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Abstract

The Micro-electro-mechanical systems (MEMS) are now widely used in several
engineering fields. The control of the deposition process of polycrystalline silicon
makes it a key element in the manufacturing of MEMS. The fracture properties of
the polycrystalline silicon directly affect the reliability of MEMS in service. Out of
the several factors, an effect of the orientation of grains on the fracture behaviour
of the polycrystalline silicon films is investigated in the present work. This is
achieved firstly, by identifying the statistical variation of the fracture strength and
critical strain energy release rate, at nanoscopic scale, over a thin polycrystalline
silicon film, having mesoscopic scale dimensions, with the random orientation of
grains. Secondly, the thin polycrystalline silicon film is considered at the contin-
uum macroscopic MEMS scale, and its fracture behaviour is studied by incorpo-
rating the nanoscopic scale effect of grain orientation. The entire modelling and
simulation of the thin polycrystalline silicon film is achieved by combining the
discontinuous Galerkin method and extrinsic cohesive law to describe the fracture
process. At the end, the fracture stress and strain, at the mesoscopic and macro-
scopic levels, are found to be closely matching with the corresponding experimen-
tal results.
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1 Introduction
Polycrystalline silicon (polySi) is the most common material in use for the manufac-
turing of MEMS. Several factors, such as the grain size, grain orientation, and nano
scale defects or flaws, affect the mechanical properties of thin polySi film, such as the
Young’s modulus E, fracture strength σc, and critical strain energy release rate Gc [1].
Apart from this, a specific manufacturing process adopted to produce MEMS also fur-
ther affect the run-time fracture behaviour of MEMS. It is pertinent at first to clearly
define the relevant length scales to illustrate the problem addressed in the present work.
The length dimension from 1 nm to 100 nm is referred as the nanoscopic scale, from
100 nm (0.1 µm) to 1000 nm (1.0 µm) is referred as the mesoscopic or microscopic
scale, and higher than 1.0 µm is referred as the MEMS or macroscopic scale. Thus, an
average single grain size of polySi (≈ 100 nm) falls under the nanoscopic scale, the size
of the simulation model of a thin polySi film consisting of several grains fall under the
mesoscopic or microscopic scale (size of representative volume element), and finally
the size of the simulation model of a thin polySi film having continuum structure, i.e.,
without the underlying microstructure, falls under the macroscopic length scale. The
length scales will be correspondingly referred in the subsequent sections of this paper.

Several advanced techniques [2, 3] have been developed over the years to correctly
measure the mechanical properties E,σc, and Gc of a bulk polySi and single crystal
silicon presenting a preferred out of plane orientation, such as <1 0 0> or <1 1 0> or <1
1 1>, involving the statistical aspects, using the micromechanical test structures. These
researches report some variations in the mean values of E and σc at both, the micro and
macroscopic levels. This could be explained by the random orientation of grains at the
mesoscopic level leading to a statistical strength distribution at macroscopic level, and
thus two samples may have completely different crack paths (transgranular or inter-
granular) as well as different fracture strengths. The literature also reports a decrease
of a fracture strength with respect to an increase in the thickness of the test sample [4].
This could be explained by the presence of more surface flaws across the thickness
in the thicker specimen. Thus, all these reasons warrant a robust design procedure of
MEMS, made up of polySi, linking the probabilistic nature of the fracture behaviour
of polySi at mesoscopic level with the macroscopic level.

The fracture of a thin polySi film involves the nanoscopic scale corresponding to
the grain size, as well as the macroscopic scale corresponding to the specimen dimen-
sions. The fracture properties (σc, Gc and crack path) of polySi vary at nanoscopic
scale due to the several factors mentioned earlier. Therefore, the prediction of the frac-
ture behaviour at MEMS scale is a particularly challenging task that is accomplished
through a representative volume element (RVE) with the mesoscopic scale dimensions.
The main objective of the present work is to link the effect of the grains orientation at
mesoscopic level to the fracture of MEMS at macroscopic level to contribute to more
robust design tools. Toward this end, a plane-stress 2-D thin polySi film is modeled
at the mesoscopic and macroscopic levels by the discontinuous Galerkin (DG) method
coupled with the extrinsic cohesive law (ECL) approach accounting for the fracture
process. The DG method takes into account the discontinuities (jump) in the field vari-
able distribution in the interior of the problem domain, and the ECL approach performs
the unloading of the force on the newly created fracture surfaces. The values of σc and
Gc are experimentally available for a single crystal silicon with preferred out of plane
grain orientations < 1 0 0 >,< 1 1 0 > and < 1 1 1 >, despite of a mesoscopic crack
experimentally propagates along the weakest plane having a certain "average" orienta-
tion (direction) that can be extrapolated by these three orientations. A new formulation
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is thus proposed that computes the effective values of σc and Gc for an "average" out
of plane orientation of the grain by the known three values. Several grains are experi-
mentally observed over the thickness of a thin polySi film [3, 5–7], so it is not exactly
a plane stress problem. Here we want to get the fracture along the weakest plane, and
not in the normal direction of the loading cross-section. Thus, the thickness of a thin
polySi film is considered while identifying the weakest fracture plane for the through-
the-thickness fracture.

One of the primary motivations behind this study is that the finite element size of
the discretized microstructure is constrained by the smallest grain size present in the
model. Indeed, a large number of elements, varying in size, are generated even for a
fewer number of grains in a model of the thin polySi film. Therefore, very small load
increments are required in order to achieve a stable quasi-static simulation. In fact, an
average grain size of approximately 100 nm leads to a time step around ≈ 1× e−15

sec., resulting in a huge computational time even after the parallel implementation of
the code. This problem is successfully addressed by the 2-scale method proposed in
this work, as one can have a much larger finite element size at the macroscopic length.

The weak form of the DG method is developed similar to the classical finite element
method (FEM), except that the boundary integral terms do not vanish. The integration
by parts is restricted to the subdomains, thus the boundary integral terms arising from
it across the subdomain boundaries are retained and used to capture the discontinuities
across the element interfaces. Thus, the unknown field is assumed to be continuous
only within the element, and discontinuous across the inter-element boundaries. The
theoretical aspects of the DG method are well explained in the available literature [8–
11].

The ECL method is one of the types of cohesive zone models (CZM) in which a
cohesive zone (process zone) is considered ahead of the crack tip, such that the force
on the crack lips within the cohesive zone progressively vanishes, leading to fully open
crack. This model was initially proposed by Dugdale [12] (for elastic perfectly plastic
material) and extended by Barenblatt [13] for a general elasto-plastic material. The
opening of a crack with in CZM is constrained by the traction forces in-between the
fracture surfaces. Thus, a monotonically decreasing traction separation law (TSL) re-
sults in zero traction values in-between the crack surfaces once the effective crack
opening reaches a critical value. The total energy released per unit of the newly cre-
ated crack surface area (J/m2) during the crack opening is equal to the fracture energy
or critical strain energy release rate Gc. The value of Gc for very brittle materials is
almost always equal to 2 γ, where γ is the surface energy of the material. The factor 2
is used as two new surfaces are formed during the fracture process. The cohesive laws
can be typically implemented in two ways, viz., intrinsic [14] and extrinsic cohesive
laws [15, 16]. Historically intrinsic laws have been preferred to extrinsic one as they
are easier to implement. Nevertheless the recourse to an intrinsic cohesive law leads to
an inconsistent pure penalty method. On the contrary, extrinsic cohesive laws preserve
the consistency but they are more complicated to implement in the case of continu-
ous Galerkin methods as some topological mesh modifications are required during the
simulation. This issue no longer exists for DG methods as the interface elements are
already discontinuous before the insertion of the cohesive element, as in the intrinsic
approach [17]. An interface term, ensuring the consistency of the method, is considered
in the DG/ECL framework instead of a pure penalty method. As long as the ECL is
monotonically decreasing, the shape of the curve does not affect the solution for brittle
materials. The detailed discussion and formulation of DG/ECL methods can be found
in the references [10, 11].
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Firstly, the fracture of polySi thin films is simulated at the mesoscopic level by
meshing explicitly several grains present in the RVE. Several sets of the simulation
results are obtained, by assigning each time, a random orientation to the grains. A
macroscopic cohesive law is then extracted for each set of results [18,19], and the mean
and standard deviation values of σc and maximum crack tip opening displacement are
computed. An average macroscopic cohesive law is then developed based on these
values. Secondly, the fracture of a polySi thin film is performed at the macroscopic
level, by the average cohesive law, for a much larger model without the underlying
microstructure. At both length scales, the fracture is modelled by DG / ECL combina-
tion. Finally, all the simulation results (fracture strength and strain) are compared with
corresponding experiments.

