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Hanspeter Höschle (VITO, Belgium)

President:
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École Polytechnique de Louvain
Center of Operations Research and Econometrics

Philippe Chevalier
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子曰: 朝闻道，夕死可矣。

《论语·里仁》

The Master said, “If a man in the morning hears the right
WAY, he may die in the evening without regret.”

the Analects of Confucius, translated by James Legge





Abstract

The increasing penetration of intermittent renewable production requires more
flexibility in the power system. We propose priority service and multilevel
demand subscription as two alternative methods for the mobilization of resi-
dential demand response. Whereas priority service relies on the differentiation
and nonlinear pricing of electricity according to reliability, multilevel demand
subscription further differentiates electricity service according to duration. The
contributions of the dissertation are organized in two chapters.

In Chapter 2, we design a priority service menu as the equilibrium solution
to a Stackelberg game, which is modeled as a bilevel optimization problem
involving a vertically integrated utility and consumers. We reformulate the
equilibrium as a mixed-integer problem. As a consequence of this approach,
we can integrate the menu design problem within a day-ahead unit commit-
ment model. In order to tackle the computational challenge brought about
by introducing scenarios of renewable production, the model is decomposed by
the alternating direction method of multipliers (ADMM) and solved on a high-
performance computing infrastructure.We find that priority service pricing can
reap 77.1% of the welfare gains of real-time pricing using a menu of 5 options
in the large-scale simulation of the Belgian power system.

In Chapter 3, we extend the modeling approach to multilevel demand sub-
scription and priority service is treated as a special case. We propose a frame-
work for quantifying the trade-off between a complex but efficient multilevel
demand subscription pricing menu and a simpler but less efficient priority ser-
vice pricing menu. We evaluate the performance of the two contracting schemes
in a system with system-level renewable supply, residential renewable supply,
and residential storage. Based on a stylized case study of the Belgian power
system, we conclude that the ability of multilevel demand subscription to better
discriminate consumers can be beneficial for both the utilities and households.
The utility is able to supply more energy to households at lower cost, while
the service inconvenience of households is also reduced. We further analyze
the conditions under which the cost of investing in home energy storage can be
recovered under priority service and multilevel demand subscription.
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Chapter 1

Introduction

1.1 Motivation

The large-scale integration of renewable energy is progressing at an unprece-
dented pace. Europe is leading this endeavor at a global scale through the
Clean Energy Package of the European Commission [EC20]. During the past
five years, the installed capacity of solar power in Belgium has increased from
2.9 GW in 2014 to 3.9 GW at present and the installed wind capacity has
increased from 1.8 GW in 2014 to 3.7 GW at present [Eli19b]. A similar trend
has been observed in Germany, the Netherlands, and other countries of Central
Western Europe [AP17].

The mobilization of demand-side resources is an essential requirement for
enabling the large-scale integration of renewable resources. These resources
can be instrumental in mitigating numerous system and market operation chal-
lenges resulting from the integration of renewable resources. On a short-term
operational basis, demand-side flexibility can serve towards balancing the sys-
tem on an instantaneous basis [PM14], and can contribute towards resolving nu-
merous operational challenges related to the integration of renewable resources
(e.g. ramping, the negative correlation of renewable supply with demand, and
the wear and tear of thermal units due to startups). In the long term, the elec-
trification of transportation and heating systems would increase peak demand,
which necessitates upgrading current systems, including investment in backup
capacity and T&D lines. Price-responsive consumers can contribute towards
signaling scarcity in capacity [PBF13]. This is an essential step towards tack-
ling the missing money problem [Sto02] by properly remunerating conventional
resources that offer valuable services to the system.

Meanwhile, most residential consumers are still facing simple electricity
tariffs, which do not reflect the time-varying cost of the system, so they do
not have incentives to offer their flexibility to the system when the system
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Introduction

is stressed. In addition, an increasing number of households are becoming
equipped with PV panels and batteries. Recent net-metering policies in 41
states of the USA enable these consumers to reduce their bill because of self-
consumption [BHBW19, Ore17], which raises issues related to the recovery of
grid costs and capital costs of generators from PV owners [PAK16]. The re-
liance of homeowners with storage and rooftop solar on the grid for energy
decreases, while the reliance on the grid for capacity remains or even increases.
This calls for a careful design of electricity tariffs moving forward.

This dissertation seeks to explore more advanced electricity tariff structures
by casting traditional nonlinear pricing theory in a flexible modeling framework
that exploits the power of modern optimization solvers while capturing the de-
tail of advanced production simulation models. The overarching goal of this
work is to mobilize the flexibility of residential consumers in order to enhance
short-term power system operations and generate more robust long-term in-
vestment signals.

1.2 Residential Demand Response

1.2.1 Demand Response Potential

There exist numerous economic studies in the literature which demonstrate the
value of mobilizing demand-side flexibility. Studies by Faruqui et al. [FG02,
FS10a] quantify the benefits of dynamic pricing in terms of preventing peak ca-
pacity investments. Recent studies by Strbac and coauthors [SAP+15] support
these observations by quantifying the economic value of flexibility (including
the flexibility of distributed loads) at up to 8.1 billion British pounds per year
for the UK alone, depending on scenario assumptions. These savings result
from reduced short-term fuel costs, lower long-term investment costs in power
generation capacity, and the deferral of avoidable reinforcements of the trans-
mission and distribution grid.

A recent study by Gils [Gil14] has demonstrated that the residential sector is
a significant source of demand-side flexibility. Serendipitously, some of the most
energy-intensive appliances in households are also among the most flexible, in
the sense that deferring or interrupting them may have minor impacts on the
perceived quality of service. Such appliances include dish washers, laundry
machines, dryers, heaters, and in the future possibly electric vehicles. Based
on the LINEAR pilot project [WC14], D’Hulst et al. [DLB+15] analyze the
flexibility potential of residential smart appliances. The consumption of all
wet appliances (washing machine, tumble dryer, dish washer) in Belgium can
be increased maximally by 2 GW at midnight on the weekend. Another recent
pilot in Germany is described by Stamminger and Anstett [SA13]. The behavior
of 41 consumers and their motivation to use and accept flexible tariffs and smart

2
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appliances are investigated and analysed during this two-year pilot project.
Considering wet appliances as the main appliances the operation of which can
be shifted, this would allow a maximum shift of 10% of the residential electricity
consumption from expensive hours to periods when cheap (and renewable)
energy is available.

1.2.2 Approaches for Residential Demand Response

Although residential demand response presents very promising opportunities,
it has failed to deliver its promise in electricity markets [PBF13]. The devel-
opment of adequate business models for engaging flexible consumers [CO16]
is an essential step in successfully enlisting demand-side flexibility in system
operations. In the two extremes of the wide spectrum of options for mobilizing
demand response [BJR02], one identifies price-based methods and quantity-
based methods. In the following, we provide an overview of the two methods.

Quantity-based methods, such as direct load control, have been applied in
the literature to certain types of appliances. For example, Callaway [Cal09] pro-
poses to use thermostatically controlled loads in order to perform load following
and regulation by adjusting the temperature set-point of large aggregations of
residential consumers. Han et al. [HHS10] considers vehicle-to-grid service. An
aggregator applies the dynamic programming algorithm to the control of the
charging/discharging rate of a group of electric vehicles, in order to provide
frequency regulation service. Mou et al. [MXLF15] develop a decentralized
algorithm for controlling the charging of electrical vehicles, in order to reduce
peak load. In addition, some researchers propose direct load control approaches
for the whole residential sector, without being restricted to a certain type of
appliance. Chen et al. [CWK14] build a two-layer communication-based con-
trol architecture. The upper layer receives a desired aggregated demand pro-
file signal from the aggregator and the lower layer schedules the operation of
household appliances, so that the mismatch between the actual consumption
profile and the desired profile is minimized. Li et al. [LH15] develop a demand
response management scheme and test bed for a residential smart grid. Cus-
tomers are divided into two types based on their acceptance of inconvenience
and smart plugs can be switched off when needed by the aggregator. Celik et
al. [CRS+17] provides a broad survey regarding various structures and control
techniques in order to coordinate multiple smart homes in residential areas.
However, quantity-based methods are perceived as being excessively intrusive.

In terms of price-based methods, real-time pricing represents the benchmark
of economic efficiency. Under real-time pricing, prices are adjusted in real-
time balancing according to the instantaneous needs of the system. Real-time
pricing suffers from the fact that an excessive information overhead is placed
on residential consumers, who lack the attention span and economic incentives
to voluntarily engage in the process of procuring electricity in real time.
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Approaches that attempt to alleviate the complexity of real-time pricing
have been proposed in practice, in order to make the active engagement of
consumers less taxing in terms of information overhead and complexity. Time-
of-use pricing is widely adopted in practice as a compromise, in which a day is
typically divided into a peak period and an off-peak period. Some utilities also
vary time-of-use tariffs seasonally. Time-of-use tariffs are intended to reflect
the time-varying costs of supplying electricity to consumers, so that consumers
are incentivized to reduce their peak consumption or shift the consumption
to cheaper off-peak hours. However, the rates are only designed to reflect the
expected long-run conditions of the system [FG02]. It is possible that the real
peak does not coincide with the peak period defined in the time-of-use tariff.
This is due to the fact that the real peak period becomes very hard to predict
in advance with intermittent renewable production. Therefore, the inherent
uncertainty of power supply cannot be captured. Consequently, utilities are still
confronted with the risk of constructing peaking units. Furthermore, a simple
time-of-use tariff does not adequately protect the system against significant
(even if short-lived) spikes in consumer demand. Hence new mechanisms are
needed to communicate the state of the system to consumers. Consequently,
certain utility companies implement time-of-use pricing with a demand charge,
which implies that consumers are also charged according to their peak demand,
in addition to an energy charge based on the time-of-use tariff. An alternative
approach that has been adopted widely in practice is critical peak pricing,
which is based on time-of-use pricing, and includes additionally certain critical
hours that can be announced to consumers by the utility with short notice. If
consumers use electricity during these hours, they pay a significant markup.
Both time-of-use tariffs with demand charges and critical peak pricing attempt
to reduce peak demand. Critical peak pricing can better align demand response
with the peak demand of the system, instead of focusing on the individual peak
of consumers. Borenstein et al. [BJR02] provide a detailed discussion on these
tariffs, and the underlying economic theory that guides their design.

Faruqui [FS10b] surveys experimental observations from 15 demand re-
sponse pilots, experiments and full-scale implementations of dynamic pricing,
including critical-peak pricing and time-of-use pricing. The study finds conclu-
sive evidence that households respond to higher prices by lowering usage. More
specifically, time-of-use tariffs are found to reduce the peak demand by 3-6%.
By contrast, the decrease in peak demand induced by critical-peak pricing is
more significant, ranging from 13% to 20%. The percentage can be further
increased to 27% to 44% by enabling technologies. Faruqui et al. [FHH10] an-
alyze the costs and benefits of installing smart meters in the EU and draw the
conclusion that the adoption of smart meters enables dynamic pricing, which
reduces peak demand and lowers the investment into peaking infrastructures.
The analysis finds that the costs of deploying smart meters can be recovered
from these benefits. A meta-analysis based on the Arcturus database, which
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contains 63 pilots, has been conducted by Faruqui et al. [FSW17] recently.
Their findings demonstrate that the discrepancy in peak demand reduction
across different pilots is mainly caused by the peak to off-peak price ratio.

The LINEAR pilot project in Belgium was conducted from September 2013
until July 2014 and it demonstrates a significant shift of the flexible share of
electricity consumption in households to lower price periods in a day-ahead
dynamic pricing scheme [VDF+15]. The effectiveness of demand response was
investigated in a Swedish field study covering 136 households in 2017. The
results show that the effectiveness of demand response varies widely according
to household types and households prefer price incentives to environmental
incentives [NLBK18]. There are also field tests that cater for specific appliances,
such as a demand response program for heat pumps under time-of-use pricing
and critical peak pricing in the UK [SFOO19]. Kohlhepp et al. [KHW+19]
review 16 international field studies that mobilize the flexibility of residential
thermal energy storage.

Table 1.1 presents a classification of the implemented residential electric-
ity tariffs in most European countries at the time of writing of this thesis. It
can be observed that, in addition to flat tariffs, most countries adopt a sim-
ple time-of-use pricing system in order to differentiate consumers according to
when they use electricity. However, time-of-use tariffs may not be effective
in future power systems, because the peak or off-peak periods are difficult to
specify, due to the unpredictable availability of renewable production. Other
differentiated electricity service offerings, which were originally proposed in the
early power system economics literature, have recently attracted the attention
of researchers. These are essentially based on nonlinear pricing theory, which
is introduced in the following section.

1.3 Nonlinear Pricing Theory

One challenge faced by the price menu designer is information asymmetry. In a
typical setting, each consumer has a specific type, but due to information asym-
metry, the type is private information known to the consumer only. Instead
the menu designer is assumed to be able to estimate the distribution of con-
sumer types. In other words, the menu designer has no information regarding
which consumer is of which type, but he knows the existence of each type and
its proportion in the whole population. By offering a nonlinear pricing menu,
the designer tries to achieve some objective while discovering the type of the
consumer in the process. And consumers will reveal their types to the menu
designer by self-selection.

The generic term nonlinear pricing refers to any case in which the tariff is
not strictly proportional to the quantity purchased [Rob93]. As shown in figure
1.1, the simplest example of a nonlinear tariff is a two-part tariff. In such a
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Table 1.1: Residential electricity tariff structures in European countries. FT: flat
tariff; TOU: time-of-use tariff; FT-D: flat tariff with demand charge; RTP: real-time
pricing. The demand charge in Belgium applies to prosumers.

XXXXXXXXXXCountries
Tariffs

FT TOU FT-D TOU-D RTP

Austria [Ver20] X X
Belgium [Ele20a] X X X X

Czech Republic [PRE20] X X
Denmark [Ors20] X X

Finland [Hel20,Ene20b] X X X
France [EDF20] X X

Germany [MVV20] X X
Greece [SH20] X X

Hungary [ELM20] X X
Ireland [Ene20a] X X

Italy [Naz20] X X
Luxembourg [Eno20] X X
Netherlands [Vat20] X X

Norway [Gud20] X X
Poland [TAU20] X X

Portugal [ELE20b] X X
Slovakia [Ele20c] X X
Slovenia [Ene20c] X X

Spain [End20] X X
Sweden [Mal20] X X

Switzerland [Vit20] X X
UK [SEE20] X X

tariff, the consumer pays an initial fixed fee for the first unit (often justified
as a subscription charge), as well as an additional constant price for each unit
after the first.

Nonlinear pricing is prevalent in many industries. For example, in the
tariffs presented in table 1.1, consumers in most countries are required to pay
an annual subscription. Therefore, in the case of a flat tariff for electricity with
subscription charges, we exactly recover a two-part tariff. As we will explain
later in this section, time-of-use pricing is also a form of nonlinear pricing.

The motivation of nonlinear pricing is that there exists heterogeneity among
consumers1. Due to information asymmetry, utilities are not aware of which

1Note that in the nonlinear pricing theory, a consumer is an economic concept that refers
to a consumer type rather than a consumer in the real word. For example, a slice of power
in the household can be regarded as a consumer and the first 1 kW power carries higher
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Linear

Two-part

Block

Three-part

Quantity

Payment

Figure 1.1: Illustration of linear pricing and several types of nonlinear tariffs.

consumers are characterized by higher valuation. However, by facing different
prices for successive increments, consumers will reveal their valuation by self-
selection. This can result in higher efficiency during normal operations but
especially during scarcity conditions (the latter being especially relevant in a
regime of large-scale renewable energy integration). In nonlinear pricing theory,
increments are not necessarily restricted to quantity, but may also refer to the
quality of service, such as the priority by which a consumer is served, or the
time at which electricity becomes available. Concretely, in the case of time of
use pricing, electricity that is delivered in peak periods is characterized by a
higher quality than electricity delivered in off-peak periods. The differences
in quality are charged differently, following the principles of nonlinear pricing.
Examples exist in other industries as well. For example, telecommunication
companies offer different plans for data with different monthly subscription
fees.

The approach which is considered in this thesis is the quality differentiation
of electricity service. This can be viewed as a compromise between price and
quantity-based methods that attempts to combine the best of both worlds. As
we explain above, quality-differentiated service traces its theoretical origins in
nonlinear pricing , and is inspired by success stories in the telecommunications
and information technology sectors. The promise of this approach as a viable
paradigm for massively scalable demand response is exemplified by the notable
amount of research that has been conducted recently in variations of the basic
concept [MO16, NPNP+16, CQV15, NNPPV16, BX17, BL12]. In the following,
we discuss the products that have emerged from these papers. We will then in-
troduce priority service pricing (PSP) and its generalization, multilevel demand
subscription pricing (MDSP), which are the focus of this dissertation.

valuation than the second slice. In this sense, a household consists of different types of
consumers.
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1.3.1 Quality-Differentiated Products

Following the principles of nonlinear pricing, a deadline differentiated pricing
policy for deferrable electric loads is proposed in Bitar et al. [BL12]. Accord-
ing to this approach, electricity is offered within a given deadline of service,
with shorter service deadlines demanding a higher price. The authors apply
the resulting product to electric vehicle charging parks equipped with variable
renewable supply [BX17].

Another differentiation scheme based on the duration of the service and the
power level is presented in Nayyar et al. [NNPPV16]. The authors refer to
this approach as duration differentiated energy service. This service considers
loads that require a fixed power level for a certain duration out of the total
horizon, but are indifferent to when the power is delivered. At each power
level, the supplier offers services of different duration levels at different prices.
The service of a shorter duration at the same power level enjoys a lower per-
unit energy price since more flexibility is offered by the load. This scheme is
similar to multilevel demand subscription pricing, which is treated in detail in
Chapter 3 of the thesis. The offerings are similar in the sense that both services
are differentiated by duration. Nevertheless, multilevel demand subscription
pricing additionally includes the reliability component.

Inspired by this work, an energy service differentiated by both the duration
and the deadline is put forward in Chen et al. [CQV15]. The authors consider
a group of flexible loads with each load requiring a constant power level for a
specified duration before a specified deadline. The service at each power level is
priced differently according to the service duration and the promised deadline
that the total requested energy is delivered. The energy price per unit varies
with the deadline and duration.

In addition, rate-constrained energy services [NPNP+16] are also a recent
approach for mobilizing flexible demand. Under this approach, service is char-
acterized by a delivery window, the total amount of energy that must be sup-
plied, and the maximum rate at which this energy may be delivered.

We point out that these approaches mainly cater for storage-like appliances
and are not perfectly suitable for mobilizing demand response in a household.
This is due to the fact that consumers in a household would prefer to retain
their authority over electricity consumption. We therefore conduct our analysis
under the assumption that control should only be imposed behind the meter.
Consequently, in this thesis we investigate two types of differentiated products
based on nonlinear pricing theory, which we argue better fit the institutional
constraints of residential demand response.
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1.3.2 Priority Service Pricing and Multilevel Demand Sub-
scription Pricing

As mentioned previously, time-of-use pricing only reflects the expected long-run
conditions of the system. The intermittent supply of renewable energy renders
the static definition of peak periods and off-peak periods obsolete. By contrast,
priority service and multilevel demand subscription offer products differentiated
by reliability, which is directly linked to the uncertainty of renewable supply.
We investigate the two pricing schemes in scenarios of large-scale renewable
energy integration.

Priority service pricing [CW87] has been applied in different industries.
As pointed out in Rao and Petersen [RP98]. “For example, in transportation
systems, railways offer express and regular freight services. The postal system
offers priority and regular mail services. Most service industries provide some
form of priority service in order to reduce waiting times for customers with
high waiting costs. Other examples include computer service bureaus, job shops,
and express toll roads.” In power service, an early example of priority service
pricing was the Pacific Gas and Electric tariff for large industrial customers that
included explicit options for curtailable and interruptible power service [Rob93].

In this thesis, we focus on the application of interruptible power service to
residential consumers, since the residential sector arguably places the greatest
premium on simple service offerings that do not require excessive attention
overhead.

We analyze a variant of priority service pricing which relies exclusively on
capacity charges, and the capacity is differentiated by reliability levels. This
is in contrast to the approach that splits priority service pricing to a priority
charge and a service charge [CW87]. We will explain the exact implementation
of our approach in the sequel, and we will then explain how duration can be
introduced into our approach based on multilevel demand subscription.

The idea of the implementation of priority service pricing which we analyze
is to offer residential consumers a menu of price–reliability pairs for strips of
power, which can be illustrated via the concept of ColorPower [PBF13] as
shown in figure 1.2. In the figure, the household subscribes for 0.6 kW to the
red color2, which has a reliability level of 100%, therefore this slice of power
is guaranteed to be served. The 0.7 kW of yellow color may have a reliability
of 90%, and this slice of electricity could be interrupted when the system is
stressed. In contrast. the green color could be highly unreliable, for example,
maybe it is only available when there is abundant renewable production. This
slice of power can be used for flexible appliances, such as electric vehicles, water
heaters and wet goods. These three levels of fuse limits are only imposed behind
the smart meter and the household has full authority over which appliance is

2Since the household procures a consumption profile, the 0.6 kW refers to the average of
the profile.
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Figure 1.2: Illustration of priority service pricing. The black curve shows the intended
consumption profile of a household in one day and strips of different colors indicate the
subscription quantity of the household to power slices of different quality (reliability
levels). The total power supplied to a household is stratified into three different levels
(indicated in this figure by colors). Consumers can decide how to allocate their total
power consumption among different levels of reliability, subject to the constraint that
the total rating of devices switched into a given reliability level does not exceed the
procured amount of power for that reliability level.

allocated to which color, as long as the limit of each color is not exceeded.

One way to implement this allocation is by tagging plugs with colors that
correspond to reliability levels in the home [PBF13], either manually or auto-
matically through a home energy router, as shown in figure 1.3. Thus, house-
holds enroll to an electricity service with an intuitive interpretation, while
preserving control on their household consumption. This is the main appeal
of priority service pricing, which strives to maintain the control of equipment
under residential loads while engaging them in a service that is simple and intu-
itive. The necessary control and communication technology for implementing
priority service pricing requires a means of tagging plugs according to reliabil-
ity levels, an ability to monitor slices of different reliability in real time (e.g.
5-to-15 minute intervals), and an energy router that can receive control signals
from a utility and relay them to plugs with the appropriate reliability tags, or
undertake the color tagging on its own.

By selecting plans, consumers reveal their valuation for power. These val-
uations can be aggregated and bid into the wholesale electricity market. This
promotes price discovery and an efficient allocation of resources under tight
system conditions, which are expected to occur increasingly frequently in the

10



1.3. Nonlinear Pricing Theory

Figure 1.3: Illustration of the practical implementation of priority service pricing. In
the proposal of [PBF13], major appliances or their outlets are equipped with switches
that enable owners to select colors indicating their willingness to have the appliance
shut on or off. Source: http://energy.mit.edu/news/tomorrows-power-grid/.
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Figure 1.4: Envisioned implementation of multilevel demand subscription. Con-
sumers can subscribe to different reliability levels and specify the desired duration by
the scroll bar. The total subscription quantity and the corresponding payment are
calculated according to a nonlinear pricing menu, which we are interested in designing.

future due to the integration of renewable resources.

Multilevel demand subscription is an extension of priority service pricing in
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the sense that an extra component, i.e. duration, is an additional dimension
according to which we differentiate pricing. This concept is further illustrated in
figure 1.4. In an MDSP menu, each reliability level is associated with different
duration levels and the price is a function of the duration. The duration can
be interpreted as energy ‘credits’ that are topped up.

To further illustrate the concept, we consider a simple example with a hori-
zon of 24 hours, and suppose that the red color is characterized by a reliability
of 100%, while the green color is characterized by a reliability of 50%. The first
household subscribes to 1 kW for the red color with a duration of 12 hours,
whereas the second household subscribes for 1 kW of the green color for 24
hours. In this case, both households are entitled to consume 12 kWh over the
entire horizon. However, the first household has a priority to be served first, in
case of shortage in supply. Alternatively, suppose that the second household
subscribes for 2 kW of the red color with a duration of 6 hours. In this case
both households are entitled to consume 12 kWh over the entire horizon and
they have the same priority. However, the peak demand of the first household
is limited by 1 kW, whereas the peak demand of the second one is limited by
2 kW.

There are two merits brought about by the extra energy component, rela-
tive to priority service pricing limited to capacity charges. Firstly, consumers
are afforded the freedom to specify the duration of their consumption, rather
than subscribing for the whole horizon of service. This is especially relevant for
households with rooftop PV panels, since it is likely that these households are
self-sufficient during the daytime. Secondly, the hours when consumers utilize
the credits indicate higher valuation, and the utility can take advantage of the
revealed information in order to achieve higher efficiency. In contrast, in the
implementation of priority service pricing that we consider in this work which
is purely capacity based, a slice of power is assumed to carry the same valua-
tion over the entire horizon. This results in the loss of important information
regarding the valuation of consumers.

