
198

Recognizing 3D Trajectories as 2D Multi-stroke Gestures

MEHDI OUSMER, Université catholique de Louvain, LouRIM, Belgium

ARTHUR SLUŸTERS, Université catholique de Louvain, LouRIM, Belgium

NATHAN MAGROFUOCO, Université catholique de Louvain, LouRIM, Belgium

PAOLO ROSELLI, Università degli Studi di Roma, Italy and Univ. cath. de Louvain, Belgium

JEAN VANDERDONCKT, Université catholique de Louvain, LouRIM, Belgium

While end users can acquire full 3D gestures with many input devices, they often capture only 3D trajectories,

which are 3D uni-path, uni-stroke single-point gestures performed in thin air. Such trajectories with their

(𝑥,𝑦, 𝑧) coordinates could be interpreted as three 2D stroke gestures projected on three planes,i.e., 𝑋𝑌 , 𝑌𝑍 ,
and 𝑍𝑋 , thus making them admissible for established 2D stroke gesture recognizers. To investigate whether

3D trajectories could be effectively and efficiently recognized, four 2D stroke gesture recognizers, i.e., $P,
$P+, $Q, and Rubine, are extended to the third dimension: $𝑃3, $𝑃+3, $𝑄3

, and Rubine-Sheng, an extension of

Rubine for 3D with more features. Two new variations are also introduced: $𝐹 for flexible cloud matching

and FreeHandUni for uni-path recognition. Rubine3D, another extension of Rubine for 3D which projects

the 3D gesture on three orthogonal planes, is also included. These seven recognizers are compared against

three challenging datasets containing 3D trajectories, i.e., SHREC2019 and 3DTCGS, in a user-independent

scenario, and 3DMadLabSD with its four domains, in both user-dependent and user-independent scenarios,

with varying number of templates and sampling. Individual recognition rates and execution times per dataset

and aggregated ones on all datasets show a highly significant difference of $𝑃+3 over its competitors. The

potential effects of the dataset, the number of templates, and the sampling are also studied.

CCS Concepts: • Human-centered computing→ Gestural input; Graphical user interfaces;

Keywords: Large display interfaces and multi-display environments; Gesture-based interfaces; Gesture

recognition; Mid-air gestural interaction; Stroke gestures; Surface computing; 3D trajectory.

ACM Reference Format:
Mehdi Ousmer, Arthur Sluÿters, Nathan Magrofuoco, Paolo Roselli, and Jean Vanderdonckt. 2020. Recognizing

3D Trajectories as 2D Multi-stroke Gestures. In Proceedings of the ACM on Human-Computer Interaction, Vol. 4,
ISS, Article 198 (November 2020). ACM, New York, NY. 21 pages. https://doi.org/10.1145/3427326

1 INTRODUCTION AND MOTIVATIONS
Nowadays, more and more 3D input devices enable end users to acquire gestures in space and

many environments are developed for this purpose [37]. Yet, an important portion of these gestures

Authors’ addresses: Mehdi Ousmer, Université catholique de Louvain, LouRIM, Place des Doyens, 1, Louvain-la-Neuve,

1348, Belgium, mehdi.ousmer@uclouvain.be; Arthur Sluÿters, Université catholique de Louvain, LouRIM, Place des Doyens,

1, Louvain-la-Neuve, 1348, Belgium, arthur.sluyters@uclouvain.be; Nathan Magrofuoco, Université catholique de Louvain,

LouRIM, Place des Doyens, 1, Louvain-la-Neuve, 1348, Belgium, nathan.magrofuoco@uclouvain.be; Paolo Roselli, Università

degli Studi di Roma, Piazzale AldoMoro, 5, Roma, 00185, Italy, Univ. cath. de Louvain, Place des Sciences, 2, Louvain-la-Neuve,

1348, Belgium, roselli@mat.uniroma2.it,paolo.roselli@uclouvain.be; Jean Vanderdonckt, jean.vanderdonckt@uclouvain.be,

Université catholique de Louvain, LouRIM, Place des Doyens, 1, Louvain-la-Neuve, 1348, Belgium, jean.vanderdonckt@

uclouvain.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2573-0142/2020/11-ART198 $15.00

https://doi.org/10.1145/3427326

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://doi.org/10.1145/3427326
https://doi.org/10.1145/3427326

198:2 Mehdi Ousmer et al.


