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Introduction

In the history of mathematics, optimization is a fairly recent field, even if the problem of
minimizing or maximizing some quantity is a natural one thatarises frequently in life. One
might wish to minimize one’s route to work, or maximize production in a factory, for example.
More importantly, many modelling problems in applied sciences, engineering and economics
can also be formulated as optimization problems. Applications as diverse as weather forecast-
ing, aircraft design, scheduling, medical imaging and mobile network communications can all
be formulated as optimization problems.

Throughout history, however, these kinds of problems were treated by heuristics, either
because of lack of computing power necessary to treat large problems, or because of a lack
of suitable methods that exploit each problem’s characteristics in order to effectivelysolveit,
in a rigorous mathematical sense. The first optimization technique developed for this specific
end, known as thesteepest descentmethod (or gradient method), is attributed to Gauss (1777−

1855). Mathematics has come a long way from that time, and so has optimization, which today
allows us to solve many extremely complicated and costly problems in the applied sciences
and in life in general. The advances in computing we have experienced in the last 50 years
have been key to this development, with mathematical programming becoming one of the most
important areas of mathematics today.

Along with the optimization approach, linear systems are fundamental in modelling these
types of problems. In particular, large sparse systems are very common, especially in mathe-
matical formulations resulting from the discretization ofelliptic Partial Differential Equations.
Several methods have been proposed for the solution of largelinear systems of equations, and
here we will focus on theMultigrid methodology which has been established as one of the most
efficient techniques for this end.

In this thesis, we aim to present three different techniques, developed in the course of four
years, and which are somewhat different from each other. However, these three techniques are
profoundly related, in that they are all a mix of trust-region and multigrid approaches, and as
such we will refer to them asMultilevel strategies. These multilevel strategies are a part of
a growing number of optimization methods, and are thus in thecutting edge of mathematical
programming. We will present a brief introduction to the elements that make up these methods,
and detail our own contributions to this rapidly growing field of mathematics.

First, we will present a new multilevel method designed to solve the trust-region subprob-
lem exactly. It is capable of treating problems much larger than the ones solvable by theMoré-
Sorensenmethod, and it consists in interpreting the trust-region subproblem as amultigrid prob-
lem with one parameter. In this sense, it is a more direct application of multigrid techniques to a

vii



viii Introduction

fundamental part of the trust-region algorithm, without altering the basic trust-region iteration.
In contrast with this methodology, we will present the Recursive Multilevel Trust-Region

class of methods, abbreviated here by RMTR, developed by Gratton et al. in 2008, which con-
sists of a different formulation of the trust-region iteration that includes different possibilities
for the computation of the model to be minimized inside the trust region, and the computation
of the trial point. In a way, we apply the trust-region methodat each level. This means that
the basic trust-region iteration has to be modified and thus that the convergence theory for this
method differs from the convergence theory of a basic trust-region algorithm. We will present
here the convergence theory developed for theℓ∞-norm version of RMTR.

Finally, we will present a third application of multilevel techniques, this time for derivative-
free optimization problems. In this class of problems, the derivatives of the objective function
are not available, either because they are too expensive to compute or because they are simply
not known analytically. There are several methods capable of solving these problems, and we
will focus once more on a trust-region approach, where the quadratic model to be minimized
at each trust-region iteration is computed using an interpolation technique. We will present a
brief introduction to this method, and a new methodology forproblems in which a multilevel
strategy is possible.

This work is organized as follows. In Chapter 1, we will present a brief introduction to
optimization, with some basic definitions and results necessary for the rest of this work. In
Chapter 2, we will present the basic ideas behind multigrid methods. In Chapter 3, we will
present the Multilevel Moré-Sorensen method, a multilevelstrategy for the solution of the trust-
region subproblem, along with some computational results.In Chapter 4, we will describe the
RMTR family of methods and the convergence theory of theℓ∞-norm version of the method.
Finally, in Chapter 5, we will describe in details a new multilevel method for derivative-free
optimization.



Chapter 1

Optimization

Optimization ormathematical programmingis concerned with minimizing or maximizing
some quantity, represented by anobjective function. Often, the desired result must lie in a
certain subset of the domain of this function. The particular characteristics of the function
and the subset that must contain the solution to the problem define several different types of
optimization problems, each requiring a different method to be solved.

In this chapter, we will present the formal definitions of optimization and mathematical
programming problems and some of the methods, as well as basic definitions from Analysis
and Linear Algebra that will be needed throughout this thesis.

1.1 The problem

Optimization problems can be divided into two large classes, namelyConstrainedandUn-
constrainedproblems. The basic unconstrained optimization problem can be stated in its stan-
dard form as

minimize f (x), subject tox ∈ IRn, (1.1)

where f : IRn → IR is theobjective function. On the other hand, constrained optimization
problems can be written as

minimize f (x), (1.2a)

subject to x ∈ X ⊆ IRn, (1.2b)

gi(x) ≤ 0, i ∈ I (1.2c)

gi(x) = 0, i ∈ E. (1.2d)

Equations (1.2b-1.2d) indicate theconstraints. The disjoint index setsI andE correspond to
the inequality and equality constraints, respectively, defined by the functionsgi : IRn → IR, i ∈
I ∪ E. The setX is contained in IRn and is also contained in the domain off andgi, i ∈ I ∪ E.
A point x ∈ X is said to befeasibleif it satisfies all the constraints, and the set of all feasible
points is called thefeasible set, and denoted byF .

The formulations (1.1) and (1.2) are called standard formulations due to the observation that

max f (x) = −min(− f (x)).

1



2 Chapter 1. Optimization

Thus, any maximization problem can be rewritten as a minimization problem, falling into one
of these two formulations. Because of this, all problems in this thesis will be described as
minimization problems.

When the constraints can be written as

l i ≤ xi ≤ ui , i = 1, . . . , n,

wherexi denotes thei-th component of the vectorx ∈ IRn and l i andui, i = 1, . . . , n, are real
values, then we refer to them asbound constraints. The valuesl i andui, for i = 1, . . . , n are
calledlower andupperbounds, respectively. Since this type of constraints are very specific and
can be treated differently from the general inequality constraints, they are usually formulated
separately or incorporated into the definition ofX.

Some problems differ from others in such a significant way that the methods to solve them
have to be fundamentally different, and thus require a new classification. This is the case, for
instance, with problems wheref is a linear function. In this case, we refer to the problem as
a Linear Programming Problem. If the function is not necessarily linear, then we refer to the
problem as a generalNonlinear Programming Problem.

In this thesis, we will pursue methods to solve general unconstrained nonlinear program-
ming problems.

1.2 The solution

The solution of an optimization problem can be characterized by certain properties. In a
minimization problem, if we are looking for a pointx∗ in the domainD of f such that

f (x∗) ≤ f (x), for all x ∈ D,

thenx∗ is called theglobal minimizerand f (x∗) theglobal minimumof f . Similarly, in a con-
strained problem, the solution must lie inside the feasiblesetF , and thus a global constrained
minimizer satisfies

f (x∗) ≤ f (x), for all x ∈ F .

However, in both cases, finding a global minimizer of a function f can prove to be very difficult
in practice. It might be interesting, thus, to look for a solution x∗ in a neighborhoodN of x∗,
N ⊆ D such that

f (x∗) ≤ f (x), for all (feasible)x ∈ N . (1.3)

The pointx∗ is then called alocal minimizerand f (x∗) a local minimumof f inN . If x∗ is such
that

f (x∗) < f (x), for all (feasible)x ∈ N . (1.4)

thenx∗ is said to be astrict local minimizerand f (x∗) a strict local minimumof f in N . Fig-
ure 1.1 shows an example of a function with two distinct localminimizers, and Figure 1.2 shows
examples of functions with non-strict and strict local minimizers.
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Figure 1.1: Global and local minima of the functionf (x, y) = −10x2 + 10y2 + 4 sinxy− 2x +
x4. This function admits two local minima, at points (x1, y1) = (−2.21, 0.32) and (x2, y2) =
(2.30,−0.33), as indicated in the picture. The global minimum, however, is found at point
(x2, y2), since f (x1, y1) ≈ −22.14 andf (x2, y2) ≈ −31.18.
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(b) f (x, y) = x2 + y2
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Figure 1.2: In (a) and (b), we see the surface plots of the functions f (x, y) = x2 + 1 and
f (x, y) = x2 + y2, respectively, and in (c) and (d) we see the level curves for the same functions.
On the left, we see an example of a local minimizer which is notstrict. In this case, any point
in the line (0, y) (for all y ∈ IR) is a local minimizer forf (x, y) = x2 + 1. On the right, the point
(x, y) = (0, 0) is a strict local minimizer forf (x, y) = x2 + y2.



4 Chapter 1. Optimization

In general, we would like to be able to check if a point is a solution to the problem being
solved. In order to do this, there are someoptimality conditions, which allow us to determine if
we are at the solution or not.

First, let us state a few definitions which will be useful for our analysis throughout this work.

1.2.1 Basic Theoretical Concepts

Since we will be dealing mostly with problems defined in a multivariate space IRn, some
definitions are useful here.

As already mentioned, ifv is a vector in IRn, we usevi to denote thei-th component ofv,
i = 1, . . . , n (except when indicated otherwise). We denote bye ∈ IRn the vector composed of
ones in every component, whilee[i] ∈ IRn is thei-th coordinate vectori n IRn with zeros in every
component but 1 in thei-th one.

1.2.1.1 Eigenvalues and Eigenvectors

Given a matrixA ∈ IRn×n, the nonlinear equation

Au= λu

defines solution pairs (u, λ) which are calledeigenpairs. The scalar valueλ is called aneigen-
valueand the vectoru ∈ IRn is called aneigenvector. The matrixA can have up ton eigenpairs,
and the set of all eigenvalues is called thespectrumof A. Thespectral radiusof A is denoted
by ρ(A) and is defined as the largest eigenvalue ofA in absolute value, that is,

ρ(A)
def
= max{|λ| | λ is an eigenvalue ofA}.

Symmetric matrices are a special class of matrices, since all eigenvalues of a symmetric matrix
are real, and it is possible to find a complete set ofn orthonormal eigenvectors associated with
such a matrix. For any symmetric matrixS, we can write

S = UΛUT ,

whereUT denotes the transpose of matrixU, and where the entries of the diagonal matrix
Λ are the eigenvalues ofS, and the columns of the orthonormal matrixU are the associated
eigenvectors.

For any matrixA ∈ IRm×n, thesingular value decompositionis a factorization of the form

A = UΣVT ,

whereU andV are, respectively,m by m andn by n orthogonal matrices, andΣ ∈ IRm×n is
a diagonal matrix with nonnegative entries which are calledthe singular valuesof A. The
columns ofU andV are known as the left and rightsingular vectorsof A. The squares of
the nonzero singular values ofA are the nonzero eigenvalues ofAAT (which are equal to the
eigenvalues ofATA), while the left and right singular vectors are eigenvectors of AAT andATA,
respectively.
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From the singular value decomposition of a matrixA, we can obtain itsrank, which is the
number of its nonzero singular values. The rank ofA, denoted by rank(A) is also the number of
linearly independent rows (and columns) ofA. The matrix is said to be offull rank if rank(A) =
min(m, n).

For any vectorsu, v ∈ IRn, we define theinner productof u andv as

〈u, v〉 =
n

∑

i=1

uivi . (1.5)

Then, a symmetric matrixS ∈ IRn×n is positive semidefiniteif and only if

〈x,S x〉 ≥ 0, for all x ∈ IRn.

S is said to bepositive definiteif and only if

〈x,S x〉 > 0, for all x ∈ IRn, x , 0. (1.6)

If S is positive semidefinite, we can define

√
S

def
= U
√
ΛUT ,

where
√
Λ is a diagonal matrix withΛii =

√
λi(S), and whereλi(S) denotes thei-th eigenvalue

of S.
Now, if S is symmetric andx , 0, the scalar

〈x,S x〉
〈x, x〉

is known as theRayleigh quotientof x. This is an important quantity, as we can estimate the
largest and smallest eigenvalues ofS from it:

λmin(S) ≤ 〈x,S x〉
〈x, x〉 ≤ λmax(S) (1.7)

for any x , 0, whereλmin(S) denotes the smallest eigenvalue ofS, andλmax(S) denotes the
largest eigenvalue ofS. This inequality is known as theRayleigh quotient inequality, and the
quotient attains its maximum and minimum values whenx is the eigenvector associated with
the largest or smallest eigenvalue, respectively.

Since it is usually very expensive to compute the eigenvalues of a general matrixA, it is
useful to have bounds on these values. TheGershgorin boundsare very well known. For real
symmetric matrices, they state that

min
i

















si,i −
∑

j,i

|si, j |
















≤ λmin(S) ≤ λmax(S) ≤ max
i

















si,i +
∑

j,i

|si, j |
















, (1.8)

wheresi, j, i, j = 1, . . . , n is the element located in thei-th row andj-th column ofS.
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1.2.1.2 Vector Norms and Properties

Given a vector

v =





































v1

v2
...

vn





































∈ IRn×1,

we denote byvT ∈ IR1×n its transpose

vT = (v1 v2 · · · vn) .

Note that we can also write the inner product (1.5) as〈u, v〉 = uTv.
A vector normon IRn is a function‖·‖ : IRn→ IR that satisfies the following properties:

(i) ‖v‖ ≥ 0, v ∈ IRn;

(ii) ‖v‖ = 0 if and only ifv = 0;

(iii) ‖v+ u‖ ≤ ‖v‖ + ‖u‖ for all v, u ∈ IRn;

(iv) ‖αv‖ = |α|‖v‖ for all α ∈ IR and for allv ∈ IRn.

The most important class of norms for our work will be the class of p-norms(or ℓp-norms),
defined by

‖v‖p = (|v1|p + |v2|p + . . . + |vn|p)
1
p , p ≥ 1.

In this class, three norms are very important:

‖v‖1 = |v1| + |v2| + . . . + |vn| (1.9)

‖v‖2 =
(

|v1|2 + |v2|2 + . . . + |vn|2
)

1
2
=
√

vTv (1.10)

‖v‖∞ = max
1≤ i ≤n

|vi |. (1.11)

Theℓ2 andℓ∞ norms are also calledEuclidean normandMaximum norm, respectively.
TheHolder inequalityis a classic result forp norms that states that

|〈x, y〉| ≤ ‖x‖p‖y‖q ,
1
p
+

1
q
= 1.

A special case of this inequality is theCauchy-Schwartz inequality:

|〈x, y〉| ≤ ‖x‖2‖y‖2.

In the space IRn, all norms areequivalent, which means that if‖·‖α and‖·‖β are norms in IRn,
then there exist constantsc1, c2 > 0 such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α, for all x ∈ IRn.

For example, for allx ∈ IRn,

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2 (1.12a)

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞ (1.12b)

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞. (1.12c)
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1.2.1.3 Matrix Norms

Given a vector norm‖·‖, for any matrixA ∈ IRm×n, we define a matrix norminducedby its
vector counterpart by

‖A‖ = max
x,0

‖Ax‖
‖x‖ .

The most frequently used matrix norms in this category are the matrixℓ1, ℓ2 and ℓ∞ norms.
They can also be written as

‖A‖1 = max
1≤ i ≤n

‖Ae[i]‖1 (1.13)

‖A‖2 = σmax(A) (1.14)

‖A‖∞ = max
1≤ i ≤n

‖ATe[i]‖1 (1.15)

for A ∈ IRm×n, whereσmax(A) denotes the largest singular value ofA.
There is another norm that will be useful for what follows. Itis called theFrobeniusor

Euclidean matrix norm, and it is defined by

‖A‖F =

√

√ m
∑

i=1

n
∑

j=1

a2
i, j.

As in the case of vector norms, we can show the equivalence of these norms in the following
inequalities.

‖A‖2 ≤ ‖A‖F ≤
√

n‖A‖2. (1.16a)
1
√

n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞ (1.16b)

1
√

m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1. (1.16c)

Another useful property is that

‖A‖2 ≤
√

‖A‖1‖A‖∞,

which has as a consequence the fact that, ifA is symmetric, then bounds (1.16) become

‖A‖2 ≤ ‖A‖1 ≡ ‖A‖∞. (1.17)

We say that a matrix norm‖·‖uv is consistentwith a vector norm‖·‖u and a vector norm‖·‖v
if

‖Ax‖u ≤ ‖A‖uv‖x‖v

for all A ∈ IRm×n, x ∈ IRn.
For any matrixA ∈ IRn×n, we can define theA-norm ofx ∈ IRn as

‖x‖A =
√

〈x,Ax〉.
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Thecondition numberκ(A) of a matrixA is defined as

κ(A) = ‖A‖ ‖A−1‖.

We say that the matrixA is ill-conditionedif this number is large, otherwise we say thatA
is well-conditioned. This number depends on the norm chosen; for example, if we choose the
ℓ2 norm, then

κ2(A) =
σmax(A)
σmin(A)

,

whereσmax(A) andσmin(A) are the largest and smallest singular value ofA, respectively.

1.2.1.4 Matrix Factorizations

When trying to solve a linear system

Ax= b,

whereA ∈ IRn×n andx, b ∈ IRn, it is possible tofactorize Ain order to obtain simpler systems
to solve. One example of such a factorization is theLU factorization,

A = LU,

whereL is a lower triangular matrix with 1s in the diagonal, andU is an upper triangular matrix.
This factorization exists if the determinants of all submatricesA(k), obtained by deleting all rows
i and columnsj of A wherei, j > k, are nonzero. Furthermore, ifA is nonsingular and itsLU
factorization exists, then it is unique and det(A) = u11 · · ·unn, whereuii , i = 1, . . . , n, are the
diagonal elements ofU.

This factorization is very important since it allows us to solve a dense linear system by
solving two triangular systems, which are much simpler. Theidea is to solve

{

Ly = b
Ux = y

in sequence in order to obtainx.
When the matrix in question is symmetric and positive definite, a special factorization called

Cholesky factorizationcan be computed. In this case, we can find a unique lower triangular
L ∈ IRn×n with positive diagonal entries such that

A = LLT . (1.18)

In this case, the system can also be solved by successively solving
{

Ly = b
LT x = y

The Cholesky factorization has another advantage, in that it allows us to check for positive
definite matrices, since the usual definition (1.6) is very hard to test for in practice. If the matrix
is not positive definite, the Cholesky factorization will fail, as aL with positive diagonal entries
cannot be computed.
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1.2.1.5 Derivatives and Taylor’s Theorem

All methods considered here are based on the fact that the function to be minimized has
derivatives. In fact, even if the derivatives are not known,the mere fact that these derivatives
could be computed changes dramatically the approach used insolving the problem.

First, consider a real functionf : IR→ IR. Then, f is differentiableat x if the limit

lim
h→0

f (x+ h) − f (x)
h

exists. If this is the case, then

f ′(x) =
d f
dx
= lim

h→0

f (x+ h) − f (x)
h

is called thederivativeof f at x.
Now, let f : IRn → IR be a multivariate function. Then, it is said to bedifferentiableat

x ∈ IRn if all its partial derivatives

∂ f (x)
∂xi

= lim
h→0

f (x+ he[i]) − f (x)
h

, i = 1, . . . , n

exist, wheree[i] is thei-th coordinate vector in IRn. If this is the case, then we define thegradient
of f as the vector that groups all its partial derivatives, and wedenote it by

∇ f (x) =



























∂ f (x)
∂x1
...
∂ f (x)
∂xn



























If f is differentiable, and all derivatives off are continuous with respect tox, then we say that
f is continuously differentiable, and this is denoted byf ∈ C1.

The second partial derivatives off are defined by(1)

∂2 f (x)
∂xi∂xj

=
∂

∂xi

(

∂ f (x)
∂xj

)

, 1 ≤ i, j ≤ n.

If all second partial derivatives off exist, thenf is said to betwice differentiable; if, further-
more, all second partial derivatives off are continuous, we say thatf is twice continuously
differentiable, and denote this byf ∈ C2.

Then× n matrix defined as

∇2 f (x) =































∂2 f (x)
∂x2

1
. . .

∂2 f (x)
∂x1∂xn

...
. . .

...
∂2 f (x)
∂xn∂x1

. . .
∂2 f (x)
∂x2

n































is called theHessian matrixof f . Thecurvatureof f at x ∈ IRn along a directiond ∈ IRn is
given by

〈d,∇2 f (x)d〉
‖d‖2 .

(1)We will use the notation∂
2 f (x)
∂xi∂xi

=
∂2 f (x)
∂x2

i
, 1 ≤ i ≤ n.
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Figure 1.3: Here, the function is convex when restricted to the interval [x1, y1], but it is not
convex when restricted to the interval [x2, y2].

If the domainD of the functionf is a convex set(2), then f is said to beconvexif

f (θx+ (1− θ)y) ≤ θ f (x) + (1− θ) f (y) (1.19)

for all x, y ∈ D andθ ∈ [0, 1]. The function f is strictly convexif the inequality in (1.19) is
strict for all x, y ∈ D such thatx , y and forθ ∈ (0, 1). In other words, a function is convex if it
always lies below its linear interpolant. Figure 1.3 shows an example of this.

Another definition is that if∇2 f (x) is positive semidefinite for everyx in the domain off ,
we say thatf is convex. If∇2 f (x) is positive definite in its domain, we say that it is strictly
convex. Figure 1.4(a) shows the surface plot of the functionf (x, y) = x2 + 1, which is a convex
function, but not strictly convex. Its Hessian

∇2 f (x, y) =

(

2 0
0 0

)

is positive semidefinite. Figure 1.4(b) shows the surface plot of the functionf (x, y) = x2 + y2,
which is strictly convex, since its Hessian

∇2 f (x, y) =

(

2 0
0 2

)

is positive definite for all (x, y) ∈ IR2.
If the function we are interested in depends on several vectors, for instance if we consider a

function

h : IRn × IRq → IR

(x, y) 7→ h(x, y),

then we will use the following notation:∇xh(x, y) ∈ IRn and∇2
xxh(x, y) ∈ IRn×n will denote the

gradient and the Hessian matrix ofh with respect tox; ∇yh(x, y) ∈ IRq and∇2
yyh(x, y) ∈ IRq×q

will denote the gradient and the Hessian matrix ofh with respect toy; and∇h(x, y) ∈ IRn+q and

(2)A subsetD ⊆ IRn is convex if for any pointsx, y ∈ D andθ ∈ [0, 1], the pointx+ θ(y− x) ∈ D.
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(a) f (x, y) = x2 + 1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

(b) f (x, y) = x2 + y2

Figure 1.4: Examples of convex and strictly convex functions.

∇2h(x, y) ∈ IR(n+q)×(n+q) will denote the complete first- and second-order derivatives of h with
respect to bothx andy. This notation will be used only when necessary.

With these definitions, we can state one of the most importantresults in the theory of opti-
mization:

Theorem 1.2.1 (Taylor’s Theorem.)Let f : IRn → IR be continuously differentiable and s∈
IRn. Then, there exists some t∈ (0, 1) such that

f (x+ s) = f (x) + 〈∇ f (x+ ts), s〉.

Moreover, if f is twice continuously differentiable, then

∇ f (x+ s) = ∇ f (x) +
∫ 1

0
∇2 f (x+ ts)s dt.

Furthermore, we have that, for some t∈ (0, 1),

f (x+ s) = f (x) + 〈∇ f (x), s〉 + 1
2
〈s,∇2 f (x+ ts)s〉. (1.20)

Taylor’s theorem is the main result we will use throughout this thesis to derive themodel
used in trust-region methods, and is the justification for the theorems in the next section, which
characterize a local minimizer of a function. The proof can be found in Conn et al. [12], for
example.

A function F : IRn→ IRm is said to be differentiable if all its partial derivatives

∂F j(x)

∂xi
= lim

h→0

F j(x+ he[i]) − F j(x)

h
, i = 1, . . . , n, j = 1, . . . ,m

exist. In this case, we can write all partial derivatives ofF in them× n matrix

JF(x) =



























∇F1(x)
...

∇Fm(x)



























=







































∂F1(x)
∂x1

∂F1(x)
∂x2

· · · ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

· · · ∂F2(x)
∂xn

...
...

. . .
...

∂Fm(x)
∂x1

∂Fm(x)
∂x2

· · · ∂Fm(x)
∂xn







































.
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This matrix is called theJacobian matrixof F.

Another definition will be useful in the discussion that follows. LetF : IRm → IRn, and
suppose that‖·‖[m] and‖·‖[n] are norms defined in IRm and IRn, respectively. Then we say thatF
is Lipschitz continuousat x ∈ IRm if there is aγ(x) ≥ 0 such that

‖F(y) − F(x)‖[n] ≤ γ(x)‖y− x‖[m] , for all y ∈ IRm.

1.2.2 Solutions of Unconstrained Problems

Now, we can present the main concepts and results that allow us to identify the solution
to an optimization problem. First, we look at unconstrainedstrict local minimizers as defined
in (1.4).

Theorem 1.2.2 (First-Order Necessary Conditions)If x∗ is a local minimizer of f: IRn →
IR, where f is continuously differentiable in an open neighborhoodN of x∗, then

∇ f (x∗) = 0. (1.21)

If ∇2 f exists and is continuous in a neighborhood ofx∗, we can state another necessary
condition satisfied by a local minimizer.

Theorem 1.2.3 (Second-Order Necessary Conditions)If x∗ is a local minimizer of f , and f
is twice continuously differentiable in an open neighborhoodN of x∗, then

∇ f (x∗) = 0 and ∇2 f (x∗) is positive semidefinite. (1.22)

Any x∗ that satisfies (1.21) is called astationary pointof f . Thus, Theorem 1.2.2 states
that any local minimizer must be a stationary point; it is important to note, however, that the
opposite is not necessarily true. Fortunately, if the next conditions, calledsufficient conditions,
are satisfied by a stationary pointx∗, they guarantee that it is a local minimizer.

Theorem 1.2.4 (Second-Order Sufficient Conditions) Let f be twice continuously differen-
tiable on an open neighborhoodN of x∗. If x∗ satisfies

∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite,

then x∗ is a strict local minimizer of f .

It is important to note here that the second-order sufficient conditions are not necessary: a
point can be a strict local minimizer and fail to satisfy the sufficient conditions.
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1.2.3 Constrained Problems

Finally, let us state the main results that allow us to characterize a constrained strict local
minimizer of a functionf . To do this, we must define some additional concepts related to
constrained problems.

We say that an inequality constraintg j, for some indexj ∈ I is activeat a feasible pointx
if g j(x) = 0. At any feasible pointx, theactive setA(x) is the union of the setE with the index
set of the active inequality constraints atx, that is

A(x) = E ∪ { j ∈ I such thatg j(x) = 0}.

TheLagrangian(or Lagrange function) for problem (1.2) is defined by

L(x, λ) = f (x) +
∑

i∈I∪E
λigi(x),

and the scalarsλi (i ∈ I ∪ E) are called theLagrange multipliers.
In constrained optimization, a solution is not only characterized by conditions on the ob-

jective function at the solution, but also by conditions on the constraints. These conditions are
calledconstraint qualificationsand they ensure that we exclude pathological cases in the geom-
etry of the constraints at the solution. Here we present onlyone of them, but many others have
been proposed. For a more complete investigation, see Nocedal and Wright [50], for example.

Condition 1.1 Linear Independence Constraint Qualification (LICQ): Given a point x∗

and the corresponding active setA(x∗), thelinear independence constraint qualificationis said
to hold for problem (1.2) at x∗ if the active gradients

{∇gi(x
∗) | i ∈ A(x∗)}

are linearly independent.

This is equivalent to the requirement that the Jacobian of the active constraints atx∗ has full row
rank.

Now we can state the optimality conditions for constrained problems, starting by the neces-
sary optimality conditions.

Theorem 1.2.5 (First Order Necessary Conditions)Assume that x∗ is a local solution of the
constrained optimization problem (1.2) and that the LICQ Condition 1.1 holds at x∗. Then there
exists a Lagrange multiplier vectorλ∗, with componentsλ∗i (i ∈ E ∪ I) such that the following
conditions are satisfied at(x∗, λ∗):

∇xL(x∗, λ∗) = 0, (1.23a)

gi(x
∗) = 0 for all i ∈ E, (1.23b)

gi(x
∗) ≤ 0 for all i ∈ I, (1.23c)

λ∗i ≥ 0 for all i ∈ I, (1.23d)

λ∗i gi(x
∗) = 0 for all i ∈ I. (1.23e)
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Conditions (1.23) are known as theKarush-Kuhn-Tucker (KKT) conditions. They were intro-
duced first by Karush [34] and rediscovered later by Kuhn and Tucker [38]. Equation (1.23a)
is called thestationarity condition, (1.23b) and (1.23c) are called thefeasibility conditions,
(1.23d) states thenon-negativity of the multipliersand (1.23e) is thecomplementarity condition.
A point x∗ satisfying (1.23) is called afirst-order critical pointor KKT point for problem (1.2).
Since thecomplementarity condition(1.23e) implies that the Lagrange multipliers associated
with inactive inequality constraints are zero, we can rewrite condition (1.23a) as

∇ f (x∗) +
∑

i∈A(x∗)

λ∗i gi(x
∗) = 0. (1.24)

In order to state the second-order conditions for constrained problems, we define thecritical
coneN+(x∗, λ∗) as

N+(x∗, λ∗)
def
=















w ∈ IRn | 〈∇gi(x∗),w〉 = 0, for all i ∈ E ∪
(

A(x∗) ∩ I with λ∗i > 0
)

,

and 〈∇gi(x∗),w〉 ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i = 0.















First, let us state the necessary conditions.

Theorem 1.2.6 (Second-Order Necessary Conditions)Suppose that x∗ is a local solution of
problem (1.2) and that the LICQ Condition 1.1 is satisfied. Let λ∗ be the Lagrange multiplier
vector for which the KKT conditions (1.23) are satisfied. Then,

〈w,∇2
xxL(x∗, λ∗)w〉 ≥ 0, for all w ∈ N+(x∗, λ∗). (1.25)

A point x∗ that satisfies (1.25) is called astrong second-order critical pointfor problem (1.2). A
sufficientcondition, like the one derived for unconstrained problems, can be stated as follows.

Theorem 1.2.7 (Second-Order Sufficient Conditions) Assume that for some feasible point
x∗ ∈ IRn there exists a Lagrange multiplier vectorλ∗ such that the KKT conditions (1.23) are
satisfied. Assume further that

〈w,∇2
xxL(x∗, λ∗)w〉 > 0, for all w ∈ N+(x∗, λ∗) with w, 0.

Then, x∗ is a strict local solution for problem (1.2).

1.3 Solving the problem

Mathematical programming is concerned with the methods that can be used to solve op-
timization problems. In practice, we will be concerned withalgorithms, defined so that their
computational implementation finds either an approximate or an exact solution to the original
mathematical programming problem.

These algorithms are mostlyiterative methods, which from a starting pointx0, use some
rule to compute a sequence of points{x1, x2, . . . , xk, . . .} such that

lim
k→∞

xk = x∗,
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wherex∗ is the solution to this problem.
Here, we are mostly interested in unconstrained problems. Thus, Theorems 1.2.2, 1.2.3

and 1.2.4 will be the basis of the methods to solve the minimization problem, as they will be
based in this characterization of the solution whenever possible.

As already mentioned in the Introduction, the simplest method developed for the solution
of a minimization problem is the steepest descent method. This method is based on the fact
that, from any starting pointx, the direction in which any functionf decreases most rapidly, at
least locally, is the direction−∇ f (x)(3). However, the steepest descent method can be extremely
slow for some problems. There are, fortunately, several other methods that work very well in
practice, and here we briefly present some of them.

1.3.1 Newton’s Method

Consider any nonlinear system of equations of the form

F(x) = 0, (1.26)

whereF : IRn → IRn. If the Jacobian ofF exists, then we can write the Taylor first-order
approximation to this function as

F(x+ s) ≈ F(x) + J(x)s, (1.27)

whereJ(x) denotes the Jacobian ofF evaluated atx. From these equations, we can derive an
iterative method. Given an initial pointx0, at each iterationk, we will compute a new iterate
xk+1 = xk + sk such thatF(xk + sk) = 0, which means thatsk must satisfy the linear system

J(xk)sk = −F(xk).

This is called theNewton’s methodfor solving nonlinear systems of equations.
Now, returning to our optimization problem, note that when the first and second derivatives

of f are available, we can use Newton’s method to solve the (possibly nonlinear) system of
equations defined by

∇ f (x) = 0, (1.28)

since we know from Theorem 1.2.2 that any minimizer off must satisfy this condition. This
is the basis for the Newton’s method for optimization problems and, with some variations, it is
the basis for many other methods in unconstrained optimization. More formally, if we want to
apply this method to equation (1.28), observe that the second-order Taylor’s approximation to
f at xk is

f (xk + sk) ≈ f (xk) + 〈∇ f (xk), sk〉 +
1
2
〈sk,∇2 f (xk)sk〉. (1.29)

In order to find a minimum of this function, we will try to find a solution to∇ f (xk + sk) = 0,
which is equivalent to

∇ f (xk) + ∇2 f (xk)sk = 0.