In multilevel demand subscription pricing, the requirement of differentiat-
ing the pricing of energy in addition to capacity makes the price menu more
complicated relative to priority service pricing. This may present implementa-
tion complexity both for consumers as well as the utility. The trade-off between
complexity and efficiency is to be investigated in this thesis.

1.4 Contributions

The main contributions of this dissertation are organized into two chapters,
which are summarized in the following. We also summarize, in this section, a set
of major assumptions in the present work under which our stated contributions
are relevant.
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In Chapter 2, we first revisit the textbook theory of priority service pricing
and point out numerous stringent assumptions (such as non-convex produc-
tion costs), which may not be respected in practice. We then design a priority
service menu as the equilibrium solution to a Stackelberg game, which is mod-
eled as a bilevel optimization problem involving a vertically integrated utility
and consumers. We reformulate the equilibrium as a mixed-integer problem.
As a consequence of this approach, we can integrate the menu design prob-
lem within a day-ahead unit commitment model. This allows us to design
a menu which exactly meets the profit requirements of a firm. In order to
tackle the computational challenge brought about by introducing scenarios of
renewable production, the model is decomposed by ADMM and solved on a
high-performance computing cluster. The quality of the solution is demon-
strated by comparing the resulting solution with the bound obtained from dual
decomposition. The approach is illustrated on a toy numerical example, as well
as a large-scale model of the Belgian power market. This chapter is based on
the following publications:

• Mou, Y., Papavasiliou, A., & Chevalier, P. (2017, June). Application
of priority service pricing for mobilizing residential demand response in
Belgium. In 2017 14th International Conference on the European Energy
Market (EEM) (pp. 1-5). IEEE.

• Mou, Y., Papavasiliou, A., & Chevalier, P. (2019). A Bi-Level Optimiza-
tion Formulation of Priority Service Pricing. IEEE Transactions on Power
Systems, forthcoming. DOI: 10.1109/TPWRS.2019.2961173

The following assumptions have been adopted in this chapter. These assump-
tions will be further elaborated with the exposition of the models.

• Consumers are assumed to be risk-neutral. This is a standard assumption
in the priority service pricing literature, and simplifies the formulation
and resolution of the pricing model, since risk aversion introduces non-
convexities which pose significant computational barriers to our analysis.

• The valuation of a consumer for power remains constant over time. Non-
linear pricing differentiates consumers according to their types, and each
consumer type is represented by their valuation for power in our model.
The dynamics of consumer preferences are captured by a time-varying
consumption profile.

• All consumers follow the same consumption profile, which is therefore
identical to the system-level profile. This assumption can be relaxed,
however in this case the producer would need to know the profile of each
type of consumer in order to design the price menu. Our presumption is
that this is not practical, because this requires too detailed information
on the side of the producer.
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• The valuation breakpoints that separate consumers into different priority
classes are determined exogenously in our model. Moreover, all consumers
with non-negative valuations are served, i.e. the first valuation breakpoint
is at 0 e/MWh.

• We examine a vertical setting in which the utility is assumed to be re-
sponsible for aggregating demand response and also for operating the
production assets of the system. The assumption of a vertical monopoly
is typical in nonlinear pricing theory. The price menu is designed from
the perspective of a social planner, in order to maximize social welfare.
One interesting extension of our work is to design the price menu with
consideration of investment decisions [JT07].

In Chapter 3, we first introduce the traditional theory of multilevel demand
subscription pricing and then improve it using a bilevel modeling approach
similar to the one proposed in the previous chapter. The increased complexity
of multilevel demand subscription for residential consumers promises increased
operational efficiency, as it permits a finer differentiation of consumer classes
by the producer. We propose an evaluation framework to compare the perfor-
mance of priority service and multilevel demand subscription in a system with
utility-scale renewable supply, residential renewable supplies, and residential
storage. A case study is conducted on the Belgian power system in order to
compare the performance in a quantitative way, in terms of social welfare and
consumer costs. This chapter is based on the following publications:

• Mou, Y., Papavasiliou, A., & Chevalier, P. (2018, June). Application of
multilevel demand subscription pricing for mobilizing residential demand
response in Belgium. In 2018 IEEE International Energy Conference
(ENERGYCON) (pp. 1-6). IEEE.

• Papavasiliou, A., Mou, Y., Cambier, L., & Scieur, D. (2017). Applica-
tion of stochastic dual dynamic programming to the real-time dispatch
of storage under renewable supply uncertainty. IEEE Transactions on
Sustainable Energy, 9(2), 547-558.

• Working paper: Comparison of Priority Service and Multilevel Demand
Subscription

This chapter is based on the following assumptions.

• We continue to assume that consumers are risk-neutral, and that the
producer is a monopoly that maximizes social welfare when the price
menu is designed.

• The production from roof-top PV panels is assumed to be perfectly cor-
related with the utility-level solar production and independent of the
utility-level wind production.
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• The surplus of roof-top PV production is injected to the grid without
compensation for households.

• The roof-top PV production in different households is assumed to follow
an identical profile.

In the last chapter, we draw conclusions and point out directions for future
research.
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Chapter 2

A Bilevel Optimization
Formulation of Priority
Service Pricing

2.1 Introduction

An important challenge of priority service is the pricing of different menu op-
tions. In order to appreciate the challenge, consider two extremes. In one
extreme, an aggregator prices all levels of reliability at a very low price. In
this case, all consumers enroll to the option with the highest level of reliability.
This is undesirable, since the aggregator would neither be able to deliver the
promised level of reliability, nor to discriminate consumers according to their
valuation. On the other extreme, if the aggregator prices all levels of reliabil-
ity at an excessively high price, then no consumers enroll voluntarily. In the
middle ground there is an optimal menu which induces consumers to self-select
options such that the utility can deliver power from an inherently uncertain
supply side, while satisfying the quality of service that it commits to through
the menu that it offers.

The theory for optimally designing such a menu has been developed by
[CW87] and relies on strong assumptions. The appeal of the theory is that
it only requires aggregate statistical information about the population, which
is becoming increasingly available through real-world demand response pilots
[FS10a,SA13,CB14,DLB+15].
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2.1.1 Previous Work on Priority Differentiated Products

There has been further development of priority service pricing based on the
seminal paper of Chao and Wilson [CW87], including menus differentiated
by duration and reliability, and menus that account for capacity expansion
[JT07]. Chao [Cha12] extends the consumer model to include the decision of
actual consumption profile besides the subscription decision, and the difference
between the subscribed profile and actual consumption profile is settled based
on the spot price. Campaign [CO16] considers a profit-maximizing aggregator
in a competitive setting. However, the aforementioned models involve stringent
assumptions, are more difficult to implement in practice than what we propose
in the present chapter, and rely on closed-form solutions that do not exploit
the capabilities of powerful commercial optimization solvers.

The numerical appeal of our approach relies on the interpretation of the
priority service pricing problem as a Stackelberg equilibrium, which is subse-
quently cast as a bilevel optimization problem. Game-theoretical approaches,
especially Stackelberg games, have been widely adopted for solving practical
tariff design problems. Askeland et al. [ABG19] formulate a bilevel model for
describing the interaction between the end-users and a distribution system op-
erator, in order to design the optimal grid tariff. Govaerts et al. [GBD18] study
how the distribution tariff design influences the behavior of a strategic aggre-
gator of residential consumers with PV panels and energy storage systems, on
a wholesale market. The aggregator-wholesale market interaction is formu-
lated as a Stackelberg game. Grimm et al. [GOS+19] propose bilevel models
for determining the optimal interplay between a retailer designing a tariff and
prosumers who decide on using storage, consumption, electricity purchases, as
well as electricity sales to the grid. Momber et al. [MWSR15] consider a spe-
cific application of bilevel programming for plug-in electric vehicle aggregators.
Cervilla et al. [CVC15] propose new electricity tariffs for regulating distributed
generation resources, as opposed to net metering. The authors put forward a
bilevel model to obtain the evolution of the access tariffs. Then the optimal
distributed generation investment of the consumers under net metering policy
and access tariffs is investigated. Bilevel modes are also applied in other areas
of the energy networks [KDPV+15], such as optimal control of a virtual power
plant, deregulated spot electricity markets, etc. In this chapter, we adopt the
bilevel optimization method for the priority service menu design problem.

2.1.2 Contribution and Chapter Organization

In this chapter we revisit Chao’s theory [CW87] and extend it to a more realistic
set of assumptions. In doing so, we couple the menu design problem with
production simulation models based on unit commitment. Embedding the
menu design problem with unit commitment allows us to override a number of
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weaknesses in the traditional theory, and creates numerous advantages from an
analytical standpoint.

1. We are able to clarify exactly what the service of a certain reliability level
means1.

2. We are able to introduce profit targets that the menu should seamlessly
achieve in our model, which are essential for cost-benefit analyses of smart
meter deployment [FS10a].

3. Coupling realistic models of demand response with unit commitment,
which has been attempted in past literature under less realistic settings
such as real-time pricing or fixed retail pricing [SS09, Sio12, PO14], is
essential for capturing the operational benefits of demand response (mit-
igation of ramping constraints, reduction of non-convex costs related to
startup and min load, etc.).

4. The temporal coupling in the production model (due to min up/down
time constraints, and ramp rates) is captured.

The rest of the chapter is organized as follows. Section 2.2 introduces the
traditional theory of priority service pricing. The section additionally intro-
duces some background on dual decomposition and the alternating direction
method of multipliers (ADMM), which are used in the numerical case study of
the Belgian system. Section 2.3 casts the menu design problem as a Stackelberg
game, which is reformulated as an MILP. Section 2.4 presents the decompo-
sition techniques that are adopted in order to solve the model. Section 2.5
conducts two case studies that include a toy example and a large-scale simula-
tion of the Belgian power system.

2.2 Preliminaries

2.2.1 Priority Service Pricing

In this section, we introduce the traditional theory of priority service pricing
based on [CW87] and [Ore13], and we point out several stringent assumptions
that are typically not respected in practice.

On the consumer side, the aggregate demand function is represented by
D(·, ω) and the willingness-to-pay function is represented by P (·, ω), both con-
tingent on the ‘state of the world’ ω. The producer offers a menu of capacity
strips with reliability r and price π. The objective of each consumer is to choose

1Five minutes of interruption every hour and one month of straight interruption every year
imply large differences in consumer comfort, even if both are characterized by a reliability of
11/12.
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from the menu M = {r, π} an option that maximizes expected surplus. This
is a restricted variant of priority service pricing since we do not split it into a
priority charge and a service charge [CW87]. Assuming risk-neutral consumers,
the consumer problem for type v is to solve

S(v) = max {r · v − π|(r, π) ∈M}. (2.1)

Regarding the cost model, the supply is assumed to be uncertain due to
random outages of generators and renewable energy fluctuations. The short-
run cost function in scenario ω at quantity z is denoted as C(z, ω).

In order to design the optimal price menu which induces consumers to
choose the reliability level that the system can offer on aggregate under efficient
dispatch, we need to compute the function R(v) that describes the reliability
level that a consumer with valuation v would obtain under efficient dispatch.
Denote by p̂(ω) the spot price, associated with a given random outcome ω,
which is given by

p̂(ω) = min{max[P (z, ω), C(z, ω)]|z ≥ 0}. (2.2)

This is the intersection of the marginal willingness-to-pay function and the
marginal cost function. Then the service reliability of a type v consumer is
given by

R(v) = Pr{p̂(ω) ≤ v}. (2.3)

Figure 2.1 illustrates the concept of reliability R(v). The horizontal axis
shows the equilibrium market clearing quantity under efficient dispatch, while
the vertical axis presents the marginal cost of the system and the consumer
valuation. On the production side, we consider two scenarios. In scenario ω1,
the cost function is C(z, ω1) with a probability of 0.7; in scenario ω2, the cost
function is C(z, ω2) with a probability of 0.3. Then the spot price will be p̂(ω1)
with a probability of 0.7 and p̂(ω2) with a probability of 0.3. Consumers whose
valuations are higher than the spot price will be served, so we can conclude

R(v) =


0, v < p(ω2)

0.3, p(ω2) ≤ v < p(ω1).

1, v ≥ p(ω1)

(2.4)

As shown in Chao et al. [CW87], the price menu which maximizes social
welfare is as follows:

M? = {p?(v), r?(v)|0 ≤ v ≤ V }, (2.5)

r?(v) = R(v), (2.6)

p?(v) =

∫ v

0

[r?(v)− r?(u)]du. (2.7)

When implementing a priority service menu in practice, a finite number of
priority classes is expected. We first divide consumers into n priority classes
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Figure 2.1: Illustration of R(v) in the traditional priority service pricing theory.
C(z, ω1) and C(z, ω2) describe the cost function in different scenarios. Whereas
P (z, ω) shows the valuation function, which is assumed to be the same in both sce-
narios. The intersection between a cost function and the demand function indicates
the spot price, which is p̂(ω1) with a probability of 0.7 and p̂(ω2) with a probability of
0.3. When the valuation of a consumer is lower than p̂(ω2), he can never get served,
so R(v) = 0; similarly, if the valuation is even higher than p̂(ω1), this consumer can
always be served and R(v) = 1; if the valuation falls between p̂(ω1) and p̂(ω2), the
consumer is served in scenario ω2 with a probability of 0.3, so R(v) = 0.3.

based on their valuation, say [0, v1], [v1, v2], . . . , [vn−1, vn], where 0 = v0 < v1 <
. . . < vn−1 < vn = V . Suppose that the service is provided to consumers in such
a manner that consumers in a higher value class are given a higher priority and
pay more, but within each class, all consumers are treated equally and therefore
are served in a random order. Then the probability that a consumer with a
valuation v between vi and vi+1 will be served is

r(v) = ri =

∫ vi+1

vi

[
D(v)−D(vi+1)

D(vi)−D(vi+1)

]
dR(v) +R(vi). (2.8)

Using integration by parts, we rewrite the above expression as

r(v) = ri =

∫ vi+1

vi
R(v)dD(v)

D(vi+1)−D(vi)
. (2.9)

The interpretation of Eq. (2.9) is as follows. The denominator is the demand
between valuation vi and vi+1, while the numerator is the realized supply. Since
within this priority class consumers are treated equally and served in a random
order, ri is the average reliability in this priority class. The corresponding price
is given by

p(v) = pi = v0 · r0 +

i∑
j=1

vj · (rj − rj−1). (2.10)

Nevertheless, from the description of the traditional theory we can see that
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it requires certain limiting assumptions which are not necessarily satisfied in
practice:

• The cost function is assumed be to convex, so non-convex production
costs, such as start-up and min-load costs, cannot be handled.

• The presented model is static, in the sense that there is no coupling over
time periods (e.g. due to minimum up and down times, ramp constraints,
and so on).

• The reliability level ri of each option does not reveal more specific infor-
mation about how consumers could be interrupted.

To deal with these shortcomings, we incorporate unit commitment into the
menu design problem and model it as a Stackelberg game, which is reformulated
as a bilevel optimization problem. In this model, the non-convex costs are
captured directly. The time-couping constraints of generators and the pumped
hydra storage are modeled explicitly. Moreover, the output of the model allows
us to investigate into the interruption pattern of each option. The model is
presented in section 2.3.

2.2.2 Dual Decomposition

With the increasing integration of renewable production, the modeling of mod-
ern power systems is relying increasingly on scenario-based methods [Sag12,
CCMGB06]. Due to their increased size, scenario-based models pose signifi-
cant computational challenges. Decomposition methods, such as Benders de-
composition, dual decomposition, and the alternating direction method of mul-
tipliers (ADMM) have been exploited ubiquitously in order to decompose the
resulting large-scale models into subproblems, which can be solved in parallel.
High-performance computing has increased the appeal of such methods by al-
lowing an acceleration in the resolution of these problems. In this chapter, dual
decomposition and ADMM are employed. We provide a brief introduction to
dual decomposition in this section, and to ADMM in the next section.

This section is adapted from [BPC+11, KZ18]. Consider an optimization
problem, where the objective function is separable:

min
x

f(x) =

N∑
i=1

fi(xi) (2.11)

(y) :

N∑
i=1

Aixi = b, (2.12)

where x = (x1, . . . , xN ), x ∈ Rn and xi ∈ Rni . The Lagrangian can be written
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as

L(x, y) =

N∑
i=1

Li(xi, y) =

N∑
i=1

(
fi(xi) + yTAixi − (1/N)yT b

)
, (2.13)

where y are the dual variables of the equality constraints. For a fixed y, the
Lagrangian dual function can be decomposed as

φ(y) =

N∑
i=1

φi(y), (2.14)

where

φi(y) := min
xi

Li(xi, y) = fi(xi) + yTAixi − (1/N)yT b. (2.15)

We seek to find the best lower bound for the primal problem by solving the
maximization of the Lagrangian dual problem:

zLB := max
y

N∑
i=1

φi(y). (2.16)

In a dual decomposition method, we iteratively search for dual values y
that maximize the Lagrangian dual function. Many algorithms are available
for tackling this problem, such as the subgradient method [POO11,PO13], the
cutting plane method [KZ18], and bundle methods [Sag12]. In the model pre-
sented later, the dual variables are in a low-dimensional space, which is suitable
for a standard cutting plane method. The cutting plane method approximates
(2.16) by iteratively adding linear inequalities. We define the master problem:

mk := max
θi,y

N∑
i=1

θi (2.17)

s.t. θi ≤ φi(yl) + (Aix
l
i − b/N)T (y − yl), (2.18)

i = 1, . . . , N, l = 0, 1, . . . , k. (2.19)

The dual variable yk+1 is obtained by solving the master problem at iteration
k. The procedure is summarized in algorithm 1.

2.2.3 Alternating Direction Method of Multipliers

This section is adapted from [BPC+11] and we present two different formats
of the ADMM algorithm. A typical format adds a regulation term to the
dual decomposition formulation whereas the second format deals with a general
constrained convex optimization problem by introducing a projection operator.
The two formats are described as follows:
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Algorithm 1 Dual Decomposition Based on Cutting-Plane Method

1: Initialize k := 0 and y0 := 0.
2: while mk − zLB > ε do
3: Solve (2.15) to obtain φi(y

k) and xki for a given yk and ∀i = 1, . . . , N .
4: Set zLB ←− max{zLB , φ(yk)}.
5: For a given φi(y

k) and xki , add new cuts to the master problem and solve
for mk and yk+1.

6: Set k ←− k + 1.
7: end while

The typical ADMM algorithm solves problems in the form

min
x,z

f(x) + g(z) (2.20)

(y) :Ax+Bz = c (2.21)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp.
The functions f and g are assumed to be convex.

The augmented Lagrangian is expressed as

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22. (2.22)

ADMM consists of the iterations

xk+1 := arg min
x
Lρ(x, y

k, zk) (2.23)

zk+1 := arg min
z
Lρ(x

k+1, yk, z) (2.24)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c), (2.25)

where ρ > 0. Define u = (1/ρ) · y as the scaled dual variable. One widely
adopted version of ADMM can be expressed as

xk+1 := arg min
x

(
f(x) + (ρ/2)‖Ax+Bzk − c+ uk‖22

)
(2.26)

zk+1 := arg min
z

(
g(z) + (ρ/2)‖Axk+1 +Bz − c+ uk‖22

)
(2.27)

uk+1 := uk +Axk+1 +Bzk+1 − c. (2.28)

The typical ADMM algorithm can be adapted to solve a generic constrained
convex optimization problem

min
x

f(x) (2.29)

s.t. x ∈ C, (2.30)

with x ∈ Rn, where f and C are convex. We introduce an auxiliary variable z
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and rewrite the problem as follows:

min
x,z

f(x) + g(z) (2.31)

s.t. x− z = 0 (2.32)

where g is the indicator function of C. The augmented Lagrangian (using the
scaled dual variable) is

Lρ(x, z, u) = f(x) + g(z) + (ρ/2)‖x− z + u‖22, (2.33)

so the scaled form of ADMM for this problem is

xk+1 := arg min
x

(
f(x) + (ρ/2)‖x− zk + uk‖22

)
(2.34)

zk+1 := ΠC(x
k+1 + uk) (2.35)

uk+1 := uk + xk+1 − zk+1, (2.36)

where Π is the Euclidean projection. This is the ADMM formulation that is
adopted in this chapter.

2.3 Modeling the Menu Design Problem as a
Stackelberg Equilibrium

2.3.1 Overview of the Bilevel Model

In the following, we will cast the menu design problem as a Stackelberg game.
The leader in the Stackelberg game is the producer who designs the menu. The
followers are the consumers, who react to the menu offered by the leader. The
information asymmetry arises from the fact that the followers have private
knowledge of their type, whereas the leader is limited to statistical informa-
tion about the distribution of types in the population (e.g. demand functions
obtained from market surveys). The interesting aspect of the model is that
the leader integrates the optimal reaction of the followers into the menu de-
sign problem. This gives rise to a mathematical program with equilibrium
constraints. Although such problems are generally challenging, we exploit the
specific structure of the game in order to cast the problem as a mixed integer
linear program. This allows us to incorporate realistic production constraints
to the problem, which are absent from the traditional literature on priority
service pricing. We thus arrive at a model that integrates menu design with
unit commitment.

A high-level description of the bilevel model is provided in Eqs. (2.37)-
(2.41). The model is further illustrated in figure 2.2.
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Consumers

Producer

Figure 2.2: Interaction between the producer and consumers in the bilevel model.

max
m,n,o,p,d,r,π

SW (m,n,o,p,d) (2.37)

s.t. (m,n,o,p,d) ∈ X (2.38)

r = φ(d, s?) (2.39)

Π? = ψ(m,o,p, s?,π) (2.40)

s? ∈ arg max
s
{CS(r,π) : s ∈ Y} (2.41)

The variables m, n, o, p correspond to startup and shutdown decisions,
unit commitment, and power generation. The subscription quantity of each
consumer to each option is indicated by s, while the supply to each option is
indicated by d. The reliability and price of the menu options is denoted by r
and π, respectively. The profit target of the producer2 is denoted by Π?. All
the notations are summarized in section 2.A.

The function SW in Eq. (2.37) is the objective of the producer, which
is to maximize social welfare. Eq. (2.38) defines the technical constraints of
the producer. Constraint (2.39) expresses the fact that the price menu which
is designed by the producer needs to deliver a promised level of reliability r,
which is affected by how consumers react to the offered menu through their
subscription decision s?. Condition (2.40) further requires that the menu be
designed in such a way that the profit target Π? is reached. Consumers decide
on their subscription by maximizing their surplus CS, as indicated by Eq.
(2.41).

The model could be infeasible if the profit target Π? is assigned an extremely
large value. A reasonable one could be the profit from a flat tariff. The equality
in (2.40) can be expressed as an inequality if the goal is to specify a minimum
profit level for the aggregator. Alternatively, Wilson [Rob93] dualizes the profit
target by using a Lagrange multiplier penalty in the objective function of the
relaxed problem. This non-negative penalty can be adjusted in order to meet

2Nonlinear pricing theory typically considers the setting of a regulated monopoly that
needs to recover certain amount of costs, such as investment costs, by imposing a target on
the profit, see chapter 5 of [Rob93] for details.
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different profit targets. When the penalty is equal to zero, the model maximizes
social welfare whereas increasing the penalty arbitrarily results in a model that
maximizes the profit of the aggregator.

In the following, we introduce the lower-level consumer model and the
upper-level producer model in detail. We then present the bilevel model and
its reformulation as an MILP.

2.3.2 The Consumer Model

The starting point of nonlinear pricing is to capture information asymmetry by
assigning a type to consumers [Rob93]. This is private information, in the sense
that the producer cannot know a priori the type of a given consumer (although
this information is revealed to the producer after the consumers self-select
their preferred menu option). In priority service pricing, types correspond
to valuation for power. A household could be composed of many different
consumer types.

Before presenting the consumer model, we point out two strong assumptions
that are typically employed in the priority service pricing literature [COSW86]
regarding the demand side of the model. The first assumption is that the
priority ranking of consumers for power remains constant over time. The second
assumption is that loads are synchronized.

