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Onemain application of electrical resistivity tomography (ERT) is the non-invasive detection of geological or hy-
drological structures in the shallow subsurface. This paper investigates the capability of time-series clustering to
retrieve such features on real time-lapse ERT datasets considering three aspects: (1) the comparison between
three clustering algorithms k-means, hierarchical agglomerative clustering (HAC), and Gaussian Mixture
Model (GMM), including the question of the optimal choice of cluster number and the identification of resistivity
series whose classification is uncertain, (2) the effect of adding a spatial constraint in clustering, and (3) the ro-
bustness of the approaches to various representations of resistivity values and the number of time-steps involved
in the clustering. The real time-lapse ERT dataset is obtained from dipole-dipole arrays on a 48 electrodes profile
installed on the top of the Rochefort cave in Belgium. It consists of resistivity time-series defined over 465 days
and associated with 1558 cells of the 2D ERT models derived from a time-lapse inversion. The clustering results
are appreciated using clustering validation indices and further confronted with the expert-based structural
model of the site. Results show that the three clustering algorithms provide similar spatial patterns on the stan-
dardized data and reveal correlated resistivity time-series. Some clusters are, however, spatially split and regroup
time-serieswith awide range ofmean resistivity, suggesting different geological units within these groups. Clus-
tering on the raw resistivity time-seriesmay also appear inconsistent as the averaged resistivity series per cluster
are highly correlated, thus missing the hydrological and functional traits of the subsurface elements. Applying a
spatial constraint to the clustering of standardized data increases the number of clusters in order to retrieve spa-
tially tied clusters. The grouped series are more homogeneous in terms of mean resistivity due to their spatial
proximity, but some inconsistencies may remain due to synchronous hydrological forcing. Applying the cluster-
ing to various time-series representations allows us to gain confidence about the redundant spatial patterns.
However, the patterns obtained from the clustering of the full standardized dataset cannot be reproduced from
continuous sub-samples up to 100 days, but well from less than 20 samples picked randomly over the
465 days. Accordingly, our study highlights the importance of time-variable parameters in the identification of
structural facies and hydrofacies with ERT while demonstrating the strength of long-term monitoring.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The electrical resistivity of surface soil varies with the mineralogical
composition of soil and rocks, temperature, the water content, and its
solute composition. Electrical resistivity tomography (ERT) is a tech-
nique commonly used in geosciences that aims to capture these varia-
tions. ERT relies on electrodes, a current injection scheme, and the
inversion of an associated resistivity model to map the resistivity of
the shallow subsurface, either in two or three dimensions, and derive
iversité catholique de Louvain,

forge).
geological and hydrological interpretations (Banton et al., 1997;
Samouëlian et al., 2005). Time-lapse ERT extends to an additional di-
mension by using repeated current injections over time, allowing the
retrieval of temporal variation of resistivities. For their capabilities of
generating a large amount of spatialized data at low cost, time-lapse
ERT has been increasingly used in the near-surface geophysics commu-
nity to investigate subsurface geology or hydrogeological processes
(Barker and Moore, 1998; Kuras et al., 2009; Singha et al., 2014).

The visual or computer-assisted interpretation of inverted resistivity
models remains challenging as the inversion procedure often relies on
smoothness constraints, producing fuzzy patterns rather than a clear
representation of subsoil heterogeneities (e.g., Günther et al., 2006;
Loke and Barker, 1996). Besides, the resolution decreases, or the
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uncertainties of the inversion image increase, as a function of the dis-
tance to the electrodes (e.g., Hermans and Irving, 2017). Accordingly,
the improvement of the ERT models is approached from different an-
gles. The first one focuses on the inversion procedure itself, for instance,
by considering adaptable constraints to produce sharper results
(Fiandaca et al., 2015; Nguyen et al., 2016). A second option, detailed
in the next paragraph, is to apply post-inversion processing to enhance
the interpretability of the model outputs. Other refinements may come
from crossing strategies and datasets: the joint inversion ofmultivariate
geophysical data (Doetsch et al., 2010; Infante et al., 2010) or the defini-
tion of an ensemble model either from a distribution of inversion pa-
rameters (Audebert et al., 2014) or from multiple electrode
configurations (Ishola et al., 2014). Similarly to Paasche and Tronicke
(2007), post-inversion approaches can be coupled with the inversion
strategies by an iterative procedure (Doetsch et al., 2010; Elwaseif and
Slater, 2012; Infante et al., 2010; Singh et al., 2017; Zhou et al., 2014)
and be part in a fully automated way of an integrated ERT monitoring
and modeling environment (e.g., Wilkinson et al., 2019).

In particular, post-inversion approaches can be defined in amutually
non-exclusive way, according to different aspects. Some papers target
the detection and zonation of static features such as geological bound-
aries or structures (Caterina et al., 2013; Chambers et al., 2012, 2013;
de Pasquale et al., 2019; Doetsch et al., 2010; Hsu and Yanites, 2010;
Kutbay and Hardalaç, 2017; Xu et al., 2017), defects in covered landfill
(Genelle et al., 2012), buried archeological objects or cavities (Elwaseif
and Slater, 2010, 2012). Feature detection can also be improved onmul-
tivariate models or datasets (Giuseppe et al., 2014, 2018; see also
Paasche et al., 2006). Other applications cover dynamic processes: map-
ping of the water or leachate infiltration front (Audebert et al., 2014;
Scaini et al., 2017), the tracking of tracer's motion (Ward et al., 2016),
or groundwater level monitoring (Chambers et al., 2015).

In any of these applications, the underlying algorithms can be sum-
marized into the three following types: (1) gradient edge detection,
(2) object segmentation into two groups (binarization), or more
through (3) unsupervised classification, i.e., clustering. Clustering algo-
rithms have some merits compared to other techniques. Ward et al.
(2014) mentioned that gradient edge detection methods are limited
since the steepest gradients are not always concurrent with geological
interfaces, especially given the smoothness-constrained inversion and
the lack of resolution at depth in ERT images. Also, gradient edge detec-
tion is applied in contexts where the substrate is typically organized in
successive horizontal layers. As such, the applicability of this algorithm
is challenged for anisotropic heterogeneous environments such as
karst systems. Compared to segmentation algorithms that divide
models into two subgroups, clustering algorithms have the advantage
of not limiting the number of groups that can be defined according to
their distinct resistive behavior, which on the other hand, raises the
problem of the optimal choice of the number of clusters.

Overall, a few distinct clustering algorithms have been applied:
fuzzy c-means (Chambers et al., 2015; Kutbay and Hardalaç, 2017;
Paasche et al., 2006; Paasche and Tronicke, 2007; Singh et al., 2017,
Ward et al., 2014;), k-means (Audebert et al., 2014; Giuseppe et al.,
2014, 2018; Ishola et al., 2014; Scaini et al., 2017), Gaussian Mixture
Models, GMM (Doetsch et al., 2010), and Hierarchical Agglomerative
Clustering, HAC (Genelle et al., 2012; Xu et al., 2017). The fuzzy c-
means, k-means, and GMM algorithms belong to the family of iterative
relocation clustering algorithms. The fuzzy c-means and GMM are sim-
ilar in the sense that they yield to probabilistic clusters, also termed soft
or fuzzy clusters, meaning that an itemmay be assigned to several clus-
ters with a given probability. On the contrary, k-means is a hard or crisp
clustering algorithmaccording towhich each item is assigned to a single
group. HAC is another hard clustering algorithm based on a nested
structure represented by a dendrogram.