(3)This is a direct consequence of Theorem 1.2.1. For more details, see Nocedal and Wright [50].
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Thus, we have thatsk must satisfy the so calledNewton equations

∇2 f (xk)sk = −∇ f (xk). (1.30)

If ∇2 f (xk) is positive definite, then we can find its inverse, and the solution to (1.30) is

sk = −
(

∇2 f (xk)
)−1
∇ f (xk). (1.31)

This directionsk is called theNewton direction.
One of the problems in Newton’s method is that the method is based on a necessary first-

order optimality condition (namely, that the gradient of the objective function be equal to zero).
In order to guarantee that we have found a minimizer off , it suffices to guarantee that the
Hessian∇2 f (x∗) be positive definite. Moreover, the approximations (1.27)and (1.29) are only
valid in a neighborhood of the solution of (1.26) and (1.1), respectively. Thus, Newton’s method
is only appropriate when the starting pointx0 is sufficiently closeto the solutionx∗. However,
when it works, it is very fast and most optimization methods try to mimic its behavior around
the solution.

There are so calledglobalization techniquesthat can be used to guarantee the convergence
of Newton’s method to a sationary pointx∗ from any starting point. These techniques give rise to
different methods which can be divided into two classes:Line Search MethodsandTrust-Region
Methods. The main difference between these two classes is that in Line Search methods, the
direction in which we choose to take our next iterate is selected first, while the size of the step
to be taken in this direction is computed with the direction fixed. On the other hand, in Trust-
Region methods, the step size and the direction are more or less chosen simultaneously. We
describe both strategies in more detail in the following sections.

1.3.2 Line Search Methods

As their name suggests, the idea behind Line Search methods is to find a step size along
a certain line which gives us a good reduction on the functionvalue, while being reasonably
inexpensive to compute. More formally, they are iterative methods that, at every step, choose a
certaindescent directionand move along this direction. Thus, at every iterationk,

xk+1 = xk + αkpk.

For example,pk can be chosen as the Newton directionsk given by (1.31), but in practice any
direction which is a descent direction, that is, one for which 〈pk,∇ f (xk)〉 < 0, can be chosen.
The most popular methods use some (cheaper) approximation to the Newton direction, and are
thus calledQuasi-Newtonmethods. Several other choices are possible, but we will notdiscuss
them here. More details can be found in Nocedal and Wright [50].

Once the direction has been chosen, the step lengthαk can be then computed in various
ways, trying to solve exactly or approximately the one-dimensional minimization problem

min
α>0

f (xk + αpk). (1.32)
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The solution to this problem is the step lengthαk that gives the lowest function value in direction
pk.

Solving this problem exactly yields the best results, but sometimes it may be too expensive
and we might get a very good approximate result using simplertechniques. These approximate
solutions are usually obtained by proceeding in two phases:first, we find an interval defining
minimal and maximal step lengths, and then a bisection or interpolation phase computes a good
step length in this interval.

In order to ensure that even an approximate solution is enough to guarantee the convergence
of the line search method to a minimizer of the objective function, some conditions are imposed
on the step length at each iteration. One very important condition that must be satisfied is that
the decrease obtained in the objective function is not too small. One way of measuring this is
by using the following inequality:

f (xk + αpk) ≤ f (xk) + c1α〈∇ f (xk), pk〉, for somec1 ∈ (0, 1). (1.33)

This condition is sometimes called theArmijo conditionand it states that the reduction inf
should be proportional to the step lengthαk and the derivative off .

On the other hand, we must also guarantee that the step is not too short. Indeed, condi-
tion (1.33) is satisfied for all sufficiently small values ofα. One way of enforcing this is by
imposing acurvature condition, which requires thatαk satisfy

〈∇ f (xk + αkpk), pk〉 ≥ c2〈∇ f (xk), pk〉, for somec2 ∈ (c1, 1). (1.34)

Conditions (1.33) and (1.34) are known as theWolfe conditions. It is possible to prove that,
for every functionf that is smooth and bounded below, there exist step lengths that satisfy the
Wolfe conditions. These conditions on the step length are very important in practice and are
widely used in line search methods. See Dennis and Schnabel [14], or Nocedal and Wright [50]
for more complete discussions on this subject.

As an alternative to condition (1.34), we can use abacktrackingprocedure in order to find
an acceptable step length that satisfies only condition (1.33). This procedure works as follows.
Given an initialα > 0, and constantsρ ∈ (0, 1), c1 ∈ (0, 1), setα = ρα until α satisfies
condition (1.33). After a finite number of trials, an acceptable step length will be found sinceα
will eventually become small enough to satisfy the sufficient decrease condition. This is a very
popular strategy that yields good results in practice.

1.3.3 Conjugate Gradient Methods

Now, we look at a particular problem in optimization, which is minimizing a (strictly) con-
vex quadratic function, that is

min
x∈IRn

q(x) = 〈c, x〉 + 1
2
〈x,Hx〉,

wherec ∈ IRn andH ∈ IRn×n. From the optimality conditions stated in Theorem (1.2.4),if
H is positive definite, then this is equivalent to finding the solution of ∇q(x∗) = 0, and thus a
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minimizerx∗ of q must also be a solution to the linear system

Hx∗ = −c. (1.35)

This system can be solved either by a direct method, for instance via the factorization ofH, or
by an iterative method. While solving the problem by factorization might be a possibility, we
are particularly interested in big problems, in which the factorization ofH might be very hard
to compute.

Theconjugate gradient methodis based on the fact that the functionq can be minimized in
n steps if we minimize it successively in a certain set of directions, calledconjugate directions.
A set of nonzero vectors{p0, p1, . . . , pm} is said to beconjugatewith respect to the symmetric
positive definite matrixH, or H-conjugate, if

〈pi ,Hp j〉, for all i , j.

The conjugate gradient method is described in Algorithm 1.3.1.

Algorithm 1.3.1: Conjugate Gradient Method

Givenx0, setg0 = Hx0 + c and letp0 = −g0. Fork = 0, 1, . . . until convergence, do

• αk =
‖gk‖22
〈pk,Hpk〉

,

• xk+1 = xk + αkpk,

• gk+1 = gk + αkHpk,

• βk =
‖gk+1‖22
‖gk‖22

,

• pk+1 = −gk+1 + βkpk.

The conjugate gradient method is equivalent to minimizingq successively in theKrylov
subspaceof H, defined as

K(H, g0, j)
def
= span{g0, g1, . . . , g j} = span{g0,Hg0,H

2g0, . . . ,H
jg0}.

This method is important as a solver for linear systems of equations as well as for the mini-
mization of quadratic functions. It was first developed in the 1950’s by Hestenes and Stiefel
[32]. However, its convergence depends strongly on the condition numberκ2(H) of the matrix
H. Indeed, it can be shown that

‖xk − x∗‖H ≤ 2

( √
κ2(H) − 1
√
κ2(H) + 1

)k

‖x0 − x∗‖H, (1.36)
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whereek
def
= xk − x∗ is theerror at iterationk (see Theorem 5.1.7 on page 85 in Conn et al. [12],

for example).
From this inequality, we can deduce that the speed of convergence of the conjugate gradient

method depends on the conditioning number ofH: the smaller this number is, the faster the
convergence of the method. Thus, one of the ways of speeding this convergence rate is by
trying to improve on the condition number ofH. This is the idea behindpreconditioning.

Let G ∈ IRn×n by a nonsingular matrix. By defining a new problem

(G−THG−1)Gx= −G−Tc, (1.37)

it is clear that the solution of this new problem satisfies

x∗ = −(G−THG−1G)−1G−Tc = −H−1c,

and thus the solution to the preconditioned system (1.37) isthe same as the solution to the
original system (1.35).

If we can find a matrixG such that the condition number ofG−THG−1 gives a better bound
on the convergence factor given by 1.36, then we can apply theconjugate gradient method to
the new system (1.37) and have a faster convergence, using Algorithm 1.3.2. Conveniently, this
adaptation of the algorithm does not require the use ofG, but rather that ofM = GTG, which is
symmetric and positive definite.

Algorithm 1.3.2: Preconditioned Conjugate Gradient Method

Given x0, setg0 = Hx0 + c and letv0 = M−1g0 and p0 = −v0. For k = 0, 1, . . . until
convergence, do

• αk =
〈gk, vk〉
〈pk,Hpk〉

,

• xk+1 = xk + αkpk,

• gk+1 = gk + αkHpk,

• vk+1 = M−1gk+1,

• βk =
〈gk+1, vk+1〉
〈gk, vk〉

,

• pk+1 = −vk+1 + βkpk.

There are several possible choices forM. One of the most commonly used is the diagonal
of H, which works very well whenH is diagonally dominant. We will not discuss this matter
further as it is outside the scope of this work, but more details can be found in Conn et al. [12],
Golub and Van Loan [21], or Nocedal and Wright [50].
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1.3.4 Conjugate Gradients for Linearly Constrained Problems

Now, consider that we want to minimize a quadratic function with a set of linear constraints,
that is, we wish to find the solution to the problem

min
x∈IRn

q(x) = 〈c, x〉 + 1
2〈x,Hx〉

subject to Ax= b,
(1.38)

whereA ∈ IRm×n (m ≤ n) is full-rank, andb ∈ IRm. This problem is important here because
the trust-region subproblem defined when trying to solve a bound-constrained minimization
problem, such as the one we will consider in Chapter 4, has theform (1.38).

From the KKT conditions (1.23), and particularly from (1.24), we can thus deduce that a
solutionx∗ to problem (1.38) must satisfy both

Hx+ ATλ = −c, (1.39)

whereλ is a vector that contains them Lagrange multipliers for problem (1.38) at each compo-
nent, and the constraints of the problem. Putting these two conditions together in matrix form,
we have thatx∗ must satisfy

(

H AT

A 0

) (

x
λ

)

=

(

−c
b

)

.

Now, suppose that we can find a full-rank matriceN whose columns span the null-space of
matrix A. Then, we can rewrite any vectorx that satisfiesAx= b as

x = xR + NxN, (1.40)

wherexR also satisfiesAxR = b. Substituting then (1.40) into (1.39), and premultiplyingby NT ,
we obtain that, sinceAN = 0,

NTHNxN = −NTc− NTHxR.

From this equation we can recover the null-space componentxN by factorizingNTHN, which
implies that problem (1.38) has a unique solution wheneverNTHN is positive (semi)definite.

Here, sinceA is full-rank andm ≤ n, the rows ofA itself give a basis for its range-space,
and thus a basis for its null-space can be found by computing

N = P













−(AR)−1
AN

I













, whereA = (ARAN)PT . (1.41)

The matrixP is a permutation matrix chosen so thatAR ∈ IRm×m is nonsingular. This method
does not generate orthonormal bases, but it allows for an effective computation of (AR)−1AN,
which is very useful in practice.

Now, since it is relatively easy to find a point that satisfies the constraints, we can restrict
our analysis to the case where the constraints are linear, that is,Ax = 0. Thus, we can restate
the problem we are interested in as

min
x∈IRn

q(x) = 〈c, x〉 + 1
2〈x,Hx〉

subject to Ax= 0.
(1.42)
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In this case,x = NxN. Thus, solving (1.42) is equivalent to solving theunconstrainedproblem

min
xN∈IRn−m

q(NxN) = 〈cN, xN〉 + 1
2
〈xN,HNxN〉, (1.43)

whereHN = NTHN andcN = NTc.
It is then possible to apply a preconditioned conjugate gradient method to this problem,

under the condition that we can compute and applyN and that we can find a preconditioner to
HN. SinceN can be found by (1.41), it remains the issue of finding a good preconditioner for
HN.

If we apply Algorithm 1.3.2 to problem (1.43), and if we rename the quantities such that
x = Nxn, we obtain Algorithm 1.3.3.

Algorithm 1.3.3: Projected Preconditioned Conjugate Gradient Method

Givenx0 such thatAx0 = 0, setg0 = Hx0+c and letv0 = N(MN)−1NTg0 andp0 = −v0. For
k = 0, 1, . . . until convergence, do

• αk =
〈gk, vk〉
〈pk,Hpk〉

,

• xk+1 = xk + αkpk,

• gk+1 = gk + αkHpk,

• vk+1 = N(MN)−1NTgk+1,

• βk =
〈gk+1, vk+1〉
〈gk, vk〉

,

• pk+1 = −vk+1 + βkpk.

Now, sinceMN is supposed to approximateHN, if we require that is has the form

MN = NT MN,

whereM approximatesH, thenvk+1 can be computed by

vk+1 = N(NT MN)−1NTgk+1.

This is simply the null-space method applied to the problem

min
v∈IRn

1
2〈v,Mv〉 − 〈v, gk+1〉, (1.44)

subject to Av= 0. (1.45)
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Thus,vk+1 must satisfy
(

M AT

A 0

) (

vk+1

wk+1

)

=

(

gk+1

0

)

, (1.46)

for some auxiliary variablewk+1. Therefore, in practice, we replace the computation ofv0 and
vk+1 in Algorithm 1.3.3 by the solution of (1.46), and we have a complete procedure for the
solution of (1.42).

1.4 Trust-Region Methods

In this section, we will discuss trust-region methods, which are the basis for the work pre-
sented in this thesis. They were first proposed by Levenberg [39] and Marquardt [43] in the
context of nonlinear least-squares problems. The idea was further enhanced by Goldfeldt et al.
[20], and the first convergence theory in the context of unconstrained optimization appears in
Powell [56]. Since then, the method has been improved and updated, and what we present here
is the basic method used today.

As opposed to line search methods, trust-region methods work by, at iterationk, first defin-
ing a trust regionaround the current iteratexk, and defining a (usually quadratic) modelmk

around the current pointxk. The direction in which to take the step is then computed by (ex-
actly or approximately) minimizing this quadratic model inside the trust region.

Let us focus on the details of a basic trust-region algorithm. Starting from an initial point
x0, at each iterationk, we define a trust region aroundxk as

Bk = B(xk,∆k)
def
= {‖x− xk‖ ≤ ∆k}, (1.47)

where∆k > 0 is called thetrust-region radius, and‖·‖ is some vector norm. The most common
norms used in this type of algorithms are the Euclidean norm‖·‖2 and the maximum norm‖·‖∞.

After defining the trust region, we use Taylor’s approximation (1.29) to define a quadratic
model

mk(xk + sk) = f (xk) + 〈gk, sk〉 +
1
2
〈sk,Hksk〉, (1.48)

wheregk is a vector andHk is a matrix. In general,gk = ∇ f (xk) andHk is the Hessian matrix
of f at xk, ∇2 f (xk), or some symmetric approximation to it. We then compute a step sk as the
solution to the minimization problem

minmk(xk + s)
s.t. xk + s ∈ Bk

(1.49)

This is called thetrust-region subproblem. The new pointxk + sk is called thetrial point.
Once the step has been found, we check if the model agrees withthe objective function. This

amounts to testing if theactual reductionobtained in the function and thepredicted reduction
obtained in the model are sufficiently close; that is, we check if

ρk
def
=

f (xk) − f (xk + sk)
mk(xk) −mk(xk + sk)

(1.50)
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is larger than some constantη1 ∈ (0, 1). If this is the case, then we consider the iteration as
successfuland set the new iterate toxk+1 = xk + sk. If the ratio (1.50) is smaller thanη1,
we reject the trial point and reduce the trust-region radius∆k, in order to recompute a new
minimizer for the modelmk inside the new, smaller trust region.

In Algorithm 1.4.1 we present the basic trust-region algorithm in its entirety, as stated
by Conn et al. [12].

Algorithm 1.4.1: Basic Trust Region (BTR)

Step 0: Initialization. An initial point x0 and an initial trust-region radius∆0 are given.
Constantsη1, η2, γ1 andγ2 such that

0 < η1 ≤ η2 < 1 and 0< γ1 ≤ γ2 < 1 (1.51)

are also given. Computef (x0) and setk = 0.

Step 1: Model definition. Define a modelmk in Bk.

Step 2: Step Calculation.Compute a stepsk that "sufficiently reduces the model"mk and
such thatxk + sk ∈ Bk.

Step 3: Acceptance of the trial point.Computef (xk + sk) and define

ρk =
f (xk) − f (xk + sk)

mk(xk) −mk(xk + sk)
.

If ρk ≥ η1, then definexk+1 = xk + sk; otherwise, definexk+1 = xk.

Step Trust-region radius update.Set

∆k+1 ∈























[∆k,∞) if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ [η1, η2),
[γ1∆k, γ2∆k] if ρk < η1.

(1.52)

Incrementk by 1 and go to Step 1.

In this trust-region algorithm, some details have been leftundefined. For instance, we do
not specify which norm we use for the definition of the trust region. The choice of norm is very
important for the resolution of the trust-region subproblem (1.49), and we will discuss these
issues in Chapter 3.

Another detail that must be clarified is a stopping rule for this algorithm. In practice, we
will test if the gradient is small enough, that is if

‖g‖ ≤ ǫg, ǫg > 0.
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In this case, we will accept the convergence of the algorithm.
We will now briefly discuss the main convergence results related to trust-region methods

which will play an important role in the rest of this work.

1.4.1 Convergence Theory

In this section, we will state for future reference the main results referring to the convergence
theory of trust-region methods. The discussion here follows closely that of Conn et al. [12], and
we refer the reader to that work for details and the proofs of all the results stated here.

1.4.1.1 The Cauchy Point

In order to state these basic results, we must first describe what characterizes a solution to
the trust-region subproblem (1.49) thatsufficiently reducesthe model value.

Since our model is a quadratic function, the simplest way to find a minimizer to this model is
by using the steepest descent method, mentioned briefly in Section 1.3. In this case, we will try
to find a point along the direction−gk, inside the trust region, that gives us the largest reduction
in model value. This means that we will be looking for a point along theCauchy arcdefined by

xC
k (t)

def
= {x | x = xk − tgk, t ≥ 0 andx ∈ Bk}. (1.53)

Since our model is quadratic, we can minimize the model exactly along the Cauchy arc. The
unique solution to this problem,

xC
k = xk − tCk gk = arg min

t≥0
xC
k (t)∈Bk

mk(xk − tgk), (1.54)

is called theCauchy point. In some cases, computing the exact minimizer to the Cauchy
arc (1.53) is too expensive. In these cases, we may use a backtracking strategy, similar to
the one described in Section 1.3.2. This amounts to finding the smallest integerj = jc ≥ 0 such
that

xk( j)
def
= xk − κ j

bt

∆k

‖gk‖
gk,

with κbt ∈ (0, 1), satisfies the Armijo condition (1.33) formk, that is,

mk(xk( j)) ≤ mk(xk) + c1〈gk, xk( j) − xk〉, c1 ∈ (0, 1).

We then define theapproximate Cauchy pointasxk( jc). In general, we will require our model
reduction to be defined as at least that obtained by the (exactor approximate) Cauchy point. We
will then define the sufficient reduction on the model for all iterationsk as

mk(xk) −mk(xk + sk) ≥ κred‖gk‖2 min

[

‖gk‖2
βk
,∆k

]

, (1.55)

whereκred ∈ (0, 1). This condition comes from the estimates for the model reduction obtained by
either the exact or approximate Cauchy point, and it is oftenreferred to as theCauchy condition.
We refer to Section 6.3 in Conn et al. [12] for a detailed discussion on the subject.

With this requirement, we can prove the following result.
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Theorem 1.4.1 Suppose that the model is given by (1.48), and that the model reduction satis-
fies (1.55) for all k. Suppose furthermore that∇ f (xk) , 0. Then mk(xk + sk) < mk(xk) and the
step sk , 0.

The model decrease stated in (1.55) is a lower bound in the decrease we might obtain. If
we accept the cost of additional computation, we might even want to solve the trust-region
subproblem (1.49) exactly. However, an approximate solution to this problem is acceptable in
practice, as shown by the following result.

Theorem 1.4.2 Let xM
k be the solution of (1.49). Suppose that, for all k, the step sk is such that

mk(xk) −mk(xk + sk) ≥ κared[mk(xk) −mk(x
M
k )], (1.56)

whereκared ∈ (0, 1]. Then, (1.55) holds for someκred.

Thus, if the reduction obtained in the model is at least some fraction of the reduction we would
obtain with the (exact) model minimizer, the Cauchy condition is satisfied.

1.4.1.2 Convergence to First-Order Critical Points

The goal of this section is to state the main results that prove the global convergence of
Algorithm 1.4.1 to first-order critical points. We do this for completeness, and in order to show
that the theory for Recursive Multilevel Trust-Region methods, detailed in Chapter 4, follows
closely the one presented in this section.

To prove that Algorithm 1.4.1 is globally convergent to first-order critical points, we must
prove that all limit pointsx∗ of the sequence{xk} generated by the BTR Algorithm satisfy

∇ f (x∗) = 0

independent of the position of the initial pointx0, or of the choice of the initial trust-region
radius∆0.

Throughout this section, we will use the following assumptions.

Assumption 1 (Assumptions on the function.)The objective function f is such that:

• f is twice continuously differentiable.

• The Hessian of f is uniformly bounded; that is, there exists aκufh ≥ 1 such that, for all
x ∈ IRn, ‖∇2 f (x)‖2 ≤ κufh.

Assumption 2 (Assumptions on the model.)The model mk satisfies the following conditions:

• For all k, the model mk is twice differentiable onBk.

• For all k, mk(xk) = f (xk).

• For all k, gk = ∇ f (xk).
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• The Hessian of the model is bounded within the trust region:

‖∇2mk(x)‖2 ≤ κumh− 1, for all x ∈ Bk,

whereκumh≥ 1 is independent of k.

Assumption 3 (Norm equivalence.)There exists a constantκune ≥ 1 such that, for all k, the
norm‖·‖ chosen to define the trust region satisfies

1
κune
‖x‖ ≤ ‖x‖2 ≤ κune‖x‖

for all x ∈ IRn.

First, we will look at the error between the objective function and the model at a new iterate
xk + sk ∈ Bk.

Theorem 1.4.3 Suppose that Assumptions 1 and 2 hold. Then, for all k, we havethat

| f (xk + sk) −mk(xk + sk)| ≤
[

νsk
]2 max

[

κufh, κumh

]

∆2
k,

where xk + sk ∈ Bk and

νsk =
‖sk‖2
‖sk‖
.

Moreover, if Assumption 3 also holds, then

| f (xk + sk) −mk(xk + sk)| ≤ κubh∆
2
k,

whereκubh = κ
2
unemax[κufh, κumh].

This theorem translates into the notion that the smaller thetrust-region radius, the better the
model approximates the objective function in that region. The next result shows that, indeed, if
the trust-region radius is small enough, it must result in a successful iteration, so long as we are
not in a first order critical point already.

Theorem 1.4.4 Suppose that Assumptions 1, 2 and 3 hold, as well as (1.55). Suppose further-
more that gk , 0 and that

∆k ≤
κred‖gk‖2(1− η2)

κubh
.

Then, iteration k is very successful and

∆k+1 ≥ ∆k.

This result implies that the trust-region radius cannot become too small, unless we are at a
first-order critical point.
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Theorem 1.4.5 Suppose that Assumptions 1, 2 and 3 hold, and that f(x) is bounded below on
IRn. Suppose furthermore that (1.55) is satisfied, and that there exists a constantκlbg > 0 such
that ‖gk‖2 ≥ κlbg for all k. Then, there is a constantκlbd > 0 such that

∆k ≥ κlbd

for all k.

Theorem 1.4.5 is very important since it guarantees that Algorithm 1.4.1 can always pro-
ceed, unless we are already at a first-order critical point off . With these results in hand, we can
state the following theorem.

Theorem 1.4.6 Suppose that Assumptions 1, 2 and 3 hold. Suppose furthermore that (1.55)
is satisfied, and that there are only finitely many successfuliterations. Then, xk = x∗ for all
sufficiently large k and x∗ is first-order critical.

Now, we must look at the case when there are infinitely many successful iterations. First,
using the fact that if∆k is small enough,mk approximates the function well, as stated by The-
orem 1.4.3, and that at the same time, the trust-region radius cannot be too small because of
Theorem 1.4.5, we can prove that at least one accumulation point of the infinite sequence of
iterates must be first-order critical.

Theorem 1.4.7 Suppose that Assumptions 1, 2 and 3 hold, and that f(x) is bounded below on
IRn. Suppose furthermore that (1.55) is satisfied. Then,

lim inf
k→∞

‖∇ f (xk)‖2 = 0.

Using these results, it it possible then to extend the last Theorem to prove that not only one
of the accumulation points of the sequence of iterates is first-order critical, but that, in fact, all
are.

Theorem 1.4.8 Suppose that Assumptions 1, 2 and 3 hold, and that f(x) is bounded below on
IRn. Suppose furthermore that (1.55) is satisfied. Then,

lim
k→∞
‖∇ f (xk)‖2 = 0.

These theoretical results, and excellent behavior in practice, show that Trust-Region meth-
ods are a very good choice for unconstrained optimization problems, and why they are widely
used in several applications in various fields of science andengineering. In the next chapters,
we will try to show that they can be even further improved on byexpanding on these ideas and
ensuring that they are competitive in large applications.
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1.4.1.3 Criticality Measure

We defineπ(k, xk) to be afirst-order criticality measureof the iteratexk if it is a nonnegative
real function of its second argument such that

‖xk − xℓ‖ → 0 implies that|π(k, xk) − π(ℓ, xℓ)| → 0,

and if the limit

lim
k→∞
π(k, xk) = 0

corresponds to asymptotically satisfying the first-order criticality conditions of the optimization
problem considered.

Of course,π(k, xk) = ‖∇ f (xk)‖ is one of many possible criticality measures for unconstrained
problems. The definition of a general criticality measure will be of importance in Chapter 4,
where one particular alternative will be considered. It is important to note that, despite the
generality of this definition, all the first-order convergence results obtained for the classical
trust-region method can be extended for a general criticality measureπ(k, xk). For more details,
see Section 8.1 in Conn et al. [12].

1.4.2 A Note on Bound Constraints

As we have mentioned in Section 1.1, bound-constrained problems of the form

minimize f (x),
subject to x ∈ C = {x ∈ IRn | ℓ ≤ x ≤ u}, (1.57)

where the inequalities are considered componentwise, thatis ℓi ≤ xi ≤ ui, for all i = 1, . . . , n,
can be considered separately due to certain properties satisfied by them. Indeed, in this case we
can easily compute the projection of any vectory ontoC, by defining

[ProjC(y)] i
def
=























ℓi if yi ≤ ℓi,
yi if ℓi ≤ yi ≤ ui ,

ui if ui ≤ yi

for i = 1, . . . , n. Thus, it is natural to think of projections when devising methods to solve
bound-constrained problems. In particular, when we define theprojected-gradient pathas

p(t, x)
def
= ProjC[x− t∇ f (x)],

for anyx ∈ C and for allt > 0, it is possible to prove the following theorem.

Theorem 1.4.9 Suppose that the setC of constraints is nonempty, closed and convex. Suppose
also that a constraint qualification (such as the LICQ Condition 1.1) holds at x∗. Then the point
x∗ ∈ C is a first-order critical point for problem (1.57) if and onlyif

p(t, x∗) = x∗ for all t ≥ 0.
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In this case, the projected-gradient path can be used to define a new criticality measure

χ(x)
def
= | min

x+d∈C
‖d‖≤1

〈∇ f (x), d〉|

for all x ∈ C, since it can be shown (see, for example, Section 12.1.3 in Conn et al. [12], pp.
444-451) thatχ(x) = 0 if and only if p(t, x) = x for all t ≥ 0 and thus, from Theorem 1.4.9,
χ(x∗) = 0 if and only if x∗ is first-order critical.

These properties are critical for the analysis in Chapter 4,since in that chapter we will deal
with bound-constrained problems. For more details and proofs, see Conn et al. [12].
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Chapter 2

Multigrid Methods for Linear Systems

2.1 Introduction

Linear systems of equations appear in virtually every modelthat aims to describe a real-life
application in mathematical terms. These systems are usually stated as findingx ∈ IRn that
satisfies

Ax= b, (2.1)

whereA ∈ IRn×n is a matrix, andb ∈ IRn is a vector.
When the problem arises from the discretization of an underlying continuous problem, a

multilevel hierarchy can be formulated, such that each discretizationlevel has more variables
(that is, is a finer discretization of the domain of the problem) than the previous one. Thus, if
p + 1 levels of discretization are available, this amounts to a set of p + 1 nonlinear equations,
each defined in a space IRni , such thatn0 ≤ n1 ≤ . . . ≤ np, which can be written as

Ai xi = bi ,

with Ai ∈ IRni×ni , andxi , bi ∈ IRni , i = 0, . . . , p.
The methods that exploit this multilevel hierarchy for the solution of linear systems of equa-

tions are calledMultigrid methods. This well-researched field, pioneered by Fedorenko [16] and
later by Brandt [2], is based on a double observation: on one hand there exist iterative solution
methods (calledsmoothers) which are very efficient at reducing the high-frequency, oscillatory
components of the error while being possibly very inefficient at reducing their low-frequency
(also calledsmooth) components (the Jacobi and Gauss-Seidel methods are preeminent exam-
ples); on the other hand, the definition of a high-frequency component of the error is intrinsically
tied to the discretization grid since the finer the grid, the higher the frequency representable on
this grid. Multigrid methods then proceed by using methods called smoothersto reduce the
high-frequency (also calledoscillatory) error components on a fine grid, and then consider the
remaining smooth components on this fine grid as oscillatoryones on a coarser grid. Broadly
speaking, these can again be eliminated using smoothers on the coarser grid, and this technique
may be applied recursively. One of the main attractions of multigrid methods for linear systems
is that their workload increases only linearly with problemsize, a feature crucial for the solution
of very large instances.

31
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Multigrid methods are fairly established as solvers for large linear systems derived from
(mainly elliptic) Partial Differential Equations, in particular boundary value problems. Here,
we will present a brief introduction on this technique, withthe purpose of motivating the mul-
tilevel aspect of our optimization applications. For a moredetailed introduction to the subject
of multigrid methods, the reader is referred to Briggs et al.[3], Trottenberg et al. [67] and
Wesseling [68].

2.2 Model Problem

One application where the resulting linear system is large and sparse is in the solution of
elliptic boundary value problems. One example is the one-dimensional Poisson equation with
Dirichlet boundary conditions

−u′′(x) = f(x) x ∈ (0, 1) (2.2a)

u(0) = u(1) = 0 (2.2b)

In order to solve this problem numerically, we will approximate this equation using finite differ-
ences. In other words, we willdiscretizeΩ = (0, 1) by partitioning it inton subintervals defined
by grid points xj = jh, j = 0, . . . , n whereh = 1

n is the length of each subinterval. We will call
the discretized domain of the new problemΩh. Figure 2.1 shows this discretized domain.

x1 x2x0 = 0 xn = 1· · · xn−1

Ωh

Figure 2.1: One-dimensional discretized domainΩh = [0, 1].

At each of then − 1 interior grid points, we will approximate (2.2a) by finite differences.
Let us define, for simplicity,u j as an approximation to the exact solutionu(xj), for j = 0, . . . , n.
Then, grouping allu j in a vectoru, the components of this vector must satisfy then− 1 linear
equations

−u j−1 + 2u j − u j+1

h2
= f j, 1 ≤ j ≤ n− 1,

u0 = un = 0,
(2.3)

where f is a vector such that each of its components is defined asf j = f(xj), j = 1, . . . , n− 1.
We can thus represent this system of linear equations in matrix form as

1
h2
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(2.4)

or Au= f , whereA ∈ IR(n−1)×(n−1) is tridiagonal, symmetric and positive definite.
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Now, let us consider the two-dimensional Poisson equation

−∆u(x, y) = f(x, y) (x, y) ∈ Ω
u(x, y) = 0 (x, y) ∈ ∂Ω (2.5)

where∆u(x, y) denotes the Laplacian ofu, Ω = [0, 1] × [0, 1] and∂Ω is the boundary of the
unit square. Here, we will define a two-dimensional grid by the grid points (xi , yj) = (ihx, jhy),
wherehx =

1
m andhy =

1
n. This grid is also denoted byΩh. Figure 2.2 shows this discretized

domain.

.

.

.

yn

. . . xn

y0

y1

x0 x1

Figure 2.2: Two-dimensional discretized domainΩh = [0, 1] × [0, 1].

Using once more a finite differences approximation to the derivatives in (2.5), we derive the
system of equations

−ui−1, j + 2ui j − ui+1, j

h2
x

+
−ui, j−1 + 2ui, j − ui, j+1

h2
y

= fi, j ,

ui,0 = ui,n = u0, j = um, j = 0, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1.

