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Optimisation Multiniveaux: Théorie de Convergence, Algoithmes et Application en
Optimisation Sans Dérivées
par Melissa Weber Mendoncga

Résumé:Nous présentons des nouveaux développements dans le eadreethodes de r¢
gion de confiance multi-niveaux pour I'optimisation nondaire. Motivés par les résultgts
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obtenus pour I'optimisation sans contraintes, nous aveéwsldppé une théorie de conver-
gence pour les problemes aux contraintes de borne, et porgdens de confiance définies

par la norme infinie. Comme alternative a ce genre de méthodas avons développé un @

gorithme qui utilise des techniques multi-niveaux pouglsalution exacte du sous-probléme

de la région de confiance. Cette nouvelle méthode garamtitieaergence de I'algorithme
un point critique du deuxiéme ordre, avec un co(t associément inférieur comparé au
méthodes classiques. Malheureusement, il y a des probl@inies dérivées de la fonctig
objectif ne peuvent pas étre calculées. Les méthodeséaslipour résoudre ce genre
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problemes sont limitées par le cot du calcul de la fonctigeative. Nous présentons dopc

une version multi-niveaux de cette méthode qui permet detides problémes de taille pliis

conséquente, ainsi que des résultats numériques obtemis@nouvel algorithme.

Multilevel Optimization: Convergence Theory, Algorithms and Application to
Derivative-Free Optimization
by Melissa Weber Mendonga

Abstract: We present new developments in the context of multilevedttragion method

5
for nonlinear optimization. Motivated by the results ohtd for unconstrained problens,
we have extended the convergence theory for bound-comstt@iroblems and for the use |of

infinity-norm trust regions. As an alternative for these Inoels, we have developed an algo-

rithm that uses multilevel techniques for the exact resmhudf the trust-region subproblem.
This new method guarantees the convergence of the trustaratgorithm to a second-order
critical point, with a much reduced associated cost whenpaoed to classical methods. ljn-

e

fortunately, there are problems for which we cannot comghaelerivatives of the objecti
function. The methods used today to solve this kind of proislare limited by the cost ¢
the objective function computation. We present a multilgeesion of one of these methog

that allows for the treatment of larger instances of the j@mob as well as numerical results

obtained with this new algorithm.
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Introduction

In the history of mathematics, optimization is a fairly retéeld, even if the problem of
minimizing or maximizing some quantity is a natural one thases frequently in life. One
might wish to minimize one’s route to work, or maximize protan in a factory, for example.
More importantly, many modelling problems in applied sces, engineering and economics
can also be formulated as optimization problems. Applicetias diverse as weather forecast-
ing, aircraft design, scheduling, medical imaging and neobétwork communications can all
be formulated as optimization problems.

Throughout history, however, these kinds of problems weratéd by heuristics, either
because of lack of computing power necessary to treat laigiélgans, or because of a lack
of suitable methods that exploit each problem’s charesttesi in order to fectively solveit,
in a rigorous mathematical sense. The first optimizatiohriepie developed for this specific
end, known as thsteepest descentethod (or gradient method), is attributed to Gauss (777
1855). Mathematics has come a long way from that time, anégsoptimization, which today
allows us to solve many extremely complicated and costlpleras in the applied sciences
and in life in general. The advances in computing we have rexpeed in the last 50 years
have been key to this development, with mathematical progriaag becoming one of the most
important areas of mathematics today.

Along with the optimization approach, linear systems argdamental in modelling these
types of problems. In particular, large sparse systemsemecommon, especially in mathe-
matical formulations resulting from the discretizationedifptic Partial Diferential Equations.
Several methods have been proposed for the solution of lizwggr systems of equations, and
here we will focus on th&ultigrid methodology which has been established as one of the most
efficient techniques for this end.

In this thesis, we aim to present thredfeient techniques, developed in the course of four
years, and which are somewhaffdrent from each other. However, these three techniques are
profoundly related, in that they are all a mix of trust-regend multigrid approaches, and as
such we will refer to them aMultilevel strategies. These multilevel strategies are a part of
a growing number of optimization methods, and are thus irctlieng edge of mathematical
programming. We will present a brief introduction to theneéats that make up these methods,
and detail our own contributions to this rapidly growingdielf mathematics.

First, we will present a new multilevel method designed twesthe trust-region subprob-
lem exactly. It is capable of treating problems much largantthe ones solvable by tiMoré-
Sorensemethod, and it consists in interpreting the trust-regidspsablem as anultigrid prob-
lem with one parameter. In this sense, it is a more directiegipdn of multigrid techniques to a

Vil



vili Introduction

fundamental part of the trust-region algorithm, withowéahg the basic trust-region iteration.

In contrast with this methodology, we will present the Rsowg Multilevel Trust-Region
class of methods, abbreviated here by RMTR, developed bigdarat al. in 2008, which con-
sists of a diferent formulation of the trust-region iteration that irads diferent possibilities
for the computation of the model to be minimized inside thsttregion, and the computation
of the trial point. In a way, we apply the trust-region mettaiceach level This means that
the basic trust-region iteration has to be modified and thasthe convergence theory for this
method difers from the convergence theory of a basic trust-regionrilhgn. We will present
here the convergence theory developed forth@orm version of RMTR.

Finally, we will present a third application of multilevedhniques, this time for derivative-
free optimization problems. In this class of problems, teewvétives of the objective function
are not available, either because they are too expensiatpuie or because they are simply
not known analytically. There are several methods capdideleing these problems, and we
will focus once more on a trust-region approach, where treglatic model to be minimized
at each trust-region iteration is computed using an intatjpm technique. We will present a
brief introduction to this method, and a new methodologydmblems in which a multilevel
strategy is possible.

This work is organized as follows. In Chapter 1, we will preisa brief introduction to
optimization, with some basic definitions and results neassfor the rest of this work. In
Chapter 2, we will present the basic ideas behind multigredhods. In Chapter 3, we will
present the Multilevel Moré-Sorensen method, a multilstrgtegy for the solution of the trust-
region subproblem, along with some computational resuit€hapter 4, we will describe the
RMTR family of methods and the convergence theory ofthenorm version of the method.
Finally, in Chapter 5, we will describe in details a new nieitel method for derivative-free
optimization.



Chapter 1
Optimization

Optimization ormathematical programminig concerned with minimizing or maximizing
some quantity, represented by abjective function Often, the desired result must lie in a
certain subset of the domain of this function. The particelaaracteristics of the function
and the subset that must contain the solution to the probkfimedseveral dierent types of
optimization problems, each requiring dfdrent method to be solved.

In this chapter, we will present the formal definitions of iopzation and mathematical
programming problems and some of the methods, as well as daBnitions from Analysis
and Linear Algebra that will be needed throughout this thesi

1.1 The problem

Optimization problems can be divided into two large claseamelyConstrainedandUn-
constrainedoroblems. The basic unconstrained optimization problembeastated in its stan-
dard form as

minimize f(x), subject tox € R", (1.1)

wheref : IR" — IR is the objective function On the other hand, constrained optimization
problems can be written as

minimize f(x), (1.2a)
subjectto xe X CIR", (1.2b)
g(¥) <0,ier (1.2¢)
g(x)=0,ieé&. (1.2d)

Equations (1.2b-1.2d) indicate tleenstraints The disjoint index set$ and& correspond to
the inequality and equality constraints, respectiveljingel by the functiong; : IR" — IR,i €
T U &. The setX is contained in IRand is also contained in the domainfoandg;,i € 7 U &.
A point x € X is said to befeasibleif it satisfies all the constraints, and the set of all feasibl
points is called théeasible setand denoted by .

The formulations (1.1) and (1.2) are called standard foatnhs due to the observation that

maxf(x) = — min(-f(x)).

1



2 Chapter 1. Optimization

Thus, any maximization problem can be rewritten as a miration problem, falling into one
of these two formulations. Because of this, all problemshis thesis will be described as
minimization problems.

When the constraints can be written as

L<x<u,i=1...,n,

wherex, denotes thé-th component of the vector € IR" andl; andu;, i = 1,...,n, are real
values, then we refer to them bsund constraints The valued; andu;, fori = 1,...,nare
calledlower andupperbounds, respectively. Since this type of constraints ang s@ecific and
can be treated ferently from the general inequality constraints, they ameally formulated
separately or incorporated into the definitionof

Some problems dtier from others in such a significant way that the methods teesthiem
have to be fundamentally fiierent, and thus require a new classification. This is the, dase
instance, with problems wherkeis a linear function. In this case, we refer to the problem as
a Linear Programming Problemif the function is not necessarily linear, then we referhe t
problem as a generalonlinear Programming Problem

In this thesis, we will pursue methods to solve general usttamed nonlinear program-
ming problems.

1.2 The solution

The solution of an optimization problem can be charactdrizg certain properties. In a
minimization problem, if we are looking for a poirt in the domainD of f such that

f(X") < f(x), forall xe D,

thenx* is called theglobal minimizerand f (x*) theglobal minimurmof f. Similarly, in a con-
strained problem, the solution must lie inside the feasibly™, and thus a global constrained
minimizer satisfies

f(X") < f(x), forall xe F.

However, in both cases, finding a global minimizer of a fumeti can prove to be very ficult
in practice. It might be interesting, thus, to look for a ¢mo x* in a neighborhooaV of x*,
N C D such that

f(X) < f(x), for all (feasible)x € N. (1.3)

The pointx® is then called docal minimizerand f (x*) alocal minimumof f in AV. If X*is such
that

f(X) < f(x), for all (feasible)x € N. (1.4)

thenx* is said to be atrict local minimizerand f(x*) a strict local minimunmof f in N. Fig-
ure 1.1 shows an example of a function with two distinct looadimizers, and Figure 1.2 shows
examples of functions with non-strict and strict local mizers.



1.2 The solution 3

Figure 1.1: Global and local minima of the functid(x,y) = —10x? + 10y + 4 sinxy — 2X +
x*. This function admits two local minima, at points;(y:) = (-2.21,0.32) and &, Y,) =
(2.30,-0.33), as indicated in the picture. The global minimum, howeigefound at point
(X2, ¥2), sincef (X, y1) = —22.14 andf (X, y,) ~ —31.18.

@ f(xy)=x+1

(c) f(xy)=x2+1 d) f(xy) = X2 +y?

Figure 1.2: In (a) and (b), we see the surface plots of thetioms f(x,y) = x* + 1 and
f(x,y) = X2 + y?, respectively, and in (c) and (d) we see the level curvesi@same functions.
On the left, we see an example of a local minimizer which isstatt. In this case, any point
in the line (Qy) (for all y € IR) is a local minimizer forf (x,y) = X2 + 1. On the right, the point
(x,y) = (0,0) is a strict local minimizer foff (x,y) = X% + y2.



4 Chapter 1. Optimization

In general, we would like to be able to check if a point is a 8otuto the problem being
solved. In order to do this, there are soapimality conditionswhich allow us to determine if
we are at the solution or not.

First, let us state a few definitions which will be useful for analysis throughout this work.

1.2.1 Basic Theoretical Concepts

Since we will be dealing mostly with problems defined in a raltiate space IR some
definitions are useful here.

As already mentioned, ¥ is a vector in IR, we usev; to denote the-th component of/,
i =1,...,n (except when indicated otherwise). We denoteelsy IR" the vector composed of
ones in every component, whigdl e IR" is thei-th coordinate vector n IR" with zeros in every
component but 1 in thieth one.

1.2.1.1 Eigenvalues and Eigenvectors

Given a matrixA € IR™", the nonlinear equation
Au= Au

defines solution pairai(1) which are calleceigenpairs The scalar valuad is called areigen-
valueand the vectou € IR" is called areigenvector The matrixA can have up to eigenpairs,
and the set of all eigenvalues is called #peectrumof A. Thespectral radiusof A is denoted
by p(A) and is defined as the largest eigenvalu@d af absolute value, that is,

o(A) £ max|A | is an eigenvalue oA).
Symmetric matrices are a special class of matrices, siheganvalues of a symmetric matrix
are real, and it is possible to find a complete sat ofthonormal eigenvectors associated with
such a matrix. For any symmetric matfx we can write

S=UAUT,

whereUT denotes the transpose of mattix and where the entries of the diagonal matrix
A are the eigenvalues &, and the columns of the orthonormal mattixare the associated
eigenvectors.

For any matrixA € IR™", thesingular value decompositiaa a factorization of the form

A=UxVT,

whereU andV are, respectivelyn by m andn by n orthogonal matrices, and € IR™" is
a diagonal matrix with nonnegative entries which are catlegsingular valuesof A. The
columns ofU andV are known as the left and riglsingular vectorsof A. The squares of
the nonzero singular values éfare the nonzero eigenvaluesAA™ (which are equal to the
eigenvalues oA" A), while the left and right singular vectors are eigenvestifitAAT andAT A,
respectively.



1.2 The solution 5

From the singular value decomposition of a matkixwe can obtain itsank, which is the
number of its nonzero singular values. The rankkpflenoted by ranlg) is also the number of
linearly independent rows (and columns)®fThe matrix is said to be dtill rank if rank(A) =
min(m, n).

For any vectors, v € IR", we define thenner productof u andv as

u,vy = Z UiVi. (1.5)
i=1

Then, a symmetric matri® € IR™" is positive semidefiniti and only if
(X,S% >0, forallxelR"
S is said to bepositive definitef and only if
(x,S¥%» >0, forallxelR",x%D0. (1.6)
If S is positive semidefinite, we can define
VS £ U VAU,

where VA is a diagonal matrix witi\;j = VA;(S), and wherel;(S) denotes thé-th eigenvalue
of S.
Now, if S is symmetric anck # 0, the scalar

(%, S¥

(X X)

is known as thdRayleigh quotienof x. This is an important quantity, as we can estimate the
largest and smallest eigenvaluesSofrom it:

Amin(S) <

(X,SX
™ < Amax(S) (1.7)

X)

for any x # 0, whereAnmin(S) denotes the smallest eigenvalueS)fand Am.(S) denotes the
largest eigenvalue d&. This inequality is known as thRayleigh quotient inequalifyand the
quotient attains its maximum and minimum values wixds the eigenvector associated with
the largest or smallest eigenvalue, respectively.

Since it is usually very expensive to compute the eigengabifea general matri), it is
useful to have bounds on these values. Gaeshgorin boundsre very well known. For real
symmetric matrices, they state that

miin(S',i - Z |S,j|] < Amin(S) < Amax(S) < miax(si,i + Z |S,j|], (1.8)

j#i j#i

wheres j, i, j = 1,...,nis the element located in theh row andj-th column ofS.
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1.2.1.2 Vector Norms and Properties

Given a vector
Vi

V2
v=| ~ |eR™,

Vi
we denote by" € R™" its transpose
Vi=(VVo oo V).

Note that we can also write the inner product (1.5jas) = u'v.
A vector normon IR" is a function||-|| : IR" — IR that satisfies the following properties:

(i) Ivl| = 0, velR™
(i) |Vl = 0ifand only ifv = 0;
(@iii) v+ ul] < M| + |lull for all v,u € IR™;
(iv) |lavl| = |a||v| for all @ € IR and for allv € IR".

The most important class of norms for our work will be the slap-norms(or £,-norms,
defined by
1
IMlp = (Val® + Val® + ...+ alP)P, p > 1.

In this class, three norms are very important:

IVl = IVal + Vol + ... + [Vl (1.9)
1

IMl2 = (Val® + Vol + ...+ V) = WTv (1.10)

Moo = max vil. (1.11)

The ¢, and{,, norms are also calleBuclidean normandMaximum normrespectively.
TheHolder inequalityis a classic result fop norms that states that

1 1
KXW < [IXlplYllg » —+Z=1
p q p q
A special case of this inequality is ti@&auchy-Schwartz inequality

KX W < [IX[2llYll2-

In the space IR all norms areequivalent which means that ifi-l, and||-||; are norms in IR,
then there exist constantg ¢, > 0 such that

CiliXle < IIXlls < CalIXllq, for all x € IR™.
For example, for alk € IR",

Xl < IIXli < Vil (1.12a)
Ml < lIXl2 < VNIIXl (1.12b)
Xleo < IXll2 < l[X]eo. (1.12¢)
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1.2.1.3 Matrix Norms

Given a vector nornjj-||, for any matrixA € IR™", we define a matrix nornmducedby its
vector counterpart by

A
[|Al] = maxm.
x#0  ||X|

The most frequently used matrix norms in this category agentlatrix ¢1, £, and{,, norms.
They can also be written as

1Al = max||Ael|, (1.13)

Al = omax(A) (1.14)

Al = max|ATe|l; (1.15)
<i<n

for A € R™", whereoma(A) denotes the largest singular valuefof
There is another norm that will be useful for what follows.idltcalled theFrobeniusor
Euclidean matrix norm, and it is defined by

Al =

As in the case of vector norms, we can show the equivalendgesetnorms in the following
inequalities.

AL <IAlE < VAlAlL. (1.16a)
1
Al < lIAlz < VAl (1.16b)
Vn
1
—|A < |A < Vn|All;. 1.16¢c
Al <Al VAIIAL (1.16c)

Another useful property is that

1Az < VIIAIAlle,

which has as a consequence the fact tha,i§ symmetric, then bounds (1.16) become
A2 < 1Al = [|Al]e. (1.17)

We say that a matrix nori||,, is consistentvith a vector nornij|-||, and a vector norni-|ly
if
1Ay < [[AlluvlIXIlv

forall Ae R™" x e IR".
For any matrixA € IR™", we can define th&-norm ofx € IR" as

IXlla = V(X AX).
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Thecondition numbek(A) of a matrixA is defined as
K(A) = 1A [IA™].

We say that the matriR is ill-conditionedif this number is large, otherwise we say tifat
is well-conditioned This number depends on the norm chosen; for example, if wesehthe

£>» norm, then
G'max(A)

G'min(A) ’
whereoma(A) andomin(A) are the largest and smallest singular valu&ofespectively.

K2(A) =

1.2.1.4 Matrix Factorizations
When trying to solve a linear system
Ax=Dh,

whereA € R™" andx, b € IR", it is possible tdactorize Ain order to obtain simpler systems
to solve. One example of such a factorization islthefactorization

A= LU,

wherelL is a lower triangular matrix with 1s in the diagonal, dmds an upper triangular matrix.
This factorization exists if the determinants of all subncasA, obtained by deleting all rows
i and columng of A whereli, j > k, are nonzero. Furthermore,Afis nonsingular and ittU
factorization exists, then it is unique and d@t(= uy; - - - Uy, Whereu;,i = 1,...,n, are the
diagonal elements dj.

This factorization is very important since it allows us tdveoa dense linear system by
solving two triangular systems, which are much simpler. itlea is to solve

Ly = b
{UXr=y
in sequence in order to obtaxn
When the matrix in question is symmetric and positive dediratspecial factorization called
Cholesky factorizatiowan be computed. In this case, we can find a unique lower trlang
L € IR™" with positive diagonal entries such that

A=LL". (1.18)

In this case, the system can also be solved by successiveiggo

Ly = b
L™ = vy

The Cholesky factorization has another advantage, in thetaws us to check for positive
definite matrices, since the usual definition (1.6) is venylha test for in practice. If the matrix
is not positive definite, the Cholesky factorization wilil fas aL with positive diagonal entries
cannot be computed.
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1.2.1.5 Derivatives and Taylor's Theorem

All methods considered here are based on the fact that thatidanto be minimized has
derivatives. In fact, even if the derivatives are not knottre mere fact that these derivatives
could be computed changes dramatically the approach ussiMimg the problem.

First, consider a real functioh: IR — IR. Then,f is differentiableat x if the limit

im f(x+h) - f(x)
h—0 h

exists. If this is the case, then

, df . f(x+h)-f(x)
109 =g =Im =,
is called thederivativeof f at x.
Now, let f : IR" — IR be a multivariate function. Then, it is said to bgferentiableat
x € R" if all its partial derivatives

9f() . f(x+hd)—f(x) .
%~ im h 1=

exist, wheredl is thei-th coordinate vector in IR If this is the case, then we define tipadient
of f as the vector that groups all its partial derivatives, andiemote it by

1,....n

af (%)
0X1

Vi =| :
af(x)
2N

If f is differentiable, and all derivatives @fare continuous with respect ¥ then we say that
f is continuously dferentiable and this is denoted bf/ € C*.
The second partial derivatives bfare defined by’

Pf(x) 0 (9t(X)
O%0%; 0% \ 9%
If all second partial derivatives df exist, thenf is said to bawice djferentiable if, further-
more, all second partial derivatives dfare continuous, we say thdtis twice continuously
differentiable and denote this by € C2.

Then x n matrix defined as

),1si,jsn.

2 £(x) 2 f(x)
(')X% T 0X10%,

V2E(X) = : A
521(X) 521(%)
0XpOX1 =" (‘)x%
is called theHessian matriof f. Thecurvatureof f at x € IR" along a directiord € IR" is
given by
(d, V2f (x)d)
1dIl2

Owe will use the notatior%% -0 1 <j<n,

ax?
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fO)

Figure 1.3: Here, the function is convex when restrictedht itterval ki, y;], but it is not
convex when restricted to the intervab]y-].

If the domain® of the functionf is a convex s&?, thenf is said to beconvexf
f(Ox+(1-0)y) <0f(xX)+ (2 -0)T(y) (1.19)

for all x,y € D and#d € [0,1]. The functionf is strictly convexf the inequality in (1.19) is
strict for all X,y € O such thatx # y and forf € (0, 1). In other words, a function is convex if it
always lies below its linear interpolant. Figure 1.3 showgrample of this.

Another definition is that iV?f(x) is positive semidefinite for evenyin the domain off,
we say thatf is convex. IfV2f(x) is positive definite in its domain, we say that it is strictly
convex. Figure 1.4(a) shows the surface plot of the functipny) = x? + 1, which is a convex
function, but not strictly convex. Its Hessian

Vi) =( 5 o

is positive semidefinite. Figure 1.4(b) shows the surface @il the functionf(x,y) = x% + y?,
which is strictly convex, since its Hessian

Vi =( 5 5]

is positive definite for allX, y) € IR?.
If the function we are interested in depends on several v&gdir instance if we consider a
function

h:R"xIRY - R
(xy) + h(xy),
then we will use the following notatior,h(x,y) € IR" andVZh(x,y) € IR™" will denote the

gradient and the Hessian matrix lofvith respect ta; Vyh(x,y) € IR and Vi h(x,y) € IR™
will denote the gradient and the Hessian matrikefith respect to/; andVh(x,y) € IR™% and

@A subsetD C R" is convex if for any points, y € D andé € [0, 1], the pointx + 6(y — X) € D.
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(@ f(xy) =x+1 (b) f(xy) = ** +y*

Figure 1.4: Examples of convex and strictly convex funcdion

V2h(x,y) € IR™*(9 will denote the complete first- and second-order derivativieh with
respect to botkx andy. This notation will be used only when necessary.

With these definitions, we can state one of the most imporesuilts in the theory of opti-
mization:

Theorem 1.2.1 (Taylor's Theorem.)Let f : IR" — IR be continuously derentiable and <
IR". Then, there exists some {0, 1) such that

f(x+9s) = f(X) +(VI(x+19),9).

Moreover, if f is twice continuously fierentiable, then
Vi(x+s) = VX + lezf(x+ ts)s dt
Furthermore, we have that, for some {0, 1),
f(x+9) =f(X)+(VI(X),s + %(s, V2f(X +t9)s). (1.20)

Taylor’s theorem is the main result we will use throughous thesis to derive thenodel
used in trust-region methods, and is the justification ferttteorems in the next section, which
characterize a local minimizer of a function. The proof canfcund in Conn et al. [12], for
example.

A functionF : IR" — IR is said to be dterentiable if all its partial derivatives

aFi(x) .
ox_ ~im h

Fi(x+hdl) - F;
i(x+ hd) J(X), i=1...n j=1,....m

exist. In this case, we can write all partial derivative$-ah the m x n matrix

R R0 . 9Fa(Y
VF1(X) oy B N A

F@ = = T
VFm(X) OFm(®)  OFm(X) ' ()

X1 o T 0%



12 Chapter 1. Optimization

This matrix is called thdacobian matrivof F.

Another definition will be useful in the discussion that folls. LetF : R™ — IR", and
suppose that||; and||-|l,; are norms defined in Rand IR, respectively. Then we say thiat
is Lipschitz continuouat x € IR™ if there is ay(x) > 0 such that

IF(Y) = F()llim < ¥y = Xlliny, for ally € R™

1.2.2 Solutions of Unconstrained Problems

Now, we can present the main concepts and results that aboiw identify the solution
to an optimization problem. First, we look at unconstraisgttt local minimizers as defined
in (1.4).

Theorem 1.2.2 (First-Order Necessary Conditions)if x* is a local minimizer of f: R" —
IR, where f is continuously fierentiable in an open neighborhodd of x*, then

V(x) = 0. (1.21)

If V2f exists and is continuous in a neighborhoodxof we can state another necessary
condition satisfied by a local minimizer.

Theorem 1.2.3 (Second-Order Necessary Conditiondj x* is a local minimizer of f, and f
is twice continuously dierentiable in an open neighborhoad of x*, then

Vi(x) =0 and V?f(x) is positive semidefinite. (1.22)

Any x* that satisfies (1.21) is calledstationary pointof f. Thus, Theorem 1.2.2 states
that any local minimizer must be a stationary point; it is artant to note, however, that the
opposite is not necessarily true. Fortunately, if the nexiditions, calledsyficient conditions
are satisfied by a stationary poiit they guarantee that it is a local minimizer.

Theorem 1.2.4 (Second-Order Sflicient Conditions) Let f be twice continuously fieren-
tiable on an open neighborhood of x'. If x* satisfies

Vi(x) =0 and V?f(x) is positive definite

then X is a strict local minimizer of f.

It is important to note here that the second-orddfigent conditions are not necessary: a
point can be a strict local minimizer and fail to satisfy tuisient conditions.
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1.2.3 Constrained Problems

Finally, let us state the main results that allow us to charae a constrained strict local
minimizer of a functionf. To do this, we must define some additional concepts related t
constrained problems.

We say that an inequality constramt for some index € 7 is activeat a feasible poink
if gj(x) = 0. Atany feasible poink, theactive setA(X) is the union of the s&f with the index
set of the active inequality constraintsx@athat is

A(X) = EU (] € I such thag;(x) = 0}.
ThelLagrangian(or Lagrange functiopfor problem (1.2) is defined by

L) =)+ > 4G,
ieTus
and the scalarg; (i € 7 U &) are called thé.agrange multipliers
In constrained optimization, a solution is not only chagaeed by conditions on the ob-

jective function at the solution, but also by conditions ba tonstraints. These conditions are
calledconstraint qualificationsnd they ensure that we exclude pathological cases in the-geo
etry of the constraints at the solution. Here we present ong/of them, but many others have
been proposed. For a more complete investigation, see ldbaed Wright [50], for example.

Condition 1.1 Linear Independence Constraint Qualification (LICQ): Given a point X
and the corresponding active s@i(x"), thelinear independence constraint qualificatisisaid
to hold for problem (1.2) at*if the active gradients

{Vai(x) i e A(X)}
are linearly independent.

This is equivalent to the requirement that the Jacobianeéthive constraints at has full row
rank.

Now we can state the optimality conditions for constrainexbfems, starting by the neces-
sary optimality conditions.

Theorem 1.2.5 (First Order Necessary Conditions)Assume that™xis a local solution of the
constrained optimization problem (1.2) and that the LICQh@iion 1.1 holds at X Then there
exists a Lagrange multiplier vectar, with components;(i € & U 1) such that the following
conditions are satisfied &k, 1*):

Vi L(X', %) = 0, (1.23a)
g(xX) = 0 forall i1eé&, (1.23b)
g(x) < 0 forall ief”, (1.23c)

A > 0 forall ielr, (1.23d)
Agi(x) = 0 forall ier. (1.23e)
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Conditions (1.23) are known as tiarush-Kuhn-Tucker (KKT) conditiond hey were intro-
duced first by Karush [34] and rediscovered later by Kuhn amckér [38]. Equation (1.23a)

is called thestationarity condition (1.23b) and (1.23c) are called tlfeasibility conditions
(1.23d) states theon-negativity of the multipliersnd (1.23e) is theomplementarity condition

A point x* satisfying (1.23) is called #rst-order critical pointor KKT pointfor problem (1.2).
Since thecomplementarity conditio(iL.23e) implies that the Lagrange multipliers associated
with inactive inequality constraints are zero, we can rescondition (1.23a) as

VF(x) + Z 2'gi(x) = 0. (1.24)
ieA(x")
In order to state the second-order conditions for constthproblems, we define tloeitical
coneN,(x*, 1*) as

Ny ] WE R"| (Vgi(x'),w) =0, foralli e &U(A(X) NI with 4} >0),
neera e and (Vgi(x"),w) >0, foralli e A(x) N I with 2 = 0.

First, let us state the necessary conditions.

Theorem 1.2.6 (Second-Order Necessary ConditionsJuppose that*xs a local solution of
problem (1.2) and that the LICQ Condition 1.1 is satisfiedt Lebe the Lagrange multiplier
vector for which the KKT conditions (1.23) are satisfied. A,he

(W, V2 L(x", 2wy >0, forallwe N.(x, 1. (1.25)

A point x* that satisfies (1.25) is calleds&rong second-order critical poiribr problem (1.2). A
syficientcondition, like the one derived for unconstrained probleras be stated as follows.