Notwithstanding the availability of these advanced clustering tech-
niques, methodological issues remain when applying clustering to
2

real-world ERT datasets. Fuzzy c-means, for instance, was applied as a
fuzzy algorithm to deal with the uncertainties brought by the smooth-
ness of non-time-lapse ERT models (Ward et al., 2014). It is, however,
not clear how such algorithms would work with time-lapse datasets.
Further, Genelle et al. (2012) and Xu et al. (2017) used the HACmethod
to cluster for the first time ERT time-series of a time-lapse 2D dataset
made of respectively 6 and 20 time-steps. Nevertheless, their study
did not allow addressing critical issues such as the impact of alternative
clustering algorithms on clustering results, the selection of the optimal
number of clusters, or the evaluation of either the robustness or the un-
certainties in clustering results. Also, Ward et al. (2014) suggested con-
sidering the local neighborhood and spatial constraints in clustering
processes, an issue, which still needs to be further analyzed.

This paper focuses on the post-inversion clustering of ERT time-
lapse datasets to extract and delineate spatially homogeneous features
based on their resistivity patterns and aims at addressing the
abovementioned concerns. We will refer to the term hydrofacies to de-
note spatial zones of similar patterns in their mean inverted resistivity,
standard deviation, and correlation, assuming that they encompass
common lithology and synchronous hydrological response at a daily
time resolution. In particular, we discuss (1) the comparison and pa-
rametrization of three candidate clustering algorithms (k-means,
GMM, and HAC) while addressing the question of the optimal number
of clusters and the evaluation of the clustering results, and (2) the per-
tinence of including spatially explicit information in the clustering task.
Finally, we discuss (3) the robustness of the clustering outputs to vari-
ous representations of the resistivity data, whether or not log-scaled,
normalized, differenced, decomposed, as well as the impact of the
time span of the ERT model on the clustering outputs. Our analysis is
based on a 2D-ERT dataset collected over a 465-days time-domain
(Watlet et al., 2018a, 2018b). The long time span is particularly suitable
to allow an exploratory analysis and to answer the aforementioned re-
search questions. The geological interpretation of the study site and
the ERTmodel are particularly detailed in these open-access references.
In this issue, we focusmainly on introducing and investigating the char-
acteristics and capabilities of the clusteringmethods for the zonation of
time-lapse ERT models. To further encourage reproducibility and reus-
ability, programming aspects exclusively relies on Scikit-learn
(Pedregosa et al., 2011), an open-source Python package for machine
learning.

2. Theoretical background

2.1. Time series clustering (TSC)

Clustering consists of grouping high dimensional data into fewer
classes based on groups' inner similarities and groups' outer dissimilar-
ities. In particular, time-series clustering (TSC) aims at grouping individ-
ual time-series together (Liao, 2005). TSC can be challenging due to the
high dimensionality of time datasets: (M,N) where M is the number of
time-series (samples) and N the number of time steps (features). Aver-
aging clusters reduces the dimensionality to (k,N) where k is the final
number of clusters. A clustering algorithm defines clusters and their
members based on criteria involving distance or similarity measures.
In machine learning, clustering is also defined as unsupervised classifi-
cation since there are no predefined labeled groups that could serve as
a basis for training.

Due to the combined effect of data structure and dimensionality, the
diversity of fields of application, the different clustering purposes, and
the nature of hunted patterns, a wide variety of TSC approaches are
found in the literature (Liao, 2005; Aghabozorgi et al., 2015). These
are, for the most part, declined under three aspects:

1. A time-series representation, which denotes any transformation of
the time-series reducing the dimension of the dataset before the
clustering;



Fig. 1. Example of three different cluster distributions in two dimensions. Cluster A is
convex and spherical. Cluster B is concave. Cluster C is convex and anisotropic.

D. Delforge, A. Watlet, O. Kaufmann et al. Journal of Applied Geophysics 184 (2021) 104203
2. A clustering algorithm relying on a distance measure;
3. An evaluation technique.

A prior reduction of the dataset dimensionality has several advan-
tages: diminution of the memory consumption and speed-up of the
clustering algorithm, noise reduction, and the harmonization of time-
series data of unequal length or resolution into a dataset where an
equal number of features characterize each sample time-series. If no
prior reduction is applied, we refer to the raw-data-based approach
(Liao, 2005). As far as TSC is concerned in this study, ERT series are uni-
variate, real-valued, uniformly sampled, and smoothed (due to inver-
sion smoothing constraint), of equal length, and relatively short. For
these reasons, we mainly considered a raw-data-based approach until
Section 4.3, where dimension reduction is tested. Still, raw TSC usually
involves a scale transformation. The z-standardization is used in the
vast majority of cases and applied to each of theM samples, i.e., the in-
dividual time-series Xi:

Xz,i ¼
Xi−μ Xið Þ
σ Xið Þ , i ∈ 1,M½ � ð1Þ

where μ(Xi) and σ(Xi) stand for the mean and standard deviation esti-
mates for Xi.

In Section 4.3, we refer to four time-series representations, each of
them either applied to the resistivity or the log-resistivity, that are:
the raw data without transformation, the z-standardized data
(Eq. (1)), the differenced data (Xi(t) − Xi(t − 1)) followed by z-
standardization (Eq. (1)), and the decomposed data using principal
component analysis (PCA) on the z-standardized data (Eq. (1)).
Differencing removes the seasonal variation of the mean resistivity
and will most likely result in a clustering that is more sensitive to the
synchronous response of daily variations. By decomposing the covari-
ance matrix of the dataset, PCA reduces its dimension from N to several
orthogonal components that explain most of the variance of the dataset
(see Section 3.2). Since PCA is applied to the z-standardized data, the co-
variance matrix is equivalent to the correlation matrix, and the PCA re-
veals correlation patterns in the time-series across space.

2.2. Clustering algorithms

There are no strict restrictions on the use of conventional clustering
algorithms for the specific case of TSC. However, it is common to have
distance functions modified according to the purpose of clustering.
Two cases arise depending onwhether the aim is to group synchronous
and linearly correlated series (similarity in time), or whether the proce-
dure must rely on elastic measures of distance tolerant to some distor-
tions or asynchronies (similarity in shape). This paper focuses on the
first case, i.e., the similarity in time compliant with our definition of
hydrofacies, and that is usually addressed using Euclidean distances,
squared Euclidean distances, or correlation-based distance. On a z-
standardized dataset (Eq. (1)), the correlation coefficient RXiXj

between
two time-series is related to their squared Euclidean distance dXz, iX z, j

2

such that RXiXj
= 1 − dXz, iXz, j

2/2N. Despite the introduction of new dis-
tance metrics, Euclidean-based distances remain the simplest and one
of the most competitive options (Keogh and Kasetty, 2003).