(2.6)

Here,ui, j is an approximation to the exact solutionu(xi , yj) and fi, j = f(xi , yj).
Now, in order to write this equation in matrix form, we must choose the order in which

we consider the grid points. Here, we will choose thelexicographicordering, which takes
variables from lines of constanti. This way, we can group all unknowns of thei-th row of the

grid in a vectorui
def
= (ui,1, . . . , ui,n−1)T for 1 ≤ i ≤ m− 1. Similarly, we will define a vector

fi
def
= ( fi,1, . . . , fi,n−1)T . The system (2.6) can then be rewritten in block matrix form as
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which is a symmetric, block tridiagonal and sparse system. Each block is a multiple of the
(n− 1)× (n− 1) identity matrix.
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The matrices that arise from this type of discretization usually have some very important
properties. For example, most are sparse, symmetric and positive definite. Another important
property is that they are oftenweakly diagonally dominant. This means that, ifai j is element of
row i and columnj of A, then

n
∑

j,i

|ai j | ≤ |aii | for 1 ≤ i ≤ n.

In other words, the diagonal element is at least as large in absolute value as the sum of the
off-diagonal elements in the same row.

The two discretized systems described in (2.3) and (2.6) arecalledmodel problems, since
most of the methods described in literature have been developed with these types of problem
in mind. This means that they are the starting point for the methods described here, and will
provide relevant insight into the way these methods are built. The multigrid methods presented
here, however, can be applied to a large class of problems, including discretized elliptic bound-
ary value problems and others.

2.3 Basic Iterative Methods for Linear Systems

Since the problems we are interested in solving can be written as linear systems of equations,
let us examine here the iterative methods available to solve

Au= f , (2.7)

whereA ∈ IRn×n is a non-singular matrix, andu, f ∈ IRn. We have already seen one of these
methods (the conjugate gradient method) in Section 1.3.3. Here, we present other methods
which have a special property which is particularly interesting in the context of multigrid meth-
ods. These methods are sometimes referred to asrelaxationor smoothingmethods; we will
explain this choice of nomenclature further in this chapter.

2.3.1 Jacobi Method

First, observe that, if we write
A = D − L − U, (2.8)

whereD is the diagonal ofA, and−L and−U are its strictly lower- and strictly upper-triangular
parts, respectively, we can write

(D − L − U)u = f .

If we isolate the diagonal part ofA, we have that

Du = (L + U)u+ f ,

which implies
u = D−1(L + U)u+ D−1 f .
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We can thus define a fixed-point iteration such that

uℓ+1 = D−1(L + U)uℓ + D−1 f
def
= MJu

ℓ + sJ,

where we callMJ the iteration matrix. This is called theJacobi method.
In component form, this is equivalent to doing, for each iterationℓ, and each componentj

of uℓ,

uℓ+1
j =

1
2

(

uℓj−1 + uℓj+1 + h2 f j

)

, 1 ≤ j ≤ n− 1,

that is, we solve thej-th equation of the linear system (2.7) for thej-th variable using the current
approximation for the (j − 1)-st and (j + 1)-st unknowns. This method can certainly be very
effective when compared to direct methods, but a simple variation of it can yield much better
results. This is what we consider next.

2.3.2 Gauss-Seidel Method

Once again considering the split (2.8), we can now isolate the diagonal and the lower-
triangular parts ofA, obtaining

(D − L)u = Uu+ f ,

and thus

u = (D − L)−1Uu+ (D − L)−1 f .

The resulting fixed point iteration

uℓ+1 = (D − L)−1Uuℓ + (D − L)−1 f
def
= MGSu

ℓ + sGS

is called theGauss-Seidel method.
In component form, this amounts to computing, for each iteration ℓ and each componentj

of uℓ,

uℓ+1
j =

1
2

(

uℓ+1
j−1 + uℓj+1 + h2 f j

)

, 1 ≤ j ≤ n+ 1.

In other words, in the Gauss-Seidel method we can use the already computed components of
the approximation in order to compute the next component, which of course gives better results
than we could obtain with the Jacobi iteration, where we use only information from the past
iteration to compute the next approximation.

2.4 Error

Let us now analyze the effectiveness of the two methods described in Section 2.3. Sup-
pose thus that this linear system (2.7) has a unique solutionu∗. Then, we can define two very
important quantities. Theerror is defined as the vector

e= u∗ − u. (2.9)
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Both the Jacobi and Gauss-Seidel methods can have their iterations be written as

u1 = Mu0 + s. (2.10)

At the same time, we can see that, as in all fixed point iterations, if u∗ denotes the exact solution
to the problem, then

u∗ = Mu∗ + s. (2.11)

Subtracting equation (2.10) from equation (2.11), we have that

e1 = Me0.

By repeating this argument, we have that

eℓ+1 = Mℓe0. (2.12)

Now, by choosing a consistent matrix norm‖·‖, we have that

‖eℓ‖ ≤ ‖M‖ℓ‖e0‖.

Thus, if‖M‖ < 1, we can expect the error to be forced to zero after a number ofiterations. It is
possible to show (for instance, in Golub and Van Loan [21]) that this is only the case if

ρ(M) < 1, (2.13)

which implies that the iteration associated withM converges for all initial guesses if and only
if ρ(M) < 1.

However, in real situations where we do not know the exact solution to the problem, we
cannot compute the error (2.9). Thus, we will define another quantity, theresidual, as

r = f − Au, (2.14)

This residual shows how far an approximationu to the exact solution is from satisfying the
original problem. Since we suppose the exact solutionu∗ is unique, the residualr = 0 if and
only if the errore= 0. However, it may not be true that whenr is small in norm,e is also small
in norm. Now, from these two quantities, we can write

r = f − Au= Au∗ − Au= A(u∗ − u) = Ae

and thus, we can say that the error must satisfy

Ae= r. (2.15)

This equation, calledresidual equation, allows us to derive the following scheme for the im-
provement of an approximationu to the solution: first, we compute the residual (2.14). Then,
we solve equation (2.15) for the error. Finally, we compute anew approximation to the solution
by setting

unew = u+ e.

This scheme, although only an informal description at this point, gives us a new idea of how to
proceed. Something that must be noted here is the fact that applying a relaxation method (such
as Jacobi or Gauss-Seidel) to the original equationAu = f with an arbitrary initial guess is
equivalent to applying a relaxation method on the residual equation with the initial guesse= 0.



2.5 Smooth and Oscillatory Frequencies 37

2.5 Smooth and Oscillatory Frequencies

An important concept that will be used in the analysis of iterative methods is that ofeigen-
functions. An eigenfunction of a linear operatorA, defined on some function space, is any
non-zero functionω in that satisfies

Aω = λω,

whereλ ∈ IR is the eigenvalue associated withω. It can be shown (see, for example, Briggs et al.
[3], Exercises 8 and 9, page 28) that the eigenfunctions associated with the discrete Laplacian
operator described by the matrix in (2.4) have the form

ωk, j = sin

(

jkπ
n

)

, 1 ≤ k ≤ n− 1, 0 ≤ j ≤ n,

where eachj denotes the components of these vectorsωk, also calledwave functions, for each
k, called thefrequencyof these wave functions. The eigenvalues ofA are

λk(A) = 4 sin2

(

kπ
2n

)

, 1 ≤ k ≤ n− 1.

If k ≤ n
2, we say that the waveωk is smooth, otherwise it is calledoscillatory. We call eachωk

a Fourier mode. Figure 2.3 shows examples of such modes on a one-dimensional grid with 16
points.

These Fourier modes are very important as a tool for evaluating the progress of an iterative
method. For example, since for the Jacobi method applied to problem (2.3) we have that

MJ = I − 1
2

A,

then

λk(MJ) = 1− 1
2
λk(A) = 1− 2 sin2

(

kπ
2n

)

, 1 ≤ k ≤ n− 1.

Now, sinceA is a symmetric positive definite matrix, its eigenfunctionsmust generate the
entire space. Consider now the errore in problem (2.3). It can be written as a linear combination
of the wave functionsωk, that is

e=
n−1
∑

k=1

αkωk, αk ∈ IR.

Therefore, (2.12) can be written as

eℓ = MℓJe
0 =

n−1
∑

k=1

αkMℓJωk =

n−1
∑

k=1

αkλ
ℓ
k(MJ)ωk, (2.16)

sinceA and MJ have the same eigenvectorsωk. Thus, afterℓ iterations, thek-th mode of the
error will have been reduced by a factor ofλℓk(MJ). However,λ1(MJ) can be approximated by

λ1(MJ) = 1− 2 sin2
(

π

2n

)

≈ 1− π
2h2

2
.
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(b) k = 3
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(c) k = 8
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(d) k = 15

Figure 2.3: Examples of Fourier modes ofA on a one-dimensional grid with 16 points. We
show the modesω1, j, ω3, j, ω8, j andω15, j.

This, along with (2.13), implies that the modes associated with this eigenvalue, which are
smooth modes, will never be reduced effectively. This is called thesmoothing propertyof
this family of methods. The same kind of property is true for Gauss-Seidel methods, but we
will refer the reader to other texts (for example, Briggs et al. [3] or Trottenberg et al. [67]) for
this analysis. Figure 2.4 shows the evolution of the error for problem (2.6) when we apply the
Gauss-Seidel method. We can clearly see that oscillatory (that is, high frequency) components
of the error disappear rather quickly, while smooth (low-frequency) components remain even
after 100 iterations of the method.

(a) Initial error (b) After 5 iterations (c) After 30 iterations (d) After 100 iterations

Figure 2.4: Evolution of the error for problem (2.6) after 5,30, and 100 iterations of the Gauss-
Seidel method.
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2.5.1 Coarse and Fine Grids

Having seen in (2.16) that the error of the linear system (2.7) can be decomposed into a
sum of Fourier modes, it may be useful to look at the properties of these modes. The first
thing to note is that these modes are dependent on the grid they are described in. Indeed, let us
consider a gridΩh with nh = 1

h points, which we will call thefine grid, and another gridΩ2h

with n2h = 1
2h =

nh

2 points, which we will call thecoarse grid, since it has less points than the
fine grid(1). Then, the smooth modes evaluated at even numbered points ofthe gridΩh are

ωh
k,2 j = sin

(

2 jkπ
nh

)

= sin















jkπ
nh

2















, 1 ≤ k <
nh

2
, 0 ≤ j ≤ nh.

Now, if we define another gridΩ2h such thatn2h = nh

2 , then

ωh
k,2 j = ω

2h
k, j, 1 ≤ k <

nh

2
.

Thus, the smooth modes on the gridΩh appear oscillatory on the gridΩ2h. This can be seen in
Figure 2.5, where we show how one of these modes is seen in two different grids.
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(a) k = 6, n = 16
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(b) k = 6, n = 8

Figure 2.5: The modeω6, j represented in two grids withn = 16 andn = 8 points, respectively.
The coarser grid (n = 8) seesa more oscillatory mode.

Another very special property is what is calledaliasing. It can be described as the fact that
the oscillatory modes on the gridΩh are misrepresented as smooth modes on the gridΩ2h. This
happens because thek-th mode onΩh becomes the (n− k)-th mode onΩ2h, for k > n

2.

With these properties in mind, we can see that there is some sort of transformation of the
frequencies of the error of the fine grid, when they are seen ona coarser grid. This is the key to
the development of multigrid methods.

Putting all of these facts together, we can devise a strategyfor improving on the convergence
of relaxation methods.

(1)Sometimes, we will refer to coarse grids aslower grids, and finer grids asuppergrids. This comes from
the formulation of these grids, as the finer grid is seen to be closer to the infinite-dimensional description of the
problem by having more variables, and thus being higher in the problem hierarchy. It is, however, pure convention.
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2.6 Coarse Grid Correction

From the analysis of the previous section, we can thus state the two principles that inspire
multigrid methods.

Smoothing principle. Iterative methods such as the Gauss-Seidel and Jacobi iterations elimi-
nate oscillatory components of the error effectively, but leave smooth frequencies of the
error unchanged.

Coarse grid principle. Smooth components of the error appear oscillatory in coarser grids.

These two principles suggest a scheme that may be used in order to improve convergence
of basic iterative methods for linear systems. Suppose thatwe may discretize our problem in
two gridsΩh andΩ2h, with n = 1

h and n
2 points each, respectively. Suppose furthermore that we

have two lineartransfer operators

Rh : IRn→ IR
n
2 and Ph : IR

n
2 → IRn,

where we callRh therestrictionoperator from gridΩh to gridΩ2h, andPh is called theprolon-
gationoperator from gridΩ2h to gridΩh. Then, acoarse grid correctionstep can be described
as in Algorithm 2.6.1 on the facing page.

The number of smoothing iterationsν1 andν2 are defined by the user, and are usually not
very large. Figure 2.6 shows a representation of the coarse-grid correction scheme.

In order to define this scheme more formally, we must define theprolongation and restriction
operators. Here, we will only discuss the choices we used in the course of our work, but several
other choices are possible. The most common choice for the prolongation operator is the linear
interpolation operator, defined in one dimension by

v[2 j]
h = v[ j]

2h,

v[2 j+1]
h = 1

2(v[ j]
2h + v[ j+1]

2h ),
0 ≤ j ≤ n

2
− 1,

wherev[ j] denotes thejth component of the vectorv. This linear interpolation operator has full
rank, and it will be used extensively in our implementations.

For the restriction operator, our choice is thefull weightingoperator, defined by

v[ j]
2h =

1
4

(v[2 j−1]
h + 2v[2 j]

h + v[2 j+1]
h ), for 1 ≤ j ≤ n

2
− 1.

Figure 2.7 shows the action of these operators in one- and two-dimensional grids.
This restriction operator is important because it satisfiesthe property

Ph = σRT
h , σ ∈ IR. (2.18)

This is called avariational propertyand will be very important in the following discussion. Of
course, these operators can be defined also in three-dimensions. For this, it suffices to define
both of the one-dimensional operators for each dimension.



2.7 Multigrid 41

Algorithm 2.6.1: Coarse Grid Correction

• Apply ν1 iterations of an iterative method to the problemAhuh = fh at the fine grid
Ωh, with initial guessuh = 0.

• Compute the residualrh = fh − Ahuh at the fine grid.

• Restrict the residual to the coarse gridΩ2h by defining

r2h = Rh(rh).

• Solve the problem
A2he2h = r2h (2.17)

at the coarse grid.

• Prolongate the correctione2h into the fine grid by defining

eh = Ph(e2h).

• Compute the new approximationunew
h in the fine grid by

unew
h = uh + eh.

• Apply ν2 iterations of an iterative method to the problemAhuh = fh at the fine grid,
with initial guessunew

h .

e0
2h

R

e∗2h

P

Smoothν2 times

Solve

u0
h

Smoothν1 times
u1

h u2
h u3

h

Figure 2.6: The coarse-grid correction scheme.

2.7 Multigrid

Now, we must decide how to solve the problem (2.17) at the coarse grid. If this problem is
small enough, we can solve it exactly by using some factorization of A2h, for example. How-
ever, if this is not the case, it can be interesting to use thiscoarse-grid correction procedure
recursively, by correcting equation (2.17) in a coarser gridΩ4h. In order to do this, Suppose that
we may discretize our problem inℓ+1 consecutive gridsΩh,Ω2h,Ω4h, . . . ,Ω2ℓ−ih, with ni =

1
2ℓ−ih
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Figure 2.7: Prolongation and restriction operator acting between two grids.

points each, fori = ℓ, . . . , 0. Suppose furthermore that we have a collection of operators

Ri : IRni → IRni−1, Pi : IRni−1 → IRni ,

for i = 0, . . . , ℓ. In order to simplify the notation, we will denote a quantityv defined at grid
Ω2ℓ−ih asvi. We will also denote the correctionei−1 by ui−1, and the right-hand sider i−1 will be
called fi−1. This is done is order to facilitate the definition of the recursive procedure, but the
meaning of the variables remains the same. Thus, we can stateamultigrid procedure, described
in Algorithm 2.7.1 on page 43.

This scheme can thus descend until the coarsest grid available (if it is so desired), or until
we reach a level where the solution can be computed easily to obtain a desired accuracy. A
compact representation of this scheme is in Figure 2.8 on page 44, and for obvious reasons this
strategy is called aV-cycle.

Similarly, we can choose to take further advantage of coarser grids before bringing the
correction back to the finest level, by repeating the coarse grid correction proceduretwice at
each grid, as represented in Figure 2.9 on page 44. In this case, this scheme is referred to as
theW-cycle. These are the most common ways of exploiting levels since repeating the coarse
grid correction procedure more than twice generally does not improve the convergence of the
method.

Now, in order to exploit even more the different grids and the small cost of computing
approximations at coarser grids, another idea is to use coarse grid approximations as starting
points to a fine grid problem. This is the principle of the so-called nested iterationor mesh
refinementscheme, and it can be outlined as Algorithm 2.7.2, on page 44.
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Algorithm 2.7.1: V-cycle Scheme

[uℓ] = V(uℓ, fℓ).

• Apply ν1 iterations of an iterative method to the problemAℓuℓ = fℓ with initial guess
uℓ = 0.

• Compute the residualrℓ = fℓ − Aℓuℓ.

• Restrict the residual by defining

fℓ−1 = Rℓ(rℓ)

and apply a coarse grid correction for this grid:

– Apply ν1 iterations of an iterative method to the problemAℓ−1uℓ−1 = fℓ−1 with
initial guessuℓ−1 = 0.

– Compute the residualrℓ−1 = fℓ−1 − Aℓ−1uℓ−1.

– Restrict the residual by definingfℓ−2 = Rℓ−1(rℓ−1) and apply a coarse grid cor-
rection for this grid.

...

• SolveA0u0 = f0.
...

– Prolongate the correctioneℓ−2 by eℓ−1 = Pℓ−1(eℓ−2).

– Compute the new approximationunew
ℓ−1 = uℓ−1 + eℓ−1.

– Apply ν2 iterations of an iterative method to the problemAℓ−1uℓ−1 = fℓ−1, with
initial guessunew

ℓ−1.

• Prolongate the correctioneℓ−1 by definingeℓ = Pℓ(eℓ−1).

• Compute the new approximationunew
ℓ
= uℓ + eℓ.

• Apply ν2 iterations of an iterative method to the problemAℓuℓ = fℓ with initial guess
unew
ℓ

.

By joining the mesh refinement and V-cycle ideas, we obtain the Full Multigrid scheme,
describe in recursive form in Algorithm 2.7.3, on page 45.

The Full Multigrid (FMG) scheme is outlined in Figure 2.10.
One more element must be defined in what follows. We have assumed until now that the

coarse grid operatorAℓ−1 is just the discretization of the problem in this coarser grid. In practice,



44 Chapter 2. Multigrid Methods for Linear Systems

��

�
�
�
�

��
��
��
��

��

�
�
�
�

��
��
��
��

��

4h

2h

h

8h

Figure 2.8: The V-cycle scheme on four levels.

�
�
�
�

����

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

��
��
��
��

h

2h

4h

8h

Figure 2.9: The W-cycle scheme on four levels.

Algorithm 2.7.2: Mesh Refinement Scheme

• Apply an iterative methodν0 times to the coarse grid problemA0u0 = f0 with starting
pointu0 = 0.

• Prolongate the approximationu0 to obtainu1 = P1u0.

• Apply an iterative methodν0 times to the problemA1u1 = f1 with initial guessu1.

...

• Prolongate the approximationuℓ−1 to obtainuℓ = Pℓuℓ−1.

• Apply an iterative methodν0 times to the problemAℓuℓ = fℓ with initial guessuℓ.

it will be useful to assume that

Aℓ−1 = RℓAℓPℓ =
1
σ

PT
ℓ AℓPℓ, (2.19)

and this is called theGalerkinoperator for the coarse grid. Together with (2.18), this property is
important since it guarantees that, ifAℓ is symmetric positive definite, so isAℓ−1. Furthermore,
it is vital in the convergence analysis of multigrid methods. We will not pursue this convergence
theory in this thesis, but in Chapter 4 we will see that these properties are very useful.
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Algorithm 2.7.3: Full Multigrid V-cycle

uℓ = FMG( fℓ)

Step 1. If we are at the coarsest grid, that isℓ = 0, go to Step 3 with initial guessuℓ = 0.
Else, restrict the right-hand sidefℓ and apply the full multigrid procedure recursively:

[uℓ−1] = FMG( fℓ−1).

Step 2. Apply the correction touℓ by prolongatinguℓ−1:

uℓ = uℓ + Pℓuℓ−1.

Step 3. Apply ν0 iterations of an iterative method toAℓuℓ = fℓ.
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Figure 2.10: The Full Multigrid scheme on four levels.

2.8 What next?

There are two fundamental properties which are satisfied by the full multigrid procedure
described in the previous section.

• The full multigrid procedure described in Algorithm 2.7.3 can be used to obtain an ap-
proximationur at the finest grid such that its error‖u∗−ur‖ is of the same order as the dis-
cretization error, that isO(h) for a one-dimensional problem,O(h2) for a two-dimensional
problem.

• The full multigrid procedure isasymptotically optimal, which means that the computa-
tional cost needed to compute an approximate solution is proportional to the number of
grid points at the finest grid.

These are extremely encouraging properties, and serve as a motivation for our work in
this thesis. In a sense, for linear systems, in particular those associated with elliptic partial
differential equations, we cannot do better than the full multigrid procedure. What we will see
in the next chapters is that these ideas can be applied to optimization problems as well, and that
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although the results are not quite as remarkable as they werefor linear systems, it is worthwhile
to explore the different discretizations of the problem when they are available.



Chapter 3

A Multilevel Algorithm for the Solution of
the Trust-Region Subproblem

One of the most crucial points in the definition of a trust-region algorithm is the resolution
of the trust-region subproblem, defined as (1.49). Indeed, the step computed by the solution of
this minimization problem must satisfy certain conditionsin order to guarantee the convergence
of the algorithm, as seen in the theoretical results in Chapter 1.

More specifically, two choices define the step that will be computed as the solution of the
trust-region subproblem. First, we must choose a norm to define the trust region. Then, we
must choose a method that solves the minimization problem efficiently, such that the solution
satisfies the Cauchy condition (1.56).

In this chapter, we will describe the most common solvers forthe trust-region subproblem,
and discuss the new method presented by Toint et al. [64]. Forthe most part of this chapter, we
restrict our analysis to unconstrained problems and to methods where the trust region is defined
using theℓ2 norm, that is,

Bk = {xk + s ∈ IRn | ‖s‖2 ≤ ∆k}.
For simplicity, we restate theℓ2-norm trust-region subproblem here without the iteration indices
as

min
‖s‖2≤∆

m(s) = min
‖s‖2≤∆
〈g, s〉 + 1

2
〈s,Hs〉 (3.1)

whereg = ∇ f (xk) andH is the Hessian off computed atxk, or a symmetric approximation to
this matrix.

In Section 1.4.1, we have seen that as long as the step computed by the solution of this
subproblem satisfies the sufficient decrease condition (1.56), then by Theorem (1.4.2) itdoes
not have to be the exact solution to the subproblem (3.1). Thus, it is interesting to analyze
both exact and approximate methods, depending on the cost weare prepared to accept for the
solution of this problem.

This Chapter is organized as follows. In Sections 3.1.1 and 3.1.2, we will take a look
at the most common exact and approximate methods for solvingthe trust-region subproblem,
respectively. Then, we will discuss the solution of theℓ∞-norm trust-region subproblem in
Section 3.1.3. Finally, in Section 3.2 we will present our new multilevel method developed for
the exact solution to theℓ2-norm trust-region subproblem.

47
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3.1 The trust-region subproblem

The trust-region subproblem (3.1) consists of the minimization of a quadratic function
with one constraint, the trust-region constraint. Therefore, from the KKT optimality condi-
tions (1.23), stated in Chapter 1, we can obtain the following result.

Theorem 3.1.1 A point sM such that‖sM‖2 ≤ ∆ is a global minimizer for problem (3.1) if and
only if

H(λM)sM = −g, (3.2)

where
H(λM)

def
= H + λMI

is positive semidefinite,λM ≥ 0 andλM(‖sM‖2 − ∆) = 0. If H(λM) is positive definite, then sM is
unique.

This result is very important as it characterizes in an unusually simple way the exact solution
of the trust-region subproblem, and it is the basis for the Moré-Sorensen method, which we
present in the following section.

3.1.1 Finding the exact solution: the Moré-Sorensen method

Theorem 3.1.1 states that we have two possibilities for the solution of the trust-region sub-
problem. Either the unconstrained minimizer ofm is in the interior of the trust region, and in
this caseλM = 0, or the stepsM is in the boundary of the trust region, andλM > 0.

Now, from Theorem 3.1.1, we can deduce that we wantλM to be such thatλM ≥ −λmin,
whereλmin = λmin(H), the smallest eigenvalue ofH. Furthermore, ifλM > −λmin, the minimizer
of the model is unique, since in this caseH(λM) is positive definite. If we consider thatsM

depends onλM, that is,λ is a parameter in this problem, we can rewrite this problem asfinding
λ such that

‖s(λ)‖2 = ∆, (3.3)

wheres(λ) is the solution of the linear system (3.2). However, this equation has a pole in−λmin,
and thus might prove to be difficult to solve in this region. Fortunately, there is an alternative
formulation of this equation called thesecular equation, defined as

φ(λ)
def
=

1
‖s(λ)‖2

− 1
∆
. (3.4)

This equation has a zero in−λmin, and is thus much better suited if we want to apply a root
finding method to computeλM.

Since it is easy to compute the derivatives of this function,we can apply Newton’s method,
described in Chapter 1, Section 1.3.1, to find the solution ofthis problem. Now, for each
iteration of this method, we must computeφ(λ) and its derivative,φ′(λ), and replace the old
estimateλold with

λnew = λold − φ(λ
old)

φ′(λold)
.
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Fortunately, bothφ(λ) and its derivative can be found from the solution of linear systems of
equations involvingH(λ). Since in the region of interestH(λ) is positive definite, we can apply
the Cholesky factorization, as described in Chapter 1, Section 1.2.1.4 to obtain

H(λ) = L(λ)LT (λ).

Now, to computeφ(λ) it suffices to solve the linear system (3.2) to obtains(λ), and it can be
shown that the derivativeφ′(λ) can be written as

φ′(λ) =
‖w‖22
‖s(λ)‖32

, (3.5)

wherew is the solution of the linear system

L(λ)w = s(λ).

The Cholesky factorization is a very important part of this method, because it also checks if
λ > −λmin. Indeed, if this is not the case, the Cholesky factorizationwill fail, since we will
encounter negative diagonal entries inL. Furthermore, we can easily detect if the solution
to (3.1) is interior, as in this case the factorization ofH(0) succeeds, and the resulting steps(0)
is in the interior of the trust-region.

However, as mentioned in Chapter 1, Section 1.3.1, Newton’smethod does not always con-
verge from any starting point. Thus, it is necessary to safeguard it somehow, so that it does not
diverge. It is possible to show (see Theorem 7.3.4 in Conn et al. [12]) that if we can find an
iterate between−λmin andλM, convergence is guaranteed. Thus, we will estimate this interval
by choosing a so-calledinterval of uncertainty[λL, λU], where the solution is known to lie, and
proceed by shrinking this interval at each iteration until we find a solution.

In order to define an initial interval of uncertainty,λL andλU must be chosen such that
λM is guaranteed to be inside this interval. One way of doing this is using the Rayleigh quo-
tient inequality (1.7) forH(λ)TH(λ) which , sinceH(λ) is symmetric, gives us the following
inequality:

(λmin + λ)
2 ≤ 〈H(λ)s(λ),H(λ)s(λ)〉

〈s(λ), s(λ)〉 ≤ (λmax+ λ)
2.

Now, since we require that‖s(λ)‖2 ≤ ∆ and sinceH(λ)s(λ) = −g, we can write

‖g‖2
∆
− λmax ≤ λ ≤

‖g‖2
∆
− λmin.

Now, we can replaceλmin andλmax by any easily computable estimate, for example the Ger-
shgorin bounds (1.8), or the norm estimates (1.16) and (1.17), obtaining initial bounds such
as

λL = max

















0,−min
i

[H] i,i ,
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∆
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
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and
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




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∆
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Now, we can interpretλ as the convexity that we must add to the Hessian in order to bring
the solution to the inside of the trust region. In practice, if we increaseλ, ‖s(λ)‖2 decreases, and
if we decreaseλ, ‖s(λ)‖2 increases. This fact and the properties of the Newton iteration help us
devise the following update for the interval [λL, λU]:

• If ‖s(λ)‖2 < ∆, then we must decreaseλ. TakeλU = λ.

• If ‖s(λ)‖2 > ∆, then we must increaseλ. TakeλL = λ.

We also know that, ifλ = 0 is not the solution, thensM must lie in the boundary of the trust
region. However, as with any numerical method, testing if‖s(λ)‖2 = ∆might be difficult. Thus,
we define someǫ∆ > 0 and test if‖s(λ)‖2 ∈ [(1 − ǫ∆)∆, (1+ ǫ∆)∆]. In this case, we have found
the solution.

The complete procedure is stated in Algorithm 3.1.1.

Algorithm 3.1.1: The Moré-Sorensen Method

Step 1. If H(0) is positive definite,i.e. if the factorization ofH(0) succeeds, and‖s(0)‖ ≤
∆(1+ ǫ∆), terminate withs= s(0).

Step 2. Determine an interval [λL, λU] and an initialλ in this interval.

Step 3. Attempt a Cholesky factorization ofH(λ) = LLT . If this succeeds, solve

LLT s= −g.

If ∆(1 − ǫ∆) ≤ ‖s‖ ≤ ∆(1 + ǫ∆), i.e. if s is near the boundary of the trust region,
terminate. If nots is not near the boundary, computeλnew by

λnew = λ +

(

‖s‖ − ∆
∆

) (

‖s‖2
‖w‖2

)

wherew solves Lw = s (3.6)

Step 4. Update the interval [λL, λU]:

• if ‖s‖ > ∆(1+ ǫ∆), or if the factorization has failed, redefineλL = λ;

• if ‖s‖ < ∆(1− ǫ∆), redefineλU = λ.

Step 5. Chooseλ sufficiently inside [λL, λU] and as close as possible toλnew, if it has been
computed. Go to Step 3.

There are many sophistications to this algorithm, in particular regarding the choice of the
initial λ, that of a newλ in the interval whenλnew falls outside and suitable termination rules.
We refer the interested reader to Sections 7.3.4 to 7.3.11 ofConn et al. [12] and to the more
recent work of Dollar et al. [15] for details.
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3.1.2 The approximate solution

While an exact solution is certainly the best solution, it might not be necessary when the cost
of factorizingH(λ) is too high. Since we have seen in Theorem 1.4.2 that we do notnecessarily
need the exact solution to the trust-region subproblem (3.1), we will describe here one of the
most popular methods for the approximate solution of this problem.

In Section 1.3.3 in Chapter 1, we discussed the conjugate gradient method for the solution of
strictly convex quadratic functions. Here, our problem is quadratic, but not necessarily convex.
Fortunately, in the specific case of theℓ2-norm trust-region subproblem, a generalization of the
conjugate gradient method that can be applied to non-convexproblems is possible. Since the
conjugate gradient method can be seen as a particular case ofthe preconditioned conjugate gra-
dient method described in Algorithm 1.3.2, we will state here the more general preconditioned
version of this method as well.

We will assume that we have a symmetric positive definite preconditionerM for this prob-
lem, as if this is not the case, we can just substituteM for the identity. In the general case,
however, the preconditioned problem is equivalent to the trust-region subproblem defined in a
M−norm, that is,

min
‖s‖M≤∆

m(s) = 〈g, s〉 + 1
2
〈s,Hs〉.

If we just apply the preconditioned conjugate gradient method to this problem, three possibil-
ities can occur. First, ifm is convex, that is,〈pk,Hpk〉 > 0 for every iterationk in the precon-
ditioned conjugate gradient method(1), and allsk remain inside the trust region, then it suffices
to find the unconstrained minimizer ofm(s), without modifying the method. If〈pk,Hpk〉 ≤ 0
for somek, in which case the functionm is unbounded from below along the directionαpk, we
will find the smallest function value in the intersection of the line defined bysk + αpk and the
trust-region boundary. Finally, if one of the iterates of the preconditioned conjugate gradient
method lies outside the trust region, it is not clear what to do. One might think that leaving the
PCG method run its course might result in a solution that is inthe interior of the trust region,
even if one of the iterates was found to be on the outside. However, this is not true, as the
following result shows.