Given the above assumptions, we arrive at the following consumer model.
Given a set of consumer types, L, a consumer of type l ∈ L is characterized by a
valuation Vl, which represents the priority ranking of a consumer, and remains
constant over the whole horizon according to the first assumption. This allows
us to arrive at a single menu. Without loss of generality, we order consumers
as Vl < Vl+1. In period t, the consumer of type l requires Dl,t units of power,
where Dl,t = D̄l · Θt. Here, D̄l corresponds to the average load of type l and
Θt corresponds to the dynamic profile of consumption. This dynamic profile
is identical for all consumers and the same as the load profile of the residen-
tial sector, due to our second assumption that loads are synchronized. The
synchronization of loads can be relaxed; however, that would place significant
additional information requirements on the producer for knowing the dynamic
profile of each different type. The load profile of the residential sector is a time
series indicating the hourly electricity consumption of the residential sector.
The concept is depicted in figure 2.3. By definition,

∑
t∈T Θt = T , where T is

the number of time periods over which we are designing the menu.
As a follower, the consumer selects service options from a menu with a set of

options I. Each of the options corresponds to a unit of electricity consumption
with reliability ri and price πi. Reliability ri is defined as the fraction of en-
ergy offered to option i, divided by the energy requested under option i. More
specifically, denote the subscription quantity to option i as si and the supply to
this option at period t and scenario ω as di,t,ω. In choosing option i, consumer

27



A Bilevel Optimization Formulation of Priority Service Pricing1

D

D̄l

Dl,t = D̄l ·Θt

T
Figure 2.3: A consumer of type l follows a load profile Dl,t. Since loads are assumed
to be synchronized, this profile can be expressed as Dl,t = D̄l · Θt, where Θt is the
dynamic profile of the system and D̄l is the average electricity consumption of type
l.

l essentially procures sl,i ·Θt following a profile Θt, so that the energy that is
requested under option i is given as

∑
t∈T si ·Θt. The energy that is actually

offered to option i is calculated as
∑
ω∈Ω Pω

∑
t∈T di,t,ω, where Pω is the proba-

bility of scenario ω. Thus, ri is expressed as
∑
ω∈Ω Pω

∑
t∈T di,t,ω/

∑
t∈T si ·Θt.

This is the origin of constraint (2.59), which we present later.

Since πi is the hourly price of option i, the total payment of subscribing for
a unit of power under option i for the entire horizon T of the contract amounts
to πi · T . Concretely, given ri and πi from the upper level producer model, the
optimization problem of the consumer of type l can be described as follows:

max
sl,i

Vl ·
∑
t∈T

∑
i∈I

ri · sl,i ·Θt −
∑
i∈I

sl,i · πi · T (2.42)

s.t.
∑
i∈I

sl,i ·Θt ≤ Dl,t, t ∈ T (2.43)

sl,i ≥ 0, i ∈ I (2.44)

The variable sl,i indicates the amount of power that consumer l allocates to
option i. The first term in the objective function indicates the benefit of a risk-
neutral consumer for this profile. The second term in the objective function
corresponds to the payment that needs to be submitted to the producer in order
to secure this service. Constraint (2.43) requires that the total subscription of
the consumer should not exceed the load of the consumer. Since

∑
t∈T Θt = T

and Dl,t = D̄l ·Θt, we can rewrite the model equivalently as

(CPl) : max
sl,i

∑
i∈I

(Vl · ri · sl,i − sl,i · πi) (2.45)

(γl) :
∑
i∈I

sl,i ≤ D̄l (2.46)

sl,i ≥ 0, i ∈ I (2.47)
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We wish to use the optimality conditions of this problem as constraints of the
producer problem. We do this in order to capture the fact that, when design-
ing a menu, the producer accounts for the optimal reaction of the consumers.
In complementarity form, these conditions will be problematic. Since CPl is
an LP, we wish to express the optimality conditions of the consumer problem
as a collection of primal feasibility, dual feasibility, and strong duality condi-
tions [MAG05,GCGBR09], and we further exploit the special structure of the
consumer problem so as to describe the optimal subscription of the consumer
as a binary variable. As we illustrate later in the thesis, this is essential for our
MILP formulation of the bilevel problem.

The dual of (CPl) can be expressed as:

(CDl) : min
γl

γl · D̄l (2.48)

s.t. γl ≥ ri · Vl − πi, i ∈ I (2.49)

γl ≥ 0 (2.50)

The interpretation of γl is that it captures the surplus that the consumer
achieves by selecting the best option. Strong duality requires that

γl · D̄l =
∑
i∈I

ri · sl,i · Vl −
∑
i∈I

πi · sl,i. (2.51)

Eq. (2.51) involves bilinear terms when it is treated as a constraint of the
reformulated single-level problem, which cannot be dealt with by MILP solvers.
We override this problem by showing that the optimal decision of the consumer
is binary.

Proposition 1. There exists s̃l = (s̃l,i, i ∈ I) with s̃l,i ∈ {0, D̄l} which attains
the optimal objective function value.

Proof. The KKT conditions of (CPl) are given by

0 ≤ sl,i ⊥ −ri · Vl + πi + γl ≥ 0 (2.52)

0 ≤ γl ⊥ D̄l −
∑
i

sl,i ≥ 0 (2.53)

There are two cases to be considered:

Case 1: If D̄l −
∑
i s
?
l,i > 0, then γl = 0, which implies that consumer l

derives zero benefits at the optimal solution, so s̃l,i = 0 for all i ∈ I is optimal.

Case 2: If D̄l −
∑
i∈I s

?
l,i = 0, then it suffices to show that if two options

are ‘active’ (in the sense that s > 0) then they have an equal payoff, and can
therefore be equivalently replaced by a single option. Applying this argument
for all options that are active gives the desired conclusion: consider any two
options i and j for which s?l,i > 0 and s?l,j > 0. Then −ri · Vl + πi + γl = 0 and
−rj ·Vl+πj+γl = 0, and substituting out γl, we have ri ·Vl−πi = rj ·Vl−πj .
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The above proposition implies that sl,i can be expressed as sl,i = D̄l · µl,i,
where µl,i ∈ {0, 1} are binary variables. Thus, Eq. (2.51) is rewritten as

γl =
∑
i∈I

ri · µl,i · Vl −
∑
i∈I

πi · µl,i. (2.54)

Combined with McCormick envelopes3, this reformulation will allow us to
cast the lower-level optimality conditions of the Stackelberg game as a set of
mixed integer linear constraints. This will be detailed in section 2.3.4.

2.3.3 The Producer Model

We follow the standard literature on priority service pricing [Rob93, CW87,
COSW86] in assuming a vertical setup where the utility which is responsible
for aggregating demand response also owns the production assets of the system.

An interesting extension of the present work is to extend our mathematical
programming reformulation in order to analyze aggregator competition. This
model may be cast as an equilibrium problem with equilibrium constraints,
where aggregators maximize profit by offering different price menus and con-
sumers aim at extracting the greater possible surplus.

As a leader of the Stackelberg game, the producer seeks to price reliability
so that residential consumers self-select reliability levels which are consistent
with the generation mix of the system. Information asymmetry implies that
the producer does not know, at the menu design stage, the type (i.e. the
valuation) of an individual consumer. Instead, the producer has access to the
distribution of types in the population. This is exactly the demand function of
the system. For the derivation of constraint (2.61), we will specifically assume
an affine demand function of the form D(v) = −K · v+ b. Note, however, that
the priority service model is not limited to affine demand functions. We use a
discrete approximation of the demand function, with the valuation breakpoints4

V Bi (i = 0 . . . I), with the valuation of the first breakpoint corresponding to
V B0 = 0 e/MWh. These breakpoints separate consumers into I groups and
(V Bi−1 + V Bi )/2 corresponds to the average valuation of consumer group i ∈ I,
while K · (V Bi − V Bi−1) corresponds to the load (in MW) of group i ∈ I. Given
a choice of options by individual consumers, s?l,i, the producer problem then is
written as follows.

3 We use McCormick envelopes in order to represent the product of a binary variable and
a continuous variable. This is therefore an exact linearization, rather than a relaxation.

4In determining these breakpoints, we follow the standard priority service literature by
assuming that these values are determined exogenously.
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max
m,n,o,p
ri,πi,di,t,ω

∑
ω∈Ω

Pω
∑
t∈T

(∑
i∈I

0.5 · (V Bi−1 + V Bi ) · di,t,ω − ht,ω(m,n,o,p)
)
(2.55)

s.t. fg,ω(m,n,o,p) ≤ 0, g ∈ G, ω ∈ Ω (2.56)∑
i∈I

di,t,ω =
∑
g∈G

pg,t,ω + St,ω +Wt,ω, t ∈ T , ω ∈ Ω (2.57)

di,t,ω ≤ si ·Θt, i ∈ I, t ∈ T , ω ∈ Ω (2.58)

T · ri · si =
∑
ω∈Ω

Pω
∑
t∈T

di,t,ω, i ∈ I (2.59)

T ·
∑
i∈I

si · πi −
∑
ω∈Ω

Pω
∑
t∈T

ht,ω(m,n,o,p) = Π? (2.60)

si = K · (V Bi − V Bi−1), i ∈ I (2.61)∑
l∈L

s?l,i = si, i ∈ I (2.62)

di,t,ω, pg,t,ω ≥ 0, i ∈ I, g ∈ G, t ∈ T , ω ∈ Ω (2.63)

mg,t,ω, ng,t,ω, og,t,ω ∈ {0, 1}, g ∈ G, t ∈ T , ω ∈ Ω (2.64)

The goal of the producer is to maximize welfare by using the available
production assets of the system. The cost is expressed by the function ht,ω, and
can include production costs as well as non-convex costs related to startup and
minimum load. The variables m, n, o, p correspond to startup and shutdown
decisions, unit commitment and power generation. The set of generators is
denoted as G. The generator constraints are expressed by the function fg,ω,
and can include standard constraints of unit commitment problems, such as
minimum up and down times, ramp rates, startup profiles, production limits,
and so on [PBF13]. The quantity of consumers signed up under option i is
indicated by si. Their hourly supply is di,t,ω. Constraint (2.57) describes
demand and supply balance. Note that uncertainty in the model corresponds
to a set of solar and wind production scenarios, with the corresponding output
of these resources denoted by St,ω and Wt,ω. Constraint (2.58) requires that
the supply to consumers be limited by their subscription decisions. Constraint
(2.59) determines the reliability of option i as the fraction of energy offered to
option i, divided by the energy requested under option i. In the case study, this
constraint considers the reliability over the entire horizon of the menu design
problem (which we assume to be one year). The constraint can be adapted
straightforwardly in order to guarantee that the reliability is delivered on a
daily/weekly/monthly basis. But the extra computational challenge brought
about by the adaptation is to be investigated. The producer seeks to achieve
a profit target Π?, as indicated in constraint (2.60). Constraint (2.61) implies
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that the subscription quantity of each option is equal to the estimated demand
of the corresponding demand group. This constraint makes sure the average
valuation of consumers in option i is 0.5 · (V Bi−1 + V Bi ), which is consistent
with (2.55). Note that we implicitly require that the designed menu induces
all consumers to select a specific option in the menu. However, by setting the
first valuation breakpoint V B0 to a cut-off level, the present model can be easily
extended to the case where certain consumers are intentionally induced not to
select any option from the menu. The subscription quantity of each option is
equal to the sum of the subscription quantity of consumers in this option, as
indicated by (2.62). One single menu is designed for the whole horizon, but
the model can be easily adapted to offer monthly/seasonal menus.

2.3.4 The Bilevel Model

Given a choice s?l,i of menu options by consumer types, the producer model
is a welfare maximizing commitment and dispatch of the system, of the sort
encountered in the standard unit commitment literature. The delicate task
of the producer is to offer a price menu (ri, πi) so that consumers’ reaction
s?l,i is compatible with the estimated grouping of consumers indicated by V Bi ,
while achieving its profit target. We thus revisit the mathematical programs of
section 2.3.2 and section 2.3.3 in order to develop the full bilevel formulation.
Concretely, we are interested in expressing the following bilevel problem in
MILP form:

min
m,n,o,p
ri,πi,di,t,ω

∑
ω∈Ω

Pω
∑
t∈T

(
ht,ω(m,n,o,p)−

∑
i∈I

0.5 · (V Bi−1 + V Bi ) · di,t,ω
)

(2.65)

s.t. (2.56)− (2.64) (2.66)

s?l,i ∈ arg max
sl,i
{
∑
t∈T

∑
i∈I

(Vl · ri · sl,i ·Θt − sl,i · πi) :∑
i∈I

sl,i ≤ D̄l, sl,i ≥ 0, i ∈ I} (2.67)

We reduce the bilevel problem to a single level by appending the equilibrium
constraints of the Stackelberg followers to the leader problem. We do so by
treating sl,i, ri and πi as variables, and describing the behavior of sl,i as a
function of (πi, ri) through the primal feasibility, dual feasibility, and strong
duality conditions of section 2.3.2.

The primal feasibility constraints (2.46) and (2.47) and the dual feasibility
constraints (2.49) and (2.50) can be inserted directly to the bilevel formulation.
Instead, the strong duality constraint (2.54) becomes a bilinear non-convex
constraint when ri and πi are treated as decision variables.

In order to overcome this challenge, we express constraint (2.54) equiva-
lently by its McCormick envelope. We do so by noting that the reliability
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variable is naturally bounded in the interval 0 ≤ ri ≤ 1, and by imposing a
price limit on the menu offering, 0 ≤ πi ≤ Π+. This allows us to express πi ·µl,i
by a new variable yl,i, and ri · µl,i by a new variable wl,i. The strong duality
constraint (2.54) for every type l ∈ L can then be rewritten as follows:

γl =
∑
i∈I

wl,i · Vl −
∑
i∈I

yl,i

yl,i ≤ Π+ · µl,i, yl,i ≥ 0, yl,i ≤ πi
yl,i ≥ Π+ · µl,i + πi −Π+

wl,i ≤ µl,i, wl,i ≥ 0, wl,i ≤ ri,
wl,i ≥ µl,i + ri − 1.

We thus arrive to a reformulation of the equilibrium conditions of the lower
level as a mixed integer linear set. However, this reformulation results in a
significant increase of binary variables and constraints, which results in pro-
hibitive run times for realistic-scale problems. We overcome this challenge by
(i) using the structure of the lower-level problem in order to propose a set
of valid cuts, and (ii) noting that the variables µl,i are then implied by the
constraints of the problem. We first recall theorem 1 of [CW87]:

Proposition 2. Consider two consumers with valuation Vm and Vn respec-
tively, and denote the optimal choice of reliability and the corresponding price
as r?(Vm) =

∑
i∈I ri · µ?m,i, π?(Vm) =

∑
i∈I πi · µ?m,i. If Vm > Vn, then we

have r?(Vm) ≥ r?(Vn) and π?(Vm) ≥ π?(Vn). In other words, consumers with
higher valuation select more reliable plans and pay more.

Proposition 2 yields the following set of valid cuts:

I∑
i=k

µl,i ≤
I∑
i=k

µl+1,i, l = 1..L− 1, k ∈ I

As shown in figure 2.4, these conditions can be understood as follows. Given
a consumer of type l and a consumer of type l + 1 (recall from section 2.3.2
that we order consumers by increasing valuation, i.e. Vl < Vl+1), type l + 1
subscribes to an option which is at least of the same quality as that of l, because
of the higher valuation of type l+1. This implies that the value of 1 appears in
the sequence {µl+1,i, i ∈ I} no later than it does for the sequence {µl,i, i ∈ I},
counting from I.

The second observation which allows us to arrive to a computationally
tractable model is the observation that a unique solution of the variables µl,i
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Figure 2.4: Illustration of valid cuts derived from proposition 2. The l-axis shows
the indices of consumer types while the i-axis represents the indices of options. The
black dots indicate the optimal choices of consumers.

is obtained from the following set of constraints:

µl,i ∈ {0, 1}, l ∈ L, i ∈ I (2.68)∑
i∈I

µl,i = 1, l ∈ L (2.69)∑
l∈L

D̄l · µl,i = K · (V Bi − V Bi−1), i ∈ I (2.70)

I∑
i=k

µl,i ≤
I∑
i=k

µl+1,i, l = 1..L− 1, k = 1..I − 1 (2.71)

Here, the first constraint has been established by proposition 1, the second
constraint is implied by condition (2.61) and the fact that the lowest valuation
breakpoint is V B0 = 0 e/MWh, the third constraint is condition (2.61), and
the fourth constraint is derived from proposition 2. We state this observation
as a corollary.

Corollary 1. A unique solution of the variables µl,i is inferred from the set of
constraints (2.68) - (2.71).

Proof. We create a feasible solution first, and then show that this feasible
solution is unique by contradiction.

The constraints (2.68) - (2.71) are essentially placing consumers with a
higher consumer index (corresponding to a higher valuation) to options with a
higher option index (corresponding to a higher reliability and price).

A feasible solution to this set of constraints can be created in the following
way. Staring from consumer L and in descending order, consumers are assigned
to option I , until this option is full, as indicated by (2.70). Define lI such that
consumers from L to lI are in this option. Then consumers staring from index
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lI − 1 will be in option I − 1, until the consumer indexed by lI−1 when this
option is full. Similarly, consumers from index li+1− 1 to li will be in option i.
We carry on in decreasing order of options. Since all consumers will subscribe
to a certain option according to (2.69), in the end, consumers from l3 − 1 to l2
are in option 2, and consumers from l2 − 1 to 1 are in option 1.

We proceed to show that this feasible solution is the unique solution. Sup-
pose that there is another way to assign consumers, then we can only swap
consumer m in option j with consumer n in option k, because the subscription
quantity in each option is limited according to (2.70). Suppose that m > n,
and that consumer types m and n are not assigned to the same option, then
j > k. If consumer m is swapped with consumer n, it means that a higher-index
consumer is placed in a lower-index option, which contradicts (2.71).

In conclusion, the feasible solution obtained through the procedure of the
previous paragraph is the unique solution to (2.68) - (2.71).

Note that this observation implies that the variables µl,i of the bilevel model
can be replaced by fixed values µ̄l,i. Effectively, the collection of these four
conditions is an assignment of the consumers of highest type to the options
of highest reliability. Even though µl,i is implied by these conditions, the
challenge of designing a price menu that will induce consumers to self-select
the corresponding options remains. Achieving this consistency is the goal of
the reformulated single level problem, which can be written as follows:

(MILP) :

min
m,n,o,p

di,t,ω,ct,ω,ri
πi,wl,i,yl,i,γl

∑
ω∈Ω

Pω
∑
t∈T

(
ct,ω −

∑
i∈I

0.5 · (V Bi−1 + V Bi ) · di,t,ω
)

(2.72)

s.t. fg,ω(m,n,o,p) ≤ 0, g ∈ G, ω ∈ Ω (2.73)∑
i∈I

di,t,ω =
∑
g∈G

pg,t,ω + St,ω +Wt,ω, t ∈ T , ω ∈ Ω (2.74)

di,t,ω ≤ K · (V Bi − V Bi−1) ·Θt, i ∈ I, t ∈ T , ω ∈ Ω (2.75)

di,t,ω, pg,t,ω ≥ 0, i ∈ I, g ∈ G, t ∈ T , ω ∈ Ω (2.76)

mg,t,ω, ng,t,ω, og,t,ω ∈ {0, 1}, g ∈ G, t ∈ T , ω ∈ Ω (2.77)

ct,ω = ht,ω(m,n,o,p), t ∈ T , ω ∈ Ω (2.78)

(ν) : T ·
∑
l∈L

wl,i · D̄l −
∑
ω∈Ω

Pω
∑
t∈T

di,t,ω = 0, i ∈ I (2.79)

(λ) : T ·
∑
i∈I

∑
l∈L

yl,i · D̄l −
∑
ω∈Ω

Pω
∑
t∈T

ct,ω −Π? = 0 (2.80)
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yl,i ≤ Π+ · µ̄l,i, l ∈ L, i ∈ I (2.81)

yl,i ≤ πi, l ∈ L, i ∈ I (2.82)

yl,i ≥ Π+ · µ̄l,i + πi −Π+, l ∈ L, i ∈ I (2.83)

wl,i ≤ µ̄l,i, l ∈ L, i ∈ I (2.84)

wl,i ≤ ri, l ∈ L, i ∈ I (2.85)

wl,i ≥ µ̄l,i + ri − 1, l ∈ L, i ∈ I (2.86)

γl ≥ ri · Vl − πi, l ∈ L, i ∈ I (2.87)

γl =
∑
i∈I

wl,i · Vl −
∑
i∈I

yl,i, l ∈ L (2.88)

yl,i, wl,i, γl, ri, πi ≥ 0, l ∈ L, i ∈ I (2.89)

In this new formulation, si has been substituted out. Constraint (2.75) is the
result of substituting constraint (2.61) in constraint (2.58). Note that, in con-
straint (2.78), we introduce a new set of free variables ct,ω for representing the
cost ht,ω(m,o,p). Although redundant from a modeling standpoint, these vari-
ables will be useful for decomposing the problem, as described in the following
section.

2.4 Decomposition by ADMM

The bilevel model is reformulated as a single-level MILP, which can potentially
be solved by commercial solvers. However, the case study of the Belgian market
in section 2.5.2 cannot be solved directly, due to the renewable production
scenarios. Therefore, in this section we propose a heuristic based on ADMM
[BPC+11] in order to decompose the problem. The idea of the decomposition is
to relax the coupling constraints (2.79) and (2.80) so that the unit commitment
problem of each scenario can be tackled independently.

2.4.1 ADMM Formulation

Concretely, we define C1 as the set of constraints (2.73) - (2.78) that relate to
the unit commitment part of the problem and C2 as the set of constraints (2.79)
- (2.89) that relate to the consumer problem. We define x1 = (m,n,o,p, c,d)
and x2 = (y,w,γ, r,π,µ). Our goal in using an ADMM algorithm is to de-
compose the overall problem to a part that relates to the unit commitment, and
to a part that relates to the consumer. The general idea of the approach is to
create copies of di,t,ω, denoted as dx and dz, that are shared between so-called
x-updates (the x updates involve unit commitment problems that are decom-
posable by scenario) and z-updates (the z updates implicate the consumer
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variables). In creating these clones of the original variables, we can move the
complicating constraint (2.79) to the consumer sub-problem, and decouple the
unit commitment sub-problem by scenario. In the same spirit, in order to re-
lax constraint (2.80), we create copies of the variable ct,ω that we denote by
cx and cz respectively. These variables are handled by the unit commitment
problems (x-updates) and the consumer problems (z-updates) respectively. An
illustration of the algorithm on a toy example is presented in the appendix of
this chapter.

In abstract form, we left-multiply x1 by a matrix A of appropriate dimen-
sion, which gives us Ax1 = (c,d) and we create a copy z of Ax1.

The MILP formulation of the model (2.72)-(2.89) can thus be rewritten in
a stylized form as follows :

min
x1,x2,z

f(x1) (2.90)

s.t. x1 ∈ C1 (2.91)

(x2, z) ∈ C2 (2.92)

Ax1 − z = 0 (2.93)

We can define an indicator function g of C2, and the problem is rewritten as

min
x1∈C1,x2,z

f(x1) + g(x2, z) (2.94)

s.t. Ax1 − z = 0 (2.95)

The ADMM iterations can then be expressed as follows:

xk+1
1 := arg min

x1∈C1

(
f(x1) + (ρ/2)‖Ax1 − zk + uk‖22

)
(2.96)

(xk+1
2 , zk+1) := ΠC2(Axk+1

1 + uk) (2.97)

uk+1 := uk +Axk+1
1 − zk+1 (2.98)

where ΠC is the projection operator on the set C and u are the scaled dual
variables. For our specific problem, each element of Ax1−z = 0 implicates only
variables of a given month and scenario, therefore the regularization term in
(2.96) can be decoupled by month and scenario, which is the original motivation
for using a decomposition method.

The scheme is further illustrated in figure 2.5. The light gray blocks cor-
respond to constraints C1 and the dark gray block corresponds to constraints
C2. Note that the unit commitment problem in each scenario is decomposed
into 12 independent monthly unit commitment problems5, which are solved in
parallel, so that there are 12 · |Ω| unit commitment subproblems in total. The
light gray blocks updates the x1 variables. The dark gray block is used for
updating (x2, z). The variables u are then used for updating the light gray

5Boundary effects are handled by wrapping the monthly commitment problem around
itself.

37



A Bilevel Optimization Formulation of Priority Service Pricing

x1 update

ω-Jan. ω-Feb. ... ω-Dec.

C2(x2, z) update

dcu update

Figure 2.5: The application of ADMM as a heuristic for decomposing the reformulated
MILP.

blocks in the next iteration.

2.4.2 Convergence

In practice, the dual residual and primal residual are used to check the conver-
gence of ADMM for a convex problem. However, the model presented in this
paper is non-convex. Therefore, residuals are not a proper indication of conver-
gence in this case, since there is no reason to expect that they should eventually
vanish. Instead, we determine the convergence by checking the gap between an
upper bound and lower bound of the problem. We derive the upper and lower
bound as part of our algorithmic implementation. More specifically, recovery of
a feasible primary solution is carried out in order to calculate an upper bound
and dual decomposition is adopted for computing the lower bound6.