This paper is organized as follows. The brief formulations of both DG and ECL
methods are given in Section 2. The formulations to compute the effective σc for a
general out-of-plane orientation of grains, and the effect of the thickness of polySi thin
film on the effective σc for the through-the-thickness crack are included in Section 3.
The fracture studies of a thin polySi film is performed, as explained earlier, and their
results at the microscopic and macroscopic levels are discussed in Sections 3 and 4,
respectively. The simulation results are then compared with the experimental work in
Section 5, and finally the conclusions are drawn in Section 6.

2 Discontinuous Galerkin method and extrinsic cohe-
sive law framework
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Figure 1: Interface element with local basis vectors in-between the two 2D bulk ele-
ments, "-" and "+", in the DG method

The thin polySi film, at the mesoscopic and macroscopic levels, is first treated as
a continuum, with a discretization of the grains following the DG method and assum-
ing small deformations. The mesh of the geometry contain bulk elements and all the
boundaries between them are treated as interface elements, as shown in Figure 1.

Let Ω ⊂ R2 be a body subjected to a force per unit mass bbb (N/Kg). Its bound-
ary surface Γ includes two parts: the Dirichlet boundary denoted by ΓD, where the
displacement uuu is prescribed by ūuu, and the Neumann boundary denoted by ΓT, where
the traction is prescribed by t̄tt. One always has Γ = ΓD ∪ΓT and ΓD ∩ΓT = /0. The
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continuum mechanical equilibrium equations in the material form are stated as

∇ ·σσσT +ρ bbb = ρ üuu in Ω , (1)
uuu = ūuu on ΓD , and (2)

σσσ n̂nn = t̄tt on ΓT . (3)

where ρ is the density, σσσ is the Cauchy stress tensor, and n̂nn is the outward normal to
the unit surface in the current configuration. The situation of cracked interfaces will be
considered in the next subsection.

The 2D finite element discretization of the body Ω is expressed as Ω =
⋃

e Ω̄e,
where Ω̄e is the union of the open domain Ωe with its boundary Γe. Here the symbol Ω

is used to represent the whole body and its discretization for simplicity. The weak form
of Equations (1-3) arises by seeking a polynomial approximation uuu of the displacement
field over the discretization Ω. Contrarily to a continuous Galerkin approximation,
which requires uuu∈C0 (Ω), the DG approach requires only an element–wise continuous
polynomial approximation, i.e., uuu ∈C0 (Ωe). Consequently, for a DG formulation the
trial functions wwwu are also discontinuous across the element interfaces on the internal
boundary of the body ΓI = [

⋃
e Γe]\Γ.

The new weak formulation of the problem is obtained in a similar way as for the
continuous Galerkin approximation. The linear momentum balance is enforced in a
weighted average sense by multiplying the strong form (1) by a suitable test function wwwu
and by integrating by parts in the domain. However, since both test and trial functions
are discontinuous, the integration by parts is not performed over the whole domain but
on each element instead. Using traditional DG considerations, see [8] for details, this
leads to ∫

Ω

(ρ üuu ·wwwu +σσσ : ∇wwwu) dv+
∫

ΓI

[[wwwu]] · 〈σσσ〉 · n̂nn− ds

=
∫

Ω

ρ bbb ·wwwu dv+
∫

ΓT

wwwu · t̄tt ds (4)

where n̂nn− is the outward normal to the unit surface of the “minus” element on one side
of the interface. In this equation, the discretized Cauchy stress tensor σσσ results from
the strain tensor εεε = (1/2)(∇⊗uuu+uuu⊗∇) through a constitutive material law. As the
grains of polySi are orthotropic in nature, anisotropic material tensor expressed in the
2D plane-stress state is used such that σσσ = C : εεε. The Equation (4) contains all the
usual terms from the classical Galerkin method with an extra terms accounting for the
discontinuities of the field at inter element boundaries. We have considered the jump
and average operators in these equations, which are defined on an interface of two bulk
elements of the discretized geometry, arbitrarily denoted “plus” and “minus” as shown
in Figure 1, respectively, as

[[•]] =
[
•+−•−

]
and 〈•〉= 1

2
[
•++•−

]
(5)

In the formulation (4) so far, neither the displacement continuity in-between the
elements, nor the stability of the method are enforced. The compatibility equation
uuu−− uuu+ = 0 on ΓI is enforced through a so–called symmetrization term in [[uuu]] and a
(sufficiently large) quadratic stabilization term in [[uuu]] and [[wwwu]]. With the addition of
the quadratic terms, the general displacement jumps are stabilized in the numerical
solution, while the symmetrization term leads to an optimal convergence rate with
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respect to the mesh size. The small deformation material response is thus properly
considered for the final weak formulation of the problem, which consists of finding uuu
such that ∫

Ω

(ρüuu ·wwwu +σσσ : ∇ wwwu) dv+
∫

ΓI

[[wwwu]] · 〈σσσ〉 · n̂nn− ds+∫
ΓI

{
[[wwwu]]⊗ n̂nn− :

〈
βs

hs
C
〉

: [[uuu]]⊗ n̂nn−
}

ds+∫
ΓI

{
[[uuu]] · 〈C : ∇wwwu〉 · n̂nn−

}
ds =∫

Ω

ρ bbb ·wwwu dv+
∫

ΓT

wwwu · t̄tt ds, ∀ wwwu


(6)

where hs and βs are the mesh size and penalty parameter for stabilization, respectively.
The second, third, and fourth terms from Equation (6) are the consistency, stabilization,
and compatibility terms, respectively. This formulation, known as the consistent inte-
rior penalty method, has been shown stable for βs larger than a constant that depends
on the polynomial approximation. More details and specific derivations about the DG
formulation can be found in [8–11].
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Figure 2: Linearly decreasing extrinsic cohesive law

Linearly decreasing ECL, as shown in Figure 2, is considered in the present work
to model the crack opening in-between the two fracture surfaces. Here σc,Gc,∆

∗ and
∆∗max are the fracture strength, critical strain energy release rate, crack tip opening
displacement, and the critical crack tip opening displacement, respectively. If an un-
loading of the forces occur during the crack opening, the ECL follows a reversible path
connecting the origin with the unloading point on curve (∆∗max, t̄max) with a straight
line, where t̄ = ‖t̄tt‖ , ∆∗, and t̄max represent the surface traction amplitude between the
crack lips, the opening of the crack, and the surface traction amplitude at the maxi-
mum crack opening ∆∗max reached during the fracture process, respectively. The critical
opening displacement ∆∗c is computed, such that Gc = [(∆∗c σc)/2] is satisfied to ensure
that the correct amount of energy is released at the end of the complete fracture process.