Theorem 3.1.2 Suppose that the preconditioned conjugate gradient methoddescribed by Al-
gorithm 1.3.2 is applied to the minimization of m(s), with starting point s0 = 0. Suppose
furthermore that〈pi ,Hpi〉 > 0 for 0 ≤ i ≤ k. Then, the iterates sj satisfy

‖sj‖M < ‖sj+1‖M,

for 0 ≤ j ≤ k− 1.

This result is due to Steihaug [62] and it is the key to our discussion. Since there is no use
in pursuing the conjugate gradient method further after oneof its iterates falls outside the trust
region, we can find a local constrained minimizer ofm(s) by finding the intersection of the line
defined bysk + αpk and the trust-region boundary, exactly as we did in the case of negative
curvature.

(1)Here,sk denotes thekth iteration of the preconditioned conjugate gradient method.
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The completeTruncated Conjugate Gradientalgorithm is described in Algorithm 3.1.2 on
page 52. This method is also known as the Steihaug-Toint method, as Toint [63] was the first
to suggest that the conjugate gradient method could be used in the trust-region subproblem
context.

Algorithm 3.1.2: The Steihaug-Toint truncated conjugate gradient method

Let s0 = 0, g0 = g, v0 = M−1g0 andp0 = −v0. Fork = 0, 1, . . . until convergence, do:

• Setκk = 〈pk,Hpk〉.

• If κk ≤ 0, computeσk as the positive root of‖sk + σpk‖M = ∆, setsk+1 = sk + σkpk,
and stop.

• Setαk =
〈gk, vk〉
κk

.

• If ‖sk + αkpk‖M ≥ ∆, computeσk as the positive root of‖sk + σpk‖M = ∆, set
sk+1 = sk + σkpk and stop.

• Set

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


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
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
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





sk+1 = sk + αkpk,

gk+1 = gk + αkHpk,

vk+1 = M−1gk+1,

βk =
〈gk+1, vk+1〉
〈gk, vk〉

, and

pk+1 = −vk+1 + βkpk.

One remarkable property of this algorithm is that if the condition number ofM remains
bounded over the sequence of subproblems approximately solved in the underlying trust-region
algorithm, then the first iterates1 generated by Algorithm 3.1.2 is exactly the Cauchy point for
the model, and thus already sufficient to guarantee convergence of the trust-region method.Of
course, further iterations only improve on the decrease of the function and thus it is interesting
to continue the iterations until some termination test is satisfied.

In the case when negative curvature is detected, or when an iterate is found to lie outside the
trust region, we stop the algorithm immediately and the solution is the current iterate. When the
solution of the trust-region subproblem lies inside the trust-region, though, we must decide on
a stopping rule for the conjugate gradient method. In practice, it is usual to define a maximum
number of iterates so that we do not spend too much time and computational cost in finding
what will be an approximate solution anyway. This can be improved if we decide, for example,
to stop as soon as we reach an iterationk for which the norm of the gradient has been reduced
to a small fraction of its initial value. Even further improvement can be obtained by requiring
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that the trust-region subproblem be solved with higher accuracy as the trust-region algorithm
approaches a first-order critical point. Putting these conditions together, we may choose to stop
as soon as

‖gk‖2 ≤ ‖g0‖2 min[κfgr, ‖g0‖θ2] or k > kmax,

whereκfgr < 1, θ > 0 andkmax ≥ 0 is satisfied.
It is important to note here that, if we require the solution of (3.1) to also satisfy a set of

affine constraints of the formAs= 0, we can apply Algorithm 1.3.3 to this problem, so long as
the preconditionerM is also used to define the trust-region norm. In this case, theiterates of the
projected preconditioned conjugate gradient method all satisfy As= 0, and they also have the
property of increasing inM norm. Thus, we can apply Algorithm 3.1.2 directly to

min
s∈IRn

〈g, s〉 + 1
2〈s,Hs〉

subject to As= 0,

‖s‖M ≤ ∆,

replacing, of course, the computation ofvk+1 by the solution of the linear system (1.46).

3.1.3 Theℓ∞-norm trust-region subproblem

As discussed earlier, theℓ2 norm is not the only norm possible in the definition of the trust
region. Indeed, theℓ∞ norm can be very advantageous, and we will show in Chapter 4 that it
has an important role to play in multilevel methods as well.

The first observation we can make about theℓ∞-norm trust-region subproblem is that it can
easily be redefined as a bound-constrained problem, such that the condition that‖s‖∞ ≤ ∆ is
equivalent to

−∆ ≤ si ≤ ∆,

where si denotes theith component of the vectors ∈ IRn. Furthermore, this is especially
interesting if the problem we are trying to solve is a bound-constrained problem, where the
solutionu must satisfy

l ≤ x ≤ u.

Indeed, theℓ∞-norm trust-region subproblem can then be written as

max[l i − xi ,−∆] ≤ si ≤ min[ui − xi ,∆].

Unfortunately, there are also a few disadvantages to this definition. One is that while theℓ2-
norm trust-region subproblem can be solved rather easily, there are cases (namely, whenH is
indefinite) where theℓ∞-norm subproblem cannot be solved in polynomial time, that is, it is a
NP-hard problem, meaning that there are no polynomial time algorithms known to solve it.

Another problem is that if aℓ∞-norm version of the truncated conjugate gradient method is
used, Theorem 3.1.2 is not valid; it could be that an estimateof the solution computed by the
conjugate gradient method is outside the trust region, but the solution is in the interior of the
trust-region. Thus, we cannot use the same methods considered in Sections 3.1.1 and 3.1.2.
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Fortunately, in practice, theoretically inefficient methods can be very useful, especially since
the theory of trust-region methods only requires the Cauchypoint to guarantee convergence, and
this can be computed rather easily even forℓ∞-norm problems.

3.2 A Multilevel Moré-Sorensen Method (MMS)

Our objective in this section is to consider multilevel techniques for the exact solution of
the Euclidean-norm trust-region subproblem. This particular subproblem typically arises when
optimizing a nonlinear objective function whose variablesare discretized continuous functions.
This is for instance the case if the local Hessian is given by adiscretized Laplacian or other
elliptic operator. The trust-region problem is consideredat the highest level (corresponding to
the finest discretization), but the different levels of discretization provide a natural multilevel
context. When the function is locally convex, one can very naturally consider applying a clas-
sical multigrid linear solver to the system (3.2), yieldinga very efficient method to compute
the step. However, things become much less clear when the objective function is locally non-
convex, in which case a suitable step is no longer given by Newton’s equations, asλ = 0 is no
longer a solution. The existing techniques for computing a step in this case, such as the one
presented in Section 3.1.1 are well-known for small dimensional problems (see Hebden [31],
Moré and Sorensen [44]), and guarantee, in most cases, that every limit point of the sequence of
iterates is a second-order stationary point. However, these techniques are unfortunately very of-
ten impractical for large discretized problems because they involve factorizing a Hessian matrix
defined on the fine grid. This is particularly limiting if one considers the discretization of vari-
ational problems in three dimensions or more. Our objectivehere is to propose two multilevel
variants of this algorithm that are suitable for these largeproblems but nevertheless guarantee
convergence to second-order limit points.

The idea of applying multigrid methods to our problem is thatwe try to solve the residual
equation (2.15) not forH(λ), but for some simpler approximation of this matrix in a lower
dimensional space where smooth components of the error appear oscillatory.

As we did in Chapter 2, assume that we have a collection of fullrank operatorsRi : IRni →
IRni−1 andPi : IRni−1 → IRni for i = 1, . . . , p (the restrictionand theprolongation, respectively)
such thatPi = σiRT

i , with σi > 0, for all i = 1, . . . , p. We will call eachi = 0, . . . , p a level,
with np = n such thatHp(λ) = H(λ). In this case, we can construct a simpler representation of
the matrix as theGalerkin operatorfor Hi(λ) defined by

Hi−1(λ) = RiHi(λ)Pi . (3.7)

This operator is not the only choice possible. However, it has many interesting properties, such
as keeping thei − 1 level operator symmetric and positive definite, if that is the case for the
original Hi(λ), and maintaining the structure created by the discretization.

Once this is done, we may redefine the residual equation in thelower level. Givensi,k, the
step in the current level, and call the right hand side of the equation we want to solve in this
level bybi,k. We then computer i,k, the residual, by

r i,k = bi,k − Hi(λ)si,k.
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The residual equation (2.15) at this level then takes the form

Hi(λ)ei,k = r i,k. (3.8)

If we now restrict this equation to leveli − 1, the right-hand side at this level is now given by
Rir i,k and the residual equation at leveli − 1 becomes

Hi−1(λ)ei−1 = Hi−1(λ)Ri si,k − Rir i,k
def
= r i−1,0. (3.9)

If the norm of this restricted residual is not large enough compared with the norm of the residual
at leveli, i.e. if ‖r i−1,0‖ < κr‖r i,k‖ for someκr < 1, then there is no advantage in trying to solve
the lower level system. In this case, we perform smoothing iterations similar to those used in
classical multigrid methods. Otherwise, if

‖r i−1,0‖ ≥ κr‖r i,k‖, (3.10)

we then compute a solutionei−1 of the lower level residual equation (3.9). The corresponding
upper level step can now be recovered bysi,k+1 = si,k + Piei−1. This procedure can be applied
recursively, in that the solution of the residual equation in level i − 1 itself can be computed
recursively. At the coarsest level, which corresponds to the smallest system and where recur-
sion is no longer possible, the solution may be computed exactly, for instance by using matrix
factorization.

3.3 The Multilevel Moré-Sorensen Algorithm

We now wish to develop an algorithm for the solution of (3.1) that follows the general
pattern of the Moré-Sorensen method presented in Section 3.1.1 but which, at the same time,
exploits the ideas and techniques of multigrid. If the problem is convex and the multiplierλM

is known, we propose to use a multigrid solver for the system (3.2), thereby exploiting the
hierarchy of level-dependent problem formulations described in the previous section. If the
multiplier is not known, we also face, as in the standard Moré-Sorensen method, the task to find
its value, again exploiting the multilevel nature of the problem.

Thus, in addition to the multigrid solution of (3.2), we must, as in Algorithm 3.1.1, find
a new value ofλ if the step computed as the solution of (3.2) does not satisfyour stopping
conditions. Finding the value ofλM may in practice be considered as a two-stages process. We
first need to find a lower boundλL ≥ 0 such thatHp(λ) is positive-semidefinite for allλ ≥ λL.
Assuming thatλM = 0 does not solve the problem, the second is then to determineλM ≥ λL

such that

‖sp(λ
M)‖2 = ‖Hp(λ

M)−1g‖2 = ∆, (3.11)

where we have simply rewritten (3.3) at levelp, the topmost in our hierarchy. In our multigrid
context, we intend to exploit the restriction of that problem on theith level where

‖si(λ
∗)‖i = ‖MiHp(λ

M)−1Qi Mig‖i = ‖Hi(λ
M)−1gi‖i = ∆, (3.12)
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where, as in Gratton et al. [25],

Mi
def
=

p
∏

ℓ=i+1

Rℓ, Qi
def
=

i+1
∏

ℓ=p

Pℓ, gi = Mig

and
‖x‖i

def
= ‖Qi x‖2.

The linear system implicit in (3.12) is then solved using themultigrid technique discussed in
the previous section.

3.3.1 Exploiting the Level Structure to Find Bounds onλM

Consider ensuring positive-semidefiniteness ofHp(λ) first. Our structure exploiting ap-
proach for this question is based on the simple observation thatHi(λ) (i = 2, . . . , p) cannot be
positive-semidefinite ifHi−1(λ) is not, as expressed by the following property.

Lemma 3.3.1 Let P ∈ IRni×ni−1 be a full (column) rank matrix. Ifλi
1 ≤ . . . ≤ λi

ni
are the

eigenvalues of A∈ IRni×ni , andλi−1
1 ≤ . . . ≤ λi−1

ni−1
are the eigenvalues of RAP∈ IRni−1×ni−1, where

R= 1
σ

PT for someσ > 0, then we have that

λi−1
1 ≥

σ2
min

σ
λi

1, (3.13)

whereσmin is the smallest singular value of P.

Proof. Using the extremal properties of eigenvalues (see, for instance, (1.7) or Golub and Van
Loan [21]), we see that

λi−1
1 = min

x∈IRni−1

‖x‖2=1

〈x,PTAPx〉
σ

= min
x∈IRni−1

‖x‖2=1

〈Px,APx〉
σ

= min
y=Px
‖x‖2=1

〈y,Ay〉
σ
.

But, since‖y‖2 = ‖Px‖2 ≥ σmin, we obtain that

λi−1
1 = min

y=Px
‖x‖2=1

σ2
min〈y,Ay〉
σσ2

min

≥ min
y=Px
‖x‖2=1

σ2
min〈y,Ay〉
σ‖y‖22

≥ min
y∈IRni

σ2
min〈y,Ay〉
σ‖y‖22

=
σ2

min

σ
λi

1.

�

This property thus implies that the value of the multiplier needed to makeHi−1(λ) convex
provides a computable lower bound on that needed to makeHi(λ) convex. In many cases of
interest, the value ofσmin is known and larger that one. This is for instance the case when P is
the linear interpolation operator in 1, 2 or 3 dimensions. However, the exact value depends on
the level considered and is typically costly to compute accurately, which leads us to consider
the simpler case where we only assume thatσmin ≥ 1, in which case (3.13) can be rewritten, at
level i as

λi−1
1 ≥

λi
1

σi
.
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Once this lower bound is computed, the algorithm then proceeds to increaseλL (in a manner
that we describe below) if evidence of indefiniteness ofHp(λ) is found. We have considered two
ways to obtain this evidence. The first is to attempt to solve the systemHp(λ)s= −g for the step
at levelp by a multigrid technique, and to monitor the curvature terms〈d,Hi(λ)d〉 occurring in
the smoothing iterations at each leveli. As soon as one of these terms is shown to be negative,
we know from Lemma 3.3.1 that the lower boundλL must be increased. The second is to
use a multilevel eigenvalue solver like the Rayleigh Quotient Minimization Multigrid (RQMG)
Algorithm (see Mandel and McCormick [42]) to computeλp

1, the smallest eigenvalue ofHp,
associated with the eigenvectorup

1. The RQMG algorithm solves the variational problem

RQ(up
1) = min

u,0
RQ(u) = min

u,0

〈Hpu, u〉
〈u, u〉

by transferring the problem to coarser levels, using as is usual for multigrid methods the Galerkin
operator

Hi = Ri+1Ai+1Pi+1 =
1
σ

PT
i+1Ai+1Pi+1

at each leveli, and applying a smoothing strategy (such as the Gauss-Seidel method) to the
Rayleigh quotient equation at all levels except the coarsest one, where we minimize the Rayleigh
quotient exactly in each coordinate direction. This last exact minimization is, in fact, equiva-
lent to finding the roots of a quadratic polynomial, and thus the method is not too expensive
computationally. The solution to this problem can thus be used as an (upper) approximation to
λ

p
1 which, if negative, may therefore be used to deduce the boundλL ≥ −λp

1. Observe that the
RQMG algorithm (applied with sufficient accuracy) ensures thatHp(λL) is, at least in inexact
arithmetic, positive semidefinite. This is useful since we will only be able to check for positive-
semidefiniteness in levelsi > 0 (that is, all but the coarsest level where the factorization is used)
using the RQMG method.

In addition to the lower boundλL (which applies to all levels), we compute an initial upper
boundsλU

i for each leveli as in the Moré-Sorensen algorithm (observe that no information
can be obtained from lower levels aboutλU

i ). This therefore provides intervals [λL, λU
i ] for

acceptableλ at each leveli.

3.3.2 Updatingλ in the Positive Definite Case

If λL = 0, Hp(0) is positive-definite (in inexact arithmetic) and‖s(0)‖2 ≤ ∆, our problem is
solved. If this is not the case, our second task is then to adjustλ ≥ λL such that (3.11) holds. We
now describe this adjustment procedure at leveli, our final intention being to solve it at levelp.

Since we are looking forλ that solves the secular equation (3.4), we can apply the Newton
method to this end as we did in (3.6). However, in our case, theCholesky factorL for H(λ) is
only available at the lowest level. Fortunately, note that

‖w‖2 = 〈w,w〉 = 〈L−1s, L−1s〉 = 〈s, L−TL−1s〉 = 〈s, (H(λ))−1s〉.

Thus, if we computey as the solution to the positive-definite system

H(λ)y = s(λ), (3.14)
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the Newton step for the secular equation at the current levelthen takes the form

λnew = λ +

(

‖s‖i − ∆
∆

) ( ‖s‖2i
〈s, y〉

)

. (3.15)

Since we may not rely on factorizations for an exact solutionof the system (3.14), we therefore
apply a multigrid method to solve forw. However, this solution may be considered as costly.
An alternative option is to updateλ by applying a secant method to the secular equation, which
gives

λ+ = λ − φ(λ)
(

λ − λold

φ(λ) − φ(λold)

)

. (3.16)

(We useλold = λ
U to start the iteration.)

As in the Moré-Sorensen algorithm, ifλnew lies outside the interval, we chooseλ inside the
interval. One way to do this is to takeλnew as the half of the interval [λL, λU], which corresponds
to a simple bisection step. But we can expect better results by choosing to follow Moré and
Sorensen [44] and setting

λnew = max
[ √

λL, λU , λL + θ(λU − λL)
]

, (3.17)

for θ ∈ (0, 1), which ensures thatλnew is closer toλL.

3.3.3 The Complete Algorithm

We need to introduce three further comments before the formal statement of the algorithm.
We first note that once a restricted trust-region problem (3.12) has been solved at leveli, this

means that the correspondingλ can be used as a lower bound for all higher levels. No further
updating ofλ is therefore necessary at this level and all lower ones, but we may nevertheless
continue to exploit leveli in the multigrid solution of the linear systems occurring athigher lev-
els. The fact that a solution at leveli has already been computed is remembered in our algorithm
by setting the flagissolvedi . (For coherence, we define these flags for levels 1, . . . , p+ 1.)

Our second comment is that we still need to define stopping criteria for the multigrid solu-
tion of (3.12). A first criterion is obviously to terminate the iterations when the residual of the
system is sufficiently small. In practice, we choose to stop the solution ofthe system as soon as

‖r i,k‖ = ‖−gi − Hi(λ)si,k‖ ≤ ǫr ,

with ǫr ∈ (0, 1). However, we might need to introduce a second stopping rule. It may indeed
happen that, for a currentλ (too small), the step resulting from the system has ai-norm exceed-
ing ∆. It is of course wasteful to iterate too long to discover, upon termination, that we have
to throw the solution away. In order to avoid this wasteful calculation, we exploit the fact that
the norm of the multigrid iterates is typically increasing as the iterations proceed. Thus, if this
norm exceeds∆ by some thresholdD++, we decide to terminate the iterative process (and subse-
quently increaseλ). However, we must be careful not to alter the lower and upperbounds onλ
in this subsequent update, because of the possible inaccuracy generated by the early truncation
of the system and the absence of any monotonicity guarantee (at variance with methods like
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truncated conjugate-gradients, see Steihaug [62]). Unfortunately, it is also possible that noλ in
the current interval produces a sufficiently small step. In this case,λ grows and becomes arbi-
trarily close to its upper bound. We avoid this situation by increasing our threshold wheneverλ
is within ǫλi of λU

i .
Finally, we have to propagate changes inλ between levels. Thus, if we have just updatedλ+

and the old one wasλ−, we have that

Hi(λ
+) = Hi(λ

−) + (λ+ − λ−)MiQi . (3.18)

Similarly, taking into account that each residual at levelℓ is computed with respect to the linear
system at levelℓ + 1, we have that the residual at iteration k, leveli, can be computed by the
formula

r i,k = −Mig+
p

∑

ℓ=i+1

MℓHℓ(λ)sℓ, (3.19)

whereg is the gradient, which is the right-hand side of the linear system at the topmost level, and
sℓ is the current step computed at each levelℓ = i + 1, . . . , p. By substituting (3.18) into (3.19),
one may verify that the residual update satisfies

r i,k+1 = −Mig+
p

∑

ℓ=i+1

MℓHℓ(λ
+)sℓ

= −Mig+
p

∑

ℓ=i+1

Mℓ[Hℓ(λ
−) + (λ+ − λ−)MℓQℓ]sℓ

= r i,k − (λ+ − λ−)
p

∑

ℓ=i+1

M2
ℓQℓsℓ.

(3.20)

We now present the complete multigrid algorithm for the solution of the trust-region sub-
problem, the Multigrid Moré-Sorensen (MMS) Algorithm on 3.3.1 on the next page. Note that
for each leveli, we start by unsettingissolvedi .

Some comments on this algorithm are necessary at this point.

1. The algorithm is called form the virtual levelp + 1, after an initialization phase which
computes, once and for all and for every level, the values ofD+ = (1+ǫ∆)∆, D− = (1−ǫ∆)∆
andD++ = σiD+ for someǫ∆ ∈ (0, 1). A level-dependent feasible interval [λL, λU

i ] is also
computed at this stage. The (global) lower boundλL is set to the maximum between 0
and the opposite of the approximation of the most negative eigenvalue produced by the
RQMG algorithm; the upper bound is calculated, for each level, exactly as for the Moré-
Sorensen algorithm (see Conn et al. [12], page 192), using the appropriate restrictions of
the gradient and Hessian to the considered level. An initialvalue ofλ ∈ [λL, λU

i ] is finally
computed using (3.17) before the call to MMS proper.

2. We may essentially identify Steps 0 to 5 as a classical multigrid solver for a linear system
whenissolvedi is set. The remaining contain the update to theλ parameter, broadly
following the Moré-Sorensen method.
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Algorithm 3.3.1: [ si,∗,λi] =MMS( i, Hi , r i,0,∆, λL, λ, si,0, issolvedi )

Step 0. Initialization. Setk = 0.

Step 1. Iteration Choice. If i = 1, go to Step 3. Otherwise, if (3.10) fails, go to Step 4
(Smoothing iteration). Else, choose to go to Step 2 or to Step4.

Step 2. Recursive Iteration. Call MMS recursively as follows:

[ei−1,∗, λi−1] = MMS(i − 1,Hi−1, r i−1,0,∆, λ
L, λ, 0i−1, issolvedi−1)

wherer i−1,0 is computed as in (3.9). Computesi,k+1 = si,k + Piei−1,∗. If issolvedi

is unset, i.e. this is the first time we perform a recursive iteration at this level, set
λL = λi−1, chooseλ ∈ [λL, λU

i ] using (3.17), updateHi(λ) using (3.18) andr i,k+1

using (3.20) and setissolvedi . Go to Step 5.

Step 3. Exact Iteration. If issolvedi+1 is unset, call the Moré-Sorensen algorithm
(3.1.1), returning with solution [si,∗,λi] = MS(Hi(λ),r i,0,∆,ǫ∆), and setissolvedi .
Otherwise, just solve the systemHi(λ)si,∗ = r i,0 exactly by Cholesky factorization of
Hi(λ) and return with solution (si,∗, λ).

Step 4. Smoothing Iteration. Apply µ smoothing cycles on the residual equation (3.8)
yielding si,k+1, setr i,k+1 = r i,k + Hi(λ)(si,k+1 − si,k) and go to Step 5.

Step 5. Termination. If ‖r i,k+1‖ < ǫr andissolvedi+1 is set, returnsi,k+1 andλ. Else, go
to Step 1 ifissolvedi+1 is set or if‖r i,k+1‖ ≥ ǫr and‖si,k+1‖i ≤ D++.

Step 6. Parameter update after full system solution.
If ‖r i,k+1‖ < ǫr (andissolvedi+1 is unset),

Step 6.1: step threshold update.If λU
i − λ < ǫλi , setD++ = 2D++.

Step 6.2: interior solution test. If λ = 0 and‖si,k+1‖i < D+, or if λ ≥ 0 andD− ≤
‖si,k+1‖i ≤ D+, return with solutionsi,∗ = si,k+1 andλi = λ.

Step 6.3: parameter and interval updates.If ‖si,k+1‖i > D+, set λL = λ. If
‖si,k+1‖i < D−, setλU

i = λ. Compute a newλ ∈ [λL, λU
i ] using (3.15) or (3.16).

Step 6.4: reset the step.Setsi,k+1 = 0, r i,k+1 = r i,0, updateHi(λ) using (3.18), and
go to Step 1.

Step 7: Parameter update after incomplete system solution.
If ‖r i,k+1‖ ≥ ǫr (and‖si,k+1‖i > D++),

Step 7.1: parameter update.compute a newλ ∈ [λ, λU
i ] using (3.15) or (3.16).

Step 7.2: reset the step.Setsi,k+1 = 0, r i,k+1 = r i,0, updateHi(λ) using (3.18), and
go to Step 1.
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3. As explained in Chapter 2, the linear system (3.2) is solved by computing a correction at
coarse levels to the steps already computed at finer ones. Ourrestriction strategy produces
an algorithm analog to the application, in our nonlinear context, of the Full Multigrid
scheme.

4. We have not specified the details of the smoothing procedure in Step 4. In our experi-
ments, we have used the Gauss-Seidel smoother, a classic in multigrid solvers (see Sec-
tion 2.3.2 or Briggs et al. [3], page 10).

3.4 Numerical Experience

In this section we present some numerical results obtained by two variants of the MMS
method applied in a trust-region algorithm (Algorithm 1.4.1 on page 23) for the four test prob-
lems described in Section A.1 involving three-dimensionaldiscretizations. Some of these prob-
lems were also tested in Gratton et al. [26] in their two-dimensional formulation. All problems
presented here are defined on the unit three-dimensional cube S3 and tested with a fine dis-
cretization of 633 variables, and we used 4 levels of discretization. The Laplacian operator is
obtained from the classical 7-points pencil. The prolongation operator is given by linear in-
terpolation, and the restriction as its normalized (in the‖·‖1 norm) transpose, thereby defining
σi = ‖Pi‖1. We briefly review these test problems below.

3.4.1 Numerical Results

We discuss here results obtained by applying the simple BTR trust-region method described
in Algorithm 1.4.1 for the minimization of four problems described in Section A.1 of the Ap-
pendix, in which the subproblem is solved(2) at each iteration by one of three multigrid variants
of the Moré-Sorensen algorithm. The first variant (MMS-secant) is the the MMS algorithm
presented in this paper, where we use the secant approach (3.16) to solve the secular equation.
The second (MMS-Newton) is the same method, but using Newton’s method (3.15) instead of
(3.16). The third (naive MMS-secant) is a simpler version ofMMS-secant in which we do not
use information onλ from lower levels. In this variant, we solve the Moré-Sorensen system
(3.2) by multigrid instead of using Cholesky factorizationof the Hessian, but we only change
λ at the topmost level. This is equivalent to settingissolvedi for all levels i < p + 1. We
updateλ by using the secant method on the secular equation, as described above. All runs were
performed in Matlab v.7.1.0.183 (R14) Service Pack 3 on a 3.2GHz Intel single-core processor
computer with 2 Gbytes of RAM, using the parameters

µ = 5, ǫ∆ = 0.1, ǫr = 10−6, θ = 10−4, and ǫλi = 0.01|λU
i − λL|.

Our results are shown in Table 3.1. In this table, #λ stands for the weighted number of
λ-updates, where each update is weighted proportionally to the dimension of the subspace in
which the update is performed. Similarly, #R stands for the weighted number of restrictions

(2)We require the Euclidean norm gradient of the objective function to be at most 10−6 for termination.
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performed by the algorithm. This last number indicates how many recursive iterations were used
to find the solution of the linear system over the course of optimization. The CPU reported (in
seconds) is the average trust-region subproblem solution time over all optimization iterations.

Naive MMS-secant MMS-secant MMS-Newton

#λ CPU #R #λ CPU #R #λ CPU #R

3D-1 17.3 5.7 (5) 65.6 9.2 4.8 (5) 46.4 7.5 10.5 (5) 34.1

3D-2 17.2 6.1 (6) 85.8 11.2 5.3 (7) 72.8 11.1 14.8 (6) 59.4

C-D 17.3 6.9 (6) 73.3 8.6 5.4 (6) 53.6 7.9 11.9 (6) 42.0

3D-BV 41.0 434.4 (18) 474.4 23.9 465.4 (20) 279.2 30.3 452.7 (18) 13.6

Table 3.1: Results for three variants of the MMS method.

These results clearly demonstrate that the MMS-secant version of our algorithm performs
much better than the naive version in terms of the number ofλ-updates required to solve all
the trust-region subproblems in an optimization run. The conclusion in terms of CPU time
remains favorable for MMS-secant, even if care must be exercised here given the inaccuracy of
the Matlab timer. This suggests that information obtained at lower levels is, in fact, useful for
the solution of the problem and should therefore be exploited. We also note that MMS-Newton
does not offer a significant advantage over MMS-secant. Even if lessλ-updates are needed
to find the solution, these updates are computationally muchmore expensive than the simple
secant ones since a linear system must be solved by multigridfor in each update, resulting in an
overall slower algorithm. It is also important to note that the last problem is non-convex, and
thus requires much more time to be solved. This is also due to the fact that, in this case, we
have to compute an initialλL using an estimate of the smallest eigenvalue of the Hessian in each
BTR iteration by means of the RQMG algorithm, as discussed inthe previous section. We note
again that this is not needed in other strategies based in factorization methods (as is the case in
Dollar et al. [15]) since the factorization itself is able todetect indefiniteness.

This new method for the exact solution of the trust-region subproblem is suitable for large
scale systems where the Moré-Sorensen method cannot be applied, for instance because fac-
torizations are too costly or impossible. This method exploits the multigrid structure in order
to extract curvature information from the coarse levels to speed up the computation of the La-
grange parameter associated with the subproblem.

We have presented some admittedly limited numerical experience, which shows the poten-
tial for the new method, both because it demonstrates that sizable three-dimensional applica-
tions can be considered and because it outperforms a too naive multigrid implementation of the
basic Moré-Sorensen algorithm.



Chapter 4

Recursive Multilevel Trust-Region
Methods

Despite the many advantages of trust-region methods already mentioned here and in the
literature, it is clear that applications demand the ability to solve bigger problems every day. In
Chapter 3, we have described one possibility for the exploitation of this structure that is inherent
to the problem in a trust-region framework.

However, the application of the multigrid philosophy to thesolution of the trust-region sub-
problem is not the only possible way of exploiting this multilevel structure. Recently, several
authors have proposed methods that take multilevel hierarchies into account for the solution of
optimization problems, such as Fisher [17], Nash [47], Lewis and Nash [40, 41], and Oh et al.
[51]. Kornhuber [35, 36, 37] also developed a method of this type for possibly non-smooth
convex bound-constrained problems in the finite-element context. Convergence of this multi-
grid method is ensured by the successive minimization alongcoordinate directions generated in
Gauss-Seidel-like smoothers, thereby avoiding the need ofexplicit globalization.

On the other hand, the recursive Euclidean-norm trust-region algorithm for general multi-
level unconstrained nonconvex minimization provides the first globally convergent framework
for the application of multigrid-type mechanisms to this class of problems. Moreover, the nu-
merical experiments with this algorithm are very good (see Gratton et al. [26]).

In this chapter, we will describe two versions of the Recursive Multilevel Trust-Region class
of methods for nonlinear optimization problems. First, in Section 4.1, we briefly discuss the
first multilevel strategy for the trust-region method, presented in Gratton et al. [25], which is
essentially different from the strategy presented in Chapter 3. Then, in Section 4.2 we present
a complete description of theℓ∞-norm version of the recursive multilevel trust-region method
for both unconstrained and bound-constrained problems, and in Section 4.2.2 we present the
convergence results obtained for this method, first presented in Gratton et al. [24]. Finally, we
cite some of the numerical results that one might expect to obtain with this method in practice,
presented originally by Gratton et al. [26].

63
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4.1 The Recursive Multilevel Trust-Region Method in Eu-
clidean Norm

Here, we are interested in the solution of problems of the type (1.1). This problem is viewed
as an accurate representation of a more general underlying problem (such as, for instance, a
contact problem in infinite dimensions). Since our interestis in the multilevel case, we also
suppose, like we did in Section 3.2 in Chapter 3, that we know aset of functions{ fi}ri=0 which
give alternative and potentially less accurate descriptions of the same underlying problem. Each
of thesefi is assumed to be itself a twice continuously differentiable function from IRni to IR
(with ni ≥ ni−1), nr = n and fr(x) = f (x) for all x ∈ IRn. Each of these descriptions is said to
define alevel, which we index byi. As we did before, we also assume that, for eachi = 1, . . . , r,
there exists an operatorRi : IRni → IRni−1 (therestriction) and another operatorPi : IRni−1 → IRni

(theprolongation) such that

RT
i = σiPi (4.1)

for some known constantσi > 0. The prolongations and restrictions therefore define a hierarchy
of levels, from lowest (i = 0) to highest (i = r).