2.4.2.1 Upper Bounding by Recovery of Primal Feasible Solutions

The idea of the upper bounding method is to fix the unit commitment part
of the problem, and seek a menu design and a set of consumer choices that
are consistent with the fixed unit commitment decisions. In doing so, we fix
the majority of variables of the original problem, and are left with a relatively
light MILP that can potentially yield a feasible solution and an upper bound.
Even though there is no convergence guarantee for ADMM when applied to
this model, at the end of each ADMM iteration we can fix part of the solution,
i.e., x1, and solve the following problem:

(PR) : (x2, z) ∈ C2 (2.99)

Ax?1 − z = 0 (2.100)

6Dual decomposition applies to our model, but the primal solution from dual decomposi-
tion is not of acceptable quality. Therefore, we only use it to obtain a lower bound.
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If (PR) is feasible, we obtain an upper bound as f(x?1), otherwise the upper
bound returned from the iteration in question is +∞. Note that there is no
theoretical guarantee that we can find a feasible solution to (PR). Nevertheless,
in the case study presented later, we can find a good upper bound after a certain
number ADMM iterations. This is because, in later iterations, the solution from
the unit commitment part of the problem evolves, so that the total cost and
price region defined by the consumer choice constraints change, which enable
the profit constraint to be satisfied.

2.4.2.2 Lower Bounding by Dual Decomposition

The following computation is performed once at the outset of the problem, in
order to yield a lower bound, before launching the ADMM algorithm. We relax
constraints (2.79) and (2.80) in problem (MILP) by using the corresponding
dual variables ν and λ, so that the whole problem is decomposed into the
following dual subproblems.

Dual subproblem - producer in scenario ω:

min
di,t,ω,m,n,o,p

Pω
∑
t∈T

(
ht,ω(m,n,o,p)− (2.101)

∑
i∈I

0.5 · (V Bi−1 + V Bi ) · di,t,ω
)

(2.102)

−
∑
i∈I

νi · Pω ·
∑
t∈T

di,t,ω (2.103)

− λ · Pω ·
∑
t∈T

ht,ω(m,n,o,p) (2.104)

s.t. (2.73)− (2.77) (2.105)

Dual subproblem - consumer:

min
ri,πi,wl,i,yl,i,γl

∑
i∈I

νi · T ·
∑
l∈L

wl,i · D̄l (2.106)

+ λ · T ·
∑
i∈I

∑
l∈L

yl,i · D̄l − λ ·Π? (2.107)

s.t. (2.81)− (2.89) (2.108)

This is a standard scenario decomposition of the problem. Many algo-
rithms are available for solving the dual decomposition, such as the subgradient
method [POO11, PO13], the cutting plane method [KZ18], and bundle meth-
ods [Sag12]. In our study, we adopt a standard cutting plane method which
is suitable for low-dimensional spaces. Note that, in the implementation of
the dual decomposition, the unit commitment problem of each scenario is also
decomposed by month. The maximum of the dual function which is obtained
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from the cutting plane method (which is the sum of the objective values of the
dual sub-problems) is a lower bound of (MILP). We can compare this lower
bound to the upper bound obtained from the primal feasible solution recovery
in order to decide when to terminate the algorithm.

2.4.3 Runtime Complexity of the Algorithm

The total run time of the proposed decomposition algorithm depends on the
run time of each iteration and the number of iterations needed to converge to
an acceptable optimality gap. Note that the run time of the x-update of the
ADMM algorithm dominates that of the other steps because it involves unit
commitment problems. Regarding the number of iterations needed to converge,
it is related to the choice of ρ. If ρ is larger, it is likely that feasible solutions are
found in earlier iterations of the ADMM algorithm, however the larger choice
of ρ also has an adverse effect on the quality of the solution. A more detailed
discussion on the run-time of the algorithm is available in section 2.C

2.5 Case Studies

In this section, we present two illustrations of the model. The first one is a toy
example used for validation, which compares the closed-form solution provided
by priority service pricing theory [CW87] to the solution of the bilevel model.
The second case study is a realistic model of the Belgian power system. For this
realistic case study, we compare priority service pricing to real-time pricing and
an optimal flat tariff in terms of social welfare, and we analyze the interruption
patterns of priority service pricing.

2.5.1 A Toy Example

Consider a system with the demand function D(v) = 1620− 4 · v. The system
consists of two generators. The first generator is reliable and has a marginal cost
of 65.1 e/MWh, and a capacity of 295 MW. The other generator is unreliable.
It is operational with a probability P1 = 83.3% and is out of service with a
probability P2 = 16.7%. The second generator has a capacity of 1880 MW and
a marginal cost of 0 e/MWh.

Consider the breakpoints V B0 = 0, V B1 = 331.25, V B2 = 405 e/MWh. In
this case, 1325 MW subscribe to the first option, and 295 MW subscribe to
the second option. The closed-form solution [CW87] prescribes the following
service menu:

π(r) =

{
0 e/MWh, r = 83.3%

55.3 e/MWh, r = 100%

The profit of the producer amounts to 13106.3 e.
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In order to implement the bilevel model in this toy example, we discretize
the demand function into 1620 consumer types. Given a profit target of 13106.3
e, the model yields a price menu which is identical to that of [CW87] within
one significant digit. If we increase the profit requirement of the firm to 15000
e, we obtain the following price menu from the bilevel model:

π(r) =

{
0.1 e/MWh, r = 81.5%

61.3 e/MWh, r = 100%

Note that the increased profit target of the producer is largely covered by
increasing the price of the second option.

2.5.2 The Belgian Power System Model

This section presents a case study of the Belgian system in a forward-looking
scenario of the year 2050. We consider this forward-looking scenario because
priority service pricing is more relevant in the situation where there could be
shortages due to highly variable supply. The expected large scale of renewable
energy integration targeted by 2050 renders it suitable for the case study. A
full-year horizon and one-hour resolution is considered.

The conventional generator fleet of the model consists of 55 units. The
installed capacity of each technology follows the projected capacity of the
year 2050 according to the EU 2050 reference scenario [EC17]. The techni-
cal specifications of the units are available from the website of the Belgian
TSO Elia [Eli19b]. The installed capacity of conventional generators, which
totals 15784 MW, can be broken down as follows: gas (14965 MW), oil (10
MW), biomass (542 MW), and waste (267 MW). The long-term maintenance
schedule of units is accounted for by derating the maximum capacity of the
units by a certain availability ratio. The availability ratio follows the hourly
profiles of 2015 [Eli19b].

Wind and solar production profiles corresponding to the years 2013 to
2017 and import profiles for the year 2015 with hourly resolution are collected
from [Eli19b]. These profiles are scaled up according to the projected value of
the year 2050, according to the EU 2050 reference scenario [EC17]. Ten sce-
narios of wind and solar production are created, in order to better characterize
uncertainty in renewable production. In order to preserve seasonal effects, the
scenarios of wind and solar power production are created as follows. In the case
of solar, we shuffle the days within the same week. For example, the days in the
first week of 2013-2017 are regarded as samples of the same day (35 in total),
and then we randomly draw one day from this set. The hourly load factor
(production divided by installed capacity) of this day is used in order to derive
the production profile of the first day in 2050. For wind, we shuffle the months
in the same season. The projected ratio of renewable energy production to
total energy production for 2050 is 27.4%, with the peak production amount-
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ing to 11690 MW. The projected peak load in 2050 amounts to 18700 MW. It
is worth noting that, during some hours, curtailment of renewable production
could occur.

The pumped hydro storage in Belgium has a pumping capacity amounting
to 1200 MW, while the energy storage capacity of pumped hydro amounts to
5700 MWh. Pumped hydro resources are assumed to have a roundtrip efficiency
of 76.5% [PS17].

The total load profile of year 2015 is also available from [Eli19b]. We split
this profile into a residential, industrial and commercial load, according to Syn-
thetic Load Profiles (SLP) [Syn17], which are normalized electricity consump-
tion time series with 15-minute resolution that are publicly available for the
residential and non-residential sectors. The load profiles are scaled up to the
year 2050 according to the EU 2050 reference scenario [EC17]. The dynamic
profile of consumption Θt is estimated using SLP.

We focus on residential demand. Thus, industrial and commercial demand
is assumed to follow a fixed profile7. Hourly demand functions for residential
consumers are assumed to be linear, and are calibrated by assuming a price
elasticity of −0.5 at the historically observed consumption and price for each
hour of the data8.

Figures 2.6 and 2.7 highlight the differences between the Belgian system
in 2015 and the projected system in 2050 according to [EC17]. It is observed
from figure 2.6 that the power plants fueled by nuclear and solid fuels phase
out in 2050. On the other hand, the total installed capacity of conventional
generators increases, due to the significant growth in gas plants. The capacity
of renewable resources increases as well, especially insofar as wind power is
concerned. The electricity imported from other countries decreases slightly,
as presented in figure 2.7. In contrast, the total demand increases by around
36.7%.

2.5.2.1 Price Menu Designed According to Chao’s Theory

The original theory of priority service pricing relies on a convex cost function,
i.e. an economic dispatch model which does not account for startup costs,
minimum load costs and minimum capacity constraints of generators. Ignoring

7Industrial and commercial consumers are already active in demand response and they
are willing to engage in more sophisticated demand response programs due to the substantial
cost saving potential. For instance, some utilities offer real-time pricing to the industrial and
commercial sectors [HBPV18]. We consider priority service as being out of scope for these
classes of demand-side flexibility, since the major motivation for priority service is simplicity.
This simplicity is a necessary condition for residential consumers, but has not been proven
not to be a prerequisite for the proliferation of demand response in the commercial and
residential sectors. Therefore, in this work we focus on the application of priority service to
the residential sector.

8According to the Tempo program of EDF, the estimated elasticity is between -0.18 to
-0.79 [FS10a].
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Figure 2.6: Installed capacity of different technologies in 2015 and 2050 in Belgium.
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Figure 2.7: Total import and demand in 2015 and 2050 in Belgium.

these conditions may result in a mismatch between promised and delivered
reliability.

In table 2.1 we present the results of the menu designed according to the
theory of Chao [CW87]. We have discretized the menu into 5 options. The price
and reliability of each option are presented in the first two columns of table 2.1.
The fourth and fifth column indicate the average valuation and total demand of
each group of types within a given option. Based on this information, a piece-
wise constant demand function is used as an input to the true unit commitment
model of the Belgian system. The realized reliability of each option is indicated
in the third column of the table. We observe a significant deviation between
promised and delivered reliability, especially for the first two options.

2.5.2.2 Performance of the ADMM Algorithm

Figure 2.8 presents the convergence of dual decomposition based on the cut-
ting plane method. The lower bound that is obtained by dual decomposition
amounts to - 5767.5 million.

ADMM is implemented in Julia [BEKS17] and we utilize 120 CPUs on
the CÉCI cluster [CEC19] in order to solve the model, with one CPU being
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Table 2.1: Price menu for the example of section 2.5.2 based on Chao’s theory.

Price
(e/MWh)

Reliability
(%)

Realized
Reliability (%)

Vi
(e/MWh) Di (MW)

0.0 21.6 0.6 31.7 436.8
46.0 94.2 93.2 116.9 739.1
52.8 98.2 97.8 231.3 839.9
57.3 99.7 99.7 353.1 839.9
58.3 100.0 100.0 450.5 504.0

0 5 10 15

Iterations

-5850

-5800

-5750

-5700

lower bound
objective value of master

Figure 2.8: Convergence of the cutting plane method in the case study in section
2.5.2. The solid curve presents the evolution of the lower bound of the dual function.
The dotted curve presents the evolution of the objective value of the master problem
in the cutting plane method. A valid cut that limits the objective value of the master
problem under -5700.5 million (which is the performance of a flat tariff) is added to
the master problem in order to stabilize the first few iterations.

dedicated to each subproblem in the x-update of ADMM. Gurobi is chosen as
the solver and the MIP gap is set to be 0.1%. The run time for 30 iterations of
the algorithm amounts to 2.7 hours. The first feasible solution is obtained at the
16th iteration and the corresponding objective value amounts to -5763.4 million.
The absolute gap of the algorithm, compared with the lower bound, is 4.1
million, which accounts for 0.34% of the operating costs of serving residential
consumers9. The required run time for 16 iterations amounts to 1.3 hours.
The best solution is achieved at the 27th iteration, with an objective of -5763.5
million. Note that this is very close to the objective function value of the 16th
iteration.

9We consider this gap as being acceptable, based on typical optimality gaps that are used
in the stochastic unit commitment literature [POO11, PO13, PS15] that are in the order of
1%.
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Table 2.2: The price menu obtained by ADMM in the case study of section 2.5.2.

Reliability (%) Realized Reliability (%) Price (e/MWh)
5.3 5.3 0.0
92.9 92.9 55.6
97.8 97.8 64.0
99.7 99.7 69.6
100.0 100.0 70.6

Table 2.3: Economic performance of priority service pricing, flat tariff and real-time
pricing in the case study of section 2.5.2.

Policy
Social

Welfare
(M e)

Consumer
Benefits
(M e)

Consumer
Net Benefits

(M e)

Producer
Profits
(M e)

Producer
Costs
(M e)

FT 5700.5 6876.8 5234.5 466.1 1176.2
PSP 5763.4 6952.0 5297.4 466.1 1188.6
RTP 5782.3 6992.4 5515.1 267.2 1210.2

2.5.2.3 Welfare Comparison

This section compares the results of priority service pricing with those of the
optimal flat tariff and of real-time pricing.

Table 2.2 presents the promised reliability, realized reliability and price
that are obtained from solving the model using our proposed algorithm. It
is observed that there is no deviation between the promised reliability and
realized reliability, which is in stark contrast to the results of table 2.1 that
are obtained from traditional priority service pricing theory. This is a powerful
aspect of integrating menu design with unit commitment. We further test
our model out of sample by running it against 1000 scenarios that are drawn
from the same distribution, but do not correspond to the scenarios used in
the bilevel model. We find that the realized reliability levels amount to 5.9%,
93.4%, 97.8%, 99.7% and 100.0%, and are therefore very close to the in-sample
reliability levels.

Table 2.3 compares the economic performance of priority service pricing,
flat tariffs and real-time pricing. It is observed that priority service pricing
increases social welfare by 1.1% compared to the welfare achieved by a flat
tariff. This corresponds to 77.1% of the welfare gains that can be achieved
from moving from a flat tariff to real-time pricing. The producer profit under
the flat tariff is set as the profit target of the bilevel model. We can achieve
this profit target exactly when solving the bilevel model. The welfare gains are
all allocated to consumers in this case study, but the allocation can be adjusted
by setting a different profit target for the producer.

Figure 2.9 compares the price duration curves under different pricing po-
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Figure 2.9: Comparison of price duration curves in the case study of section 2.5.2.

lices. The models involve binary unit commitment decision variables, so we
solve the linear relaxation and the dual variables associated with the supply
demand balance constraint are regarded as the market prices [GHP07]. Under
priority service pricing and real-time pricing the market price is determined
by the valuation of consumers during scarcity. The price plateaus that are
observed in the figure under priority service pricing are due to the fact that
consumers are categorized into several priority classes. The market prices under
real-time pricing and priority service pricing prove to be beneficial for allowing
peaking generators to recover investment costs, as we comment below.

We comment specifically on the financial viability of CCGT units, due to
recent concerns related to the adequate presence of flexible capacity in the
Belgian electricity market [PSdMd19]. The running investment cost of CCGT
ranges from 6.03 to 8.66 e/MW per hour, assuming an overnight cost of 595
e/kW, an annual discounting rate of 8 to 12% and an investment lifetime of
25 to 30 years [PSdMd19]. As observed from figure 2.10, the profit of CCGT
units under real-time pricing ranges from 15.81 to 23.78 e/MW per hour, while
under priority service it ranges from 15.54 to 22.29 e/MW per hour. The
results indicate that priority service can contribute towards keeping peaking
generators in the market and avoiding further scarcity. The relatively high
profit of CCGT units mainly stems from the 1000 hours when the system is
stressed, and at which time price-responsive consumers are setting the clearing
price. One attribute which is not captured in the model of the present chapter
is the fact that, during these hours, households are expected to use their local
storage for part of the electricity consumption. This feature is investigated
in the next chapter. The result indicates that priority service pricing is able
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to signal scarcity in capacity. This motivates the extension of the model by
considering investment decisions [JT07].

1 2 3 4 5 6 7 8 9

CCGT
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10

15

20

25

RTP PSP

Figure 2.10: Profitability of CCGT units in the case study of section 2.5.2.

2.5.2.4 Interruption Patterns

A powerful feature of our proposed model is that it reveals the interruption
patterns associated with a given level of reliability. These interruption patterns
are the direct output of our model, in particular they correspond to the di,t,ω
variables. This illuminates the impact of different options on the discomfort
that is experienced by households.

Figure 2.11: Interruption patterns of 1 kW power in the most reliable four options
for the case study of section 2.5.2. In this figure, white parts show that 1 kW power
in the corresponding hours is interrupted.

In figure 2.11 we present the interruption pattern for 1 kW of supply into
the four most reliable options of table 2.2. To illustrate the usefulness of this
model, note that although option 2 corresponds to a reliability level of 92.9%
(which, if evenly distributed, implies an interruption frequency of 4.4 minutes
per hour), around hour 1000 of the simulation, loads under this option expe-
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Figure 2.12: Comparison of residential demand profiles in the case study of section
2.5.2.

rience a continuous interruption of 20 hours. The severity of such continuous
interruptions needs to be carefully accounted for by utilities, and cannot be
furnished by the classical theory of priority service pricing [CW87]. We note
that the excessive stress that the system experiences around hours 500, 1000
and 7000 is driven by three factors: high industrial and commercial demand,
low renewable production and low availability of conventional generators due
to maintenance.

2.5.2.5 Impacts on Demand Profiles

Figure 2.12 compares the residential demand profiles under different policies.
The solid curve shows the load duration curve under real-time pricing and the
profiles under the flat tariff and priority service pricing are sorted according to
the same order, presented as the dotted curve in the upper panel and the dash-
dot curve in the lower panel, respectively. It can be seen that the residential
demand profile of priority service pricing deviates less from the profile of real-
time pricing than the flat tariff. This indicates that priority service pricing
is able to distinguish the valuation of consumers and serve them when the
valuation justifies the cost, resulting in higher efficiency.

In order to further illustrate the effect of demand response on consumers,
we present a sample day with abundant wind production during the winter.
In figure 2.13 we observe that the production of wind power is significant over
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Figure 2.13: Wind production profile of a sample day in the case study of section
2.5.2.
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Figure 2.14: Comparison of residential demand profiles of a sample day in the case
study of section 2.5.2.

the day except for a drop at hour ten. Figure 2.14 compares the residential
profiles of this day under different demand response policies. It is evident
that, under real-time pricing and priority service, consumers are able to react
to the fluctuation of wind production by consuming more during the periods
with more wind production, and reducing consumption at hour ten. In stark
contrast, consumers under the flat tariff do not align their consumption with
the availability of renewable energy.
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2.A Nomenclature

This section gives the nomenclature used in section 2.3.

Sets

L, L Set of consumers and its car-
dinality

T , T Set of time periods and its
cardinality

I, I Set of options and its cardi-
nality

Ω Set of scenarios

G Set of generators

X Domain of the unit commit-
ment variables

Y Domain of subscription
quantity of consumers

Parameters

Θt Dynamic profile of consump-
tion

Vl Valuation of consumer l
[e/MWh]

D̄l Average demand of con-
sumer l [MW]

V B
i Valuation breakpoint, i =

0 . . . I [e/MWh]

Vi Average valuation of group i
[e/MWh]

Di Demand of group i [MW]

K Slope of demand function

Π? Profit target [e]

Π+ Upper bound on prices in
the menu [e/MWh]

Pω Probability of scenario ω

St,ω Solar production at hour t in
scenario ω [MW]

Wt,ω Wind production at hour t
in scenario ω [MW]

µ̄l,i Inferred consumer subscrip-
tion decision

Variables

πi Price of option i [e/MWh]

ri Reliability of option i [%]

µl,i Binary decision of consumer
l for option i

yl,i Auxiliary variable to repre-
sent πi · µl,i

wl,i Auxiliary variable to repre-
sent ri · µl,i

sl,i The subscription quantity of
consumer l under option i
[MW]

si The total subscription quan-
tity under option i [MW]

di,t,ω Supply to option i at hour t
in scenario ω [MW]

ct,ω Total costs at hour t in sce-
nario ω [e]

pg,t,ω Production of generator g at
hour t in scenario ω [MW]

mg,t,ω Start up decision of genera-
tor g at hour t in scenario ω,
binary

ng,t,ω Shut down decision of gener-
ator g at hour t in scenario
ω, binary

og,t,ω Unit commitment decision
of generator g at hour t in
scenario ω, binary

m Compact form of mg,t,ω,
similarly for n, o, p, c, d,
y, γ, r, π, µ and ν

s Compact form of sl,i

Functions

ht,ω Cost function including pro-
duction costs, startup and
minimum load costs
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fg,ω Constraints of unit com-
mitment problems, includ-
ing minimum up and down
times, ramp rates and pro-
duction limits

SW Social welfare function

CS Consumer surplus function

φ Abstract function to calcu-
late reliability

ψ Abstract function to calcu-
late the profit

2.B A Toy Example to Illustrate ADMM

In section 2.4, we decompose the full model by making copies of some variables
and adopting ADMM algorithm. The presentation could be involved due to
the scale of the model, so we illustrate the methodology on a toy example in
this section to get the idea better conveyed.

Consider a system with L consumers, whose valuation is indicated by Vl, l ∈
L, and whose power demand is uniformly equal to D. We design a menu with a
single option, assuming that the total target subscription is D = K ·(V B1 −V B0 )
with valuation breakpoints V B0 and V B1 . Suppose that the system consists of
one generator, which is operational with a probability of P1 and is out of service
with a probability P2. The generator is assumed to have a capacity of Pmax

and a marginal cost of MC. The profit target is Π?. The overall model can be
formulated as follows:

min
d1,d2,c1,c2,r,π

P1 · c1 + P2 · c2

−0.5 · (V B0 + V B1 ) · (P1 · d1 + P2 · d2) (2.109)

s.t. 0 ≤ d1 ≤ Pmax (2.110)

d2 = 0 (2.111)

d1 ≤ D (2.112)

c1 = MC · d1 (2.113)

c2 = 0 (2.114)

r ·D − (P1 · d1 + P2 · d2) = 0 (2.115)

π ·D − (P1 · c1 + P2 · c2) = Π? (2.116)

r · Vl − π ≥ 0, l ∈ L (2.117)

0 ≤ r ≤ 1 (2.118)

0 ≤ π ≤ Π+ (2.119)

where d1 denotes the supply in scenario ω1 and d2 in scenario ω2. The ob-
jective (2.109) minimizes the negative of social welfare. Constraints (2.110)
and (2.111) require that supply be limited by the available capacity in each
scenario. Constraint (2.112) requires that the supply be limited by the sub-
scription quantity. Constraints (2.115) and (2.116) are the reliability and profit
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constraints, respectively. Constraint (2.117) guarantees that consumers obtain
a non-negative surplus.

We drop d2 and c2 since they are equal to 0 and create a copy of d1 and
c1 (we denote the variable and its copy as dx and dz, cx and cz, respectively),
yielding

min
dx,dz,cx,cz,r,π

P1 · cx − P1 · 0.5 · (V B0 + V B1 ) · dx (2.120)

s.t. 0 ≤ dx ≤ Pmax (2.121)

dx ≤ D (2.122)

cx = MC · dx (2.123)

r ·D − P1 · dz = 0 (2.124)

π ·D − P1 · cz = Π? (2.125)

r · Vl − π ≥ 0, l ∈ L (2.126)

0 ≤ r ≤ 1 (2.127)

0 ≤ π ≤ Π+ (2.128)

dx − dz = 0 (2.129)

cx − cz = 0 (2.130)

The correspondence between the variables of the model and the stylized for-
mulation in section 2.4 is as follows: x1 = (dx, cx), x2 = (r, π) and z = (dz, cz).
The function f(x1) refers to objective (2.120). The set C1 corresponds to con-
straints (2.121) - (2.123) while the set C2 corresponds to constraints (2.124)
- (2.128). The equalities Ax1 − z = 0 correspond to constraints (2.129) and
(2.130).

The augmented Lagrangian using scaled dual variables is written as:

Lρ(dx, dz, cx, cz, r, π, u1, u2)

= P1 · cx − P1 · 0.5 · (V B0 + V B1 ) · dx (2.131)

+ ρ/2 ·
(
(dx − dz + u1)2 + (cx − cz + u2)2

)
(2.132)

The x-update of the update (2.96) corresponds to solving:

(PX) : min
dx,cx

P1 · cx − P1 · 0.5 · (V B0 + V B1 ) · dx (2.133)

+ ρ/2 ·
(
(dx − dkz + uk1)2 + (cx − ckz + uk2)2

)
(2.134)

s.t. (2.121)− (2.123) (2.135)

The z-update which corresponds to (2.97) is:

(PZ) : min
dz,cz,r,π

ρ/2
(
(dk+1
x − dz + uk1)2 + (ck+1

x − cz + uk2)2
)

(2.136)

s.t. (2.124)− (2.128) (2.137)

52



2.C. Detailed Report on Run-time

The u-update which corresponds to (2.98) is:

uk+1
1 := uk1 + dk+1

x − dk+1
z (2.138)

uk+1
2 := uk2 + ck+1

x − ck+1
z (2.139)

2.C Detailed Report on Run-time

The total run time of the algorithm depends on the the run time of each
iteration and the number of iterations required for convergence. We analyze
the two factors in turn.