In order to couple the DG method with the ECL, let us consider a cracked surface
inside the body ΓC ∈ Ω in its deformed configuration. The equations (1-3) governing
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the strong form are completed in terms of the surface traction t̄tt = σσσ n̂nn in between two
crack lips, where σσσ and n̂nn are the Cauchy stress tensor and deformed unit normal out-
ward vector to any of the two lips, respectively. The combination between the fracture
modes I and II is obtained as suggested by Camacho and Ortiz [15], and Ortiz and Pan-
dolfi [16] by considering the effective stress σe f f with a fracture criterion as σe f f ≥ σc,
such that

σe f f =



√
(σn)2 +(β )−2(τr)2, if σn ≥ 0

1
β
� |τr|−µc |σn| �, if σn < 0

(7)

where β = (KIIC/KIC) and µc are shear stress factor and friction coefficient of the ma-
terial, respectively, and where

�•�=


•, if • ≥ 0

0, if •< 0 (8)

In Equation (7), σn = t̄tt · n̂nn and τr =
√
‖t̄tt‖2− (σn)2 are respectively the normal and

tangential components of the surface traction vector t̄tt at the interface. The Cauchy
stress tensor σσσ is computed at each interface Gauss quadrature point through the mate-
rial constitutive law till the fracture criterion, σe f f ≥ σc, is reached. Once the fracture
is detected at a specific interface node, the ECL is used to compute the traction vector
t̄tt between the two crack lips in terms of the effective opening displacement ∆∗. The
effective opening displacement ∆∗ is computed from the surface opening vector ∆∆∆∗,
which is a combination of two effective openings ∆∗n and ∆∗t as given by

∆
∗ =

√
� ∆∗n�2 +β2(∆∗t )2 (9)

where ∆∗n and ∆∗t are the separations along the normal n̂nn and tangential t̂tt directions,
respectively, of the interface element in the deformed configuration. The computation
of ∆∗ is explained in details by Wu et al. [19]. The amplitude of the effective cohesive
traction, shown in Figure 2, can then be computed by linear interpolation as

t̄ = σc

(
1− ∆∗

∆∗c

)
for ∆̇

∗ ≥ 0, and ∆
∗ = ∆

∗
max (10)

t̄ = t̄max
∆∗

∆∗max
for ∆̇

∗ < 0, or ∆
∗ < ∆

∗
max (11)

whereas the cohesive traction vector t̄tt can be evaluated as a function of the effective
cohesive traction t̄, following

t̄tt = t̄
(

∆∗n
∆∗ n̂nn+β

|∆∗t |
∆∗ t̂tt

)
for σn ≥ 0 (12)

t̄tt = t̄ β
|∆∗t |
∆∗ t̂tt for σn < 0 (13)

In the DG framework described earlier, the DG surface terms are integrated by the
interface elements and the onset of fracture can be detected by the use of a fracture
stress criterion as in the ECL approach. When a crack nucleates at a specific node
located on an interface element, the DG terms are substituted by the ECL term, which
models the fracture process. Hence, if t̄tt− is the surface traction evaluated on the minus
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side, the weak form given in Equation (6) that was holding for the bodies without the
cracked surfaces only, is modified by the ECL in the deformed configuration to become
in the more general situation∫

Ω

(ρ üuu ·wwwu +σσσ : ∇wwwu) dv+
∫

ΓI

α t̄tt− ([[uuu]]) · [[wwwu]]ds+∫
ΓI

(1−α) [[wwwu]] · 〈σσσ〉 · n̂nn− ds+∫
ΓI

(1−α) [[uuu]] · 〈C : ∇ wwwu〉 · n̂nn− ds+∫
ΓI

(1−α) [[wwwu]]⊗ n̂nn− :
〈

βs

hs
C
〉

: [[uuu]]⊗ n̂nn− ds =∫
Ω

ρ bbb ·wwwu dv+
∫

ΓT

wwwu · t̄tt ds


(14)

where a binary operator α is defined as α = 0 before the fracture onset and α = 1 after
the fracture stress criterion is met on ΓI [17]. All the integration terms are computed
in the current configuration for the small deformations. Unlike for the intrinsic CZM,
no modification of the mesh is required during the shift procedure from the uncracked
(α = 0) to cracked (α = 1) configuration, and only the constitutive formulations at
the interface elements are modified, thus implicitly treating an interface element as a
cohesive element. This makes the hybrid DG/ECL method easy to be implemented in
an existing parallel code, and ensures a high scalability of the parallel simulations.

The σc and Gc are the two minimum parameters required for the characterisation of
the ECL. In this work, we will evaluate these values at the macroscopic scale, where the
material is considered as isotropic and homogeneous from the micro-scale simulations.
At the microscopic scale (through mesoscopic RVE) we develop a method accounting
for the anisotropy and heterogeneity of the polySi caused due to the different out of
plane orientation of the grains.

3 Microscale fracture of RVE mode of polySi material
At first, we study the RVE of polySi at the mesoscopic (microscopic) scale with sev-
eral grains. A completely general distribution of grains is considered, such that the
simulated volume can be assumed to be a RVE. The values of effective σc and Gc are
evaluated at the mesoscopic scale by accounting for the anisotropic and heterogeneous
nature of the polySi due to a general out-of-plane orientation of grains. Thus, the ef-
fective values are at first computed for a general orientation of grains, and secondly the
weakest plane is identified over the thickness of a thin polySi film for the through-the-
thickness fracture such that the correct amount of energy is released at the end of the
fracture.

3.1 Effective fracture strength
At first, the effective σc and Gc values are computed along the interface elements
present in the discretized RVE at the mesoscopic length scale. The length of a sin-
gle interface element is several times larger than the single crystal lattice spacing of
polySi. Thus, the approach presented here to compute the values of effective σc and
Gc is valid for a certain “average” direction (out-of-plane orientation) of a grain.

The polySi is an orthotropic material, i.e., it has different material properties, such
as Young’s modulus, Poisson’s ratio, fracture strength, along the crystal planes with
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Figure 3: Symmetry-equivalent surfaces with their normals

Miller indices (1 0 0), (1 1 0), and (1 1 1), shown in Figure 3 as n̂nn1, n̂nn2, and n̂nn3, respec-
tively. The surface normal of the 2D interface (cohesive) elements, located in-between
two bulk elements, in a discretized model are not exactly aligned with any of the sur-
face normals shown in Figure 3. Thus, a suitable model is warranted that computes σc
based on the orientation of the cohesive element with respect to the surface normals
shown in Figure 3. For a cubic crystal, the Miller indices (hkl) are normal to the sur-
face vector [hkl], i.e., Miller indices directly give the coefficients of the surface normal
vector for a cubic crystal. Thus, this information allows obtaining the effective σc for
any random orientation of a polySi grain as explained further. The same approach is
also applied to compute the effective Gc.

In the case of a single crystal silicon, the values of the fracture strength are ex-
perimentally measured along the three possible cleavage planes (1 0 0), (1 1 0), and
(1 1 1) [2, 20, 21]. Let these values be σ100,σ110, and σ111, respectively. The nor-
mal vectors to these planes are given as n̂nn1 = êee1, n̂nn2 = (1/

√
2)(êee1 + êee2), and n̂nn3 =

(1/
√

3)(êee1 + êee2 + êee3), respectively, where êeei are the unit basis vectors of the global
Cartesian axes as shown in Figure 3. Let there be an interface (cohesive) element,
having a surface normal vector~nnn, along which σc has to be determined.