Fig. 1. Two 3D trajectories: (1) a “V” gesture for controlling the volume, (2) a helicoidal gesture for controlling

the level of details.

covers 3D variations of existing 2D gestures [10, 28]. We hereby refer to these gestures as 3D
trajectories, i.e., 3D uni-path, uni-stroke single-point gestures performed in thin air. These gestures

can be classified according to the number of spatial dimensions in which gestures are acquired: 0D

for point-based gestures (e.g., a simple tap), 1D for linear gestures (e.g., a “V” ring gesture increases

or decreases the volume of a smartphone while talking – see Fig. 1-1), 2D for planar gestures (e.g.,
surface stroke gestures [57]), and 3D for spatial gestures (e.g., a helicoidal gesture increases or
decreases the level of details of a virtual reality scene while navigating – see Fig. 1-2).

The importance of 3D trajectories partially relies in our kinesthetic sensory-motor system, which

controls 3D spatial gestures, their amplitude, and target reaching. Different parts of our body are

used as external and internal stimuli to perceive our environment. Proprioception represents our

body position relatively to any other part or to any object of the environment, primarily by our

hands and fingers. Our human vision is almost planar in reception, thus inducing a lack of feedback

in gesturing to be compensated by extroception, our capacity to position in space.

This phenomenon has several manifestations. A significant part of gesture taxonomies [1]

covers symbolic gestures, which reproduce in 3D various familiar 2D gestures, such as letters,

digits, symbols, drawings [36], probably because of the legacy bias [31]. Cheng’s taxonomy [11]

classifies 3D gestures into three categories: static gestures, trajectories consisting of sequential data

(temporal for example) of one point of the gesture, and continuous for general limb trajectory. In

gesture elicitation studies [55], several gestures proposed by participants are actually 3D trajectories

[29, 53]. Gheran et al. [15] report that participants proposed 80 gestures representing hand poses

or combinations between hand poses and trajectories in mid-air with one ring device and 89 with

two rings. Even when a task is spatial, like in 3D navigation [33], end users prefer 3D trajectories.

Since the body of 3D trajectories becomes more important, their recognition is gaining more

interest. While many efficient 3D gesture recognizers exist [5, 6, 17, 18, 27, 28, 30] in general and in

particular for mobile devices [38, 44], they are not specifically tailored to 3D trajectories and turn

out to be more complex than necessary for recognizing them. This raises the question whether 3D

trajectories can be recognized by state-of-the-art 2D stroke gesture recognizers [48]. To address

this question, this paper proposes the following contributions:

(1) We conduct a targeted literature review of 2D stroke recognizers (Section 2) resulting into

a selection of four candidates (Section 3.1) to create a three-dimensionalized version, i.e.,
Rubine [35], a pioneer in stroke gesture recognition (Section 3.2), $𝑃 [50] for its accuracy

(Section 3.4), $𝑃+ [49] for its optimization for low-vision users (Section 3.7), and $𝑄 [52] for

its speed namely for low-end devices (Section 3.8).

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:3

(2) We develop $𝐹 (Section 3.5) and FreeHandUni (Section 3.6), two new $P variants for controlling

the sampling and the point matching. We integrate these six recognizers and Rubine-Sheng

(Section 3.3), a 3D version of Rubine recognizer, into a testing framework (Section 3.9).

(3) We evaluate these seven recognizers on challenging gesture sets (Section 4): two in user-

independent scenario and one in both user-dependent and user-independent scenarios to

collect their recognition rates and execution times. Some recognizers achieve a recognition

rate and an execution time comparable to existing 3D recognizers for these gestures.

(4) We discuss the implications for choosing a particular recognizer depending on the conditions

imposed on the context of use, such as sampling and amount of points (Section 6).

2 RELATEDWORK
We conducted a Targeted Literature Review (TLR), which is a non-systematic, in-depth and infor-

mative literature review, that keeps only the references maximizing rigorousness and relevance

while minimizing selection bias [24].