Theorem 1.2.7 (Second-Order Sflicient Conditions) Assume that for some feasible point
x* € IR" there exists a Lagrange multiplier vectat such that the KKT conditions (1.23) are
satisfied. Assume further that

(W, V2 L(X, )W) >0, forallwe N, (x*,1%) withw # 0.

Then, X is a strict local solution for problem (1.2).

1.3 Solving the problem

Mathematical programming is concerned with the methodsdha be used to solve op-
timization problems. In practice, we will be concerned watgorithms, defined so that their
computational implementation finds either an approximatanoexact solution to the original
mathematical programming problem.

These algorithms are mostiterative methodswhich from a starting poinkg, use some
rule to compute a sequence of poifg X, ..., X, ...} such that

lim x = X',
k— o0
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wherex* is the solution to this problem.

Here, we are mostly interested in unconstrained probleniais,TTheorems 1.2.2, 1.2.3
and 1.2.4 will be the basis of the methods to solve the miratron problem, as they will be
based in this characterization of the solution whenevesiptes

As already mentioned in the Introduction, the simplest méttieveloped for the solution
of a minimization problem is the steepest descent methods mMiethod is based on the fact
that, from any starting point, the direction in which any functiof decreases most rapidly, at
least locally, is the directiorV f (x)©®). However, the steepest descent method can be extremely
slow for some problems. There are, fortunately, severadratiethods that work very well in
practice, and here we briefly present some of them.

1.3.1 Newton’s Method

Consider any nonlinear system of equations of the form
F(x) =0, (1.26)

whereF : R" — IR". If the Jacobian of exists, then we can write the Taylor first-order
approximation to this function as

F(x+s) ~ F(X) + J(X)s, (1.27)

whereJ(X) denotes the Jacobian Bfevaluated ak. From these equations, we can derive an
iterative method. Given an initial poing, at each iteratiok, we will compute a new iterate
X1 = Xk + S such thaf(x + s¢) = 0, which means thad, must satisfy the linear system

J(X)sc = —F ().

This is called theNewton’s methodbr solving nonlinear systems of equations.

Now, returning to our optimization problem, note that whiea tirst and second derivatives
of f are available, we can use Newton’s method to solve the (plgssonlinear) system of
equations defined by

Vi(x)=0, (1.28)

since we know from Theorem 1.2.2 that any minimizerfahust satisfy this condition. This
is the basis for the Newton’s method for optimization profdeand, with some variations, it is
the basis for many other methods in unconstrained optimizaMore formally, if we want to
apply this method to equation (1.28), observe that the skootler Taylor's approximation to
f atxis

1
F(c+ 59~ F(%) +(VI(%). S0 + 5(Sc. V2 (%) S0 (1.29)
In order to find a minimum of this function, we will try to find ®lsition toVf(x + s) = 0O,

which is equivalent to
Vi(x) + V2f(x)s = 0.

©)This is a direct consequence of Theorem 1.2.1. For morelsietae Nocedal and Wright [50].
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Thus, we have thad, must satisfy the so callddewton equations
V2 (%) S = =V (%) (1.30)
If V2f(x) is positive definite, then we can find its inverse, and thatsmh to (1.30) is

sc= = (V2F(0) " VI, (1.31)

This directions; is called theNewton direction

One of the problems in Newton’s method is that the method setb@n a necessary first-
order optimality condition (namely, that the gradient af tibjective function be equal to zero).
In order to guarantee that we have found a minimizer poit suffices to guarantee that the
Hessianv?f(x*) be positive definite. Moreover, the approximations (1&T) (1.29) are only
valid in a neighborhood of the solution of (1.26) and (1.&¥pectively. Thus, Newton’s method
is only appropriate when the starting pomatis syficiently closeto the solutionx*. However,
when it works, it is very fast and most optimization methagstdé mimic its behavior around
the solution.

There are so calledlobalization techniquethat can be used to guarantee the convergence
of Newton’s method to a sationary poiitfrom any starting point. These techniques give rise to
different methods which can be divided into two clast@se Search MethodandTrust-Region
Methods The main diference between these two classes is that in Line Search dsetihe
direction in which we choose to take our next iterate is getkéirst, while the size of the step
to be taken in this direction is computed with the directio®di. On the other hand, in Trust-
Region methods, the step size and the direction are mores®icleosen simultaneously. We
describe both strategies in more detail in the followingises.

1.3.2 Line Search Methods

As their name suggests, the idea behind Line Search methddgind a step size along
a certain line which gives us a good reduction on the funct@oe, while being reasonably
inexpensive to compute. More formally, they are iterativetmods that, at every step, choose a
certaindescent directiomnd move along this direction. Thus, at every iteralépn

Xir1 = X + @ik

For examplep, can be chosen as the Newton direct®ryiven by (1.31), but in practice any
direction which is a descent direction, that is, one for Whjpy, Vf(x)) < 0, can be chosen.
The most popular methods use some (cheaper) approximattbe tNewton direction, and are
thus calledQuasi-Newtormethods. Several other choices are possible, but we willlisotiss
them here. More details can be found in Nocedal and Wright [50

Once the direction has been chosen, the step lemgttan be then computed in various
ways, trying to solve exactly or approximately the one-disienal minimization problem

migl f (X + @py)- (1.32)
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The solution to this problem is the step lengttthat gives the lowest function value in direction
P-

Solving this problem exactly yields the best results, batstimes it may be too expensive
and we might get a very good approximate result using simptdmiques. These approximate
solutions are usually obtained by proceeding in two phafess; we find an interval defining
minimal and maximal step lengths, and then a bisection erpaiation phase computes a good
step length in this interval.

In order to ensure that even an approximate solution is dntuguarantee the convergence
of the line search method to a minimizer of the objective fiom; some conditions are imposed
on the step length at each iteration. One very importantitiondhat must be satisfied is that
the decrease obtained in the objective function is not toallsr®ne way of measuring this is
by using the following inequality:

(% + apy) < F(X%) + ca(VT(x), px), for somec; € (0, 1). (1.33)

This condition is sometimes called thgmijo conditionand it states that the reduction fn
should be proportional to the step lengthand the derivative of .

On the other hand, we must also guarantee that the step ismshbrt. Indeed, condi-
tion (1.33) is satisfied for all gticiently small values ofr. One way of enforcing this is by
imposing acurvature conditionwhich requires thaty satisfy

(VX + aPi), P = 6V T(%0), pe),  for somec; € (¢, 1). (1.34)

Conditions (1.33) and (1.34) are known as Wielfe conditions It is possible to prove that,
for every functionf that is smooth and bounded below, there exist step lengths#tisfy the
Wolfe conditions. These conditions on the step length arg weportant in practice and are
widely used in line search methods. See Dennis and Schriatjeby Nocedal and Wright [50]
for more complete discussions on this subject.

As an alternative to condition (1.34), we can udeaaktrackingprocedure in order to find
an acceptable step length that satisfies only conditior8)1his procedure works as follows.
Given an initiala > 0, and constantg € (0,1),¢; € (0,1), seta = pa until a satisfies
condition (1.33). After a finite number of trials, an accdyi¢sstep length will be found since
will eventually become small enough to satisfy théfisient decrease condition. This is a very
popular strategy that yields good results in practice.

1.3.3 Conjugate Gradient Methods

Now, we look at a particular problem in optimization, whishminimizing a (strictly) con-
vex quadratic function, that is

. 1
= s AN H 5
Xmeulqu g(x) = (¢, x) + 2<x X)

wherec € IR" andH € IR™". From the optimality conditions stated in Theorem (1.2i#),
H is positive definite, then this is equivalent to finding th&uson of Vq(x.) = 0, and thus a
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minimizerx* of g must also be a solution to the linear system
Hx, = —c. (1.35)

This system can be solved either by a direct method, formestaia the factorization dfl, or
by an iterative method. While solving the problem by factation might be a possibility, we
are particularly interested in big problems, in which thetdaization ofH might be very hard
to compute.

Theconjugate gradient methad based on the fact that the functiqrean be minimized in
n steps if we minimize it successively in a certain set of dicets, calledconjugate directions
A set of nonzero vectoro, ps1, - . ., Pm} IS Said to beconjugatewith respect to the symmetric
positive definite matrid, or H-conjugate if

(pi, Hp)), foralli # .

The conjugate gradient method is described in Algorithm11.3

Algorithm 1.3.1: Conjugate Gradient Method

Givenxg, setgy = HXy + cand letp, = —go. Fork = 0,1, ... until convergence, do

N llgklI3

K= —0,
(P HPW)

° Xk+l = Xk + a,kpka

Ok+1 = Ok + axH P,

2
gkl

° - T 5
P B

Pr+1 = —Oks1 + BicPx-

The conjugate gradient method is equivalent to minimizjnguccessively in th&rylov
subspacef H, defined as

K (H, do, j) &' sparido, gu. . ... gj} = sparide, Hdo, H2do, . . ., Higo).

This method is important as a solver for linear systems oagqus as well as for the mini-
mization of quadratic functions. It was first developed ia #950’s by Hestenes and Stiefel
[32]. However, its convergence depends strongly on theitionchumberk,(H) of the matrix
H. Indeed, it can be shown that

k
Vio(H) - 1) 1% = XI5 (1.36)

”Xk - X*HH < Z(W
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whereeg, & Xx — X, is theerror at iterationk (see Theorem 5.1.7 on page 85 in Conn et al. [12],
for example).

From this inequality, we can deduce that the speed of coamermyof the conjugate gradient
method depends on the conditioning numbeHofthe smaller this number is, the faster the
convergence of the method. Thus, one of the ways of speelliagonvergence rate is by
trying to improve on the condition number Bif This is the idea behingreconditioning

Let G € IR™" by a nonsingular matrix. By defining a new problem

(GTHGH)Gx= -G "¢, (1.37)
it is clear that the solution of this new problem satisfies
X, = —(GTHG!G) G Tc=-H"c,

and thus the solution to the preconditioned system (1.3®)assame as the solution to the
original system (1.35).

If we can find a matri>G such that the condition number 6Gf THG™! gives a better bound
on the convergence factor given by 1.36, then we can applgdhpigate gradient method to
the new system (1.37) and have a faster convergence, usgogithim 1.3.2. Conveniently, this
adaptation of the algorithm does not require the ugg,dfut rather that oM = G'G, which is
symmetric and positive definite.

Algorithm 1.3.2: Preconditioned Conjugate Gradient Methad

Given X, setgy = Hxy + c and letvy = Migy andpy = —v,. Fork = 0,1,... until
convergence, do

oy = (OG> Vi)
(P Hpi)”
° Xk+l = Xk + a,kpka

Ok+1 = Ok + axH Py,

-1
Vil = M Ok+1,

_ <gk+l, Vk+l>
Fic= (k> Vi)

Prs1 = —Vis1 + B P

There are several possible choicesKbr One of the most commonly used is the diagonal
of H, which works very well wherH is diagonally dominant. We will not discuss this matter
further as it is outside the scope of this work, but more ¢&etain be found in Conn et al. [12],
Golub and Van Loan [21], or Nocedal and Wright [50].
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1.3.4 Conjugate Gradients for Linearly Constrained Problans

Now, consider that we want to minimize a quadratic functistina set of linear constraints,
that is, we wish to find the solution to the problem
min  g(x) = (¢, X + 3(x, HX)

xR" (1.38)
subjectto Ax= b,

whereA € R™" (m < n) is full-rank, andb € IR™. This problem is important here because
the trust-region subproblem defined when trying to solve @nldeconstrained minimization
problem, such as the one we will consider in Chapter 4, hathe(1.38).

From the KKT conditions (1.23), and particularly from (1)24e can thus deduce that a
solutionx* to problem (1.38) must satisfy both

Hx+ATA=—c, (1.39)

whereA is a vector that contains the Lagrange multipliers for problem (1.38) at each compo-
nent, and the constraints of the problem. Putting these bmditions together in matrix form,

we have thak* must satisfy
H A" \(x) [ -c
A o)la) \ b/

Now, suppose that we can find a full-rank matridevhose columns span the null-space of
matrix A. Then, we can rewrite any vectgithat satisfiefAx = b as

X = xR+ N, (1.40)

wherex® also satisfiedx? = b. Substituting then (1.40) into (1.39), and premultiplymgNT,
we obtain that, sincAN = 0,

NTHNXN = —NTc - NTHXR.

From this equation we can recover the null-space compaxiehy factorizingNTHN, which
implies that problem (1.38) has a unique solution whendWVétiN is positive (semi)definite.

Here, sincéA is full-rank andm < n, the rows ofA itself give a basis for its range-space,
and thus a basis for its null-space can be found by computing

—~(AR) AN

n-p

), whereA = (ARAY)PT, (1.41)
The matrixP is a permutation matrix chosen so th#t € IR™™ is nonsingular. This method
does not generate orthonormal bases, but it allows forffactee computation of AR)~*AN,
which is very useful in practice.

Now, since it is relatively easy to find a point that satisfies tonstraints, we can restrict
our analysis to the case where the constraints are linedrigfAx = 0. Thus, we can restate
the problem we are interested in as

min  q(x) = (¢, X) + 3(x, HX)

xR (1.42)
subjectto Ax= 0.
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In this casex = NX". Thus, solving (1.42) is equivalent to solving tineconstrainegroblem

1

min q(NxX) = (N, xMy + SN, HNXYY, (1.43)
WeR™™ 2

whereHN = NTHN andc = NTc.

It is then possible to apply a preconditioned conjugate igradnethod to this problem,
under the condition that we can compute and appnd that we can find a preconditioner to
HN. SinceN can be found by (1.41), it remains the issue of finding a goedqnditioner for
HN.

If we apply Algorithm 1.3.2 to problem (1.43), and if we rerathe quantities such that
x = NX', we obtain Algorithm 1.3.3.

Algorithm 1.3.3: Projected Preconditioned Conjugate Gradent Method

Givenxg such thatAxy = 0, setgy = Hxo + c and letvg = N(MN)"INTg, andpy = V. For
k=0,1,...until convergence, do

oy = (Ok» Vi)
(Px HPK)'
° Xk+l = Xk + a,kpka

Ok+1 = Ok + aicH Py,
Vie1 = N(MN)_lNTgk+1,

_ <gk+l, Vic1)
* A= (Ok» Vi)

Prs1 = —Viks1 + B Pr

Now, sinceMN is supposed to approximalt#, if we require that is has the form
MN = NTMN,
whereM approximatedd, thenvy,; can be computed by
Vel = N(NT M N)_lNTgk+1-
This is simply the null-space method applied to the problem

min 5V, MV) = (V, Gke1), (1.44)

vel

subject to Av = 0. (1.45)
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M AT Vir1 gk+l
= ) 1.46
(o Lo )= (% (.49
for some auxiliary variablev,. Therefore, in practice, we replace the computatiomand

Vi1 In Algorithm 1.3.3 by the solution of (1.46), and we have a ptete procedure for the
solution of (1.42).

Thus,vk,; must satisfy

1.4 Trust-Region Methods

In this section, we will discuss trust-region methods, Whace the basis for the work pre-
sented in this thesis. They were first proposed by Levent®Ipdnd Marquardt [43] in the
context of nonlinear least-squares problems. The ideaw#sel enhanced by Goldfeldt et al.
[20], and the first convergence theory in the context of ustamed optimization appears in
Powell [56]. Since then, the method has been improved andtagdand what we present here
is the basic method used today.

As opposed to line search methods, trust-region methods lyoiat iteratiork, first defin-
ing atrust regionaround the current iteratg, and defining a (usually quadratic) mods]
around the current poing. The direction in which to take the step is then computed ky (e
actly or approximately) minimizing this quadratic modediche the trust region.

Let us focus on the details of a basic trust-region algoriti@tarting from an initial point
Xo, at each iteratiol, we define a trust region arounxgdas

Bic = B &) = {lIx— xdl < A, (1.47)

whereAy > 0 is called thdrust-region radiusand||-|| is some vector norm. The most common
norms used in this type of algorithms are the Euclidean ripiigrand the maximum norrif||..

After defining the trust region, we use Taylor’s approximaat{1.29) to define a quadratic
model

1
Me(Xc + S¢) = F(x0) + (O, S0 + §<sk, HySo), (1.48)

whereg is a vector andHy is a matrix. In generalgy = Vf(x,) andHy is the Hessian matrix
of f atx,, V2f(x), or some symmetric approximation to it. We then computeep stas the
solution to the minimization problem

minmy(Xx + S)

1.4
S.t. X + S€ By (1.49)

This is called therust-region subproblemrhe new point + S is called thetrial point.

Once the step has been found, we check if the model agreetheitiojective function. This
amounts to testing if thactual reductiorobtained in the function and thgredicted reduction
obtained in the model are ficiently close; that is, we check if

def f(x) — F(X+ s0)
PE = M) — Mm% + 59

(1.50)
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is larger than some constamt € (0,1). If this is the case, then we consider the iteration as
successfubnd set the new iterate Qs = X + S. If the ratio (1.50) is smaller than,,
we reject the trial point and reduce the trust-region radigsin order to recompute a new
minimizer for the modeiny inside the new, smaller trust region.

In Algorithm 1.4.1 we present the basic trust-region aldyoni in its entirety, as stated
by Conn et al. [12].

Algorithm 1.4.1: Basic Trust Region (BTR)

Step 0: Initialization. An initial point X and an initial trust-region radius, are given.
Constantsyy, 772, y1 andy, such that

O<m<m<landO<y;<y,<1 (1.51)
are also given. Computie(xy) and sek = 0.
Step 1: Model definition. Define a modein in By.

Step 2: Step Calculation.Compute a step, that "suficiently reduces the modeity and
such thatx, + s¢ € Bx.

Step 3: Acceptance of the trial point.Computef (X« + s¢) and define

__F) — T+ s
M) — Me(X + S)

Pk

If px > 1, then definex,1 = X« + &; otherwise, defing,, = X«.

Step Trust-region radius update. Set

[Ax, ) if ok >n2,
Ae1 € [720k Ad] it px € [n1.m2), (1.52)
V1A, y2Ad I pk < ma.

Incrementk by 1 and go to Step 1.

In this trust-region algorithm, some details have beenuaftefined. For instance, we do
not specify which norm we use for the definition of the trugfioa. The choice of norm is very
important for the resolution of the trust-region subpraoblél.49), and we will discuss these
issues in Chapter 3.

Another detail that must be clarified is a stopping rule fas @igorithm. In practice, we
will test if the gradient is small enough, that is if

llgll < €% €9>0.
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In this case, we will accept the convergence of the algorithm
We will now briefly discuss the main convergence resultsteeldo trust-region methods
which will play an important role in the rest of this work.

1.4.1 Convergence Theory

In this section, we will state for future reference the masuits referring to the convergence
theory of trust-region methods. The discussion here falolwsely that of Conn et al. [12], and
we refer the reader to that work for details and the proofdlaha results stated here.

1.4.1.1 The Cauchy Point

In order to state these basic results, we must first desctitag eharacterizes a solution to
the trust-region subproblem (1.49) tisafficiently reduceshe model value.

Since our model is a quadratic function, the simplest waynbdi minimizer to this model is
by using the steepest descent method, mentioned brieflyctin8el.3. In this case, we will try
to find a point along the directiong, inside the trust region, that gives us the largest redactio
in model value. This means that we will be looking for a poioing theCauchy aradefined by

() (x| X = X — tg t > 0 andx € By. (1.53)

Since our model is quadratic, we can minimize the model éxatdng the Cauchy arc. The
unigue solution to this problem,
X7 = X — tog = arg min my(X — tgy), (1.54)

>0
K (esy

is called theCauchy point In some cases, computing the exact minimizer to the Cauchy
arc (1.53) is too expensive. In these cases, we may use aréadkyg strategy, similar to
the one described in Section 1.3.2. This amounts to findiegthallest integey = j. > 0 such

that

. A
Xk(J) Ci:ef Xk — Két X Ok,
19l

with «y € (0, 1), satisfies the Armijo condition (1.33) faw, that is,

Me(X(])) < Me(X) + €Tk %(]) — %), €1 € (0,1).

We then define thapproximate Cauchy poirasx(jc). In general, we will require our model
reduction to be defined as at least that obtained by the (exapproximate) Cauchy point. We
will then define the sfiicient reduction on the model for all iteratioksis

IIlelz’ Ak],

B

wherexeq € (0, 1). This condition comes from the estimates for the modelcadn obtained by
either the exact or approximate Cauchy point, and it is akéerred to as th€auchy condition
We refer to Section 6.3 in Conn et al. [12] for a detailed déston on the subject.

With this requirement, we can prove the following result.

M(X) = M(Xc + Sc) = Kred |Gkll2 Min (1.55)
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Theorem 1.4.1 Suppose that the model is given by (1.48), and that the medattion satis-
fies (1.55) for all k. Suppose furthermore that(xc) # 0. Then m(x + s) < Mk(x) and the
step g # 0.

The model decrease stated in (1.55) is a lower bound in thease we might obtain. If
we accept the cost of additional computation, we might evantvto solve the trust-region
subproblem (1.49) exactly. However, an approximate smiuid this problem is acceptable in
practice, as shown by the following result.

Theorem 1.4.2 Let ¥ be the solution of (1.49). Suppose that, for all k, the step such that

M%) — M + SQ) > Kared Me(Xi) — M1, (1.56)
wherekareq € (0, 1]. Then, (1.55) holds for somegy.

Thus, if the reduction obtained in the model is at least saaaibn of the reduction we would
obtain with the (exact) model minimizer, the Cauchy coruditis satisfied.
1.4.1.2 Convergence to First-Order Critical Points

The goal of this section is to state the main results thatetbe global convergence of
Algorithm 1.4.1 to first-order critical points. We do thigfcompleteness, and in order to show
that the theory for Recursive Multilevel Trust-Region noath, detailed in Chapter 4, follows
closely the one presented in this section.

To prove that Algorithm 1.4.1 is globally convergent to fiestler critical points, we must
prove that all limit point, of the sequencgx} generated by the BTR Algorithm satisfy

Vi(x.) =0

independent of the position of the initial poirg, or of the choice of the initial trust-region
radiusAy.
Throughout this section, we will use the following assurops.

Assumption 1 (Assumptions on the function.)The objective function f is such that:
e f istwice continuously dierentiable.

e The Hessian of f is uniformly bounded; that is, there exists@> 1 such that, for all
x € R [V*f(X)ll2 < Kuth.

Assumption 2 (Assumptions on the model.)The model msatisfies the following conditions:
e For all k, the model npis twice djferentiable ornB,.

e For all k, m(x) = f(X)-

e Forallk, g« = VT(x).
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e The Hessian of the model is bounded within the trust region:
IV2m(X)l2 < kumn— 1, for all x € By,
wherekymn > 1 is independent of k.

Assumption 3 (Norm equivalence.)There exists a constart,e > 1 such that, for all k, the
norm||-|| chosen to define the trust region satisfies

IXII < [IXl2 < KundIX|
une

for all x € IR".

First, we will look at the error between the objective funotand the model at a new iterate
Xk + S¢ € Bk.

Theorem 1.4.3 Suppose that Assumptions 1 and 2 hold. Then, for all k, we thave
(% + S = M + I < [VE]* max|ku, Kumn| AR,
where X% + s¢ € By and

lIsdl2
ISl

Ve =
Moreover, if Assumption 3 also holds, then
| (% + S = MO + S| < KupnAfs

2
WhereKubh = Kune maX[Kufh, Kumh] .

This theorem translates into the notion that the smalletrtis-region radius, the better the
model approximates the objective function in that regidme Tiext result shows that, indeed, if
the trust-region radius is small enough, it must result inasessful iteration, so long as we are
not in a first order critical point already.

Theorem 1.4.4 Suppose that Assumptions 1, 2 and 3 hold, as well as (1.5ppoSa further-
more that @ # 0 and that

- KredllOkll2(1 — 172)
a Kubh .

Ax
Then, iteration k is very successful and

A1 = Ax.

This result implies that the trust-region radius cannobbee too small, unless we are at a
first-order critical point.



1.4 Trust-Region Methods 27

Theorem 1.4.5 Suppose that Assumptions 1, 2 and 3 hold, and tfgti$ bounded below on
IR". Suppose furthermore that (1.55) is satisfied, and thaetlegrsts a constan,y > 0 such
that|lgll2 > king for all k. Then, there is a constasty > 0 such that

Ay > Kipd

for all k.

Theorem 1.4.5 is very important since it guarantees thabrtlym 1.4.1 can always pro-
ceed, unless we are already at a first-order critical poirfit d¥ith these results in hand, we can
state the following theorem.

Theorem 1.4.6 Suppose that Assumptions 1, 2 and 3 hold. Suppose furthetmetr (1.55)
is satisfied, and that there are only finitely many succestdtdtions. Then, x= x, for all
syficiently large k and xis first-order critical.

Now, we must look at the case when there are infinitely mangessful iterations. First,
using the fact that i\, is small enoughim, approximates the function well, as stated by The-
orem 1.4.3, and that at the same time, the trust-region sazhunot be too small because of
Theorem 1.4.5, we can prove that at least one accumulatimon gbthe infinite sequence of
iterates must be first-order critical.

Theorem 1.4.7 Suppose that Assumptions 1, 2 and 3 hold, and tfgti$ bounded below on
IR". Suppose furthermore that (1.55) is satisfied. Then,

Iirlp inf||Vf(x)ll2 = 0.

Using these results, it it possible then to extend the lasbfdém to prove that not only one
of the accumulation points of the sequence of iterates isdnder critical, but that, in fact, all
are.

Theorem 1.4.8 Suppose that Assumptions 1, 2 and 3 hold, and tgti$ bounded below on
IR". Suppose furthermore that (1.55) is satisfied. Then,

fim [V £ (49l = ©.

These theoretical results, and excellent behavior in pecshow that Trust-Region meth-
ods are a very good choice for unconstrained optimizatioblpms, and why they are widely
used in several applications in various fields of scienceangineering. In the next chapters,
we will try to show that they can be even further improved orekganding on these ideas and
ensuring that they are competitive in large applications.
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1.4.1.3 Criticality Measure

We definer(k, x) to be afirst-order criticality measur®f the iteratex if it is a nonnegative
real function of its second argument such that

1% = X¢ll = O implies thatr(k, xq) — 7(£, %)l = 0,

and if the limit
lim (k. %) = 0

corresponds to asymptotically satisfying the first-ordéraality conditions of the optimization
problem considered.

Of coursen(k, x¢) = ||V (x|l is one of many possible criticality measures for unconséahi
problems. The definition of a general criticality measuré ke of importance in Chapter 4,
where one particular alternative will be considered. Itngortant to note that, despite the
generality of this definition, all the first-order convergerresults obtained for the classical
trust-region method can be extended for a general critycaleasurer(k, ). For more details,
see Section 8.1 in Conn et al. [12].

1.4.2 A Note on Bound Constraints

As we have mentioned in Section 1.1, bound-constrainedgmubof the form

minimize  f(x),

. 1.57
subjectto xeC={xeR"|{ < x<u}, ( )

where the inequalities are considered componentwiseigifak x < u;, foralli = 1,...,n,
can be considered separately due to certain propertias$isdtoy them. Indeed, in this case we
can easily compute the projection of any vegtantoC, by defining

G if Vi < Gi,
. def .
[ProjMli =4 yi if &<y <u,
u ifuy< Vi
fori = 1,...,n. Thus, it is natural to think of projections when devisingthogls to solve

bound-constrained problems. In particular, when we defie@iojected-gradient paths
def .
p(t, X) = Proj,[x —tVf(x)],
for anyx € C and for allt > 0, it is possible to prove the following theorem.

Theorem 1.4.9 Suppose that the s€tof constraints is nonempty, closed and convex. Suppose
also that a constraint qualification (such as the LICQ Coiuaiitl.1) holds at X Then the point
X* € Cis a first-order critical point for problem (1.57) if and onify

p(t, x) = x* forallt > 0.
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In this case, the projected-gradient path can be used tcedeefiew criticality measure

(%) €' min(V(x), d)|

x+deC
[ldli<1

for all x € C, since it can be shown (see, for example, Section 12.1.3 im@o al. [12], pp.
444-451) thaj(X) = 0 if and only if p(t, X) = x for all t > 0 and thus, from Theorem 1.4.9,
x(x*) = 0if and only if x* is first-order critical.

These properties are critical for the analysis in Chapteimte in that chapter we will deal
with bound-constrained problems. For more details andfpreee Conn et al. [12].
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Chapter 2

Multigrid Methods for Linear Systems

2.1 Introduction

Linear systems of equations appear in virtually every mduaims to describe a real-life
application in mathematical terms. These systems are lysstated as finding € IR" that
satisfies

Ax = Db, (2.1)

whereA € R™" is a matrix, and € IR" is a vector.

When the problem arises from the discretization of an ugdeglcontinuous problem, a
multilevel hierarchy can be formulated, such that eachrdiszationlevel has more variables
(that is, is a finer discretization of the domain of the prami¢han the previous one. Thus, if
p + 1 levels of discretization are available, this amounts tetao§p + 1 nonlinear equations,
each defined in a space"iRsuch thang < n; < ... < n,, which can be written as

AX = b,

with A € R™" andx,b € R",i=0,...,p.