The surface normal vector ~nnn can be represented in the contravariant form as ~nnn =
ni n̂nni, where the n̂nni are treated as the local basis vectors. As the vectors n̂nn1, n̂nn2, and n̂nn3
are not orthogonal to one another, their dual vectors are computed at first. The total
volume contained within the local basis vectors is

v = (n̂nn1× n̂nn2) · n̂nn3⇒ v =
1√
6

(15)

The dual basis vectors are then computed as

~nnn1 =
[ n̂nn2× n̂nn3

v

]
⇒~nnn1 = êee1− êee2

~nnn2 =
√

2
(
êee2− êee3

)
, and~nnn3 =

√
3 êee3

 (16)

such that~nnni •~nnn j = δ
j
i is satisfied. The projection of~nnn in the dual basis vectors is given

as
n100 =~nnn ·~nnn1, n110 =~nnn ·~nnn2, n111 =~nnn ·~nnn3 (17)
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Therefore, the effective fracture strength vector σσσc along~nnn can be constructed as

σσσc = σ100 n100 n̂nn1 +σ110 n110 n̂nn2 +σ111 n111 n̂nn3⇒

=
(

σ100 n100 + σ110 n110
√

2
+ σ111 n111

√
3

)
êee1 +(

σ110 n110
√

2
+ σ111 n111

√
3

)
êee2 +

(
σ111 n111
√

3

)
êee3

(18)

The magnitude σc of σσσc is thus given as

σc =

√(
σ100 n100 + σ110 n110

√
2

+ σ111 n111
√

3

)2
+(

σ110 n110
√

2
+ σ111 n111

√
3

)2
+
(

σ111 n111
√

3

)2

 (19)

This equation is applicable only when~nnn is in between the solid angle formed by n̂nn1, n̂nn2,
and n̂nn3, where these are the surface normal vectors corresponding to the orientation
planes (1 0 0), (1 1 0), and (1 1 1), respectively, which may not always be true. The
symmetry property of the cubic crystal is used to enable the applicability of Eq. (19).
Due to the symmetry of the cubic crystal, there are 26 symmetry planes distributed in
8 quadrants as

{100}= (100),(010),(001),(1̄00),(01̄0),(001̄)
{110}= (110),(1̄10),(1̄1̄0),(11̄0),(011),(01̄1),

(01̄1̄),(101),(101̄),(1̄01̄),(1̄01),(011̄)
{111}= (111),(1̄11),(1̄1̄1),(11̄1),(111̄),(1̄11̄),

(1̄1̄1̄),(11̄1̄)

 (20)

The magnitude of the fracture strength is equal along all the planes within each
family of planes {100},{110}, and {111}. These symmetry planes (26) give a total
of 48 sets of the solid angles (6 solid angles per quadrant). This information is used
while determining the correct solid angle in which the vector~nnn lies. At first, each set of
the solid angle is considered, and the corresponding dual basis vectors are computed.
The vector~nnn is then projected in these dual basis vectors. If all the projections are ≥ 0
for a specific solid angle, it is concluded that the vector ~nnn lies within this solid angle
formed by the set of 3 corresponding surface normal vectors. Finally, the correctly
identified set of the surface normal vectors is used while computing the effective σc
along the plane normal to the vector~nnn, as given in Equation (19). In order to test the
correctness of Eq. (19), the Cartesian coordinates of ~nnn are constructed by the polar
coordinates (by progressively increasing the angles θ ∈ [0,2 π] and φ ∈ [0,π]), and the
corresponding effective σc is computed by Eq. (19). The results are presented in Figure
4 for specific values σ100 = 1.53 ,σ110 = 1.21 , and σ111 = 0.868 GPa of a single crystal
silicon [2, 20, 21]. It can be seen that the effective σc passes through the three values
used along the symmetry planes with the symmetric distribution in all the 8 quadrants
of a unit length cubic crystal, which is an expected result. This model is also applied to
compute the Gce f f along the interface plane with surface normal~nnn as shown in Figure
5.

3.2 Thickness effect
The fracture process of a thin polySi film is currently modeled as a 2D plane-stress
problem, thus the surface normal vector ~nnn of the cohesive element always lies in the
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Figure 4: Distribution of σc within a unit cube of polycrystalline silicon

plane. It is in reality a 3D problem, as several grains are experimentally observed along
the thickness of a thin polySi film. Thus, the fracture surface normal~nnn may be oriented
with a certain angle along the thickness of the film, where the effective value of σc
could be lower as compared with the plane-stress situation. The following approach,
as shown in Figure 6 where~nnn≡ n̂nn, is thus adopted to incorporate this aspect in order to
account for 3D nature of the problem.

Let us assume an interface (cohesive) element, and let t̂tt, t̂tt0, and n̂nn be the in-plane
surface tangent, surface tangent, and out-of-plane surface normal vectors, respectively,
as shown in Figure 6. These 3 vectors form a set of local basis vectors, and the Cauchy
stress tensor σσσ is represented in terms of these local basis vectors. This interface ele-
ment is now rotated by an angle θ about t̂tt. Thus, the local basis vectors transform to
t̂tt
′
, t̂tt
′

0, and n̂nn
′
, respectively. The transformation equations are given as

n̂nn
′
= cos(θ) n̂nn+ sin(θ) t̂tt0

t̂tt
′
= t̂tt

t̂tt
′

0 =−sin(θ) n̂nn+ cos(θ) t̂tt0

 (21)
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The Cauchy stress tensor σσσ is already available along the interface element. Also the
effective values of σc(θ) and Gce f f (θ) are computed in the direction n̂nn

′
, as explained

in Section 3.1. Now, the magnitude of the stresses acting on the rotated plane are
computed from σσσ and n̂nn

′
, t̂tt
′

0, and t̂tt
′

as

σn = (σσσ n̂nn
′
) · n̂nn′ ,τ = (σσσ n̂nn

′
) · t̂tt

′
,τ0 = (σσσ n̂nn

′
) · t̂tt

′

0

τr =
√

(τ)2 +(τ0)2

 (22)

The effective stress σe f f (θ) along the rotated plane is computed from σn and τr using
Equation (7). The σc(θ),Gce f f (θ), and σe f f (θ) are computed with θ varying from -90
to + 900 with a fixed increment. If the fracture criterion σe f f (θ) ≥ σc(θ) is satisfied,
α = 1 is used in Equation (14). This σe f f (θ) value is used to compute the maxi-
mum effective crack tip opening ∆∗c(θ) = (2Gce f f (θ)/σe f f (θ)). The in-plane crack tip
opening is computed as ∆∗c = {∆∗c(θ)/cos(θ)}, such that the correct amount of energy
is released by ECL method. The σe f f (θ) value corresponding to θ = 0 is used in the
cohesive law, shown in Figure 2, as a starting point (∆∗ = 0,σc) in order to maintain the
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continuity of the distribution of the stress field between the unfractured and fractured
stages.

3.3 Results and discussion
The 2-D plane-stress type modelling and simulation of the fracture of a thin polySi film
RVE is performed as follows. At first, a model of a thin polySi film is developed by
Voronoı̈ tessellation with each Voronoí polygon treated as a grain. The size of each
grain is approximately maintained equal to 100 nm, and a random orientation (random
Euler angles) is assigned as shown in Figure 7a. However, the preferential orientations
as experimentally observed can also be assigned as demonstrated in Section 3.3.2. The
dimensions of the model are chosen such that a stable fracture process can be obtained,
i.e., the total strain energy stored in a body should be less than or equal to the total
fracture energy required to be released. The following approach has been followed to
satisfy this requirement. At first, the dimensions of the model are fixed with certain
length l, height h and thickness t, and one sample simulation is performed by an appro-
priate value of the load step that approximately gives a quasi static loading. Based on
the microscopic stress vs strain plot obtained at the end of the simulation, the correct
length of the model is computed by l ≤ (Gc/(0.5 σc εc)), where Gc,σc and εc are the
critical strain energy release rate, obtained fracture stress and strain, respectively. The
model is then regenerated with this new value of length l to approximately ensure that
the stable through-the-thickness fracture is obtained, such that the total fracture energy
to be released is approximately equal to (Gc ht), where h and t are the height and thick-
ness of the model, respectively. The typical finite element mesh size is decided with
reference to the smallest edge of the grains present in a model as shown in Figure 7b.
This ensures that at least one element is present along the grain boundaries.

This model is clamped at one end and pulled at the other end. The force (com-
puted) and displacement (applied) values along the loading edge are archived. The
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dynamic explicit time integration is performed to ensure convergence, and the value of
the load step is decided to ensure that almost the quasi-static simulation is achieved.
The interelement boundaries are treated as interface elements in the DG method, and
interior domain of elements is treated as a bulk domain. Thus, the interface terms of
the weak form of DG formulation, as given in Eq. (14), are applied only over the
interface elements, as the discontinuities are allowed across the interelement bound-
aries. As soon as a fracture is detected at any node along the interface element, the
monotonically decreasing linear ECL is applied to compute the stress. The interface
elements are present at two locations, viz. within a grain and along the grain bound-
aries. The fracture strength and effective stress along the interface elements, that are
present within a grain, are computed as explained in Sections 3.1 and 3.2, respectively.
The value of fracture strength along the interface elements, that are present along the
grain boundaries, is assigned corresponding to the (1 0 0) orientation, and the effective
stress is computed without the thickness effect. This adopted approach in the present
work is based on the experimentally observed fact that the polySi mainly undergoes
the transgranular fracture, so the grain boundaries are stronger than the grains.