2.1 2D Stroke Gesture Recognizers
Several algorithms recognize 2D stroke gestures [57] by template matching [7]: they compare a

candidate gesture against pre-recorded template gestures gathered by gesture classes in a training
set that was used to train the recognizer beforehand. This assumes calculating a (dis-)similarity

distance between the candidate gesture and template classes.

GrandMa, Rubine’s recognizer [35], creates a vector of 13 geometric features for each template

and candidate, which is classified with respect to gesture classes by a linear evaluation. This offers

a high recognition accuracy for a low computational cost, manual opportunistic programming is

no longer required, and its understanding is simple and facilitated by a geometric interpretation.

These three advantages form a common motto for several other recognizers.

The $1 recognizer [55] recognizes 2D uni-stroke gestures into four steps: resampling, rotation,

scaling, and moving. The candidate gesture is resampled into a fixed number of points that are

evenly spaced along the path. Then the path is rotated so that the line from the centroid of the path

to the first point of the path is parallel to the x-axis. Non-uniform scaling is used to fit the path in a

reference square. Finally, the path moves its centroid to the origin (0, 0). The mean value of the

Euclidean distance between the corresponding points is computed as a similarity distance.

Instead of the Euclidean distance, Protractor [26] minimizes the cosine distance between two

gestures by calculating the best rotation angle, but no scaling is performed. LVS [12] computes the

Levenshtein distance between two gestures decomposed into characters representing directions.

The $𝑁 recognizer [3] generalizes $1 to 2D multi-stroke gestures. Each gesture sample is con-

sidered as a uni-stroke where part of the gesture is made away from the sensing surface (i.e., by
following the user’s hand through the air), and the algorithm automatically generates all possible

uni-stroke permutations of the gesture.

The $𝑃 recognizer [50] overcomes the combinatorial explosion of $𝑁 by representing gestures as

unordered point-clouds, therefore making them invariant to order, number, and direction. The $𝑃+
algorithm [49] increases the $P flexibility such that any point from the first cloud can be matched

with any point from the second cloud. Although this recognizer was tested for low-vision users, it

turns out to be the most accurate recognizer of the $-family.

The $𝑄 recognizer [52] improves $𝑃 with several algorithmic revisions: the classification of

multi-stroke gestures is faster when the size of the training set is large. Aligned with the accuracy of

$𝑃 , $𝑄 is announced as the fastest recognizer of the $-family. While formerly aimed at user interface

prototyping, the $-family initiated several applications and recognizers [9, 16, 22, 23, 34, 47].

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:4 Mehdi Ousmer et al.

Penny Pincher [42] converts resampled gesture points into a series of between-point vectors and

calculates the sum of the angles between their corresponding vectors. Penny Pincher, due to this

simplicity, is reported as a super-fast algorithm with a high accuracy (>90%). Jackknife [43] is a

multitool for recognizing gestures sampled from many modalities such as 2D touch, 3D hand, and

full-body gestures. Gestures are represented as a set of unit-length direction vectors. The resampled

gesture points are converted into a series of unit-length direction vectors. Dynamic Time Warping

(DTW) then matches a candidate and a template direction vectors. Correction factors are computed

to inflate the score of dissimilar gestures. The !FTL recognizer [46] converts resampled gesture

points into a series of pairs of vectors called “shapes” and computes the Local Shape Distance (LSD)

between each pair of shapes in sequence to assess how two gestures are dissimilar.

2.2 3D Gesture Recognizers
2.2.1 By Template Matching. The $3 recognizer [20] is probably the first to extend an existing

2D stroke recognizer to 3D: a $1 variant records 3D mid-air gestures using the accelerometer data of

a single point issued by a Nintendo Wii Remote Controller device. Protractor3D [21] adds rotation

invariance to $3 by finding the rotation that minimises the sum of square errors (Euclidean distance)

between a candidate and a template. The uWave recognizer [27] also exploits the data from a three-

axis accelerometer, which is particularly appropriate for wearable devices such as smartwatches

and smartphones. Raw data are compressed by an averaging window, are quantized non-linearly,

and matched with another time series by Dynamic Time Warping (DTW). More recently, the

3¢ algorithm [10] extends the 1¢ [16] with the same principles as in $3 and Protractor3D: comparing

sampled 3D trajectories, but with different and simpler processing options. This translates into

a better accuracy and a higher performance. The algorithm performs scaling with respect to the

length of the gesture (with a normalised length of 1) instead of scaling a fixed size bounding box [9].