There is an extensive and non-exclusive taxonomy dedicated to the
description of clustering algorithms (Tan et al., 2019). An important dis-
tinction is based on the clustering structure. If the algorithm produces
an independent partition of k clusters, it is called a partitional algorithm.
On the other hand, if clustering produces a tangled structure of groups
and subgroups, it is referred to as hierarchical, although it is possible
to retrieve a partition of k clusters based on a cut-off distance. Another
dichotomy is based on the hard (or crisp) or probabilistic (or soft,
fuzzy) nature of the partition. Hard clustering labels each object i to
one unique cluster, while probabilistic clustering defines a probability
of membership. Another type of clustering algorithms is prototype-
based or center-based clustering. These algorithms partition objects
3

based on their distance from the centroid of the cluster, and, for these
reasons, tend to produce convex clusters centered on the mean. In the
2D example of Fig. 1, clusters A and C are convex since they could be av-
eraged to a characteristic element, the centroid that belongs to the clus-
ter. Cluster A has a spherical covariance matrix, while C has an
anisotropic covariance matrix. On the reverse, cluster B is concave,
and the centroid is no longer a reliable prototype. In general, concave
clusters are extracted using methods that consider the local neighbor-
hoods and densities around each sample (e.g., Section 2.2.2). It allows
extracting dense clusters regardless of their structural arrangement.
However, these approaches are challenged in the case of an ERT
model given smoothness constraints and the subsequent lack of sharp
variations in resistivity.

This study relies on three prototype-based clustering algorithms so
that the resistivity series can be averaged into amean representative se-
ries per cluster. These are k-means, hierarchical agglomerative cluster-
ing (HAC), and Gaussian Mixture Models (GMM). The k-means
algorithm is partitional, hard, and tends to produce convex spherical
clusters. HAC is hierarchical and hard. The covariance structure of the
clusters depends on the distance metric and the constraints applied to
the agglomeration. Finally, GMM is partitional, probabilistic, and not
tight to a spherical covariance. The Python Scikit-learn library
(Pedregosa et al., 2011) provides all the clustering algorithm used in
this study.

2.2.1. k-means
The k-means algorithm is the most used clustering method

(Berkhin, 2006). It is a partitioning relocation clustering algorithm
based on the principle offinding a partition C of k clusters byminimizing
the sum of squared Euclidean distances between each object i belonging
to a cluster c ∈ C with respect to the cluster centroid μc. The objective
function to minimize is then:

ϕ ¼
X

i∈M

min
c∈C

∥i−μc∥
2 ð2Þ

The original k-means algorithm is referred to as Lloyd's algorithm
and consists of a simple series of repeated steps:

1. k clusters centers μcare randomly sampled given a uniform
probability;

2. Each object i is assigned to the cluster closest center;
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3. ϕ is computed with respect to μc;
4. A new μc is obtained by averaging cluster members.

The steps 2 to 4 are repeated untilϕ is stable. The k-means algorithm
tends to produce convex clusters of equal variances across the feature
space, i.e., spherical clusters as cluster A in Fig. 1. The cluster prototype
is the centroid μc. Due to the random initialization of cluster centers
(step 1), a few repetitions of the full process (steps 1 to 4) are usually
required to avoid convergence to suboptimal results. The best clustering
partition, i.e., with minimal ϕ, is kept. Depending on the dataset, k-
means may remain unstable and yields non-deterministic outputs.
This study relies on Scikit-learn's implementation of the k-means++
algorithm (Arthur and Vassilvitskii, 2007). The k-means++ implemen-
tation improves the speed and accuracy of the original k-means bymod-
ifying the randomized initialization scheme (step 1). The idea is to
spread initial centers allocation. The first center is still sampled given
uniform probability distribution, while the subsequent centers are sam-
pled given probability densities inversely proportional to the distance to
previously defined centers.

2.2.2. Hierarchical agglomerative clustering (HAC)
Hierarchical Agglomerative Clustering (HAC) differs from k-means

as it provides a nested structure of the clustering through a dendrogram.
HAC uses a bottom-up approach: it starts from individual samples i as
leaves and merges them into branches based on their proximity until
one cluster remains. Clusters are progressively merged based on their
relative proximity. The proximity is defined by linkage methods defin-
ing the distance between clusters. This study focuses on theWard link-
age method (Ward, 1963) that minimizes the sum of squared
differences within all clusters. Hence, the output is quite similar to
that of k-means and tends to produce convex clusters of equal covari-
ances as well (Fig. 1, cluster A), which could be averaged into a cluster
prototype, i.e., the centroid. Unlike k-means, which relies on random
initializations of cluster centers, HAC's outputs are stable and do not re-
quire several iterations.

A particularity of the Scikit-learn's implementation lies in the oppor-
tunity of constraining the merging of branches by providing a connec-
tivity matrix (Abraham et al., 2014). Such a matrix is binary of square
shape (M,M), whereM is the number of samples and distinguishes con-
nected objects from disconnected objects so that two branches can be
merged only if spatially connected objects exist between them. This
functionality could be used to retrieve non-spherical clusters in the N-
dimensional feature space such as Cluster B and C in Fig. 1. In that
case, the connectivity matrix is computed using a nearest-neighbor ap-
proach. In this case, the connectivity matrix is computed from themesh
of the ERT model so that two cells are connected if they share an edge.
This capability is used in Section 4.2 as a spatial constraint in order to re-
trieve spatially homogeneous clusters.

2.2.3. Gaussian mixture model (GMM)
Gaussian Mixture Models (GMMs) aim at modeling a dataset as a

linear mixture of k Gaussian distributions defined in the N-dimensional
feature space (Berkhin, 2006). Multivariate Gaussian models are related
to the Mahalanobis distance that evaluates the distance of samples to a
given distribution (Gallego et al., 2013). As a probabilistic algorithm,
the clustering is soft so that each object i has a probability of belonging
to each cluster. For a given object, these probabilities sum up to one.
GMM requires as input the number of clusters k and relies on the
expectation-maximization algorithm (Dempster et al., 1977) to find an
optimal clustering. Expectation-maximization is closely related to the
k-means algorithm as it involves iterative relocations: the starting
point is a random initialization of k Gaussian distributions that are itera-
tively reallocated by updating the GMM parameters, i.e., the mixture k
weights, the k mean vector of dimension N, and the k NxN covariance
matrix. Doing so, GMM maximizes the overall likelihood L that each
object belongs to the Gaussian mixture.
4

By default, the Scikit-learn implementation of GMM uses the same
initialization strategy as k-means++ (Section 2.2.1) and automatically
assign each sample to the most likely group. GMM is non-deterministic
and different realizations may give different outcomes due to the ran-
dom initialization. Different types of covariance matrix exist. Choosing
a spherical type will add the constraint that the variance in each of the
N dimensions should be approximately equal. As a result, GMM would
yield probabilistic convex spherical clusters, similarly to what would
be expected from the k-means and Ward-HAC methods. Here, we did
not add constraints on the covariance so that each cluster may have
its specific covariance matrix, and GMM may retrieve anisotropic con-
vex clusters such as Cluster C in Fig. 1.