In order to capture the spread of fracture strength associated to the orientation of
grains, 10 different sets of the fracture results are obtained with each time new Eu-
ler angles assigned to the grains. For each of the 10 sets, a macroscopic ECL is
extracted from the microscopic force vs. displacement plot [18, 19], as uM = um−
[(l/E) ( f m/(h t)] where f m,um and uM are the microscopic force, displacement and
macroscopic displacement, respectively, and E is the slope of microscopic stress vs.
strain plot till the fracture stress is reached. The mean and standard deviation of the
macroscopic effective crack tip opening displacement ∆∗ and fracture stress σc are
computed based on the 10 sets of the extracted macroscopic ECL from the simulation
results. An average macroscopic cohesive law is thus developed that incorporates the
statistical variation of σc and ∆∗. Secondly, a new model of the thin polySi film is
chosen to perform the simulation at the macroscopic or MEMS length scale where the
domain of the model is treated as continuum, i.e., without the underlying microstruc-
ture. The average macroscopic cohesive law is imposed, for the nodes where the frac-
ture is detected, by specifying the values of σc and Gc at each node within their lower
and upper limits, such that the effective macroscopic opening ∆∗ is obtained within
its upper and lower limits. All the simulation results are finally compared with sev-
eral experiments in the subsequent sections. The simulation at the macroscopic scale
implicitly assumes that the underlying microstructure of the MEMS is closely repre-
sented by the RVE at the mesoscopic length scale, such that the statistical variation of
the fracture strength obtained by the RVE closely represents the actual scenario at the
MEMS length scale.

3.3.1 Fracture of a thin polySi film RVE at microscopic level

At first, a microscopic model of a thin polySi film RVE is developed by Voronoi tes-
sellation as shown in Figure 7 , where the grains are represented by Voronoi polygons.
The average size of grains is maintained as≈ 100 nm, and the dimensions of the model
are l = 1.15,h= 1 and t = 0.05 µm. The values of the load step and the size of the finite
element are decided, as explained earlier, to ensure that the stable fracture is obtained.
Experimentally, the fracture strength of a single crystal silicon is highly affected by the
micromachining process and the silicon etchant used, thus a wide variation is observed
in its value [2, 20]. It is little difficult to exactly incorporate the actual surface quality
of a thin polySi film in the present simulation. The standard values for typical silicon
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Figure 7: A representative volume element model of a thin polySi film with (a) 112
grains and (b) a mesh containing 874 elements

crystals produced by the most common micromachining process are used in the present
study. The values of fracture strength along the (1 0 0), (1 1 0) and (1 1 1) orientation
planes for the single crystal silicon are used as σ100 = 1.53×10−3,σ110 = 1.21×10−3

and σ111 = 0.868× 10−3 TPa [2, 20, 21], respectively. The values of Gc are simi-
larly used as Gc100 = 5.08× 10−6,Gc110 = 4.2× 10−6 and Gc111 = 2.56× 10−6 N/
µm, [22,23], respectively. In order to ensure that the fracture is preferably detected at a
single location at the beginning, the computed value of the effective fracture strength at
a specific Gauss point along the interface element is varied within±10%. The Young’s
modulus E = 144× 10−3 TPa is used, which correspond to the single crystal silicon
having a preferential (1 0 0) orientation [2, 20, 21, 24]. The values of the density and
Poisson’s ratio of the polySi are ρ = 2.33× 10−21 KiloTonne/µm3 and ν = 0.278, re-
spectively. An anisotropic Hooke’s law is applied to relate the stress with the strain.
Different sets (10) of the fracture results are now obtained for this model by each time
assigning a random out-of-plane orientation to the grains.

The results from one of the sets are provided here for a reference. The random
out-of-plane orientation of 112 grains is shown by the stereographic projection of the
surface normal of their orientations in Figure 8. There is no preferential out-of-plane
orientation in this case. The microscopic stress vs. strain plot is shown in Figure 9a,
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Figure 8: Stereographic projection of the surface normal of the orientation of grains
without any average preferred orientation

and the extracted macroscopic cohesive law is shown in Figure 9b. The through-the-
thickness fracture is shown in Figure 9c. The external load steps could be seen in Figure
9a for the pre-fracture state that are caused by the dynamic effects. The smooth loading
can be obtained by further reducing the time step, but it may lead to a non-physical
situation where multiple cracks are detected at the same time. It is also seen in Figure
9c that the crack is initiated at both ends of the polySi RVE. This could be explained
by the fact that no notches are present along the edges, so there is an equal probability
of the crack occurring at several places, along the height of the model, at the same
time. The more important aspects are that both cracks finally meet, and that fracture
is transgranular. Few elements could be disturbed during the crack propagation, as
there is no stress concentration at the onset of crack so the fracture may be detected at
more than one nodes along the interface elements belonging to the same bulk element.
The effective Gc = (0.5 ∆∗c σc) is computed by the macroscopic cohesive law given in
Figure 9b and obtained as Gc = 2.97× 10−6 N/µm, where ∆∗c = 5.6× 10−3 µm and
σc = 1.0×10−3 TPa.

The results obtained by all the 10 simulated sets are analyzed, as explained above,
and one macroscopic cohesive law is extracted for each realization. Because of the
random nature of the grain orientation, each realisation leads to the different values of
σc and Gc. The values of mean σ̄c and standard deviation σσc of σc are computed as

σ̄c =
1
n

n

∑
i=1

(σc)i, σσc =

√
1

(n−1)

n

∑
i=1

[(σc)i− σ̄c]2 (23)

where n = 10 is our sample size. the values of mean ∆̄∗c and standard deviation σ∆∗c of
∆∗c are also computed similarly. These values are obtained as σ̄c = 0.99× 10−3 TPa
and σσc = 4.04×10−5 TPa, and ∆̄∗c = 5.98×10−3 µm and σ∆∗c = 4.96×10−4 µm. The
average macroscopic cohesive law is thus developed based on these values as shown in
Figure 11. It is to be noted that these values are linked with the size of the polySi RVE,
and will change with a change in the size of the RVE [25, 26].

All the simulation results at the microscopic level show that the first fracture always

16



0 1 2 3 4 5 6 7

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Strain (ε)

S
t
r
e
s
s
 
(

σ)
 
(
T
P
a
)

(a)

0 1 2 3 4 5 6

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

∆* (µm)

S
t
r
e
s
s
 
(

σ)
 
(
T
P
a
)

(b)

6.82e-09 0.0142 0.0284

displacement (1.7e-09)

X

Y

Z6.82e-09 0.0142 0.0284

displacement (1.7e-09)

X

Y

Z

(c)

Figure 9: (a) Stress vs. strain plot of microstructure, (b) macroscopic cohesive law,
(c) through-the-thickness fracture when the grains in a thin polySi film are assigned a
random orientation
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occurs at the value of effective stress σe f f (θ), as explained in Section 3.2, in between
the fracture strengths along the (1 1 0) and (1 1 1) orientation planes. This means that,
irrespective of the orientation of grains, there will be at least one interface element
whose surface normal will be closely aligned, due to the thickness effect, to the surface
normal of the plane with out-of-plane (1 1 1) orientation. This implies that the crack
will always propagate in the average direction of out-of-plane (1 1 1) orientation. This
is clearly seen in Figure 10, where the stereographic projection is given only for the
grains that are involved in the fracture process where an average preferred out of plane
orientation is in between the (1 1 0) and (1 1 1) orientations. A similar behaviour has
also been experimentally observed [23]. The average value of Gc≈ 2.96×10−6 N/µm
is also in between the values corresponding to the (1 1 0) and (1 1 1) orientation planes.
All the results at microscopic level have different crack paths, as each time different
out of plane orientation is assigned to the grains. The orientation of grains thus does
affect the crack path, while may not drastically affect the fracture stress at which crack
initiation is detected.