The methods that exploit this multilevel hierarchy for tieéusion of linear systems of equa-
tions are called/ultigrid methods. This well-researched field, pioneered by Fedorg®{ and
later by Brandt [2], is based on a double observation: on @mel there exist iterative solution
methods (calledmootherswhich are very #icient at reducing the high-frequency, oscillatory
components of the error while being possibly veryfiiogent at reducing their low-frequency
(also callecsmooth components (the Jacobi and Gauss-Seidel methods areipesgmxam-
ples); on the other hand, the definition of a high-frequermeygonent of the error is intrinsically
tied to the discretization grid since the finer the grid, tighbkr the frequency representable on
this grid. Multigrid methods then proceed by using methoalted smootherdo reduce the
high-frequency (also callediscillatory) error components on a fine grid, and then consider the
remaining smooth components on this fine grid as oscillabows on a coarser grid. Broadly
speaking, these can again be eliminated using smoothehre@oarser grid, and this technique
may be applied recursively. One of the main attractions dfigrid methods for linear systems
is that their workload increases only linearly with problsize, a feature crucial for the solution
of very large instances.

31
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Multigrid methods are fairly established as solvers fogdatinear systems derived from
(mainly elliptic) Partial Diferential Equations, in particular boundary value probleitsre,
we will present a brief introduction on this technique, witie purpose of motivating the mul-
tilevel aspect of our optimization applications. For a moegailed introduction to the subject
of multigrid methods, the reader is referred to Briggs ef3]l. Trottenberg et al. [67] and
Wesseling [68].

2.2 Model Problem

One application where the resulting linear system is largesparse is in the solution of
elliptic boundary value problems. One example is the omeedisional Poisson equation with
Dirichlet boundary conditions

—u”(x) = f(x) x e (0,1) (2.2a)
u@)=u(1)=0 (2.2b)

In order to solve this problem numerically, we will approxta this equation using finiteftker-
ences. In other words, we wiliscretizeQ = (0, 1) by partitioning it inton subintervals defined
by grid points ¥ = jh, j =0,...,nwhereh = % is the length of each subinterval. We will call
the discretized domain of the new probl€Xp. Figure 2.1 shows this discretized domain.

Tttt o

XO:O Xl X2 Xn—an:]-

Figure 2.1: One-dimensional discretized dom@jn= [0, 1].

At each of then — 1 interior grid points, we will approximate (2.2a) by finitefférences.
Let us define, for simplicityy; as an approximation to the exact solutig;), for j =0, ..., n.
Then, grouping allj; in a vectoru, the components of this vector must satisfy the 1 linear
equations

—Uj-1 + 2Uj — Uj41
h2

= fj, 1S]Sn—l, (23)

UO = Un = O’

wheref is a vector such that each of its components is definefd asf(x;),j = 1,...,n— 1.
We can thus represent this system of linear equations irbnfatm as

[ 2 -1 I wl [ f
-1 2 -1 . .
- . = . (2.4)
-1 2 -1
-1 2 [[ U2 [ | fr1 |

or Au= f, whereA e R™ Y"1 is tridiagonal, symmetric and positive definite.
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Now, let us consider the two-dimensional Poisson equation

_AU(X’ y) = f(X’ y) (X’ y) € Q
uxy)=0  (xy) €oQ

whereAu(x, y) denotes the Laplacian of, Q = [0, 1] x [0, 1] anddQ is the boundary of the
unit square. Here, we will define a two-dimensional grid b ¢inid points &, y;) = (ihy, jhy),
whereh, = 1 andh, = Z. This grid is also denoted b®". Figure 2.2 shows this discretized

n
domain.

(2.5)

Figure 2.2: Two-dimensional discretized dom&pn= [0, 1] x [0, 1].
Using once more a finite flerences approximation to the derivatives in (2.5), we edthe
system of equations

—Ui_1j + 2Uij — Uiy . —Uij-1 + 2U;j — Ui j1
h2 hg

= fij,
(2.6)

Uio = U =Uyj = Upj =0, l1<i<m-1,1<j<n-1

Here,u; ; is an approximation to the exact solutiofx;, y;) and f; j = f(x. y;).

Now, in order to write this equation in matrix form, we musbolse the order in which
we consider the grid points. Here, we will choose t&ecographicordering, which takes
variables from lines of constant This way, we can group all unknowns of théh row of the

grid in a vectory, def (Uig,...,Un1)" for 1 <i < m- 1. Similarly, we will define a vector
f; aef (fi1,..., fine)T. The system (2.6) can then be rewritten in block matrix fosm a
-1 1r T
hg Ug f1
-l B -3l
-l B -5l
_h_l§| B | Um-1 | | fm—l ]

which is a symmetric, block tridiagonal and sparse systemchBblock is a multiple of the
(n-1) x (n - 1) identity matrix.
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The matrices that arise from this type of discretizationallpthave some very important
properties. For example, most are sparse, symmetric antivpagefinite. Another important
property is that they are oftemeakly diagonally dominanthis means that, &; is element of
row i and columnj of A, then

n
D lagl < layl for 1<i<n.
j#i
In other words, the diagonal element is at least as large solate value as the sum of the
off-diagonal elements in the same row.

The two discretized systems described in (2.3) and (2.6¢a@ted model problemssince
most of the methods described in literature have been desélwith these types of problem
in mind. This means that they are the starting point for théhous described here, and will
provide relevant insight into the way these methods are.bihle multigrid methods presented
here, however, can be applied to a large class of problewlsdimg discretized elliptic bound-
ary value problems and others.

2.3 Basic lterative Methods for Linear Systems

Since the problems we are interested in solving can be widitdinear systems of equations,
let us examine here the iterative methods available to solve

Au= f, (2.7)

whereA € R™" is a non-singular matrix, and, f € IR". We have already seen one of these
methods (the conjugate gradient method) in Section 1.3.8reHve present other methods
which have a special property which is particularly intéresin the context of multigrid meth-
ods. These methods are sometimes referred relagation or smoothingmethods; we will
explain this choice of nomenclature further in this chapter

2.3.1 Jacobi Method

First, observe that, if we write
A=D-L-U, (2.8)

whereD is the diagonal oA, and—L and—U are its strictly lower- and strictly upper-triangular
parts, respectively, we can write
(D-L-U)u-=f.

If we isolate the diagonal part &, we have that
Du=(L+U)u+f,

which implies
u=DL+U)u+D1.
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We can thus define a fixed-point iteration such that

U = DL+ U)W + D B M’ + s,

where we calM; theiteration matrix This is called thelacobi method

In component form, this is equivalent to doing, for eachatien ¢, and each component

of Uf,
1 .

= E(uf_l+ Ui, + hzfj), 1<j<n-1,
that is, we solve th¢-th equation of the linear system (2.7) for thh variable using the current
approximation for the j(— 1)-st and { + 1)-st unknowns. This method can certainly be very
effective when compared to direct methods, but a simple vanatf it can yield much better
results. This is what we consider next.

u

2.3.2 Gauss-Seidel Method

Once again considering the split (2.8), we can now isola¢ediagonal and the lower-
triangular parts oA, obtaining
(D-Lu=Uu+f,

and thus
u=(D-L)'Uu+(D-L)*.

The resulting fixed point iteration

Ul = (D - LU + (D - L)t & Mgt + Sos

is called theGauss-Seidel method

In component form, this amounts to computing, for each fiena and each component
of U,

{+1 1 {+1 4 2 H
U= S(u U Rf) 1< js<nel

In other words, in the Gauss-Seidel method we can use thadgleomputed components of
the approximation in order to compute the next componentiwbf course gives better results
than we could obtain with the Jacobi iteration, where we udg mformation from the past
iteration to compute the next approximation.

2.4 Error

Let us now analyze theflectiveness of the two methods described in Section 2.3. Sup-
pose thus that this linear system (2.7) has a unique solutiomhen, we can define two very
important quantities. Therror is defined as the vector

e=u,—u. (2.9)
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Both the Jacobi and Gauss-Seidel methods can have thatiot@s be written as
ult = MW +s. (2.10)

At the same time, we can see that, as in all fixed point itematid u* denotes the exact solution
to the problem, then

U, = Mu, + s (2.11)
Subtracting equation (2.10) from equation (2.11), we hha¢ t
et = Me.
By repeating this argument, we have that
et = Me. (2.12)

Now, by choosing a consistent matrix nofiH, we have that
€11 < IMINIE”].

Thus, if|[M|| < 1, we can expect the error to be forced to zero after a numhggrafions. It is
possible to show (for instance, in Golub and Van Loan [214} this is only the case if

o(M) < 1, (2.13)

which implies that the iteration associated withconverges for all initial guesses if and only
if o(M) < 1.

However, in real situations where we do not know the exaaitsmi to the problem, we
cannot compute the error (2.9). Thus, we will define anotlhantjty, theresidual as

r=f-Au (2.14)

This residual shows how far an approximationo the exact solution is from satisfying the
original problem. Since we suppose the exact solutiors unique, the residual = O if and
only if the errore = 0. However, it may not be true that whems small in normgis also small
in norm. Now, from these two quantities, we can write

r==f—-Au=Au — Au=A(u, — u) = Ae
and thus, we can say that the error must satisfy
Ae=r. (2.15)

This equation, calledesidual equationallows us to derive the following scheme for the im-
provement of an approximatianto the solution: first, we compute the residual (2.14). Then,
we solve equation (2.15) for the error. Finally, we computewa approximation to the solution
by setting

new

u =u+e

This scheme, although only an informal description at thisip gives us a new idea of how to
proceed. Something that must be noted here is the fact thtiag a relaxation method (such
as Jacobi or Gauss-Seidel) to the original equafian= f with an arbitrary initial guess is
equivalent to applying a relaxation method on the residgaagon with the initial guess = 0.
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2.5 Smooth and Oscillatory Frequencies

An important concept that will be used in the analysis ofatiee methods is that adigen-
functions An eigenfunction of a linear operatdy, defined on some function space, is any
non-zero functiorw in that satisfies

Aw = Aw,

whereA € R is the eigenvalue associated with It can be shown (see, for example, Briggs et al.
[3], Exercises 8 and 9, page 28) that the eigenfunctionscaed with the discrete Laplacian
operator described by the matrix in (2.4) have the form
” '
wyj = sin(JTﬂ), 1<k<n-10<j<n,

where eachj denotes the components of these vectaysalso calledvave functionsfor each
k, called thefrequencyof these wave functions. The eigenvalue®\aire

krt

/lk(A) = 4 S|r]2 (%

), l1<k<n-1.

If k < 3, we say that the wavey is smooth otherwise it is calledscillatory. We call eachuy
a Fourier mode Figure 2.3 shows examples of such modes on a one-dimehgiothavith 16
points.
These Fourier modes are very important as a tool for evalgdtie progress of an iterative
method. For example, since for the Jacobi method appliedotolgm (2.3) we have that
1

My=1-3A

then .
(M) =1- %/lk(A) = 1—23ir?(%), 1<k<n-1

Now, sinceA is a symmetric positive definite matrix, its eigenfunctiongst generate the
entire space. Consider now the erean problem (2.3). It can be written as a linear combination
of the wave functions, that is

e= nzl awy,  ak € IR
k=1
Therefore, (2.12) can be written as
n-1 n-1
e" = Mj’eo = Z a/kl\/lgwk = Z ak/li(l\/lJ)wk, (216)
k=1 k=1

sinceA and M; have the same eigenvectavg. Thus, after? iterations, thek-th mode of the
error will have been reduced by a factor4j{M,). However,1;(M;) can be approximated by
n°h?

A4(My) = 1—2sin?(%) ~1-TL
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Figure 2.3: Examples of Fourier modesAfon a one-dimensional grid with 16 points. We
show the modes), j, w3 j, wg; andwssj.

This, along with (2.13), implies that the modes associatét this eigenvalue, which are
smooth modes, will never be reducefileetively. This is called themoothing propertyf
this family of methods. The same kind of property is true f@auSs-Seidel methods, but we
will refer the reader to other texts (for example, Briggslef3 or Trottenberg et al. [67]) for
this analysis. Figure 2.4 shows the evolution of the erropfoblem (2.6) when we apply the
Gauss-Seidel method. We can clearly see that oscillatbay (&, high frequency) components
of the error disappear rather quickly, while smooth (loegiuency) components remain even
after 100 iterations of the method.

[

Hi‘\\“

(a) Initial error (b) After 5 iterations  (c) After 30 iterations (d) After 100 iterations

Figure 2.4: Evolution of the error for problem (2.6) afte39, and 100 iterations of the Gauss-
Seidel method.
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2.5.1 Coarse and Fine Grids

Having seen in (2.16) that the error of the linear system)(@an be decomposed into a
sum of Fourier modes, it may be useful to look at the propemiethese modes. The first
thing to note is that these modes are dependent on the gyicdtbalescribed in. Indeed, let us
consider a grid2" with n" = & points, which we will call thefine grid and another gri®®'

with " = 2—1h = %h points, which we will call thecoarse grid since it has less points than the

fine gridY. Then, the smooth modes evaluated at even numbered poittis gfidQ" are

(2ikn\ . (jkn .
wE,ZJ = Sln(W) = Sln(w), 1<k< E,O << nh_

2

Now, if we define another gri®" such than® = ”—Zh then

h

n
h _ 2
Wi = Wi)» lSk<2.

Thus, the smooth modes on the gfl appear oscillatory on the grid®". This can be seen in
Figure 2.5, where we show how one of these modes is seen inifigoeht grids.

(@k=6,n=16 (b)k=6,n=8

Figure 2.5: The modes ; represented in two grids with= 16 andn = 8 points, respectively.
The coarser gridn= 8) seesa more oscillatory mode.

Another very special property is what is callaliasing It can be described as the fact that
the oscillatory modes on the gréel’ are misrepresented as smooth modes on theffidThis
happens because tkeéh mode orQ" becomes then— k)-th mode orQ?", for k > 5.

With these properties in mind, we can see that there is som@fstvansformation of the
frequencies of the error of the fine grid, when they are seemawarser grid. This is the key to
the development of multigrid methods.

Putting all of these facts together, we can devise a strdtegyproving on the convergence
of relaxation methods.

MSometimes, we will refer to coarse grids lasver grids, and finer grids asppergrids. This comes from
the formulation of these grids, as the finer grid is seen toldgec to the infinite-dimensional description of the
problem by having more variables, and thus being higherdmptioblem hierarchy. Itis, however, pure convention.
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2.6 Coarse Grid Correction

From the analysis of the previous section, we can thus dtatemo principles that inspire
multigrid methods.

Smoothing principle. Iterative methods such as the Gauss-Seidel and Jacoliatesalimi-
nate oscillatory components of the errdiegtively, but leave smooth frequencies of the
error unchanged.

Coarsegrid principle. Smooth components of the error appear oscillatory in cogrses.

These two principles suggest a scheme that may be used intorgleprove convergence
of basic iterative methods for linear systems. Supposewbanay discretize our problem in
two gridsQ" andQ?", with n = % and3 points each, respectively. Suppose furthermore that we
have two lineatransfer operators

R :R"> RZand P,:IR? = IR"

where we calR, therestrictionoperator from grid2" to grid Q?", andP;, is called theprolon-
gationoperator from grid2?" to grid Q". Then, acoarse grid correctiorstep can be described
as in Algorithm 2.6.1 on the facing page.

The number of smoothing iteratioms andv, are defined by the user, and are usually not
very large. Figure 2.6 shows a representation of the cagrdesorrection scheme.

In order to define this scheme more formally, we must definptbl®ngation and restriction
operators. Here, we will only discuss the choices we usdugmrtourse of our work, but several
other choices are possible. The most common choice for tilergyation operator is the linear
interpolation operator, defined in one dimension by

w2l o

n
n P 0<j<z-1,
R

wherevill denotes thgth component of the vectat This linear interpolation operator has full
rank, and it will be used extensively in our implementations
For the restriction operator, our choice is fa# weightingoperator, defined by

i 1 : . . _
V[2H _ Z(VLZJ_H n ZVLZJ] +vLZ]+1])’ for 1< j < 2 1

Figure 2.7 shows the action of these operators in one- andlimvensional grids.
This restriction operator is important because it satishieproperty

P.=0oRl, o elR. (2.18)

This is called avariational propertyand will be very important in the following discussion. Of
course, these operators can be defined also in three-diomsndror this, it sfiices to define
both of the one-dimensional operators for each dimension.
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Algorithm 2.6.1: Coarse Grid Correction

e Apply v, iterations of an iterative method to the problégu, = f,, at the fine grid
Q" with initial guesau, = 0.

e Compute the residuaj}, = f,, — Ayu, at the fine grid.

¢ Restrict the residual to the coarse gfid' by defining
roh = Rn(n).

e Solve the problem
Aon€on = I'on (2.17)

at the coarse grid.

¢ Prolongate the correctiagy into the fine grid by defining
& = Ph(exn).

e Compute the new approximatiat}®” in the fine grid by

unp®” = up + en.
e Apply v, iterations of an iterative method to the problégu, = f;, at the fine grid,

with initial guessup®”.

Smoothy; times Smoothy, times

up - U u - U
‘ R P
Solve .
& ———— &,
Figure 2.6: The coarse-grid correction scheme.
2.7 Multigrid

Now, we must decide how to solve the problem (2.17) at theseogrid. If this problem is
small enough, we can solve it exactly by using some factbozaf Ay, for example. How-
ever, if this is not the case, it can be interesting to usedbase-grid correction procedure
recursively, by correcting equation (2.17) in a coarsed @". In order to do this, Suppose that
we may discretize our problem i+ 1 consecutive grid€", O, Q4 ... Q2" withn, = oan
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AN %

(a) 1D restriction operator. (b) 2D restriction operator.
Qh
o ® ® ® e ON Q2h
® ® Py QZh
(c) 1D prolongation operator. (d) 2D prolongation operator.

Figure 2.7: Prolongation and restriction operator actiegveen two grids.

points each, for = ¢,...,0. Suppose furthermore that we have a collection of opeyator
R:R" - R"™, P:R" - IR"

fori = 0,...,¢. In order to simplify the notation, we will denote a quantitgefined at grid
Q2h asv;. We will also denote the correctia ; by u;_;, and the right-hand sideg_; will be
called fi_;. This is done is order to facilitate the definition of the netwe procedure, but the
meaning of the variables remains the same. Thus, we carastaikigrid procedure, described
in Algorithm 2.7.1 on page 43.

This scheme can thus descend until the coarsest grid alea(i&li is so desired), or until
we reach a level where the solution can be computed easilpteoroa desired accuracy. A
compact representation of this scheme is in Figure 2.8 oa pdgand for obvious reasons this
strategy is called &-cycle

Similarly, we can choose to take further advantage of coaggds before bringing the
correction back to the finest level, by repeating the coargkagrrection proceduréwice at
each grid, as represented in Figure 2.9 on page 44. In thes tas scheme is referred to as
the W-cycle These are the most common ways of exploiting levels singeateng the coarse
grid correction procedure more than twice generally dogésmprove the convergence of the
method.

Now, in order to exploit even more thefliirent grids and the small cost of computing
approximations at coarser grids, another idea is to useseaard approximations as starting
points to a fine grid problem. This is the principle of the sdlexd nested iteratioror mesh
refinemenscheme, and it can be outlined as Algorithm 2.7.2, on page 44.
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Algorithm 2.7.1: V-cycle Scheme

[u7] = V(u, f,).

e Apply v, iterations of an iterative method to the problépu, = f, with initial guess
u, = 0.

e Compute the residua} = f, — Acu,.

e Restrict the residual by defining

froa = Re(re)
and apply a coarse grid correction for this grid:
— Apply v, iterations of an iterative method to the problém,u,_; = f,_; with
initial guessu,_; = 0.
— Compute the residua}_; = f,_1 — Ar_1Up 1.

— Restrict the residual by defininfy_, = R,_1(r,_1) and apply a coarse grid con
rection for this grid.

e SolveAgug = fo.

— Prolongate the correctia®_, by e,_; = P,_1(e/_2).

— Compute the new approximatief® = u,_; + €,_1.

— Apply v, iterations of an iterative method to the problém,u,_; = f,_1, with
initial guessu;®Y.

e Prolongate the correction_; by defininge, = P/(e,_1).
o Compute the new approximatiafi® = u, + €.

e Apply v, iterations of an iterative method to the problégu, = f, with initial guess
unewl
14

By joining the mesh refinement and V-cycle ideas, we obtagnFil Multigrid scheme,
describe in recursive form in Algorithm 2.7.3, on page 45.

The Full Multigrid (FMG) scheme is outlined in Figure 2.10.
One more element must be defined in what follows. We have asswmitil now that the
coarse grid operatd,_; is just the discretization of the problem in this coarsed gin practice,
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h
2h
4h

8h

Figure 2.8: The V-cycle scheme on four levels.

h

2h

4h

8h

Figure 2.9: The W-cycle scheme on four levels.

Algorithm 2.7.2: Mesh Refinement Scheme

e Apply an iterative method, times to the coarse grid problefgu, = fo with starting
pointug = 0.

Prolongate the approximatiag to obtainu; = P;Up.

Apply an iterative method, times to the problem,u; = f; with initial guessu;.

Prolongate the approximatian_, to obtainu, = P,U,_;.

Apply an iterative method, times to the problem,u, = f, with initial guessu,.

it will be useful to assume that

1
A1 = RAP, = ;P}-AKP[, (2.19)

and this is called th&alerkinoperator for the coarse grid. Together with (2.18), thigprty is
important since it guarantees thatAif is symmetric positive definite, so &_,. Furthermore,
itis vital in the convergence analysis of multigrid methodé& will not pursue this convergence
theory in this thesis, but in Chapter 4 we will see that thespgrties are very useful.
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Algorithm 2.7.3: Full Multigrid V-cycle

u; = FMG(f,)

Step 1. If we are at the coarsest grid, that/is= 0, go to Step 3 with initial guess = O.
Else, restrict the right-hand sideand apply the full multigrid procedure recursively:

[Ue-1] = FMG(f-1).
Step 2. Apply the correction tai, by prolongatingu,_;:

U, = Uy + PgUg_l.

Step 3. Apply v iterations of an iterative method &gu, = f,.

2h
4h

8h

Figure 2.10: The Full Multigrid scheme on four levels.

2.8 What next?

There are two fundamental properties which are satisfiecheyfull multigrid procedure
described in the previous section.

e The full multigrid procedure described in Algorithm 2.7.8ncbe used to obtain an ap-
proximationu, at the finest grid such that its errar, — u,|| is of the same order as the dis-
cretization error, that i©(h) for a one-dimensional probler@(h?) for a two-dimensional
problem.

e The full multigrid procedure imsymptotically optimalwhich means that the computa-
tional cost needed to compute an approximate solution isgetional to the number of
grid points at the finest grid.

These are extremely encouraging properties, and serve agtiation for our work in
this thesis. In a sense, for linear systems, in particulaseéhassociated with elliptic partial
differential equations, we cannot do better than the full mudtigrocedure. What we will see
in the next chapters is that these ideas can be applied tmiaption problems as well, and that
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although the results are not quite as remarkable as theyfardieear systems, it is worthwhile
to explore the dferent discretizations of the problem when they are availabl



Chapter 3

A Multilevel Algorithm for the Solution of
the Trust-Region Subproblem

One of the most crucial points in the definition of a trustioegalgorithm is the resolution
of the trust-region subproblem, defined as (1.49). Inddexistep computed by the solution of
this minimization problem must satisfy certain conditiamsrder to guarantee the convergence
of the algorithm, as seen in the theoretical results in Girajt

More specifically, two choices define the step that will be pated as the solution of the
trust-region subproblem. First, we must choose a norm tmelefie trust region. Then, we
must choose a method that solves the minimization probl@eiently, such that the solution
satisfies the Cauchy condition (1.56).

In this chapter, we will describe the most common solverdHertrust-region subproblem,
and discuss the new method presented by Toint et al. [64]theéamost part of this chapter, we
restrict our analysis to unconstrained problems and to oustivhere the trust region is defined
using thef, norm, that is,

By = (% +se Rz < Ay

For simplicity, we restate th&-norm trust-region subproblem here without the iteratrafices
as

1
i = mi ~(s,H 3.1
lmlgAm(S) HQ‘TL‘QA<9’S>+2<S’ S) (3.1)

whereg = Vf(x) andH is the Hessian of computed ak, or a symmetric approximation to
this matrix.

In Section 1.4.1, we have seen that as long as the step codnpytthe solution of this
subproblem satisfies the ffigient decrease condition (1.56), then by Theorem (1.4.@yéis
not have to be the exact solution to the subproblem (3.1).s;Thus interesting to analyze
both exact and approximate methods, depending on the costeygrepared to accept for the
solution of this problem.

This Chapter is organized as follows. In Sections 3.1.1 add?3we will take a look
at the most common exact and approximate methods for sollimgrust-region subproblem,
respectively. Then, we will discuss the solution of thenorm trust-region subproblem in
Section 3.1.3. Finally, in Section 3.2 we will present owvmaultilevel method developed for
the exact solution to th&-norm trust-region subproblem.

a7
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3.1 The trust-region subproblem

The trust-region subproblem (3.1) consists of the minitmzaof a quadratic function
with one constraint, the trust-region constraint. Themfdrom the KKT optimality condi-
tions (1.23), stated in Chapter 1, we can obtain the follgwasult.

Theorem 3.1.1 A point 3! such that|sV||, < A is a global minimizer for problem (3.1) if and
only if
H@AM$S" = —g, (3.2)

where
def

HQAM) = H + aMI
is positive semidefinita > 0 and AM(||sV||, — A) = 0. If H(aM) is positive definite, thensis
unique.

This resultis very important as it characterizes in an ualiggimple way the exact solution
of the trust-region subproblem, and it is the basis for thed®orensen method, which we
present in the following section.

3.1.1 Finding the exact solution: the Moré-Sorensen method

Theorem 3.1.1 states that we have two possibilities for dhatisn of the trust-region sub-
problem. Either the unconstrained minimizermois in the interior of the trust region, and in
this caset™ = 0, or the stes" is in the boundary of the trust region, an¥ > 0.

Now, from Theorem 3.1.1, we can deduce that we withto be such tha™ > —Ann,
wheredmin = Amin(H), the smallest eigenvalue bf. Furthermore, ift™ > — A, the minimizer
of the model is unique, since in this casiéi™) is positive definite. If we consider tha!!
depends onM, that is,A is a parameter in this problem, we can rewrite this problefinasng
A such that

Is()ll2 = A, (3.3)

wheres(1) is the solution of the linear system (3.2). However, thigagpn has a pole iR Anin,
and thus might prove to befticult to solve in this region. Fortunately, there is an alirre
formulation of this equation called tleecular equationdefined as

def 1 1
"0 = son A G4
This equation has a zero i, and is thus much better suited if we want to apply a root
finding method to computé™.

Since it is easy to compute the derivatives of this functiwea can apply Newton’s method,
described in Chapter 1, Section 1.3.1, to find the solutiothizf problem. Now, for each
iteration of this method, we must computél) and its derivativeg’(1), and replace the old
estimatel1°!d with

new _ jold _ ¢(/10|d)
A =4 ¢/(/lold)'
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Fortunately, bothp(1) and its derivative can be found from the solution of linegstems of
equations involvindd(1). Since in the region of interest() is positive definite, we can apply
the Cholesky factorization, as described in Chapter 1,@eé&t2.1.4 to obtain

H(1) = L(A)LT ().

Now, to computep() it suffices to solve the linear system (3.2) to obtsia), and it can be
shown that the derivativ¢' (1) can be written as

o i
#(1) = Is()IIE"

wherew is the solution of the linear system

(3.5)

L()w = s(2)

The Cholesky factorization is a very important part of thisthod, because it also checks if
A > —Amin- Indeed, if this is not the case, the Cholesky factorizatdihfail, since we will
encounter negative diagonal entrieslin Furthermore, we can easily detect if the solution
to (3.1) is interior, as in this case the factorizatiorHgD) succeeds, and the resulting s&p)

is in the interior of the trust-region.

However, as mentioned in Chapter 1, Section 1.3.1, Newtopthod does not always con-
verge from any starting point. Thus, it is necessary to safag)jit somehow, so that it does not
diverge. It is possible to show (see Theorem 7.3.4 in Conm. €L2]) that if we can find an
iterate betweenr 1, andAM, convergence is guaranteed. Thus, we will estimate thésvat
by choosing a so-calldidterval of uncertaintyi‘, Y], where the solution is known to lie, and
proceed by shrinking this interval at each iteration unglfimd a solution.

In order to define an initial interval of uncertainty: and A¥ must be chosen such that
AM is guaranteed to be inside this interval. One way of doing ithusing the Rayleigh quo-
tient inequality (1.7) forH(2)TH(2) which , sinceH(1) is symmetric, gives us the following
inequality:

(H)S(). H)S()) )
S sy et A)”

Now, since we require th@s(1)|]> < A and sinceH(2)s(1) = —g, we can write

(Amin + A)? <

llall llall

% _/lmax—/ls % _/lmin-
Now, we can replacani, and Ay by any easily computable estimate, for example the Ger-
shgorin bounds (1.8), or the norm estimates (1.16) and Y1dbtaining initial bounds such

as
A+ = max| 0.~ min{H]y;, 92 _ min| max|(H],, + 7 11,1 IHIle, IHIL
I A I j#i
and
1 = max| 0,92 . min | max| ~[H],; + MLTIRLTACTS
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Now, we can interpret as the convexity that we must add to the Hessian in order tmbri
the solution to the inside of the trust region. In practi€ee increasel, ||s(1)||, decreases, and
if we decreasa, ||S(1)||; increases. This fact and the properties of the Newton iterduelp us
devise the following update for the interval] A"]:

o If |IS(1)]]2 < A, then we must decreage TakedV = A.
o If [|S(A). > A, then we must increase TakeAd' = A.

We also know that, ift = 0 is not the solution, theg” must lie in the boundary of the trust
region. However, as with any numerical method, testinig(it)||> = A might be dfficult. Thus,
we define some® > 0 and test if|s(A)|l, € [(1 — €*)A, (1 + €*)A]. In this case, we have found
the solution.