2.2.2 By Other techniques. 3D gesture recognition is a huge field of research and development

in view the proliferation of devices, wearable or not, human limbs considered for gesturing, and

techniques used for recognition. Many techniques are used [11, 56]: general purpose toolkits [54],

Artificial Neural Networks (ANN), Convolutional Neural Network (CNN), Recurrent Neural Network

(RNN), 𝑘-Nearest Neighbor [14, 51], Support Vector Machine (SVM), Hidden Markov Model (HMM),

Dynamic Time Warping (DTW) [43]), Naive Bayes classifier, Principal Component Analysis (PCA),

Deep Learning [28]). A common pattern identified in this portion of the literature is the overfitting

in the data sets for artificial intelligence and machine learning algorithms: they exhibit an accuracy

superior to 90% and a performance inferior to 100 msec., a threshold for system response time [32]),

but they are entirely optimized for a given dataset, thus leaving little or no space for keeping the

same performance if the dataset is changed. This occurs when samples and/or classes need to be

modified, thus leading to a re-training of the algorithm, although this is now achievable in real-time.

3 THREE-DIMENSIONALIZATION OF TWO-DIMENSIONAL RECOGNIZERS
2D recognizers selected from Section 2 are now extended and implemented into 3D.

3.1 Selection of 2D Recognizers and their Three-Dimensionalization
Based on the TLR in Section 2, four recognizers were selected for comparative testing: (1) Rubine:
this pioneer in 2D stroke recognition performs a statistical matching on weighted feature vectors

which are computed from training examples, an easily repeatable process for any plane; (2) $𝑃

introduced the cloud matching principle that preserves scaling and translation-invariances, as well

as order, number, and direction invariances; (3) $𝑃+ displays the best accuracy to our knowledge;

(4) $𝑄 benefits from the fastest execution time to our knowledge.

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:5

$1 is not included as several aforementioned recognizers outperforms it [42, 46]. Despite two

speed optimizations, $𝑁 is not included neither because it faces a combinatory explosion in both

memory and execution time. $𝑃 remedies this limitation by considering gestures as unordered sets

of points. Similarly, the other extensions and local optimizations discussed in Section 2 are not

included. $3 and similar algorithms are admissible candidates, but are finally not included as they

require additional data coming from a wearable device, such as an accelerometer, a constraint that

we do not want to impose. Vector-based recognizers [42, 46] are not retained since they potentially

require to re-compute all vectors between points or vectors between vectors for each plane, which

could increase their computational cost. Other 3D recognizers, which belong to classes of classifiers

with different computational complexities to cover a wider range of 3D gestures, were not included.

3.2 Rubine3D, a 3D Extension of Rubine
Rubine3D (R3D) extends the feature-Based 2D gesture recognizer Rubine [35], since it takes charge

of 3D gestures. Inspired by the iGesture framework [40], our Rubine3D recognizer combines a set of

three individual 2D Rubine recognizers, one for each plane𝑋𝑌 , 𝑌𝑍 , and 𝑍𝑋 . The projection on each

plane is done by transforming each point of the 3D trajectory to the three coordinate system planes

(𝑋𝑌,𝑌𝑍, 𝑍𝑋). The general equation of a plane in an orthogonal coordinate system is represented

by the linear equation 𝐴𝑥 + 𝐵𝑦 +𝐶𝑧 + 𝐷 = 0. The coordinates of the normal vector 𝑛(𝐴, 𝐵,𝐶) to
a plane are the coefficients in the general equation above. If the plane passes through the origin,

the equation has constant term 𝐷=0. Hence, the equations of respectively the coordinate system