3.3.2 Fracture of a thin polySi film RVE with grain orientations close to (1 1 0)
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Figure 12: Stereographic projection of the surface normal of the orientation of grains
with an average (1 1 0) orientation

This section contains the simulation results when all the grains in Figure 7a are
assigned an out of plane orientation close to (1 1 0) plane. The objective of this simu-
lation is to make comparisons with several experimental results in the open literature,
as well as in-house experiments performed as explained later. All the material prop-
erties as well as the parameter values are the same as explained earlier. The average
(1 1 0) orientation of grains is shown by their stereographic projection in Figure 12.
The microscopic stress vs. strain plot and the macroscopic cohesive law are shown in
Figures 13a and 13b, respectively, and the crack path is shown in Figure 14. The value
of effective Gc is computed by the cohesive law as well as energy balance as equal to
2.77×10−6 and 3.0×10−6 N/µm, respectively. These values are approximated as they
are computed by assuming a complete mode-I fracture, such that the fracture surface
area is assumed to be a normal cross-section (h× t). The crack path where as shows
that the actual fracture surface is not exactly along the normal cross-section.

The fracture strength obtained is equal to σc ≈ 1.0× 10−3 TPa, which is close to
the average value obtained by Yi et al. [20] but slightly lower than the input value
σ110 = 1.21×10−3 TPa for a single crystal silicon with a preferred (1 1 0) out-of-plane
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Figure 13: (a) Stress vs. strain plot, (b) macroscopic cohesive law for an average (1 1
0) grain orientation
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Figure 14: Full through-the-thickness fracture for an average out of plane (1 1 0) grain
orientation
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orientation. The reason behind this was explained at the end of Section 3.3.1. The
present results closely match with Suwito et al. [2] for <1 1 0> silicon T-structures
having sharp 90o corner at the point of the reduction of cross-sectional area. This is an
important test case as it mimics the actual transitions that occur in the micromechan-
ical structures. The value of fracture strain is εc ≈ 0.56%, which is very close to the
average value obtained by Sato et al. [21] for a single crystal silicon film having <1 1
0> preferred orientation.

Now, the average macroscopic ECL given in Figure 11 is tested by performing the
simulation of a thin polySi film at the macroscopic level with a larger model. This
macroscopic ECL is implemented by randomly assigning the σc and Gc bounded by
their lower and upper limits (obtained in Section 3.3.1) at each node, such that the
critical crack tip opening displacement ∆∗c is automatically bounded by its lower and
upper limits. Thus, σ−c = 0.948× 10−3,σ+

c = 1.03× 10−3 TPa, and Gc− = 2.8297×
10−6,Gc+= 2.955×10−6 N/µm values are used such that (∆∗c)

−= 5.5×10−3,(∆∗c)
+=

6.5×10−3 µm values are obtained. The simulation of a thin polySi film at the macro-
scopic level is illustrated in the subsequent sections by three different models.

4 Fracture of a thin polySi film at the macroscopic level
The average macroscopic ECL given in Figure 11 is applied to simulate the fracture
of a thin polySi film at the macroscopic length scale. Thus, an anisotropic and hetero-
geneous nature of the microstructure at the mesoscopic length scale is captured by the
variation in the values of σc and Gc at the macroscopic scale. This is achieved firstly
without considering any defect, and secondly with considering an edge defect at the
center of the length l of a thin polySi film.

4.1 Fracture of a thin polySi film without any notch at the macro-
scopic level

A new model is considered with l = 3.45,h = 3 and t = 0.05 µm at the macroscopic
length scale. This model is discretized such that the size of the finite elements is
approximately equal to the size of the RVE considered in Section 3.3.1. The re-
sults of the simulation are as follows. The stress vs. strain plot and the fracture
are shown in Figure 15. The total surface or fracture energy for this model Usur f ≈
(3.0 ×0.05 ×3×10−6)≈ 4.5×10−7 N-µm is well achieved at the end of the fracture.
The fracture in the present case is unstable, evident from Figure 15a, as the total strain
energy Uint at the beginning of the fracture is much higher than the required fracture
energy.

In order to test the correctness of the macroscopic cohesive law as well as DG/ECL
framework implementation, the length l is modified, such that the stable fracture is
obtained, as explained in Section 3.3. The values of σc and εc are taken from Figure
15a and an average Gc = 2.9×10−6 N/µm is used to compute the new length l ≈ 0.9
µm. The new model is built again and simulated with all the parameters as before.
The simulation results show that a prefect stable mode-I fracture is obtained and all
the vital values are correctly recovered. The stress vs. strain plot and the cohesive law
are given in Figure 16, and the complete mode-I fracture is given in Figure 16c. The
total potential energy at the end of fracture is Upot = 4.2× 10−7 N-µm, which gives
Gc = 2.799×10−6 N/µm for a normal cross-section (3.0×0.05) µm2. The total area
under the cohesive law also equal to Gc = 2.977×10−6 N/µm. The maximum internal
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Figure 15: (a) Stress vs. strain plot, (b) complete fracture of a thin polySi film at the
macroscopic level for the model discretized by 504 finite elements
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Figure 16: (a) Stress vs. strain plot, (b) global cohesive law of a thin polySi film, (c)
complete mode-I fracture for the stable crack propogation at the macroscopic level
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strain energy Uint = 4.37× 10−7 N-µm, which is close to the total required fracture
energy Usur f = 4.5×10−7 N-µm, results in a stable crack propagation.

4.2 Fracture of a thin polySi film with an edge defect at the macro-
scopic level

All the simulation results presented so far correspond to the geometry of a thin polySi
film with smooth edges. In reality, several defects (notches) are generated along the
edges of MEMS due to the micromachining process, thus considerably affecting the
fracture behaviour of MEMS. Thus, it is pertinent to study such a model of a thin
polySi film having at least a one edge defect.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Strain (ε)

S
t
r
e
s
s
 
(

σ)
 
(
T
P
a
)

(a)

4.97e-07 0.00871 0.0174

displacement (7.65e-09)

X

Y

Z4.97e-07 0.00871 0.0174

displacement (7.65e-09)

X

Y

Z

(b)

Figure 17: (a) Stress vs. strain plot, and (b) complete fracture of a thin polySi film,
having a notch, at the macroscopic level

The macroscopic model from Section 4.1 is modified at first and a defect in the
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form of a small notch is created at the centre of a top edge, such that the height at the
centre became hc = 2.52 µm. The simulation is performed keeping all the parameters as
before. Figures 15a and 17a show that the fracture stress is reduced by at least 20% due
to the presence of the defect. The obtained crack path can also be physically observed
as there will be a stress concentration at the tip of a notch. As the Upot is much higher
than Usur f , the fracture is unstable.
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Figure 18: (a) Stress vs. strain plot, and (b) complete fracture of a thin polySi film
having l = 23 µm at the macroscopic level

Secondly, the length of the model is further increased to l = 23.0 µm to have a more
realistic model domain and discretized with a much larger finite elements discretization
without changing any other parameters, such that the size of the elements is approx-
imately equal to the size of RVE in Section 3.3.1. It is purposefully avoided to have
a refined mesh in the central region to have a more general simulation results without
any influence of the mesh density. The stress vs. strain plot and fracture are shown in
Figure 18. The stress concentration at the tip of the defect is reduced due to an increase
in the length of a model, thus resulting in a slightly higher value of the fracture stress
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in Figure 18a as compared with Figure 17a.