The complete procedure is stated in Algorithm 3.1.1.

Algorithm 3.1.1: The Moré-Sorensen Method

Step 1. If H(O) is positive definite,i.e. if the factorization bf(0) succeeds, anfs(0)]| <
A(1 + €*), terminate withs = 5(0).

Step 2. Determine an intervall, AY] and an initialA in this interval.
Step 3. Attempt a Cholesky factorization ¢f(1) = LL". If this succeeds, solve
LLTs=—g.

If AQ-€*) < |9l < Ad + €2), i.e. if sis near the boundary of the trust region,
terminate. If notsis not near the boundary, comput&" by

E —A)( lIs?
A\

A" =+ ( ) wherew solves Lw = s (3.6)

Step 4. Update the intervald", AY]:

o if ||S| > A(1 + €), or if the factorization has failed, redefiné = A;
o if |5 < A(1 - €), redefinel = A.

Step 5. Choosel sufficiently inside b, V] and as close as possiblei®", if it has been
computed. Go to Step 3.

There are many sophistications to this algorithm, in paléicregarding the choice of the
initial A, that of a newA in the interval whem"" falls outside and suitable termination rules.
We refer the interested reader to Sections 7.3.4 to 7.3.Joaoh et al. [12] and to the more
recent work of Dollar et al. [15] for details.
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3.1.2 The approximate solution

While an exact solution is certainly the best solution, ightinot be necessary when the cost
of factorizingH () is too high. Since we have seen in Theorem 1.4.2 that we doeuatssarily
need the exact solution to the trust-region subproblen),(8& will describe here one of the
most popular methods for the approximate solution of thidfam.

In Section 1.3.3in Chapter 1, we discussed the conjugatiegremethod for the solution of
strictly convex quadratic functions. Here, our problemusdyratic, but not necessarily convex.
Fortunately, in the specific case of thenorm trust-region subproblem, a generalization of the
conjugate gradient method that can be applied to non-copreXems is possible. Since the
conjugate gradient method can be seen as a particular cdeemieconditioned conjugate gra-
dient method described in Algorithm 1.3.2, we will stateehtre more general preconditioned
version of this method as well.

We will assume that we have a symmetric positive definiteqditionerM for this prob-
lem, as if this is not the case, we can just substitdtéor the identity. In the general case,
however, the preconditioned problem is equivalent to thsttregion subproblem defined in a
M-norm, that is,

min m(s) =(g, ) + %(s, Hs).

lIslim<A
If we just apply the preconditioned conjugate gradient rodtto this problem, three possibil-
ities can occur. First, imis convex, that is{px, Hpx) > O for every iteratiork in the precon-
ditioned conjugate gradient metH8dand alls, remain inside the trust region, then itfBoes
to find the unconstrained minimizer of(s), without modifying the method. Kpx, Hpk) < 0
for somek, in which case the functiomis unbounded from below along the directiepx, we
will find the smallest function value in the intersection bétline defined by, + apx and the
trust-region boundary. Finally, if one of the iterates af fhreconditioned conjugate gradient
method lies outside the trust region, it is not clear whatdo@ne might think that leaving the
PCG method run its course might result in a solution that ihéinterior of the trust region,
even if one of the iterates was found to be on the outside. Meryv¢his is not true, as the
following result shows.

Theorem 3.1.2 Suppose that the preconditioned conjugate gradient metlesdribed by Al-
gorithm 1.3.2 is applied to the minimization ofs)) with starting point § = 0. Suppose
furthermore thatp;, Hp;) > Ofor 0 <i < k. Then, the iterates; satisfy

lISjllm < [ISj+allm,
forO<j<k-1

This result is due to Steihaug [62] and it is the key to ourwston. Since there is no use
in pursuing the conjugate gradient method further afteraints iterates falls outside the trust
region, we can find a local constrained minimizengg) by finding the intersection of the line
defined bys + apx and the trust-region boundary, exactly as we did in the casegative
curvature.

(MHere,s, denotes théth iteration of the preconditioned conjugate gradient méth
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The completélruncated Conjugate Gradiemdgorithm is described in Algorithm 3.1.2 on
page 52. This method is also known as the Steihaug-Tointadets Toint [63] was the first
to suggest that the conjugate gradient method could be ws#teitrust-region subproblem
context.

Algorithm 3.1.2: The Steihaug-Toint truncated conjugate gadient method
Letsy=0,00 =0, Vo = M~go andpg = —Vo. Fork = 0, 1, ... until convergence, do:

° Seth = <pk, H pk>

o If k¢ < 0, computery as the positive root dfsc + o pullm = A, Setsi1 = S + 0kPks
and stop.

o Setay = (O Vk)_
Ki

o If ||s¢ + axpdllv = A, computeoy as the positive root offs, + opillv = A, set
Sii1 = S + ok and stop.

e Set
Sit1 = St akP
Oke1 = Ok +axHpx
Vil = '<\/I_lgk+1a >
gk+1a Vik+1
P = (G Vi) and
Prer = —Vis1 + BkPr

One remarkable property of this algorithm is that if the ddod number ofM remains
bounded over the sequence of subproblems approximateydsol the underlying trust-region
algorithm, then the first iteratg generated by Algorithm 3.1.2 is exactly the Cauchy point for
the model, and thus alreadyfBaient to guarantee convergence of the trust-region met@éd.
course, further iterations only improve on the decreasaefunction and thus it is interesting
to continue the iterations until some termination test tsfad.

In the case when negative curvature is detected, or wheetatis found to lie outside the
trust region, we stop the algorithm immediately and thetsmius the current iterate. When the
solution of the trust-region subproblem lies inside thstmegion, though, we must decide on
a stopping rule for the conjugate gradient method. In peacit is usual to define a maximum
number of iterates so that we do not spend too much time angatational cost in finding
what will be an approximate solution anyway. This can be mapd if we decide, for example,
to stop as soon as we reach an iterattdar which the norm of the gradient has been reduced
to a small fraction of its initial value. Even further impeawent can be obtained by requiring
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that the trust-region subproblem be solved with higher samuas the trust-region algorithm
approaches a first-order critical point. Putting these ttar together, we may choose to stop
as soon as

; 9
19«ll2 < 19l Min[«igr, lIgol 5] OF K > Kmax,

whereksy < 1,6 > 0 andkyay > O is satisfied.

It is important to note here that, if we require the solutidr{®1) to also satisfy a set of
affine constraints of the forlAs = 0, we can apply Algorithm 1.3.3 to this problem, so long as
the preconditioneM is also used to define the trust-region norm. In this casetehaes of the
projected preconditioned conjugate gradient method &iifgaAs = 0, and they also have the
property of increasing iVl norm. Thus, we can apply Algorithm 3.1.2 directly to

min (g, s) + 3(s Hs)
«R"
subject to As=0,
lISlim < A,

replacing, of course, the computationwf; by the solution of the linear system (1.46).

3.1.3 Thet,-norm trust-region subproblem

As discussed eatrlier, thig norm is not the only norm possible in the definition of the trus
region. Indeed, thé, norm can be very advantageous, and we will show in Chapteatditth
has an important role to play in multilevel methods as well.

The first observation we can make about £henorm trust-region subproblem is that it can
easily be redefined as a bound-constrained problem, sutkhthaondition that|s||., < A is
equivalent to

-A<s§ <A,

where s denotes theth component of the vectas € IR". Furthermore, this is especially
interesting if the problem we are trying to solve is a boundstrained problem, where the
solutionu must satisfy

[<x<u

Indeed, the..-norm trust-region subproblem can then be written as
max|l; — X, —A] < § < minf[y, — X, A].

Unfortunately, there are also a few disadvantages to tHisitlen. One is that while thé,-
norm trust-region subproblem can be solved rather eabiyetare cases (hamely, whidns
indefinite) where thé&.,-norm subproblem cannot be solved in polynomial time, thaitiis a
NP-hard problem, meaning that there are no polynomial tilgershms known to solve it.
Another problem is that if &.,-norm version of the truncated conjugate gradient method is
used, Theorem 3.1.2 is not valid; it could be that an estirohthe solution computed by the
conjugate gradient method is outside the trust region, lrisblution is in the interior of the
trust-region. Thus, we cannot use the same methods coedigeSections 3.1.1 and 3.1.2.
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Fortunately, in practice, theoretically ifieient methods can be very useful, especially since
the theory of trust-region methods only requires the Capdhyt to guarantee convergence, and
this can be computed rather easily evenffomorm problems.

3.2 A Multilevel Moré-Sorensen Method (MMS)

Our objective in this section is to consider multilevel tecjues for the exact solution of
the Euclidean-norm trust-region subproblem. This paldicsubproblem typically arises when
optimizing a nonlinear objective function whose varialdes discretized continuous functions.
This is for instance the case if the local Hessian is given biysaretized Laplacian or other
elliptic operator. The trust-region problem is consideséthe highest level (corresponding to
the finest discretization), but theffiirent levels of discretization provide a natural multileve
context. When the function is locally convex, one can vertyraly consider applying a clas-
sical multigrid linear solver to the system (3.2), yieldiagrery dficient method to compute
the step. However, things become much less clear when tleetolg function is locally non-
convex, in which case a suitable step is no longer given bytbi@aequations, ag = 0 is no
longer a solution. The existing techniques for computingep & this case, such as the one
presented in Section 3.1.1 are well-known for small dimameli problems (see Hebden [31],
Moré and Sorensen [44]), and guarantee, in most casesy#ratlenit point of the sequence of
iterates is a second-order stationary point. Howevergttashniques are unfortunately very of-
ten impractical for large discretized problems becausgitiwlve factorizing a Hessian matrix
defined on the fine grid. This is particularly limiting if onercsiders the discretization of vari-
ational problems in three dimensions or more. Our objec¢tere is to propose two multilevel
variants of this algorithm that are suitable for these lggsblems but nevertheless guarantee
convergence to second-order limit points.

The idea of applying multigrid methods to our problem is tattry to solve the residual
equation (2.15) not foH(1), but for some simpler approximation of this matrix in a lowe
dimensional space where smooth components of the erroaappeillatory.

As we did in Chapter 2, assume that we have a collection ofdnlk operatorg, : IR" —
IR"* andP; : R"* — IR" fori = 1,..., p (therestrictionand theprolongation respectively)
such thatP; = o-iRiT, with o > 0, foralli = 1,..., p. We will call eachi = 0,...,palevel
with n, = n such thatHy(1) = H(1). In this case, we can construct a simpler representation of
the matrix as th&alerkin operatorfor H;(1) defined by

Hi—1(1) = RHi(1)P.. (3.7)

This operator is not the only choice possible. However, $timany interesting properties, such
as keeping the — 1 level operator symmetric and positive definite, if thathis tase for the
original H;(1), and maintaining the structure created by the discrebzat

Once this is done, we may redefine the residual equation ifother level. Givens, the
step in the current level, and call the right hand side of tngaéion we want to solve in this
level byb; x. We then compute y, the residual, by

lix = bix — Hi(A)Sk
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The residual equation (2.15) at this level then takes tha for
Hi(/l)a,k =ik (38)

If we now restrict this equation to level- 1, the right-hand side at this level is now given by
Ririx and the residual equation at level 1 becomes

Hi_1()e_1 = Hit(DR Sk — Rrix = rito. (3.9)

If the norm of this restricted residual is not large enougmpared with the norm of the residual
at leveli, i.e. if |[ri_10l| < &/|Irixl/| for somex, < 1, then there is no advantage in trying to solve
the lower level system. In this case, we perform smoothiaigitons similar to those used in
classical multigrid methods. Otherwise, if

lIri—1oll > &lIrikll, (3.10)

we then compute a solutiag ; of the lower level residual equation (3.9). The correspogdi
upper level step can now be recoveredsy: = Sk + Pig_1. This procedure can be applied
recursively, in that the solution of the residual equationeveli — 1 itself can be computed
recursively. At the coarsest level, which corresponds ¢ostimallest system and where recur-
sion is no longer possible, the solution may be computedtlyxéar instance by using matrix
factorization.

3.3 The Multilevel Moré-Sorensen Algorithm

We now wish to develop an algorithm for the solution of (3.4attfollows the general
pattern of the Moré-Sorensen method presented in Sectloh But which, at the same time,
exploits the ideas and techniques of multigrid. If the peablis convex and the multipliet
is known, we propose to use a multigrid solver for the syst8rR)( thereby exploiting the
hierarchy of level-dependent problem formulations désatiin the previous section. If the
multiplier is not known, we also face, as in the standard Maoéensen method, the task to find
its value, again exploiting the multilevel nature of thelpem.

Thus, in addition to the multigrid solution of (3.2), we muas in Algorithm 3.1.1, find
a new value ofl if the step computed as the solution of (3.2) does not sat@isfystopping
conditions. Finding the value o™ may in practice be considered as a two-stages process. We
first need to find a lower bountt > 0 such thatH (1) is positive-semidefinite for all > A“.
Assuming thatt™ = 0 does not solve the problem, the second is then to deteraffine A"
such that

Isp(A")llz = IHp(A") gl = A, (3.11)

where we have simply rewritten (3.3) at leyglthe topmost in our hierarchy. In our multigrid
context, we intend to exploit the restriction of that prablen theith level where

IS = IMH(A™) Qi Miglli = IHi(A") ™ gill = A, (3.12)
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where, as in Gratton et al. [25],

i+1

p
def def
M, S ﬂRf, Qigl—[P{’, g = Mig
=i+1 {=p

and
def

Xl = 1QixXl2.

The linear system implicit in (3.12) is then solved using theltigrid technique discussed in
the previous section.

3.3.1 Exploiting the Level Structure to Find Bounds on™

Consider ensuring positive-semidefinitenesdHg{1) first. Our structure exploiting ap-
proach for this question is based on the simple observatiairtH; (1) (i = 2,..., p) cannot be
positive-semidefinite iH;_1(1) is not, as expressed by the following property.

Lemma 3.3.1Let P € R™"* be a full (column) rank matrix. Iftj < ... < A, are the
eigenvalues of & IR™™, andA[* < ... < A% are the eigenvalues of RAPIR™ "1, where
R = 1PT for someo > 0, then we have that

0_2

(’;‘u;, (3.13)

i-1
whereo i, is the smallest singular value of P.

Proof. Using the extremal properties of eigenvalues (see, foant#, (1.7) or Golub and Van
Loan [21]), we see that

: ) X, PTAP ) Px AP ) LA
A7t = min * P APY = min (PXAPY = min v y>.
Mi-1 o ni-1 o =Px O
X||€>!E:1 Xﬁﬂid a1

But, sincellyll> = ||PX|2 = o-min, We obtain that

2y A 2y A 2 (y A 2.
0-m|n<y y> > mII‘I 0-m|n<y y> > m|n 0-m|n<y y> — O-mln/v

A7t = min |
2 B 2 T CR" 2 1
y=Px o0 y=Px O eR" O ou
lIXl2=1 min Xl=1 ||y||2 Y ”y”2

O

This property thus implies that the value of the multiplieeded to makéi;_;(1) convex
provides a computable lower bound on that needed to rigfd convex. In many cases of
interest, the value af i, is known and larger that one. This is for instance the casenwhs
the linear interpolation operator in 1, 2 or 3 dimensionswigeer, the exact value depends on
the level considered and is typically costly to compute &aai@ly, which leads us to consider
the simpler case where we only assume that > 1, in which case (3.13) can be rewritten, at
leveli as i

At ;1.
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Once this lower bound is computed, the algorithm then paede increasd' (in a manner
that we describe below) if evidence of indefinitenesllgft) is found. We have considered two
ways to obtain this evidence. The firstis to attempt to sdieesystenH(1)s = —g for the step

at levelp by a multigrid technique, and to monitor the curvature te¢dy$1;(1)d) occurring in

the smoothing iterations at each leveAs soon as one of these terms is shown to be negative,
we know from Lemma 3.3.1 that the lower boun must be increased. The second is to
use a multilevel eigenvalue solver like the Rayleigh QuutMinimization Multigrid (RQMG)
Algorithm (see Mandel and McCormick [42]) to comput% the smallest eigenvalue éfp,
associated with the eigenvecmfr. The RQMG algorithm solves the variational problem

. . (Hpu, uy
R p minR m p
qul) B uil(? QU) - U#—'I(? <U, U>

by transferring the problem to coarser levels, using asualder multigrid methods the Galerkin
operator

|_|i = F'2i+1Ai+1Pi+1 = %PiTH_AanHl
at each level, and applying a smoothing strategy (such as the Gausst3$e&thod) to the
Rayleigh quotient equation at all levels except the coamses where we minimize the Rayleigh
guotient exactly in each coordinate direction. This lagta@minimization is, in fact, equiva-
lent to finding the roots of a quadratic polynomial, and thes inethod is not too expensive
computationally. The solution to this problem can thus keduss an (upper) approximation to
AP which, if negative, may therefore be used to deduce the bating —1A}. Observe that the
RQMG algorithm (applied with sficient accuracy) ensures thdp(4") is, at least in inexact
arithmetic, positive semidefinite. This is useful since wikenly be able to check for positive-
semidefiniteness in levels- O (that is, all but the coarsest level where the factorizasaised)
using the RQMG method.

In addition to the lower bound" (which applies to all levels), we compute an initial upper
boundsA” for each level as in the Moré-Sorensen algorithm (observe that no infaonat
can be obtained from lower levels abotjt). This therefore provides intervalg' 1”] for
acceptableal at each level.

3.3.2 UpdatingA in the Positive Definite Case

If A% =0, Hy(0) is positive-definite (in inexact arithmetic) atis(0)|l> < A, our problem is
solved. If this is not the case, our second task is then tesadljpy A~ such that (3.11) holds. We
now describe this adjustment procedure at Iévelr final intention being to solve it at levpl

Since we are looking fol that solves the secular equation (3.4), we can apply the ddewt
method to this end as we did in (3.6). However, in our caseCtin@esky factol for H(1) is
only available at the lowest level. Fortunately, note that

W = (w,w) = (L's L7's) = (s LTTL™9) = (S (H(A) 'S
Thus, if we computg as the solution to the positive-definite system

H(y = (1), (3.14)
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the Newton step for the secular equation at the current theel takes the form

new sl — A llﬂlf)
= . 1
2 “( . )((Sy> (3.15)

Since we may not rely on factorizations for an exact solutibiine system (3.14), we therefore
apply a multigrid method to solve fav. However, this solution may be considered as costly.
An alternative option is to updateby applying a secant method to the secular equation, which
gives

(3.16)

/l+:/l—¢(/l)( A = dod )

$(4) — ¢(Aoa)
(We uselyq = AY to start the iteration.)

As in the Moré-Sorensen algorithm 4" lies outside the interval, we choogenside the
interval. One way to do this is to také®" as the half of the intervalif, Y], which corresponds
to a simple bisection step. But we can expect better resylthbosing to follow Moré and
Sorensen [44] and setting

A" = max| Vab, a9, 2" + 62" - 24|, (3.17)

for 6 € (0, 1), which ensures thaf"®" is closer tat".

3.3.3 The Complete Algorithm

We need to introduce three further comments before the fstatement of the algorithm.

We first note that once a restricted trust-region problem3has been solved at levethis
means that the correspondingan be used as a lower bound for all higher levels. No further
updating ofa is therefore necessary at this level and all lower ones, leunay nevertheless
continue to exploit levelin the multigrid solution of the linear systems occurrindn@her lev-
els. The fact that a solution at levdias already been computed is remembered in our algorithm
by setting the flag ssolved;. (For coherence, we define these flags for levels.1p + 1.)

Our second comment is that we still need to define stoppingrifor the multigrid solu-
tion of (3.12). A first criterion is obviously to terminategtliterations when the residual of the
system is sfiiciently small. In practice, we choose to stop the solutiothefsystem as soon as

il = I-gi — Hi() skl < €,

with € € (0,1). However, we might need to introduce a second stoppirgg fiiilmay indeed
happen that, for a curreit(too small), the step resulting from the system hasiarm exceed-

ing A. It is of course wasteful to iterate too long to discover, mpermination, that we have

to throw the solution away. In order to avoid this wastefutaation, we exploit the fact that
the norm of the multigrid iterates is typically increasirgjthe iterations proceed. Thus, if this
norm exceeda by some threshol®**, we decide to terminate the iterative process (and subse-
guently increasd). However, we must be careful not to alter the lower and uppends om

in this subsequent update, because of the possible inayogeaerated by the early truncation
of the system and the absence of any monotonicity guaraate&ance with methods like
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truncated conjugate-gradients, see Steihaug [62]). tWnfately, it is also possible that nan
the current interval produces afBaiently small step. In this casg,grows and becomes arbi-
trarily close to its upper bound. We avoid this situation igreasing our threshold wheneveer
is within €' of 2.

Finally, we have to propagate changed ibpetween levels. Thus, if we have just updaiéd
and the old one wag, we have that

Hi(1%) = Hi(217) + (* = )MQ. (3.18)

Similarly, taking into account that each residual at letislcomputed with respect to the linear
system at levef + 1, we have that the residual at iteration k, leyetan be computed by the

formula )

= -Mig+ > MH s, (3.19)
=i+1
wheregis the gradient, which is the right-hand side of the lineatasm at the topmost level, and
s is the current step computed at each Iéveli + 1, ..., p. By substituting (3.18) into (3.19),
one may verify that the residual update satisfies
P
Mk = —Mig+ Z MeH(17)s,
£’=})+l
= —Mig+ > MIH) + (" - 1)MQ]s (3.20)
=i+1 0
= lig— (A" =-27) Z MZQes:.
=i+1
We now present the complete multigrid algorithm for the oluof the trust-region sub-
problem, the Multigrid Moré-Sorensen (MMS) Algorithm or83L on the next page. Note that
for each level, we start by unsettingssolved,.

Some comments on this algorithm are necessary at this point.

1. The algorithm is called form the virtual levpl+ 1, after an initialization phase which
computes, once and for all and for every level, the valug&of (1+€*)A, D™ = (1-€)A
andD** = oD* for somee” € (0, 1). A level-dependent feasible interval[ 4] is also
computed at this stage. The (global) lower bouhds set to the maximum between 0
and the opposite of the approximation of the most negatgersalue produced by the
RQMG algorithm; the upper bound is calculated, for eachl)eseactly as for the Moré-
Sorensen algorithm (see Conn et al. [12], page 192), usagppropriate restrictions of
the gradient and Hessian to the considered level. An iniihle ofa € [a%, 27] is finally
computed using (3.17) before the call to MMS proper.

2. We may essentially identify Steps 0 to 5 as a classicalignigitsolver for a linear system
whenissolved; is set. The remaining contain the update to ihgarameter, broadly
following the Moré-Sorensen method.
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Algorithm 3.3.1: [s..,4]] = MMS(i, H;, rio,A, A4, A, S0, issolved))

Step 0. Initialization. Setk = 0.

Step 1. Iteration Choice. If i = 1, go to Step 3. Otherwise, if (3.10) fails, go to Step 4
(Smoothing iteration). Else, choose to go to Step 2 or to 8tep

Step 2. Recursive Iteration. Call MMS recursively as follows:
[6-1:, Aica] = MMS(i — 1, Hi_1, Ti_10,A, 2%, 4, 0.1, issolved;_s)

wherer;_; o is computed as in (3.9). Compu$g;1 = Sk + Pig_1.. If issolved,
IS unset, i.e. this is the first time we perform a recursiveatien at this level, set
A" = i1, choosed € [A-, AY] using (3.17), updateéd;(1) using (3.18) andi,1
using (3.20) and sdtssolved;. Go to Step 5.

Step 3. Exact Iteration. If issolved;;; is unset, call the Moré-Sorensen algorithm
(3.1.1), returning with solutiong.,4;] = MS(H;(1),ri0,A,e), and setissolved;.
Otherwise, just solve the systdri(1)s . = rio exactly by Cholesky factorization of
Hi(4) and return with solutiong ., 1).

Step 4. Smoothing Iteration. Apply 4 smoothing cycles on the residual equation (3|8)
yielding s k.1, Setrix1 = rix + Hi(4)(Sk+1 — Six) and go to Step 5.

Step 5. Termination. If ||rix.1|l < € andissolved;,; is set, returrs,; andA. Else, go
to Step 1 ifissolvedi,; is set or if||rj k1]l > € and||S k;1lli < D*.

Step 6. Parameter update after full system solution.
If |Irix:1ll < € (andissolved,,; is unset),
Step 6.1: step threshold updatef A’ — 1 < €', setD** = 2D**.

Step 6.2: interior solution test. If A = 0 and||Sk1lli < D*, orif 4 > 0 andD~ <
IS k+1lli < D*, return with solutiors . = Sk.1 anda; = A.

Step 6.3: parameter and interval updates.If ||sy.li > D*, setAt = A, |f
Isklli < D7, setd” = 1. Compute a new € [1-, 2”] using (3.15) or (3.16).

Step 6.4: reset the stepSetsx,1 = 0, rix1 = rio, updateH;(1) using (3.18), and
go to Step 1.
Step 7: Parameter update after incomplete system solution.
If Irikeall > € (@nd||S ksalli > D),
Step 7.1: parameter update.compute a new € [, 2] using (3.15) or (3.16).

Step 7.2: reset the stepSets 1 = 0, rix1 = rio, updateH;(1) using (3.18), and
go to Step 1.
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3. As explained in Chapter 2, the linear system (3.2) is gsbbyecomputing a correction at
coarse levels to the steps already computed at finer onese§tiction strategy produces
an algorithm analog to the application, in our nonlineartegty of the Full Multigrid
scheme.

4. We have not specified the details of the smoothing proeeiiuStep 4. In our experi-
ments, we have used the Gauss-Seidel smoother, a classidtigrid solvers (see Sec-
tion 2.3.2 or Briggs et al. [3], page 10).

3.4 Numerical Experience

In this section we present some numerical results obtaiyetivb variants of the MMS
method applied in a trust-region algorithm (Algorithm 1.4n page 23) for the four test prob-
lems described in Section A.1 involving three-dimensiahstretizations. Some of these prob-
lems were also tested in Gratton et al. [26] in their two-disienal formulation. All problems
presented here are defined on the unit three-dimensional$3bnd tested with a fine dis-
cretization of 638 variables, and we used 4 levels of discretization. The lcgtaoperator is
obtained from the classical 7-points pencil. The proloiogabperator is given by linear in-
terpolation, and the restriction as its normalized (in|thig norm) transpose, thereby defining
oi = |IPill.. We briefly review these test problems below.

3.4.1 Numerical Results

We discuss here results obtained by applying the simple BO$R-tegion method described
in Algorithm 1.4.1 for the minimization of four problems ae#ed in Section A.1 of the Ap-
pendix, in which the subproblem is solV&dt each iteration by one of three multigrid variants
of the Moré-Sorensen algorithm. The first variant (MMS-s¢cés the the MMS algorithm
presented in this paper, where we use the secant approdé) {8 solve the secular equation.
The second (MMS-Newton) is the same method, but using Nesvinathod (3.15) instead of
(3.16). The third (naive MMS-secant) is a simpler versioddfiS-secant in which we do not
use information om from lower levels. In this variant, we solve the Moré-Soemsystem
(3.2) by multigrid instead of using Cholesky factorizatiointhe Hessian, but we only change
A at the topmost level. This is equivalent to settirgsolved; for all levelsi < p+ 1. We
updatet by using the secant method on the secular equation, ashledaiove. All runs were
performed in Matlab v.7.1.0.183 (R14) Service Pack 3 on &342 Intel single-core processor
computer with 2 Gbytes of RAM, using the parameters

u =5, =01 €=10° 6=10% and €'=0.011" -2".

Our results are shown in Table 3.1. In this tablg,stands for the weighted number of
A-updates, where each update is weighted proportionallggalimension of the subspace in
which the update is performed. SimilarlyR#tands for the weighted number of restrictions

@We require the Euclidean norm gradient of the objective fiondo be at most 1€ for termination.
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performed by the algorithm. This last number indicates h@myrecursive iterations were used
to find the solution of the linear system over the course ahaigation. The CPU reported (in
seconds) is the average trust-region subproblem solutrendver all optimization iterations.

Naive MMS-secant MMS-secant MMS-Newton
#A CPU R #A CPU R #A CPU R

3D-1  17.3 57(5) 656 9.2 48(5) 464 75 105(5) 34.1
3D-2  17.2 6.1(6) 85.8 11.2 53(7) 728 111 14.8(6) 59.4
c-D 17.3 6.9(6) 733 8.6 54() 53.6 7.9 11.9(6) 42.0
3D-BV 41.0 434.4(18) 474.4 23.9 465.4(20) 279.2 30.3 452.7(18)6 13

Table 3.1: Results for three variants of the MMS method.

These results clearly demonstrate that the MMS-secanioveo$ our algorithm performs
much better than the naive version in terms of the number-wbdates required to solve all
the trust-region subproblems in an optimization run. Thectasion in terms of CPU time
remains favorable for MMS-secant, even if care must be esexddere given the inaccuracy of
the Matlab timer. This suggests that information obtaingdwer levels is, in fact, useful for
the solution of the problem and should therefore be exploiée also note that MMS-Newton
does not €er a significant advantage over MMS-secant. Even if lespdates are needed
to find the solution, these updates are computationally nmucte expensive than the simple
secant ones since a linear system must be solved by mulfiogridl each update, resulting in an
overall slower algorithm. It is also important to note tha tast problem is non-convex, and
thus requires much more time to be solved. This is also dukeddaict that, in this case, we
have to compute an initial- using an estimate of the smallest eigenvalue of the Hessieach
BTR iteration by means of the RQMG algorithm, as discussederprevious section. We note
again that this is not needed in other strategies basedtorization methods (as is the case in
Dollar et al. [15]) since the factorization itself is abledetect indefiniteness.