2.3. Clustering evaluation

The evaluation of clustering is a difficult task as it is an unsupervised
classificationmeaning that ground-truth labels are usually not available.
However, the literature suggests different clustering validation indices
aiming at providing both (1) a statistical evaluation of the clusters to
measure how well their members are tight and separated from the
other clusters and (2) comparing two different partitions in terms of
similarity. We used both kinds of indices in this study. They are all im-
plemented within the Scikit-learn library.

2.3.1. Silhouette index (SI)
Silhouettes were introduced tomeasure howwell an object belongs

to its own cluster and as a tool to objectify the choice of the number of
clusters k in partitioning algorithms such as k-means (Rousseeuw,
1987). For an object i part of theM samples, a Silhouette value S(i) relies
on the mean intra-cluster distance ai and the mean nearest-cluster dis-
tance bi:

S ið Þ ¼ bi−ai
max ai, bif g , i ∈ 1,M½ � ð3Þ

S(i) ranges from −1 to 1 and renders the degree of membership of the
object to its cluster. A negative value suggests that the object is assigned
to the wrong cluster and stand for an outlier. By averaging Silhouette
values, an overall Silhouette index (SI) can be computed to render the
clustering quality:

SI ¼ 1
M

∑
i
S ið Þ, i ∈ 1,M½ � ð4Þ

Typically, k is chosen in such a way that SI is maximum. A compara-
tive analysis of 30 validation indices reports SI as the best index on var-
ious synthetic datasets and in the top tier on real datasets (Arbelaitz
et al., 2013). However, SI tends to endorse clustering that produces con-
vex clusters, such as k-means or HAC, and may be inappropriate if the
algorithm allows the retrieval of anisotropic or concave clusters. This
case may happen with GMM or the HAC algorithm if constrained with
a connectivity matrix.

2.3.2. Information criteria
The number of components using GMMs are usually not optimized

using the Silhouette index but based on information criteria relying on
the log-likelihood of the GMM and accounting for the number of free
parameters in themodel. For this purpose, the Akaike Information Crite-
rion AIC (Akaike, 1974) and the Bayesian Information Criterion BIC
(Schwarz, 1978) are usual:

AIC ¼ −2 log Lð Þ þ 2d ð5Þ

BIC ¼ −2 log Lð Þ þ d log Mð Þ ð6Þ

where log(L) is the log-likelihood,M the number of samples, and d is the
number of degrees of freedom related to the model. The degrees of
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freedom d is given by summing the covariance, mean, and mixing
weights free parameters. With no constraint on the covariance, the
number of covariance free parameters are given by the half of the num-
ber off-diagonal elements and the number of diagonal elements, i.e., kN
(N+ 1)/2, where N is the number of time-steps in the case of TSC. The
Fig. 2. Time-lapse ERTmodel of the Rochefort cave subsurface. (a) Inverted resistivity ρ for the
deviation of log-resistivity σ[log(ρ)] computed over the 465 days for the 1558 spatial cells. (c
(d) Inverted daily resistivity time-series (log-scale). The red line is the mean time-series, wi
(e) Variance explained by the principal component analysis (PCA) of the z-standardized resi
with (e). (For interpretation of the references to colour in this figure legend, the reader is refe

5

number of mean parameters is given by kN since the mean vector is of
dimension N. At last, the number of weight parameters is given by
k − 1 since k − 1 parameters are sufficient to describe the mixture
weights as they sum up to one. Unlike SI, AIC or BIC should be minimal
for an optimal k.
reference model at day 0. (b) Scatterplot of the mean log-resistivity μ[log(ρ)] and standard
) Coefficient of variation (CV = σ(ρ)/μ(ρ)) of the resistivity computed over the 465 days.
th the shaded red areas representing the interquartile range. Missing data are left blank.
stivity dataset (Eq. (1)). (f to h) First, second, and third principal components associated
rred to the web version of this article.)



Fig. 3. Expert-based classification of the time-lapse ERT model fromWatlet et al., 2018a. (a) Spatial zonation of the groups. (b) Scatterplot of the mean log-resistivity μ[log(ρ)] and the
standard deviation of log-resistivity σ[log(ρ)] for the 1558 resistivity time-series. Colors correspond to the groups identified in (a).
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2.3.3. Adjusted mutual information (AMI)
Based on the information theory, the adjustedmutual information

(AMI) is used to measure the similarity between two partitions, or
the classification performance if one partition is considered as
ground truth data. Another application is consensus clustering,
which aims at identifying a more robust partition from an ensemble
of different clustering algorithms' outputs based on their degree of
agreement (Monti et al., 2003; Vinh and Epps, 2009). In this paper,
AMI is used to compare the similarity of two clustering partitions
with and without spatial connectivity constraint (Section 4.2), the
outcomes of different time-series representations, or the robustness
of the clustering derived from subsamples instead from the whole
dataset (Section 4.3). AMI is an adjusted measure of similarity. Ad-
justment in clustering comparison is needed to account for the ex-
pected similarity score of randomness, which may vary according to
the number of clusters k. It allows having a similarity score ranging
from 0 to 1, with 0 corresponding to the score of random labeling
and 1 reflecting a perfect agreement between two clustering outputs.
Scikit-learn's implementation of AMI relies on Vinh et al. (2010).
Considering two clustering partitions vector U and V:
Fig. 4. Comparison of clustering validation indices for different numbers of clusters and clusteri
black or grey with respect to the left axis. The blue and red lines report on both the right axes the Ak
GMMmodels. Regarding k-means and GMM, the error bars represent 2 standard deviations across 2
to colour in this figure legend, the reader is referred to the web version of this article.)

6

AMI U,Vð Þ ¼ I U,Vð Þ−E I U,Vð Þf g
max H Uð Þ,H Vð ÞÞÞf g−E I U,Vð Þf g ð7Þ

whereH(U) andH(V) are the information entropyof the given partition,
and I(U,V) is the mutual information between both partitions. The ex-
pected mutual information for randomness is E I U,Vð Þf g based on ran-
dom partitions preserving the number of clusters k and the number of
members in each cluster. In general, AMI has the advantage that its
score remains unchanged in case of permutations of the cluster labels.
It is particularly useful for comparing agreement between two parti-
tions since one object may belong to two respective clusters that are
similar, but most likely labeled differently.

3. Study site and data

3.1. Rochefort cave laboratory

The clustering approaches are applied to a real dataset collected at
the Rochefort Cave Laboratory (Watlet et al., 2018b). This site
(Camelbeeck et al., 2012) is located near the town of Rochefort, in one
ng algorithms. The Silhouette index (SI) is reported for the k-means, HAC, and GMMmodels in
aike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) obtained for the
0 runs, each of them including 20 random initializations. (For interpretation of the references
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of the largest karst systems of Belgium. It hosts several kinds of sensors
and instruments, which have been progressively installed in natural
caves or at the surface since the early ‘90s to monitor several types of
natural processes, from active movements along geological fractures
(Camelbeeck et al., 2012) towater infiltration patterns in both the satu-
rated and unsaturated zones of the karst system (Poulain et al., 2018). It
is in the latter context that the ERT dataset used in this paper has been
acquired.