𝑋𝑌 , 𝑌𝑍 , 𝑍𝑋 planes that pass through the origin are 𝑧=0, 𝑥=0, and 𝑦=0. Let us consider𝑀 (𝑖, 𝑗, ℎ)
as a point belonging to a 3D trajectory. 𝑃,𝑄, 𝑅 are the three points where the three coordinates

of the point 𝑀 pass through the coordinate system plan (𝑋𝑌,𝑌𝑍, 𝑍𝑋). These 2D points are the

orthogonal projections of𝑀 on each plane with vectors parallels to 𝑋 , 𝑌 , and 𝑍 axes. Therefore,

𝑃 (𝑖, 𝑗), 𝑄 (𝑗, ℎ), and 𝑅(ℎ, 𝑖) are the 2D points coordinates of the projection on (𝑋𝑌,𝑌𝑍, 𝑍𝑋).
First, the raw data are pre-processed by scaling and filtering points. Thus, a point is discarded if

the distance from the previous point is under a threshold of 𝑑=.005. Next, for each training gesture

projected on each plane, the thirteen original features (𝑓1, .., 𝑓13) [35] are calculated.
After that, every class mean feature vector and covariance matrix are computed for all planes.

We then calculate the common covariance matrix and the inverse matrix, of which the gesture

classes weights are estimated. Thus, there are several actions to determine the possible class of the

candidate gesture. To begin, the gesture is projected on each plane.

Next, the feature vectors are extracted from the three gestures projections. After that, the gestures

projections are defined as one of the possible gesture classes with the aid of a linear function. This

function evaluates which class maximizes the evaluation function result.

In the end, a heuristic inspired by iGesture, is used to determine the result class of the 3D gesture.

If the resulting classes of the three projections are the same, it is designated as the final result.

Otherwise, if there are two or three different classes, we calculate the evaluations of these classes

for the three planes. Then, each evaluation result is multiplied by a weight factor in relation to

planes (𝑊𝑋𝑌=0.4,𝑊𝑌𝑍=0.3,𝑊𝑍𝑋=0.3). These values are determined according to the easiness of

producing gestures by our human body in the saggital plane, then in the transversal plane, and

finally in the frontal plane, which is observed particularly for head and shoulders gestures [45]. In

addition, we tried to perform the same algorithms with two planes only, but we observed a decrease

in the accuracy (see Appendix B.1 for this test).

The greatest sum is decided as the final gesture class. However, the gesture rejection part coming

from Rubine was not implemented to keep the extension in line with other recognizers in terms of

computational complexity and since we only focus on the classification problem.

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:6 Mehdi Ousmer et al.

3.3 Rubine-Sheng, Another 3D Extension of Rubine
Rubine-Sheng (RS) uses a vector of sixteen features computed from a 3D gesture 𝐺 = {𝑝𝑡 =

(𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) |∀𝑡 = 1, ..., 𝑛}. These features extend the Rubine’s original feature vector to 3D by adding

three features, they are proposed in the AdaBoost recognizer and applied to 3D gestures [39].

As for its 2D counterpart, the Rubine-Sheng recognizer classifies a candidate gesture by finding

its corresponding gesture class. First, with training samples feature vectors, the estimation of

mean feature vectors is computed as well as the covariance matrix of each class. After that, the

common covariance matrix is calculated and its inverse from which the weights of gesture classes

are calculated. Finally, the class of a candidate gesture is the class that maximizes the result of the

discrimination function.

3.4 $𝑃3, a 3D Extension of $𝑃
The $𝑃 algorithm matches the point cloud of a candidate gesture 𝐶 against the point cloud of each

template 𝑇 in the training set via a function𝑀 that associates each point 𝐶𝑖∈𝐶 with exactly one

point𝑇𝑗∈𝑇 ,𝑇𝑗=𝑀 (𝐶𝑖). The classification result determines the closest template𝑇 to the candidate𝐶

through matching distance calculation: 𝐶 ∈ class of 𝑇 where 𝑇=𝑎𝑟𝑔𝑚𝑖𝑛𝑇 {$𝑃 (𝐶,𝑇)}. This principle
is generalized to 3D by defining a set of points with three-dimensional coordinates: 𝐶 = {𝑝𝑖 =
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) |∀𝑖 = 1, ..., 𝑛}. $𝑃3