As mentioned in Chapter 1, classical trust-region methods are based on a quadratic Taylor’s
model for f , given by

mk(xk + s) = f (xk) + 〈gk, sk〉 +
1
2
〈s,Hks〉. (4.2)

In this case, since the solution of the problem at each leveli is assumed to be more costly than
the solution of the problem at leveli − 1, the idea is that we usefi−1 to build a modelhi−1 for fi.
Thus, at iterationk at leveli (with iteratexi,k), if we choose to use the coarser-level modelhi−1,
we must first restrict the iterate to obtain a starting point at level i − 1 by defining

xi−1,0 = Ri xi,k.

Then, we define the coarser-level model as

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉 (4.3)

where

vi−1 = Rigi,k − ∇ fi−1(xi−1,0),

with gi,k
def
= ∇hi(xi,k) (and wherevr

def
= 0).

The definition ofhi−1 then enforces the relation

gi−1,0 = Rigi,k, (4.4)

which is a property that will play a crucial role in the convergence theory of this method, and
which ensures that the first-order behavior ofhi andhi−1 aroundxi,k is coherent. Furthermore, it
implies that, if

si = Pi−1si, (4.5)
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then using (4.1) and (4.4)(1), we have that

〈gi,k, si〉 = 〈gi,k,Pi si−1〉 = 〈Rigi,k, si−1〉 = 〈gi−1,0, si−1〉.

Thus, when entering leveli = 0, . . . , r, we must minimizehi starting fromxi,0. At iterationk of
this process, we can choose a model between (4.3) and

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉 +
1
2
〈si ,Hi,ksi〉, (4.6)

which is just the rewriting of the usual Taylor model (4.2) inour multilevel context, and where
Hi,k approximates the second derivatives ofhi (which are also the second derivatives offi) at
xi,k.

Once the model is chosen, we compute a stepsi,k that satisfies a sufficient decrease condition
within a trust region defined by

Bi,k
def
= {si | ‖si‖i ≤ ∆i,k},

for some trust-region radius∆i,k > 0, where the norm{·}i is defined for some symmetric positive
definite matrixMi at eachi as

‖si‖i
def
=

√

〈si,Mi si〉 = ‖si‖Mi .

If we choose model (4.6), it suffices to use one of the trust-region subproblem solving methods
described in Chapter 3 to obtainsi,k, which will then satisfy the sufficient decrease condition

mi,k(xi,k −mi,k(xi,k + si,k) ≥ κred‖gi,k‖2 min

[ ‖gi,k‖2
1+ ‖Hi,k‖2

,∆i,k

]

(4.7)

for some constantκred ∈ (0, 1). This is, again, just (1.55) rewritten in a multilevel context.
On the other hand, if the modelhi−1 is chosen, the minimization of this model yields a new

point xi−1,∗ which is then prolongated into leveli through (1.55). By defining

Mi−1
def
= PT

i MiPi for all i,

we have then that

‖si‖i = ‖si−1‖i−1

and thus the trust region at leveli − 1 is defined by

‖xi−1,∗ − xi−1,0‖i−1 ≤ ∆i,k.

The coarser-level trust-region subproblem is then defined as

min
‖si−1‖i−1≤∆i,k

hi−1(xi−1,0 + si−1). (4.8)

(1)This gives us a hint as to why condition (4.1) was important also for multigrid methods in Chapter 2.
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Some care must be taken in order to exploit this coarse-leveldefinitions as it might be the
case, for example, thatRigi,k is zero, even ifgi,k is not. Thus, it is useful to require that we only
use the coarse leveli − 1 if

‖Rigi,k‖2 ≥ κg‖gi,k‖2 and‖Rigi,k‖2 > ǫgi−1, (4.9)

for constantsκg ∈ (0,min[1,mini‖Ri‖2]) andǫgi−1 ∈ (0, 1).
We describe the recursive multilevel trust-region method as defined in Gratton et al. [25] in

Algorithm 4.1.1. The constantsη1, η2, γ1 andγ2 are defined as in 1.51 on page 23. We assume
that an initial trust-region radius∆s

i > 0 is known for each leveli, as well asǫgi ∈ (0, 1) and
trust-region tolerancesǫ∆i ∈ (0, 1). For coherence, we consider the algorithm to be called from
a virtualr + 1-st level where∆r+1,0 = ∞.

The test (4.10) and the requirement (4.12) are imposed as a way to maintain the iterates
inside the fine-level trust region. These two requirements can end up being overly restrictive,
and will be one of the main motivations for ourℓ∞-norm version of the RMTR method. Another
motivation is the fact that computing the norm-matricesMi and the norms‖·‖i at each leveli
might be rather expensive.

Despite these possible problems, this method enjoys a complete global first-order conver-
gence theory that includes a bound on the number of iterations that are required to find an
approximate critical point of the objective function within a prescribed accuracy.

4.2 Theℓ∞-norm Recursive Multilevel Trust-Region Method

While theoretically satisfying and practically acceptable, the choice of the Euclidean norm
for the trust region definition is not without drawbacks. Firstly, the Euclidean trust regions do
not mix naturally with bound-constrained problems, because the intersection of the trust region
(a Euclidean ball) with the feasible domain for bounds (a box) has a complicated structure.
Moreover, the combination of Gauss-Seidel-like smoothingiterations with the Euclidean trust
region is unnatural because the smoothing steps consider one variable at a time and are therefore
aligned with the coordinate directions. In addition, more technical complications also arise from
the fact that the step at a lower level must at the same time be included in the current-level trust
region and be such that its prolongation at higher level(s) is included in the higher level(s)
trust region(s). As discussed in Gratton et al. [25], this double requirement implies the use of
computationally expensive preconditioners and a special technique for updating the trust region
radii which in turn sometimes inefficiently limits the step size.

In order to allow for bound constraints and avoid these technical difficulties, an alternative
multilevel algorithm for bound-constrained optimizationcan be defined using theℓ∞ norm for
the trust region definition. Moreover, smoothing iterations which explore directions aligned
with the coordinate vectors can be easily integrated.

Unfortunately, the convergence theory presented in Gratton et al. [25] for RMTR cannot be
applied to this case without significant modifications, not only because of the possible presence
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Algorithm 4.1.1: RMTR (i, xi,0, gi,0, ∆i+1, ǫ
g
i , ǫ∆i , ∆s

i )

Step 0: Initialization. Computevi = gi,0 − ∇ fi(xi,0) andhi(xi,0). Set∆i,0 = min[∆s
i ,∆i+1]

andk = 0.

Step 1: Model choice.If i = 0 or if (4.9) is not satisfied, go to Step 3. Otherwise, choose
to go to Step 2 (recursive step) or to Step 3 (Taylor step).

Step 2: Recursive step computation.Call Algorithm RMTR(i − 1, Ri xi,k, Rigi,k, ∆i,k, ǫ
g
i ,

ǫ∆i , ∆s
i−1), yielding an approximate solutionxi−1,∗ of (4.8). Then definesi,k =

Pi(xi−1,∗ − Ri xi,k), setδi,k = hi−1(Ri xi,k) − hi−1(xi−1,∗) and go to Step 4.

Step 3: Taylor step computation. ChooseHi,k and compute a stepsi,k ∈ IRni that suf-
ficiently reduces the modelmi,k given by (4.6) in the sense of (4.7) and such that
‖si,k‖i ≤ ∆i,k. Setδi,k = mi,k(xi,k) −mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point. Computehi(xi,k + si,k) and define

ρi,k =
hi(xi,k) − hi(xi,k + si,k)

δi,k
.

If ρi,k ≥ η1, then definexi,k+1 = xi,k + si,k. Otherwise, definexi,k+1 = xi,k.

Step 5: Termination. Computegi,k+1. If ‖gi,k+1‖2 ≤ ǫgi or

‖xi,k+1 − xi,0‖i > (1− ǫ∆i )∆i+1, (4.10)

then return with the approximate solutionxi,∗ = xi,k+1.

Step 6: Trust-region radius update. Set

∆+i,k =























[∆i,k,+∞) if ρi,k ≥ η2,

[γ2∆i,k,∆i,k] if ρi,k ∈ [η1, η2),
[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(4.11)

and
∆i,k+1 = min

[

∆+i,k,∆i+1 − ‖xi,k+1 − xi,0‖i
]

. (4.12)

of bounds, but also because the algorithm analyzed in these references is itself very dependent
on the choice of the Euclidean norm. Our second purpose is thus to prove global convergence of
the new algorithm to first-order critical points, that is convergence from arbitrary starting points
to limit points satisfying the first-order optimality conditions.
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4.2.1 The problem and algorithm

In what follows, we wish to solve the bound-constrained minimization problem

min
x∈IRn

f (x),

such that l ≤ x ≤ u
(4.13)

where the≤ signs (here and below) are understood component-wise, where l andu are vectors
in IRn such thatl ≤ u, and wheref : IRn → IR is a twice continuously differentiable function
which is bounded below on the feasible set{x ∈ IRn | l ≤ x ≤ u}.

Trust-region methods compute a step by minimizing a model ofthe objective function in
the trust region, but since we are dealing with bound-constrained problems, we also choose to
keep our iterates feasible throughout the process, which implies that the model minimization
must take place in the intersection of the feasible set of (4.13) with the trust region. As already
mentioned in Section 3.1.3 in Chapter 3, since the feasible set is a box, it is much simpler to
define the trust region with theℓ∞ norm. Thus, in the classical (single level) case, the step from
the iteratexk (at iterationk) is thus obtained from the (possibly approximate) solutionof the
subproblem

min
s∈Bk

mk(xk + s),

such that l ≤ xk + s≤ u

wheremk(xk + s) is the objective function’s model aroundxk and the trust regionBk is defined
as

Bk = {s ∈ IRn | ‖s‖∞ ≤ ∆k},

and where the feasible set is defined as

F def
= {x ∈ IRn | l ≤ x ≤ u}.

We then minimize the (potentially nonquadratic) modelfr−1 using a trust-region algorithm
at levelr − 1, whose iterationℓ therefore features its own box-shaped trust-regionBr−1,ℓ. This
minimization is carried under a set of constraints inherited from levelr and from the initial point
xr−1,0 = Rr xr,k, until some approximate constrained minimizerxr−1,∗ is found. The resulting step
is then prolongated to levelr by computing

sr,k = Pr(xr−1,∗ − xr−1,0).

The main difficulty is to specify the form of the constraints inherited from the upper level.
First of all, the resulting feasible set (at the lower level)must be a box in order to preserve the
coherence and efficiency of the algorithm across levels. We also wish to guarantee the feasibility
at the upper levelof the prolongated trial pointxr,k + sr,k with respect to the bound constraints.
Finally, we would like to ensure that this trial step lies within the upper-level trust regionBr,k.
Unfortunately,the prolongation of the restriction of a box at level r back tolevel r is in general
not included in the original box, as shown in Figure 4.1.

We are thus forced to alter our technique for representing anupper-level box at the lower
level if we insist that its prolongation satisfies the constraints represented by the upper-level



4.2 Theℓ∞-norm Recursive Multilevel Trust-Region Method 69

1 2 3 4 5 6 7 8 9

0

1

2

3

1 2 3 4 5 6 7 8 9

0

1

2

3

1 2 3 4 5 6 7 8 9

0

1

2

3

Figure 4.1:Prolongation and restriction of bounds. In this figure, one considers the set of continuous functions
φ(t) for t ∈ [1, 9] with a zero lower bound and an upper bound given by 2+ cos(πt/3). The vertical bars in the
upper graph show the possible ranges for the valuesφ(1), . . . , φ(9) for such functions, considered here as problem
variables. The vertical bars in the middle graph show the ranges obtained by applying the restriction operator
(corresponding to the normalized transpose of the linear interpolation for a coarser grid of 4 discretization points)
to the set of bounds obtained in the upper graph. The verticalbars in the lower graph finally correspond to applying
the prolongation (linear interpolation) to the bounds obtained in the middle graph. One notices that these latter
ranges arenot always included in the original ranges of the upper graph.

box. This is highly desirable for the upper-level boxFr defining the original bound constraints
of the problem, because we wish to preserve feasibility at all levels. On the other hand, we
might accept some flexibility for the lower-level box corresponding to the upper-level trust
regionBr,k, because one expects that a step whose norm is proportional to the trust-region size
would be enough to ensure convergence (even if strict inclusion does not hold) without being
unduly restrictive. Thus we are lead to a two-pronged strategy, where we separately represent,
on one hand, the bound constraints at the lower level in a way guaranteeing feasibility of the
prolongated step, and, on the other hand, the upper trust region, possibly more loosely.

If Fr−1 is the representation of the bound constraints at the lower-level andAr−1 that of the
upper trust region, then the step at iterationℓ of the lower-level minimization must be included
in the box

Wr−1,ℓ
def
= Fr−1 ∩Ar−1 ∩ Br−1,ℓ. (4.14)

We discuss below howFr−1 andAr−1 are computed.
If more than two levels are available (r > 1), the same technique can be applied recursively,

the process stopping at level 0, where there is no coarser model, and thus Taylor’s model is
always used. Let us consider the details of this process in this more general situation. Consider
iterationk at leveli, and assume thatxi,k is an iterate in the minimization offi inside an iteration
q at leveli + 1 wherefi has been chosen as a model forfi+1 (i.e. a recursive iteration).
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We start by considering the representation of the problem’sbounds at lower levels. At level
i, we define

Fi
def
= {x | l i ≤ x ≤ ui} (4.15)

the “restricted” feasible domain, where

[l i] j
def
= [xi,0] j +

1
‖Pi+1‖∞

max
t=1,...,ni+1

{

[l i+1 − xi+1,q]t when [Pi+1]t j > 0
[xi+1,q − ui+1]t when [Pi+1]t j < 0

}

(4.16)

and

[ui] j
def
= [xi,0] j +

1
‖Pi+1‖∞

min
t=1,...,ni+1

{

[ui+1 − xi+1,q]t when [Pi+1]t j > 0
[xi+1,q − l i+1]t when [Pi+1]t j < 0

}

(4.17)

for j = 1, . . . , ni. The idea behind this generalization of the definition by Gelman and Mandel
[18], originally stated for more specific prolongation operators(2), is to use the structure ofPi+1

to compute a coarse set of boundsFi in order to guarantee that its prolongation is feasible for
the fine level, that is

l i+1 ≤ xi+1 + Pi+1(l i − xi) ≤ xi+1 + Pi+1(ui − xi) ≤ ui+1

for all xi+1 ∈ Fi+1, for all xi ∈ Fi. This property is proved in Lemma 4.2.3 below. Figure 4.2
on the facing page shows the application of the (generalized) Gelman-Mandel’s coarse bounds
and their prolongation on the example of Figure 4.1.

We now turn to the representation of the upper trust region atthe lower level. At leveli we
also define

Ai = {x | vi ≤ x ≤ wi}, (4.18)

the restriction of the trust-region constraints inheritedfrom levels r to i + 1 throughxi+1,q,
computed using the restriction operatorRi+1. The j-th components ofvi andwi are

[vi] j =

ni+1
∑

u=1,[Ri+1] ju>0

[Ri+1] ju[max(vi+1, xi+1,q − ∆i+1,qe)]u

+

ni+1
∑

u=1,[Ri+1] ju<0

[Ri+1] ju[min(wi+1, xi+1,q + ∆i+1,qe)]u

(4.19)

and

[wi] j =

ni+1
∑

u=1,[Ri+1] ju>0

[Ri+1] ju[min(wi+1, xi+1,q + ∆i+1,qe)]u

+

ni+1
∑

u=1,[Ri+1] ju<0

[Ri+1] ju[max(vi+1, xi+1,q − ∆i+1,qe)]u

(4.20)

(2)The original formulation is restricted to the case where||Pi+1||∞ ≤ 1 andPi+1 > 0, and is given by

[l i ] j
def
= [xi,0] j + max

t=1,...,ni+1:[Pi+1]t j>0
[l i+1 − xi+1,q] t,

[ui] j
def
= [xi,0] j + max

t=1,...,ni+1:[Pi+1]t j>0
[xi+1,q − ui+1] t.

We extend this definition to cover prolongation operators with ||Pi+1||∞ > 1 and also to handle negative elements in
Pi+1 (as in cubic interpolation, for instance), which imposes taking both upper and lower bounds at the upper level
into account for the definition of the upper and lower bounds at the coarse level.
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Figure 4.2:Prolongation of Gelman and Mandel’s bounds for the same example as in Figure 4.1. As in this
figure, the vertical bars in the upper graph show the possibleranges for the valuesφ(1), . . . , φ(9). The vertical
bars in the middle graph now show the ranges obtained by deriving the generalized Gelman and Mandel’s bounds
from the set of bounds obtained in the upper graph, and the vertical bars in the lower graphs finally correspond to
applying the prolongation (linear interpolation) to the bounds obtained in the middle graph.

(we definevr = −∞ andwr = +∞ for consistency).
Notice that, as allowed in our above discussion, the choice of using Ri to restrict these

bounds implies that iterates at leveli are not necessarily included in the leveli trust region
anymore but cannot be very far from it. Indeed, recalling that ||Ri ||∞ = 1 for i = 1, ..., r, we have
that

‖xi,k+1 − xi,k‖∞ ≤ ‖Pi‖∞‖xi−1,∗ − xi−1,0‖∞. (4.21)

If the trust region at leveli around iteratexi,k is defined by

Bi,k = {xi,k + s ∈ IRni | ‖s‖ ≤ ∆i,k},

we then have to find a stepsi,k which sufficiently reduces a model offi in the region

Wi,k = Fi ∩Ai ∩ Bi,k. (4.22)

Observe that the setWi,k can either be viewed both asWi,k = Li ∩ Bi,k, the intersection of
a level dependent domainLi = Fi ∩ Ai with an iteration dependent trust-regionBi,k, or as

Wi,k = Fi∩Si,k, the intersection ofFi, the feasible set for hard constraints, withSi,k
def
= Ai∩Bi,k,

the feasible set for soft ones. This last set can be interpreted as a “composite” trust region which
includes all constraints imposed by trust regions at leveli and higher. Note that all the involved
sets are boxes, which makes their representation and intersection computationally easy.

Figure 4.3 on the next page illustrates the process to compute a recursive step in the example
already used in Figures 4.1 and 4.2. In this figure, the valuesof the variables at successive
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The iteratexr,k, and the setsFr (thick lines),Ar = IR9 andBr,k (brackets) are given at levelr:
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0
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3

1) computeSr,k = Ar ∩ Br,k (thin boxes) at levelr:

1 2 3 4 5 6 7 8 9
−1

0
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3

2) restrict the problem: computexr−1,0 = Rxr,k, Fr−1 (thick lines) andAr−1 (thin boxes) at levelr − 1:
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0
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3) computeLr−1 = Fr−1 ∩Ar−1 (fat boxes) and addBr−1,0 (brackets) at levelr − 1:
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4) perform some iterations at levelr − 1, yieldingxr−1,∗ (circle) andBr−1,∗(new brackets):
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−1

0
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3

5) computexr−1,∗ − xr−1,0 (arrows), the total step at levelr − 1:

1 2 3 4 5 6 7 8 9
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0
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3

6) prolongate the step (arrows) and compute the level-r trial point xr,k + P(xr−1,∗ − xr−1,0) .
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Figure 4.3:The definition of the various sets and the step computation for the example of Fig. 4.1.
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iterates are shown by horizontally barred circles and the steps by arrows. Trust-region bounds
on each variable are shown with vertical brackets, the setsSr,k andAr−1 by thin vertical boxes,
the setLr−1 by fatter vertical boxes and the setsFr andFr−1 by thick lines. At stage 3,Wr−1,0 is
given by the intersection of the fat boxes representingLr with the brackets representingBr−1,0.

OnceWi,k is known, we then choose a model forfi+1 as one of

mi+1,q(xi+1,q + si+1) = fi+1(xi+1,q) + 〈gi+1,q, si+1〉 +
1
2
〈si+1,Hi+1,qsi+1〉, (4.23)

the usual truncated Taylor series forfi+1 (with gi+1,q = ∇ fi+1(xi+1,q) andHi+1,q being a symmetric
approximation of∇2 fi+1(xi+1,q)), or fi. As discussed below, this freedom of choice is crucial for
the application of multigrid-type techniques in our context. In the latter case, we assume that
fi+1 and its coarse modelfi arefirst order coherent, that isgi,0 = Ri+1gi+1,q. This assumption is
not restrictive, as we can always choose a first order coherent coarse model offi+1 by adding a
gradient correction term tofi as in

fi(xi,0 + si) + 〈Ri+1gi+1,q − ∇ fi(xi,0), si〉.

If one chooses the modelfi (which is only possible ifi > 0), the determination of the step
then consists in (approximately) solving the lower-level bound-constrained problem

min
xi,0+s̃i∈Li

fi(xi,0 + s̃i). (4.24)

This minimization produces a stepsi such thatfi(xi,0+ si) < fi(xi,0) which must be then brought
back to leveli + 1 by the prolongationPi+1, i.e. si+1 = Pi+1si. Note that

〈gi+1,q, si+1〉 = 〈gi+1,q,Pi+1si〉 =
1
σi+1
〈Ri+1gi+1,q, si〉. (4.25)

As the decrease offi achieved bysi can be approximated to first-order byfi(xi,0)− fi(xi,0+ si) ≈
〈gi,0, si〉 = 〈Ri+1gi+1,q, si〉, the decrease of the model at leveli + 1 when computing steps at level
i is computed, using (4.25), as

[

fi(xi,0) − fi(xi,0 + si)
]

/σi+1.
But does it always make sense to use the lower level model? Theanswer obviously depends

on the benefit expected from the solution of (4.24). In RMTR, as described in the previous sec-
tion, it sufficed to test if‖gi,0‖2 = ‖Ri+1gi+1,q‖2 was large enough compared to‖gi+1,q‖2. However,
this criticality measure is inadequate in our context because (4.24) is now a bound-constrained
problem. Thus, we choose to follow Conn et al. [12] and use, for eachxi+1,q ∈ Li+1, the critical-
ity measure(3) defined by

χi+1,q
def
= χ(xi+1,q) = | min

xi+1,q+d∈Li+1
‖d‖≤1

〈gi+1,q, d〉|
def
= |〈gi+1,q, di+1,q〉|. (4.26)

Then if the restriction of the problem from the non-criticaliteratexi+1,q at leveli + 1 to leveli is
not already first-order critical, that is if

χi,0 ≥ κχχi+1,q, (4.27)

(3)Other criticality measures are possible, such asµi+1,q = ‖Proji+1,q(xi+1,q − gi+1,q) − xi+1,q‖2 where Proji+1,q is
the orthogonal projection onto the boxLi+1 but we will not investigate this alternative here.
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for some constantκχ ∈ (0, 1), we may proceed at this lower level. Otherwise, the recursion is
useless and we should use (4.23) instead.

Once we have decided to approximately solve (4.24), we must also decide what we mean
by “approximately”. We choose to terminate the minimization at levelr if χr,k ≤ ǫr for some
ǫr > 0 and, in the spirit of (4.27), to terminate the lower level minimization at iterate (i, p) as
soon as the inequality

χi,p < ǫi
def
= κχǫi+1, (4.28)

holds. We then definexi,∗ = xi,p, si = xi,∗ − xi,0 andsi+1,q = Pi+1si.
If, on the other hand, we decide at iteration (i + 1, q) to use Taylor’s modelmi+1,q given

by (4.23), a stepsi+1,q is then computed that produces a sufficient decrease in the value of this
model in its usual meaning for trust-region methods with convex constraints (defined here by
the setLi+1), that is,si+1,q is such that it satisfies

mi+1,q(xi+1,q) −mi+1,q(xi+1,q + si+1,q) ≥ κredχi+1,q min

[

1,
χi+1,q

βi+1,q
,∆i+1,q

]

, (4.29)

for some constantκred ∈ (0, 1
2) andβi+1,q

def
= 1+ ‖Hi+1,q‖∞,1, where‖A‖∞,1

def
= maxx,0

{

‖Ax‖1
‖x‖∞

}

, for all
matricesA. Despite its apparently technical character, this requirement, known as the modified
Cauchy condition, is not overly restrictive and can be guaranteed in practical algorithms, as
described for instance in Section 12.2.1 of Conn et al. [12].

We now specify our algorithm formally, as Algorithm RMTR∞ on the facing page. It uses
the constants 0< η1 ≤ η2 < 1 and 0< γ1 ≤ γ2 < 1 and∆s

i (i = 0, . . . , r).
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Algorithm 4.2.1: RMTR ∞(i, xi,0, gi,0, χi,0,Fi,Ai, ǫi)

Step 0: Initialization. Computefi(xi,0). Setk = 0 and

Li = Fi ∩ Ai and Wi,0 = Li ∩ Bi,0,

whereBi,0 = {xi,0 + s ∈ IRni | ‖s‖∞ ≤ ∆i,0 = ∆
s
i }.

Step 1: Model choice. If i = 0, go to Step 3. Else, computeLi−1 andχi−1,0. If (4.27)
fails, go to Step 3. Otherwise, choose to go to Step 2 or to Step3.

Step 2: Recursive step computation.Call Algorithm

RMTR∞(i − 1,Ri xi,k,Rigi,k, χi−1,0,Fi−1,Ai−1, κχǫi),

yielding an approximate solutionxi−1,∗ of (4.24). Then definesi,k = Pi(xi−1,∗−Ri xi,k),
setδi,k = 1

σi

[

fi−1(Ri xi,k) − fi−1(xi−1,∗)
]

and go to Step 4.

Step 3: Taylor step computation. ChooseHi,k and compute a stepsi,k ∈ IRni that suf-
ficiently reduces the modelmi,k given by (4.23) in the sense of (4.29) and such that
xi,k + si,k ∈ Wi,k. Setδi,k = mi,k(xi,k) −mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point.Computefi(xi,k + si,k) and

ρi,k =
[

fi(xi,k) − fi(xi,k + si,k)
]

/δi,k. (4.30)

If ρi,k ≥ η1, then definexi,k+1 = xi,k + si,k; otherwise, definexi,k+1 = xi,k.

Step 5: Termination. Computegi,k+1 andχi,k+1. If χi,k+1 ≤ ǫi or xi,k+1 < Ai, then return
with the approximate solutionxi,∗ = xi,k+1.

Step 6: Trust-Region Update.Set

∆i,k+1 ∈































[∆i,k,+∞) if ρi,k ≥ η2,

[γ2∆i,k,∆i,k] if ρi,k ∈ [η1, η2),

[γ1∆i,k, γ2∆i,k] if ρi,k < η1,

(4.31)

andWi,k+1 = Li ∩ Bi,k+1 where

Bi,k+1 = {xi,k+1 + s ∈ IRni | ‖s‖∞ ≤ ∆i,k+1}.

Incrementk by one and go to Step 1.
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Some comments are now necessary for a full understanding of this algorithm.

1. The test for the value ofi at the beginning of Step 1 is designed to identify the lowest
level, at which no further recursion is possible. In this case, a Taylor’s iteration is the
only choice left.

2. As a result of the discussion preceding (4.21),xi,k+1 may not belong to the composite trust
regionAi when the stepsi,k is computed by a recursive iteration. However, as indicated
above, we wish to limit the length of the step at leveli + 1 to a multiple of the trust-
region size. Because of (4.21) and the definition ofAi, we may achieve this objective by
stopping our iteration at leveli as soon as the iterates leave the composite trust-regionAi.
This explains the second termination test in Step 5 of the algorithm and is discussed in
detail in Lemma 4.2.4.

3. The difference between the “restriction formulae” (4.15)-(4.17) for the hard bounds and
(4.18)-(4.20) for the soft ones makes it necessary to pass bothAi andFi to the algorithm
at leveli, as it is necessary to computeLi at each level independently.

4. The original problem (4.13) is solved by calling RMTR∞ from a virtual (r + 1)-rst level
at which we assume the trust region to be infinite.

As usual in trust-region algorithms, iterations at whichρi,k ≥ η1 are calledsuccessful. At
such iterations, the trial pointxi,k + si,k is accepted as the new iterate and the radius of the
corresponding trust region is possibly enlarged. If the iteration is unsuccessful, the trial point is
rejected and the radius is reduced.

4.2.2 Convergence theory

Having motivated our interest in the new method, both as an efficient solver for bound-
constrained problems and as an improvement on the existing RMTR algorithm for the uncon-
strained case, we are now interested in obtaining a theoretical guarantee that RMTR∞ converges
to a first-order critical point of the problem from any starting point. The theory proposed in this
section differs significantly from the proof for the RMTR algorithm in Gratton et al. (2008),
mostly because of the form of the new criticality measure (imposed by the bounds and the
choice of the infinity norm) and because the new algorithm allows for potentially very asym-
metric trust regions.

We start by making our assumptions more formal. First, we assume that the Hessians of each
fi and their approximations are bounded above by the constantκH ≥ 1, so that, fori = 0, . . . , r,

1+ ‖∇2 fi(xi)‖∞,1 ≤ κH (4.32)

for all xi ∈ Fi and
βi,k ≤ κH (4.33)

for all k, whereβi,k is as in (4.29). We also assume that all gradients at all levels remain uni-
formly bounded, which is to say that there existsκg ≥ 1 such that

‖∇ fi(xi)‖1 ≤ κg for all i = 0, . . . , r, and all xi ∈ Fi. (4.34)
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In addition, we assume that the criticality measureχ(·) satisfies, for all iterations (i, ℓ) inside a
recursive iteration (i, k), that

χi−1,0 = χ(xi−1,0) ≤ 2κgni−1∆i,k. (4.35)

These assumptions are not overly restrictive and, for instance, (4.34) automatically holds by
continuity if all iteratesxj,ℓ remain in a bounded domain, which is the case if bothl andu are
finite in (4.13). We next prove a useful level-independent property of the criticality measure
χ(·) in our context.

Lemma 4.2.1 Consider the optimization problem (4.13) and define the function χ(x) by

χ(x) = | min
x+d∈F
‖d‖≤1

〈∇ f (x), d〉| (4.36)

(as in (4.26)). Then, for all x, y ∈ F , we have that

|χ(x) − χ(y)| ≤ κL‖x− y‖∞.

with κL = 2(κH + κg).

Proof. Let x andy be inF . The optimization problem (4.36) may be written as

max
max(−1,li−xi )≤di≤min(1,ui−xi )

〈−∇ f (x), d〉. (4.37)

Now denote bym(x) the vector of average of the bounds on the variables in (4.37), whosei-th
component is given by

mi(x) = 1
2[max(−1, l i − xi) +min(1, ui − xi)], (4.38)

and byr(x) the vector of “radii” whosei-th component is

r i(x) = 1
2[min(1, ui − xi) −max(−1, l i − xi)]. (4.39)

Then, fori = 1, . . .n,

2|r i(x)| ≤ |min(1, ui − xi)| + |max(−1, l i − xi)| ≤ 2

and similarly, 2|mi(x)| ≤ 2, which shows that both functions|r i(x)| and|mi(x)| are bounded by 1
for x in F .

We now show that the functionsx 7→ min(1, ui − xi) and x 7→ max(−1, l i − xi) are both unit
Lipschitz continuous, that is Lipschitz continuous with constant 1. Considerx andy in F , and
define

δ = |min(1, ui − xi) −min(1, ui − yi)|.

For 1 ≤ ui − xi and 1≤ ui − yi, we haveδ = 0. If 1 ≤ ui − xi, and 1≥ ui − yi, we see that
1− ui + yi ≥ 0, and thatxi ≤ yi. Therefore we have that

δ = |1− ui + yi | = 1− ui + yi ≤ ui − xi − ui + yi = yi − xi = |xi − yi |,
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and we also deduce by symmetry thatδ = |xi − yi | whenever 1≥ ui − xi, and 1≤ ui − yi. Finally,
if 1 ≥ ui − xi, and 1≥ ui − yi, we obtain that

δ = |ui − xi − ui + yi | = |xi − yi |.

Hence the functionx 7→ min(1, ui − xi) is unit Lipschitz continuous. The result forx 7→
max(−1, l i − xi) is obtained from the same arguments. Combining these results with (4.38)
and (4.39), we obtain that bothr i(x) andmi(x) are also unit Lipschitz continuous.

Now definingd̃ such thatd = m(x) + r(x) ◦ d̃ where◦ is the (Hadamard) component-wise
product, i.e.x ◦ y = [x1y1, . . . , xnyn]T , we observe that the minimization problem (4.37) may
also be written as

max
‖d̃‖∞≤1

〈−∇ f (x),m(x) + r(x) ◦ d̃〉,

whose solution is then analytically given by

χ(x) = 〈−∇ f (x),m(x)〉 + ‖∇ f (x) ◦ r(x)‖1.