The experiment, detailed in Watlet et al., 2018a, allowed collecting
ERT datasets daily between 2014 and 2017, which still represents, to
the best of our knowledge, the longest, high-resolution ERTmonitoring
experiment conducted in a karst environment. The electrodes are per-
manently installed along a line of 48 electrodes at 1-m intervals. The
line starts at the bottom of a doline and goes all the way to the top of
a flat limestone plateau. Most of the electrodes are permanently buried
at shallow depth, while the first six electrodes are directly attached to
the outcropping limestone. Measurements were carried out first via an
ALERT system (Kuras et al., 2009) and thenwith a Syscal Pro (Iris Instru-
ments) and include dipole-dipole and gradients protocols. Data quality
was assessed via reciprocal measurements. Resistivity models were
processed using BERT (Rücker et al., 2006; Günther et al., 2006) using
a time-lapse inversion scheme with a reference model. For a detailed
presentation of the measurements and the inversion aspect, see
Watlet et al., 2018a.

3.2. Time-lapse ERT model

The time-lapse ERT dataset (Fig. 2) is obtained from dipole-dipole
arrays. The spatial grid consists of 1558 cells corresponding to the num-
ber of samplesM to be clustered. Each of them is assigned to a resistivity
time-series defined on 465 daily time steps defining the number of di-
mensions N of the dataset. Due to the particularly challenging context
of using ERT on a karst system (Watlet et al., 2018a), several gaps
Fig. 5.Comparison of the spatial clustering patterns for k=2, 4, and6. Thefigure columns refer to
The rows represent different choices regarding the number of cluster k. SI is the corresponding ave
values indicating potentially misclassified cells.
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occur throughout the dataset (Fig. 2d). Although more continuous
datasets could be used for this study, such gaps are inherent to field
measurements and should be accounted for when searching for semi-
automated tools to support the interpretation of time-lapse ERT results.
Moreover, this dataset has two main strengths: (i) it images a complex
fractured limestone area and therefore shows a vast range of resistivity
patterns both spatially and temporally, and (ii) it is a 2D case study,
which is an advantage when testing several clustering approaches.
These two aspects seem ideal to explore different clustering methods
in the context of identifying geological features with distinct hydrolog-
ical patterns, i.e., hydrofacies.

The structural interpretation of the ERT model is described into de-
tails in Watlet et al., 2018a using a series of external information form
an in-situ borehole, geological observations, and a 3D model from a
UAV-based photoscan (Triantafyllou et al., 2019) performed in the
cave. The interpretation resulted in a segmented classification of the
model into the eight zones shown in Fig. 3. The highly resistive zones
under the plateau (Fig. 2a) were interpreted as low porosity limestone
(Fig. 3, zones D & F). More conductive patternswere attributed to either
the soil (Fig. 3, zones A & C), the karstified limestone areas (Fig. 3, zones
B & E), or a zone of increased fracture intensity with strong dip in the
middle of the image (Fig. 3, zone H). Lastly, zone G presents a low and
relatively constant resistivity (see Fig. 2) related to the presence of
clayey limestone. The classification was limited to the upper model be-
cause the experts took into account the loss of resolution in the lower
part. Based on the PCA first component (Fig. 2f), the dynamic high resis-
tive limestone zone F is correlated with the clayey limestone (Fig. 3,
zone G). The other massive limestone zone D (Fig. 3) is correlated
with the rest of the model (Fig. 2f to h). On the second component
(Fig. 2g), the superficial zones A to C appear more clearly. The porous
limestone area E is also identifiable in blue tones, as well as a spot of
higher conductivity on the reference model (Fig. 2a), or using the coef-
ficient of variation (Fig. 2c). The patterns of the third component
the three clustering algorithms applied to the time-lapse ERT dataset: k-means, HAC, andGMM.
rage Silhouette index associated with the partition. The white edges correspond to negative SI
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(Fig. 2h) are mostly redundant with the first one, except for the lower
left part of the model. However, that area was not considered in
Fig. 3a since it consists of extrapolated resistivity values given that the
first electrode is located at the origin of the X and Z axis.

4. Results

4.1. Comparison of clustering algorithms

This first section compares k-means, HAC with Ward's linkage
method, and GMM. The clustering algorithms are applied to the z-
standardized (Eq. (1)) resistivity time-series (Fig. 2d). The appropriate
number of clusters k is studied by relying on the Silhouette Index (SI,
Eq. (4)) for k-means, HAC, and GMM. Regarding GMM, the optimal
number of clusters is also appreciated using the AIC and the BIC criteria
(Eq. (5) and (6)). The results are reported in Fig. 4. The higher SI yields
the preferred k. On the contrary, the lowers AIC or BIC indicate the
Fig. 6. Diagnostic plot for HAC clustering (k=6). (a) On the z-standardized inverted log-re
representation of the clustering partition with the cells having negative SI values displayed
resistivity μ[log(ρ)] versus its standard deviation σ[log(ρ)] for each of the 1558 ERT series; the

8

preferred k for GMM. Since GMM and k-means presents a risk of non-
deterministic outputs due to random initialization, their related curves
are represented with error bars relative to 2 standard deviations
resulting from 20 runs of the clustering algorithm. For both algorithms,
each run involves 20 random initializations allowing to select the best
model (see Sections 2.2.1 and 2.2.3). As suggested by the small error
bars, the k-means clustering appears stable. In contrast, the GMM
model is relatively unstable for k=6 and above with respect to the SI
value. This is not the case regarding the AIC or BIC. Hence, the GMM is
likely to generate different patterns, although they have a similar log-
likelihood L (Eq. (4) and (5)).

SI values are relatively low (<0.4), indicatingweak compactness and
low separability, as one would have expected from a smooth dataset.
Still, all indices agree that the optimal number of clusters k is 2, except
GMM-AIC (red), suggesting k between 3 and 5. As a second-best, a k
value of 6 appears for the HAC and the k-means method, which may
be geologically relevant given the different lithologies described in
sistivity data. (b) On the inverted log-resistivity data. The first row shows the spatial
with white edges; the second one their distribution in the scatterplot of the mean log-
third one shows the averaged log-resistivity time-series per clusters.
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Fig. 3. The k-means algorithm is stable since almost no deviation in the
SI is observed. For comparison, the clustering for k values of 2, 4, and 6
are visualized spatially in Fig. 5. Cells with white edges are those having
a negative Silhouette value. Since GMM is unstable (Fig. 4), the spatial
patterns represented in the figure are the product of one single realiza-
tion and is subject to changes across runs. This is particularly the case of
GMMwith k= 6 (Fig. 5i), for which the displayed patterns were inten-
tionally selected to depict a pattern that differs from the one retrieved
by k-means and HAC (Fig. 5g and h).