The run time of one iteration can be deduced as follows. Each iteration con-
sists of four steps, the x-update, the z-update, the u-update, and the recovery of
primal feasible solutions. The run times of these processes are denoted respec-
tively as X, Z, U and R. Then, the run time of one iteration is X+Z+U +R
and the run time of the x-update dominates the run time of the other processes
because it involves unit commitment problems. For example, in the case study
reported in the Belgian case study, the 16th iteration requires 398.1 seconds in
total and the x-update alone requires 380.3 seconds, which accounts for 95.5%
of the total run time. The run-time of the x-update depends on the run time of
each unit commitment subproblem (S), the number of CPUs (C) available to
solve unit commitment subproblems and the number of subproblems (C ·N).
So the run time of the x-update is approximately O(S ·N), which corresponds
to the run time of the iteration.

However, it is worth noticing that the run time of each subproblem could
differ significantly. We still use the 16th iteration as an example. We use 120
CPUs and the number of subproblems is 12 · |Ω| = 120 (12 months, 10 sce-
narios). The shortest run time amounts to 67.8 seconds, the longest run time
amounts to 380.3 seconds, and the average run time is 125.3 seconds. One
method to reduce the run time of one iteration is to implement ADMM in an
asynchronous fashion [CHLW16]. Since the run time of the current implemen-
tation is reasonable and asynchronous ADMM is not guaranteed to outperform
synchronous ADMM, we do not explore this approach further in this study.
Another way to achieve further computational efficiency is to decompose the
unit commitment problem of each scenario into 52 subproblems instead of 12,
i.e., the horizon of each subproblem becomes one week instead of one month.
Meanwhile, more computing resources are required since the number of sub-
problems in the x-update increases to 52 · |Ω| = 520 and the weekly horizon
should be justified10.

10In particular, the time scale of the reserve market is a relevant factor, since it couples the
operations across multiple days. The tertiary reserve market in Belgium is cleared monthly
whereas primary and secondary reserve is clearly weekly is currently weekly and is gradually
transitioning to day-ahead clearing [Eli19a]. The reserve market in some other countries is
cleared weekly, such as Germany [HAE+14]. Therefore, a weekly time horizon for Central
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The run time of the unit commitment subproblem is also likely to increase
if the number of generators increase, because more binary decision variables
will be involved. The number of consumers will not affect the run time of the
x-update significantly, because the choices of consumers are inferred from their
privately known types, as described by proposition 2. The number of options
in the price menu tends to increase the complexity of the model, but too many
options would anyways violate the principle of priority service pricing since they
would exert an overwhelming information processing burden on households. We
therefore consider three to five options as a reasonable compromise. Proposition
6 in [CW87] shows that the deadweight loss decrease is inversely proportional
to the square of the number of options, so that a few options will anyways reap
most of the benefits that one can hope to gain from priority service pricing.

Regarding the number of iterations needed to yield a solution of desired
quality, this depends strongly on the choice of ρ. For a larger choice of ρ, it is
likely that the first feasible solution is found earlier, but the larger ρ also has
an adverse effect on the quality of the solution.

In table 2.4, we report on the impact that the choice of different algorithm
parameters can have on run time.

In the table, ρ is the penalty imposed on the regularization term in ADMM;
the second column presents the number of subproblems in the x-update, which
depends on the horizon of the unit commitment problems (weekly or monthly);
the third column shows the number of CPUs that are used in the computa-
tions; the fourth column indicates the index of the first iteration that returns
a solution and the corresponding run time and social welfare. We say the first
solution is yielded when the relative gap with respect to operating costs is
less than 1%, as indicated in the table. In other words, the algorithm con-
verges when the relative gap is less than 1%. Since the objective is to minimize
negative social welfare, the relative gap is calculated as

Relative Gap =
UpperBound− LowerBound

OperatingCosts

=
|LowerBound| − SocialWelfare

OperatingCosts

The absolute gap (|LowerBound| - SocialWelfare) is presented in the last
column. By comparing the first two rows, we can observe that if we reduce
the number of CPUs that are employed in order to run the algorithm, the run
time will increase, but the efficiency is not linear. By comparing the second
row with the third row, it is observed that with a larger ρ, we arrive to the
first solution in fewer iterations, but the quality of the solution also decreases.
By comparing the second and fourth row, we can see that when the horizon of

Western European systems with weekly or daily reserve clearing and where the only means of
storage are pumped hydro reservoirs (as opposed to large hydro reservoirs) is also a reasonable
assumption.
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Table 2.4: Solution comparison of using different parameters in ADMM.

(a)

ρ
No. of

Subproblems
No. of
CPUs

Iterations
to 1st

solution

Run Time
to 1st

solution (hrs)
0.2 120 40 16 2.2
0.2 120 120 16 1.3
3 120 120 13 0.82

0.2 520 130 17 0.52
0.2 520 520 17 0.27

(b)

ρ
Social Welfare
of 1st solution

(M e)
Relative Gap

Absolute
Gap (M e)

0.2 5763.4 0.34% 4.1
0.2 5763.4 0.34% 4.1
3 5757.8 0.81% 9.7

0.2 5763.9 0.27% 3.6
0.2 5763.9 0.27% 3.6

the unit commitment problem is reduced to one week, we can achieve further
computational efficiency. As we demonstrate in the last row, the computing
time can be further reduced to 0.27 hours with 520 CPUs. By comparing the
gap of the second and fourth row, we can conclude that the performance of the
algorithm is stable for different horizons of the unit commitment problem in
the x-update.

There are other heuristics that can potentially speed up the convergence
of the ADMM algorithm. For example, ρ could assume dynamic values that
change over iterations [HYW00]. In addition, warm-start strategies can be
adopted at each iteration by exploiting solutions from previous iterations. We
have not explored these techniques in this work, since the run time is satisfac-
tory.

2.D Sensitivity Analysis on the Number of Op-
tions

The efficiency gains of priority service depend on the number of options in the
price menu. However, relying on too many options would violate the principle
of simplicity in priority service, since a large number of options would exert
an overwhelming information processing burden on households. We therefore

55



A Bilevel Optimization Formulation of Priority Service Pricing

Table 2.5: Sensitivity Analysis on the Number of Options in the Priority Service
Pricing Menu

Number of Options Social Welfare (M e) Efficiency Gain (%)
5 5763.4 77.1
4 5760.8 73.7
3 5750.7 61.4

consider three to five options as a reasonable compromise. Proposition 6 in
[CW87] shows that the deadweight losses resulting from priority service are
inversely proportional to the square of the number of options, so that a few
options will anyways reap most of the benefits that one can hope to gain from
priority service pricing.

In our model, numerous assumptions that are employed in the traditional
priority service theory are dropped. Therefore, it is not guaranteed that Propo-
sition 6 still applies to our model. For this reason, we analyze the sensitivity
of the welfare gains of priority service on the number of options. Table 2.5
presents the social welfare that can be achieved under priority service, and the
gains that can be derived, relative to real-time pricing. The menu with four
options attains similar performance to the menu with five options. On the
other hand, the gain drops by 12.3% when the fourth option is dropped.

2.E Review of Assumptions

In section 1.4, we summarize the assumptions that are used in this chapter.
In the following, we further elaborate on these assumptions and how relaxing
them might affect our conclusions.

2.E.1 Constant Valuation over Time

Mathematically, this assumption means that Vl, the valuation of consumer type
l, remains constant during the whole horizon, i.e. it is not indexed by time step
t. If the assumption of constant valuation is dropped, the valuation of consumer
l becomes Vl,t, which means that the valuation of consumer l changes over time.
We consider various ways in which we could re-write our model, and why these
new ways of casting the model are either not implementable in practice, or
equivalent to the model that we present in the main body of the chapter.

In order to exploit the richer information provided by Vl,t, the objective of
(CPl) needs to be reformulated. Recall that the objective of the consumer is
written as (2.140):

max
sl,i

Vl ·
∑
t∈T

∑
i∈I

ri · sl,i ·Θt −
∑
i∈I

sl,i · πi · T. (2.140)
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For the sake of clear comparison with different reformulations when Vl,t is
considered, (2.140) is rewritten as:

max
sl,i

∑
t∈T

Vl ·Θt ·
∑
i∈I

ri · sl,i −
∑
t∈T

∑
i∈I

sl,i · πi (2.141)

We proceed with analyzing the outcomes of different reformulations one by one.

2.E.1.1 Reformulation 1

max
sl,i

∑
t∈T

Vl,t ·Θt ·
∑
i∈I

ri · sl,i −
∑
t∈T

∑
i∈I

sl,i · πi (2.142)

In (2.142), sl,i, ri, πi remain the same as in (2.141), so that one single menu
is offered to consumers and consumers only subscribe once. The difference
between (2.141) and (2.142) is that

∑
t∈T Vl ·Θt is changed into

∑
t∈T Vl,t ·Θt.

Recall that
∑
t∈T Θt = T , we can define V

′

l =
∑
t∈T Vl,t·Θt

T and then
∑
t∈T Vl,t ·

Θt =
∑
t∈T V

′

l ·Θt. As a result, (2.142) can be written as

max
sl,i

∑
t∈T

V
′

l ·Θt ·
∑
i∈I

ri · sl,i −
∑
t∈T

∑
i∈I

sl,i · πi (2.143)

Thus, replacing Vl in (2.141) with V
′

l , we obtain (2.143). In conclusion,
the new formulation of (2.142) is equivalent to (2.141), and this formulation
cannot take advantage of richer information from Vl,t, because Vl,t is only used

to calculate V
′

l .

2.E.1.2 Reformulation 2

max
sl,i,t

∑
t∈T

Vl,t ·Θt ·
∑
i∈I

ri · sl,i,t −
∑
t∈T

∑
i∈I

sl,i,t · πi (2.144)

In (2.144), one single menu is offered to the consumer since ri and πi are not
indexed by t. However, sl,i,t is indexed by t, which means that the consumer
must change its subscription to different options in each hour according to its
valuation Vl,t, which is not practical.

2.E.1.3 Reformulation 3

max
sl,i

∑
t∈T

Vl,t ·Θt ·
∑
i∈I

ri,t · sl,i −
∑
t∈T

∑
i∈I

sl,i · πi,t (2.145)

In (2.145), sl,i is not indexed by t, which means that consumers only subscribe
once during the whole horizon. However, since ri,t and πi,t are indexed by
t, one price menu at each period will be offered to consumers, which is not
practical as well.
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Alternatively, multi-level demand subscription [COSW86] is able to exploit
the time-varying valuation of consumers by offering an extra duration compo-
nent in the price menu. We explore this scheme in the next chapter.

2.E.2 Identical Consumption Profiles

This assumption implies that every consumer follows the same profile Θt, as
described by Dl,t = D̄l · Θt. When all the consumers are synchronized, and
follow the system-level profile Θt, the aggregate profile of consumers in option i
also follows Θt. Therefore, the subscription limit constraint can be formulated
as di,t,ω ≤ si ·Θt, and implies that the supply to option i at hour t in scenario ω
cannot exceed the subscription quantity. If the assumption of identical profiles
were dropped, the producer would then need to know the profile Θl,t of each
different type of consumer in option i in order to express this constraint. Our
presumption is that this is not practical, because this requires too detailed
information on the side of the producer.

In the following, we use a toy example and a case study on the Belgian
market to illustrate the impacts of non-identical profiles, in terms of efficiency
losses.

2.E.2.1 A toy example

In the toy example, we consider three hours and two generators. The marginal
cost of the first generator is 80 e/MWh and it has a capacity of 3.5 MW, which
is available during all the periods. The second generator has a marginal cost
of 30 e/MWh and a capacity of 3.5 MW, but the generator is only available
during the first period. The demand functions of consumers in the three periods
are shown in figure 2.15.

Figure 2.15: Demand functions of three time periods of the toy example. (V -
e/MWh; D - MWh)

From figure 2.15 we can observe that there are two types of consumers
on the demand side. The high-valuation consumer (100 e/MWh) follows a
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profile of [1.5, 1, 0.5] with an average demand of 2 MW and the low-valuation
consumer (50 e/MWh) follows a profile of [0.5, 1, 1.5] with an average demand
of 2 MW. However, the producer is only aware of the system-level profile, which
follows the profile [1 1 1]. The social welfare of priority service pricing is 250
e, which is 30 e lower than the optimal social welfare from real-time pricing.
These efficiency losses are due to the fact that the assumption that consumption
profiles are identical is not true in reality.

Table 2.6: Production of each generator in each time period in the toy example (Unit:
MWh)

t1 t2 t3
G1 0 2 2
G2 3.5 0 0

The decrease in social welfare can be explained in table 2.6. Generator G1,
with a marginal cost of 80 e/MWh, should only produce 1 MWh at t3, because
the demand function is 1 MW with a valuation of 100 e/MWh and 3 MW with
a valuation of only 50 e/MWh. However, it supplies 1 MWh to the consumer
whose valuation is 50 e/MWh, at a cost of 80 e/MWh, which amounts to a
loss of 30 e/MWh in terms of social welfare. This overproduction is due to
the fact that the producer is only aware of the system profile, and assumes the
profile of each consumer is synchronized with the system profile. Thus, the
producer misinterprets the demand function at this period as 2 MW with a
valuation of 100 e/MWh and 2 MW with a valuation of only 50 e/MWh.

Table 2.7: Price Menu in the toy example

r (%) π (e/MWh)
25 12.5
100 68.75

Even though the assumption of identical profiles results in some loss of
efficiency, we can still use the theory to design a price menu, as shown in table
2.7, to differentiate the two types of consumers. The efficiency losses that result
from our simplifying assumption about synchronism are relatively small. Next,
we conduct a more extensive case study on the Belgian market.

2.E.2.2 The Belgian Market

For the simulation of the Belgian market, we first calibrate piece-wise linear
demand functions which generalize the affine demand functions that are used
before. The change in the slope of the demand functions implies that loads are
no longer synchronous. Figure 2.16 presents the profiles of different types of
consumers in the first 120 hours of the year and the system-level profile.

For the sake of our discussion, let us suppose that the menu designer assumes
that the consumers’ profiles are the same as the system profile when designing
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Figure 2.16: Profiles of different consumers (lower-indexed consumers have lower
valuation).

the menu. Suppose, also, that the producer dispatches the system according
to the priority of the consumers, i.e., according to the option that they choose.

The realized social welfare11 amounts to 11452.6 million e. In contrast, the
social welfare of real-time pricing is 11477.6 million e, and the flat tariff policy
achieves a welfare of 11353.3 million e. When consumers do not follow the
same profiles, priority service pricing still achieves 79.9% of the efficiency gains
that can be achieved by real-time pricing, relative to a flat tariff. This case
study illustrates that priority service pricing remains a workable solution when
consumers’ profiles are not identical, even if the assumptions under which the
menu is designed depart from the true complexity of consumers’ valuation.

2.E.3 Exogenous Valuation Breakpoints

In our case study, we follow the same approach as in [CW87] to choose the
breakpoints that separate consumers into priority service classes exogenously.
If the breakpoints were treated as decision variables, the model would involve
bilinear terms, which is generally difficult to solve.

Alternatively, we use McCormick envelopes and the binary expansion tech-
nique to convert the bilinear optimization problem to a MILP. We conduct a

11Note that the demand functions are different from the ones used in the case study in the
main body of this chapter before, so the values of social welfare will differ in general.
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case study that only optimizes V B0 , i.e. consumers whose valuation is lower
than V B0 are not included in the service.

In this case study, we only consider one scenario for simplicity, and the
results are presented in table 2.8. The two left columns present the upper bound
on social welfare from dual decomposition and social welfare from ADMM when
V B0 is treated as a parameter that is equal to 0. In the third column, V B0 is
regarded as a decision variable and we rely on dual decomposition for solving for
the upper bound of the social welfare. The result is 5.3 million e higher than
the welfare when V B0 is not optimized. We then solve the model by enumerating
different values of V B0 as a heuristic and the resulting social welfare is 5770.2
million e, which is only 2.2 million e lower than the upper bound.

From this case study, we draw two conclusions: i) by optimizing the first
valuation breakpoint, we are able to further increase social welfare, however, the
increment is marginal; ii) It is a workable heuristic to enumerate different values
of V B0 , in order to solve the model.We leave it for future research to develop
decomposition algorithms for solving the model that optimizes all breakpoints.

Table 2.8: Comparison of social welfare (unit: million e)

DD
(V B0 = 0)

ADMM
(V B0 = 0)

DD
(Optimize V B0 )

Enumerate
V B0

5767.1 5764.2 5772.4 5770.2
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Chapter 3

Comparison of Priority
Service and Multilevel
Demand Subscription

3.1 Introduction

In Chapter 2, we present a bilevel optimization formulation of priority ser-
vice pricing, which is one of the simplest approaches for quality-differentiated
pricing. In this chapter, we explore a more sophisticated structure, where the
duration component is introduced. This implies that the offering of electricity
is now differentiated by both reliability and duration. Our extension is moti-
vated by the fact that an increasing number of households are equipped with
rooftop PV panels and batteries, which we refer to as prosumers. Prosumers
tend to be self-sufficient during the daytime and their energy surplus can be
stored in the battery to be used in the peak hours. Thus, they may prefer
a service that does not span the entire horizon, whereas priority service pric-
ing does. Multilevel demand subscription extends priority service by adding a
duration component, which can be financially advantageous for prosumers.

The menu design and performance evaluation framework that we develop
in this chapter is aimed at comparing priority service with multilevel demand
subscription, with an explicit consideration of the storage capability and local
supply uncertainty of prosumers. The trade-off between a complex yet efficient
multilevel demand subscription menu and a simple yet less efficient priority
service pricing menu is investigated quantitatively.
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3.1.1 Previous Work on Tariff Design with Consideration
of Prosumers

Faced with the development of rooftop PV panels, a number of utility compa-
nies have recently adopted a simple net metering policy. Net metering allows
prosumers to receive compensation at the retail electricity price or as credits
that can offset their bill. Thus, prosumers only pay for their aggregate net
consumption over the billing period, e.g. monthly.

Net metering has recently been criticized by academics and practitioners.
Gautier et al. [GJP18] demonstrate that net metering results in a decrease in
the bills of prosumers who adopt net metering. This decrease is achieved by
increasing the bill of traditional consumers and results in too many adopters
of net metering. Moreover, the decrease in the energy needs of prosumers
may result in a failure to recover grid costs [Kub18]. In certain states in the
US, the net metering policy has been withdrawn after its introduction. For
example, “the Hawaii Public Utility Commission concluded that simple retail
rate net metering credit is driving uncontrolled, undirected growth, and raising
questions about cost shifting to non-solar customers” [Ore17]. This resulted
in the discontinuation of net metering in 2015 in Hawaii. This demonstrates
that the electricity tariff needs to be carefully designed as prosumers become
an increasing segment of the retail base.

Recent work has focused on proposing electricity tariff structures that aim at
efficiently integrating prosumers into the system. Darghouth et al. [DWBM16]
develop a quantitative model for evaluating net metering and market feedback
loops, and show that the adoption of distributed PV is highly sensitive to
retail rate structures. Five different tariff scenarios are benchmarked by Bloch
et al. [BHBW19], including real-time pricing, a capacity-based tariff and a
block rate tariff. The case studies provide insights into the effects of the tariffs
on the amount of installed PV capacity, the ratio of energy curtailment, and
the investment into battery systems. Schittekatte et al. [SMM18] consider the
grid cost recovery problem as a non-cooperative game between consumers with
PV panels and batteries and the DSO. The modeling approach proposed by
the authors is aimed at assessing volumetric energy charges with net-metering,
volumetric energy charges for both injection and withdrawal, and capacity-
based charges.

3.1.2 Contribution and Chapter Organization

The contributions of this chapter can be listed as follows:

1. We extend traditional multilevel demand subscription theory to a more
realistic setting via a bilevel optimization formulation.

2. We propose a menu design and evaluation framework with considera-
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tion of prosumers for both priority service pricing and multilevel demand
subscription pricing. In this framework,

• we extend priority service by including duration choices in the price
menu;

• the interruption of different reliability levels in the price menu, the
uncertainty of rooftop PV production and the behavior of the bat-
tery are incorporated into a household model based on stochastic
programming;

• a rolling horizon approach is adopted to simulate the gradual reve-
lation of uncertainties;

• we are able to capture the interaction of the system-level renewable
production uncertainty and the uncertainty from the roof-top PV
panels in the household.

The remainder of the chapter is organized as follows. Section 3.2 revisits
the traditional theory of multilevel demand subscription, and points out some
strong assumptions that are generally not satisfied in practice. Section 3.3
first casts the multilevel demand subscription pricing menu design problem as
a Stackelberg game, which is reformulated into an MILP. This formulation in-
corporates priority service as a special case without differentiation of durations.
Then an evaluation framework is proposed in section 3.4 to compare priority
service with multilevel demand subscription. The results of the comparison are
presented in a quantitative way based on a case study of the Belgian power
system in section 3.5.

3.2 Traditional Theory of Multilevel Demand
Subscription Pricing

This section presents the theory of multilevel demand subscription pricing
based on Chao et al. [COSW86]. The starting point of the theory is a set
of consumer types who correspond to horizontal slices in a system load dura-
tion curve. The authors consider a price plan that offers the option of selecting
a different duration and reliability level for each consumer type (equivalently,
load slice). In other words, consumer types are represented by their indices on
the load duration curve, as shown in figure 3.1. The general form of the price
plan is π(r, t), which is the total charge for a load slice of duration t at specified
reliability level r. The reliability r is defined as the long-run average fraction
of a load slice that will be served when reliability r is selected. Each load slice
is priced independently. The producer is assumed to have a fixed capacity and
the uncertainty is represented by scaling the load duration curve with a factor
in each scenario. This section proceeds with the consumer choice model and
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the cost model, and then describes how one designs such a price menu with the
objective of maximizing social welfare.

Figure 3.1: Illustration of consumer types in multilevel demand subscription pricing
theory [COSW86]. L(π, t) is the load duration curve, parametric on a price π; t(l, π)
is the duration demand function, parametric on a price π.

3.2.1 The Consumer Model

Since the model is focused on pricing reliability, uncertainty has a key role.
Chao et al. [COSW86] introduce uncertainty in their model on the consumer
side. Concretely, consider a reference π0 and a random variable ω, which is
assumed to be uniformly distributed between zero and one. Then the actual
load duration curve under realization ω is denoted by h(ω) · L(t), where L(t)
(π0 is dropped for simplicity) is the average load duration curve given reference
price π0, and h(ω) is a scaling function which is assumed to be increasing with
ω. We also define the willingness-to-pay for the load type l for duration t as
v(l, t) and ∂v(l, t)/∂t = π. Then, the optimal pair {r(l), t(l)} which maps a
consumer type to its chosen level of reliability and duration is determined by
solving the following consumer surplus maximization problem:

max
0≤r≤1,0≤t≤T

{S(r, t, l) = H(r) · [v(l, t)− π(r, t)]}, (3.1)

where

H(r) =

∫ r

0

h(ω)dω,with H(0) = 0, H(1) = 1. (3.2)

The objective function corresponds to the expected consumer surplus. The
integral H(r) corresponds to the probability of service under reliability choice
r.
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3.2.2 The Cost Model

Using l to denote the index of each load slice, the first term of the objec-
tive function gives the benefits of consumer type l. Assuming the generation
system has a fixed capacity configuration, the operating cost attributed to an
individual load slice is denoted by c(r, t, l), which is the average cost for serving
a load slice of level l with duration t and service reliability r. And the function
c(r, t, l) is linear in t. Aggregating all types of consumers, the social welfare
maximization problem can be formulated as

max
r(l),t(l),l0

∫ l0

0

[H(r(l)) · v(l, t(l))− c(r(l), t(l), l)] dl (3.3)

s.t. 0 ≤ r(l) ≤ R(l) (3.4)

0 ≤ t(l) ≤ T (3.5)

where l0 is the cutoff level, beyond which no service is offered to consumers.
The function R(l) is the maximum reliability that the system can offer to a
given load level l due to capacity limits, and T is the horizon of service (e.g.
8760 hours for a one-year contract).