, our 3D extension of $𝑃 , performs three pre-processing steps tominimize

the gesture variations: (1) gestures point clouds are resampled to get the same number of points 𝑛

for matching them; (2) gesture points are scaled to a non-uniform reference box; and (3) the gesture

centroid (𝐺𝑥,𝐺𝑦,𝐺𝑧) is translated to the origin 𝑂 = (0, 0, 0). The matching score is then defined

as the sum of Euclidean distances for all pairs of points from 𝑀 . This is generalized into 3D by

adding the third coordinates 𝑧 in the calculation. Let us assume that the point𝐶𝑖 from the candidate

gesture 𝐶 is matched to the point 𝑇𝑗 from the template 𝑇 . Hence, the score is given by:

𝑛∑
𝑖=1

∥ 𝐶𝑖 −𝑇𝑗 ∥=
𝑛∑
𝑖=1

√
(𝐶𝑖 .𝑥 −𝑇𝑗 .𝑥)2 + (𝐶𝑖 .𝑦 −𝑇𝑗 .𝑦)2 + (𝐶𝑖 .𝑧 −𝑇𝑗 .𝑧)2 (1)

In order to compute the dissimilarity score between two clouds of points, we performed a one-to-

one time-free alignment between points, inspired by Vatavu’s matching heuristic named Greedy-5

because it gave the best results among the tested methods [50]. The heuristic matches for each

point from the first cloud one point in the second cloud with the condition that it has not been

matched before. Next, it matches points from the second cloud that have not been matched yet

can be matched to one point in the first set resulting in a complexity of O(𝑛2). The algorithm runs

several times with different starting points considered circularly through all points, and returns the

minimum matching of all runs. The returned matching sum is multiplied by a weight representing

a confidence degree on the matching.

𝑤 =
∑
𝑖

𝑤𝑖 · ∥ 𝐶𝑖 −𝑇𝑗 ∥ (2)

The 𝜖 threshold controls the number of runs and affects the complexity of the heuristic to O(𝑛2+𝜖)).
We take into account that the direction of matching impacts the result of the heuristic.

3.5 $𝐹 , a Flexible Variant of $𝑃3

$𝐹 extends the aforementioned $𝑃3
with $𝑃+’s flexible cloudmatching [49]. As usually, the candidate

and the templates points are resampled to equidistantly-spaced points, scaled within a unit box, and

translated so their centroid is at the origin (0, 0, 0). The template having to the lowest dissimilarity

score is considered as the best matching template for the candidate. The $𝑃+’s cloud matching

process consists of matching the points from the first cloud with their closest point from the second

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:7

cloud, then of matching the points from the second cloud that have not been matched yet with their

closest point in the first cloud. To investigate whether a more flexible matching could be obtained,

$𝐹 enables the matching of two points that have already been matched, hence its name $𝐹 .

3.6 FreeHandUni, a 3D Extension of $P
The FreeHandUni (FH) recognizer is derived from the FreeHand recognizer pseudocode which

extends the 2D gesture recognizer $P++ [13]. Moreover, it uses full hand information for free-hand

gesture recognition. FreeHandUni is adapted to meet our need for recognizing the unipath character

of 3D trajectories by replacing the hand pose structure with a 3D point structure (𝑥,𝑦, 𝑧). With this

modification, FreehandUni corresponds to an improvement of $𝑃3
, using a flexible cloud matching

based on a one-to-many alignment between points [49]. The pre-processing remains exactly the

same, the Euclidean distance of Eq. 1 is used in the matching process with more flexibility, each

point of the template cloud being matched with the closest point from the candidate cloud, then

matching each remaining point from the candidate cloud with the closest point from the template

cloud. The gesture class is identified as the class of the template cloud with the lowest dissimilarity

score between it and the candidate cloud, and conversely. FreeHandUni is different from $𝐹 in that

the early abandoning is not implemented, to align the computational complexity to $𝑃3
.