Even if some group attribution may differ with GMM (e.g., Fig. 5f),
the spatial patterns of zonation are generally similar regardless of the
method. In general, the patterns of Fig. 5 match well with the one
highlighted by the PCA decomposition (Fig. 2f to h). With k = 2, the
green cluster is representative of the slope's subsurface (mostly clayey
limestone, Fig. 3, zone G) plus an additional inclusion below the plateau
matching roughly the dense limestone group F in Fig. 3. The green clus-
ter is divided into two parts once k= 4, except with GMM that instead
identified the top part of the slope (Fig. 5f, Fig. 3, zone C). Another split
occurs with the corresponding blue cluster: the top surface appears as
being dynamically related to the deeper low resistivity area in the frac-
tured zone (see Figs. 2a and 3). With k = 6, the slope's surface appears
as a cluster on its own (violet) in all cases. As an additional comparison
with Fig. 3, the k-means and HAC outputs (Fig. 5g and h) present a hor-
izontal division of the plateau into two clusters. The identified red clus-
ter suggests that different dynamics occur at the surface of the fractured
area and above the dense limestone area (Fig. 3, zone F), which was
mainly visible on the PCA first and third components (Fig. 2f and h).
The red cluster of the GMM clustering (Fig. 5i) is more in phase with
Fig. 3 as it separates the soil surface from the underlying bedrock. In
the next sections, HAC will be exclusively considered as it is similar
but computationally faster than k-means, and does not have stability is-
sues such as GMM.

In contrastwith Fig. 5, Fig. 6 reports the k=6HAC clustering applied
on the log-resistivity inverted data: the z-standardized log-resistivity
Fig. 7. Selection of the number of clusters for the HAC method with connectivity constraint. (a
(orange), and their similarity (green) given by the Adjusted Mutual Information (AMI, Eq. (7
constraint and k = 9. (d) Scatterplot of the mean log-resistivity μ[log(ρ)] versus its standar
values in (b) and (c) are showed with white edges. (For interpretation of the references to col
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for the first column (Fig. 6a.x) and the raw log-resistivity for the second
one (Fig. 6b.x). Applying HAC on the z-standardized resistivity (Fig. 5h)
or the z-standardized log-resistivity (Fig. 6a.1) provides spatially similar
clusters on this long term dataset. Fig. 6a.3 reports the averaged raw
log-resistivity time-series and their distinct dynamical patterns, espe-
cially for the delay and magnitude of resistivity declines that occur dur-
ing fall. The pink and the green cluster (Fig. 6a.3) are less responsive to
variation in resistivity over time and were regrouped together in the
k = 2 partition in Fig. 5. Fig. 6a.2 shows that some clusters (e.g., lime
green, blue, or turquoise) are spread over the entire statistical space de-
fined by the mean log-resistivity and its standard deviation. Hence, if
such a cluster gathers correlated series, it most likely groups different
geologicalmaterials together, thus, different hydrofacies, which encour-
age to consider raw log-resistivity as well for more consistency.

Nevertheless, clustering on the raw log-resistivity alone yields the
quantization of the ERT models into iso log-resistivity clusters. This is
most visible on the statistical scatterplot of Fig. 6b.2. In other words,
the clustering of the full dataset of 465 days is roughly equivalent to
the clustering of themean of the 1558 log-resistivity series. No informa-
tion about the dynamical nature of resistivity is leveraged to define the
clusters. Consequently, the clustering produces averaged time-series
(Fig. 6b.3) that are highly correlated, hence, poorly representative of
the hydrological states of the subsurface system. Still, some spatial
zones are of interest such as the spatial red node within the turquoise
cluster below the plateau that map to the porous limestone area of
lower resistivity compared to the surrounding and denser limestone
(Fig. 2a, Fig. 3., zone E). Besides, if some spatially organized patterns
are consistent in both approaches, this is not the case of the pink cluster
of Fig. 6a.1 that should rather be eventually broken up into a lower and
upper part (Fig. 6b.1). Indeed, while spatially tied, the pink cluster pre-
sents a wide range of mean log-resistivity.

Ideally, an adequate clustering method for the recovery of
hydrofacies should leverage both information about the correlated dy-
namics from the z-standardized data and the raw resistivity. For
) Silhouette Index (SI, Eq. (4)) for the HAC with connectivity constraint (blue), without it
)). (b) HAC with connectivity constraint and k = 17 clusters. (c) HAC with connectivity
d deviation σ[log(ρ)] for the clustering presented in (b). Cells with negative Silhouette
our in this figure legend, the reader is referred to the web version of this article.)
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instance, this could be done either by considering the raw log-resistivity
in the clustering processes with some weighting scheme or by defining
a posteriori a consensus clustering (see Monti et al., 2003) between a.1
and b.1 in Fig. 6. We did not develop these methods because of our
inability to validate or identify the number of clusters with such a dual
approach that involves a wide range of potential compromises. This op-
portunity would rather be investigated using virtual experiments,
which falls beyond the scope of our study. Notwithstanding, Fig. 6 por-
trays the clustering results in a way that allows a fine diagnostic of the
outcome and, eventually, a supervised reclassification of the groups,
when intra-cluster resistivity ranges are too broad.
Fig. 8.HAC clustering applied to various time-series representation. (a to h)With k=6 and (i
considered for the clustering are either the resistivity or the log-resistivity as raw data (column
and decomposed z-standardized data into 5 PCA components. Each label (a to p) shows the Silh
the k indicated by the vertical dashed line in the Silhouette plot.
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4.2. Spatially constrained clustering

To mitigate the inconsistencies brought by the wide ranges of mean
log-resistivity and standard deviation (Fig. 6a.2) within clusters, a first
possibility is to disjoint those that are spatially (Fig. 6a.1) or statistically
(Fig. 6a.2) split. Another possibility is to spatially constrain the cluster-
ing by providing a spatial connectivity matrix to the HAC algorithm
(see Section 2.2.2). The constraint will increase the number of the clus-
ter over six, up to the point that the partition is both spatially and dy-
namically consistent in terms of correlation. The process of selecting
the appropriate number of clusters k with the Silhouette Index (SI,
to p) with k=9 clusters and a spatial connectivity constraint. Time-series representations
one), z-standardized data (column two), differenced and z-standardized data (column 3),
ouette variation according to the number of cluster k and the spatial patterns of clusters for
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Eq. (4)) is repeated in Fig. 7a using HAC on the z-standardized log-
resistivity data. Respectively, the blue and the orange curves report
the SI with and without the use of the spatial connectivity constraint.
The AMI similarity (Eq. (7)) between the two approaches is given by
the green curve. Above k=6, a first local optimum appears at 9 clusters.
With k=9, the spatial organization of patterns (Fig. 7c) is comparable to
what is seen in Figs. 5 or 6, but the top slope, here in violet (zone C in
Fig.3), hasmergedwith awider fractured area (Fig.3, zoneH). The latter
is poorly defined as being fully characterized by negative SI values
(Fig. 7.c. white edges). This means that the dynamics found in this
area are more similar to those of other clusters, mainly the turquoise
one in Fig. 7c, if compared to Figs. 5 or 6.