Using this formula, we now show thatχ(x) is Lipschitz continuous inF . From the mean-value
theorem, we know that

∇ f (x) = ∇ f (y) +G[x,y](x− y), (4.40)

where, from (4.32),

‖G[x,y]‖∞,1 = ‖
∫ 1

0
∇2 f (x+ t(y− x)) dt‖∞,1 ≤ max

z∈[x,y]
‖∇2 f (z)‖∞,1 ≤ κH. (4.41)

Hence, using|〈u, v〉| ≤ ‖u‖1‖v‖∞, the inequality‖m(x)‖∞ ≤ 1, (4.34) and the unit Lipschitz
continuity ofm(x), we obtain that

|〈∇ f (x),m(x)〉 − 〈∇ f (y),m(y)〉|

≤ |〈∇ f (x) − ∇ f (y),m(x)〉 + 〈∇ f (y),m(x) −m(y)〉|

≤ (κH + κg)‖x− y‖∞.

In addition,

‖∇ f (x) ◦ r(x)‖1 − ‖∇ f (y) ◦ r(y)‖1

≤ ‖∇ f (x) ◦ r(x) − ∇ f (y) ◦ r(y)‖1

≤ ‖∇ f (x) ◦ (r(x) − r(y))‖1 + ‖(∇ f (x) − ∇ f (y)) ◦ r(y)‖1.

Using now the inequality‖u ◦ v‖1 ≤ ‖u‖1‖v‖∞, we obtain from‖r(y)‖∞ ≤ 1, (4.40) and (4.41)
that

‖(∇ f (x) − ∇ f (y)) ◦ r(y)‖1 ≤ ‖∇ f (x) − ∇ f (y)‖1‖r(y)‖∞ ≤ κH‖x− y‖∞
and, similarly, from the unit Lipschitz continuity ofr(x), and (4.34), that

‖∇ f (x) ◦ (r(x) − r(y))‖1 ≤ ‖∇ f (x)‖1‖r(x) − r(y)‖∞ ≤ κg‖x− y‖∞.
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(i − 1, 2)(i − 1, 1)

(i − 2, 0) (i − 2, 0)

Figure 4.4: Illustration of some multilevel notations. The dashed rectangle area contains a minimization se-
quence at leveli − 2 initiated at iteration (i − 1, 1) and the solid line rectangle containsR(i − 1, 2).

Putting together the above results yields that|χ(x) − χ(y)| ≤ 2(κH + κg)‖x− y‖∞. �

We now define some additional notation and concepts. We first choose the constantκP ≥ 1
such that

‖Pi‖∞ ≤ κP for all i = 1, . . . , r. (4.42)

If we choose to go to Step 2 (i.e. we choose to use the modelfi−1 at iteration (i, k), we say that
this iteration initiates aminimization sequenceat level i − 1, which consists of all successive
iterationsat this level(starting from the pointxi−1,0 = Ri xi,k) until a return is made to leveli
within iteration (i, k). In this case, we say that iteration (i, k) is thepredecessorof the min-
imization sequence at leveli − 1. If (i − 1, ℓ) belongs to this minimization sequence, this is
written as (i, k) = π(i − 1, ℓ). We also denote bypi−1 the index of the penultimate iterate in the
minimization sequence{xi−1,0, . . . , xi−1,pi−1, xi−1,∗}. Note that (4.22) implies thatWi,k ⊆ Bi,k. To
each iteration (i, k) at leveli, we now associate the set

R(i, k)
def
= {( j, ℓ) | iteration (j, ℓ) occurs within iteration (i, k)}.

This set always contains the pair (i, k) and contains only that pair if a Taylor step is used at
iteration (i, k). If we choose a recursive step, then it also contains the pairs of level and iteration
number of all iterations that occur in the potential recursion started in Step 2 and terminating
on return within iteration (i, k), but it does not contain the pairs of indices correspondingto the
terminating iterates (j, ∗) of its internal minimization sequences. It is easy to verify that j ≤ i for
every j such that (j, ℓ) ∈ R(i, k) for some non-negativek andℓ. Note also thatR(i, k) contains at
most one minimization sequence at leveli − 1, but may contain more than one at leveli − 2 and
below, since each iteration at leveli − 1 may generate its own. Associated withR(i, k), we also
define

T (i, k)
def
= {( j, ℓ) ∈ R(i, k) | ( j, ℓ) is a Taylor iteration}.

The algorithm also ensures the following technical lemma.

Lemma 4.2.2 There exists anǫmin ∈ (0, 1] such that, for each iteration(i, k) , (i, ∗) (i.e., for all
iterates at level i but the last one),

χi,k ≥ ǫmin. (4.43)
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Proof. The inequality (4.28), which is the stopping criteria for minimization at levelj, in
Step 5 of the algorithm, implies that for all (i, k) and all (j, ℓ) ∈ R(i, k),

χ j,ℓ ≥ ǫ j = κχχπ( j,ℓ) ≥ κχǫ j+1 = κ
2
χ
χπ2( j,ℓ) ≥ · · · ≥ κi− j

χ
χi,k ≥ · · · ≥ κrχǫr .

This proves (4.43) withǫmin = min[1, κr
χ
ǫr ]. �

We now prove the general version of the Gelman and Mandel’s result stating that “bound con-
straints are preserved” by the prolongation operator.

Lemma 4.2.3 The definitions (4.16)–(4.17) enforce the inclusion

xi,k + Pi(xi−1 − xi−1,0) ∈ Fi for all xi−1 ∈ Fi−1 (4.44)

for i = 1, . . . , r. As a consequence xi,k ∈ Fi for all i = 0, . . . , r and all k≥ 0.

Proof. For t = 1, . . . , ni, defineφi,t =
∑ni−1

j=1 |[Pi]t, j | and observe thatφi,t ≤ ‖Pi‖∞ for all
t. Consider now anyxi−1 ∈ Fi−1 and the corresponding lower level stepsi−1 = xi−1 − xi−1,0.
Then (4.16) and (4.17) imply that

[xi,k]t +

ni−1
∑

j=1

[Pi]t j [si−1] j

= [xi,k]t +

ni−1
∑

j=1,[Pi ]t j<0

|[Pi]t j |(−[si−1] j) +
ni−1
∑

j=1,[Pi ]t j>0

|[Pi]t j |[si−1] j

≥ [xi,k]t +

ni−1
∑

j=1,[Pi ]t j<0

|[Pi]t j |
(−mint[xi,k − l i]t)

‖Pi‖∞
+

ni−1
∑

j=1,[Pi ]t j>0

|[Pi]t j |
maxt[l i − xi,k]t

‖Pi‖∞

≥ [xi,k]t +

ni−1
∑

j=1,[Pi ]t j<0

|[Pi]t j |
[l i − xi,k]t

‖Pi‖∞
+

ni−1
∑

j=1,[Pi ]t j>0

|[Pi]t j |
[l i − xi,k]t

‖Pi‖∞

≥ [xi,k]t + φi,t
[l i − xi,k]t

‖Pi‖∞

=
φi,t

‖Pi‖∞
[l i]t +

(

1− φi,t

‖Pi‖∞

)

[xi,k]t

≥ [l i]t

where the last inequality results from the fact that [xi,k]t ≥ [l i]t. A similar reasoning gives that

[xi,k]t +

ni−1
∑

j=1

[Pi]t, j[si−1] j ≤ [ui]t

for all t, thereby concluding the proof of (4.44). The feasibility ofevery iterate with respect
to the level-dependent bound constraints then results fromthe fact that all trial points at leveli
belong toFi by construction. �

We next show that the distance from all iterates in a single minimization sequence at leveli to
the starting point of that sequence is bounded above by a multiple of the trust-region radius at
the predecessor’s level.
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Lemma 4.2.4 The definitions (4.19)-(4.20) imply that, for0 ≤ j < r,

‖x− xj,0‖∞ ≤ 2∆π( j,0) (4.45)

for all x ∈ L j.

Proof. Consider anx ∈ L j ⊆ A j. If we now denote the bounds defining the setSπ( j,0) by

vj+1
def
= max

[

vj+1, xπ( j,0) − ∆π( j,0)e
]

and wj+1
def
= min

[

wj+1, xπ( j,0) + ∆π( j,0)e
]

,

we then verify that

[wj − vj]t =

nj+1
∑

u=1,[Rj+1]tu>0

[Rj+1]tu[wj+1]u +

nj+1
∑

u=1,[Rj+1]tu<0

[Rj+1]tu[vj+1]u

−
nj+1
∑

u=1,[Rj+1]tu>0

[Rj+1]tu[vj+1]u −
nj+1
∑

u=1,[Rj+1]tu<0

[Rj+1]tuw j+1]u

=

nj+1
∑

u=1,[Rj+1]tu>0

[Rj+1]tu[wj+1 − vj+1]u +

nj+1
∑

u=1,[Rj+1]tu<0

[Rj+1]tu[v j+1 − wj+1]u

def
= [Rj+1z(t)]t,

where we have used (4.19) and (4.20), and where, fort = 1, . . . , n j+1,

[z(t)]u = sign([Rj+1]tu)[w j+1 − vj+1]u.

This last definition implies that‖z(t)‖∞ = ‖wj+1 − vj+1‖∞ for t = 1, . . . , n j+1. Taking norms and
using the identity‖Rj+1‖∞ = 1, we therefore obtain that

‖wj − vj‖∞ = maxt |[Rj+1z(t)]t|
≤ maxt‖Rj+1z(t)‖∞
≤ maxt‖z(t)‖∞
= ‖wj+1 − vj+1‖∞.

(4.46)

Remembering now the definition ofwj+1 andvj+1, we see that

‖wj+1 − vj+1‖∞ = ‖min
[

wj+1, xπ( j,0) + ∆π( j,0)e
] −max

[

vj+1, xπ( j,0) − ∆π( j,0)e
]‖∞

≤ ‖min
[

wj+1, xπ( j,0) + ∆π( j,0)e
] − xπ( j,0)‖∞

+ ‖xπ( j,0) −max
[

vj+1, xπ( j,0) − ∆π( j,0)e
]‖∞

≤ 2∆π( j,0).

Combining now this bound with (4.46) and our assumption thatx ∈ A j, we obtain that

‖x− xj,0‖∞ ≤ ‖wj − vj‖∞ ≤ 2∆π( j,0).

�

Our next proposition indicates that, if∆i,k becomes too small, then the method reduces, at level
i, to the standard trust-region method using Taylor’s iterations only.
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Lemma 4.2.5 Assume that, for some iteration(i, k),

∆i,k ≤
1
2

min

[

1,
ǫmin

2κg

,∆s
min

]

def
= κ2 ∈ (0, 1), (4.47)

where∆s
min

def
= mini=0,...,r ∆

s
i Then no recursion occurs in iteration(i, k) andR(i, k) = T (i, k) =

{(i, k)}.

Proof. Assume that iteration (i, k) is recursive and that iteration (i−1, 0) exists. Since (4.47)
implies that 2∆i,k ≤ 1, we deduce from (4.45) (withx = xi−1,0+d ∈ Li−1) thatLi−1 ⊆ {xi−1,0+d |
‖d‖∞ ≤ 1} and thus that

χi−1,0 = | min
xi−1,0+d∈Li−1

〈gi−1,0, d〉| = |〈gi−1,0, di−1,0〉| (4.48)

with
‖di−1,0‖∞ ≤ 2∆i,k. (4.49)

Using (4.47), (4.43), (4.48), the inequality|〈u, v〉| ≤ ‖u‖1‖v‖∞, (4.34) and (4.49) successively,
we conclude that

χi−1,0 = |〈gi−1,0, di−1,0〉| ≤ ‖gi−1,0‖1‖di−1,0‖∞ ≤ 2κg∆i,k

and thus that

∆i,k ≤
ǫmin

4κg

≤ χi−1,0

4κg

=
2κg∆i,k

4κg

≤ 1
2∆i,k

which is impossible. Hence our initial assumption that iteration (i, k) is recursive cannot hold
and the proof is complete. �

This lemma essentially states that when the trust-region becomes too small compared to the cur-
rent criticality level, then too little can be gained from lower level iterations to allow recursion.
This has the following important consequence.

Lemma 4.2.6 Consider an iteration(i, k) for whichχi,k > 0 and

∆i,k ≤ min
[

κ2, κ3χi,k
]

, (4.50)

whereκ2 is defined in (4.47) andκ3 ∈ (0, 1) is given by

κ3 = min

[

1,
κred(1− η2)
κH

]

.

Then iteration(i, k) is very successful and∆i,k+1 ≥ ∆i,k.

Proof. Because of (4.47) and Lemma 4.2.5, we know that iteration (i, k) is a Taylor itera-
tion. Thus, using (4.29), and the definition ofδi,k in Step 3 of the algorithm,

δi,k ≥ κredχi,k min

[

1,
χi,k

βi,k
,∆i,k

]

.
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But, becauseκred ∈ (0, 1
2) and thusκred(1− η2) ≤ 1, and also because of (4.33) and the definition

of βi,k, (4.50) implies that∆i,k ≤ min
[

1, χi,k

βi,k

]

and hence that

δi,k ≥ κredχi,k∆i,k. (4.51)

We now observe that the mean-value theorem, (4.23) and the definition of gi,k ensure that

fi(xi,k + si,k) −mi,k(xi,k + si,k) = 1
2〈si,k, [∇2 fi(ξi,k) − Hi,k]si,k〉

for someξi,k ∈ [xi,k, xi,k + si,k], and thus using (4.32), (4.33), the inequality|〈u, v〉| ≤ ‖u‖1‖v‖∞
and the bound‖si,k‖∞ ≤ ∆i,k, we obtain that

| fi(xi,k + si,k) −mi,k(xi,k + si,k)| ≤
1
2
[ ‖∇2 fi(ξi,k)‖∞,1 + ‖Hi,k‖∞,1

]‖si,k‖2∞ ≤ κH∆
2
i,k.

Combining now (4.30), the definition ofsi,k, (4.50), (4.51) and this last inequality, we verify
that

|ρi,k − 1| ≤
∣

∣

∣

∣

∣

∣

fi(xi,k + si,k) −mi,k(xi,k + si,k)
δi,k

∣

∣

∣

∣

∣

∣

≤ κH

κredχi,k
∆i,k ≤ 1− η2.

Thus iteration (i, k) must be very successful and, because of (4.31), the trust-region radius can-
not decrease. �

This last result implies the following useful consequence.

Lemma 4.2.7 Each minimization sequence contains at least one successful iteration.

Proof. This follows from the fact that unsuccessful iterations cause the trust-region radius to
decrease, until (4.50) is eventually satisfied and a (very) successful iteration occurs because of
Lemma 4.2.6. �

The attentive reader will have noticed that the term in∆s
min in the minimum definingκ2 in (4.47)

has not been used in Lemma 4.2.5. This term is however crucialin the following further conse-
quence of (4.47).

Lemma 4.2.8 For every iteration( j, ℓ), with j = 0, . . . , r and ℓ > 0, we have that

∆ j,ℓ ≥ ∆min
def
= γ1 min[κ2, κ3ǫ j]. (4.52)

Proof. Suppose that (j, ℓ) is the first iteration such that

∆ j,ℓ < γ1 min[κ2, κ3ǫ j]. (4.53)

Sinceγ1 < 1 andκ2 ≤ ∆s
min, we then obtain that

∆ j,0 = ∆
s
j ≥ ∆s

min ≥ γ1∆
s
min ≥ γ1 min[κ2, κ3ǫ j],
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and, because of (4.53), we have thatℓ > 0. This in turn implies that∆ j,ℓ is computed using
Step 6 of the algorithm. But, the mechanism of the algorithm imposes that∆ j,ℓ ≥ γ1∆ j,ℓ−1 an
thus (4.53) also yields that

∆ j,ℓ−1 < min[κ2, κ3ǫ j] ≤ min[κ2, κ3χ j,ℓ−1],

where we have used the mechanism of the algorithm to derive the last inequality. Hence, we
may apply Lemma 4.2.6 to conclude that iteration (j, ℓ − 1) is very successful and that∆ j,ℓ ≥
∆ j,ℓ−1. Thus, iteration (j, ℓ) cannot be the first such that (4.53) holds. This implies that(4.53) is
impossible, which completes the proof. �

We next show the crucial result that the algorithm is well defined, and that all the recursions are
finite.

Theorem 4.2.9 The number of iterations in each level is finite. Moreover, there existsκh ∈ (0, 1)
such that, for every minimization sequence at level i= 0, . . . , r and every t≥ 0,

fi(xi,0) − fi(xi,t+1) ≥ τi,tµi+1κh,

whereτi,t is the total number of successful Taylor iterations in
t

⋃

ℓ=0

R(i, ℓ) andµ = η1/σmax with

σmax = max[1,maxi=1,...,r σi].

Proof. We will show this by induction on the levels, starting from level 0. First, let us
defineωi,t as the number of successful Taylor iterations inR(i, t). Thus,

τi,t =

t
∑

ℓ=0

ωi,ℓ.

Note that, if iteration (i, ℓ) is successful, thenωi,ℓ ≥ 1.
Consider first a minimization sequence started at level 0, and assume without loss of gener-

ality, that it belongs toR(r, k) for somek ≥ 0. Every iteration in this minimization sequence has
to be a Taylor iteration, which implies that the sufficient decrease condition (4.29) is satisfied,
and in particular, for all successful iterations,

f0(x0,ℓ) − f0(x0,ℓ+1) ≥ η1δ0,ℓ ≥ η1κredχ0,ℓmin

[

1,
χ0,ℓ

β0,ℓ
,∆0,ℓ

]

≥ ω0,ℓη1κredǫmin min

[

1,
ǫmin

κH

,∆min

]

where we used Lemma 4.2.8, (4.33), (4.43) and the fact thatω0,ℓ = 1 for every successful iter-
ation (0, ℓ), sinceR(0, ℓ) = {(0, ℓ)}. Since we know from Lemma 4.2.7 that every minimization
sequence has at least one successful iteration, we can sum upthe reductions obtained at level 0,
which gives us

f0(x0,0) − f0(x0,t+1) =
t

∑

ℓ=0

(S)
[

f0(x0,ℓ) − f0(x0,ℓ+1)
] ≥ τ0,tη1κh ≥ τ0,tµκh (4.54)
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where the superscript (S) indicates that the sum is restricted to successful iterations and where

κh

def
= κredǫmin min

[

1,
ǫmin

κH

,∆min

]

= κredǫmin min

[

ǫmin

κH

,∆min

]

, (4.55)

where the last equality results from the inequalitiesǫmin ≤ 1 andκH ≥ 1. If r = 0, sincef0 = f is
bounded below by assumption, then (4.54) implies thatτ0,t is finite. If r > 0, f0 is continuous,
and thus it is bounded below on the set{x ∈ IRn0|‖x − x0,0‖∞ ≤ 2∆r,k}, and again,τ0,t has to
be finite. Sinceτ0,t accounts for all successful iterations in the minimizationsequence, we
obtain that there must be a last finite successful iteration (0, p0). For the purpose of obtaining
a contradiction, let us assume that the sequence is infinite.Then, all iterations (0, ℓ) would
be unsuccessful forℓ > p0, causing∆0,ℓ to converge to zero, which is impossible in view of
Lemma 4.2.8. Hence, the minimization sequence is finite. Thesame reasoning may be applied
to every such sequence at level 0.

Now, consider an arbitrary minimization sequence at leveli within R(r, k) for somek > 0,
and assume that each minimization sequence at leveli − 1 is finite and also that each successful
iteration (i − 1, u) in every minimization sequence at this lower level satisfies

fi−1(xi−1,u) − fi−1(xi−1,u+1) ≥ ωi−1,uµ
iκh. (4.56)

Consider a successful iteration (i, ℓ), whose existence is ensured by Lemma 4.2.7. If it is a
Taylor iteration, we obtain that

fi(xi,ℓ) − fi(xi,ℓ+1) ≥ η1κh ≥ µi+1κh = ωi,ℓµ
i+1κh, (4.57)

sinceη1 ∈ (0, 1), σmax > 1 andωi,ℓ = 1 for every successful Taylor iteration (i, ℓ). If, on the
other hand, iteration (i, ℓ) uses Step 2, then we obtain that

fi(xi,ℓ) − fi(xi,ℓ+1) ≥
η1

σi

[

fi−1(xi−1,0) − fi−1(xi−1,∗)
]

≥ µ
pi−1
∑

u=0

(S)
[

fi−1(xi−1,u) − fi−1(xi−1,u+1)
]

.

Sinceωi,ℓ = τi−1,pi−1, the definition ofτi−1,t and (4.56) give that

fi(xi,ℓ) − fi(xi,ℓ+1) ≥ µi+1κh

pi−1
∑

u=0

ωi−1,u = τi−1,pi−1µ
i+1κh = ωi,ℓµ

i+1κh. (4.58)

Combining (4.57) and (4.58), we see that (4.56) again holds at level i instead ofi−1. Moreover,
as above,

fi(xi,0) − fi(xi,t+1) =
t

∑

ℓ=0

(S)
[

fi(xi,ℓ) − fi(xi,ℓ+1)
] ≥ τi,tµi+1κh, (4.59)

for the minimization sequence including iteration (i, ℓ). If i = r, fi = f is bounded below by
assumption and (4.59) imposes that the number of successfuliterations in this sequence must
again be finite. The same conclusion holds ifi < r, since fi is continuous and hence bounded
below on the set{x ∈ IRni |‖x − xi,0‖∞ ≤ 2∆r,k} which containsxi,t+1 because of Lemma 4.2.4.
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As for level 0, we may then conclude that the number of iterations (both successful and unsuc-
cessful) in the minimization sequence is finite. Moreover, the same reasoning holds for every
minimization sequence at leveli, and the induction is complete. �

Corollary 4.2.10 Assume that one knows a constant flow such that fr(xr) = f (x) ≥ flow for
every x∈ IRn. Then Algorithm RMTR∞ needs at most

⌈

f (xr,0) − flow

θ(ǫmin)

⌉

(4.60)

successful Taylor iterations at any level to obtain an iterate xr,k such thatχr,k < ǫr , where

θ(ǫ) = µr+1κredǫmin

[

ǫ

κH

, γ1 min [κ2, κ3ǫ]

]

. (4.61)

Proof. The desired bound directly follows from Theorem 4.2.9, (4.55), (4.52) and the
definition ofǫmin. �

This complexity result for general nonconvex problems is similar to Corollary 3.8 in Gratton
et al. (2008), and may also be very pessimistic. It is of the same order as the corresponding
bound for the pure gradient method (see [49], page 29). This is not surprising given that it is
based on the Cauchy condition, which itself results from a step in the steepest-descent direction.
Note that the bound is in terms of iteration numbers, and onlyimplicitly accounts for the cost of
computing a Taylor step satisfying (4.29). As was the case for the Euclidean norm, this suggests
several comments.

1. The bound (4.60) is expressed in terms of the number of successful Taylor iterations, that
is successful iterations where the trial step is computed without resorting to further re-
cursion. This provides an adequate measure of the linear algebra effort for all successful
iterations, since successful iterations using the recursion of Step 2 cost little beyond the
evaluation of the level-dependent objective function and its gradient. Moreover, the num-
ber of such iterations is, by construction, at most equal tor times that of Taylor iterations
(in the worst case where each iteration at levelr includes a full recursion to level 0 with
a single successful iteration at each levelj > 0). Hence the result shows that the number
of necessary successful iterations, all levels included, is of order 1/ǫ2 for small values of
ǫ. This order is not qualitatively altered by the inclusion ofunsuccessful iterations either,
provided we replace the very successful trust-region radius update (top case in (4.31)) by

∆+i,k ∈ [∆i,k, γ3∆i,k] if ρi,k ≥ η2,

for someγ3 > 1. Indeed, Lemma 4.2.8 imposes that the decrease in radius caused
by unsuccessful iterations must asymptotically be compensated by an increase at suc-
cessful ones. This is to say that, ifα is the average number of unsuccessful iterations
per successful one at any level, then one must have thatγ3γ

α
2 ≥ 1, and therefore that

α ≤ − log(γ3)/ log(γ2). Thus the complexity bound in 1/ǫ2 for small ǫ is only modified
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by a constant factor if all iterations (successful and unsucessful) are considered. This
therefore also gives a worst case upper bound on the number offunction and gradient
evaluations.

2. Moreover, (4.60) involves the number of successful Taylor iterationssummed up on all
levels(as a result of Theorem 4.2.9). Thus such successful iterations at cheap low lev-
els decrease the number of necessary expensive ones at higher levels, and the multilevel
algorithm requires (at least in the theoretical worst case)fewer Taylor iterations at the up-
per level than the single-level variant. This provides theoretical backing for the practical
observation that the structure of multilevel bound-constrained optimization problems can
be used to advantage.

3. The definition ofθ(ǫ) in (4.61) is interesting in that it does not depend on the problem
dimension, but rather on the properties of the problem or of the algorithm itself. Thus, if
we consider the case where different levels correspond to different discretization meshes
and make the mild assumption thatr andκH are uniformly bounded above, we deduce that
our complexity bound is mesh-independent.

A second important consequence of Theorem 4.2.9 is that the algorithm is globally conver-
gent, in the sense that, ifǫr is “driven to zero”, it generates a subsequence of iterates that are
asymptotically first-order critical. More specifically, weexamine the sequence of iterates{xr,k}
generated as follows. We consider, at levelr, a sequence of tolerances{ǫr, j} ∈ (0, 1) monoton-
ically converging to zero, start the algorithm withǫr = ǫr,0 and alter slightly the mechanism of
Step 5 (at levelr only) to reduceǫr from ǫr, j to ǫr, j+1 as soon asχr,k+1 ≤ ǫr, j. The calculation
is then continued with this more stringent threshold until it is also attained,ǫg

r is then again
reduced and so on.

Theorem 4.2.11Assume thatǫr is “driven to zero” in Algorithm RMTR∞. Then

lim inf
k→∞

χr,k = 0. (4.62)

Proof. Since∆r+1,0 = ∞ ensures thatLr = Fr , Lemma 4.2.3 implies that each successive
minimization at levelr can only stop at iterationk if

χr,k+1 ≤ ǫr, j. (4.63)

Theorem 4.2.9 then implies that there are only finitely many successful iterations between
two reductions ofǫr . We therefore obtain that for eachǫr, j there is an arbitrarily largek such
that (4.63) holds. The desired result then follows immediately from our assumption that{ǫr, j}
converges to zero. �

Of course, the interest of this result is mostly theoretical, since most practical applications of
Algorithm RMTR∞ consider a nonzero gradient toleranceǫr .

Observe that our definition ofǫi in (4.28) implies that, ifǫr is driven to zero, then so is
ǫi = κ

r−i
χ
ǫr . As for the Euclidean case, and assuming the trust region becomes asymptotically
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inactive at every level (as is most often the case in practice), each minimization sequence in the
algorithm becomes infinite (as if it were initiated with a zero gradient threshold and an infinite
initial radius). Recursion to lower levels then remains possible for arbitrarily small gradients,
and may therefore occur arbitrarily far in the sequence of iterates. Moreover, we may still
apply Theorem 4.2.11 at each level and deduce that, if the trust region becomes asymptotically
inactive,

lim inf
k→∞

χi,k = 0 (4.64)

for all i = 0, . . . , r.
As is the case for single-level trust-region algorithms, wenow would like to prove that the

limit inferior in (4.62) and (4.64) can be replaced by a true limit. This requires the notion of a
recursively successful iteration. We say that iteration (j, ℓ) ∈ R(i, k) is recursively successful for
(i, k) whenever iterations (j, ℓ), π( j, 0), π2( j, 0), . . . , πi− j( j, 0) = (i, k) are all successful. This is to
say that the decrease in the objective function obtained at iteration (j, ℓ) effectively contributes
to the reduction obtained at iteration (i, k). We start by stating a result on the relative sizes of
the objective function decreases in the course of a recursive iteration.

Lemma 4.2.12 Assume that some iteration( j, ℓ) ∈ R(i, k) is recursively successful for(i, k).
Then

f j(xj,ℓ) − f j(xj,ℓ+1) ≤ f j(xj,0) − f j(xj,∗) ≤ µ j−i [ fi(xi,k) − fi(xi,k+1) ].

Proof. The first inequality immediately results from the monotonicity of the sequence of
objective function values in a minimization sequence. To prove the second inequality, consider
iteration (j + 1, q) = π( j, 0). Then

f j(xj,0) − f j(xj,∗) = σ j+1δ j+1,q ≤ η−1
1 σmax [ f j+1(xj+1,q) − f j+1(xj+1,q+1) ]

where we used the definition ofδ j+1,q, the definition ofσmax and the fact that iteration (j + 1, q)
must be successful since (j, ℓ) is recursively successful for (i, k). But this argument may now be
repeated at levelj + 2, . . . , i, yielding the desired bound, given thatµ = η1/σmax < 1. �

This lemma then allows us to express a simple relation between the size of Taylor steps at
recursively successful iterations and the associated objective decrease.

Lemma 4.2.13 Assume that the Taylor iteration( j, ℓ) ∈ R(i, k) is recursively successful for
(i, k) and that, for someǫ ∈ (0, 1),

χ j,ℓ ≥ ǫ (4.65)

and

fi(xi,k) − fi(xi,k+1) <
µrη1κredǫ

2

κH

. (4.66)

Then

‖xj,ℓ − xj,ℓ+1‖∞ ≤
1
κredη1ǫ

[ f j(xj,ℓ) − f j(xj,ℓ+1) ]. (4.67)
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Proof. We know from (4.29), (4.33), (4.65) and the successful nature of iteration (j, ℓ) that

f j(xj,ℓ) − f j(xj,ℓ+1) ≥ η1κredχ j,ℓmin
[

χ j,ℓ
κH
,∆ j,ℓ, 1

]

≥ η1κredǫmin
[

ǫ
κH
,∆ j,ℓ, 1

]

= η1κredǫmin
[

ǫ
κH
,∆ j,ℓ

]

(4.68)

where we used (4.33) and the inequalityǫ < 1 to deduce the last equality. But Lemma 4.2.12
gives that

f j(xj,ℓ) − f j(xj,ℓ+1) ≤ µ j−i [ fi(xi,k) − fi(xi,k+1) ]

≤ µ−r [ fi(xi,k) − fi(xi,k+1) ]

≤ η1κredǫ
2

κH
,

where we used (4.66) to deduce the last inequality. Hence we see that only the second term in
the last minimum of (4.68) can be active, which gives that

f j(xj,ℓ) − f j(xj,ℓ+1) ≥ η1κredǫ∆ j,ℓ.

We then obtain (4.67) from the observation thatxj,ℓ+1 = xj,ℓ + sj,ℓ ∈ W j,ℓ ⊆ B j,ℓ. �

We next prove the following useful technical lemma.

Lemma 4.2.14 Assume that a minimization sequence at level j(0 ≤ j ≤ r) is such that

χ j,0 ≥ ǫncr (4.69)

for someǫncr ∈ (0, 1), but also that

‖sj,ℓ‖∞ ≤ κncr [ f j(xj,ℓ) − f j(xj,ℓ+1) ] (4.70)

for someκncr > 0 as long as iteration( j, ℓ) is successful andχ j,ℓ ≥ 1
2ǫncr. Assume finally that

f j(xj,0) − f j(xj,∗) ≤
ǫncr

2κncrκL
. (4.71)

Thenχ j,ℓ ≥ 1
2ǫncr and (4.70) holds for allℓ ≥ 0.

Proof. Assume that there exists a (first) successful iteration (j, s) such that

χ j,s < 1
2ǫncr, (4.72)

which implies thatχ j,ℓ ≥ 1
2ǫncr for all 0 ≤ ℓ < s. We now use (4.70) and the triangle inequality,

and sum on all successful iterations (at levelj) from 0 tos− 1, yielding

‖xj,0 − xj,s‖∞ ≤
s−1
∑

ℓ=0

(S)‖xj,ℓ − xj,ℓ+1‖∞ ≤ κncr [ f j(xj,0) − f j(xj,s) ]. (4.73)
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Applying now Lemma 4.2.1, the monotonicity off j within the minimization sequence, the
boundn j ≤ nr and (4.71), we obtain from (4.73) that

|χ j,0 − χ j,s| ≤ κncrκL [ f j(xj,0) − f j(xj,s) ]

≤ κncrκL [ f j(xj,0) − f j(xj,∗) ]

≤ 1
2ǫncr.

But this last inequality is impossible since we know from (4.69) and (4.72) thatχ j,0−χ j,s > 1
2ǫncr.

Hence our assumption (4.72) is itself impossible and we obtain that, for allℓ ≥ 0, χ j,ℓ ≥ 1
2ǫncr.

This and the lemma’s assumptions then ensure that (4.70) also holds for all j ≥ 0. �

We now consider the case of recursive iterations.