This new method for the exact solution of the trust-regioopsablem is suitable for large
scale systems where the Moré-Sorensen method cannot bedadpl instance because fac-
torizations are too costly or impossible. This method eitplihe multigrid structure in order
to extract curvature information from the coarse levelsgeesl up the computation of the La-
grange parameter associated with the subproblem.

We have presented some admittedly limited numerical epeé, which shows the poten-
tial for the new method, both because it demonstrates thablg three-dimensional applica-
tions can be considered and because it outperforms a toe maiktigrid implementation of the
basic Moré-Sorensen algorithm.



Chapter 4

Recursive Multilevel Trust-Region
Methods

Despite the many advantages of trust-region methods ginesohtioned here and in the
literature, it is clear that applications demand the abibitsolve bigger problems every day. In
Chapter 3, we have described one possibility for the exgtion of this structure that is inherent
to the problem in a trust-region framework.

However, the application of the multigrid philosophy to #wdution of the trust-region sub-
problem is not the only possible way of exploiting this mieltel structure. Recently, several
authors have proposed methods that take multilevel hieiesénto account for the solution of
optimization problems, such as Fisher [17], Nash [47], lseand Nash [40, 41], and Oh et al.
[51]. Kornhuber [35, 36, 37] also developed a method of thpetfor possibly non-smooth
convex bound-constrained problems in the finite-elementest. Convergence of this multi-
grid method is ensured by the successive minimization atoogdinate directions generated in
Gauss-Seidel-like smoothers, thereby avoiding the needpiicit globalization.

On the other hand, the recursive Euclidean-norm trustreglgorithm for general multi-
level unconstrained nonconvex minimization provides trst Globally convergent framework
for the application of multigrid-type mechanisms to thiasd of problems. Moreover, the nu-
merical experiments with this algorithm are very good (se&iGn et al. [26]).

In this chapter, we will describe two versions of the Reag$ilultilevel Trust-Region class
of methods for nonlinear optimization problems. First, gcton 4.1, we briefly discuss the
first multilevel strategy for the trust-region method, mmt®d in Gratton et al. [25], which is
essentially dierent from the strategy presented in Chapter 3. Then, indpe4t2 we present
a complete description of th,-norm version of the recursive multilevel trust-region hoat
for both unconstrained and bound-constrained problentjraection 4.2.2 we present the
convergence results obtained for this method, first preseintGratton et al. [24]. Finally, we
cite some of the numerical results that one might expect taiolvith this method in practice,
presented originally by Gratton et al. [26].
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4.1 The Recursive Multilevel Trust-Region Method in Eu-
clidean Norm

Here, we are interested in the solution of problems of the {§fpl). This problem is viewed
as an accurate representation of a more general underlyoigepn (such as, for instance, a
contact problem in infinite dimensions). Since our inteigesh the multilevel case, we also
suppose, like we did in Section 3.2 in Chapter 3, that we kneetaf functiond f;};_, which
give alternative and potentially less accurate descgtaf the same underlying problem. Each
of thesef; is assumed to be itself a twice continuouslffelientiable function from IR to IR
(with mj > ni_4), n, = nandf,(x) = f(x) for all x € IR". Each of these descriptions is said to
define devel which we index by. As we did before, we also assume that, for éaeiL, .. .,r,
there exists an operat® : R" — IR"* (therestriction) and another operat#, : IR"* — IR"
(the prolongation such that

R = oiP; (4.1)

for some known constant; > 0. The prolongations and restrictions therefore definerairaoby
of levels, from lowesti(= 0) to highesti(=r).

As mentioned in Chapter 1, classical trust-region methoelbased on a quadratic Taylor’'s
model for f, given by

1
Me(X + 9) = F(X) + (G, SO + §<s, Hys). (4.2)

In this case, since the solution of the problem at each legehssumed to be more costly than
the solution of the problem at leviel- 1, the idea is that we usk ; to build a modeh;_; for f;.
Thus, at iteratiork at leveli (with iteratex; ), if we choose to use the coarser-level madudel,
we must first restrict the iterate to obtain a starting poitéeeli — 1 by defining

Xi—10 = RiXik.
Then, we define the coarser-level model as
def
hi—1(Xi-10 + S-1) = fiia(Xi—10 + S-1) + (Vi—1, S-1) (4.3)

where
Vi1 = Rgix — Vfi_1(Xi-1.0),

with gk & Vhi(x x) (and wherey, & 0).
The definition ofh;_; then enforces the relation

0i-1.0 = ROk (4.4)

which is a property that will play a crucial role in the conyence theory of this method, and
which ensures that the first-order behaviohgéndh;_; aroundx is coherent. Furthermore, it
implies that, if

s = Pi1s, (4.5)
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then using (4.1) and (4.4), we have that

(Gik: S) = (Gik Pis—1) = (Rdix. S-1) = (Gi-1,0, S-1)-

Thus, when entering level= 0, ..., r, we must minimizéy starting fromx;o. At iterationk of
this process, we can choose a model between (4.3) and

1
M(Xik +S) = hi(Xk) +(Dix S) + 5(3, Hixs), (4.6)

which is just the rewriting of the usual Taylor model (4.2)iar multilevel context, and where
Hix approximates the second derivativeshp{which are also the second derivativesfgfat
Xi k-

Once the model is chosen, we compute a stethat satisfies a sticient decrease condition
within a trust region defined by

def
Bk = (slsll < Al

for some trust-region radius x > 0, where the nornt}; is defined for some symmetric positive
definite matrixM; at each as

def
Isli = (s, Mis) = [Isilw.-

If we choose model (4.6), it $lices to use one of the trust-region subproblem solving method
described in Chapter 3 to obtad, which will then satisfy the dticient decrease condition

Gl ]

—— A 4.7
1+ [Higl (4.7)

Mk(Xixk — Mx(Xik + Sk) = Kred|Gikll2 min[

for some constarkeq € (0, 1). This is, again, just (1.55) rewritten in a multilevel ¢ext.
On the other hand, if the model ; is chosen, the minimization of this model yields a new
point x;_; . which is then prolongated into leviethrough (1.55). By defining

def

Mi_y = P/ M;P; for all i,

we have then that
lIslli = lls-alli-2
and thus the trust region at levet 1 is defined by

[1Xi—1,« — Xi—z0lli-1 < Ajx.

The coarser-level trust-region subproblem is then defised a

min  hi_1(Xi-10 + S-1). (4.8)

Isi-alli-1<Aik

(MDThis gives us a hint as to why condition (4.1) was importas &br multigrid methods in Chapter 2.
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Some care must be taken in order to exploit this coarse-tf@itions as it might be the
case, for example, th&g;« is zero, even i) is not. Thus, it is useful to require that we only
use the coarse level 1 if

IRGill2 > kgliGill2 and(IRGikll2 > € ,, (4.9)

for constants, € (0, min[1, min;[|R||2]) and e’ ; € (O, 1).

We describe the recursive multilevel trust-region meth®defined in Gratton et al. [25] in
Algorithm 4.1.1. The constantsg, n,, y; andy, are defined as in 1.51 on page 23. We assume
that an initial trust-region radius® > 0 is known for each level, as well ase’ € (0,1) and
trust-region tolerances' € (0, 1). For coherence, we consider the algorithm to be calleu fro
a virtualr + 1-st level where\;,; o = co.

The test (4.10) and the requirement (4.12) are imposed as/dov@aintain the iterates
inside the fine-level trust region. These two requiremeatsend up being overly restrictive,
and will be one of the main motivations for ofi-norm version of the RMTR method. Another
motivation is the fact that computing the norm-matridésand the normg-||; at each level
might be rather expensive.

Despite these possible problems, this method enjoys a etenglobal first-order conver-
gence theory that includes a bound on the number of itestibat are required to find an
approximate critical point of the objective function witha prescribed accuracy.

4.2 Thet,-norm Recursive Multilevel Trust-Region Method

While theoretically satisfying and practically accepglihe choice of the Euclidean norm
for the trust region definition is not without drawbacks.sHy, the Euclidean trust regions do
not mix naturally with bound-constrained problems, beedats intersection of the trust region
(a Euclidean ball) with the feasible domain for bounds (a)bdwas a complicated structure.
Moreover, the combination of Gauss-Seidel-like smoothiegtions with the Euclidean trust
region is unnatural because the smoothing steps considefasiable at a time and are therefore
aligned with the coordinate directions. In addition, m@ehnical complications also arise from
the fact that the step at a lower level must at the same timedbeded in the current-level trust
region and be such that its prolongation at higher leveKshc¢luded in the higher level(s)
trust region(s). As discussed in Gratton et al. [25], thiglde requirement implies the use of
computationally expensive preconditioners and a spestaitique for updating the trust region
radii which in turn sometimes ifigciently limits the step size.

In order to allow for bound constraints and avoid these techlifficulties, an alternative
multilevel algorithm for bound-constrained optimizatican be defined using the, norm for
the trust region definition. Moreover, smoothing iteraiamhich explore directions aligned
with the coordinate vectors can be easily integrated.

Unfortunately, the convergence theory presented in Gratal. [25] for RMTR cannot be
applied to this case without significant modifications, ndidecause of the possible presence
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Algorithm 4.1.1: RMTR (i, X0, Gi0, Ais1, €, €, AS)

Step 0: Initialization. Computev; = gio — Vfi(X0) andhi(xi0). SetAig = min[A>, Aj,4]
andk = 0.

Step 1: Model choice.If i = 0 or if (4.9) is not satisfied, go to Step 3. Otherwise, choose
to go to Step 2 (recursive step) or to Step 3 (Taylor step).

Step 2: Recursive step computationCall Algorithm RMTR( — 1, RiXix, RiGik, Aik eig,
e, A?,), yielding an approximate solutior_,. of (4.8). Then definesy =
Pi(Xi-1. — RXik), setdix = hi_1(RXix) — hi—1(X-1.) and go to Step 4.

Step 3: Taylor step computation. ChooseH;, and compute a stegx € IR" that suf-
ficiently reduces the modeh x given by (4.6) in the sense of (4.7) and such that

ISkl < Aik. Setdix = M k(Xik) — Mr(Xik + Sk
Step 4: Acceptance of the trial point. Computeh;(x x + Sx) and define

_ hi(Xi k) — hi(Xix + Sik)
ik .

Pik

If pix > 11, then definex k1 = Xk + Sk. Otherwise, defing k.1 = Xk
Step 5: Termination. Computeg ;1. If [|gik.1ll2 < €’ or
1% ke1 — Xiolli > (1 - EiA)Ai+1, (4.10)
then return with the approximate soluti&n = X; k1.

Step 6: Trust-region radius update. Set

[Aik, +0) if pix = 12,
A =1 [v28ik A IF pik € [111.172), (4.11)
[Y14ik Y2Aix] if pix < n1,

and
Aiks1 = mMin [Afk, Aivr = Xk — Xi,OHi] : (4.12)

of bounds, but also because the algorithm analyzed in tledseences is itself very dependent
on the choice of the Euclidean norm. Our second purpose ssthprove global convergence of
the new algorithm to first-order critical points, that is eergence from arbitrary starting points
to limit points satisfying the first-order optimality conidins.
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4.2.1 The problem and algorithm
In what follows, we wish to solve the bound-constrained mization problem

min  f(x),
xR (4.13)
suchthat | < x<u

where the< signs (here and below) are understood component-wise glaedu are vectors
in IR" such that < u, and wheref : IR" — IR is a twice continuously dierentiable function
which is bounded below on the feasible et IR" || < x < u}.

Trust-region methods compute a step by minimizing a modéhefobjective function in
the trust region, but since we are dealing with bound-canstd problems, we also choose to
keep our iterates feasible throughout the process, whighiesithat the model minimization
must take place in the intersection of the feasible set a3)4with the trust region. As already
mentioned in Section 3.1.3 in Chapter 3, since the feasdtléssa box, it is much simpler to
define the trust region with the, norm. Thus, in the classical (single level) case, the stam fr
the iteratex, (at iterationk) is thus obtained from the (possibly approximate) solutbthe
subproblem

min  mg(X + 9),
SeBy

suchthat | < x+s<u

wherem(x¢ + S) is the objective function’s model aroung and the trust regiom, is defined
as
Br={se R"|[|S]e < A},

and where the feasible set is defined as

FLixe R [1<x<u).

We then minimize the (potentially nonquadratic) mofle] using a trust-region algorithm
at levelr — 1, whose iteratiorf therefore features its own box-shaped trust-re@pn . This
minimization is carried under a set of constraints inhdritem levelr and from the initial point
Xr-10 = R Xk, until some approximate constrained minimizen . is found. The resulting step
is then prolongated to levelby computing

Sk = Pr(Xr—l,* - Xr—l,O)-

The main dificulty is to specify the form of the constraints inheritednfrahe upper level.
First of all, the resulting feasible set (at the lower levalst be a box in order to preserve the
coherence andiciency of the algorithm across levels. We also wish to guaratine feasibility
at the upper levedf the prolongated trial point, x + s x with respect to the bound constraints.
Finally, we would like to ensure that this trial step lieshiit the upper-level trust regiaf; k.
Unfortunatelythe prolongation of the restriction of a box at level r bacKewel r is in general
notincluded in the original boxas shown in Figure 4.1.

We are thus forced to alter our technique for representingpper-level box at the lower
level if we insist that its prolongation satisfies the coaistis represented by the upper-level
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Figure 4.1:Prolongation and restriction of bounds. In this figure, oorsiders the set of continuous functions
o(t) for t € [1,9] with a zero lower bound and an upper bound given by s(t/3). The vertical bars in the
upper graph show the possible ranges for the vap(&s. . ., ¢(9) for such functions, considered here as problem
variables. The vertical bars in the middle graph show thgearobtained by applying the restriction operator
(corresponding to the normalized transpose of the lingarpolation for a coarser grid of 4 discretization points)
to the set of bounds obtained in the upper graph. The vebtaralin the lower graph finally correspond to applying
the prolongation (linear interpolation) to the bounds ot®d in the middle graph. One notices that these latter
ranges ar@otalways included in the original ranges of the upper graph.

box. This is highly desirable for the upper-level bbxdefining the original bound constraints
of the problem, because we wish to preserve feasibility ldeatls. On the other hand, we
might accept some flexibility for the lower-level box comesding to the upper-level trust
regionB; x, because one expects that a step whose norm is proportwotied trust-region size
would be enough to ensure convergence (even if strict imariugoes not hold) without being
unduly restrictive. Thus we are lead to a two-pronged sisat@here we separately represent,
on one hand, the bound constraints at the lower level in a wayagteeing feasibility of the
prolongated step, and, on the other hand, the upper trustggpssibly more loosely.

If F;_1 is the representation of the bound constraints at the |dswed-andA,_; that of the
upper trust region, then the step at iteratfasf the lower-level minimization must be included
in the box

def
Wi_1e = Froa N A N Br_ay. (4.14)

We discuss below how,_; andA,_; are computed.

If more than two levels are available ¥ 1), the same technique can be applied recursively,
the process stopping at level 0, where there is no coarseelnaad thus Taylor's model is
always used. Let us consider the details of this processamtbre general situation. Consider
iterationk at leveli, and assume thaiy is an iterate in the minimization df inside an iteration
g at leveli + 1 wheref; has been chosen as a model fgx (i.e. a recursive iteration).
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We start by considering the representation of the probl&msds at lower levels. At level
i, we define

F L x| 1< x < u) (4.15)

the “restricted” feasible domain, where

def [lis1 — Xii1glt  when [Piq]ii >0
L] = [Xo]i + —— ma { 4 J 4.16
i = Dseli+ TE 5 I\ X - Urale when Praly <0 (4.16)
and
def . [Uis1 — Xis1glt  When [Piq]y >0 }
ul: = Ixoli + ———  mi : 4.17
Luli = Dol + =2 { [Xs1q — lisale  when [Pialy <O (4.17)

for j = 1,...,n. The idea behind this generalization of the definition byl and Mandel
[18], originally stated for more specific prolongation ogters?, is to use the structure &,

to compute a coarse set of bourlsn order to guarantee that its prolongation is feasible for
the fine levelthat is

liva < Xir1 + Pia(li = %) < X1 + Pia(U — %) < Uiy

for all x,1 € Fi,1, for all x; € F. This property is proved in Lemma 4.2.3 below. Figure 4.2
on the facing page shows the application of the (genergli@etinan-Mandel’s coarse bounds
and their prolongation on the example of Figure 4.1.
We now turn to the representation of the upper trust regidheatower level. At level we
also define
A = {X| v £ x<w}, (4.18)

the restriction of the trust-region constraints inherifea levelsr to i + 1 throughXi,iq,
computed using the restriction operaly;. The j-th components of; andw; are

Nit1
[Vi]j = Z [Ri+1] ju[maX(Vi+1, Xi+1,g — Ai+1,qe)]u
u=L[R41]ju>0 - (419)
£ [Reallmin(Wi, Xiag + Aivtq@)ly
u:]-v[Ri+l]ju<0
and
Ni+1
[Wi]j = Z [Ri+l] ju[min(VVi+l, Xi+1,q + Ai+1,qe)]u
u=1[Ri+1]ju>0 .- (420)
+ Z [Risa]julmax Vi1, Xir1q — Aiv1,68)]u
U=1[Ri+1]ju<0

@ The original formulation is restricted to the case whi?g1|. < 1 andPi,1 > 0, and is given by

def
li]i = [%.o]i+ max livs — X ,
[ I]J [ |,O]] t=1.. ni+1:[Pi+1]tj>0[ i+1 |+1,q]t

[ul; = [Xol; + - nm?gi(+1]tj>0[xi+l,q — Uizt
We extend this definition to cover prolongation operatotfyl;. 1|l > 1 and also to handle negative elements in
Pi+1 (as in cubic interpolation, for instance), which imposésrtg both upper and lower bounds at the upper level
into account for the definition of the upper and lower bourtdb@coarse level.
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Figure 4.2:Prolongation of Gelman and Mandel's bounds for the same plaas in Figure 4.1. As in this
figure, the vertical bars in the upper graph show the possériges for the valueg(1),...,#(9). The vertical
bars in the middle graph now show the ranges obtained byidgtiie generalized Gelman and Mandel’s bounds
from the set of bounds obtained in the upper graph, and thieakiars in the lower graphs finally correspond to
applying the prolongation (linear interpolation) to theulds obtained in the middle graph.

(we definev;, = —oco andw; = +oo for consistency).

Notice that, as allowed in our above discussion, the chofcesmg R, to restrict these
bounds implies that iterates at levedre not necessarily included in the levdkust region
anymore but cannot be very far from it. Indeed, recalling fRd|.. = 1 fori = 1,...,r, we have
that

X k1 = Xiklloo < NIPillool[Xi-1.6 = Xi—10llco- (4.21)

If the trust region at levelaround iteratex i is defined by
Bik={Xxk+seRY s < Aixl,
we then have to find a stegy which suficiently reduces a model df in the region
Wik = Fi N A N Bix. (4.22)

Observe that the s&l/;x can either be viewed both &#/;x = £ N Bk, the intersection of
a level dependent domaifii = F N A; with an iteration dependent trust-regi@hy, or as
Wik = FinSix, the intersection of, the feasible set for hard constraints, Wit wf AiNBik,
the feasible set for soft ones. This last set can be intexpes a “composite” trust region which
includes all constraints imposed by trust regions at leaeld higher. Note that all the involved
sets are boxes, which makes their representation andeocteans computationally easy.

Figure 4.3 on the next page illustrates the process to cagugcursive step in the example

already used in Figures 4.1 and 4.2. In this figure, the vatfigbe variables at successive
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The iteratex; x, and the set$; (thick lines),A; = IR® andB; k (brackets) are given at level

o
I I
1 2 3 4 5 6 7 8 9

HS

i L L L L L L L |

= + 4+ r - 3

-1 L L L L L L L

[ I

Figure 4.3:The definition of the various sets and the step computatiothéoexample of Fig. 4.1.
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iterates are shown by horizontally barred circles and tepssby arrows. Trust-region bounds

on each variable are shown with vertical brackets, theSgtandA;_; by thin vertical boxes,

the set/,_, by fatter vertical boxes and the sgtsand¥,_, by thick lines. At stage 3W;_11is

given by the intersection of the fat boxes representipgvith the brackets representitfj_; o.
Once W, is known, we then choose a model fipr; as one of

1
rr\+l,q(xi+1,q + 3+1) = fi+l(Xi+l,q) + <gi+1,q, 3+1> + §<3+1, Hi+1,q3+1>, (4-23)

the usual truncated Taylor series figr, (With gi.14 = V fii1(Xii19) andHi.1 4 being a symmetric
approximation oWv? fir1(Xi+1q)), Or fi. As discussed below, this freedom of choice is crucial for
the application of multigrid-type techniques in our cortex the latter case, we assume that
fi.1 and its coarse modd] arefirst order coherentthat isgip = Ri,10i114. This assumption is
not restrictive, as we can always choose a first order coheoamse model of;,; by adding a
gradient correction term t§ as in

fi(Xi,O + S) + <Ri+lgi+l,q - Vfi(xi,O), S>

If one chooses the modél (which is only possible if > 0), the determination of the step
then consists in (approximately) solving the lower-levalibd-constrained problem

min  fi(Xo+ §). (4.24)

Xi,0+§ €L
This minimization produces a stepsuch thatfi(x o + s) < fi(X.0) which must be then brought
back to level + 1 by the prolongatio®;,,, i.e.s,; = Pi;1S. Note that

1

i+1

<gi+l,q, St1) = <gi+l,q, Pii1S) = <Ri+1gi+1,q, S). (425)

As the decrease df achieved bys can be approximated to first-order Byx o) — fi(Xio+ S) =
(90, S) = (R+10i+10: S, the decrease of the model at level 1 when computing steps at level
i is computed, using (4.25), §§(xi0) — fi(Xio + S)] /Tis1-

But does it always make sense to use the lower level modelafi$wer obviously depends
on the benefit expected from the solution of (4.24). In RMT&deascribed in the previous sec-
tion, it suficed to test ifgi ll> = [IR+10i+1,4ll2 Was large enough compared|w, 1 /l.. However,
this criticality measure is inadequate in our context beea(#.24) is now a bound-constrained
problem. Thus, we choose to follow Conn et al. [12] and usegéahx;.1 4 € Li;1, the critical-
ity measuré& defined by

def . def
Xi+lq :e X(Xi+l,q) = | min <gi+l,qa d>| :e |<gi+1,qa di+1,q>|- (426)

Xir1,g+tdeLizg
[ldil<1

Then if the restriction of the problem from the non-critidaratex;,, 4 at leveli + 1 to leveli is
not already first-order critical, that is if

Xi0 = KXir1g (4.27)

©)Other criticality measures are possible, suchiasq = IProj,q o(Xi+1q — Gi+1q) — Xi+1qll2 Where Praj.iq is
the orthogonal projection onto the bdk,, but we will not investigate this alternative here.
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for some constant, € (0,1), we may proceed at this lower level. Otherwise, the recnris
useless and we should use (4.23) instead.

Once we have decided to approximately solve (4.24), we nisstdecide what we mean
by “approximately”. We choose to terminate the minimizatad levelr if y,x < & for some
& > 0 and, in the spirit of (4.27), to terminate the lower levehmiization at iteratei( p) as
soon as the inequality

Xip < & = K€, (4.28)

holds. We then defing . = Xip, S = X. — Xio andsi.1 4 = Pi,1S.

If, on the other hand, we decide at iteration+(1, ) to use Taylor's modein,; 4 given
by (4.23), a stei.14 is then computed that produces difiient decrease in the value of this
model in its usual meaning for trust-region methods withvearnconstraints (defined here by
the setf;,1), that is,s.14 is such that it satisfies

. Xi+1,
m+l,q(xi+l,q) - rn+1,q(xi+1,q + S+1,q) 2 KregXi+1,q min [1, ﬁ—H q’ Ai+1,q] > (4-29)
i+1,9
for some constant,, € (0, 1) andgi,1 4 = IHi1 1.glleo.1, Wherel|All., 1 " max.o {'l'l’j(ﬁil} for all

matricesA. Despite its apparently technical character, this requérg, known as the modified
Cauchy condition, is not overly restrictive and can be goted in practical algorithms, as
described for instance in Section 12.2.1 of Conn et al. [12].

We now specify our algorithm formally, as Algorithm RMTFRon the facing page. It uses
the constants & 7, <m, <landO<y; <y, <landA’(i=0,...,r).
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Algorithm 4.2.1: RMTR (i, X0, 9.0, Xi.0 Fi» Ai, &)
Step O: Initialization. Computefi(x o). Setk = 0 and

Li=FinA and Wio=LiNSBiy,
whereBio = {Xo+ S€ IR" |||Slw < Aig = AP}

Step 1: Model choice.If i = 0, go to Step 3. Else, compu#_; andyi_1o. If (4.27)
fails, go to Step 3. Otherwise, choose to go to Step 2 or to &tep

Step 2: Recursive step computationCall Algorithm
RMTR oo(l - 1, Rixi,k’ Rigi,ka)(i—l,()a 7:i—l’ ﬂi—l’ K/\/Ei)a

yielding an approximate solutiof_; . of (4.24). Then defing x = Pi(X_1. — RiXix),
setdix = [ fi-a(Rxik) — fia(%-1.)] and go to Step 4.

Step 3: Taylor step computation. ChooseH; and compute a stegy € IR" that suf-
ficiently reduces the modeh x given by (4.23) in the sense of (4.29) and such that

Xik + Sk € Wik Setdix = mMix(Xix) — Mx(Xik + Sk)-
Step 4: Acceptance of the trial point. Computefi(xx + Sx) and
pik = [fi(Xk) = fi(Xik+ SK)]/Ji (4.30)
If pix > n1, then definex ;1 = Xk + Sk otherwise, defing ;1 = Xk.

Step 5: Termination. Computegi ;1 andyixi1- If xiki1 < 6 Or X1 € Aj, then return
with the approximate solutior . = X k1.

Step 6: Trust-Region Update.Set
[Aik, +00) if pix > 12,

Aixs1 € {[v2Aix Aixl if pik € [171,72), (4.31)
[v1hik Y2Aik] if pix <11,

and‘Wi,kJrl =/Lin Bi,k+1 where
Bixe1 = {Xikr1 + S€ R[S0 < Ajgsn})-

Incrementk by one and go to Step 1.
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Some comments are now necessary for a full understanditgsceilgorithm.

1. The test for the value afat the beginning of Step 1 is designed to identify the lowest
level, at which no further recursion is possible. In thise;as Taylor’s iteration is the
only choice left.

2. As aresult of the discussion preceding (4.2L),; may not belong to the composite trust
regionA; when the stefsx is computed by a recursive iteration. However, as indicated
above, we wish to limit the length of the step at level 1 to a multiple of the trust-
region size. Because of (4.21) and the definitiotApfwe may achieve this objective by
stopping our iteration at levels soon as the iterates leave the composite trust-refjion
This explains the second termination test in Step 5 of therdlgn and is discussed in
detail in Lemma 4.2.4.

3. The diference between the “restriction formulae” (4.15)-(4.2f)the hard bounds and
(4.18)-(4.20) for the soft ones makes it necessary to passMaand; to the algorithm
at leveli, as it is necessary to compufg at each level independently.

4. The original problem (4.13) is solved by calling RMIRom a virtual ¢ + 1)-rst level
at which we assume the trust region to be infinite.

As usual in trust-region algorithms, iterations at whigh > n; are calledsuccessful At
such iterations, the trial pointy + S IS accepted as the new iterate and the radius of the
corresponding trust region is possibly enlarged. If thiatien is unsuccessful, the trial point is
rejected and the radius is reduced.

4.2.2 Convergence theory

Having motivated our interest in the new method, both asfhoient solver for bound-
constrained problems and as an improvement on the existifigRRalgorithm for the uncon-
strained case, we are now interested in obtaining a theatguarantee that RMTRconverges
to a first-order critical point of the problem from any stagtipoint. The theory proposed in this
section difers significantly from the proof for the RMTR algorithm in @& et al. (2008),
mostly because of the form of the new criticality measurep@sed by the bounds and the
choice of the infinity norm) and because the new algorithrovasi for potentially very asym-
metric trust regions.

We start by making our assumptions more formal. First, warasghat the Hessians of each
fi and their approximations are bounded above by the congtani, so that, foi = 0,...,r,

1+ IV (%) leor < Ki (4.32)

for all x, € F and
Bik < Ky (4.33)

for all k, wherepi is as in (4.29). We also assume that all gradients at all denazhain uni-
formly bounded, which is to say that there exigts 1 such that

IVE(x)IlL1 <k, forall i=0,...,r, andall x € F. (4.34)
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In addition, we assume that the criticality measuf¢ satisfies, for all iterationg,(¢) inside a
recursive iterationi(k), that

Xi-10 = X(Xi-10) < 2&,Mi-1Ai k. (4.35)

These assumptions are not overly restrictive and, for mrgta(4.34) automatically holds by
continuity if all iteratesx;, remain in a bounded domain, which is the case if dathdu are
finite in (4.13). We next prove a useful level-independeiafpperty of the criticality measure
x(-) in our context.