3.2.3 Determining the Optimal Price Function

Given the optimal trajectory {r(l), t(l)}, the goal of the menu design problem
is to derive an optimal menu that induces consumers to choose the optimal
trajectory when they maximize their surplus. Denote the optimal price function
as π

(
r(l), t(l)

)
, then as shown by Chao et al. [COSW86], this price function is

calculated as

π
(
r(l), t(l)

)
= v
(
l, t(l)

)
+ {1/H

(
r(l)
)
}
∫ l0

l

H
(
r(l′)

)
· vl
(
l′, t(l′)

)
dl′, (3.6)

where vl < 0 is the partial derivative of v(l, t) with respect to l.

3.2.4 Our Contribution to the Literature

The closed-form solution to the problem which is presented in the work of
Chao et al. requires certain strong assumptions, which may not be obeyed in
practice:

• The generation system is assumed to have a fixed capacity. Moreover,
the cost function is convex and linear with respect to duration. This is
not true in practice due to the start-up and min-load costs, outage and
maintenance of generators, and intermittence of renewable production.

• The source of uncertainty in the model presented above is the demand
side and this uncertainty is represented by scaling the load slices.

67



Comparison of Priority Service and Multilevel Demand Subscription

Producer

Households

Interruption
Patterns

Net Demand

Performance 
Evaluation

Section 3.4

Demand
Functions

Price Menu

Subscription

System-level 
Uncertainty

Local PV 
Uncertainty

Household Model

Section 3.C

Menu Design

Section 3.3

Household Menu 
Selection
Model

Section 3.D

Figure 3.2: The menu design and performance evaluation framework to compare
priority service and multilevel demand subscription.

• Neither the system-level nor the household-level uncertainty is modeled
explicitly. The behavior of storage cannot be captured.

To deal with these shortcomings, we propose a four-step menu design and
performance evaluation framework which is presented in figure 3.2. We briefly
introduce each block as follows:

• We consider different types of households that are equipped with rooftop
PV panels, but differ in the size of batteries and consumption profiles.
The valuation of power increments is calculated and extrapolated for each
type of household, in order to derive a system-level demand function. This
demand function is used as an ingredient for the design of a reliability-
duration menu. The corresponding model is presented in section 3.C.

• Subsequently, a multilevel demand subscription price menu is designed.
The designed menu is based on the bilevel model that is presented in
section 3.3. Unit commitment decisions of conventional generators are
considered in the upper-level producer model, thus the non-convex costs
of the production pool are captured. Moreover, scenarios of system-level
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renewable production are modeled explicitly. In this step, we also de-
sign a priority service menu as a special case of the multilevel demand
subscription menu, where the duration is the entire horizon.

• Given the price menu designed in the previous step, households decide
on their subscription based on a stochastic scheduling model, which is
presented in section 3.D. In this model, the interruption of different op-
tions and the rooftop PV production are modeled as a scenario tree. The
behavior of the battery is optimized as well.

• In the last step, we evaluate and compare the performance of priority
service and multilevel demand subscription via a rolling horizon approach.
At each period, households optimize the behavior of the battery until the
end of the horizon, against the realization of rooftop PV supply and the
interruption of options. Generators are then dispatched in order to meet
the net demand of all households, with consideration of the system-level
renewable uncertainty. This process is described in section 3.4.

Note that this menu design and performance framework is fundamentally
different from Chapter 2. In principle, the optimal pricing problem would
need to be cast as a bilevel program with a multi-stage stochastic program
in the lower level. This is computationally intractable, even if valuable for
representing the uncertainty and storage capability of prosumers. Instead,
we separate the performance evaluation step from the menu design step. In
the menu design step of multilevel demand subscription, each duration option
maps to specific time periods. This requirement is relaxed in the performance
evaluation step by interpreting the duration as energy credits. By relying on
this approach, households are allowed to consume electricity throughout the
entire horizon, so long as their power consumption is within the capacity limit
of the household, and so long as the energy credits of the household are not
depleted.

3.3 Multilevel Demand Subscription Pricing Menu
Design

3.3.1 Modeling the Multilevel Demand Subscription Menu
Design Problem as a Stackelberg Equilibrium

In this section, we follow a similar approach as in section 2.3 to model the
multilevel demand subscription (MDSP) menu design problem as a bilevel op-
timization problem, which is reformulated as an MILP. The exposition here
focuses on multilevel demand subscription pricing, with priority service pricing
being a special case.
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Consumers

Producer

Figure 3.3: Interaction between the producer and consumers in the multilevel demand
subscription bilevel model.

The major difference between MDSP and PSP is that, in MDSP, consumers
decide not only about their reliability level r, but also about the duration of
their service T . The corresponding prices π differ according to the duration
and reliability levels. In the model, the producer restricts the offering of dura-
tion to several options based on the temporal resolution of the offered product.
For example, considering a resolution of 6 hours and a horizon of 24 hours, the
producer could offer four duration options, i.e., 6 hours, 12 hours, 18 hours and
24 hours. The producer designs the proposed menu such that it induces con-
sumers to choose options that maximize social welfare, taking into account the
cost and constraints of production. In this study, T is treated as a parameter
that is predetermined by the producer. The model can be extended in order
to regard T as a decision variable of the producer, however this poses com-
putational challenges. In what follows, we introduce the lower-level consumer
model. The upper-level producer model, the bilevel model and its reformula-
tion as an MILP are presented in section 3.B of the appendix. We delegate
the presentation of the bilevel model to the appendix due to its similarity to
section 2.3 in terms of methodology.

In the traditional MDSP theory presented in section 3.2, uncertainty is
represented by scaling load slices according to h(ω), which is the ratio of the
load duration curve under the random condition ω to the average load duration
curve. In the model that we propose in this chapter, we assume that the load
duration curve remains the same and then the consumer model can be described
as follows.

Consumer l represents the l-th slice of power on the load duration curve, and
its valuation for t periods of consumption is denoted as Vl(t). Suppose that the
producer offers a price menu with I reliability levels, each of which is associated
with J duration levels. Given a price menu {ri, Tj , πi,j}, i ∈ I, j ∈ J , the
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Figure 3.4: Illustration of the optimal choice problem of consumer type l. The con-
sumer needs to choose the reliability level (indicated by colors) and the duration
associated with this color. In a priority service pricing menu, only full duration is
offered.

consumer problem is expressed as:

(CPl) : max
sl,i,j

∑
i∈I,j∈J

sl,i,j ·
(
ri · Vl(Tj)− πi,j

)
(3.7)

(γl) :
∑

i∈I,j∈J
sl,i,j ≤ Dl (3.8)

sl,i,j ≥ 0, i ∈ I, j ∈ J . (3.9)

The variable sl,i,j indicates the amount of power that consumer l allocates to
option (i, j). The first term in the objective function indicates the benefit of
the consumer, while the second term corresponds to the payment that needs
to be submitted to the producer for this service. Constraint (3.8) expresses the
fact that options are stacked up to the amount of kilowatts that the household
wishes to procure. The decision problem faced by a consumer of type l is
further illustrated in figure 3.4. The consumer chooses color options in the set
I and duration options in the set J , up to the level where it fully satisfies its
total power demand Dl.

The function Vl(t) is an increasing function of t, since more hours of con-
sumption increase the benefit of the household. Note that the formulation of
the problem above implicitly assumes that Vl(t) is further a concave function
of t. In section 3.C of the appendix, we describe how the producer can estimate
this data based on information about residential households.

Given a duration option j ∈ J and a mapping from the time indexing of
a load duration curve to the time indexing of actual operations, we can define
indicator parameters Nj,t ∈ {0, 1} which determine whether a certain duration
option j ∈ J is being served in time period t of actual operations or not. This
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parameter is used in the producer model presented in section 3.B. Note that,
by definition,

∑
t∈T Nj,t = Tj . In other words, service option j corresponds

to Tj time periods of service. This formulation requires that all consumers
have the same order of periods, since the delivery of the service is decided by
Nj,t. This is generally not true in practice due to the uncertain production
of photovoltaic power, and the inter-temporal constraints of the battery. This
assumption is only adopted in the menu design step and is dropped in the
performance evaluation step which is presented later.

An important insight that allows us to arrive to the bilevel formulation of
the Stackelberg equilibrium is that any consumer type l may as well limit its
choice to a unique option out of the menu offered by the producer.

Proposition 3. There exists s̃l = (s̃l,i,j , i ∈ I, j ∈ J ) with s̃l,i,j ∈ {0, Dl}
which attains the optimal objective function value.

Proof. The KKT conditions of (CPl) are given by (3.10) and (3.11).

0 ≤ sl,i,j ⊥ −ri · Vl(Tj) + πi,j + γl ≥ 0 (3.10)

0 ≤ γl ⊥ Dl −
∑
i,j

sl,i,j ≥ 0 (3.11)

There are two cases to be considered:
Case 1: If Dl −

∑
i,j s

?
l,i,j > 0, then γl = 0. This implies that consumer

l derives zero net benefit at the optimal solution. Thus, s̃l,i,j = 0 for all
i ∈ I, j ∈ J is optimal.

Case 2: If Dl −
∑
i,j s

?
l,i,j = 0, then it suffices to show that if two options

are ‘active’ (in the sense that s > 0) then they have an equal payoff, and can
therefore be equivalently replaced by a single option. Applying this argument
for all options that are active gives the desired conclusion. Consider any two
options (i, j) and (i′, j′) for which s?l,i,j > 0 and s?l,i′,j′ > 0. Then −ri ·Vl(Tj) +
πi,j +γl = 0 and −ri′ ·Vl(Tj′) +πi′,j′ +γl = 0, and substituting out γl, we have
ri · Vl(Tj)− πi,j = ri′ · Vl(Tj′)− πi′,j′ .

The above proposition implies that sl,i,j can be expressed as sl,i,j = Dl ·
µl,i,j , where µl,i,j ∈ {0, 1} are binary variables.

The producer model and the reformulation of the bilevel model as an MILP
are presented in sections 3.B.2 and 3.B.3 of the appendix.

3.3.2 Menu Choice by Household

For the performance evaluation of section 3.4, we need to determine which
specific option each household procures. Thus, each household solves a menu
subscription problem, which is described in section 3.D of the appendix. This
problem determines parameters Sh,i,j , i.e. the kilowatts procured by household
type h for option (i, j) ∈ I×J . Note that the household type h is different from
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the consumer type l. Household types are categorized according to consumption
profiles, the size of batteries, and the installation of PV panels. In contrast, a
consumer type l is an index of the slice of power on the load duration curve.
A household type h is composed of multiple consumer types.

3.4 Performance Evaluation

In order to simulate the performance of different residential pricing methods,
we need to account for the interplay between system-level uncertainty and
distributed rooftop solar uncertainty. Concretely, a realization of a sample
path of uncertainty over the horizon that we are simulating is a realization
of (ωW , ωS) ∈ ΩW × ΩS . Here, ΩW is the set of sample paths of renewable
supply from system-level wind resources, and ΩS is the set of sample paths of
renewable supply from system-level solar resources.

The interface between the producer and the household is the service con-
tract. The service contract allows the producer and the household to decentral-
ize their decision-making according to locally observable information related to
uncertainty. More specifically, from the point of view of the producer, the
uncertainty in the system comprises of system-level renewable supply and net
residential demand. The net residential demand is of course driven by rooftop
solar supply at the households, however the producer meters and reacts to net
demand. Similarly, from the point of view of the household, a realization of
uncertainty comprises of rooftop solar power supply as well as the interrup-
tion of different service options. The interruption patterns are of course driven
by system-level renewable supply, however the household does not observe or
react to this information. Essentially, the residential service contracts can be
viewed as a way of decentralizing a dynamic optimization problem under uncer-
tainty (that of dispatching the entire system against system-level uncertainty)
between the producer and the household.

In this section we describe our approach to simulating this decentralized
decision-making process, in order to quantify the efficiency of different residen-
tial pricing options. The overall procedure can be described as follows. For
each day type s ∈ S:

1. Draw a sample path of uncertainty (ωW , ωS) ∈ ΩW × ΩS using the un-
derlying statistical measure.

2. For every time step t ∈ T of actual operations in the simulation horizon:

(a) Solve a household decision problem (Hh,t) for every type of house-
hold h ∈ H (where H represents the set of household types) and a
producer decision problem (Ut) in order to determine the action of
the households and the producer.
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(b) Increment t, update the state of the system, and return to step 2a.

In the remainder of the section, we describe the problems (Ut) and (Hh,t)
described in step 2a of the simulation procedure above. We describe the sim-
pler producer model first in the sequel, as it amounts to a simple economic
dispatch. We then describe the multi-stage optimization that drives household
consumption.

3.4.1 Rolling Optimization for the Producer

We ignore inter-temporal unit commitment constraints (startup costs, and min
up/down time constraints), ramp constraints, and pumped hydro constraints,
so we are able to describe the decisions of the producer as a single-period
optimization problem. Concretely, the producer solves the following problem1:

(Ut) :

max
m,n,o,d,p

∑
i∈I

V̄i · di −
∑
g∈G

hg(mg,ng,og,pg) (3.12)

s.t. fg(mg,ng,og,pg) ≤ 0, g ∈ G (3.13)

di ≤ NDi,t, i ∈ I (3.14)∑
i∈I

di ≤
∑
g∈G

pg +Wt,ωW + St,ωS (3.15)

di ≥ 0, pg ≥ 0, i ∈ I, g ∈ G (3.16)

The objective function of the producer is expressed in Eq. (3.12). The
valuation V̄i corresponds to the estimate of the average valuation that the
producer assigns to priority class i, based on how households decide to subscribe
to the multilevel demand service. Concretely, the parameter in time step t is
estimated as follows:

V̄i =
∑

l∈L:s?
l,i,j(t)

=Dl

∂tVl(Tj(t)) ·Dl∑
l∈L:s?

l,i,j(t)
=Dl

Dl
, (3.17)

where s?l,i,j corresponds to the solution of problem (CPl) in section 3.3.1 and
∂tVl(T ) corresponds to the marginal benefit of consumer type l for consuming
at the T -th time step of the load duration curve.

The definition in Eq. (3.17) relies on the mapping j(t), which is the duration
option corresponding to period t of actual operations. Note that, for a given
time step t of actual operations, there exists a unique value j(t) ∈ J .

This mapping j(t) depends on the mapping τ(t), which maps a time period
t of actual operations to its time index in the load duration curve, and on the

1We describe the problem for the case of multilevel demand subscription, of which priority
service is a special instance.
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Figure 3.5: The mapping between the time period t of actual operations to its time
index in the load duration curve. The figure on the left describes the load in each
period of actual operations and the figure to the right depicts the corresponding
load duration curve. In this three-period example, the first time period of actual
operations corresponds to the third highest demand, the second time period of actual
operations corresponds to the highest demand, and the third time period corresponds
to the second highest demand. Then, τ(1) = 3, τ(2) = 1 and τ(3) = 2. Moreover,
suppose that the three periods have been split into two duration classes, with the first
duration class covering the first two hours of the load duration curve, and the second
duration class covering the full horizon. Then j(1) = 2, j(2) = 1 and j(3) = 1, i.e.
the first period of the actual operations belongs to the second duration class, while
both the second and third periods of actual operation belong to the first duration
class.

definition of the duration classes J . The mapping is illustrated in figure 3.5.
Constraint (3.13) expresses the production constraints of the producer.

Constraint (3.14) implies that the producer may not offer more than the net
demand that a certain priority class actually decides to consume at any given
time period. Constraint (3.15) expresses the power balance constraint for the
producer, where we use an inequality in order to allow for renewable production
shedding at zero cost.

The wind supplyWt,ωW and solar supply St,ωS in constraint (3.15) are at the
system level, and are drawn in step 1 of the performance evaluation procedure
described above. The net demand NDi,t in constraint (3.14) is obtained as
the solution of the household rolling optimization which is presented in the
following section.

3.4.2 Rolling Optimization for the Household

In contrast to the producer model in the previous section which has been sim-
plified in order to relax inter-temporal dependencies, the household rolling op-
timization is a dynamic optimization under uncertainty. The household faces
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Figure 3.6: Scenario tree for the household model (Hh,t) of section 3.4.2.

uncertainty related to the supply of rooftop solar power at its premises and
the interruption history of the service tiers in the home. This uncertainty is
depicted in figure 3.6. The nodes of the scenario tree are named according to
the realization of renewable supply (with ‘L’ indicating low solar supply, and
‘H’ indicating high solar supply) as well as the service interruption (with ‘R’
indicating that only the red color is served, ‘RY’ indicating that only the red
and yellow color are served, and ‘RYG’ indicating that all colors are served).

The probability of each node can be calculated as follows. We denote PRYG
as the probability that all three colors are served, PRY as the probability that
only the red and yellow are served, PR as the probability that only the red color
is served. The reliability of green, yellow and red color options are denoted as
r1, r2 and r3, respectively. Since yellow color and red color are always served
if green color is served, we have PRYG = r1. When yellow color is served, it
is possible that all three colors are served or only yellow and red are served,
yielding PRYG + PRY = r2 and then PRY = r2 − r1. There are three cases
when the red color is served: all three colors are served or only the yellow and
red are served or only the red is served, so we get PRYG + PRY + PR = r3

and then PR = r3 − r2. The realization of PV panel production is assumed
to be independent of the interruption of colors, so PLRY G = PL · PRYG. The
conclusion is similar for other nodes.

In this rolling optimization, the household reacts to a history of realizations
that have transpired up to stage t. We capture this information (which is a
trajectory2 in the scenario tree up to stage t) as It. The scenario tree is modeled
as a set of sample paths ΩC = ΩI ×ΩS , where ΩI is the set of sample paths of
interruptions, and ΩS is the set of sample paths of renewable supply available
at the household level. Each stage t of the scenario tree has an associated set
of bundles, Bt. Every bundle collects nodes in the given stage with the same
history. The bundle to which a certain node n in the scenario tree belongs is

2For example, I2 = {(HR), (LRY G)} corresponds to the history up to the second time
stage whereby (i) there was high solar supply in the first period and only the red color was
served, and (ii) there was low solar supply in the second period, and all colors were served.
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denoted as Bt(n). Let us define as Ω(It) the subset of sample paths with a
history corresponding to It:

Ω(It) = {ωC ∈ ΩI × ΩS : Bt(ωC) = It}. (3.18)

We can then describe the household model as follows.

(Hh,τ ) :

min
x=ls,nd,bd,bc,e

|T |∑
t=τ

∑
ωC∈Ω(Iτ )

V OLL · PωC |Iτ · lst,ωC (3.19)

s.t. bdt,ωC ≤ BDh, t ∈ {τ, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.20)

bct,ωC ≤ BCh, t ∈ {τ, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.21)

et,ωC ≤ Eh, t ∈ {τ, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.22)

et,ωC − et−1 + bdt,ωC/η
d
h − bct,ωC · ηch = 0, ωC ∈ Ω(Iτ ) (3.23)

et,ωC − et−1,ωC + bdt,ωC/η
d
h − bct,ωC · ηch = 0,

t ∈ {τ + 1, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.24)

Lt,h − lst,ωC − PVt,ωS + bct,ωC − bdt,ωC =
∑
i∈I

ndi,t,ωC ,

t ∈ {τ, . . . , |T |}, (ωI , ωS) ∈ Ω(Iτ ) (3.25)

ndi,t,ωC ≤
∑
j∈J

Sh,i,j · 1[i,t,ωI ], i ∈ I, t ∈ {τ, . . . , |T |},

(ωI , ωS) ∈ Ω(Iτ ) (3.26)∑
i∈I

ndi,t,ωC ≥ −Γ ·
∑

i∈I,j∈J
Sh,i,j , t ∈ {τ, . . . , |T |},

(ωI , ωS) ∈ Ω(Iτ ) (3.27)

|T |∑
t=τ

ΠR+(ndi,t,ωC ) ≤
∑
j∈J

Tj · Sh,i,j − UEi, i ∈ I,

t ∈ {τ, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.28)

xt,b − xt,ωC = 0, t ∈ {τ, . . . , |T |}, b ∈ Bt, ωC ∈ Ω(Iτ ) (3.29)

bdt,ωC ≥ 0, bct,ωC ≥ 0, et,ωC ≥ 0,

lst,ωC ≥ 0, i ∈ I, t ∈ {τ, . . . , |T |}, ωC ∈ Ω(Iτ ) (3.30)

Load shedding in the household is denoted as lst,ωC . Home battery charge
and discharge are denoted as bct,ωC and bdt,ωC respectively. The energy level
of the home battery is denoted as et,ωC . The net demand of the household
from the grid is denoted as ndi,t,ωC , and it is differentiated by reliability class
i ∈ I. The household is allowed to inject excess rooftop solar supply back to
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the grid without compensation, which we represent in the following model by
the fact that we allow the net demand nd to assume negative values.

The objective function (3.19) describes the goal of the household, which is
to minimize its expected cost of interruption. The parameter V OLL indicates
the value of lost load. The conditional expectation PωC |Iτ in the objective
function is defined as

PωC |Iτ =
PωC∑

ωC∈Ω(It) PωC
. (3.31)

Constraints (3.20) and (3.21) represent the battery discharge and charge
constraints respectively, with BDh and BCh corresponding to the battery dis-
charge and charge limits of household h ∈ H respectively. Constraint (3.22)
corresponds to the energy limit constraint of the battery, with Eh the energy
storage limit of household h. Constraint (3.23) represents the charging dynam-
ics of the home energy battery for the first period of the horizon. Here, eτ−1

is a parameter that has been determined in the previous step of the rolling
optimization. The charge and discharge efficiency of the battery are denoted
as ηch and ηdh for household h, respectively. Constraint (3.24) describes the dy-
namics of the battery beyond the first stage of the horizon. Constraint (3.25)
expresses the power balance constraint in the household. The parameter Lt,h
is the inflexible demand of household h in stage t, while PVt,ωS corresponds
to the rooftop solar supply sample that is obtained in step 1 of the perfor-
mance evaluation described above. Constraint (3.26) expresses the upper limit
on net demand that a household is entitled to. The indicator variable 1[i,t,ωI ]

indicates whether a certain reliability level i is being served at a given stage
of a sample path or not. Constraint (3.27) limits the power injected back to
the grid, where Γ is a parameter chosen between 0 and 1. Constraint (3.28)
expresses the energy limit of option i ∈ I. We assume that the excess power
is injected back to the grid for free, so the credit meter is not allowed to move
backwards. ΠR+

projects the net demand to a non-negative value. The pa-
rameter Sh,i,j in the right hand side is obtained from the menu choice model
of the household, which is presented in section 3.3.2. The parameter UEi in
problem (Hh,τ ) corresponds to the amount of energy that has been used up for
option i by household h up to stage τ in the performance evaluation simulation.
Non-anticipativity is expressed in constraint (3.29).

The solution of (Hh,t) yields a net demand decision for each reliability
option i for the current period, nd?i,t, which we denote as NDh,i,t for every
household h ∈ H. The parameter NDi,t which is used in constraint (3.15) is
then the sum of this net demand over all household types:

NDi,t =
∑
h∈H

Nh ·NDh,i,t, (3.32)

where Nh is the number of households of type h ∈ H in the population. Note
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that the implicit assumption in Eq. (3.32) is that the realization of uncertainty
at every household of the same type is identical.

3.5 Case Study

This section presents a case study of the Belgian system in a forward-looking
scenario of the year 2050. We work with representative days, each of which is
split into six 4-hour blocks. In the case study, we first solve for the priority
service pricing menu. Then we solve the multilevel demand subscription menu
by fixing the three reliability levels and the price of full duration options as the
solution from the priority service pricing menu design.

3.5.1 System Settings

The system configuration of conventional generator is the same as that in sec-
tion 2.5.2. Wind and solar production profiles, and import profiles for the year
2015 with hourly resolution, are collected from [Eli19b]. These profiles are
scaled up according to the projected value of the year 2050, according to the
EU 2050 reference scenario [EC17]. Based on this data, we create the scenario
set S, and the sample path sets ΩW and ΩS . The procedure is detailed as
follows.

We conduct the simulation using a set S of eight representative days (one
weekday and one weekend in each season). We distinguish between weekdays
and weekends because households generally consume more in the daytime of
weekends than weekdays. Moreover, the industrial and commercial sectors tend
to consumer more during weekdays. Each element of the set S corresponds to
a typical time series of wind and solar production for the specific day type.
The renewable production time series are the same for weekdays and weekends
in the same season. The renewable production for each season is estimated as
the average renewable production of the same season based on historical data.