3.7 $𝑃+3, a 3D Extension of $𝑃+
One of the $𝑃+ major improvements with respect to $𝑃 lies in expanding the matching from

one-to-one to one-to-many points, which clears the weights of the starting point used in $𝑃 . Based

on the 3D points, we compute the turning angle at each point with points coordinates gesture:

𝐶𝑖 .𝜃 = 1

𝜋
arccos

(
(𝐶𝑖+1 .𝑥−𝐶𝑖 .𝑥) ·(𝐶𝑖+1 .𝑥−𝐶𝑖 .𝑥)+(𝐶𝑖+1 .𝑦−𝐶𝑖 .𝑦) ·(𝐶𝑖+1 .𝑦−𝐶𝑖 .𝑦)+(𝐶𝑖+1 .𝑧−𝐶𝑖 .𝑧) ·(𝐶𝑖+1 .𝑧−𝐶𝑖 .𝑧)

| |𝐶𝑖+1−𝐶𝑖 | | · | |𝐶𝑖−𝐶𝑖−1 | |

)
(3)

To optimize the execution time, the early abandoning used in $𝑄 is added, as well as the third

coordinate in the computation of the point distance beside the angle as in $𝑃+:

𝐷 (𝐶𝑖 ,𝑇𝑗) =
√
(𝑇𝑗 .𝑥 −𝐶𝑖 .𝑥)2 + (𝑇𝑗 .𝑦 −𝐶𝑖 .𝑦)2 + (𝑇𝑗 .𝑧 −𝐶𝑖 .𝑧)2 + (𝑇𝑗 .𝑎 −𝐶𝑖 .𝑎)2 (4)

3.8 $𝑄3, a 3D Extension of $𝑄
$𝑄3

, our 3D extension of $Q [52], performs the same pre-processing as in $𝑃+3, apart from calcu-

lating a 3D Look-Up-Table (LUT) offline for every template and storing it with the cloud points.

The look-up point-matching technique is generalized to three dimensions via a 16×16×16 3D grid

of equidistant points. Each cloud point 𝐶 is nested inside this grid. Next, the index of the row,

of the column, and of the layer of the closest point in the grid are stored for each point, which

has a computation complexity of O(𝑛 ·𝑚3). To recognize a candidate, the closest point from a

template to 𝐶𝑖 is identified by iterating through cloud points and summing the Euclidean distances

of Eq. 1 between each pair of points. This computation stops when the sum exceeds the minimum

dissimilarity score.

3.9 Testing Framework
In order to perform a comparative testing on the same, consistent basis, the seven aforementioned

recognizers, i.e., Rubine3D, Rubine-Sheng, $𝐹 , FreeHandUni, $𝑃3
, $𝑃+3, and $𝑄3

, have been all

implemented in JavaScript (ECMA Script 2019 version), a cross-platform language which satisfies

testing requirements. We also developed in JS a framework for testing the recognizers, built in a

modular way to accommodate variations of sensors, gesture sets, and recognizers. The workflow

consists of a pipeline architecture (Fig. 2): the recognizer is trained with the data provided by the

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:8 Mehdi Ousmer et al.

dataset-loader; the sensor sends data frame by frame in a pose-classifier. If a pose (a static gesture)

is recognized, it is sent directly to the application. Otherwise the data is either sent directly to the

recognizer or to a segmenter [19] if the recognizer does not manage this step. Once a gesture is

recognized, a message is sent to the application and the corresponding action is performed.

4 EVALUATION
We evaluated the seven recognizers in the traditional user-dependent and user-independent pro-

cedures [3, 4, 49, 50] with 3D trajectories from six datasets in order to show the efficiency of

these recognizers depending on the conditions. We evaluated the classification task only, not the

pre-processing since this task can be achieved off-line.

4.1 Experiment
4.1.1 Design. Our study was within-factors with four independent variables:

(1) Recognizer: nominal variable with 7 conditions, representing the various recognizers im-

plemented for recognizing 3D trajectories: $𝑃3
, $𝑃+3, $𝑄3

, $𝐹 , 𝐹𝐻 (FreeHandUni), 𝑅3𝐷

(Rubine3D), and 𝑅𝑆 (Rubine-Sheng).

(2) Dataset: nominal variable with 6 conditions (see Table 1 and Appendix A), representing

two datasets considered as a whole, i.e., SHREC2019 [8] and 3DTCGS [9], and four domains

of 3DMadLabSD [18]-D1, 2, 3, and 4.