Lemma 4.2.1 Consider the optimization problem (4.13) and define thetfang(x) by

x(X) = | min{V{(x),d) (4.36)

x+deF
ldil<1

(asin (4.26)). Then, for all ¥ € ¥, we have that
() = x(¥)I < &lIX = Ylleo
with k. = 2(ky + k).
Proof. Letxandybe inF. The optimization problem (4.36) may be written as

max (=VT(x),d). (4.37)

max(-21,li—x)<d <min(Lu;—x)

Now denote bym(x) the vector of average of the bounds on the variables in J4v@Tosei-th
component is given by

m(X) = 3[max1,1; — x) + min(L, u; - x)], (4.38)
and byr(x) the vector of “radii” whose-th component is
ri(x) = 3[min(1, u — x) — maxE1, l; — x)]. (4.39)
Then, fori = 1,...n,
2ri(x)] < [min(L ui = x)I +[maxE1,1; — x)l < 2

and similarly, 2m(X)| < 2, which shows that both functiofrg(x)] and|mi(x)| are bounded by 1
for xin 7.

We now show that the functions— min(L u; — x) and x — max(-1,1; — x) are both unit
Lipschitz continuous, that is Lipschitz continuous witmstant 1. Considex andy in ¥, and
define

0 =|min(L u — %) — min(L u; - y;)l.

Forl<uy-xandl<u-y,wehaves =0. If1l <u - X, and 1> u; —y;, we see that
1-u +Yy; >0, and thatx <y;. Therefore we have that

S=1-U+yl=1-U+Yyi <U-X-U+Y=Y—X=IX-Vl
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and we also deduce by symmetry that |x; — yj| whenever 1> u, — x;, and 1< u; — y;. Finally,
if1 > u — X, and 1> u; — y;, we obtain that

O=1Iu—X—U+VYil=IX-VYil

Hence the functiorx — min(L u; — X) is unit Lipschitz continuous. The result for —
max(-1,1; — X) is obtained from the same arguments. Combining thesetsesith (4.38)
and (4.39), we obtain that bot{{x) andm(x) are also unit Lipschitz continuous.

Now definingd such thad = m(x) + r(x) o d whereo is the (Hadamard) component-wise
product, i.eXoy = [Xiy1,..., %Yn] ", We observe that the minimization problem (4.37) may
also be written as

gnax<—Vf(x), m(x) + r(x) o dy,
lldllo<1

whose solution is then analytically given by
X(X) = (=VE(x), m(x)) +[[VF(X) o r(x)ll.

Using this formula, we now show thg{x) is Lipschitz continuous iff. From the mean-value
theorem, we know that
VE(X) = VI(Y) + Gy (X = Y), (4.40)

where, from (4.32),

1
IGxyillcos = Il f V2E (X + t(y — X)) dtfleos < rr[mg;]qwzf(z)nw,l < K. (4.41)
0 zc

Hence, using(u,v)| < |lull/Vll., the inequalityjm(X)|l. < 1, (4.34) and the unit Lipschitz
continuity ofm(x), we obtain that

KV E(x), m(x)) — (VE(y), m(y))l
< KVE(X) = VE(y), m(x)) + (VE(y), m(x) — m(y))|
< (K + KX = Yleo-

In addition,

IVE(X) o r(X)lly — IVF(y) o r(y)lly
<|IVE(X) or(x) = VE(y) o r(y)lly
<|IVE(X) o (r(¥) = r()Il + I(VF(X) — VE(Y)) o r(y)lla

Using now the inequalityju o v||; < ||ull1/IVllw, We obtain froml|r(y)ll. < 1, (4.40) and (4.41)
that

I(VE) = VE(Y)) o r(WllL < IVE(X) = VEWIILIrWlleo < &ullX = Wil

and, similarly, from the unit Lipschitz continuity ofx), and (4.34), that

IVE(X) o (r(}) = r(Yll < IVFIlIF () = r(W)lleo < £4l1X = Yo
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(i-1,2)

(i-20)

i—-3

Figure 4.4:lllustration of some multilevel notations. The dashed aagle area contains a minimization se-
guence at leval- 2 initiated at iterationi(— 1, 1) and the solid line rectangle contaiRé — 1, 2).

Putting together the above results yields {pét) — x (V)| < 2(k + ko)X = Yileo- O

We now define some additional notation and concepts. We fimige the constarf > 1
such that
IPille <k forall i=1,...,r. (4.42)

If we choose to go to Step 2 (i.e. we choose to use the mipdeadt iteration {, k), we say that
this iteration initiates aminimization sequencat leveli — 1, which consists of all successive
iterationsat this level(starting from the poinki_;o = RXx) until a return is made to level
within iteration , k). In this case, we say that iterationk) is the predecessobnf the min-
imization sequence at level- 1. If (i — 1,¢) belongs to this minimization sequence, this is
written as (, k) = n(i — 1, ¢). We also denote byp,_; the index of the penultimate iterate in the
minimization sequenci_1, . . ., Xi—1.54» Xi-1..}. Note that (4.22) implies thal/;, C B; . To
each iterationi(k) at leveli, we now associate the set

R, K) € {(j, ¢) | iteration (j, £) occurs within iterationi(k)}.

This set always contains the pairk) and contains only that pair if a Taylor step is used at
iteration {, k). If we choose a recursive step, then it also contains ths pélevel and iteration
number of all iterations that occur in the potential recomsstarted in Step 2 and terminating
on return within iterationi(k), but it does not contain the pairs of indices correspontbrite
terminating iteratesj( ) of its internal minimization sequences. Itis easy to yahfatj < i for
everyj such that {, ¢) € R(i, k) for some non-negatideand(. Note also thaR(i, k) contains at
most one minimization sequence at levell, but may contain more than one at level2 and
below, since each iteration at level 1 may generate its own. Associated WRl(i, k), we also
define

76, K) €' ((j, 0) € R(i,K) | (j, €) is a Taylor iteratioh

The algorithm also ensures the following technical lemma.

Lemma 4.2.2 There exists aanin € (0, 1] such that, for each iteratio, k) # (i, =) (i.e., for all
iterates at level i but the last one),
Xik = Emin- (4.43)
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Proof. The inequality (4.28), which is the stopping criteria fomimization at levelj, in
Step 5 of the algorithm, implies that for all k) and all (j, ¢) € R(i, k),
Xit 2 € = KXn(j.t) 2 K€J+1—KX7r2(jt’) > >K)i(_in,kZ ZK)r(fr-

This proves (4.43) witlmin = min[1, « &]. O

We now prove the general version of the Gelman and Manddigtretating that “bound con-
straints are preserved” by the prolongation operator.

Lemma 4.2.3 The definitions (4.16)—(4.17) enforce the inclusion
Xk + Pi(X-1— Xi_10) € 77 forall xi_; € Fiy (4.44)
fori=1,...,r. Asaconsequencgxe ¥ foralli =0,...,rand allk> 0.

Proof. Fort = 1,...,n;, defineg;; = ”' 1I[Pi]¢;l and observe thag;; < ||Pill. for all
t. Consider now any_; € ¥i_; and the correspondlng lower level stgp; = X1 — Xi_10-
Then (4.16) and (4.17) imply that

Ni-1

[+ [PIyls 4l
j=1

Ni-1 Ni-1

=Dudi+ >0 IRlGIIsal) + ) IRIgls
i=1[Pi]tj<0 j=1[Pil;j>0
Ni-1 R Ni-1
(= mindxix — Iily) max[li — X
> . P . > P . i
> Dadit ) PII—— 5 =+ D I[Pl——
i=1[Pi]tj<0 j=1[Pi];j>0
Ni—1 Ni-1
[ — Xiklt [ — Xiklt
> Dudit ) PGS+ D Pl
j=L[Piltj<0 ||P ||00 j=L[Pi]y;>0 ||P ||00
[l = Xkl
> f s
> [Xiklt + i Pl
¢|t ( ¢it )
= il + {1 - ——][X%
=Rl gy D
> [li]t
where the last inequality results from the fact that]; > [li];. A similar reasoning gives that
Ni-1

[xdi + > [PIelsal < [l
j=1

for all t, thereby concluding the proof of (4.44). The feasibilityesery iterate with respect
to the level-dependent bound constraints then results fhenfact that all trial points at level
belong tof; by construction. O

We next show that the distance from all iterates in a singl@mrkzation sequence at levieto
the starting point of that sequence is bounded above by apteuif the trust-region radius at
the predecessor’s level.
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Lemma 4.2.4 The definitions (4.19)-(4.20) imply that, for< j <,
[IX = Xj ol < 2Axj0) (4.45)
forall x € £;.
Proof. Consider arx € L; C A;. If we now denote the bounds defining the Sgt o) by
Vier T max|Viu, Xe(io) — Ario€] and Wig S min[Wias, Xe(io) + Axo€l

we then verify that

Nj+1 Nj+1
[wj —vile = Z [Ri+a]w[Wijsa]u + Z [Risa]twlVislu
U=L[Rj+1]w>0 u=1[Rj;1]w<0
Nj+1 Nj+1
- Z [Rj+l]tu[\_/j+l]u - Z [Rj+l]tuV_Vj+1]u
u=1[Rj;+1]w>0 u=1[Rj;1]w<0
Nj+1 Nj+1
= Z [RialwlWii1 = Viea]u + Z [Ri+adwlVie1 — Wisalu
u=1[Rj+1]w>0 u=1[Rj41]w<0
def
= [R]+lz(t)]t9

where we have used (4.19) and (4.20), and wherd, #ot, . . ., nj,1,

[Z(t)]u = sIgN(Rj 1)) [Wjs1 — Vjsalu.

This last definition implies thalz(t)||. = [[Wj+1 — Vjsalle fort = 1,..., nj,1. Taking norms and
using the identity|R;.1ll = 1, we therefore obtain that

1w = Vijlleo max |[Rj.12(t)]l

max||Rj;12(t)llw

IA

4.46
< max/|z(t)lle (449

= W1 = Vjsilleo-
Remembering now the definition @f;,; andvj,,, we see that
Wis1 — Visallo = IMIN[Wji1, Xe(j0) + Ar(j0)€] — MaX[Vjs1, Xe(j0) — An(j0)€llleo
< IMiN{Wii1, Xx(j.0) + Ar(j0)€] = X2(j,0)lloo

+ [[Xe(j,0) — MAX[ Vi1, Xe(ji0) — An(;.0)€]llo

< ZAﬂ(j,o).
Combining now this bound with (4.46) and our assumption #atA;, we obtain that
[IX = Xjolleo < IWj = Vijlloo < 2Asj0)-

O

Our next proposition indicates that,Af x« becomes too small, then the method reduces, at level
i, to the standard trust-region method using Taylor’s iteretonly.
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Lemma 4.2.5 Assume that, for some iteratignk),

1 -
A< mln[l, Emin ps ] ' € (0,1), (4.47)

min
2K,

whereas ' mini—o__r A¥ Then no recursion occurs in iteratidin k) and R(i, k) = 7°(i,k) =

min — 1=V,

(@, k.

Proof. Assume thatiteration,(K) is recursive and that iteration{1, 0) exists. Since (4.47)
implies that 2 x < 1, we deduce from (4.45) (with= X_10+d € Li_1) thatL; 1 C {X_10+d|
ld|l. < 1} and thus that

Xi-10 =1 min  (Gi_10, d)| = KGi_1,0, di—1,0)| (4.48)
Xi—10+deLi_1
with
Idi—10ll < 2Ai. (4.49)

Using (4.47), (4.43), (4.48), the inequality, v)| < ||ull1llVll«, (4.34) and (4.49) successively,
we conclude that

Xi-1.0 = Kgi—1,0, 1.0l < 1Gi—10llalldi-10lle < 26,k

and thus that e A
€min _ Xi-10 gRik
< = < LA
- g, de, 2T
which is impossible. Hence our initial assumption thatatem ¢, k) is recursive cannot hold

and the proof is complete. O

This lemma essentially states that when the trust-regioarbes too small compared to the cur-
rent criticality level, then too little can be gained fronwer level iterations to allow recursion.
This has the following important consequence.

Lemma 4.2.6 Consider an iteratiorfi, k) for whichy;x > 0 and
Ajx < min [Kz, K3)(i,k] R (450)
wherex; is defined in (4.47) angk € (0, 1) is given by

Kiea(1 — 772)] .

k3 = min|1,
Ky

Then iteration(i, k) is very successful amti .1 > A .

Proof. Because of (4.47) and Lemma 4.2.5, we know that iteraiidq) (s a Taylor itera-
tion. Thus, using (4.29), and the definitiond®f in Step 3 of the algorithm,

)ﬁ,Ai,k] .

6i,k > KregXi k min |:1’
ik
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But, because,, € (0, 1) and thus.(1 — 12) < 1, and also because of (4.33) and the definition
of Bik, (4.50) implies that\; x < min [1, ;—E] and hence that

ik = KeoXi ki k- (4.51)
We now observe that the mean-value theorem, (4.23) and thtida of g; x ensure that

fi(Xik + Sk) — Mx(Xik + Sk) = Sk [V2Hi(Ex) — Hikl Sk

for someéix € [Xix Xix + Skl, and thus using (4.32), (4.33), the inequaliiy, v)| < |[ull1]Vlle
and the bounds k|l < Aix, we obtain that

1
Ifi(Xik + Sk) — M(Xik + Sl < E[ IV (€ illoo,t + Hiklloon TSI, < kaAZ.

Combining now (4.30), the definition oy, (4.50), (4.51) and this last inequality, we verify

that
fi(Xix + Sk) — Mi(Xix+ Sk < Ky

Oik KregXi k

Thus iteration i(, K) must be very successful and, because of (4.31), the teg& radius can-
not decrease. ]

loik— 1l < Aixk < 1-np.

This last result implies the following useful consequence.
Lemma 4.2.7 Each minimization sequence contains at least one suct¢é@ssétion.

Proof. This follows from the fact that unsuccessful iterationsseathe trust-region radius to
decrease, until (4.50) is eventually satisfied and a (verg¢essful iteration occurs because of
Lemma 4.2.6. O

The attentive reader will have noticed that the termjp, in the minimum defining: in (4.47)
has not been used in Lemma 4.2.5. This term is however ciindiaé following further conse-
qguence of (4.47).

Lemma 4.2.8 For every iteration(j, ¢), with j=0,...,rand¢ > 0, we have that
Aie > Amin € y1 minfka, k3] (4.52)
Proof. Suppose thatj(¢) is the first iteration such that
Aj ¢ < yrminfk, k3€j]. (4.53)
Sincey; < 1 andk, < A?;, we then obtain that

_ AS s s ;
Ajo = Aj > Anin Z Y18min Z 71 min[«a, K3EJ]’



84 Chapter 4. Recursive Multilevel Trust-Region Methods

and, because of (4.53), we have tiat 0. This in turn implies that\;, is computed using
Step 6 of the algorithm. But, the mechanism of the algoritmpases that;, > y1A;,_; an
thus (4.53) also yields that

Aj -1 < Minfky, kz€] < Minfko, K3xje-1],

where we have used the mechanism of the algorithm to dere/éat inequality. Hence, we
may apply Lemma 4.2.6 to conclude that iteratigs¥ - 1) is very successful and that, >
Aj¢-1. Thus, iteration |, £) cannot be the first such that (4.53) holds. This implies #&3) is
impossible, which completes the proof. |

We next show the crucial result that the algorithm is welliedi, and that all the recursions are
finite.

Theorem 4.2.9 The number of iterations in each level is finite. Moreoverghexistx, € (0, 1)
such that, for every minimization sequence at leveDi...,r and every t= 0,

fi(X.0) = fi(Xieen) = Tigd 2k,

t

wherert;; is the total number of successful Taylor iteration@R(i, €) andu = 11/ max With
=0

.....

Proof. We will show this by induction on the levels, starting fronvéé0. First, let us
definew;; as the number of successful Taylor iteration®{n t). Thus,

t
Tit = Z Wi .
=0

Note that, if iterationi( ¢) is successful, thew; , > 1.

Consider first a minimization sequence started at level @ a@sume without loss of gener-
ality, that it belongs t&R(r, k) for somek > 0. Every iteration in this minimization sequence has
to be a Taylor iteration, which implies that thefiscient decrease condition (4.29) is satisfied,
and in particular, for all successful iterations,

0,6

- X0,
fo(Xoe) = fo(Xor+1) = M1d0¢ = N1Kiegko,e MIN [1, Bor’ Ao,f]
Y

> Wo,M1Kreq€min MIN [1, ?, Amin]
H
where we used Lemma 4.2.8, (4.33), (4.43) and the faciudhat 1 for every successful iter-
ation (Q ¢), sinceR(0, ¢) = {(0, ¢)}. Since we know from Lemma 4.2.7 that every minimization
sequence has at least one successful iteration, we can stima rgoluctions obtained at level O,
which gives us

t (S
fo(X00) = fo(%0r1) = ) [folXar) = fo(Xare)] = Toumks > Tour, (4.54)

=0
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where the superscrip8] indicates that the sum is restricted to successful imatand where

def . €min
Kn = Kied€min MIN [1, _K » Amin
H

= Kyeg€min MIN [@ Amm] , (4.55)
Ky

where the last equality results from the inequaliigs < 1 andk, > 1. If r = 0, sincefy = f is
bounded below by assumption, then (4.54) implies tgats finite. If r > 0, fo is continuous,
and thus it is bounded below on the $rte IR™|||X — Xoolle < 2Ax}, @and againgo; has to
be finite. Sincery; accounts for all successful iterations in the minimizats@guence, we
obtain that there must be a last finite successful iterafippyj. For the purpose of obtaining
a contradiction, let us assume that the sequence is infifiten, all iterations (&) would
be unsuccessful fof > py, causingAq, to converge to zero, which is impossible in view of
Lemma 4.2.8. Hence, the minimization sequence is finite.SHmee reasoning may be applied
to every such sequence at level 0.

Now, consider an arbitrary minimization sequence at levathin R(r, k) for somek > 0,
and assume that each minimization sequence atilevels finite and also that each successful
iteration { — 1, u) in every minimization sequence at this lower level satssfie

fiia(Xiciw) = fia(Xicue) = wi—l,u,uiKh- (4.56)

Consider a successful iteration4), whose existence is ensured by Lemma 4.2.7. Ifitis a
Taylor iteration, we obtain that

fi(xi,f) - fi(xi,€+1) 2> MKy 2 ,Ui+1/<h = wi,fﬂi+lkh’ (4.57)

sincen;, € (0,1), omax > 1 andw;, = 1 for every successful Taylor iteration ). If, on the
other hand, iterationi (¢) uses Step 2, then we obtain that

fi(%e) = fi(Xieen) > % [fio1(%-10) — fia(X-1.)]

i
Pi-1 (S)

> U Z [fi—l(xi—l,u) - fi—1(Xi—l,u+l)] .
u=0

Sincewi, = Ti_1 ,, the definition ofri_;; and (4.56) give that

Pi-1
fi(%ie) = fi(Xiee1) = (' Z Wity = Tictp MK = Wit K (4.58)
u=0
Combining (4.57) and (4.58), we see that (4.56) again hdlvali instead of — 1. Moreover,

as above,
t (5

fixi0) = fitxen) = > (i) = filkien)] = 7ot ki, (4.59)
=0
for the minimization sequence including iterationf§. If i = r, fi = f is bounded below by
assumption and (4.59) imposes that the number of succetsfitions in this sequence must
again be finite. The same conclusion holds 4 r, sincef; is continuous and hence bounded
below on the sefx € IR"[||[X — X olle < 2A;x} Which containsx,; because of Lemma 4.2.4.
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As for level 0, we may then conclude that the number of iterei(both successful and unsuc-
cessful) in the minimization sequence is finite. Moreoveg, $ame reasoning holds for every
minimization sequence at leveland the induction is complete. O

Corollary 4.2.10 Assume that one knows a constag}y, such that f(x,) = f(X) > fio, for
every xe IR". Then Algorithm RMTR needs at most

" f(Xr,O) - fIow
e(emin)

successful Taylor iterations at any level to obtain an iterg such thafy, x < &, where

(4.60)

H

0(€) = 1 ke MIN [5, Y1 min [k, st]] : (4.61)
K

Proof. The desired bound directly follows from Theorem 4.2.9, $.54.52) and the
definition of eqp. O

This complexity result for general nonconvex problems msilgir to Corollary 3.8 in Gratton
et al. (2008), and may also be very pessimistic. It is of thmesarder as the corresponding
bound for the pure gradient method (see [49], page 29). Bhi®i surprising given that it is
based on the Cauchy condition, which itself results fronep 8t the steepest-descent direction.
Note that the bound is in terms of iteration numbers, and onpficitly accounts for the cost of
computing a Taylor step satisfying (4.29). As was the casthi®Euclidean norm, this suggests
several comments.

1. The bound (4.60) is expressed in terms of the number oessbd Taylor iterations, that
is successful iterations where the trial step is computddowi resorting to further re-
cursion. This provides an adequate measure of the lineabggfort for all successful
iterations, since successful iterations using the regcarsf Step 2 cost little beyond the
evaluation of the level-dependent objective function dadiadient. Moreover, the num-
ber of such iterations is, by construction, at most equalimes that of Taylor iterations
(in the worst case where each iteration at levieicludes a full recursion to level O with
a single successful iteration at each lejel 0). Hence the result shows that the number
of necessary successful iterations, all levels includedf order 1e? for small values of
e. This order is not qualitatively altered by the inclusioruoSuccessful iterations either,
provided we replace the very successful trust-region sadpdate (top case in (4.31)) by

Athk € [Aix, y3Aik] It pik =12,

for somey; > 1. Indeed, Lemma 4.2.8 imposes that the decrease in raduseda
by unsuccessful iterations must asymptotically be comgtedsby an increase at suc-
cessful ones. This is to say that,dfis the average number of unsuccessful iterations
per successful one at any level, then one must haveythdt > 1, and therefore that

a < —log(ys)/ log(y,). Thus the complexity bound in/&? for small e is only modified
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by a constant factor if all iterations (successful and uassful) are considered. This
therefore also gives a worst case upper bound on the numbdanction and gradient
evaluations.

2. Moreover, (4.60) involves the number of successful Tag&yationssummed up on all
levels(as a result of Theorem 4.2.9). Thus such successful vt cheap low lev-
els decrease the number of necessary expensive ones at leigkle, and the multilevel
algorithm requires (at least in the theoretical worst césegr Taylor iterations at the up-
per level than the single-level variant. This provides tk&oal backing for the practical
observation that the structure of multilevel bound-caaisgd optimization problems can
be used to advantage.

3. The definition ofd(e) in (4.61) is interesting in that it does not depend on thélenm
dimension, but rather on the properties of the problem onefaigorithm itself. Thus, if
we consider the case wherdfdrent levels correspond toftérent discretization meshes
and make the mild assumption tliaindk,, are uniformly bounded above, we deduce that
our complexity bound is mesh-independent.

A second important consequence of Theorem 4.2.9 is thatlgfugithm is globally conver-
gent, in the sense that, 4f is “driven to zero”, it generates a subsequence of iterdiasare
asymptotically first-order critical. More specifically, ve@amine the sequence of iterafes,}
generated as follows. We consider, at leveh sequence of tolerancgs;} € (0, 1) monoton-
ically converging to zero, start the algorithm with= ¢ o and alter slightly the mechanism of
Step 5 (at level only) to reduces from ¢ t0 € j,.1 as Soon ag, k1 < & j. The calculation
is then continued with this more stringent threshold untitialso attained¢’ is then again
reduced and so on.

Theorem 4.2.11Assume thag, is “driven to zero” in Algorithm RMTR.. Then
Iirlp inf yrx = 0. (4.62)

Proof. SinceA,,10 = o ensures thal’, = ¥, Lemma 4.2.3 implies that each successive
minimization at level can only stop at iteratiok if

Xrk+l < € j- (4-63)

Theorem 4.2.9 then implies that there are only finitely mamgcessful iterations between
two reductions ok;,. We therefore obtain that for eaeh; there is an arbitrarily largk such
that (4.63) holds. The desired result then follows immedyefrom our assumption that; ;}
converges to zero. O

Of course, the interest of this result is mostly theoretisadce most practical applications of
Algorithm RMTR,, consider a nonzero gradient tolerargce

Observe that our definition af in (4.28) implies that, ife; is driven to zero, then so is
& = K. As for the Euclidean case, and assuming the trust regioonhes asymptotically
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inactive at every level (as is most often the case in pragtezech minimization sequence in the
algorithm becomes infinite (as if it were initiated with aagradient threshold and an infinite
initial radius). Recursion to lower levels then remainsgpole for arbitrarily small gradients,
and may therefore occur arbitrarily far in the sequence exhites. Moreover, we may still
apply Theorem 4.2.11 at each level and deduce that, if tisé iegion becomes asymptotically
inactive,

”'I'(ninf)(i,k =0 (4.64)

foralli=0,...,r.

As is the case for single-level trust-region algorithms,ne would like to prove that the
limit inferior in (4.62) and (4.64) can be replaced by a trimeitl. This requires the notion of a
recursively successful iteratiolVe say that iterationj(¢) € R(i, K) is recursively successful for
(i, k) whenever iterationsj(¢), (j, 0), 7%(j, 0), ..., 7'7)(j, 0) = (i, k) are all successful. This is to
say that the decrease in the objective function obtaineti@tion (, £) effectively contributes
to the reduction obtained at iteratioink). We start by stating a result on the relative sizes of
the objective function decreases in the course of a re@iitgxation.

Lemma 4.2.12 Assume that some iteratidi, £) € R(i, k) is recursively successful fdr, k).
Then

fi(Xie) = fi(Xjee1) < Fi(Xj0) = F105) < /7 [ Hi(%ik) = Fi(Kigan) 1-

Proof. The first inequality immediately results from the monotaiof the sequence of
objective function values in a minimization sequence. Tavprthe second inequality, consider
iteration (j + 1,q) = n(j,0). Then

fj(Xj,O) - fj(Xj,*) = 0'j+15j+l,q < UIlO'max[ fj+l(Xj+1,q) - fj+1(Xj+1,q+l)]

where we used the definition 6f,1 4, the definition ofoma and the fact that iterationj & 1, g)
must be successful sincg () is recursively successful for, k). But this argument may now be
repeated at levgl+ 2,. . ., 1, yielding the desired bound, given that r;/0max < 1. O

This lemma then allows us to express a simple relation betwiee size of Taylor steps at
recursively successful iterations and the associatedtivgedecrease.

Lemma 4.2.13 Assume that the Taylor iteratiof], £) € R(i, k) is recursively successful for
(i, k) and that, for some < (0, 1),

Xt = € (4.65)
and ,
fi(XiK) = fi(Xike1) < % (4.66)
Then
IXj.e = Xjeralleo < [ fi(Xje) = fi(Xjesn) I (4.67)

Kredl]1€
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Proof. We know from (4.29), (4.33), (4.65) and the successful maddiiteration (, ¢) that

fi(Xje) = fi(Xje1) = Mikeeskje min[)i_jj,Aj,t’, 1]

\%

MikeesE MIN [, A, 1 (4.68)

[ €
M1Kieq€ MIN [E’ Aj,(’]

where we used (4.33) and the inequakty: 1 to deduce the last equality. But Lemma 4.2.12
gives that

IA

fi(Xj.e) = fj(Xje41) WA i) = fi(Xiken) ]

w6k — fi(Kiken) ]

nlkrede2

Ky °
where we used (4.66) to deduce the last inequality. Henceeed¢hst only the second term in
the last minimum of (4.68) can be active, which gives that

IA

IA

fi(Xje) = Tj(Xjr41) = N1Kies€A |-
We then obtain (4.67) from the observation that,1 = X;, + Sjr € W, C Bj,. O
We next prove the following useful technical lemma.
Lemma 4.2.14 Assume that a minimization sequence at le@l 5 j < r) is such that
X0 2 €ncr (4.69)
for someg,, € (0, 1), but also that
ISjclleo < ner [ Fi(Xie) = F(Xje42) ] (4.70)

for somexne; > 0 as long as iteratior(, £) is successful ang;, > ien;. Assume finally that

€Encr
fi(X0) — fj(X;.) < > < (4.71)

nerKL

Theny, > ien and (4.70) holds for all > 0.
Proof. Assume that there exists a (first) successful iteratjps) uch that
Xis < 3€ncr, (4.72)

which implies thatyj, > i€, forall 0 < £ < s. We now use (4.70) and the triangle inequality,
and sum on all successful iterations (at lepgrom 0 tos— 1, yielding

s-1

1Xj0 = Xjslloo < Z SNIxi e — Xjevalleo < kner[ Fj(Xi0) = Fi(Xi.9) 1. (4.73)
=0
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Applying now Lemma 4.2.1, the monotonicity df within the minimization sequence, the
boundn; < n, and (4.71), we obtain from (4.73) that

KncrKL [ 1:j(xj,O) - fj(xj,s)]

IA

l¥io— Xijsl
< KnerkL [ 1:j(xj,O) - fj(xj,*)]
< %éncr

But this last inequality is impossible since we know fron6@).and (4.72) thagjo—xjs > Léncr
Hence our assumption (4.72) is itself impossible and weiolbtet, for allf > 0, yj, > ienc
This and the lemma’s assumptions then ensure that (4. 7®halds for allj > O. |

We now consider the case of recursive iterations.