Lemma 4.2.15 Assume that, for some recursive successful iteration(i, k),

χi,k ≥ ǫrsi (4.74)

and
fi(xi,k) − fi(xi,k+1) ≤

κχǫrsi

2κrsiκL
(4.75)

for someǫrsi ∈ (0, 1) and someκrsi > 0. Assume also that

‖si−1,ℓ‖∞ ≤ κrsi [ fi−1(xi−1,ℓ) − fi−1(xi−1,ℓ+1) ] (4.76)

for all (recursively) successful iterations in the minimization sequence initiated at level i− 1 by
iteration (i, k) as long as

χi−1,ℓ ≥ 1
2κχǫrsi.

Then
‖si,k‖∞ ≤ µ−1κPκrsi [ fi(xi,k) − fi(xi,k+1) ].

Proof. Consider the minimization sequence initiated at leveli−1 by iteration (i, k). Because
of (4.27) and (4.74), we have thatχi−1,0 ≥ κχǫrsi. We may now apply Lemma 4.2.14 withǫncr =

κχǫrsi andκncr = κrsi, given that (4.75) ensures (4.71). As a result, we know thatχi−1,ℓ ≥ 1
2κχǫrsi

and (4.76) hold for all successful iterations (i − 1, ℓ) (ℓ ≥ 0). Using the triangle inequality and
summing on all successful iterations at leveli − 1, we find that

‖xi−1,0 − xi−1,∗‖∞ ≤
pi−1
∑

ℓ=0

(S)‖xi−1,ℓ − xi−1,ℓ+1‖∞ ≤ κrsi [ fi−1(xi−1,0) − fi−1(xi−1,∗) ].

This inequality, the definition ofsi,k, (4.42) and Lemma 4.2.12 in turn imply that

‖si,k‖∞ ≤ ‖Pi‖∞‖xi−1,0 − xi−1,∗‖∞

≤ κPκrsi [ fi−1(xi−1,0) − fi−1(xi−1,∗) ]

≤ µ−1κPκrsi [ fi(xi,k) − fi(xi,k+1) ].

�

Our next step is to consider the cumulative effect of all the complete recursion for an iteration
at the finest level.
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Lemma 4.2.16 Assume that, for some successful iteration(r, k) (k ≥ 0),

χr,k ≥ ǫ (4.77)

and

f (xr,k) − f (xr,k+1) <
η1κred( 1

2κχ)
2rǫ2

2κL
(4.78)

for someǫ ∈ (0, 1). Then
‖sr,k‖∞ ≤ κacc [ f (xr,k) − f (xr,k+1) ], (4.79)

where

κacc
def
=

(

κP

µ

)r 1
κredη1( 1

2κχ)rǫ
.

Proof. Assume that (4.77) and (4.78) hold at the successful iteration (r, k) and consider the
subset of iterations given byR(r, k). If (r, k) is a Taylor iteration, thenR(r, k) = {(r, k)} and the
desired result follows from Lemma 4.2.13 and the inequality

1
κredη1ǫ

≤ κacc.

If iteration (r, k) is recursive, consider a minimization sequence containing a recursively suc-
cessful iteration for (r, k) at the deepest possible level inR(r, k). Let the index of this deepest
level bed and note that every successful iteration in this minimization sequence must be recur-
sively successful for (r, k). We will now prove the result by induction on the levels, from d + 1
up tor. First, let (d + 1, q) = π(d, 0) and assume that

χd+1,q ≥ ( 1
2κχ)

r−d−1ǫ, (4.80)

which gives, in view of (4.27), thatχd,0 ≥ ( 1
2)

r−d−1κr−d
χ ǫ. Each (recursively) successful it-

eration of our deepest minimization sequence must thus be a Taylor iteration. Because of
Lemma 4.2.13, we then obtain that, as long asχd,ℓ ≥ ( 1

2κχ)
r−dǫ and iteration (d, ℓ) is successful,

we have that

‖sd,ℓ‖∞ = ‖xd,ℓ − xd,ℓ+1‖∞ ≤
1

κredη1( 1
2κχ)r−dǫ

[ fd(xd,ℓ) − fd(xd,ℓ+1) ],

We could then apply Lemma 4.2.15 for iteration (d+ 1, q) = π(d, 0) with

ǫrsi = ( 1
2κχ)

r−d−1ǫ and κrsi =
1

κredη1( 1
2κχ)r−dǫ

,

if (4.75) holds. But note that Lemma 4.2.12 implies that

fd+1(xd+1,q) − fd+1(xd+1,q+1) ≤ µd+1−r [ f (xr,k) − f (xr,k+1) ]

which in turn gives (4.75) in view of (4.78), as desired. As a result of Lemma 4.2.15, we then
deduce that

‖sd+1,q‖∞ ≤ µ−1κPκrsi [ fd+1(xd+1,q) − fd+1(xd+1,q+1) ]

=

(

κP
µ

)

1
κredη1( 1

2κχ)
r−dǫ

[ fd+1(xd+1,q) − fd+1(xd+1,q+1) ].
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Consider now a minimization sequence at levelj such thatd < j < r, and such that this
minimization sequence belongs toR(r, k). Then define (j + 1, t) = π( j, 0) and assume, in line
with (4.80), thatχ j+1,t ≥ ( 1

2κχ)
j−1ǫ which yields in particular thatχ j,0 ≥ ( 1

2)
j−1κ

j
χǫ. Assume now

that
χ j,ℓ ≥ ( 1

2κχ)
jǫ,

that iteration (j, ℓ) is (recursively) successful, and that

‖sj,ℓ‖∞ ≤
(

κP

µ

) j 1

κredη1( 1
2κχ)

jǫ
[ f j(xj,ℓ) − f j(xj,ℓ+1) ].

Applying Lemma 4.2.12 and using (4.78), we may then apply Lemma 4.2.15 for iteration (j +
1, t), with

ǫrsi = ( 1
2κχ)

j−1ǫ and κrsi =

(

κP

µ

) j 1

κredη1( 1
2κχ)

jǫ
.

This ensures that

‖sj+1,t‖∞ ≤ µ−1κPκrsi [ f j+1(xj+1,t) − f j+1(xj+1,t+1) ]

=

(

κP
µ

) j+1
1

κredη1( 1
2κχ)

jǫ
[ f j+1(xj+1,t) − f j+1(xj+1,t+1) ].

The induction is then completed, and the desired result follows sinced < j < r. �

We finally prove the main result.

Theorem 4.2.17Assume thatǫr is “driven to zero” in Algorithm RMTR∞. Then

lim
k→∞
χr,k = 0.

Proof. As in Theorem 4.2.11, we identify our sequence of iterates with that generated by
considering a sequence of tolerances{ǫr, j} ∈ (0, 1) monotonically converging to zero. We start
our proof by observing that the monotonic nature of the sequence{ f (xr,ℓ)}ℓ≥0 and the fact that
f (x) is bounded below impose that

f (xr,k) − f (xr,k+1)→ 0

for all successful iterations (r, k). Assume now, for the purpose of deriving a contradiction, that

lim sup
k→∞

χr,k ≥ 3ǫ > 0 (4.81)

for someǫ ∈ (0, 1) and consider ak0 > 0 such thatχr,k0 ≥ 2ǫ and such that both (4.78) and

f (xr,k) − f (xr,k+1) ≤
ǫ

κaccκLnr
(4.82)

hold for all k ≥ k0. Without loss of generality, we may assume that the minimization sequence
at levelr starts at iterationk0. But Lemma 4.2.16 ensures that (4.79) holds for each successful
iteration (r, k) (k ≥ k0) as long as (4.77) holds. We may therefore apply Lemma 4.2.14with

ǫncr = 2ǫ and κncr = κacc
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to the (truncated) minimization sequence at levelr and deduce that (4.82) implies (4.71) and
that (4.77) holds for allk ≥ k0, which is impossible in view of Theorem 4.2.11. Hence (4.81)is
impossible and our proof complete. �

Theorem 4.2.17 implies, in particular, that any limit pointof the infinite sequence{xr,k} is first-
order critical for problem (4.13). But we may draw stronger conclusions: if we additionally
assume that the trust region becomes asymptotically inactive at all levels, then, as explained
above, each minimization sequence in the algorithm becomesinfinite, and we may apply The-
orem 4.2.17 to each of them, concluding that

lim
k→∞
χi,k = 0

for every leveli = 0, . . . , r. The behavior of Algorithm RMTR∞ is therefore truly coherent with
its multilevel formulation, since the same convergence results hold for each level.

The convergence results at the upper level are unaffected if minimization sequences at lower
levels are “prematurely” terminated, provided each such sequence contains at least one success-
ful iteration. Indeed, none of the proofs depends on the actual stopping criterion used. Thus,
one might think of stopping a minimization sequence after a preset number of successful iter-
ations: in combination with the freedom left at Step 1 to choose the model whenever (4.27)
holds, this strategy allows a straightforward implementation of fixed lower-iterations patterns,
like the V- or W-cycles in multigrid methods.

Our theory also remains essentially unchanged if we merely insist on first-order coherence
(i.e., (4.25)) to hold only for small enough trust-region radii ∆i,k, or only up to a perturbation of
the order of∆i,k or ‖gi,k‖∆i,k. Other generalizations may be possible. Similarly, although we have
assumed for motivation purposes that eachfi is “more costly” to minimize thanfi−1, we have not
used this feature in the theory presented above, nor have we used the form of the lower levels’
objective functions. Nonconstant prolongation and restriction operators of the formPi(xi,k)
and Ri(xi,k) may also be considered, provided the singular values of these operators remain
uniformly bounded. We refer the reader to Gratton et al. [23]for a discussion of convergence
properties of multilevel trust-region methods to second-order critical points.

4.3 Practical Implementation

The ℓ∞ version of the RMTR method has been successfully implemented in the Fortran
programming language, yielding a very powerful method for the solution of large-scale uncon-
strained and bound-constrained optimization problems. Although it has not been done by this
author, we feel it is important to motivate our results by mentioning the excellent numerical ex-
periments obtained with this method. The reader is referredto Gratton et al. [26] and Tomanos
[65] for the complete results and details on the practical implementation. In this implementa-
tion, the method is slightly modified from Algorithm 4.2.1. In this case, when we have reached
the lowest level (that is, the number of variables is very low), we can apply any of the methods
mentioned in Chapter 3; in particular, the (Projected) Truncated Conjugate Gradient method
can be very efficient (see Conn et al., [8] and [9]).
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At finer levels (i > 0), an adaptation of smoothing techniques (such as the Gauss-Seidel
method, described in Section 2.3.2 on Chapter 2) to has been devised that generates a step
which satisfies the sufficient decrease condition (4.29). Here, this method proceeds by succes-
sively minimizing the model (4.23) along each coordinate axes, taking into account the bound
constraints on the problem, provided that the curvature of this model along each axis is posi-
tive. It is, in essence, an adaptation of the Sequential Coordinate Minimization method (SCM)
to bound-constrained problems (see, for example, Ortega and Rheinboldt [52] for a description
of this method).

Thus, consider the minimization of model (4.23) along thejth axis starting fromssuch that

∇mi,k(xi,k + s)
def
= g. If the jth diagonal entry ofHi,k is positive, this minimization results in

updating

α j = ProjWi,k

( −[g] j

[Hi,k] j j

)

, (4.83)

[s] j = [s] j + α j (4.84)

[g] j = [g] j + α jHi,ke
[ j]
i , (4.85)

where ProjWi,k
(·) is the orthogonal projection on the intersection of all theconstraints at leveli,

and where we denote by [v] j the jth component of vectorv and [M] j j the jth diagonal entry of
matrix M, and wheree[ j]

i is the jth vector of the canonical basis of IRni .
On the other hand, if [Hi,k] j j ≤ 0, then we take a step along thejth coordinate direction

which intersects the boundary of theWi,k and update the gradient of the model. We refer to
each set ofni successive coordinate minimizations as asmoothing cycle, and a sequence of one
or more cycles defines asmoothing iteration.

In order to guarantee that the step computed by one or more of such cycles satisfies the
sufficient model decrease condition, we must start the first smoothing cycle by selecting the
jmth axis, where

jm = argmin
j

[gi,k] j[di,k] j , (4.86)

where
di,k = argmin

xi,k+d∈Li
‖d‖∞≤1

〈gi,k, d〉. (4.87)

By doing this, the minimization of this model is guaranteed to yield a generalized Cauchy step
such as the one described in Section 1.4.1.1, Chapter 1, as shown in the following result, which
appears in Gratton et al. [26]:

Theorem 4.3.1 Assume that the first unidimensional minimization in the first smoothing cycle
at iteration(i, k) is performed along the jmth coordinate axis, where jm is determined by (4.86)
and (4.87), and results in a step sizeα jm. Then, (4.29) holds for si,k = α jme[ jm]

i .

Figure 4.5 shows the performance profile obtained by Grattonet al. [26] with this new
method.

It is clear this method is an excellent alternative to classical trust-region methods in a large-
scale context, and a practical implementation in Fortran isincluded in the most recent version
of the GALAHAD library of nonlinear solvers (see Gould et al.[22]).
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Figure 4.5: The performance profile shows the results obtained for 4 versions of the algorithm.
The All-on-Finest version (equivalent to the classical trust-region method) is denoted by AF.
The Multigrid-on-Finest version, where we start the resolution of the problem in the finest
level, and from then on use the multilevel strategy just described, is denoted by MF. The Mesh
Refinement version is equivalent to the technique describedin Chapter 2, where the resolution
of the problem starts at the lowest level, and we do not use recursive steps in the algorithm.
It is denoted by MR. Finally, the Full Multigrid version, denoted by FM, can be seen as the
combination of the Mesh Refinement and Multigrid-on-Finesttechniques.
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4.4 Conclusions

We have presented a variant of the recursive multilevel RMTRalgorithm for unconstrained
nonlinear optimization that appears to have advantages over the original method in terms of
computational costs and flexibility. The use of the infinity norm (as opposed to the Euclidean
norm used in the original algorithm) removes the need for costly preconditioning of the trust-
region and adapts very naturally to bound constrained problems. However, and despite the
conceptual similarity between RMTR and the new algorithm, their convergence theories dif-
fer significantly. Fortunately, the same strong global convergence results can be proved (with
somewhat simpler arguments) for the new algorithm, which makes it very attractive for practical
use.



Chapter 5

Multilevel Derivative-Free Optimization

In unconstrained optimization, one of the problems that mayarise in the implementation
of a practical algorithm is the difficulty in computing the derivatives of the objective function.
Indeed, in many applications, these derivatives may be unavailable or very costly, for example,
if they are the result of an actual simulation or the solutionof another complicated problem. This
is typically the case in problems where the objective function can only be obtained by a “black
box” procedure, and there is no information available for the computation of its derivatives.
In this case, one is interested in algorithms that do not require the derivatives of the objective
function. These methods belong to a class called Derivative-Free Optimization (DFO).

Here, we are interested in solving the unconstrained optimization problem (1.1), but we
assume that although the first and second derivatives off exist, they are unavailable.

Several methods have been proposed to solve this class of problems. These methods can
be divided into three distinct classes. First, there are those that seek to simulate the deriva-
tives of the function, either by approximation, for exampleby finite differences (see Gill et al.
[19], Dennis and Schnabel [14] and Nocedal and Wright [50]) or by automatic differentiation
procedures (see Griewank and Corliss [28] and Griewank [27]for a survey on the subject).

Another class of methods is based on sampling, that is, it is based on available information
obtained by the computation of the objective function in sample points inside the region where
we must minimize the objective function. Important examples of this class of methods include
the Nelder-Mead Algorithm (Nelder and Mead [48]) and, more recently, Pattern Search and
Generalized Pattern Search methods (see, for example, Torczon [66]).

Our interest here, however, is inmodel-basedapproaches, that is, methods in which we try
to approximate the objective function using asurrogatemodel, and expecting this model to
simulate the behavior of the objective function in a region around each iterate. Among these
methods, we focus more precisely on the ones based on trust-region approaches, for example
those of Powell ([53], [54], [57], [58], [59]), and those of Conn and Toint [7], and Conn et al.
([10], [11]). In these methods, the Taylor model is replacedby a more general quadratic model,
which consists, at each iteration, in a model of the objective function built using quadratic
interpolation on a set of sampled points contained in a region around the current iterate.

The main drawback of this type of method is that it tends to be very slow and cost too many
function evaluations in problems with a large number of variables. In fact, most derivative-

97
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free methods available today are not able to solve a problem with more than a few hundred
variables. In this chapter, we aim to present a new algorithmfor unconstrained derivative-
free optimization that is also based on trust-region techniques, while exploring some of the
multilevel ideas presented earlier in this thesis, in orderto improve on the performance of this
method.

This chapter is organized as follows. In Section 5.1, we willbriefly describe the ideas behind
the derivative-free trust-region algorithm. Then, in Section 5.2 we will discuss a possible multi-
level implementation of this algorithm. Finally, in Section 5.3 we will present some preliminary
results that, we hope, will show the relevance of this new implementation.

5.1 Derivative-Free Trust-Region Optimization

As we have seen previously, when solving the unconstrained minimization problem (1.1)
by using a trust-region method, we must build, at each iteration, a model that can be minimized
inside the trust region, so that we can compute a step. When the gradient and Hessian off are
not available, we can still build a quadratic model that interpolates the objective function in a
set of points chosen around the current iterate.

More formally, starting from a given pointy0 = xk (which we will call thebase pointfor the
interpolation set), we choose a set ofp1 = p+ 1 points

Yk = {y0, y1, . . . , yp},

and try to define a quadratic modelqk such that

qk(yj) = f (yj), for j = 0, ..., p. (5.1)

If
p+ 1 = 1+ n+ 1

2n(n+ 1) = 1
2(n+ 1)(n+ 2)

def
= p̂+ 1,

then a quadratic interpolation functionqk can be entirely determined by the equations (5.1),
with

qk(x) = f (xk) + 〈gk, x− xk〉 + 1
2〈x− xk,Hk(x− xk)〉, (5.2)

wheregk ∈ IRn and Hk ∈ IRn×n is symmetric. This model can then be minimized inside a
trust-region framework in order to generate the next iterate for the method.

5.1.1 Interpolation model

Let us drop the iteration indices for the sake of simplicity for now, definingq = qk as the
quadratic model we are trying to determine. In order to determineg = gk andH = Hk, suppose
that we have a basis{φi}pi=0 for the space of quadratic functions from IRn to IR. Then, any
quadratic function in this space can be written as a linear combination of these basis functions,
i.e.

q(x) =
p

∑

i=0

αiφi(x),
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whereαi ∈ IR for all i = 0, . . . , p. Thus, from (5.1), we must have that

f (yj) =
p

∑

i=0

αiφi(yj), for j = 0, . . . , p. (5.3)

This is a linear system in the coefficientsαi, i = 0, . . . , p which is nonsingular if and only if the
determinant

δ(Y) = det



























φ0(y0) · · · φp(y0)
...

. . .
...

φ0(yp) · · · φp(yp)



























(5.4)

is nonzero. In this case, we say that the set of interpolationpointsY = {y0, . . . , yp} is poised,
which means that the quadratic interpolation polynomialq is uniquely determined by the inter-
polation conditions (5.1).

The notion of poisedness is very important in the definition of a derivative-free optimization
method, since it is usually not sufficient to have a complete set of interpolation points. Indeed,
these points must satisfy somegeometryrequirement, so that the interpolation function obtained
with these points represents well the objective function.

5.1.2 Basis Functions

There are several possible choices for the definition of the basis{φi}pi=0 of quadratic poly-
nomial functions that we can use in order to interpolate the objective function in a given set of
interpolation pointsY.

One classical choice is to use theLagrange polynomials, which satisfy the relationship

Li(yj) = δi j
def
=

{

1 if i = j,
0 otherwise

, for all yj ∈ Y, for i = 0, . . . , p.

The Lagrange interpolation polynomials are, however, not the only choice possible. Another
possibility that has proven to be extremely efficient is that ofNewton Fundamental Polynomials.

Suppose that we want to build a model of degreed = 2, and that we havep + 1 points.
Suppose also that we can organize these points ind+ 1 blocks, such that

Y[ℓ] = {y[ℓ]
1 , . . . , y

[ℓ]
|Y[ℓ] |}, (ℓ = 0, 1, 2),

where theℓ−th block contains

|Y[ℓ] | =
(

ℓ + n− 1
ℓ

)

points. To each pointy[ℓ]
i ∈ Y[ℓ] corresponds a singleNewton Fundamental Polynomialof degree

ℓ satisfying
N[ℓ]

i (y[m]
j ) = δi jδℓm for all y[m]

j ∈ Y[m] with m≤ ℓ.

The main advantage of these polynomials is that they are veryeasy to compute. In fact, the
procedure that builds these polynomials can be seen as a Gram-Schmidt orthogonalization pro-
cedure applied to the initial polynomial basis (usually chosen as the monomial basis) with
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respect to the inner product defined in this space as

〈P,Q〉 =
∑

y∈Y
P(y)Q(y).

This procedure is presented in Algorithm 5.1.1.

Algorithm 5.1.1: Newton Fundamental Polynomial Basis Computation

Step 0: Initialization. Set theN[ℓ]
i , i = 1, . . . , |Y[ℓ] |, ℓ = 0, 1, 2 to the chosen initial polyno-

mial basis. SetYtemp= ∅.

Step 1: Loop over the polynomials.For ℓ = 0, 1, 2 andi = 1, . . . , |Y[ℓ] |,

• Choose somey[ℓ]
i ∈ Y \ Ytemp such that|N[ℓ]

i (y[ℓ]
i )| , 0; if no suchy[ℓ]

i exists
in Y \ Ytemp, resetY = Ytemp and stop prematurely with an incomplete Newton
polynomial basis.

• Update the interpolation set byYtemp= Ytemp∪ {y[ℓ]
i }

• Normalize the current polynomial by

N[ℓ]
i (x) =

N[ℓ]
i (x)

N[ℓ]
i (y[ℓ]

i )

• Update all Newton polynomials in blockℓ and above by

N[k]
j (x) = N[k]

j (x) − N[k]
j (y[ℓ]

i )N[ℓ]
i (x),

for j = 1, . . . , |Y[m] |, m= ℓ, ℓ + 1, . . . , d, i , j.

Now, we must build a polynomial interpolant for our objective function using the polyno-
mials obtained by this procedure. This is done by a procedurethat uses so-calledgeneralized
finite differences, defined recursively by

λ0(x)
def
= f (x)

λℓ+1(x)
def
= λℓ(x) −

|Y[ℓ] |
∑

i=1

λℓ(y
[ℓ]
i )N[ℓ]

i (x), for ℓ = 0, 1.
(5.5)

With this definition, Theorem 5.1.1 shows how we can build ourinterpolation model.

Theorem 5.1.1 Suppose that the Newton fundamental polynomials N[ℓ]
i (x) are defined forℓ =

0, 1, 2 and i= 1, . . . , |Y[ℓ] |. Then,

q(x) =
2

∑

ℓ=0

|Y[ℓ] |
∑

i=1

λℓ(y
[ℓ]
i )N[ℓ]

i (x) (5.6)

is well defined and satisfies the interpolation conditions (5.1).
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Although they seem reasonable, definitions (5.5) and (5.6) result in a very slow and inef-
ficient procedure. Fortunately, we can devise a more efficient procedure, described in Algo-
rithm 5.1.2.

Algorithm 5.1.2: Generalized Finite Differences Computation

Step 0: Initialization. For i = 1, . . . , |Y[ℓ] | andℓ = 0, 1, 2, setλi,ℓ = f (y[ℓ]
i ).

Step 1: Consider the blocks by increasing index.Fork = 1, 2, compute successively

λi,ℓ = λi,ℓ −
|Y[k−1]|
∑

j=1

λ j,k−1N[k−1]
j (y[ℓ]

i ),

for i = 1, . . . , |Y[ℓ] | andℓ = 0, 1, 2.

5.1.3 Model computation and Algorithm

Another advantage of the Newton fundamental polynomials isthat the determinant (5.4) is
never computed directly in order to check for poisedness. Infact, since we will divide every
polynomial in the basis byN[ℓ]

i (y[ℓ]
i ), which we call apivot, we must check if this quantity

is positive enough. On the other hand, if there is aθ > 0 such that, for allℓ = 0, 1, 2 and
i = 1, . . . , |Y(ℓ)|,

|N[ℓ]
i (y[ℓ]

i )| ≥ θ, (5.7)

then it is possible to show thatY is poised (see Sauer and Xu [61], for example, or Theorem
9.4.2, p. 330 in Conn et al. [12]). Thus, checking for poisedness is automatic and we do not
need to do any additional computations in order to do this. Ifone or more of these pivots are
too small, then the algorithm stops and the interpolation model is not complete; however, the
resulting incomplete model is poised, even if the original set was not. Moreover, we can obtain
an estimate for the interpolation error in this case. For this, we must ensure that the model is
adequatein a certain regionQ(δ), which is a hypersphere of radiusδ > 0; this means that

• The model is at least fully linear, that is|Y| ≥ n+ 1;

• y ∈ Q(δ), for all y ∈ Y;

• |N[ℓ]
i (y[ℓ+1]

j )| ≤ κ1, i = 1, . . . , |Y[ℓ] |, j = 1, . . . , |Y[ℓ+1]|, ℓ = 0, 1;

• |N[2]
i (x)| ≤ κ1, for i = 1, . . . , |Y[2] |, x ∈ Q(δ), with κ1 > 1 .

This test is essential in the algorithm, in that it guarantees the accuracy of the interpolated
gradient and thus of the criticality measure used as a stopping rule. Furthermore, it allows us to
prove (see Theorem 9.4.4 in p. 333 on Conn et al. [12]) that

| f (x) − qk(x)| ≤ κmax[δ2, δ3],
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for all x ∈ Q(δ) and some constantκ > 0 independent ofk.
Now, once the interpolation model has been built, we must compute a step using one of

the many algorithms available for the solution of the trust-region subproblem, for example,
the Moré-Sorensen method or the Truncated Conjugate-Gradient algorithm, described in Sec-
tions 3.1.1 and 1.3.3 in Chapter 3. When the step has been computed, we compute the new
function value at the new pointxk + sk, and if the ratio

ρk =
f (xk) − f (xk + sk)

qk(xk) − qk(xk + sk)

is greater than a constant 1≥ η0 > 0, the step is accepted as the new iterate. Otherwise, the step
is rejected and we will possibly decrease the trust-region radius in order to compute a new step.

In both cases, we must decide how to include these new points in the interpolation set.
Indeed, since we are looking to use as many points as possibleto form our interpolation model,
while evaluating the objective function as little as possible, since the value off has already
been computed in both cases, it might be useful to include this points in the interpolation set,
either if it is not yet complete, or if including this point inplace of another would improve on
the poisedness ofY.

If the step is accepted, then the new iteratexk+1 = xk + sk must be chosen as the base point
for the new interpolation set. In this case, we include the new iterate on the set directly and
recompute the Newton fundamental polynomials if the set is incomplete. If the set is already
complete, we must decide which point to drop in order to include the new one. Since we
have seen that the pivots in Algorithm 5.1.1 indicate the quality of the interpolation setY, one
possible choice is to drop the pointy[ℓ]

i which gives the smallest pivot in the interpolation set,
that is

|N[ℓ]
i (y[ℓ]

i )| = min
t=0,1,2

j=1,...,|Y[t] |

|N[t]
j (y[t]

j )|. (5.8)

If the stepxk+sk is rejected, we should also check if including it in the interpolation set improves
on the geometry ofY. Thus, we will look fory[ℓ]

i that satisfies (5.8), and we will check if the
replacement is worthwhile, by computing the ratio

|N[ℓ]
i (xk + sk)|
|N[ℓ]

i (y[ℓ]
i )|

.

If this is larger than some predefined constantc1 (for example,c1 = 2), we can decide to replace
y[ℓ]

i with xk + sk and continue with our algorithm. This strategy has also beendiscussed in [10].
Another point which we must discuss is that of geometry improvements on the interpolation

set. Indeed, if on a given iteration the interpolation modelis not adequatein Q(δ), we might
choose to improve on the geometry ofY by replacing some of its points by new ones. Again,
the strategies vary, but one must, firstly, make sure thaty ∈ Q(δ), for all y ∈ Y. Thus, all points
yj such that

‖yj − y0‖2 > δ
are removed from the interpolation set. Additionally, one could choose to eliminate points for
which the pivots are too small, that is,y[ℓ]

j such that

|N[ℓ]
j (y[ℓ]

j )| < c2θ,
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wherec2 > 0 is some predefined constant.
Once we have done this, we must include new points in the set inorder to make it (at least)

fully linear. One possible strategy is to replace eachy[ℓ]
i removed from the interpolation set with

y+ = arg max
x∈Q(δ)

|N[ℓ]
i (x)|.

By doing this, it is possible to show that in a finite number of such improvement steps are
guaranteed to make the model valid in a regionQ(δ). This can be found in Conn et al. [10],
along with the global convergence theory for this type of methods.

We present in Algorithm 5.1.3 on page 104 a basic derivative-free trust-region algorithm.
The constants

0 < η0 ≤ η1 < 1, 0 < γ0 ≤ γ1 < 1 ≤ γ2, ǫg > 0 andµ ≥ 1

are given.

5.1.4 Extensions

In order to be able to treat larger problems, one could make use of the sparse structure of
the problem to be solved. In particular, in discretized problems, this structure is usually well
defined, in that we know the sparsity pattern of the given Hessian. In this case, there is a
symmetric index set defined as

S = {(i, j)|1 ≤ i, j ≤ n and〈e[i] ,∇2 f (x)e[ j]〉 = 0∀x ∈ IRn}.

In this case, as has been shown by Colson and Toint [5], it is very advantageous to eliminate
from the initial monomial basis functions those polynomials corresponding to pairs in the set
S, that is, those of the typexi xj, for all (i, j) ∈ S. This results in a partial basis of Newton
Fundamental Polynomials, which results in much less computational effort in order to compute
the interpolation model.

Another very useful strategy can be used when the function tobe minimized ispartially
separable, which means it can be written as

f (x) =
M
∑

i=1

fi(Ui x), (5.9)

where eachfi is called anelement functionwhich depends on the so calledinternal variables
Ui x, with Ui a ni × n matrix, and where usually,ni is much smaller thann. This decomposition
has been introduced by Griewank and Toint [30].(1)

Now, since we haveM functions that define the objective functionf , we might choose to
interpolate this functionf by interpolating eachfi, using different interpolation setsYi, and
building M different quadratic models

qi,k(xk + s) = fi(xk) + 〈gi,k, s〉 +
1
2
〈s,Hi,ks〉,

(1)In particular, it has been shown in Griewank and Toint [29] that every twice-continuously differentiable func-
tion with a sparse Hessian is partially separable.
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Algorithm 5.1.3: Basic DFO Algorithm

Step 0: Initialization. Given x0 and f (x0), choose an interpolation setY0 containingx0

with p+1 (1≤ p ≤ p̂) points. Choose an initial trust-region radius∆0, and setk = 0.

Step 1: Model and Step Computation.

1.a: Model Computation. Setting y0 = xk, build a modelqk(xk + sk) of the
form (5.2), usingYk and such that the interpolation conditions (5.1) are sat-
isfied.

1.b: Criticality test. If ‖gk‖ ≤ ǫg, test if qk can be improved (i.e. madevalid) in
some regionQk(δ) for someδ > 0, possibly increasing|Yk|, and return to Step
1.a. If the model cannot be further improved, return with solution x∗ = xk.
Otherwise, go to Step 1.c.

1.c: Step Computation. Compute a stepsk such that

qk(xk + sk) = min
‖s‖≤∆k

qk(xk + s).

Computef (xk + sk) and

ρk
def
=

f (xk) − f (xk + sk)
qk(xk) − qk(xk + sk)

.

Step 2: Interpolation set update. If ρk ≥ η1, definexk+1 = xk + sk and includexk+1 in the
interpolation setYk, replacing one of the existing points ifp = p̂ and define ˆρk = ρk.
Else, try to includexk + sk in Yk. If this is not possible, try to improve the geometry
of the interpolation set. If new points are added to the interpolation set, define ˆy ∈ Yk

such thatf (ŷ) = miny∈Yk f (y). Compute

ρ̂k =
f (xk) − f (ŷ)

qk(xk) − qk(xk + sk)
.

Step 3: Trust-region radius update. Set

∆k+1 =























[∆k, γ2∆k) if ρ̂k ≥ η1,

[γ0∆k, γ1∆k] if ρ̂k < η1 andYk is valid,
∆k otherwise.

Incrementk by 1 and go to Step 1.

where eachgi, k ∈ IRni andHi,k is a matrix in IRni×ni . Thus, each modelqi,k approximatesfi
around theprojectionof xk into Rni , defined byUi xk.