Further apart, a better optimum is found around 17 clusters (Fig. 7a),
which coincide with a small peak in the AMI, and equivalent SI in both
clustering approaches. Thus, we have interpreted this point as a meth-
odologically consistent number of clusters. Above 19 clusters, the SI
with connectivity constraint drops to 0.2. With k=17 (Fig. 7b), the
main former spatial patterns remain recognizable with the notable dif-
ference that a second horizon appears in the plateau, as in Fig. 3 (zone
B) or Fig. 5i. Another difference is that the pink cluster of Fig. 7c has
been split into two parts. Besides, the spatial constraint has the effect
of restoring more consistent groups in terms of average resistivity and
standard deviation (Fig. 7d). A part of this consistency is, however, ex-
plained by spatial smoothness constraint in the inversion scheme.
Fig. 9. Convergence of HAC clustering partitions for various representations of log-resistivity dat
of clustering on the sample sets and the partition retrieved on the full dataset of 465 days: (a
samples and with connectivity constraint (k = 9); (d) with continuous samples and with co
bands for each representation of Fig. 8 (Raw, Z-std, Diff & Z-std, Z-std & PCA5).
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Finally, k=17 results in the presence of many small clusters, mainly in
uncertain areas (see Figs. 5h and 6a.1) at the bottom of the slope or
above the fractured area. However, if the smaller groups and those lo-
cated relatively far from the surface electrodes are ignored, the partition
would provide about ten spatially distinct groups that are geophysically
interpretable, similarly to Fig. 3. Still, it appears that the more conduc-
tive porous limestone area (Fig. 3E) does not appear even with many
clusters as high as 17.

4.3. Sensitivity and robustness of clustering partitions

In Fig. 8, the clustering task is applied to various time-series repre-
sentations that are or not log-scaled, normalized, differenced, or
decomposed (Section 2.1). The first block (a to h) applies HAC with k
set to 6 clusters while the second one (i to p) considers 9 clusters with
a spatial connectivity constraint. Within each block, the two rows
represent the choice to work either on the resistivity (Ω. m) or its log-
transformation. Then, the clustering is applied, respectively to the col-
umns of Fig. 8, on these raw datasets (Raw data), the z-standardized
(Eq. (1)) ones (Z-std data), their first order differences followed by a
z-standardization (Diff & Z-std data), andfinally on the five first compo-
nents of the PCAdecomposition of the z-standardized data. Each labeled
pair offigures represent the Silhouette index (SI, Eq. (4)) as a function of
the number of clusters k, and below it, the spatial patterns on the
awith increasing size of the sample sets. AMI (Eq. (7)) is computed between every 50 runs
) with random samples (k = 6); (b) with continuous samples (k = 6); (c) with random
nnectivity constraint (k = 9). The curve presents the mean and the 2 standard deviation
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bottom related to k=6 or 9, whether a spatial connectivity constraint is
considered or not, in phasewith Figs. 6a and 7c. Although the selected k
is not always a local optimum, arbitrarily fixing the number of clusters
allows comparing the similarity of partitions with the Adjusted Mutual
Information (AMI, Eq. (7)). We chose as references the clustering ap-
plied on the z-standardized log-resistivity (b and j), which therefore
have an AMI of 1. An AMI of zero reflects the score of two random par-
titions. In Fig. 8, an AMI reaching 0.7 shows comparable spatial patterns
with the reference. Of course, visual differences in the top of the model
and closer to the electrodes have much more impact on the AMI score
due to the variable resolution of the grid.

In terms of spatial patterns, the new representation based on
differencing (Diff & Z-std) produces interesting cluster distributions.
Without spatial constraint, the clusters are nevertheless mostly contin-
uous. The massive limestone area on the right of the fractured area
(Fig. 3F) does not appear. The differencing removes the seasonal varia-
tion of the resistivity (see Fig. 6a.3),making this spotmore synchronous
with the rest of the limestone area below the plateau. The zone is, how-
ever, identifiedwhen the connectivity constraint is applied. Another in-
teresting cluster is the banana-shaped one below the slope surface
corresponding to the area of clayey limestone (G in Fig. 3). The shape
maps well with the ones retrieved from raw resistivity data (a, e, i, m),
indicating a consistent cluster. Regarding the application of the PCA
(Z-std & PCA5), the clustering produces similar clusters compared to
the reference, except for (d), but the value of 6 clusters does not seem
appropriate given its sub-optimal SI. Otherwise, not much information
is lost from the decomposition, and this option could be considered
for reducing the computational requirement of the clustering task. In
general, the selection of the number of clusters based on the SI is depen-
dent on the time-series representation.

Yet, all clustering tasks shown in Fig. 8 are applied to the full
time-span of the dataset, which is 465 days. Another aspect of sensitiv-
ity is related to the question: how much information (i.e., days) is nec-
essary to retrieve the clustering partitions of Fig. 8? The question is
Fig. 10. HAC clustering (k= 6) applied to four continuous samples of 20 days of log-resistivity
Eq. (4)) reported in parenthesis. The negative Silhouette values (Eq. (3)) are displayed in with
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addressed in Fig. 9 with HAC clustering applied with and without con-
nectivity constraint on the log-resistivity data and its four representa-
tions shown in Fig. 8. The selected days are sampled according to two
strategies. The first one (a and c) picks random but different (without
replacement) ERT samples meaning that the samples could be spread
over the full time-span of 465 days. The other strategy (b and d) picks
continuous samples (i.e., consecutive days). For each given size, the
sampling is repeated 50 times. The AMI is computed between each of
the 50 clustering outputs and the partition obtained with the same
time-series representation on the full time-span of 465 days (Fig. 8 a
to d and i to l).

According to the random sampling strategy (Fig. 9a and c), the clus-
tering applied on samples of the raw log-resistivity (blue) provides sta-
ble AMI across the range of sampling sizes (2 to 100 days). Compared to
the full dataset, similar clustering partitions with high AMI ≅ 0.7 are
obtained even on small sample sets, with or without connectivity
constraints. It means that there is not much added-value of a long
time-span when the clustering of raw resistivity is performed. There-
fore, it does not matter much if the sample sets are continuous or not.
Regarding, the clustering on the z-standardized data (orange) and
decomposed data (red), the convergence of the AMI mostly occurs
with samples sets below 20 days with k = 6 and without connectivity
constraints. The decomposed data (red) has a lower convergence limit
(~ 0.6) compared to the z-standardized data (orange). This is because
of the unstable 465 days patterns retrieved with PCA (Fig. 8d), which
was the reference for computing the AMI. Convergence is faster and oc-
curs mostly between 10 days when the clustering is applied with k=9
and a connectivity constraint (Fig. 9c). However, there is a drop in the
AMI limit when the clustering is applied on continuous sample sets
(Fig. 9b and d), and AMI does not exceed 0.5 even with a time-span as
significant as three months. Since it is not the case with random sam-
pling (Fig. 9a and c), one may conclude that the clustering applied on
the full dataset is mostly based on seasonal variation, as shown in
Fig. 6a.3. This behavior is different for the differenced dataset (green)
. (a to d) shows the results from four different starting days with the Silhouette index (SI,
white edges.
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as the seasonal variation is removed by the differencing. Consequently,
with random sampling (Fig. 9a and c), it converges less rapidly and to a
lowerAMIcomparedto thez-standardized(orange)andthedecomposed
(red) dataset. The loss of AMI is also lower when it comes to continuous
sampling (Fig. 9b and d).