Lemma 4.2.15 Assume that, for some recursive successful itergtida,
Xik = €si (4.74)

and ke

2KrsiKL
for somegs; € (0, 1) and somes; > 0. Assume also that

IS—1elleo < Krsi [ fica(Xic1e) = fima(Xicve41) ] (4.76)

for all (recursively) successful iterations in the miniatibn sequence initiated at levetil by
iteration (i, k) as long as

fi(Xik) = fi(Xike1) < (4.75)

Xi-1¢ 2 3Ky Ersi-
Then
ISudleo < 1 kokrsi [ fi(Xia) = fi(Xiner) 1.
Proof. Consider the minimization sequence initiated at Ievélby iteration {, k). Because
of (4.27) and (4.74), we have that.o > «,&s. We may now apply Lemma 4.2.14 with, =
Ky &si aNdkner = Kisi, given that (4.75) ensures (4.71). As a result, we know¢hat > ik, €si

and (4.76) hold for all successful iterations-(1, ¢) (¢ > 0). Using the triangle inequality and
summing on all successful iterations at levell, we find that

Pi-1
[1Xi-1,0 = Xi—1slloo < Z (S)”Xi—l,f — Xi—14lloo < Kisi[ fima(Xic10) = fica(Xi-1.) ]
£=0

This inequality, the definition oy, (4.42) and Lemma 4.2.12 in turn imply that
ISkl < 1IPillolXi-1,0 = Xi-1,lle0

IA

Kekisi [ fi-1(Xi—1.0) — fica(Xi—1.4) ]

IA

1 kekrsi [ fi(Xik) — fi(Xiken) ]-
O

Our next step is to consider the cumulativieet of all the complete recursion for an iteration
at the finest level.
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Lemma 4.2.16 Assume that, for some successful iterafigi) (k > 0),

Xrk = € (4.77)
and (Ve
Kea(1k,) €
(0 = FOter) < T (4.78)
L
for somee € (0,1). Then
ISkl < Kacel f(Xrk) = F(Xrken) 1. (4.79)

where

]
aee M Krednl(%K)()rE.

Proof. Assume that (4.77) and (4.78) hold at the successful iterdtj k) and consider the
subset of iterations given I39(r, k). If (r, k) is a Taylor iteration, the®(r, k) = {(r,k)} and the
desired result follows from Lemma 4.2.13 and the inequality

1

Kred]1€

< Kace

If iteration (r, k) is recursive, consider a minimization sequence contgiaimecursively suc-
cessful iteration forr( k) at the deepest possible levelfr, k). Let the index of this deepest
level bed and note that every successful iteration in this minim@asequence must be recur-
sively successful forr(k). We will now prove the result by induction on the levels,ird + 1
up tor. First, let d + 1, g) = n(d, 0) and assume that

xag = (36) 4 e, (4.80)

which gives, in view of (4.27), thatgo > (3)4 '« €. Each (recursively) successful it-
eration of our deepest minimization sequence must thus baykrTiteration. Because of
Lemma 4.2.13, we then obtain that, as long@as> (ix,) % and iteration g, ¢) is successful,
we have that

ISa.clloo = Xde = Xd+1lleo < [ fa(Xa,e) = fa(Xaes1) I

KeedT1 (3K ) "€

We could then apply Lemma 4.2.15 for iteratiah 1, ) = n(d, 0) with
1

KeedT1 (3K, ) ~d€”

if (4.75) holds. But note that Lemma 4.2.12 implies that

r—d-1
Ersi = (%KX) € and Krsi =

fd+l(xd+l,q) - fd+l(xd+1,q+l) < 'ud+l—r [ f(Xr,k) - f(Xr,k+l)]

which in turn gives (4.75) in view of (4.78), as desired. A®ault of Lemma 4.2.15, we then
deduce that

IA

||Sd+l,q||oo ,U_lKPKrsi [ fd+1(Xd+1,q) - 1:d+l(xd+l,q+1)]

K 1
= 1) oya [Hena(ag) = faa(Xarie) 1
(,U)Kredm(%,(x)r—dg[ ar1(Xar1q) — far1(Xar1g+1) ]



92 Chapter 4. Recursive Multilevel Trust-Region Methods

Consider now a minimization sequence at leyeduch thatd < j < r, and such that this
minimization sequence belongs®gr, k). Then define [+ 1,t) = n(j,0) and assume, in line
with (4.80), thafyj,1¢ > (3x,)I"te which yields in particular thag;o > (3)i"'kle. Assume now
that

Xit 2 (%K)()jf,

that iteration (, ¢) is (recursively) successful, and that

syl < (ﬁ)j — 040 - ()]

j,{llco = L Krednl(%KX)jf J\AL J\AL+1) 1-

Applying Lemma 4.2.12 and using (4.78), we may then apply toad.2.15 for iterationj(+
1,t), with .

(k)€ and ()’ L

&si = (3K € Ksi=|—| ————.

ISl 2™) Isi ,Ll Kred)]l(%KX)JE

This ensures that

IA

ﬂ_lkpkrsi [ fj+l(Xj+l,t) - fj+l(Xj+l,t+l)]

j+1
— (%) 1 (X o (x:
- (ﬁp) Kredﬂl(%KX)jE [ fj+l(xj+l,t) - fj+l(xj+l,t+l)]-

The induction is then completed, and the desired resutiiaisinced < j <r. ]

IISj+1.tlloo

We finally prove the main result.
Theorem 4.2.17 Assume tha; is “driven to zero” in Algorithm RMTR,. Then
I!im Xr’k = O.

Proof. As in Theorem 4.2.11, we identify our sequence of iterateh thiat generated by
considering a sequence of toleran¢gsg} € (0, 1) monotonically converging to zero. We start
our proof by observing that the monotonic nature of the seceief (X..,)}-0 and the fact that
f(x) is bounded below impose that

f(Xk) = F(Xr k1) = O
for all successful iterations, (k). Assume now, for the purpose of deriving a contradictibat t

limsupy,x > 3e >0 (4.81)

k— oo

for somee € (0, 1) and consider & > 0 such thaj.x, > 2e and such that both (4.78) and

f(%K) = F(Xkea) < (4.82)

KacckL Ny

hold for allk > ky. Without loss of generality, we may assume that the minitromssequence
at levelr starts at iteratiohy. But Lemma 4.2.16 ensures that (4.79) holds for each suctess
iteration ¢, k) (k > ko) as long as (4.77) holds. We may therefore apply Lemma 4\&ittv}

€ncr = 26 and Kner = Kace
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to the (truncated) minimization sequence at lavahd deduce that (4.82) implies (4.71) and
that (4.77) holds for ak > kg, which is impossible in view of Theorem 4.2.11. Hence (4i81)
impossible and our proof complete. O

Theorem 4.2.17 implies, in particular, that any limit paafthe infinite sequencex; k} is first-
order critical for problem (4.13). But we may draw strongendusions: if we additionally
assume that the trust region becomes asymptotically ueaati all levels, then, as explained
above, each minimization sequence in the algorithm becanfiege, and we may apply The-
orem 4.2.17 to each of them, concluding that

lim Xik = 0
k—oo”

for everylevel = 0, ..., r. The behavior of Algorithm RMTR is therefore truly coherent with
its multilevel formulation, since the same convergencalte$iold for each level.

The convergence results at the upper level aréfaoied if minimization sequences at lower
levels are “prematurely” terminated, provided each sudusece contains at least one success-
ful iteration. Indeed, none of the proofs depends on theahstiopping criterion used. Thus,
one might think of stopping a minimization sequence afteresgt number of successful iter-
ations: in combination with the freedom left at Step 1 to dethe model whenever (4.27)
holds, this strategy allows a straightforward implemeataof fixed lower-iterations patterns,
like the V- or W-cycles in multigrid methods.

Our theory also remains essentially unchanged if we mensigti on first-order coherence
(i.e., (4.25)) to hold only for small enough trust-regiodira; x, or only up to a perturbation of
the order ofA;  or ||gikl|Ai k- Other generalizations may be possible. Similarly, algiowe have
assumed for motivation purposes that e§eh “more costly” to minimize thar;_,, we have not
used this feature in the theory presented above, nor havesedetbe form of the lower levels’
objective functions. Nonconstant prolongation and rettm operators of the forni;(X x)
and Ri(xx) may also be considered, provided the singular values cfetloperators remain
uniformly bounded. We refer the reader to Gratton et al. @B discussion of convergence
properties of multilevel trust-region methods to secordko critical points.

4.3 Practical Implementation

The ¢, version of the RMTR method has been successfully implendeintehe Fortran
programming language, yielding a very powerful method lier $olution of large-scale uncon-
strained and bound-constrained optimization problemghigh it has not been done by this
author, we feel it is important to motivate our results by traring the excellent numerical ex-
periments obtained with this method. The reader is refauésratton et al. [26] and Tomanos
[65] for the complete results and details on the practicadl@mentation. In this implementa-
tion, the method is slightly modified from Algorithm 4.2.1 this case, when we have reached
the lowest level (that is, the number of variables is very)lome can apply any of the methods
mentioned in Chapter 3; in particular, the (Projected) Tatad Conjugate Gradient method
can be very flicient (see Conn et al., [8] and [9]).
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At finer levels { > 0), an adaptation of smoothing techniques (such as the caridsl
method, described in Section 2.3.2 on Chapter 2) to has bedsed that generates a step
which satisfies the dficient decrease condition (4.29). Here, this method pracbgducces-
sively minimizing the model (4.23) along each coordinatesaxaking into account the bound
constraints on the problem, provided that the curvaturdisfrnodel along each axis is posi-
tive. Itis, in essence, an adaptation of the Sequential @oate Minimization method (SCM)
to bound-constrained problems (see, for example, Ortegd&arinboldt [52] for a description
of this method).

Thus, consider the minimization of model (4.23) along ftheaxis starting frons such that
vmix(Xik + 9) o g. If the jth diagonal entry oH; is positive, this minimization results in
updating

B : —[g];
aj = Pro;Wi,k ([Hi’k]” ) , (4.83)
[slj = [8]j+a; | (4.84)
[dl; = [d];+ Olei,kq“], (4.85)

where Proj,, () is the orthogonal projection on the intersection of all tbestraints at level
and where we denote by] the jth component of vector and [M];; the jth diagonal entry of
matrix M, and where%”] is the jth vector of the canonical basis of IR

On the other hand, ifH;];; < O, then we take a step along ti coordinate direction
which intersects the boundary of tH#;x and update the gradient of the model. We refer to
each set ofy successive coordinate minimizations asw@oothing cycleand a sequence of one
or more cycles definessamoothing iteration

In order to guarantee that the step computed by one or morechf gy/cles satisfies the
suficient model decrease condition, we must start the first smaogtcycle by selecting the
jmth axis, where

jm = arg_min[gi,k]j[di’k]j, (486)
J
where
dix = argmin{g, d). (4.87)
X k+deL
o<1

By doing this, the minimization of this model is guaranteedield a generalized Cauchy step
such as the one described in Section 1.4.1.1, Chapter 1pas $h the following result, which
appears in Gratton et al. [26]:

Theorem 4.3.1 Assume that the first unidimensional minimization in the §nsoothing cycle
at iteration(i, k) is performed along theth coordinate axis, whereyjis determined by (4.86)
and (4.87), and results in a step sizg,. Then, (4.29) holds for,g = a,-mel“m].

Figure 4.5 shows the performance profile obtained by Grattoal. [26] with this new
method.

It is clear this method is an excellent alternative to cleedrust-region methods in a large-
scale context, and a practical implementation in Fortrandkided in the most recent version
of the GALAHAD library of nonlinear solvers (see Gould et [@2]).
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Figure 4.5: The performance profile shows the results obthiior 4 versions of the algorithm.

The All-on-Finest version (equivalent to the classicabktrtegion method) is denoted by AF.
The Multigrid-on-Finest version, where we start the regofuof the problem in the finest

level, and from then on use the multilevel strategy just dbed, is denoted by MF. The Mesh
Refinement version is equivalent to the technique describ&thapter 2, where the resolution
of the problem starts at the lowest level, and we do not usarse® steps in the algorithm.

It is denoted by MR. Finally, the Full Multigrid version, deted by FM, can be seen as the
combination of the Mesh Refinement and Multigrid-on-Firteshniques.
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4.4 Conclusions

We have presented a variant of the recursive multilevel RMIgrithm for unconstrained
nonlinear optimization that appears to have advantagestbeeoriginal method in terms of
computational costs and flexibility. The use of the infinigrm (as opposed to the Euclidean
norm used in the original algorithm) removes the need fotlg@seconditioning of the trust-
region and adapts very naturally to bound constrained probl However, and despite the
conceptual similarity between RMTR and the new algorithmejrt convergence theories dif-
fer significantly. Fortunately, the same strong global @gence results can be proved (with
somewhat simpler arguments) for the new algorithm, whickesd very attractive for practical
use.



Chapter 5

Multilevel Derivative-Free Optimization

In unconstrained optimization, one of the problems that @wge in the implementation
of a practical algorithm is the fliculty in computing the derivatives of the objective funatio
Indeed, in many applications, these derivatives may beailadole or very costly, for example,
if they are the result of an actual simulation or the solugbanother complicated problem. This
is typically the case in problems where the objective fuorctian only be obtained by a “black
box” procedure, and there is no information available fa domputation of its derivatives.
In this case, one is interested in algorithms that do notiredbe derivatives of the objective
function. These methods belong to a class called Derivdiree Optimization (DFO).

Here, we are interested in solving the unconstrained opétian problem (1.1), but we
assume that although the first and second derivativéseafst, they are unavailable.

Several methods have been proposed to solve this classleprs. These methods can
be divided into three distinct classes. First, there arsdhbat seek to simulate the deriva-
tives of the function, either by approximation, for exampiefinite differences (see Gill et al.
[19], Dennis and Schnabel [14] and Nocedal and Wright [S@pyautomatic dierentiation
procedures (see Griewank and Corliss [28] and Griewankff#7 survey on the subject).

Another class of methods is based on sampling, that is, @sgd on available information
obtained by the computation of the objective function in peEnpoints inside the region where
we must minimize the objective function. Important examspéthis class of methods include
the Nelder-Mead Algorithm (Nelder and Mead [48]) and, mareently, Pattern Search and
Generalized Pattern Search methods (see, for example,0rof66]).

Our interest here, however, isimodel-base@pproaches, that is, methods in which we try
to approximate the objective function usingarrogatemodel, and expecting this model to
simulate the behavior of the objective function in a regioouad each iterate. Among these
methods, we focus more precisely on the ones based on ¢gistarapproaches, for example
those of Powell ([53], [54], [57], [58], [59]), and those ob@n and Toint [7], and Conn et al.
([20], [11]). In these methods, the Taylor model is replalbgé more general quadratic model,
which consists, at each iteration, in a model of the objectunction built using quadratic
interpolation on a set of sampled points contained in a regiound the current iterate.

The main drawback of this type of method is that it tends todrg glow and cost too many
function evaluations in problems with a large number of alales. In fact, most derivative-
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free methods available today are not able to solve a problémmore than a few hundred
variables. In this chapter, we aim to present a new algorithmunconstrained derivative-
free optimization that is also based on trust-region tegpies, while exploring some of the
multilevel ideas presented earlier in this thesis, in otdemprove on the performance of this
method.

This chapter is organized as follows. In Section 5.1, welwifly describe the ideas behind
the derivative-free trust-region algorithm. Then, in $&t6.2 we will discuss a possible multi-
level implementation of this algorithm. Finally, in Sectib.3 we will present some preliminary
results that, we hope, will show the relevance of this newlemgntation.

5.1 Derivative-Free Trust-Region Optimization

As we have seen previously, when solving the unconstrainedmzation problem (1.1)
by using a trust-region method, we must build, at each itamaa model that can be minimized
inside the trust region, so that we can compute a step. Wieegrddient and Hessian 6fare
not available, we can still build a quadratic model thatrptdates the objective function in a
set of points chosen around the current iterate.

More formally, starting from a given poigb = x¢ (which we will call thebase poinfor the
interpolation set), we choose a setmf= p + 1 points

Yk = {y07 yl’ e ,Yp},

and try to define a quadratic modglsuch that

ak(y;) = f(yj)s forj=0,..,p. (5.1)

p+1:1+n+%n(n+1):%(n+l)(n+2)d§ff)+1’

then a quadratic interpolation functiap can be entirely determined by the equations (5.1),
with

ak(X) = F(X) + (G, X = X0 + (X = X, H(X = X)), (5.2)
wheregy € IR" andHx € IR™" is symmetric. This model can then be minimized inside a
trust-region framework in order to generate the next ieefat the method.

5.1.1 Interpolation model

Let us drop the iteration indices for the sake of simplicity how, definingg = g as the
guadratic model we are trying to determine. In order to aeiee g = g« andH = Hy, suppose
that we have a basi{s;pi}iio for the space of quadratic functions from"I®® IR. Then, any
guadratic function in this space can be written as a linearaoation of these basis functions,
i.e.

p
q(x) = Z ai¢i(X),
i—0
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whereq; € Rforalli =0,..., p. Thus, from (5.1), we must have that

p
fy) =) adily),  forj=0,....p. (5.3)
i=0

This is a linear system in the ciieientsa;,i = 0,. .., p which is nonsingular if and only if the
determinant

$o(Yo) -+ #p(Yo)

S(Y) = det (5.4)

$o(Yp) - &p(Yp)
is nonzero. In this case, we say that the set of interpolgdgmntsY = {yj,...,Y,} is poised
which means that the quadratic interpolation polynomiisl uniquely determined by the inter-
polation conditions (5.1).

The notion of poisedness is very important in the definitiba derivative-free optimization
method, since it is usually not ficient to have a complete set of interpolation points. Ingdeed
these points must satisfy someometryequirement, so that the interpolation function obtained
with these points represents well the objective function.

5.1.2 Basis Functions

There are several possible choices for the definition of EtE'esl{x/)i}ip:O of quadratic poly-
nomial functions that we can use in order to interpolate thjeaiive function in a given set of
interpolation pointsy.

One classical choice is to use thagrange polynomialsvhich satisfy the relationship

def [ 1 ifi=], _

Li(y;) = 6i; = ., forally;eY, fori=0,...,p.

i(yj) = dij { 0 otherwise Yi € P
The Lagrange interpolation polynomials are, however, hetdnly choice possible. Another
possibility that has proven to be extremefii@ent is that oNewton Fundamental Polynomials

Suppose that we want to build a model of degdee 2, and that we have + 1 points.
Suppose also that we can organize these poirdsHi blocks, such that

via — i lﬁml}, (¢=0,1,2),

where thef/—th block contains

t

points. To each poiry].["] e Y corresponds a singhdewton Fundamental Polynomiafl degree
¢ satisfying
Ni[[] (y[lm]) = 5ij5t’m for all y[lm] € Y[m] withm< ¢.

The main advantage of these polynomials is that they are e&sy to compute. In fact, the
procedure that builds these polynomials can be seen as aS&ehmidt orthogonalization pro-
cedure applied to the initial polynomial basis (usually s as the monomial basis) with
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respect to the inner product defined in this space as

(P.Q) = ) PY)Q().

yeY

This procedure is presented in Algorithm 5.1.1.

Algorithm 5.1.1: Newton Fundamental Polynomial Basis Comptation

Step 0: Initialization. SettheN,i=1,...,|Yl9],¢ = 0,1, 2 to the chosen initial polyno-
mial basis. Se¥iemp = 0.

Step 1: Loop over the polynomials.For¢ =0,1,2 andi = 1, ...,|Yl]],

e Choose somgt? € Y \ Yiemp such thatNI () # 0; if no suchy!? exists
INY \ Yiemp resety = Yeemp and stop prematurely with an incomplete Newton
polynomial basis.

e Update the interpolation set Bemp = YeempU (Y7}

e Normalize the current polynomial by
Ni[f] (X)
Ni[f] (yi[fl)

e Update all Newton polynomials in blogkand above by

N (x) =

NB(x) = NI (x) - NN (x),

forj=21,..,IYM| m=¢¢+1,...,d,i #].

Now, we must build a polynomial interpolant for our objeetifiunction using the polyno-
mials obtained by this procedure. This is done by a procethateuses so-callegeneralized
finite differencesdefined recursively by

2090 = (%)

Yt
() 2= AEINF(), for £=0,1. &9
i=1

With this definition, Theorem 5.1.1 shows how we can buildiaterpolation model.

Theorem 5.1.1 Suppose that the Newton fundamental polynomigl]ixy are defined for =
0,1,2andi=1,...,|Y!]. Then,

2 |YV”

a0 = > > AN (5.6)

=0 i=1
is well defined and satisfies the interpolation condition&)5
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Although they seem reasonable, definitions (5.5) and (2&)It in a very slow and inef-
ficient procedure. Fortunately, we can devise a mdiieient procedure, described in Algo-
rithm 5.1.2.

Algorithm 5.1.2: Generalized Finite Differences Computation

Step 0: Initialization. Fori=1,...,[Y9and¢ = 0,1,2, seti;, = f(y}Y).

Step 1: Consider the blocks by increasing indexFork = 1, 2, compute successively

[yt=1])

Aig =i~ Z /lj,k—lNJ[k_l](Yi[[])’
=

fori=1,...,|Yl9and¢ = 0,1, 2.

5.1.3 Model computation and Algorithm

Another advantage of the Newton fundamental polynomiatisasthe determinant (5.4) is
never computed directly in order to check for poisednesdadty since we will divide every
polynomial in the basis by[(y!1), which we call apivot, we must check if this quantity
is positive enough. On the other hand, if there i@ & 0 such that, for alf = 0,1,2 and
i=1,...,]Y0,

INI )| > o, (5.7)
then it is possible to show thatis poised (see Sauer and Xu [61], for example, or Theorem
9.4.2, p. 330 in Conn et al. [12]). Thus, checking for poisesinis automatic and we do not
need to do any additional computations in order to do thieind or more of these pivots are
too small, then the algorithm stops and the interpolatioml@h@s not complete; however, the
resulting incomplete model is poised, even if the origirehvgas not. Moreover, we can obtain
an estimate for the interpolation error in this case. Fa,tlve must ensure that the model is
adequaten a certain regiom®(s), which is a hypersphere of radigs> 0; this means that

e The model is at least fully linear, that|¥¢] > n+ 1;

e YyeQ(0), forallye;

o NG < i =1, Y1) = 1. YT £ = 0,1
o INB(X)| <k, fori=1,..., 1Y) xeQ@), withky > 1.

This test is essential in the algorithm, in that it guarasitibe accuracy of the interpolated
gradient and thus of the criticality measure used as a stgppie. Furthermore, it allows us to
prove (see Theorem 9.4.4 in p. 333 on Conn et al. [12]) that

IT(X) — o(X)| < k max[p?, 57,
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for all x € Q(6) and some constart> 0 independent dk.

Now, once the interpolation model has been built, we mustprdea step using one of
the many algorithms available for the solution of the tnegion subproblem, for example,
the Moré-Sorensen method or the Truncated Conjugate-&radigorithm, described in Sec-
tions 3.1.1 and 1.3.3 in Chapter 3. When the step has beenutedypve compute the new
function value at the new poin + s, and if the ratio

m:fm%WW+%
k(X)) — QX + S
is greater than a constantlrg > 0, the step is accepted as the new iterate. Otherwise, fhe ste
is rejected and we will possibly decrease the trust-readius in order to compute a new step.

In both cases, we must decide how to include these new pairitsei interpolation set.
Indeed, since we are looking to use as many points as possitden our interpolation model,
while evaluating the objective function as little as pobksilsince the value of has already
been computed in both cases, it might be useful to inclugepbints in the interpolation set,
either if it is not yet complete, or if including this point place of another would improve on
the poisedness of.

If the step is accepted, then the new iteratg = X + Sc must be chosen as the base point
for the new interpolation set. In this case, we include the iterate on the set directly and
recompute the Newton fundamental polynomials if the setgsinplete. If the set is already
complete, we must decide which point to drop in order to idelthe new one. Since we
have seen that the pivots in Algorithm 5.1.1 indicate thdityuaf the interpolation set, one
possible choice is to drop the poiyff] which gives the smallest pivot in the interpolation set,
that is

INFI YD) = min [NU AT, (5.8)
I ! t=0,1,2 J J

If the stepxx+ s« is rejected, we should also check if including it in the iptation set improves
on the geometry o¥. Thus, we will look fory!”! that satisfies (5.8), and we will check if the
replacement is worthwhile, by computing the ratio

INFI (3 + S0l
INYT (yi)

If this is larger than some predefined constar{for examplegc; = 2), we can decide to replace
yi9 with x + s and continue with our algorithm. This strategy has also lisrussed in [10].

Another point which we must discuss is that of geometry inapneents on the interpolation
set. Indeed, if on a given iteration the interpolation madeiot adequaten Q(5), we might
choose to improve on the geometryYoby replacing some of its points by new ones. Again,
the strategies vary, but one must, firstly, make sureytla®(5), for all y € Y. Thus, all points
y; such that

Iy = Yoll2 > &

are removed from the interpolation set. Additionally, oneld choose to eliminate points for
which the pivots are too small, that i’ such that

INFT )] < 28,
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wherec, > 0 is some predefined constant.
Once we have done this, we must include new points in the setier to make it (at least)
fully linear. One possible strategy is to replace eﬁ@hemoved from the interpolation set with

= arg max|N(x)|.
ys = arg maxiNg ()|

By doing this, it is possible to show that in a finite number o€ls improvement steps are
guaranteed to make the model valid in a regi@(@). This can be found in Conn et al. [10],
along with the global convergence theory for this type oftrods.

We present in Algorithm 5.1.3 on page 104 a basic derivdtime-trust-region algorithm.
The constants

O<mo<m<1l O0<yp<y1 <1<y g>0andu>1

are given.

5.1.4 Extensions

In order to be able to treat larger problems, one could makeotithe sparse structure of
the problem to be solved. In particular, in discretized pgots, this structure is usually well
defined, in that we know the sparsity pattern of the given ldessin this case, there is a
symmetric index set defined as

S={G, )L <i,j<nand(d? v2f(x)lly = O¥x e IR"}.

In this case, as has been shown by Colson and Toint [5], itng agvantageous to eliminate
from the initial monomial basis functions those polynomiebrresponding to pairs in the set
S, that is, those of the typgx;, for all (i, j) € S. This results in a partial basis of Newton
Fundamental Polynomials, which results in much less coatjmutal étort in order to compute
the interpolation model.

Another very useful strategy can be used when the functidretminimized ispartially
separablewhich means it can be written as

M
09 = > iU, (5.9)
i=1
where each; is called anelement functionvhich depends on the so calledernal variables
Uix, with U; an; x n matrix, and where usually is much smaller than. This decomposition
has been introduced by Griewank and Toint [80].
Now, since we havéM functions that define the objective functidnwe might choose to
interpolate this functiorf by interpolating eacH;, using diferent interpolation set¥;, and
building M different quadratic models

1
Oik(X +8) = fi(X) + (i, S + §<s, Hixs),

@In particular, it has been shown in Griewank and Toint [28ltvery twice-continuously fierentiable func-
tion with a sparse Hessian is partially separable.



104

Chapter 5. Multilevel Derivative-Free Optimization

Algorithm 5.1.3: Basic DFO Algorithm

Step O: Initialization. Given X, and f(xp), choose an interpolation s¥§ containingx
with p+1 (1 < p < p) points. Choose an initial trust-region raditig and sek = 0.

Step 1: Model and Step Computation.

1.a: Model Computation. Settingy, = X, build a modelgc(x + s) of the
form (5.2), usingYx and such that the interpolation conditions (5.1) are sat-
isfied.

1.b: Criticality test. If ||gill < €, test if gx can be improved (i.e. madealid) in

some regior®(6) for somes > 0, possibly increasintyy|, and return to Step|

1l.a. If the model cannot be further improved, return withuoh x* = X
Otherwise, go to Step 1.c.

1.c: Step Computation. Compute a step, such that

O(X + S) = min ge(X« + 9).

lIs|<Ak

Computef (X + s) and

def f(%) — F(X+ )
“7 (%) — k0% + S

Step 2: Interpolation set update. If px > 1, definexg,1 = X + Sc and includex,; in the
interpolation sety, replacing one of the existing pointspf= p and defingy = px.
Else, try to include + s¢ in Y. If this is not possible, try to improve the geomet

M
of the interpolation set. If new points are added to the pukation set, defing € Y,
such thatf (§) = miny, f(y). Compute

N (CO ()
O(%c) — k(X + S0)°
Step 3: Trust-region radius update. Set

[Ax, Y2Ak) if Pk >m1,
Aki1 = [vohw v1A] if o < npandYy is valid,
Ak otherwise.

Incrementk by 1 and go to Step 1.

where eacly;, k € IR™ andH;y is a matrix in IR, Thus, each modej; x approximates;
around theprojectionof x, into R, defined byU; X.

Once allM modelsq x have been computed, we will buitgk andHy from the partialg; «
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andH;, ultimately building a complete model of the form

M
1
QX + §) = ; G+ 9 = F(X) + (G 9 + 5(s Ho.

This model can then be minimized inside the trust-regiod, the method can proceed as de-
scribed in the previous section.

However, since we must manalyeseparate interpolation sets, it is not clear how to do the
model improvement described in the previous section. Itiquaar, while adding new points
to each interpolation set, these new points will be vectbng components, and it is unclear
which values to assign to the remaining n; components of this vector.

One alternative that has been discussed by Colson and Bjiigt fhe CPR procedure by
Curtis et al. [13], which has been adapted by Powell and T60jtto estimate sparse Hessians.
For this, assume that we can writd/ax M matrix D which contains

4 - 1, ifthe functionf; depends ox;
! 0, otherwise.

wherei = 1,...,M andj = 1,...,n. At iterationk, we define a sekL of all indicesi €
[1,...,M] such that a geometry improvement is requested forYget If Ly # 0, we can
partition the columns oD into subsets containing columns associated with indiviflurections
whose index sets have an empty intersection. That is, inemgubseL, ., we find columns for
which the associated individual functions do not share ammominternal variablé&J; x.