We then create four scenario trees for ΩW and ΩS respectively, in order to
represent the random evolution of renewable supply in each season. The renew-
able production scenarios of the weekday and weekend in the same season are
described with the same scenario tree. Regarding ΩW , the forecast production
of wind supply is known and the actual production is characterized by ‘H’ or
‘L’, according to whether it is under-forecast or over-forecast. This concept is
presented in figure 3.9. The probability of under/over-forecast and the average
relative error at each time stage are estimated based on the historical data of
year 2015. The scenario tree of a certain scenario is created using the data
corresponding to the day type of the scenario. The renewable production in
each scenario s ∈ S is scaled up or down based on the relative error at each
stage, in order to represent the nodes of the scenario tree. A scenario tree of
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the solar production is created in a similar way, in order to represent ΩS . The
solar production is assumed to be independent of the wind production. The
validity of this assumption is checked by comparing the theoretical joint prob-
ability of wind under/over-forecast and solar under/over-forecast in each hour
against the estimated joint probability based on the data of the year 2015. The
seasonal variation of this data is shown in figures 3.7 and 3.8.
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Figure 3.7: Comparison of the variation of wind production in different seasons of
2015 in Belgium.
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Figure 3.8: Comparison of the variation of solar production in different seasons of
2015 in Belgium.
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H H

H

L L

L

Figure 3.9: Scenario tree for wind production ΩW . ‘H’ indicates higher actual pro-
duction compared with the forecast production (under-forecast) while ‘L’ indicates
lower actual production compared with the forecast production (over-forecast).

The pumped hydro storage in Belgium has a pumping capacity amounting
to 1200 MW, while the energy storage capacity of pumped hydro amounts to
5700 MWh. Pumped hydro resources are assumed to have a roundtrip efficiency
of 76.5% [PS17]. Pumped hydro storage is assumed to follow a fixed profile in
the producer model of section 3.4. The profile is calculated by a deterministic
model, by dispatching the system against the average production of renewable
supply at both the system level and household level.

The total load profile of year 2015 is also available from [Eli19b]. The indus-
trial and commercial load is extracted from the total load profile according to
Synthetic Load Profiles (SLPs) [Syn17]. Synthetic load profiles are normalized
electricity consumption time series with 15-minute resolution that are publicly
available for the residential and non-residential sectors. The load profiles are
scaled up to the year 2050 according to the EU 2050 reference scenario [EC17].

Based on the industrial and commercial SLPs, we represent the load of the
non-residential sector by a fixed profile. Two categories of residential SLPs
(S21 and S22) describe two categories of households. According to the data,
82% of the grid connections correspond to S21 households, and 18% correspond
to S22 households [VI14]. The average profiles of S21 and S22 are presented in
figure 3.10. Furthermore, we assume that (i) 25% of the households is equipped
with a PV panel with a maximum power of 2.5 kW per household3, (ii) one
third of the households with a PV panel is equipped with a large battery, (iii)
one third of the households with a PV panel is equipped with a smaller battery,
and (iv) one third of the households with a PV panel is not equipped with a
battery. The technical specifications4 of household batteries are presented in

3Following this assumption, local solar production accounts for 38.6% of the total solar
supply.

4The cost of the Moixa Smart Battery (the small battery in our case study) amounts to
£4450, including an installation fee. Tesla prices the Powerwall (the large battery in our case
study) at a cost of $6,500, whereas the supporting hardware costs $1,100. The installation
fee of the Tesla Powerwall is estimated between $9,600 and $15,600 [Ene20d]. We use the
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Figure 3.10: Comparison of consumption profiles for households that belong to SLP
categories S21 and S22.

Table 3.1: Technical specifications of household batteries in the case study of section
3.5.

Battery Type Large [Tes20] Small [Moi20]
Energy Storage Limit (E, kWh) 13.5 3.84

Power Limit (BD/BC, kW) 5 0.85
Efficiency (ηc/ηd, % ) 95 95

Warranty (Years) 10 10
Overnight Cost (e) 11,100 5,120

Table 3.2: Characteristics of different types of households in the case study of section
3.5.

Type 1 2 3 4 5 6 7 8

SLP Category S21 S22 S21 S22 S21 S22 S21 S22
PV Panel Yes Yes Yes Yes Yes Yes No No

Battery Size Large Large Small Small No No No No
Proportion (%) 6.83 1.5 6.83 1.5 6.83 1.5 61.5 13.5

table 3.1. In total, we model eight types of households. Their characteristics
are presented in table 3.2.

3.5.2 Optimal Menus

Table 3.3 presents the priority service menu. The first column presents the
reliability of each option, whereas the second column presents the price for a

average as an approximation of the total cost of installation of the Tesla battery.
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Table 3.3: Priority service menu in the case study of section 3.5.

Reliability (%) Price (e/kW-month)
58.5 26.4
85.3 39.3
100.0 48.5

Table 3.4: Multilevel demand subscription menu in the case study of section 3.5.

Reliability (%) Duration (%) Price (e/kW-month)
33.3 14.9

58.5 66.7 22.9
100 26.4
33.3 22.1

85.3 66.7 34.1
100 39.3
33.3 27.3

100.0 66.7 42.1
100 48.5

kW of service over a month (i.e., this service corresponds to 720 kWh of energy
if the reliability is 100%).

Table 3.4 presents the optimal multilevel demand subscription menu. Note
that, when a given strip is topped up with credits for the full duration of
the service, the multilevel demand subscription service becomes equivalent to
priority service for the same level of reliability. We thus obtain comparable
menus by imposing that the price of a given reliability level for 24 hours of daily
service in multilevel demand subscription equal the price of the corresponding
reliability option under priority service pricing.

3.5.3 Policy Analysis

In the following, we summarize a number of observations that can be derived
from our modeling framework.

3.5.3.1 Operational Efficiency

Table 3.5 presents key economic indicators for the different pricing policies that
have been considered in the simulations. The load shedding cost is calculated
according to the household rolling horizon model in the performance evaluation
process, while the supply quantity and the production cost are computed from
the producer model. The producer revenue is derived from the household menu
selection model.

Compared to priority service, multilevel demand subscription is able to
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Table 3.5: Comparison of priority service (PSP) and multilevel demand subscription
(MDSP) in the case study of section 3.5 [unit: M e/month].

Production
Cost

Load Shedding
Cost

Producer
Revenue

Supply Quantity
(GWh)

PSP 42.1 22.7 139.3 1514.4
MDSP 41.1 4.4 140.5 1534.3

supply slightly more power to the households at a slightly lower cost and reduces
the load shedding cost of households significantly. This is a consequence of
the limited ability of priority service to discriminate among flexible consumer
classes. Concretely, under priority service pricing the producer infers a certain
valuation for each priority class. This valuation is a crude approximation of the
heterogeneous set of consumers within a given class. Thus, priority service may
lead to an under-supply within a certain class if the inferred valuation of that
class is lower than the marginal cost of serving the class, whereas a significant
portion of consumers within the class may have a higher valuation than the one
inferred by the producer. In contrast, multilevel demand subscription allows
the aggregator to exploit the duration component in order to infer different
valuation levels for each priority class at different time periods, rather than a
fixed valuation level throughout the entire duration. In addition, the revenue of
the producer increases slightly as well. Thus, multilevel demand subscription
proves to be beneficial for both the producer and households because of better
differentiation.

3.5.3.2 Service Comparison under Different Policies

Table 3.6 presents the priority service subscription for each type of household.
Rows “Green” to “Red” correspond to the different reliability options, while
“Capacity” presents the total subscription quantity and “Energy” indicates the
total energy that the household is entitled to, assuming that the reliability of
each option is delivered. Table 3.7 presents the multilevel demand subscription
for each type of household. For each color, the first three rows indicate different
duration levels, while the last row presents the total subscribed capacity under
each reliability level. The “Capacity” row of the table sums up the total sub-
scribed capacity for all options. The last row presents the subscribed energy,
which is computed by taking into consideration the reliability and duration of
each option.

By comparing the last two rows of table 3.6 with the last two rows of
table 3.7, we observe that the total subscribed capacity of each household un-
der multilevel demand subscription is higher than that under priority service.
On the other hand, the subscribed energy is less. This observation is driven
by the offer of options with shorter duration in multilevel demand subscrip-
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Table 3.6: Priority service subscription for each type of household [Energy in kWh;
others in kW].

Types 1 2 3 4 5 6 7 8

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes Yes Yes Yes Yes No No
Battery Large Large Small Small No No No No
Green 0.043 0.04 0.017 0.021 0 0 0 0
Yellow 0.156 0.312 0.134 0.087 0.122 0.19 0.024 0.19

Red 1.114 1.311 1.117 1.555 1.435 1.787 1.577 1.787
Capacity 1.313 1.663 1.268 1.663 1.557 1.977 1.6 1.977
Energy 30.54 38.4 29.78 39.39 36.94 46.77 38.32 46.78

Table 3.7: Multilevel demand subscription for each type of household [Energy in kWh;
others in kW].

Types 1 2 3 4 5 6 7 8

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes Yes Yes Yes Yes No No
Battery Large Large Small Small No No No No

Green-1 0.152 0.356 0.336 0.303 0.251 0.087 0.339 0.87
Green-2 0.315 0 0 0 0 0 0 0
Green-3 0 0 0 0 0 0 0 0
Subtotal 0.467 0.356 0.336 0.303 0.251 0.087 0.179 0.87

Yellow-1 0 0.046 0.063 0.11 0.229 0.396 0.155 0.34
Yellow-2 0 0 0 0 0 0 0 0
Yellow-3 0.104 0 0 0 0 0 0 0
Subtotal 0.104 0.046 0.063 0.11 0.229 0.396 0.155 0.34

Red-1 0 0.37 0 0.131 0.749 0.437 0.419 0.492
Red-2 0 0 0 0.347 0 0.768 0.39 0.141
Red-3 0.962 1.293 1.139 1.185 0.837 0.804 0.859 1.43

Subtotal 0.962 1.663 1.139 1.663 1.586 2.008 1.668 2.064

Capacity 1.533 2.064 1.538 2.076 2.066 2.492 2.161 2.492
Energy 28.88 35.96 29.35 37.21 28.82 38.18 32.84 43.26
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Figure 3.11: Comparison of subscribed energy for different types of households. The
percentage on the right of the bars represents the amount of procured energy that is
actually consumed by the household.

tion. Consequently, multilevel demand subscription is not only advantageous
to households by allowing higher peak capacity when needed, but also favor-
able to the producer because the subscribed energy demand is closer to the real
consumption of households.

The bars in figure 3.11 present the total amount of energy that each house-
hold type is entitled to after procuring the corresponding service. The per-
centage on the right of the bars presents the amount of procured energy that
is actually consumed by the household. With a large battery, households can
make better use of the purchased power. Furthermore, the service is provided
for the entire horizon under priority service, thereby resulting in higher sub-
scribed energy but lower utilization percentage for households without a large
battery. Under multilevel demand subscription, the lowest utilization ratio
amounts to 69.3%, which is a significant improvement relative to the lowest
ratio under priority service, which amounts to 53.1%. This result is driven by
the fact that households can choose options of a shorter duration under mul-
tilevel demand subscription. Multilevel demand subscription therefore allows
households to better exploit the subscribed energy.

3.5.3.3 Impact of Storage on the Demand for Capacity

We observe in table 3.6 that, as the size of the household battery decreases,
the household tends to subscribe to a greater quantity for the “Red” (reliable)
option. We arrive to similar observations in the case of table 3.7. Specifically,
as the size of the battery decreases, the household tends to subscribe to a larger
total quantity, as well a higher quantity under the “Red” option. By comparing
the total subscribed capacity of different households in the“Capacity” row, we
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Figure 3.12: Cost breakdown for different types of households under priority service.

can conclude that the battery reduces the capacity demand of a household.

3.5.3.4 Benefits of PV Panels

Figure 3.12 decomposes the total cost of each household into the cost of procur-
ing a priority service contract, and load shedding cost. The service cost is
computed using the household menu selection model presented in section 3.D.
Instead, the load shedding cost is quantified using the household rolling horizon
model in the performance evaluation process that is presented in section 3.4.2.

By comparing household type 6 with type 8, we can see that if a household
only installs PV panels without a battery, it is possible that he experiences a
similar total cost as that of a household which installs neither. This is due to
the evening consumption, which cannot be covered by PV panels. Note that
the priority service menu is a purely capacity-based tariff, and it motivates
households with PV panels to invest in storage. This is in contrast to the cur-
rent energy-based “net-metering” tariff, where households with PV panels are
significantly advantaged. Thus, we conclude that PV panels are not necessarily
rewarding for households that are subscribed to priority service or multilevel
demand subscription if these households do not possess batteries. This obser-
vation indicates that a capacity based tariff may fail to promote the installation
of rooftop PV panels for households without local storage.

3.5.3.5 Benefits of Local Storage under Different Policies

It is observed from figure 3.12 that the battery enables households to reduce
their total cost. This observation suggests that residential consumers face in-

87



Comparison of Priority Service and Multilevel Demand Subscription

0 20 40 60 80 100

Day Peak - Big Battery - PV: 1

Night Peak - Big Battery - PV: 2

Day Peak - Small Battery - PV: 3

Night Peak - Small Battery - PV: 4

Day Peak - No Battery - PV: 5

Night Peak - No Battery - PV: 6

Day Peak - No Battery - No PV: 7

Night Peak - No Battery - No PV: 8

Service Cost
Load Shedding Cost

Figure 3.13: Cost breakdown for different types of households under multilevel de-
mand subscription.
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Figure 3.14: Comparison of the total cost for the different types of households under
priority service and multilevel demand subscription in the case study of section 3.5.

centives for installing local storage in their house under a priority service con-
tract.

We arrive to similar observations in figure 3.13, where we present the cost
breakdown for households under multilevel demand subscription. Note, how-
ever, that the differences among households are less significant than those ob-
served in priority service. We therefore observe that storage is more valuable to
households under priority service than under multilevel demand subscription.
This is due to the fact that multilevel demand subscription contains implicitly
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Figure 3.15: Comparison of the cost of service for the different types of households.

an energy cost in addition to the capacity cost, while the battery is mainly
beneficial in terms of reducing the capacity cost.

3.5.3.6 Cost Comparison of Households under Different Policies

Figures 3.14 and 3.15 compare the total cost and bill of the household types
under the priority service and multilevel demand subscription schemes, respec-
tively. We can observe that households 5 - 8 under multilevel demand subscrip-
tion tend to face a lower total cost, even if certain households face a higher
service cost under multilevel demand subscription. By contrast, the total cost
of households 1 - 4 are very close under priority service and multilevel demand
subscription. This observation is due to the fact that the batteries contribute
to reducing the peak net demand of the households, which implies that the
benefits brought about by the shorter duration options in multilevel demand
subscription decrease. In summary, the total cost of a household equipped with
a battery under multilevel demand subscription is almost identical to that un-
der priority service. On the other hand, if the household does not own a battery,
the savings achieved by multilevel demand subscription are more significant.

3.5.3.7 Cost-Benefit Analysis of Local Storage

We are interested in conducting a cost-benefit analysis of investing in batteries.
Tables 3.8 and 3.9 provide more information regarding the costs of different
households under priority service and multilevel demand subscription. We also
need to calculate the monthly cost of installing batteries, which is given as

OC · r/12

1− 1/(1 + r)T
,
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Table 3.8: Detailed results for each type of household under priority service in the
case study of section 3.5. “Load” corresponds to the daily inflexible energy demand in
the household, while “PV Prod.” presents the expected production from PV panels.
The quantity of power injected back to the grid is indicated by “Injection”. “Battery
Energy” shows the energy left in the battery at the end of the day. The subscribed
energy, assuming that the reliability of each option is delivered, is presented as “Sub-
scription”. The percentage of utilization for each subscribed option is depicted in the
row indicated as “Utilization”. The last three rows provide the cost breakdown for
each household type, including the service cost and load shedding cost. The last five
rows correspond to figures. 3.12 - 3.11.

(a) Household types 1-4

Types 1 2 3 4

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes Yes Yes
Battery Large Large Small Small

Load (kWh) 30 30 30 30
PV Prod. (kWh) 12.61 12.61 12.61 12.61
Injection (kWh) 0.73 4.17 3.73 6.93

Battery Energy (kWh) 1.98 2.63 0.44 0.38
Subscription (kWh) 30.54 38.4 29.78 39.39

Utilization (%) 90.09 83.59 77.03 64.78
Service Cost (e/M) 61.31 76.89 59.88 79.39

LoadShedding Cost (e/M) 1.27 10.73 5.8 10.73
Total Cost (e/M) 62.58 87.62 65.68 90.12

(b) Household types 5-8

Types 5 6 7 8

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes No No
Battery No No No No

Load (kWh) 30 30 30 30
PV Prod. (kWh) 12.61 12.61 0 0
Injection (kWh) 6.55 8.35 0 0

Battery Energy (kWh) 0 0 0 0
Subscription (kWh) 36.94 46.77 38.32 46.78

Utilization (%) 62.29 53.09 75.79 62.19
Service Cost (e/M) 74.41 94.14 77.4 94.16

LoadShedding Cost (e/M) 13.9 13.62 14.37 13.61
Total Cost (e/M) 88.31 107.76 91.77 107.77
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where OC, r and T denote the overnight investment cost, annual discount
rate and the lifespan of the battery, respectively. The assumptions on these
parameters are as follows.

• Overnight cost of the battery. In table 3.1, we present the overnight
cost of two types of batteries in April, 2020. However, Lithium-ion bat-
teries have reached gigawatt-scale markets, driving approximately 14%
annual declines in battery costs between 2007 and 2014 [PAK16], and
it is expected to keep dropping dramatically in the future. IEA ex-
pects utility-scale battery pack costs to fall to around 100$/kWh by
2030 [Pav19]. BloombergNEF is more optimistic and estimates this tar-
get can be reached by 2024 due to economy of scale and improving effi-
ciencies [Ste19]. A study conducted by International Renewable Energy
Agency concludes the total installed cost for Lithium-ion batteries for
stationary applications will drop to between 145$/kWh and 480$/kWh
depending on battery chemistry in 2030. Since we are considering a
forward-looking scenario in 2050, the overnight cost is assumed to be
10% to 30% of the current cost, or equivalently 82.2e/kWh to 246.67
e/kWh for the large battery and 133.33 e/kWh to 400 e/kWh for the
small battery.

• We assume the annual discount rate to be 3% - 10%.

• Lifespan of the battery. A ten-year warranty is offered by battery manu-
facturers currently, but the lifespan of the battery can be longer [Sen20],
so we use 15 to 20 years as a reasonable assumption.

Based on these assumptions, the monthly cost of the large battery is estimated
to be between 6.22 e/month and 36.48 e/month and that of the small battery
ranges from 2.86 e/month to 16.83 e/month.

By comparing the total cost of household type 1 with type 5 under pri-
ority service in table 3.8, the cost reduction of a household with a day peak
from installing a large battery is quantified at 27.75 e/month. Similarly, by
comparing type 2 with type 6, the cost reduction amounts to 20.14 e/month
for a household with a night peak. Contrasting with the monthly cost of the
large battery, it is possible the investment cost of the large battery can not be
justified. However, the battery is oversized for the household5, because the cost
reduction by investing in a small battery is close. The cost reduction due to the
installation of the small battery amounts to 22.63 e/month for the household

5The average daily electricity consumption is 30 kWh for all types of households in this
case study. In practice, large households with an average daily electricity consumption be-
tween 13.7 and 41.1 kWh account for approximately 27% of the Belgian households, while
very large households with an average daily electricity consumption above 41.1 kWh account
for approximately 4 %. Other households exhibit an average daily electricity consumption
below 13.7 kWh [JDA+12].
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Table 3.9: Detailed results for each type of household under multilevel demand sub-
scription in the case study of section 3.5.

(a) Household types 1-4

Types 1 2 3 4

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes Yes Yes
Battery Large Large Small Small

Injection (kWh) 0.32 2.31 5.78 9.85
Battery Energy (kWh) 1.7 1.93 0.52 0.48

Subscription (kWh) 28.88 35.96 29.35 37.21
Utilization (%) 98.58 88.88 88.64 80.4

Service Cost (e/M) 60.24 79.12 61.66 82.58
LoadShedding Cost (e/M) 3.18 7.87 3.16 7.4

Total Cost (e/M) 63.41 87 64.82 89.99

(b) Household types 5-8

Types 5 6 7 8

SLP
Day
Peak

Night
Peak

Day
Peak

Night
Peak

PV Yes Yes No No
Battery No No No No

Injection (kWh) 8.09 14.89 0 0
Battery Energy (kWh) 0 0 0 0

Subscription (kWh) 28.82 38.18 32.84 43.26
Utilization (%) 87.42 84.17 90.88 69.3

Service Cost (e/M) 69.88 93.26 77.96 97.61
LoadShedding Cost (e/M) 4.16 2.08 2.3 0.31

Total Cost (e/M) 74.04 95.34 80.27 97.93

with a day peak and 17.64 e/month for the household with a night peak. In
comparison with the monthly cost of the small battery, the investment cost can
be justified.

We proceed to analyze the cost savings under multilevel demand subscrip-
tion. By comparing the total cost of different types of households in table
3.9, we conclude the benefit of installing the large battery ranges from 8.34
e/month to 10.63 e/month and the small battery is able to save the house-
holds 5.35 e/month to 9.22 e/month. Under these conditions, the investment
cost of batteries can only be recovered in relatively optimistic scenarios.
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3.A Nomenclature

The notation used in this chapter follows closely the notation that is presented
in section 2.A. The notation which is required for representing prosumers who
own rooftop solar and local storage is introduced as needed for section 3.4.

Sets

G Set of generators

L, L Set of consumer types and
its cardinality

H, H Set of households and its
cardinality

T , |T | Set of time periods and its
cardinality

I, I Set of reliability options and
its cardinality

J , J Set of duration options and
it cardinality

S Set of renewable production
scenarios of the producer

ΩW Set of wind production sam-
ple paths

ΩS Set of solar production sam-
ple paths

ΩI Set of sample paths of inter-
ruption of colors

ΩC Set of sample paths, equiva-

lent to ΩI × ΩS

Parameters

Π+ Upper bound of menu prices

Tj Duration of option j

Vl(Tj) Valuation of consumer type
l when the duration is Tj

[e/MWh]

Dl Demand of consumer l [MW]

V̄i Average valuation of group i
[e/MWh]

Ps Probability of scenario s

P s
ωW Probability of sample path

ωW of scenario tree ΩW in
scenario s, similarly for P s

ωS ,
P s
ωI , P s

ωC

Wt,s Wind production at hour t
in scenario s [MW]

St,s Solar production at hour t in
scenario s [MW]

St,ωS Solar production at hour t in

scenario ωS [MW]

Wt,ωW Wind production at hour t

in scenario ωW [MW]

V OLL Value of lost load, assumed
to be 500 e/MWh

BDh Battery charge capacity in
household h [MW]

BCh Battery discharge capacity
in household h [MW]

Eh Battery energy capacity in
household h [MWh]

ηdh Battery discharge efficiency
in household h

ηch Battery charge efficiency in
household h

Lt,s,h Load of household h at stage
t in scenario s [MW]

Nh Number of households of
type h

PVt,s,ωS Production from rooftop PV
panel at stage t in sample
path ωS , scenario s [MW]

FL Fuse limit imposed on the
household model [MW]

Γ Ratio of PV injection to the
capacity limit of the house-
hold

93



Comparison of Priority Service and Multilevel Demand Subscription

Variables

πi,j Price of option (i, j) [e]

ri Reliability of option i [%]

µl,i,j Binary decision of consumer
l for option (i, j)

yl,i,j Auxiliary variable to repre-
sent πi,j · µl,i,j

wl,i,j Auxiliary variable to repre-
sent ri,j,t · µl,i,j

sl,i,j The subscription quantity
of consumer l under option
(i, j) [MW]

si,j The total subscription quan-
tity under option (i, j) [MW]

di,j,t,s Supply to option (i, j) at
hour t in scenario s [MW]

pg,t,s Production of generator g at
hour t in scenario s [MW]

mg,t,s Start up decision of genera-
tor g at hour t in scenario s

ng,t,s Shut down decision of gener-
ator g at hour t in scenario
s

og,t,s Unit commitment decision
of generator g at hour t in
scenario s

lst,s,ωS Load shedding at stage t in

sample path ωS , scenario s

bdt,s,ωS Discharge power of the bat-
tery at stage t in sample
path ωS , scenario s

bct,s,ωS Charge power of of the bat-
tery at stage t in sample
path ωS , scenario s

et,s,ωS Energy stored in the battery

at stage t in sample path ωS ,
scenario s

ndt,s,ωS Net demand from the grid at

stage t in sample path ωS ,
scenario s

ndi,t,s,ωC Net demand from option i at

stage t in sample path ωC ,
scenario s

Functions

hg Cost function of generator g,
including production costs,
startup and minimum load
costs

fg Constraints of unit com-
mitment problems, includ-
ing minimum up and down
times, ramp rates and pro-
duction limits

3.B Modeling the Multilevel Demand Subscrip-
tion Menu Design Problem as a Stackel-
berg Equilibrium (Cont.)

3.B.1 Optimality Conditions of the Consumer Model

Following the consumer model presented in section 3.3, we derive the dual
(CDl) of the optimal menu selection problem so as to arrive to a MILP formu-
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lation of the Stackelberg equilibrium.