Regarding the continuous sampling strategy, the drop of AMI for the
z-standardized dataset (orange) and the decomposed ones (red) may
raise several concerns related to the geophysical investigation and the
methodology for recovering hydrofacies from correlated dynamics. In-
deed, Fig. 10 shows the different clustering partitions obtained from
four different continuous periods of 20 days. The spatial patterns sub-
stantially deviate from the usual one retrieved on the full dataset. On
the one hand, it may suggest that the patterns retrieved on the z-
standardized are not robust unless applied on a long term ERT dataset
covering at least a year, given the daily measurement strategy and the
seasonal patterns shown in the data (Fig. 6a.3). On the other hand, the
results simply reflect changes through time in dynamically correlated
features across space, which may include changes in the optimal num-
ber of clusters. From that point of view, hydrofacies may change over
time according to the hydrological states of the systems, water distribu-
tion, and the patterns of hydrological connectivity. The result of Fig. 10
may portray some of these changes; however, as the focus of this
paper is on clusteringmethods, wewill not attempt a premature hydro-
logical interpretation. The point is instead to underline the sensitivity of
themethod and the need to develop more robust methods for the clus-
tering of hydrofacies, for instance, by considering the raw resistivity or
other geophysical data in the process. Finally, it is worth recalling that
the difficulty of the clustering task in this particular case is linked to
the complexity of the karstic site. The retrieval of coherent groups
may be easier in a less heterogeneous environment.

5. Conclusion

Nowadays, computer-assisted vision is increasingly used to extract
and delineate geological and hydrological features, sometimes referred
to as litho or hydrofacies, from ERT models. While early studies pro-
vided applications for non-time-lapse ERT models, applications to
time-lapse models are still underrepresented. On short time-lapse
models (<20days), Genelle et al. (2012) andXuet al. (2017) developed
the first applications based on time-series clustering (TSC), assuming
that these structures can be extracted based on the similarities observed
in the time dynamics of resistivity.We have introduced the basic princi-
ple of clustering, together with three clustering evaluation metrics and
one clustering similarity metric. Using a 465 days time-lapse ERT
model of 1558 cells acquired from the surface of a heterogeneous karstic
environment (Watlet et al., 2018a, 2018b), this paper studies: (1) the
comparison between the three clustering algorithms k-means, hierar-
chical agglomerative clustering (HAC), and Gaussian Mixture Model
(GMM), including the question of the optimal choice of cluster number
and the identification of potentiallymisclassified spatial cells, (2) the ef-
fect of adding a spatial constraint in clustering, and (3) the robustness of
the clustering outputs to various representations of the resistivity data
as well as the impact of the number of days considered in the ERT
model for the clustering task.

Specifically, applied to 1558 z-standardized resistivity series of
465 days, the three candidate algorithms produce similar spatial pat-
terns that highlight temporarily correlated area across space. We con-
sidered 6 clusters based on our clustering evaluation metrics.
However, such clusters may be spatially split and may include cells
with substantial differences in their mean raw resistivity or standard
deviation. Hence, clustering based on the correlation of resistivity series
obtained from z-standardized data may retrieve geologically inconsis-
tent groups. On the other hand, clustering on the raw resistivity time-
series is dominated by their mean resistivity. Accordingly, the retrieved
clusters depict isoresistivity areas, but their averaged temporal
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dynamics are all correlated, and nothing is learned about the specific dy-
namic property of the subsurface elements. This therefore encourages to
work on the standardized resistivity while checking the raw resistivity
distribution within clusters.

In the second part, we consider the HAC specificity of adding a spa-
tial constraint such that clusters are spatially tied into one feature. The
constraint had the expected effect of increasing the suggested number
of clusters to 9 or 17. With 9, one of the clusters would have needed
to be separated for consistency. With 17, the expected patterns are
well represented overall by about ten clusters,while the remaining clus-
ters were either relatively small or distant from the electrodes, thus de-
serving less consideration. The results were indeed more consistent in
their raw resistivity and standard deviation while applied on the z-
standardized data due to the spatial proximity of the cells, but some
raw resistivity patterns are not always revealed from correlation
patterns.

In the last section, HAC with and without connectivity constraint
was applied to 8 different time-series representations where the resis-
tivity is, or not, logarithmically scaled, standardized, differenced, or di-
mensionally reduced with principal component analysis. The major
differences in spatial patterns remained between the raw resistivity
and the other representations revealing correlated areas. The redun-
dancy of patterns across the different representations creates confi-
dence in the patterns that are restituted. However, our sensitivity
analysis based on smaller sample sets showed that these patterns are
associated with the seasonal dynamics of resistivity and cannot be re-
trieved from the standardized data even with continuous sample sets
of 100 days. It also shows how much interpretation can vary between
a single ERT survey and time-lapse experiments, as well as from one
short-term time-lapse survey to another. Still, less than 20 days are nec-
essary to retrieve the long-term patterns if they are not continuous but
randomly picked in the model. If this last result may encourage
long-term ERTmonitoring of at least one year for the retrieval of robust
clusters. Itmay also depict the temporal variability ofwater distribution,
hydrological processes, and so hydrofacies if they are identified from
short-term correlated resistivity.

In general, our results encourage to practice the clustering of
time-lapse ERT models with various numbers of clusters, various
time-series representations, and various sample sets to gain
confidence from redundancies between the resulting patterns.
Shortly, more robust clustering methods for the identification and
zonation of hydrofacies and lithofacies will benefit from integrating
both the information about raw resistivity and temporal dynamic simi-
larity, and eventually other geophysical datasets (e.g., Giuseppe et al.,
2014, 2018; Paasche et al., 2006). Regarding the algorithms, HAC was
particularly interesting for its versatility. Besides its ability to constraint
spatially the clustering, HAC can be applied with any distance metrics.
If HAC does not account directly for the uncertainty in the clustering
such as GMM, such uncertainty may be computed from bootstrap sam-
ples in the particular case of time-lapse ERT datasets. In that spirit, HAC
is used to generate consensus clustering that may already be helpful to
create a final clustering from several clustering partitions (Monti et al.,
2003). Further guidelineswill most likely be fruitfully developed in com-
binationwith synthetic experiments combining resistivity and hydrolog-
ical modeling since the main difficulty of clustering is its unsupervised
nature and the difficulty of appreciating the validity of the outcomes.
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