Once allM modelsqi,k have been computed, we will buildgk andHk from the partialgi,k
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andHi,k, ultimately building a complete model of the form

qk(xk + s) =
M
∑

i=1

qi,k(xk + s) = f (xk) + 〈gk, s〉 +
1
2
〈s,Hk〉.

This model can then be minimized inside the trust-region, and the method can proceed as de-
scribed in the previous section.

However, since we must manageM separate interpolation sets, it is not clear how to do the
model improvement described in the previous section. In particular, while adding new points
to each interpolation set, these new points will be vectors of ni components, and it is unclear
which values to assign to the remainingn− ni components of this vector.

One alternative that has been discussed by Colson and Toint [6] is the CPR procedure by
Curtis et al. [13], which has been adapted by Powell and Toint[60] to estimate sparse Hessians.
For this, assume that we can write aM × M matrix D which contains

di j =

{

1, if the function fi depends onxj

0, otherwise.

where i = 1, . . . ,M and j = 1, . . . , n. At iteration k, we define a setLk of all indices i ∈
[1, . . . ,M] such that a geometry improvement is requested for setYi,k. If Lk , ∅, we can
partition the columns ofD into subsets containing columns associated with individual functions
whose index sets have an empty intersection. That is, in a given subsetLk,·, we find columns for
which the associated individual functions do not share a common internal variableUi x.

One procedure that can be used to generate these partition ofthe columns ofD can be
described as follows. ConsiderLk = {i1, . . . , iL}.

• Create a groupLk,1 = {i1}.

• Check if fi2 and fi1 do not depend on the same variables. If this is the case, include i2 in
Lk,1. Otherwise, create a new groupLk,2.

• Consider all other indices inLk, repeating the procedure until all indices have been in-
cluded in either an old subset, or a new one.

This procedure is referred to as thegreedyapproach. Other more sophisticated techniques can
be used, such as the graph coloring method of Coleman and Moré.

These techniques can be very useful if one wants to take advantage of structure, but there
are other kinds of structure that can be exploited by a DFO algorithm. Here, the main cost
of each trust-region iteration is not the computation of thestep, as it is with most trust-region
methods, but rather the construction of the model. In fact, for each quadratic model that we wish
to build, we must solve the interpolation equations (5.3). Since this is equivalent to solving a
linear system of dimensionp, which is typically of the order ofn2, this can be very costly. This
is the main motivation for the Section 5.2, where we describepossible “cheaper” models that
can be constructed when the problem has an underlying multilevel structure.
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5.2 Multilevel Alternatives

Now, suppose once more that we have a set of different descriptions of the objective function
{ fi}ri=0 where eachfi is a function from IRni to IR which is twice continuously differentiable. Each
function fi−1 is assumed to be simpler thanfi, for all i = 1, . . . , r. Suppose also that, for each
i, there are full-rank operatorsPi : IRni−1 → IRni andRi : IRni → IRni−1 (the prolongation and
restriction, respectively). In this section, the prolongation is the linear interpolation operator
and the restriction is taken asRi = PT

i , such thatσi = 1.

We want to use the simpler representations offr
def
= f to compute a step for the trust-region

subproblem at each iterationk. Thus, we will suppose that, at each leveli and at each iteration
k, we can find an interpolation setYi,k containingxi,k, such thatfi can be interpolated at this
level by a (linear or quadratic) modelqi,k aroundxi,k that satisfies

qi,k(yi, j) = fi(yi, j), for all yi, j ∈ Yi . (5.10)

5.2.1 Model Choices

As in any trust-region method, at iterationk at leveli we want to compute a stepsi,k. When
we have two levels of description for the objective function, the idea is that we can usefi−1 to
build a model forfi at leveli − 1. The minimization of such a model yields a stepsi−1, such that

the prolongated stepsi
def
= Pi si−1 can be used to compute a new iterate at leveli.

There are several ways this can be done, and we will discuss a few of them here. For future

reference, we define the quadratic interpolation model at level i aroundxi,k
def
= yi,0 as

qi(xi,k + si) = fi(xi,k) + 〈gi, si〉 + 1
2〈si,Hi si〉, (5.11)

and the linear interpolation model at leveli aroundxi,k as

qi(xi,k + si) = fi(xi,k) + 〈gi, si〉. (5.12)

In practice, Step 1 of Algorithm 5.1.3 will be replaced by some other mechanism for the step
computation, possibly involving the construction of more than one interpolation model. We
will restrict ourselves to the two-level case here, but the algorithm can easily be expanded
into a recursive algorithm if desired. We will denote byqr,k the interpolation model at level
r and iterationk, around the current iteratexr,k, and the initial base point in the lower-level
interpolation setYr−1,0 is defined asxr−1,0 = Ri xi,k.

It is also important to note that, since we are using an Euclidean-norm trust region in our
algorithm, we must follow the ideas of Gratton et al. [25] (presented in Section 4.1, Chapter 4
of this thesis) in the definition of the lower-level trust-region. In other words, if the upper-level
trust region is defined as

Br,k = {x ∈ IRnr | ‖x− xr,k‖r ≤ ∆r,k},

then the trust-region used at levelr −1 to compute the step for iterationk at levelr is defined by

Br−1 = {x ∈ IRnr−1 | ‖x− xr−1,0‖r−1 ≤ ∆r,k},
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where
‖s‖r−1 =

√

〈s,Mr−1s〉 = ‖s‖Mr−1,

for some symmetric matrixMr−1
def
= QT

r−1Qr−1, whereQi = Pr . . .Pi+2Pi+1 andMr = I . In this

case,‖s‖r
def
= ‖s‖2. As in the RMTR method, since we have to make sure that the stepPr sr−1

stays inside the upper-level trust region, we must stop the computation of the lower-level step if

‖xr−1,q − xr−1,0‖r−1 > (1− ǫ∆r−1)∆r,k, (5.13)

with ǫ∆r−1 ∈ (0, 1).
The model to be minimized at levelr − 1, which can combine both the interpolation mod-

els of levelsr and r − 1, will be denoted byhr−1. This is done to distinguish from the pure
interpolation model at levelr − 1 at iterationk, denoted byqr−1,k. We also denote by

Qi,k(δ)
def
= {x ∈ IRni |‖x− xi,k‖ ≤ δi}

the validity region of the model at each iteratek at leveli, for someδi > 0.
Algorithm 5.2.1 in page 108 describes how we build our model and compute the step at each

iteration.



108 Chapter 5. Multilevel Derivative-Free Optimization

Algorithm 5.2.1: Multilevel Model Choice and Step Computation.

1.a: Model Choice. Sety0 = xi,k. If we are at the lowest level, go to Step 1.a.1. Otherwise,
choose between 1.a.1 and 1.a.2.

1.a.1: Interpolation model. Build an interpolation modelqi,k(xi,k+ si), usingYi,k and such
that the interpolation conditions (5.10) are satisfied forfi.

1.b.1: Criticality test. If ‖gi,k‖ ≤ ǫg, test ifqi,k can be improved in some regionQi,k(δi) for
someδi > 0, possibly increasing|Yi,k|, and return to Step 1.a.1. If the model cannot
be further improved, return with solutionx∗i = xi,k.

1.c.1: Step Computation.Compute a stepsi,k that (approximately) minimizesqi,k(xi,k+si)
inside the trust region defined by∆i,k and computefi(xi,k + si,k) and

ρi,k
def
=

fi(xi,k) − fi(xi,k + si,k)
qi,k(xi,k) − qi,k(xi,k + si,k)

.

Go to Step 2.

1.a.2: Lower-level model.

• Build a linear interpolation modelqi,k(xi,k + si) usingYi,k and such that the in-
terpolation conditions (5.10) are satisfied.

• Set xi−1,0 = Ri xi,k andgi = Rigi,k. Setℓ = 0. Build Yi−1,ℓ ∈ IRni−1 containing
xi−1,0 and a modelhi−1,ℓ(xi−1,0 + si−1).

Go to step 1.b.2.

1.b.2: Lower-level criticality test. If ‖gi−1,ℓ‖ ≤ ǫg, test ifhi−1,ℓ can be improved (i.e. made
valid) in some regionQi−1(δi−1) for someδi−1 > 0, possibly increasing|Yi−1,ℓ|, set
ℓ = ℓ + 1 and return to Step 1.a.2. If the model cannot be further improved, or if

‖xi−1,ℓ − xi−1,0‖r−1 > (1− ǫ∆i−1)∆i,k,

then return with solutionx∗i−1 = xi−1,ℓ and prolongate the step, obtaining

si,k = Pi(x
∗
i−1 − xi−1,0). (5.14)

1.c.2: Step Computation.Compute a stepsi−1,ℓ that (approximately) minimizes the
model hi−1,ℓ(xi−1,0 + si−1) inside the trust region defined by∆i,k and compute
hi−1,ℓ(xi−1,0 + si−1,ℓ) and

ρi−1,ℓ
def
= hi−1,ℓ(xi−1,0) − hi−1,ℓ(xi−1,0 + si−1,ℓ).

If ρi−1,ℓ > η0, definex∗i−1 = xi−1,0 + si−1,ℓ and prolongate the step, obtainingsi,k as
in (5.14). Go to Step 2.
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The step that has been prolongated after being computed in the lower level is treated exactly
as if it were a step computed in the upper level; this means that, if the iterate generated by this
step is not successful, we will try to include it in the interpolation setYr,k. Apart from this fact
and from the use ofxi,k andRi xi,k as the base points forYi,k andYi−1,ℓ, ℓ = 0, . . . , t, t being the
last iterate before we decide to return to the upper level, the interpolation sets at each level are
different and do not contain much information about each other. In other words, we cannot infer
geometry properties or any other information about the upper-level interpolation set from the
lower-level interpolation set.

Another point that must be clarified is the decision to perform the lower-level step compu-
tation. Indeed, the model choice at Step 1.a is a delicate one, and depends on which type of
model we choose to use at the lower level. Thus, we will discuss this point further in the next
subsections.

Some DFO methods have been proposed which consider the use ofincomplete interpolation
models (for example, linear models or incomplete quadraticmodels) or even of models which
are not necessarily pure interpolation models, such as the ones discussed by Powell [55] or
Alexandrov and Lewis [1]. With this in mind, we propose here different possibilities for the
formulation of the lower-level modelhi−1,ℓ, which are, obviously, not the only ones. In our
experience, however, these models have been the best in terms of performance and thus we
have chosen to focus on them in our implementation.

5.2.1.1 Linear coherent models

One possibility for the computation of the model is to use information from levelsi − 1 and
i in order to build a model at leveli − 1, and (approximately) minimize this model to produce a
new step, which is then prolongated into leveli.

For the method to be effective, we would like the lower-level model to imitate, somehow, the
properties of the higher-level model. In this case, we wouldlike to impose first-order coherence,
at least around our current iteratexi,k. Considering the framework of Alexandrov and Lewis [1],
we will modify the model (5.12) at leveli − 1, obtaining

hi−1(xi−1,0 + si−1) = fi(xi,k) + 〈Rigi , si−1〉 +
1

2 fi−1(xi−1,0)
〈si−1,Rigig

T
i−1si−1〉 (5.15)

− fi(xi,k)
(

2 fi−1(xi−1,0)
)2
〈si−1, gi−1g

T
i−1si−1〉.

Although this model can be very different from the interpolation model we would compute at
level i, it is then easy to verify that (5.15) satisfies

hi−1(xi−1,0) = fi(xi,k)

∇hi−1(xi−1,0) = Rigi .

This implies then that, if we definesi,k = Pi si−1, we have that

〈∇hi−1(xi−1,0), si−1〉 = 〈Rigi, si−1〉 = 〈gi, si,k〉,
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similarly to what we have obtained in the RMTR case (see Section 4.1). We thus minimize the
quadratic modelhi−1 at leveli − 1, until a critical pointxi−1,∗ is reached at this level, or until we
hit the upper-level trust-region boundary. The stepsi,k = Pi si−1 = Pi(xi−1,∗ − xi−1,0) is then used
as the solution to the trust-region subproblem at leveli.

When using this model, in order to decide if we should take a lower-level step, we will
check if

‖Rigi‖ ≥ κg‖gi‖, (5.16)

whereκg ∈ (0, 1). If this fails, then we choose to do a regular interpolation step at the current
level.

5.2.1.2 Galerkin model

Another possibility for the formulation of the lowe-level model is to use the Galerkin strat-
egy described in Chapter 4, where we (approximately) minimize the model given by

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0) + 〈Rigi − gi−1, si−1〉 + 1
2〈si−1,Hi−1si−1〉,

at level i − 1, wheregi is the linear component of a (linear) interpolation model computed at
level i for fi, andgi−1 andHi−1 are determined by building a model offi−1 of the type (5.12)
or (5.11) in a set of interpolation pointsYi−1 defined in IRni−1, centered aroundxi−1,0 = Ri xi,k.

If we allow for the interpolation set at leveli to include more points than justni + 1, we can
also build a (possibly incomplete) quadratic model at leveli and use it in the construction of the
final lower-level model, defining

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0) + 〈Rigi − gi−1, si−1〉 + 1
2〈si−1,RiHiPi − Hi−1si−1〉.

This may seem at first a very expensive strategy, but in practice it can be advantageous in the
progress of the algorithm.

Here, we will also use the test (5.16) in order to decide whether to use the lower-level model
to compute the step at iterationk at leveli.

5.2.1.3 Upper model

Since in a DFO algorithm, the most computationally expensive part is not the step compu-
tation but the construction of the interpolation model, another strategy can be imagined where
we still use information from both levelsi and i − 1 to build the model, but where the step is
computedat level i. In this case, Algorithm 5.2.1 will be slightly modified in order to suit this
model definition. We thus replace steps 1.a.1, 1.b.1 and 1.c.1 by Algorithm 5.2.2.

Here, we can see that

hi,k(xi,k) = fi(xi,k)

∇hi,k(xi,k) = gi ,
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Algorithm 5.2.2: 1.a’: Upper-level model.

• Build a linear interpolation modelqi,k(xi,k + si) usingYi,k and such that the interpola-
tion conditions (5.10) are satisfied forfi;

• Set xi−1,0 = Ri xi,k andgi = Rigi,k. DefineYi−1 ∈ IRni−1 containingxi−1,0 and build a
linear interpolation model

qi−1(xi−1,0 + si−1) = fi−1(xi−1,0) + 〈gi−1, si−1〉,

at leveli − 1;

• Prolongategi−1, and define

hi,k(xi,k + si) = fi(xi,k) + 〈gi,k, si〉 +
1

2 fi−1(xi−1,0)
〈gi(Pigi−1)

T , si〉 (5.17)

− fi(xi,k)

2
(

fi−1(xi−1,0)
)2
〈si ,Pigi−1(Pigi−1)

T si〉 (5.18)

Go to step 1.b.2.

and thus,hi,k can be seen as a low-fidelity model forfi that uses information from the lower-level
function fi−1 as well.

In this case, it is not clear which condition must be satisfiedin order to decide if the model
to be used in the trust-region subproblem is the regular interpolation model orhi,k. In our imple-
mentation, we have chosen to use a simple V-cycle-type iteration, but this is not necessarily the
best choice. Further investigations into this condition might be needed in order to ensure that
we use modelhi,k only when desired, but the numerical experiments shown in the next section
show that even a simple V-cycle strategy can be very useful.

5.3 Numerical Experiments

We have tested this algorithm, with all three choices of models presented in the previous
chapter in 3 test problems, described in Section A.2 of the Appendix. ProblemsBratu and
DN were tested using three one-dimensional discretization levels of 7, 15 and 31 variables,
while problemSurf was tested in three two-dimensional discretization grids of 32, 72 and 152

variables each.
In these tables, #f represents the number of function evaluations needed at each level, and

#b represents the number of basis orthogonalizations needed at each level. Note that #b might
not be an integer, since in some iterations the basis is not complete, and in this case, we add the
fraction of the base that has been orthogonalized to this counter. Each table shows the results for
the three models presented in the previous section, as well as the Mesh Refinement and 1-level
(i.e. usual DFO method) versions of the method.
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All runs were performed in Matlab v.7.1.0.183 (R14) ServicePack 3 on a Dell Precision
workstation, using the parameters

ǫg = 10−3, θ = 10−12.

#f #b

level 3 level 2 level 1 level 3 level 2 level 1

1-level 2849 - - 283.42 - -

MR 2214 580 186 35.46 161.70 199.97

Coherent 1666 705 402 19.96 22.40 106.72

Galerkin 1671 705 1074 22.65 22.40 125.39

Upper 1663 815 650 22.76 143.95 212.86

Table 5.1: Results for the Multilevel DFO method applied to theBratu problem.

Table 5.1 shows the advantages of these alternative models applied to theBratu problem,
as the number of function evaluations needed for convergence in the highest level decreases in
every case. It is also worth noting that the number of required basis orthogonalizations (i.e.
construction of the Newton Fundamental Polynomials) is smaller for the three models, even if
modestly so. It is also worth noting that even if more function evaluations are needed for these
models in lower levels than what is needed by the Mesh Refinement technique, since the cost of
function evaluations at higher levels might be much larger that the cost of function evaluations
at lower levels, this is not a problem.

#f #b

level 3 level 2 level 1 level 3 level 2 level 1

1-level 1426 - - 138.29 - -

MR 1345 388 86 79.04 47.22 21.72

Linear 931 1769 1137 123.46 112.35 72.70

Galerkin 1185 622 1205 24.15 26.66 67.17

Upper 1134 585 296 18.76 21.15 42.17

Table 5.2: Results for the Multilevel DFO method applied to theDN problem.

In Table 5.2, we show the results obtained with the algorithmfor theDN problem. We can
again see that the method performs better than the one-leveland mesh refinement variants.

In Table 5.3, we show the results obtained by the algorithm for theSurf problem. In this
case, we have used the techniques described in Section 5.1.4for the treatment of the underlying
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#f #b

level 3 level 2 level 1 level 3 level 2 level 1

1-level 1184.17 - - 370.86 - -

MR 342.82 60.19 93.50 108.83 54.43 361.22

Linear 137.34 310.17 382.75 36.67 113.79 445.36

Galerkin 155.68 331.70 738.75 42.27 107.01 548.93

Upper 204.43 152.72 194.25 61.20 74.37 390.53

Table 5.3: Results for the Multilevel DFO method applied to theSurf problem.

sparsity of the problem, since it allows us to solve the problem for a much larger number of
variables than previous algorithms. Moreover, the number of function evaluations #f is no
longer integer, since we consider the evaluation of one element function to be a fraction of a
complete function evaluation. Again, we can see that the method performs well in practice.

These numerical results are very simple and limited, but they illustrate a possible imple-
mentation of this new method. In particular, the model choice is rather flexible and allows for
the use of any multilevel strategy, such as the V-cycles reminiscent of multigrid (presented in
Chapter 2) or free recursion. One could also imagine other criteria for the use of the lower-level
model depending on the characteristics of each problem.

5.4 Conclusions

In this chapter, we have presented a new formulation of the DFO algorithm to be used for
problems that possess a multilevel structure. This could allow us to apply a DFO method to
these problems, even when the number of variables is large. However, since even the multilevel
version of the DFO method shares some of the limitations of this method, due to time constraints
is was not possible to test this algorithm in larger problems. More tests are certainly in our
perspectives for the future, as is a more efficient implementation of the algorithm.
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Conclusions and further research
perspectives

In this thesis, we have presented three new developments in nonlinear optimization which
are based in the multigrid philosophy. These methods all have the common property of aiming
to solve problems that can be described in several levels of accuracy, which is very common
while trying to solve optimization problems resulting fromthe discretization of Partial Differ-
ential Equations in a grid. These problems are extremely common in practice, and thus there is
a wide range of applications where these methods can be used.

In Chapter 1, we have presented a brief introduction to nonlinear optimization, including
a brief review of the main theoretical results for trust-region methods. In Chapter 2, we have
presented the basic ideas behind the multigrid method for linear systems of equations. These
two chapters have been the main motivation for our work, described in the remaining three
chapters.

A Multilevel Algorithm for the Solution of the Trust-Region Subproblem

In Chapter 3, our concern was to solve the trust-region subproblem. We have reviewed two
classical methods for the solution of this problem, the Moré-Sorensen method, which solves the
trust-region subproblem exactly, and the Truncated Conjugate Gradient method, which solves
this problem approximately.

We have then presented a new multilevel strategy for the exact solution of the Euclidean-
norm problem, called the Multilevel Moré-Sorensen method.This method is based on the
fact that we can interpret the Euclidean-norm trust-regionsubproblem as a linear system with
one parameter (the Lagrange multiplier for the trust-region constraint), and this problem can
thus be solved by the use of multigrid techniques when several descriptions of the problem
are available. We have shown some results that indicate thatthis method can be applied to
solve the subproblem exactly when the number of variables isvery large, in which case the
classical Moré-Sorensen technique cannot be applied sincethe Cholesky factorization of the
system matrix cannot be easily computed.

Recursive Multilevel Trust-Region Methods

In Chapter 4, we have presented a brief review of the Recursive Multilevel Trust Region
class of methods. These methods have been first introduced byGratton et al. [25] for uncon-
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strained problems, and they combine the trust-region and multigrid philosophies in a fundamen-
tal way, such that the use of coarser descriptions of the problem is effective and computationally
cheap.

Here, we have presented aℓ∞-norm version of the RMTR method, which is also suitable for
the solution of bound-constrained problems, and a completefirst-order convergence theory that
shows that this new class enjoys the same desirable properties as classical trust-region methods,
while being able to solve large-scale problems quickly and with a moderate computational cost.

Multilevel Derivative-Free Optimization

Finally, in Chapter 5, we have described a new multilevel strategy for derivative-free op-
timization problems. Classical derivative-free optimization methods based on the trust-region
approach are very efficient, and they have been our motivation for this multilevelextension. We
present the basic idea of this algorithm, which is to make useof lower-level descriptions of the
problem to build new models around the current iterate, suchthat the computational cost and
number of function evaluations needed for the constructionof the model is smaller than that of
a full quadratic model, while still being a good approximation for the objective function. We
show some results that indicate that this method works and that it is possible to apply multilevel
techniques to these problems.

Future Perspectives

The multilevel trust-region methods presented here have shown the possibilities of the ap-
plication of the multilevel philosophy to nonlinear optimization. Moreover, they are somewhat
general, which allows for extensions to different problems in the future. Similarly, with the
exception of the Recursive Multilevel Trust-Region methodin infinity-norm, the other methods
could certainly benefit from a more efficient computational implementation.

The results shown here are only a part of this new field of study, and other works have also
focused on this subject. In particular, the theses of Mouffe [46] and Tomanos [65] share a lot of
the work done here through collaborations. Furthermore, trust-region methods are certainly not
the only application of multigrid techniques to optimization, and although we have focused on
this particular subject, it is certainly not the only possibility for large-scale problems.

Finally, these methods are all very recent, but the results obtained so far show that there is
still a lot of room for new developments and applications. Possible extensions are the appli-
cation of Algebraic Multigrid techniques to optimization,as well as the introduction of more
complex constraints and the generalization to higher-order models for the trust-region subprob-
lem.



Summary of contributions

Our contributions include new developments in multilevel methods for optimization. We
have developed the convergence theory for the infinity-normversion of the Recursive Multilevel
Trust-Region method, as well as two new methods for the exactsolution of the trust-region
subproblem and for the solution of derivative-free optimization problems, both using multilevel
techniques. Here, we summarize our contributions.

• The Recursive Multilevel Trust-Region (RMTR) method in infinity norm and its first-
order convergence theory have been published in Gratton et al. [24]. This version of the
RMTR method is capable of treating bound-constrained problems, and presents excellent
numerical results.

• The Multilevel Moré-Sorensen method is obtained by modifying the classical Moré-
Sorensen method by considering the trust-region subproblem as a linear system with one
parameter. This new method, along with numerical results, has been published in Toint
et al. [64].

• The Multilevel Derivative-Free Trust-Region algorithm consists in the use of the under-
lying multilevel structure of the problem to generate different quadratic models for the
trust-region method which are not purely interpolation models. It is presented in this
thesis, along with numerical results.
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Main notations and abbreviations

General
IR set of real numbers
IRn realn-dimensional Euclidean space
e[i] i-th coordinate vector
| · | absolute value of a scalar
|| · || vector norm
|S| cardinality of the setS
D domain of a function
∇ f (x) gradient off
∇2 f (x) Hessian matrix off
Proj(·) projection operator
ρ(A) spectral radius of the matrixA
λmin(A) smallest eigenvalue of matrixA
λmax(A) largest eigenvalue of matrixA
κp(A) p-norm condition number of matrixA
E set of equality constraints
I set of inequality constraints
x∗ optimal solution
F feasible region
N neighbourhood
A(x) active set atx
L(x, λ) Lagrangian function

Multigrid Methods
Ωh discretized domain with subinterval lengthh
eℓ error at the current iteration
uℓ approximation to the solution at the current iteration
u∗ exact solution
rℓ residual at the current iteration
Pi Prolongation operator from leveli − 1 to leveli
Ri Restriction operator from leveli to level i − 1
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Algorithms
xk kth iterate (vector)
Bk trust region at iterationk
∆k trust-region radius at iterationk
gk gradient of the objective function atxk

Hk symmetric approximation to the objective Hessian atxk

sk step at iterationk
xC

k (generalized) Cauchy point
mk(·) model of f at thekth iteration
ρk ratio of actual to predicted decrease

MMS
φ(λ) secular equation at lagrange multiplierλ
λL lower bound for the interval of uncertainty in the Moré-Sorensen algorithm
λU upper bound for the interval of uncertainty in the Moré-Sorensen algorithm
sM exact solution to theℓ2-norm trust-region subproblem
λM Lagrange multiplier corresponding to the exact solution totheℓ2-norm

trust-region subproblem
ǫ∆ tolerance on the trust-region in the Moré-Sorensen algorithm
vi,k vector at leveli, iterationk
Mi product of restriction operators from leveli + 1 up to levelp
Qi product of prolongation operators from leveli + 1 up to levelp
ǫr tolerance on the residual

RMTR
xi,k iterate at leveli, iterationk
xi−1,∗ solution at leveli − 1
gi,k gradient of the model at leveli, iterationk
κg bound on the ratio between‖gi,k‖ and‖Rigi,k‖
∆i,k trust-region radius at leveli, iterationk
ǫ∆i tolerance on thei-th level trust region
ǫ

g
i tolerance on thei-th level gradient
χi,k criticality measure at leveli, computed atxi,k

κχ bound on the ratio betweenχi,0 andχπ(i,0)

ǫi tolerance on thei-th level criticality measureχi,·
π(i, k) predecessor of iterationk at leveli (that is, iteration (i, k)

happens inside iterationπ(i, k))
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RMTR
Fi feasible set at leveli
Bi,k "pure" trust region at leveli, iterationk
Ai restricted (i + 1)-st level trust-region at leveli
Wi,k intersection betweeni-th level trust region at iterationk, restricted

(i + 1)-st level trust region andi-th level feasible set
Li intersection betweeni-th level feasible set and restricted

(i + 1)-st level trust region
Si,k intersection betweeni-th level trust region at iterationk and restricted

(i + 1)-st level trust region
R(i, k) set of all iterations whose predecessor is (i, k)
T (i, k) set of Taylor iterations insideR(i, k)

Main mathematical notations

BTR Basic Trust Region
CG Conjugate Gradient
DFO Derivative-Free Optimization
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualfication
MFCQ Mangasarian-Fromovitz Constraint Qualfication
RMTR Recursive Multilevel Trust-Region method
TCG Truncated Conjugate Gradient method
PTCG Projected Truncated Conjugate Gradient method
MS Moré-Sorensen method
MMS Multilevel Moré-Sorensen method
RQMG Rayleigh Quotient Minimization Multigrid algorithm
FMG Full Multigrid
MR Mesh Refinement
SCM Sequential Coordinate Minimization

Main abbreviations
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3D-1 A 3D quadratic problem
3D-2 A 3D nonlinear problem
C-D A 3D convection diffusion problem
3D-BV A 3D version of the Moré boundary value problem
Bratu A 1D version of the Bratu problem
Surf A minimal surface problem in 2D
DN A 1D Dirichlet-to-Neumann transfer problem

Multilevel Problems
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Appendix A

Test Problems Descriptions

A.1 Problems for the Multilevel Moré-Sorensen Method

A.1.1 3D Quadratic Problem 1 (3D-1):

A convex quadratic problem, where we consider the three-dimensional boundary value
problem defined by

−∆u(x, y, z) = f in S3

u(x, y, z) = 0 on∂S3,

where f is chosen so that the analytical solution to this problem isu(x, y, z) = 8. In a multilevel
formulation, this gives linear systemsAi x = bi at leveli where eachAi is a symmetric positive-
definite matrix. This problem is the typicalmodel problemfor multigrid solvers. Here, we want
to find the solution to its variational formulation

min
x∈IRnp

1
2

xTApx− xTbp.

A.1.2 3D Nonlinear Problem 2 (3D-2):

Another convex quadratic problem, where we consider the differential equation

−(1+ sin(3πx)2)∆u(x, y, z) = f in S3

u(x, y, z) = 0 on∂S3,

where f is chosen so that the analytical solution to this problem is

u(x, y, z) = x(1− x)y(1− y)z(1− z).

In a multilevel formulation, this gives linear systemsAi x = bi at level i where eachAi is a
symmetric positive-definite matrix. This problem is considered in its variational formulation

min
x∈IRnp

1
2

xTApx− xTbp.
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A.1.3 Convection-Diffusion problem (C-D):

We wan to minimize the variational formulation of the following nonlinear partial differen-
tial equation

∆u− Ru

(

∂u
∂x
+
∂u
∂y
+
∂u
∂z

)

+ f (x, y, z) = 0, R= 20,

where f (x, y, z) = 2000x(1−x)y(1−y)z(1−z), overS3 with Dirichlet boundary conditionsu = 0
on∂S3.

A.1.4 Boundary Value Problem (3D-BV):

This is a problem inspired by the one dimensional two-point boundary value problem pre-
sented in Moré et al. [45] and is defined by

−∆u(s, t, z) = 1
2(u(s, t, z) + t + s+ z+ 1)3,

with
u(0, t, z) = u(1, t, z) = 0, 0 < t < 1,

u(s, 0, z) = u(s, 1, z) = 0, 0 < s< 1,
u(s, t, 0) = u(s, t, 1) = 0, 0 < z< 1.

Here, we look for the solution of the least squares problem

min
s,t,z∈[0,1]

‖−∆u(s, t, z) − 1
2(u(s, t, z) + t + s+ z+ 1)3‖22.

A.2 Problems for the Multilevel Derivative-Free Optimiza-
tion Method

A.2.1 Bratu - Bratu

Here, we are looking for the solution of the 1-dimensional boundary value problem defined
in [0, 1] by

{

u′′ + Rexpu = 0,
u(0) = u(1) = 0.

In our case, we will use a finite-element approximation to theleast-squares formulation for this
problem, namely























min
∫ 1

0
‖u(t)′′ + Rexpu(t)‖2dt,

s/t u(0) = u(1) = 0,

whereR= 3.51 (as suggested in [33]).
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A.2.2 Minimal Surface - Surf

We wish to find the solution of the minimum surface problem given by

min
v∈K

∫ 1

0

∫ 1

0
(1+ (∂xv)2 + (∂yv)2)

1
2 dx dy,

whereK = {v ∈ H1(S2) | v(x, y) = v0(x, y) on ∂S2}. The boundary conditionv0 is chosen as

v0(x, y) =



































f (x), for y = 0, 0 ≤ x ≤ 1,
0, for x = 0, 0 ≤ y ≤ 1,

f (x), for y = 1, 0 ≤ x ≤ 1,
0, for x = 1, 0 ≤ y ≤ 1.

wheref (x) = x(1−x). To do this, we discretize the problem using a finite elementbasis, defined
by a uniform triangulation ofS2, with same grid spacingh along the 2 coordinate directions.
We use the classical P1 functions which are linear on each triangle and take value 0 or 1 at each
vertex as basis functions.

A.2.3 Dirichlet-to-Neumann Transfer Problem -DN

This problem is taken from Lewis and Nash [41] and is described as follows. LetΩ =
{(x, y) | 0 ≤ x ≤ π, 0 ≤ y ≤ 1}, andΓ = {(x, 0) | 0 ≤ x ≤ π} the lower boundary ofΩ. We want
to finda(x) that minimizes

F(a) =
1
2

∫ π

0

(

∂u
∂y

(x, 0)− φ(x)

)2

dx,

whereφ =
15
∑

i=1

sinix + sin 40x, and whereu is the solution to a finite-differences approximation

to the boundary value problem























∆u(x, y) = 0 inΩ
u(x, y) = 0 in ∂Ω \ Γ
u(x, 0) = a(x).
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