5 Experimental observations
The microstructure and the roughness of a thin polySi film have been experimentally
analyzed, in the context of this research, to have a consistent comparison between the
experiment and simulation results. For these experiments, a 240 nm thick polySi layer
has been deposited on top of an oxidized Si substrate. In order to extract the Young’s
modulus as well as the fracture strain of the deposited polySi layer, on-chip tensile test
structures have been manufactured. The principle and process of the preparation of
samples are elaborated in [27–32]. Automated crystallographic orientation mapping

(a)

(b)

Figure 19: (a) Top view of the out-of-plane orientation map of a 240 nm-thick and 4
µm-wide polySi sample. Orientation maps of 20 and 8 nm as step size and 111 pole
figure, (b) Bright field TEM images of the polySi sample

in a transmission electron microscope (ACOM-TEM) is a newly developed technique
attached to TEM, which is used in the present work to determine the local orientation
of polySi grains. The electron diffraction (ED) patterns, instead of Kikuchi patterns,
are collected with an external charge coupled digital (CCD) camera. The acquired ED
pattern is then stored in a computer and compared (off-line) with the pre-calculated
templates and the best match is selected [33]. The experimental measurements were
performed by Philips CM20 operating at 200 kV and equipped with a LaB6 gun and
an external source device, DigiSTAR® developed by NanoNEGAS for ACOM-TEM
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experiments [33]. Figure 19a shows ACOM-TEM orientation mapping recorded by
a 20 nm step size and an acquisition frequency of around 100 frames per second for
all the sample surface analysis. In order to increase the quality of the orientation map
and to highlight the microstructure of the sample, the step size was decreased to 8 nm
and 60 frames per second. The average grain size is estimated to be ≈ 110 nm with
a standard deviation of 90 nm. The large standard deviation is due to the log-normal
distribution of the grain size. The microstructure is composed of a large number of
small grains with a size smaller than 100 nm and also few larger grains characterised
by a diameter larger than 500 nm (as seen in Figure 19a). The sample exhibits a prefer-
ential (110) out-of-plane fiber texture and no specific in-plane orientation is emerged.
As mentioned above, the ACOM-TEM analysis of the polySi film reveals a complex
microstructure with the presence of numerous twinned grains. By increasing the res-
olution (decreasing the step size to 8 nm), the twins are clearly visible, as confirmed
by TEM images in Figure 19b. The scanning electron microscope (SEM) observation

(a)

(b)

Figure 20: (a) SEM image of the sidewall of the 240 nm-thick polySi sample, (b) SEM
image of the top view of fracture zone for 900 nm-wide polySi sample

of the sidewall shows the presence of one or two grains through the thickness (Figure
20a) as used in the simulated geometry (Section 3.2). Concerning the fracture process,
the crack path appears to be clearly transgranular, as shown in Figure 20b. The fracture
strain extracted from this test structure is 0.96% (± 0.07%). It corresponds to a fracture
stress of about 1.41 GPa (± 0.1) for Young’s modulus of 147 GPa [27].

The fracture of a brittle polySi film is initiated from critical flaws located on the
external surfaces, i.e., the sidewalls, top and bottom surfaces [34] as modelled in the
last section. These flaws are generated by the micromachining processes during the
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sample preparation. They might be micro structural defects as grain boundary grooves
that emerge on external surfaces and/or geometrical imperfections directly generated
by the preparation process, as shown in Figure 20a. The nature and location of the
critical flaws depend on the preparation process and the sample thickness, as their mi-
crostructure is governed by both. The fracture is initiated at the flaw corresponding
to the highest stress concentration which is governed by several factors, such as the
morphology, density, size of the flaw, local microstructure orientation, local fracture
toughness, and the local residual stress state. In this specific case, the sidewall rough-
ness appears larger than that of the top and bottom surfaces. Thus, the critical flaws
are most probably located on the sidewalls. Nevertheless, although the grain bound-
ary grooves emerge on the sidewalls and are visible, it is not possible to precisely
conclude that they constitute the critical flaws for the initiation of the fracture. More
in-depth studies of the effect of sidewall roughness on the fracture behaviour of a thin
polySi film have to be performed to identify and characterize the population of the
main critical flaws. These results could be used to prepare a more accurate model for
the simulations.

6 Conclusions
The fracture of a thin polySi film has been simulated by the DG/ECL framework with
a specific focus on the influence of an out-of-plane grain orientation on the fracture
process. This is achieved by the 2-scale approach, where the influence of the grain
orientation on the fracture at the mesoscopic length RVE is linked with the fracture
of a thin polySi film at the MEMS length scale through an average ECL. The inter-
face (cohesive) elements are inserted in-between the bulk elements from the beginning
of the simulation itself. As the ECL is activated only at the node where the effective
stress reaches the fracture strength, no a priori knowledge of crack path as well as the
remeshing of the geometry are required. This advantage of the suggested framework
allows the parallelization of the code. A novel model to compute the effective fracture
strength σc of anisotropic material is proposed, which also satisfies the symmetry re-
quirement of the unit cube of polySi. The results obtained by the numerical simulations
are broadly in accordance with the experimentally observed fact that irrespective of the
orientation of crystals, crack eventually occurs and propagates along an approximately
(1 1 1) cleavage plane, as the surface energy of this orientation plane is smaller than the
(1 0 0) and (1 1 0) planes. The simulation of a thin polySi film at the mesoscopic level
results in the fracture stress and strain of≈ 1.0×10−3 TPa and 0.6%, respectively, and
Gc ≈ 3.0× 10−6 N/µm. All these values are in-between the values corresponding to
the out-of-plane grain orientations (1 1 0) and (1 1 1). This means that, the fracture is
always propagated along the weakest cohesive element with an out-of-plane orientation
close to the orientation of (1 1 0) or (1 1 1) planes. The simulation of a thin polySi film
at the macroscopic level demonstrates that the average macroscopic cohesive law can
be accurately extracted at the end of the stable fracture with a much larger size of the
elements (≈ size of the RVE), thus considerably reducing the computational time. Both
the simulation results (meso- and macroscopic level) are found to be closely matching
with the several experimental results available in the open literature.

The fracture of a polySi thin film is experimentally performed in-house by the on-
chip fracture test, with (1 1 0) average local preferential orientation of the sample in
the out-of-plane direction. The in-plane orientations are random, but based on the
symmetry-equivalent cleavage planes, (1 0 0) and (1 1 0) orientations influence the
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fracture behaviour of this particular sample of polySi. The values of fracture strain and
stress are found to be 0.96% (± 0.07%) and 1.41 GPa (± 0.1) with this setup. Thus,
the fracture stress, as predicted, is in-between the fracture strengths along the (1 0 0)
and (1 1 0) cleavage planes. The comparison between the simulations and in-house
experiments show that the fracture stress obtained by the simulations is close to, but
slightly lower than, the experiments. This could be due to the fact that the σc in the
simulations is computed by the weighted average values of fracture strength along the
(1 0 0), (1 1 0), and (1 1 1) in-plane orientations, where as the sample used in the
experiment has random in-plane orientations with higher influence of the (1 0 0) and
(1 1 0) orientations. The crack path of the fracture is found to be transgranular by both
the experiments and simulations. The present work can be extended in the future by
studying and incorporating the influence of the side wall roughness and other flaws on
the fracture behaviour of a thin polySi film.

7 Acknowledgements
The authors gratefully acknowledge the financial support from F. R. S. - F. N. R. S.
under the project number FRFC 2.4508.11.

References
[1] Frank W. DelRio, Martin L. Dunn, Brad L. Boyce, Alex D. Corwin, and

Maarten P. De Boer. The effect of nanoparticles on rough surface adhesion. Jour-
nal of Applied Physics, 99(10):104304, 2006.

[2] Wan Suwito, Martin L. Dunn, Shawn J. Cunningham, and David T. Read. Elastic
moduli, strength, and fracture initiation at sharp notches in etched single crystal
silicon microstructures. Journal of Applied Physics, 85(7):3519–3534, 1999.

[3] Jr. Sharpe, W.N., K.T. Turner, and R.L. Edwards. Tensile testing of polysilicon.
Experimental Mechanics, 39(3):162–170, 1999.

[4] W.N. Sharpe, Kamili M. Jackson, K.J. Hemker, and Z. Xie. Effect of specimen
size on young’s modulus and fracture strength of polysilicon. Microelectrome-
chanical Systems, Journal of, 10(3):317–326, 2001.