(CDl) : min
γl

γl ·Dl (3.33)

s.t. γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J (3.34)

γl ≥ 0. (3.35)

The optimality conditions of the lower-level problem can be expressed equiv-
alently as the set of primal feasibility conditions, dual feasibility conditions, and
the condition of strong duality:

sl,i,j ≥ 0, i ∈ I, j ∈ J , l ∈ L (3.36)∑
i∈I,j∈J

sl,i,j ≤ Dl, l ∈ L (3.37)

γl ≥ ri · Vl(Tj)− πi,j , i ∈ I, j ∈ J , l ∈ L (3.38)

γl ≥ 0, l ∈ L (3.39)

γl ·Dl =
∑

i∈I,j∈J
sl,i,j ·

(
ri · Vl(Tj)− πi,j

)
, l ∈ L (3.40)

When the optimality conditions of the lower-level problem are introduced
as constraints to the upper-level problem, we face non-convex constraints re-
sulting from the products ri ·µl,i,j and πi,j ·µl,i,j . We represent these products
using McCormick envelopes. We do so by noting that the reliability variable is
naturally bounded in the interval 0 ≤ ri ≤ 1, and by imposing a price limit on
the menu offering, 0 ≤ πi,j ≤ Π+. This allows us to express πi,j ·µl,i,j by a new
variable yl,i,j , and ri · µl,i,j by a new variable wl,i,j . The strong duality con-
straint (3.40) for the full population of load types l ∈ L can then be rewritten
as follows:

γl =
∑

i∈I,j∈J
wl,i,j · Vl(Tj)−

∑
i∈I,j∈J

yl,i,j , l ∈ L (3.41)

yl,i,j ≤ Π+ · µl,i,j , i ∈ I, j ∈ J , l ∈ L (3.42)

yl,i,j ≥ 0, i ∈ I, j ∈ J , l ∈ L (3.43)

yl,i,j ≤ πi,j , i ∈ I, j ∈ J , l ∈ L (3.44)

yl,i,j ≥ Π+ · µl,i,j + πi,j −Π+, i ∈ I, j ∈ J , l ∈ L (3.45)

wl,i,j ≤ µl,i,j , i ∈ I, j ∈ J , l ∈ L (3.46)

wl,i,j ≥ 0, i ∈ I, j ∈ J , l ∈ L (3.47)

wl,i,j ≤ ri, i ∈ I, j ∈ J , l ∈ L (3.48)

wl,i,j ≥ µl,i,j + ri − 1, i ∈ I, j ∈ J , l ∈ L (3.49)
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ri ≤ 1, i ∈ I (3.50)

πi,j ≤ Π+, i ∈ I, j ∈ J (3.51)

ri ≥ 0, πi,j ≥ 0, µl,i,j ∈ {0, 1}, i ∈ I, j ∈ J , l ∈ L (3.52)

3.B.2 The Producer Model

Binary vectors m,n,o indicate startup, shutdown and commitment decisions
respectively. The non-negative vector p corresponds to the dispatch of conven-
tional units. The non-negative vector d corresponds to the amount of power
that is offered in different options under different scenarios and time periods.
In addition, the producer owns a set of renewable assets. Their production
is characterized by a set of scenarios, S. The menu design problem of the
producer can be expressed as follows.

max
m,n,o,d,p,π

∑
l∈L

∑
i∈I
j∈J

s?l,i,j(π) · Vl(Tj) · ri −
∑
s∈S

Ps ·
∑
g∈G

hg(mg,s,ng,s,og,s,pg,s)

(3.53)

s.t. fg(mg,s,ng,s,og,s,pg,s) ≤ 0, g ∈ G, s ∈ S (3.54)∑
i∈I
j∈J

di,j,t,s =
∑
g∈G

pg,t,s +Wt,s + St,s, t ∈ T , s ∈ S (3.55)

di,j,t,s ≤
∑
l∈L

s?i,j,l(π) ·Nj,t, i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.56)

ri ·
∑
l∈L

s?i,j,l(π) · Tj =
∑
s∈S

Ps ·
∑
t∈T

di,j,t,s, i ∈ I, j ∈ J (3.57)

di,j,t,s ≥ 0, pg,t,s ≥ 0, i ∈ I, j ∈ J , g ∈ G, t ∈ T , s ∈ S (3.58)

mg,t,s ∈ {0, 1}, ng,t,s ∈ {0, 1}, og,t,s ∈ {0, 1}, g ∈ G, t ∈ T , s ∈ S
(3.59)

The goal of the producer, which is expressed in the objective function of Eq.
(3.53), is to maximize social welfare. The first term in the objective function
represents the consumer benefit, as estimated from the producer based on load
duration curve data, with L representing the set of consumer types in the load
duration curve. This consumer benefit depends on the reaction of consumers to
the price menu. The second term in the objective function corresponds to the
expected production cost of the producer. The parameter Ps is the probability
of scenario s ∈ S. The function hg(mg,s,ng,s,og,s,pg,s) expresses the produc-
tion cost of a generator, while the vector of constraints in Eq. (3.54) encodes
linear production constraints that relate to unit commitment and dispatch of
conventional units. Power balance is expressed in constraint (3.55), where Wt,s

and St,s indicate the amount of wind and solar production in period t and
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scenario s, respectively. Constraint (3.56) expresses the fact that a consumer
type can only be served if that type is requesting power in a given interval,
and if that interval is served under option j ∈ J (i.e. if Nj,t = 1). Constraint
(3.57) ensures that an option i ∈ I receives reliability ri.

3.B.3 The Bilevel Model

Given a choice s?l,i,j of menu options by consumer types, the producer model is
a welfare maximizing commitment and dispatch of the system. The task of the
producer is to offer a price menu {ri, Tj , πi,j}, i ∈ I, j ∈ J so that consumers’
reaction s?l,i,j is compatible with the optimal social welfare. Then the bilevel
model can be written as

max
m,n,o,d,p,r,π

∑
l∈L

∑
i∈I
j∈J

s?l,i,j · Vl(Tj) · ri −
∑
s∈S

Ps ·
∑
g∈G

hg(mg,s,ng,s,og,s,pg,s)

(3.60)

s.t. (3.54)− (3.59) (3.61)

s?l,i,j ∈ arg max
sl,i,j≥0

{
∑

i∈I,j∈J
sl,i,j ·

(
ri · Vl(Tj)− πi,j

)
:

∑
i∈I,j∈J

sl,i,j ≤ Dl, i ∈ I, j ∈ J }. (3.62)

To arrive at an MILP reformulation, we replace the product s?l,i,j ·Vl(Tj) ·ri
with its McCormick envelope in the objective function, yielding

max
m,n,o,d,p,π,r,w,y,µ

∑
i∈I
j∈J

∑
l∈L

Dl ·Vl(Tj) ·wl,i,j−
∑
s∈S

Ps ·
∑
g∈G

hg(mg,s,ng,s,og,s,pg,s)

(3.63)
The constraints of the producer can be expressed as follows:

fg(mg,s,ng,s,og,s,pg,s) ≤ 0, g ∈ G, s ∈ S (3.64)∑
i∈I
j∈J

di,j,t,s =
∑
g∈G

pg,t,s +Wt,s + St,s, t ∈ T , s ∈ S (3.65)

di,j,t,s ≤
∑
l∈L

Dl ·Nj,t · µi,j,l, i ∈ I, j ∈ J , t ∈ T , s ∈ S (3.66)∑
l∈L

Dl · Tj · wi,j,l =
∑
s∈S

Ps ·
∑
t∈T

di,j,t,s, i ∈ I, j ∈ J (3.67)

di,j,t,s ≥ 0, pg,t,s ≥ 0, i ∈ I, j ∈ J , g ∈ G, t ∈ T , s ∈ S (3.68)

mg,t,s ∈ {0, 1}, ng,t,s ∈ {0, 1}, og,t,s ∈ {0, 1}, g ∈ G, t ∈ T , s ∈ S(3.69)

Note that in Eq. (3.66), which corresponds to Eq. (3.56), we have replaced
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the optimal choice s?l,i,j(π) with its binary alternative, Dl · µl,i,j , by relying on
proposition 3. Note, also, that in Eq. (3.67), which corresponds to Eq. (3.57),
we have replaced the product s?l,i,j(π) · ri with its McCormick envelope.

The MILP formulation of the bilevel problem can then be summarized as
follows.

• Maximize system welfare, as expressed in Eq. (3.63)

• subject to the upper-level constraints of the producer (3.64) - (3.69)

• subject to lower level primal feasibility constraints (3.36) - (3.37)

• subject to lower level dual feasibility constraints (3.38) - (3.39)

• subject to the McCormick envelope of the lower level strong duality con-
dition, (3.41) - (3.52)

3.C Estimation of Demand Functions

Recall that, as input to the problem CPl in section 3.3.1, the producer requires
the valuation of an increment Dl of power. The idea of our approach is to
estimate the marginal value of an increment in the fuse limit of a household.
Due to the coexistence of storage and solar in a household, there is no guarantee
that this incremental value is a concave function of the duration of consumption,
therefore in a second step we compute the closest concave approximation. This
function, Vl(t) serves as input to the menu design problem.

In order to clarify the procedure that we adopt, we present the following
model (HVh), which is used for quantifying the marginal value of a fuse limit
increase to a household h which has a certain known installation of solar supply,
storage, and non-flexible demand. The model is described as follows. The
notation used in this model is identical to that of section 3.4.2. The only
new parameter that is added to the model is FL in constraint (3.78), which
corresponds to the fuse limit of the household. Constraint (3.78) effectively
imposes a fuse limit, and the dual multiplier λt,s,ωH of this constraint is used
for quantifying the incremental value of the fuse limit. Concretely, the valuation
for an additional unit of power in period t of actual operations, given fuse limit
FL, is computed as ∑

s∈S,ωS∈ΩS

λt,s,ωS , t ∈ T .

We derive this valuation for different levels of FL, in order to derive a
demand function for increments of power for the household at a given operating
interval.
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The model can be described as follows:

(HVh) :

min
x=(ls,nd,bd,bc,e)

∑
s∈S

∑
t∈T

∑
ωS∈ΩS

V OLL · Ps · P sωS · lst,s,ωS (3.70)

s.t. bdt,s,ωS ≤ BDh, t ∈ T , s ∈ S, ωS ∈ ΩS (3.71)

bct,s,ωS ≤ BCh, t ∈ T , s ∈ S, ωS ∈ ΩS (3.72)

et,s,ωS ≤ Eh, t ∈ T , s ∈ S, ωS ∈ ΩS (3.73)

e1,s,ωS + bd1,s,ωS/η
d
h − bc1,s,ωS · ηch = 0, s ∈ S, ωS ∈ ΩS (3.74)

et,s,ωS − et−1,s,ωS + bdt,s,ωS/η
d
h − bct,s,ωS · ηch = 0,

t ∈ {2, . . . , |T |}, s ∈ S, ωS ∈ ΩS (3.75)

eT,s,ωS = 0, s ∈ S, ωS ∈ ΩS (3.76)

Lt,s,h − lst,s,ωS + bct,s,ωS − PVt,s,ωS − bdt,s,ωS − ndt,s,ωS = 0,

t ∈ T , s ∈ S, ωS ∈ ΩS (3.77)

(λt,s,ωS ) : ndt,s,ωS ≤ FL, t ∈ T , s ∈ S, ωS ∈ ΩS (3.78)

xt,s,b − xt,s,ωS = 0, t ∈ T , b ∈ Bt, s ∈ S, ωS ∈ ΩS (3.79)

bdt,s,ωS ≥ 0, bct,s,ωS ≥ 0, et,s,ωS ≥ 0, lst,s,ωS ≥ 0,

t ∈ T , s ∈ S, ωS ∈ ΩS (3.80)

The demand functions for the eight types of households that are simulated
in section 3.5 are presented in figure 3.16 (note the difference in numbering
in the horizontal axis for different households, since household consumption is
not necessarily synchronized). We then aggregate the demand increments of
the system level , according to the number of households in each type. We
obtain, in this way, a system-level demand function, which is presented in
figure 3.17a. Note that these valuation functions are not concave. In order to
obtain the concave functions Vl(t) in Eq. (1) of problem (CPl) of section 3.3.1
which approximate the value functions of figure 3.17a as closely as possible, we
solve a least-square fit of the function of figure 3.17a which yields a function
that differs from that of figure 3.17a as little as possible, while respecting the
concavity of Vl(t). The system-level demand function after the least-square fit
is presented in figure 3.17b. The mapping τ(t) is obtained by ordering the total
benefits under the demand function at each time stage in descending order. For
example, in figure 3.17b, the marginal value is highest for the aggregate demand
function during the second stage, we thus obtain τ(2) = 1.
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Figure 3.16: Comparison of demand functions for the eight types of households that
are simulated in section 3.5. The x-axis corresponds to the time period of the load
duration curve, while the y-axis presents the fuse limit. The darkness indicates the
valuation for an increment of fuse capacity, which ranges from 0 to 500 e/MWh.
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Figure 3.17: The system-level demand function (left), and its concave approximation
(right).
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3.D Household Menu Selection Problem

Once the household is presented with a multilevel demand subscription menu,
it can decide on which options to procure. The menu selection problem of the
household can be described as follows, which is solved by each household. The
notation used in this section follows the notation of section 3.4.2.

(HCh) :

min
s,x=

(ls,nd,bd,bc,e)

Ps ·
(∑
t∈T

∑
ωC∈ΩC

V OLL · P sωC · lst,s,ωC +
∑

i∈I,j∈J
πi,j · si,j

)
(3.81)

s.t. bdt,s,ωC ≤ BDh, t ∈ T , s ∈ S, ωC ∈ ΩC (3.82)

bct,s,ωC ≤ BCh, t ∈ T , s ∈ S, ωC ∈ ΩC (3.83)

et,s,ωC ≤ Eh, t ∈ T , s ∈ S, ωC ∈ ΩC (3.84)

e1,s,ωC + bd1,s,ωC/η
d
h − bc1,s,ωC · ηch = 0, s ∈ S, ωC ∈ ΩC (3.85)

et,s,ωC − et−1,s,ωC + bdt,s,ωC/η
d
h − bct,s,ωC · ηch = 0,

t ∈ {2, . . . , |T |}, s ∈ S, ωC ∈ ΩC (3.86)

Lt,s,h − lst,s,ωC + bct,s,ωC − PVt,s,ωS − bdt,s,ωC =
∑
i∈I

ndi,t,s,ωC ,

t ∈ T , s ∈ S, (ωI × ωS) ∈ ΩC (3.87)

ndi,t,s,ωC ≤
∑
j∈J

si,j · 1[i,t,ωI ], i ∈ I, s ∈ S, (ωI , ωS) ∈ ΩC (3.88)

∑
i∈I

ndi,t,s,ωC ≥ −Γ ·
∑

i∈I,j∈J
si,j , s ∈ S, (ωI , ωS) ∈ ΩC (3.89)

∑
t∈T

ΠR+
(ndi,t,s,ωC ) ≤

∑
j∈J

Tj · si,j , i ∈ I, t ∈ T , s ∈ S, ωC ∈ ΩC

(3.90)

xt,s,b − xt,s,ωC = 0, t ∈ T , b ∈ Bt, s ∈ S, ωC ∈ ΩC (3.91)

bdt,s,ωC ≥ 0, bct,s,ωC ≥ 0, et,s,ωC ≥ 0, lst,s,ωC ≥ 0,

i ∈ I, t ∈ T , s ∈ S, ωC ∈ ΩC (3.92)

The first stage of this menu selection problem is the subscription level si,j . This
decision is not indexed by day type s ∈ S, because the subscription remains
the same over all seasons and weekdays / weekends. By contrast, the daily
operational decisions of the household, x = (ls,nd,bd,bc, e), are indexed by
s ∈ S and ωC ∈ ΩC . Note that we estimate a different scenario tree for each
day type, with P sωC corresponding to the probabilities of the scenario tree for
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Table 3.10: Priority service menus under different VOLL assumptions.

VOLL (e/MWh) Reliability (%) Price (e/kW-month)
56.6 19.4

200 78.4 27.8
100.0 38.0
58.5 26.4

500 85.3 39.3
100.0 48.5
71.2 39.9

3000 90.4 69.7
100.0 105.9

day type s ∈ S. The notation and constraints of this model are the same as
those in section 3.4.2. We point out the following main differences between the
household choice model (HCh), and the model Hh,τ of section 3.4.2:

• The optimization of the household choice (HCh) is conducted over the
full horizon t ∈ T , whereas the rolling optimization of the household
dispatch is performed from a given stage τ until the end of the horizon.

• The objective function in the menu choice model (HCh) is the expected
load shedding cost of the household, plus the cost of subscribing to a
given menu. By contrast, in the rolling optimization problem (Hh,τ ), the
household has already chosen a specific option, and is only interested in
minimizing its expected cost from stage τ until the end of the day.

• The right hand side of constraint (3.88) in the household choice model
(HCh) is a decision, whereas in the corresponding constraint (3.26) of
model (Hh,τ ) in section 3.4.2 it is a parameter. More specifically, the
optimal subscription s?i,j of (HCh) is stored as a parameter Sh,i,j , and
is used as input to the performance evaluation model (Hh,τ ) of section
3.4.2.

3.E Impact of VOLL on Menu Design

The value of lost load (VOLL) in the case study of this chapter is assumed to
be 500 e/MWh, which is consistent with the maximum valuation estimated in
Chapter 2. In table 3.10, we compare the priority service menus for different
values of VOLL. There are two major observations:

• The reliability levels tend to increase in the case of a higher VOLL. With
a high VOLL, the value of serving a certain option increases, so the reli-
ability level is largely driven by the available capacity of the system. In
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contrast, the value of serving a certain option decreases when VOLL de-
creases. Consequently, the option could be interrupted when the marginal
cost of the system is higher than the valuation, even if the capacity is not
exhausted. This results a lower reliability level.

• The prices are higher when the VOLL is higher. This price increase
is driven by the increased value of serving a certain, option and by the
reliability increment from the lowest-reliability option (see equation 2.10).
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Chapter 4

Conclusions and
Perspectives

This thesis focuses on the design of new pricing policies for residential con-
sumers based on nonlinear pricing theory, in order to mobilize demand response
in the residential sector. We mainly investigate two quality-differentiated prod-
ucts, namely priority service and multilevel demand subscription. The latter
is considered as an extension of the former.

We first reformulate priority service pricing as a bilevel model of a Stackel-
berg game, which couples the problem of menu design with unit commitment.
We are thus able to extend the classical theory of priority service [CW87] by
including non-convex costs and constraints in the model. We further develop
a decomposition algorithm for solving the problem heuristically, and compare
the performance of priority service with flat tariffs and real-time pricing on a
realistic case study of the Belgian electricity market.

This framework for modeling a market equilibrium under priority service
is then generalized to multilevel demand subscription. The extra component
of energy charges in multilevel demand subscription increases implementation
complexity from the perspective of both the utility and households. On the
upside, multilevel demand subscription improves operational efficiency by al-
lowing the utility to better discriminate flexible consumers. We examine the
trade-off between simplicity and operational efficiency using a stochastic pro-
gramming framework. The impacts of both pricing schemes on the utility and
households are analyzed. In the following, we first present a summary of our
conclusions, and then discuss a list of areas for future work that have been
inspired by the present research.
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4.1 A Summary of Conclusions

4.1.1 Case Study Comparing Flat Tariff, Priority Service
and Real-Time Pricing

(a) The benefits of priority service: Priority service is able to achieve
higher efficiency compared to a flat tariff, due to the self-selection of con-
sumers which enables the utility to differentiate consumers. The efficiency
gain increases with the increase of the number of options offered in the
price menu and our study of the Belgian power system demonstrates that
priority service can reap 61.4% to 77.1% of the gains of real-time pricing
by using a menu that consists of 3 to 5 options.

(b) Interruption patterns: A powerful feature of our proposed model is
that it reveals the interruption patterns associated with a given level of
reliability. A continuous interruption of 20 hours is possible for an op-
tion that nominally interrupts customers for 4.4 minutes per hour (when
distributed evenly). The severity of such continuous interruptions needs
to be carefully accounted for in the development of aggregator services.

4.1.2 Case Study Comparing Priority Service and Multi-
level Demand Subscription

(a) Operational efficiency: Under multilevel demand subscription, the
utility is able to supply more energy to households at a lower cost, while
the service inconvenience of households is also reduced.

(b) Service comparison: Due to the offer of options with shorter duration,
the total subscribed capacity of each household under multilevel demand
subscription is higher than that under priority service. On the other
hand, the subscribed energy is less. In addition, under multilevel demand
subscription, the lowest utilization ratio of the subscribed energy amounts
to 69.3%, which is a significant improvement relative to the lowest ratio
under priority service, which amounts to 53.1%

(c) Cost comparison of households under different policies: The total
cost of a household equipped with a battery under multilevel demand
subscription is almost identical to that under priority service. On the
other hand, if the household does not own a battery, the savings achieved
by multilevel demand subscription are more significant.

(d) Cost-benefit analysis of local storage: The batteries are more re-
warding for households under priority service, and the investment cost
can be justified. In contrast, the investment cost of batteries can only
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be recovered in relatively optimistic scenarios under multilevel demand
subscription.

4.2 Future Areas of Research

(a) Modeling of risk preferences: In our models for menu design, we
focus on consumers who are risk-neutral. Thus we are able to represent
the utility function of the consumer as an affine function of reliability
and then reformulate the bilevel menu design problem into an MILP. We
would like to extend the model to consider risk aversion [Rab00]. The
modeling approach of risk aversion and the methodology to solve the
Stackelberg game with risk-averse consumers are to be investigated.

(b) Aggregator competition: When the price menu is designed, we focus
on the setting where the producer is a benevolent planner that maxi-
mizes social welfare. This follows the standard literature on nonlinear
pricing [Rob93, CW87, COSW86]. We are interested in extending the
model to consider aggregator competition. This model may be cast as
an equilibrium problem with equilibrium constraints, where aggregators
maximize profit by offering different price menus and consumers aim at
extracting the highest possible surplus [JT06,BH05,CO16].

(c) Evenly distributed interruption patterns: In our model, the relia-
bility is defined over the entire horizon, so the interruption patterns are
not captured explicitly. The definition of reliability can be revised to
guarantee that the promised reliability is delivered on a daily or weekly
basis, in order to ensure more evenly distributed interruption patterns.

(d) Integrating capacity expansion into menu design: Another di-
rection of interest is to apply the bilevel approach in order to incor-
porate capacity expansion planning considerations in the design of the
menu [JT07].

(e) Accounting for the grid tariff: In our menu design model, we have
exclusively focused on the tariff component related to the production of
electricity. However, the grid (transmission and distribution network)
tariff accounts for approximately 60% of the electricity bill of residential
consumers in Belgium [Ele20a]. In the backdrop of increasing numbers
of prosumers, the design of novel grid tariffs has attracted the attention
of researchers and grid operators [GBD18, ABG19, GBLC+19]. It would
be an interesting extension to incorporate the grid tariff into the price
menus, which is to be investigated.

107



Conclusions and Perspectives

(f) Improved representation of the household model: We are inter-
ested in further improving Chapter 3 by considering more diverse house-
hold types, flexible appliances, a longer horizon, a more detailed model
of uncertainty and sizing of batteries.

(g) Development of home energy management systems: In Chapter
3, households select options from the price menu and consume electric-
ity optimally according to our models. Admittedly, if the behavior of
the household is not optimal, the operational efficiently of the proposed
pricing schemes would be undermined. For example, if a household over-
procures the red option, the producer may end up serving low-valuation
demand with high-cost generators. One solution to this problem is the
development of home energy management systems, which assist house-
holds with managing electricity consumption based on machine learning
techniques or optimization models [AS17, GP19]. Belgium is one of the
pioneers in the establishment of an adequate regulatory framework for de-
mand response [Eco19]. In particular, the roll-out of smart meters shall
reach all customers in Flanders no later than 2034 and 80% customers
in Wallonia by 2029. In addition, the Belgian government has started to
subsidize households with energy management systems [Lam20].
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Rubén Romero. A bilevel approach to transmission expansion
planning within a market environment. IEEE Transactions on
Power Systems, 24(3):1513–1522, 2009.

[GHP07] Paul R. Gribik, William W. Hogan, and Susan L. Pope. Market-
clearing electricity prices and energy uplift. Technical report,
John F. Kennedy School of Government, Harvard University,
2007.

[Gil14] Hans Christian Gils. Assessment of the theoretical demand re-
sponse potential in europe. Energy, 67:1–18, 2014.

[GJP18] Axel Gautier, Julien Jacqmin, and Jean-Christophe Poudou.
The prosumers and the grid. Journal of Regulatory Economics,
53(1):100–126, 2018.

[GOS+19] Veronika Grimm, Galina Orlinskaya, Lars Schewe, Mar-
tin Schmidt, and Gregor Zöttl. Optimal design of
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