One procedure that can be used to generate these partitithe @olumns ofD can be
described as follows. Consideg = {i4,...,Ii.}.

e Create a groufpy; = {i1}.

e Check if fi, and f;, do not depend on the same variables. If this is the casedeciun
Ly1. Otherwise, create a new groups.

e Consider all other indices ihy, repeating the procedure until all indices have been in-
cluded in either an old subset, or a new one.

This procedure is referred to as theedyapproach. Other more sophisticated techniques can
be used, such as the graph coloring method of Coleman and Moré

These techniques can be very useful if one wants to take taty@of structure, but there
are other kinds of structure that can be exploited by a DF©ralgn. Here, the main cost
of each trust-region iteration is not the computation ofgtep, as it is with most trust-region
methods, but rather the construction of the model. In facteéch quadratic model that we wish
to build, we must solve the interpolation equations (5.3hc& this is equivalent to solving a
linear system of dimensiop, which is typically of the order ofi?, this can be very costly. This
is the main motivation for the Section 5.2, where we desqniiesible “cheaper” models that
can be constructed when the problem has an underlying sugtistructure.
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5.2 Multilevel Alternatives

Now, suppose once more that we have a setfédidtint descriptions of the objective function
{fi}i_, where eacH is a function from IR to IR which is twice continuously flierentiable. Each
function fi_; is assumed to be simpler thdnfor alli = 1,...,r. Suppose also that, for each
i, there are full-rank operato : R"* — IR"™ andR : R" — IR"™ (the prolongation and
restriction, respectively). In this section, the prolotiga is the linear interpolation operator
and the restriction is taken & = P/, such that-; = 1.

We want to use the simpler representationsﬁréjzﬁf f to compute a step for the trust-region
subproblem at each iteratidn Thus, we will suppose that, at each levahd at each iteration
k, we can find an interpolation s&, containingx;x, such thatf; can be interpolated at this
level by a (linear or quadratic) model aroundx; that satisfies

Gik(Yij) = fi(yi;), forally;j € Y. (5.10)

5.2.1 Model Choices

As in any trust-region method, at iterati&rat leveli we want to compute a steg. When
we have two levels of description for the objective functitre idea is that we can udg; to
build a model forf; at leveli — 1. The minimization of such a model yields a s&p, such that

def . .
the prolongated step = P;s_; can be used to compute a new iterate at level

There are several ways this can be done, and we will discless affthem here. For future
reference, we define the quadratic interpolation modelai learoundx; x «f Yio as

A%k +s) = fi(xi) + (g, s) + ¥(s, His), (5.11)
and the linear interpolation model at levelroundx; , as

Xk +s) = fi(xk) + (g, ). (5.12)

In practice, Step 1 of Algorithm 5.1.3 will be replaced by soather mechanism for the step
computation, possibly involving the construction of monart one interpolation model. We
will restrict ourselves to the two-level case here, but tlgo@thm can easily be expanded
into a recursive algorithm if desired. We will denote &y the interpolation model at level
r and iterationk, around the current iteratg, and the initial base point in the lower-level
interpolation seY,_; o is defined a_10 = R Xk-

It is also important to note that, since we are using an Eeahdnorm trust region in our
algorithm, we must follow the ideas of Gratton et al. [25]dgented in Section 4.1, Chapter 4
of this thesis) in the definition of the lower-level trusgien. In other words, if the upper-level
trust region is defined as

Brk = {x€ R™ [IX= X kllr < Arxl,

then the trust-region used at leve} 1 to compute the step for iteratidrat levelr is defined by

Br1={xe R™[[|X = X_10llr-1 < Ark},



5.2 Multilevel Alternatives 107

where

lISllr-1 = V{S, M_18) = [ISlIm,_,>
for some symmetric matrii,_, def QrT_lQ,_l, whereQ, = P, ...Pi»Pi,; andM, = |. In this
case)||d; & Isll. As in the RMTR method, since we have to make sure that theRBtgp,

stays inside the upper-level trust region, we must stopahgpuitation of the lower-level step if

1% -1q = X—10llr-1 > (L - frA_l)Ar,k, (5.13)

with €*, € (0, 1).

The model to be minimized at level- 1, which can combine both the interpolation mod-
els of levelsr andr — 1, will be denoted byh,_;. This is done to distinguish from the pure
interpolation model at level— 1 at iteratiork, denoted byg,_; . We also denote by

def )
Qi) = {xe R"Ix = Xl < 6}
the validity region of the model at each iter&tat leveli, for somes; > 0.

Algorithm 5.2.1 in page 108 describes how we build our moddi@mpute the step at each
iteration.
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Algorithm 5.2.1: Multilevel Model Choice and Step Computaion.

1.a: Model Choice. Sety, = X k. If we are at the lowest level, go to Step 1.a.1. Otherwise,
choose between 1.a.1 and 1.a.2.

1.a.1: Interpolation model. Build an interpolation mode; «(Xx+ S ), usingY; x and such
that the interpolation conditions (5.10) are satisfiedffor

1.b.1: Criticality test. If [|gixll < €, testifg;x can be improved in some regi@h(¢;) for
somes; > 0, possibly increasingy;x|, and return to Step 1.a.1. If the model cannot
be further improved, return with solutiogi = X .

1.c.1: Step Computation. Compute a step y that (approximately) minimizeg k(X x+S)
inside the trust region defined By, and computd(Xx + Sx) and
gef _fi(Xik) = filXik + S
Oik(Xik) = Gik(Xik + Sk

Pik
Go to Step 2.
1.a.2: Lower-level model.

e Build a linear interpolation modej; (X« + S) usingY;x and such that the in-
terpolation conditions (5.10) are satisfied.

e Setx_10 = RXxandg = Rgix. Setf¢ = 0. BuildYi_1, € IR"* containing
Xi—1,0 and a modeh;_q /(Xi-10 + S-1).

Gotostep 1.b.2.

1”4

1.b.2: Lower-level criticality test. If [|gi_1 Il < €, testifh_,, can be improved (i.e. mads
valid) in some regiorQ;_;(6;-1) for someg;_; > 0, possibly increasingy;_, |, set
¢ = ¢+ 1 and return to Step 1.a.2. If the model cannot be furtherangm, or if

IX-1e = Xi—oll-1 > (1 — €4)Aik,
then return with solutiox” ; = x;_1, and prolongate the step, obtaining

Sk = Pi(X_; — Xi—1,0)- (5.14)

1.c.2: Step Computation. Compute a steps_i, that (approximately) minimizes the
model hi_;,(Xi-10 + S-1) inside the trust region defined b, and compute
hi—1¢(Xi—10 + Si—1,¢) and

def
Pi-ve = hisg(Xi10) = hiip(Xi10 + S-10)-
If pi_ie > 1o, definex’ ;| = X_10 + S_1, and prolongate the step, obtainigg as
in (5.14). Go to Step 2.
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The step that has been prolongated after being computed lowler level is treated exactly
as if it were a step computed in the upper level; this meartsifithe iterate generated by this
step is not successful, we will try to include it in the intelgtion setY; . Apart from this fact
and from the use o%x andR Xk as the base points fof x andYi_1,, £ = 0,...,t, t being the
last iterate before we decide to return to the upper leveljriterpolation sets at each level are
different and do not contain much information about each othether words, we cannot infer
geometry properties or any other information about the ufgeel interpolation set from the
lower-level interpolation set.

Another point that must be clarified is the decision to penféine lower-level step compu-
tation. Indeed, the model choice at Step 1.a is a delicateamkdepends on which type of
model we choose to use at the lower level. Thus, we will dis¢his point further in the next
subsections.

Some DFO methods have been proposed which consider the ine®wiplete interpolation
models (for example, linear models or incomplete quadratdels) or even of models which
are not necessarily pure interpolation models, such asrbe discussed by Powell [55] or
Alexandrov and Lewis [1]. With this in mind, we propose herffatent possibilities for the
formulation of the lower-level modéi_, ., which are, obviously, not the only ones. In our
experience, however, these models have been the best ia térperformance and thus we
have chosen to focus on them in our implementation.

5.2.1.1 Linear coherent models

One possibility for the computation of the model is to useinfation from levels — 1 and
i in order to build a model at level 1, and (approximately) minimize this model to produce a
new step, which is then prolongated into lewvel

For the method to befective, we would like the lower-level model to imitate, sdmow, the
properties of the higher-level model. In this case, we wdilkkgto impose first-order coherence,
at least around our current iteragg. Considering the framework of Alexandrov and Lewis [1],
we will modify the model (5.12) at level- 1, obtaining

hi_1(Xi—10 + S-1) = fi(X%iK) + (RGi, S-1) + (s-1,RUG 1S-1) (5.15)

1
2fi_1(Xi—1,0)

fi(Xix) T
—————(S-1,0i-10;_1S-1)-
(2fi_1(%-10))° IR

Although this model can be veryfierent from the interpolation model we would compute at
leveli, it is then easy to verify that (5.15) satisfies

hii1(X-10) = fi(%iK)
Vhi_1(Xi-1,0) Rgi.

This implies then that, if we defingy, = P;s_1, we have that

(VhiZ1(Xi—10), S-1) = (RGi, S-1) = (0, Sik)s
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similarly to what we have obtained in the RMTR case (see 8eetil). We thus minimize the
quadratic modeh;_; at leveli — 1, until a critical pointx_, .. is reached at this level, or until we
hit the upper-level trust-region boundary. The stgp= Pis_1 = Pi(Xi-1. — Xi_10) IS then used
as the solution to the trust-region subproblem at level

When using this model, in order to decide if we should takeveeldevel step, we will
check if

IRGill = &gllgill, (5.16)

whereky € (0, 1). If this fails, then we choose to do a regular interpolastep at the current
level.

5.2.1.2 Galerkin model

Another possibility for the formulation of the lowe-leveltiel is to use the Galerkin strat-
egy described in Chapter 4, where we (approximately) mirgrtihe model given by

hi—1(X—10 + S-1) = fiia(Xi—10) + (RO — Gi_1, S-1) + 1(S-1, Hi-1S-1),

at leveli — 1, whereg; is the linear component of a (linear) interpolation modehpaoted at
leveli for f;, andg;_;, andH,_; are determined by building a model &f; of the type (5.12)
or (5.11) in a set of interpolation poin¥ ; defined in IR-*, centered aroung_; o = R X

If we allow for the interpolation set at leveto include more points than just+ 1, we can
also build a (possibly incomplete) quadratic model at leagld use it in the construction of the
final lower-level model, defining

hi—1(Xi—10 + S-1) = fiii(Xi-10) + (RGO — -1, S—1) + 3(S-1, RHiPi = Hi_1S-1).

This may seem at first a very expensive strategy, but in peadtican be advantageous in the
progress of the algorithm.

Here, we will also use the test (5.16) in order to decide wérdihuse the lower-level model
to compute the step at iteratidrat leveli.

5.2.1.3 Upper model

Since in a DFO algorithm, the most computationally expespart is not the step compu-
tation but the construction of the interpolation model, theo strategy can be imagined where
we still use information from both levelsandi — 1 to build the model, but where the step is
computedat level i In this case, Algorithm 5.2.1 will be slightly modified ind@r to suit this
model definition. We thus replace steps 1.a.1, 1.b.1 andl hycAlgorithm 5.2.2.

Here, we can see that

hix(%ik) = fi(Xik)
Vhix(Xix) O,
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Algorithm 5.2.2: 1.a’: Upper-level model.

¢ Build a linear interpolation modej (X x + S) usingY;x and such that the interpola
tion conditions (5.10) are satisfied ffr

e Setx_10 = RXx andg = Rgix. DefineY;_; € R"™* containingx_10 and build a
linear interpolation model

Gi-1(X-1.0 + S-1) = fi-a(Xi—1.0) + (Gi-1, S-1),
at leveli — 1;

e Prolongatey;_;, and define

_ f(x R Sy =S
hi,k(Xi,k + 3) - fl(xi,k) + <gl,ka S) + 2fi—1(Xi—1,0) <gI(PIgI—l) > S) (5-17)

) s by Pa TS
2(fi_1(Xi_1,o))2<S,PIgI_l(P'g'_l) S (5.18)

Goto step 1.b.2.

and thush; x can be seen as a low-fidelity model fiothat uses information from the lower-level
function f,_; as well.

In this case, it is not clear which condition must be satisiedrder to decide if the model
to be used in the trust-region subproblem is the regularpotation model oh; k. In our imple-
mentation, we have chosen to use a simple V-cycle-typdibereut this is not necessarily the
best choice. Further investigations into this conditiogimibe needed in order to ensure that
we use modeh;, only when desired, but the numerical experiments shownam#xt section
show that even a simple V-cycle strategy can be very useful.

5.3 Numerical Experiments

We have tested this algorithm, with all three choices of no@eesented in the previous
chapter in 3 test problems, described in Section A.2 of thpelpix. Problem®ratu and
DN were tested using three one-dimensional discretizatieeldeof 7, 15 and 31 variables,
while problemsSurf was tested in three two-dimensional discretization grid3’p7? and 15
variables each.

In these tables, #represents the number of function evaluations needed htleeel, and
#b represents the number of basis orthogonalizations neddsth level. Note thatl¥#might
not be an integer, since in some iterations the basis is moplste, and in this case, we add the
fraction of the base that has been orthogonalized to thisteouEach table shows the results for
the three models presented in the previous section, as sviieaViesh Refinement and 1-level
(i.e. usual DFO method) versions of the method.



112 Chapter 5. Multilevel Derivative-Free Optimization

All runs were performed in Matlab v.7.1.0.183 (R14) Servyrack 3 on a Dell Precision
workstation, using the parameters

6=10°  9=10"2

#f #b

level 3 level2 levell level3 level2 levell
1-level 2849 - - 283.42 - -

MR 2214 580 186 35.46 161.70 199.97
Coherent 1666 705 402 19.96 22.40 106.72
Galerkin 1671 705 1074 22.65 2240 125.39

Upper 1663 815 650 22.76 143.95 212.86

Table 5.1: Results for the Multilevel DFO method appliediteRratu problem.

Table 5.1 shows the advantages of these alternative mooglie@ to theBratu problem,

as the number of function evaluations needed for converggenthe highest level decreases in
every case. It is also worth noting that the number of reguivasis orthogonalizations (i.e.
construction of the Newton Fundamental Polynomials) islen#or the three models, even if
modestly so. It is also worth noting that even if more functevaluations are needed for these
models in lower levels than what is needed by the Mesh Refineteehnique, since the cost of
function evaluations at higher levels might be much largat the cost of function evaluations
at lower levels, this is not a problem.

#f #b

level 3 level2 levell level3 level2 Ilevell
1-level 1426 - - 138.29 - -
MR 1345 388 86 79.04 47.22 21.72
Linear 931 1769 1137 123.46 11235 72.70
Galerkin 1185 622 1205 24.15 26.66 67.17
Upper 1134 585 296 18.76  21.15 42.17

Table 5.2: Results for the Multilevel DFO method applieditenN problem.

In Table 5.2, we show the results obtained with the algoritbnthe DN problem. We can
again see that the method performs better than the onededehesh refinement variants.

In Table 5.3, we show the results obtained by the algorithnitfe Surf problem. In this
case, we have used the techniques described in Sectiorfdr.1hé treatment of the underlying
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#f #b

level 3 level2 levell Ilevel3 level2 levell
1-level 1184.17 - - 370.86 - -
MR 342.82 60.19 9350 108.83 54.43 361.22
Linear 137.34 310.17 382.75 36.67 113.79 445.36
Galerkin  155.68 331.70 738.75 42.27 107.01 548.93
Upper 204.43 152.72 194.25 61.20 74.37 390.53

Table 5.3: Results for the Multilevel DFO method appliediteSurf problem.

sparsity of the problem, since it allows us to solve the pobfor a much larger number of
variables than previous algorithms. Moreover, the numbbdumction evaluations # is no
longer integer, since we consider the evaluation of one eferfunction to be a fraction of a
complete function evaluation. Again, we can see that théateperforms well in practice.

These numerical results are very simple and limited, but ttestrate a possible imple-
mentation of this new method. In particular, the model cbascrather flexible and allows for
the use of any multilevel strategy, such as the V-cycles meoént of multigrid (presented in
Chapter 2) or free recursion. One could also imagine otlitaria for the use of the lower-level
model depending on the characteristics of each problem.

5.4 Conclusions

In this chapter, we have presented a new formulation of th® Blgorithm to be used for
problems that possess a multilevel structure. This couddvalis to apply a DFO method to
these problems, even when the number of variables is larg@eter, since even the multilevel
version of the DFO method shares some of the limitationsisttiethod, due to time constraints
is was not possible to test this algorithm in larger problefkore tests are certainly in our
perspectives for the future, as is a mofigcgent implementation of the algorithm.
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Conclusions and further research
perspectives

In this thesis, we have presented three new developmentmimear optimization which
are based in the multigrid philosophy. These methods ak lfa& common property of aiming
to solve problems that can be described in several levelsafracy, which is very common
while trying to solve optimization problems resulting frahe discretization of Partial Ber-
ential Equations in a grid. These problems are extremelynecomin practice, and thus there is
a wide range of applications where these methods can be used.

In Chapter 1, we have presented a brief introduction to neali optimization, including
a brief review of the main theoretical results for trustioegmethods. In Chapter 2, we have
presented the basic ideas behind the multigrid method fieali systems of equations. These
two chapters have been the main motivation for our work, rilesd in the remaining three
chapters.

A Multilevel Algorithm for the Solution of the Trust-Region Subproblem

In Chapter 3, our concern was to solve the trust-region sddem. We have reviewed two
classical methods for the solution of this problem, the M8ogensen method, which solves the
trust-region subproblem exactly, and the Truncated CatguGradient method, which solves
this problem approximately.

We have then presented a new multilevel strategy for thetesaation of the Euclidean-
norm problem, called the Multilevel Moré-Sorensen methddhis method is based on the
fact that we can interpret the Euclidean-norm trust-regioioproblem as a linear system with
one parameter (the Lagrange multiplier for the trust-regionstraint), and this problem can
thus be solved by the use of multigrid techniques when skdescriptions of the problem
are available. We have shown some results that indicatethisatnethod can be applied to
solve the subproblem exactly when the number of variable®rg large, in which case the
classical Moré-Sorensen technique cannot be applied #iirec€holesky factorization of the
system matrix cannot be easily computed.

Recursive Multilevel Trust-Region Methods

In Chapter 4, we have presented a brief review of the Reauidiltilevel Trust Region
class of methods. These methods have been first introduc&dditon et al. [25] for uncon-
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strained problems, and they combine the trust-region aritigrid philosophies in a fundamen-
tal way, such that the use of coarser descriptions of thd@mols dfective and computationally
cheap.

Here, we have presented anorm version of the RMTR method, which is also suitable for
the solution of bound-constrained problems, and a comfiteteorder convergence theory that
shows that this new class enjoys the same desirable prepagiclassical trust-region methods,
while being able to solve large-scale problems quickly artd @moderate computational cost.

Multilevel Derivative-Free Optimization

Finally, in Chapter 5, we have described a new multileveltetyy for derivative-free op-
timization problems. Classical derivative-free optintiaa methods based on the trust-region
approach are veryficient, and they have been our motivation for this multilesd¢ension. We
present the basic idea of this algorithm, which is to makeofisewer-level descriptions of the
problem to build new models around the current iterate, shhiahthe computational cost and
number of function evaluations needed for the construaifdhe model is smaller than that of
a full quadratic model, while still being a good approxinatifor the objective function. We
show some results that indicate that this method works aatdttis possible to apply multilevel
techniques to these problems.

Future Perspectives

The multilevel trust-region methods presented here haveslihe possibilities of the ap-
plication of the multilevel philosophy to nonlinear optiration. Moreover, they are somewhat
general, which allows for extensions tdfdrent problems in the future. Similarly, with the
exception of the Recursive Multilevel Trust-Region methoohfinity-norm, the other methods
could certainly benefit from a mordfieient computational implementation.

The results shown here are only a part of this new field of stadgt other works have also
focused on this subject. In particular, the theses of f#oj46] and Tomanos [65] share a lot of
the work done here through collaborations. Furthermoustiregion methods are certainly not
the only application of multigrid techniques to optimizatj and although we have focused on
this particular subject, it is certainly not the only podl#ipfor large-scale problems.

Finally, these methods are all very recent, but the resbitsioed so far show that there is
still a lot of room for new developments and applicationss$fae extensions are the appli-
cation of Algebraic Multigrid techniques to optimizatices well as the introduction of more
complex constraints and the generalization to higherfaraelels for the trust-region subprob-
lem.



Summary of contributions

Our contributions include new developments in multilevathods for optimization. We
have developed the convergence theory for the infinity-narsion of the Recursive Multilevel
Trust-Region method, as well as two new methods for the es@lation of the trust-region
subproblem and for the solution of derivative-free optiatian problems, both using multilevel
techniques. Here, we summarize our contributions.

e The Recursive Multilevel Trust-Region (RMTR) method in mify norm and its first-
order convergence theory have been published in Grattdn[@d& This version of the
RMTR method is capable of treating bound-constrained prabl| and presents excellent
numerical results.

e The Multilevel Moré-Sorensen method is obtained by modiythe classical Moré-
Sorensen method by considering the trust-region subproatea linear system with one
parameter. This new method, along with numerical resulis,lieen published in Toint
et al. [64].

e The Multilevel Derivative-Free Trust-Region algorithmnsists in the use of the under-
lying multilevel structure of the problem to generatéelient quadratic models for the
trust-region method which are not purely interpolation eled It is presented in this
thesis, along with numerical results.
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Main notations and abbreviations

General
IR set of real numbers
IR" realn-dimensional Euclidean space
elll i-th coordinate vector

|- absolute value of a scalar
|-l vector norm

|S| cardinality of the seSS

D domain of a function

Vi(x) gradient off

V2f(X) Hessian matrix off

Proj()  projection operator

o(A) spectral radius of the matrik
Amin(A)  smallest eigenvalue of matrik
Amax(A) largest eigenvalue of matrik
kp(A) p-norm condition number of matrif

& set of equality constraints
I set of inequality constraints
X optimal solution

7 feasible region

N neighbourhood

A(X) active set ak
L(x,1) Lagrangian function

Multigrid Methods

Qn discretized domain with subinterval lendth

e error at the current iteration

u’ approximation to the solution at the current iteration
u, exact solution

ré residual at the current iteration

P Prolongation operator from level 1 to leveli

R Restriction operator from leveko leveli — 1
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Algorithms

MMS

RMTR

Xk

Xi—l,*

Main notations and abbreviations

kth iterate (vector)

trust region at iteratiok

trust-region radius at iteratidn

gradient of the objective function &t

symmetric approximation to the objective Hessiamat
step at iteratiork

(generalized) Cauchy point

model of f at thekth iteration

ratio of actual to predicted decrease

secular equation at lagrange multiplier

lower bound for the interval of uncertainty in the Moré-Swsen algorithm
upper bound for the interval of uncertainty in the Moré-3sen algorithm
exact solution to thé,-norm trust-region subproblem

Lagrange multiplier corresponding to the exact solutioth&er,-norm
trust-region subproblem

tolerance on the trust-region in the Moré-Sorensen algorit

vector at level, iterationk

product of restriction operators from levet 1 up to levelp

product of prolongation operators from level 1 up to levelp

tolerance on the residual

iterate at level, iterationk

solution at level — 1

gradient of the model at leveliterationk
bound on the ratio betweélg; «|| and||R;gixll
trust-region radius at level iterationk
tolerance on theth level trust region
tolerance on theth level gradient

criticality measure at leve| computed ak; x
bound on the ratio betwegf, andy . o)
tolerance on theth level criticality measurg;.
predecessor of iteratidnat leveli (that is, iterationi( k)
happens inside iteratiot{i, k))
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RMTR
Fi feasible set at level
Bik "pure” trust region at levae| iterationk
A restricted ( + 1)-st level trust-region at level
Wik intersection betweenth level trust region at iteratioky, restricted
(i + 1)-st level trust region anidth level feasible set
L intersection betweenth level feasible set and restricted
(i + 1)-st level trust region
Sik intersection betweenth level trust region at iteratiokand restricted
(i + 1)-st level trust region
R(i,k) setof all iterations whose predecessoli iK)(
7(i,k) setof Taylor iterations insid&(i, k)
Main mathematical notations
BTR Basic Trust Region
CG Conjugate Gradient
DFO Derivative-Free Optimization
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualfication

MFCQ Mangasarian-Fromovitz Constraint Qualfication
RMTR Recursive Multilevel Trust-Region method

TCG

Truncated Conjugate Gradient method

PTCG Projected Truncated Conjugate Gradient method

MS
MMS
RQM
FMG
MR

SCM

Moré-Sorensen method
Multilevel Moré-Sorensen method
G Rayleigh Quotient Minimization Multigrid algorithm
Full Multigrid
Mesh Refinement
Sequential Coordinate Minimization

Main abbreviations
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3D-1 A 3D quadratic problem

3D-2 A 3D nonlinear problem

C-D A 3D convection difusion problem

3D-BV A 3D version of the Moré boundary value problem
Bratu A 1D version of the Bratu problem

Surf A minimal surface problem in 2D

DN A 1D Dirichlet-to-Neumann transfer problem

Multilevel Problems
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Appendix A

Test Problems Descriptions

A.1 Problems for the Multilevel Moré-Sorensen Method

A.1.1 3D Quadratic Problem 1 (3D-1):

A convex quadratic problem, where we consider the threesdsional boundary value
problem defined by

—AU(X, Y, 2)
u(xy, 2)

f in 83
0 0ndsS,,

wheref is chosen so that the analytical solution to this problen{xsy, z) = 8. In a multilevel
formulation, this gives linear systemdsx = b; at leveli where each; is a symmetric positive-
definite matrix. This problem is the typicadodel problenfor multigrid solvers. Here, we want
to find the solution to its variational formulation

1
min =x"Apx — X' by,
xeR™

A.1.2 3D Nonlinear Problem 2 (3D-2):

Another convex quadratic problem, where we consider tiferdintial equation

—(1+sin(3X)?)Au(x,y,2) = f inS;3
u(xy, 2) 0 0nosSs,

wheref is chosen so that the analytical solution to this problem is

uix,y,2 = x(1 - x)y(1 - y)z(1 - 2).

In a multilevel formulation, this gives linear systerAsx = b; at leveli where eachA is a
symmetric positive-definite matrix. This problem is coresiell in its variational formulation

1
min =x"A,x — X" by,
xelR™ 2
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A.1.3 Convection-Dffusion problem (C-D):

We wan to minimize the variational formulation of the follmg nonlinear partial dferen-
tial equation
ou du du

Au - Ru[— — |+ f = R=2
u u(8x+6y+82)+ (xy,2) =0, 0,

wheref(x,y, 2) = 200x(1- X)y(1-Yy)z(1-2), overSz with Dirichlet boundary conditions = 0
0onoSs.

A.1.4 Boundary Value Problem (3D-BV):

This is a problem inspired by the one dimensional two-poourmary value problem pre-
sented in Moré et al. [45] and is defined by

—Au(s,t,2) = 3(u(s,t,2) +t + s+ z+ 1)°,

with
ui0,t,2 =u(l,t,2=0, O<t<1,
us, 0,2 =u(s1,2=0, O0<s<1,
u(st,0)=u(st,1)=0, 0<z< 1l

Here, we look for the solution of the least squares problem

strzréi[cr)ll]H—Au(s,t, 2) - 3(u(st,2) +t+s+z+ 1)
A.2 Problems for the Multilevel Derivative-Free Optimiza-
tion Method

A.2.1 Bratu-Bratu

Here, we are looking for the solution of the 1-dimensionalrmary value problem defined
in [0, 1] by
u” + Rexpu =0,
{ u(0) =u(l)=0.

In our case, we will use a finite-element approximation toléast-squares formulation for this
problem, namely

1
min f lu(t)” + Rexpu(t)||*dt,
st u(0)=u1)=0,

whereR = 3.51 (as suggested in [33]).
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A.2.2 Minimal Surface - Surf

We wish to find the solution of the minimum surface problemegiby

min fo fo (1+ (0xv)% + (BV)?) 2dx dy,

veK

whereX = {ve H(S,) | (X, y) = Vo(X, y) on dS,}. The boundary conditiow, is chosen as

f(x)y for y=0, 0<x<l1,

Vo(x.y) = 0, for x=0, 0<y<l,
’ f(x)y, for y=1 0<x<1,

0, for x=1 0<y<1l

wheref(x) = x(1-x). To do this, we discretize the problem using a finite elerbasts, defined
by a uniform triangulation 08,, with same grid spacing along the 2 coordinate directions.
We use the classical P1 functions which are linear on eaghgie and take value O or 1 at each
vertex as basis functions.

A.2.3 Dirichlet-to-Neumann Transfer Problem -DN

This problem is taken from Lewis and Nash [41] and is desdriag follows. LetQ =
{(Xy)|0<x<nm0<y<1},andl’ ={(x0)]| 0 < x < n} the lower boundary of2. We want
to find a(x) that minimizes

- 2
Fa) =3 [ (G000~ 009) ax

15
whereg = Z sinix + sin 4, and wherau is the solution to a finite-dierences approximation

i=1
to the boundary value problem

Au(x,y) = O inQ
uxy) = 0 inoQ\T
u(x,0) = a(x).
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