio and E.M. Vitale, On the abstract characterization
of quasi-varieties, Algebra Universalis 43 (2000), 269-278.

[82] A.F. Pixley, Characterizations of arithmetical varieties, Algebra
Universalis 9 (1979), 87-98.

[83] J. Riguet, Relations binaires, fermeture, correspondances de Ga-
lois, Bulletin de la Société Mathématique de France 76 (1948),
114-155.

[84] D. Rodelo and I. Tchoffo Nguefeu, Goursat completions, Cah. Top.
et Géom. Différ. Catég. 60 (2019), No. 4, 433–449.

[85] J.Rosický, Cartesian closed exact completions, J. Pure Appl. Alge-
bra 142 (1999), 261-270.

[86] J. Rosický and E.M. Vitale, Exact completions and representations
in abelian categories, Homology, Hom. Appl. 3 (2001), 453-466.

[87] P. Selinger, Dagger Compact Closed Categories and Completely
Positive Maps, Electronic Notes in Theoretical Computer Science
170 (2007), 139-163.

[88] J.D.H. Smith, Mal’cev varieties, Lecture Notes in Math. 554

Springer-Verlag (1976).

[89] S. Tull, Conditions for an n-permutable category to be Mal’tsev,
Cah. Topol. Géom. Différ. Catég. 58 (2017), No. 3-4, 189-194

[90] E. Vitale, Left covering functors, PhD thesis, Université catholique
de Louvain (1994).

[91] H. Zassenhaus, The Theory of Groups, New York, (1949).



Index

n-permutable category, 47

arithmetical category, 96, 104

Barr’s embedding theorem, 33
Beck-Chevalley, 46

category of connectors, 70
category of equivalence relations, 28
category of internal groupoids, 73
category of reflexive graphs, 72
centralizing relation, 67
composition of relation, 26
composition of relation in Set, 26
congruence distributive variety, 95
congruence modular varieties, 78
connector, 15, 65
Cuboid Lemma, 44

denormalized 3-by-3 Lemma, 38
distributive category, 96
distributive lattice, 95
double equivalence relation, 66

effecive relation, 27
enough projective category, 30
epimorphism, 21
equivalence distributive category, 95
equivalence relation, 27
exact category, 28

exact forks, 38

fibrations of points, 46

Goursat category, 35
Goursat pushout, 40
Gumm category, 79

Horn sentence, 95

internal category, 72
internal groupoids, 72

majority category, 94
Mal’tsev categories, 39
monomorphism, 21

opposite relation, 25

positive relation, 80
projective cover, 30
projective object, 30
pseudo-equivalence relation, 31
pseudo-reflexive relation, 31
pseudo-relation, 31
pseudo-symmetric relation, 31
pseudo-transitive relation, 31

quotient object, 23

reflexive graph, 71
reflexive relation, 27

127



128 Index

regular category, 23, 24
regular completion, 32
regular epimorphism, 22
regular image, 25
regular image of a relation, 28
regular pushout, 42
relation, 25

Shifting Lemma, 14, 78
Shifting Principle, 80
Shifting property, 79
split Cuboid Lemma, 44
split epimorphism, 23
strong epimorphism, 22
subobject, 22
symmetric relation, 27

The 3-by-3 Lemma, 38
transitive relation, 27
Trapezoid Lemma, 17, 93
Triangular Lemma, 16, 93

weak Goursat category, 50
weak product, 31
weakly lex category, 31

Yoneda embedding, 33