[5] Staffan Greek, Fredric Ericson, Stefan Johansson, Matthias FÃ¼rtsch, and Arnold
Rump. Mechanical characterization of thick polysilicon films: Young’s modulus
and fracture strength evaluated with microstructures. Journal of Micromechanics
and Microengineering, 9(3):245, 1999.

[6] W. N. Sharpe, B. Yuan, R. Vaidyanathan, and R. L. Edwards. New test structures
and techniques for measurement of mechanical properties of mems materials. In
Microlithography and Metrology in Micromachining II, volume 2880 of Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 78–
91, 1996.

[7] W.W. Van Arsdell and S.B. Brown. Subcritical crack growth in silicon mems.
Microelectromechanical Systems, Journal of, 8(3):319–327, 1999.

29



[8] L. Noels and R. Radovitzky. A general discontinuous Galerkin method for finite
hyperelasticity. formulation and numerical applications. International Journal for
Numerical Methods in Engineering, 68(1):64–97, 2006.

[9] L. Noels and R. Radovitzky. A new discontinuous Galerkin method for Kirchhoff-
Love shells. Computer Methods in Applied Mechanics and Engineering, 197(33-
40):2901 – 2929, 2008.

[10] G. Becker, C. Geuzaine, and L. Noels. A one field full discontinuous Galerkin
method for Kirchhoff-Love shells applied to fracture mechanics. Computer Meth-
ods in Applied Mechanics and Engineering, 200(45-46):3223 – 3241, 2011.

[11] G. Becker and L. Noels. A full-discontinuous Galerkin formulation of nonlinear
Kirchhoff-Love shells: elasto-plastic finite deformations, parallel computation,
and fracture applications. International Journal for Numerical Methods in Engi-
neering, 93(1):80–117, 2013.

[12] D. S. Dugdale. Yielding of steel sheets containing slits. Journal of the Mechanics
and Physics of Solids, 8(2):100–104, 1960.

[13] G. I. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture.
volume 7, pages 55–129. Elsevier, 1962.

[14] A. Hillerborg, M. Modéer, and P.-E. Petersson. Analysis of crack formation and
crack growth in concrete by means of fracture mechanics and finite elements.
Cement and Concrete Research, 6(6):773 – 781, 1976.

[15] G. T. Camacho and M. Ortiz. Computational modelling of impact damage in
brittle materials. International Journal of Solids and Structures, 33(20-22):2899–
2938, 1996.

[16] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for
three-dimensional crack propagation analysis. International Journal for Numeri-
cal Methods in Engineering, 44(9):1267–1282, 1999.

[17] J. Mergheim, E. Kuhl, and P. Steinmann. A hybrid discontinuous
Galerkin/interface method for the computational modelling of failure. Communi-
cations in Numerical Methods in Engineering, 20(7):511–519, 2004.

[18] Clemens V. Verhoosel, Joris J. C. Remmers, Miguel A. Gutiérrez, and René
de Borst. Computational homogenization for adhesive and cohesive failure in
quasi-brittle solids. International Journal for Numerical Methods in Engineer-
ing, 83(8-9):1155–1179, 2010.

[19] L. Wu, D. Tjahjanto, G. Becker, A. Makradi, A. Jèrusalem, and L. Noels. A
micro-meso-model of intra-laminar fracture in fiber-reinforced composites based
on a discontinuous Galerkin/cohesive zone method. Engineering Fracture Me-
chanics, 104(0):162–183, 2013.

[20] Taechung Yi, Lu Li, and Chang-Jin Kim. Microscale material testing of single
crystalline silicon: process effects on surface morphology and tensile strength.
Sensors and Actuators A: Physical, 83(1-3):172–178, 2000.

30



[21] Kazuo Sato, Tetsuo Yoshioka, Taeko Ando, Mitsuhiro Shikida, and Tatsuo Kawa-
bata. Tensile testing of silicon film having different crystallographic orientations
carried out on a silicon chip. Sensors and Actuators A: Physical, 70(1-2):148–
152, 1998.

[22] J. J. Gilman. Direct measurements of the surface energies of crystals. Journal of
Applied Physics, 31(12):2208–2218, 1960.

[23] C. Messmer and J. C. Bilello. The surface energy of Si, GaAs, and GaP. Journal
of Applied Physics, 52(7):4623–4629, 1981.

[24] M.A. Hopcroft, W.D. Nix, and T.W. Kenny. What is the young’s modulus of
silicon? Microelectromechanical Systems, Journal of, 19(2):229–238, 2010.

[25] K. Alzebdeh and M. Ostoja-Starzewski. Micromechanically based stochastic fi-
nite elements: length scales and anisotropy. Probabilistic Engineering Mechan-
ics, 11(4):205–214, 1996.

[26] M. Ostoja-Starzewski. Random field models of heterogeneous materials. Inter-
national Journal of Solids and Structures, 35(19):2429–2455, 1998.

[27] S. Gravier, M. Coulombier, A. Safi, N. Andre, A. Boe, J. P Raskin, and Thomas
Pardoen. New on-chip nanomechanical testing laboratory - applications to alu-
minum and polysilicon thin films. Microelectromechanical Systems, Journal of,
18(3):555–569, 2009.

[28] E. Escobedo-Cousin, S. H. Olsen, T. Pardoen, U. Bhaskar, and J.-P. Raskin.
Experimental observations of surface roughness in uniaxially loaded strained
si microelectromechanical systems-based structures. Applied Physics Letters,
99(24):241906, 2011.

[29] Umesh Bhaskar, Vikram Passi, Samer Houri, Enrique Escobedo-Cousin, Sarah H.
Olsen, Thomas Pardoen, and Jean-Pierre Raskin. On-chip tensile testing
of nanoscale silicon free-standing beams. Journal of Materials Research,
27(03):571–579, 2012.

[30] Vikram Passi, Umesh Bhaskar, Thomas Pardoen, U. Sodervall, Bengt Nilsson,
G. Petersson, Mats Hagberg, and J. P Raskin. High-throughput on-chip large
deformation of silicon nanoribbons and nanowires. Microelectromechanical Sys-
tems, Journal of, 21(4):822–829, 2012.

[31] Ferran Ureña, Sarah H. Olsen, Lidija Šiller, Umesh Bhaskar, Thomas Pardoen,
and Jean-Pierre Raskin. Strain in silicon nanowire beams. Journal of Applied
Physics, 112(11):114506, 2012.

[32] Umesh Kumar Bhaskar, Thomas Pardoen, Vikram Passi, and Jean-Pierre Raskin.
Piezoresistance of nano-scale silicon up to 2 GPa in tension. Applied Physics
Letters, 102(3):031911–031911–4, 2013.

[33] M. Galceran, A. Albou, K. Renard, M. Coulombier, P.J. Jacques, and S. Godet.
Automatic crystallographic characterization in a transmission electron micro-
scope: Applications to twinning induced plasticity steels and al thin films. Mi-
croscopy and Microanalysis, 19(03):693–697, 2013.

31



[34] T. Tsuchiya, O. Tabata, Jiro Sakata, and Yasunori Taga. Specimen size effect on
tensile strength of surface micromachined polycrystalline silicon thin films. In
Micro Electro Mechanical Systems, 1997. MEMS ’97, Proceedings, IEEE., Tenth
Annual International Workshop on, pages 529–534, 1997.

32


	Introduction
	Discontinuous Galerkin method and extrinsic cohesive law framework
	Microscale fracture of RVE mode of polySi material
	Effective fracture strength
	Thickness effect
	Results and discussion
	Fracture of a thin polySi film RVE at microscopic level
	Fracture of a thin polySi film RVE with grain orientations close to (1 1 0)


	Fracture of a thin polySi film at the macroscopic level
	Fracture of a thin polySi film without any notch at the macroscopic level
	Fracture of a thin polySi film with an edge defect at the macroscopic level

	Experimental observations
	Conclusions
	Acknowledgements