(3) Number of Templates: numerical variable with 5 conditions, representing the number of

templates per gesture class used to train the recognizer: 𝑇={1, 2, 4, 8, 16}.
(4) Sampling: numerical variable with 5 values representing the number of points per gesture:

𝑁={4, 8, 16, 32, 64}.

Name Sensor Subjects Classes Instances Ground truth
information

SHREC2019 [8] Leap Motion 13 5 195 T, L, J

3DTCGS [9] Leap Motion 13 26 347 T, L

3DMadLabSD [18] SoftKinetic DepthSense DS325 10 40

(10 x 4 Domains)

4000 T, L

Table 1. Description of selected datasets. Notation for the Ground truth information: Timestamp (T), Label

(L), Hand joints (J).

4.1.2 Apparatus. We used a sexa-core Intel Core i7 2.20 GHz CPU and running a Windows 10

Home Edition operating system. The RAM was 16 GB DDR4 memory with 2400 MHz. We ran the

framework described in Section 3.9 with the seven recognizers on the six individual datasets.

Fig. 2. Framework software architecture.

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:9

The SHREC2019 dataset [8] served as a benchmarking for the Eurographics 2019 SHape Retrieval

Contest (SHREC) track on online gesture recognition to detect command gestures from hands’

movements in a virtual reality context. The proposed dataset is topical due to its recency. This

dataset consists of 195 3D trajectories performed by 13 participants with the whole hand. Each

trajectory contains a sequence of 3D points and quaternions designating one of five iconic gestures:

“Cross” (X), “Circle” (O), “V-mark” (V), “Caret” (/\), and “Square” ([])). Since this dataset contains

unsegmented gestures, the training set and the testing set were merged to create a unique dataset in

which, for every trajectory, unnecessary hand movements were filtered. We clipped the sequences

which predate and postdate the main section [19].

The 3DTCGS dataset [9] is employed to test the classification performance of the 3¢ [9] recognizer

on interface command gestures. Data were provided in a segmented form which makes them easier

to exploit during experimentation for the classification task. This dataset contains gestures with a

varying complexity, ranging from the simplest such as a “3D swipe” to the most complex one such

as a “3D spiral”. Similar trajectories also include a different direction (e.g., “left-swipe” vs. “right-
swipe”, “arc3Dleft” vs. “arc3Dright”), to test the direction-invariance property. Each subject produces

one sample per gesture which makes the user-independent evaluation particularly challenging.

Participants were asked to issue short iconic gestures with the dominant hand forefinger. The

gathered data consist of 347 sequences of 3D coordinates. Combined with a timestamp, they describe

26 gesture classes performed by 14 subjects and recorded with a Leap Motion (see Appendix A).

The MadLabSD (MadLab Sketch Dataset) dataset [18] is publicly available online since 2018

and was used to assess a new gesture-based system [18]. This large dataset comprises mid-air

single stroke gestures which are palm-centred dynamic motion trajectories. A variety of gestures

from the most common symbols (i.e., alphabets and numerals) to the most unusual ones (e.g., CAD
primitives) makes this dataset particular attractive. A group of 10 users recorded 40 segmented

symbols and sketches split into four domains (see Fig. 6) for a total of 4,000 samples. Each user

recorded 10 samples per gesture which consist of 3D coordinates of the centre of his palm in 3D

with a timestamp.

Moreover, they extracted the centre palm from the depth greyscale images which were recorded

with a SoftKinetic DepthSense DS325. During the hand tracking, the static hand pose was used

to record the gesture. The user can switch between active (hand open) and inactive (closed hand)

states. Raw data from the depth camera are not pre-processed, thus potentially containing spurious

data, such as noisy points at the start of the sketch, due to the user latency after mode switching[18].

The dataset contains four domains: (D1) Arabic numerals: 0-9, (D2) English alphabets (Handwrit-

ten): a-j, (D3) Simulation symbols: Spring-Mass-Wheel-Pulley-Hinge-Fast Forward-Rewind-Play-

Pause-Delete, and (D4) CAD primitives: Cuboid-Cylinder-Sphere-Rectangular Pipe-Hemisphere-

Cylindrical Pipe-Pyramid-Tetrahedron-Cone-Toroid.

4.2 Procedures andQuantitative Measures
We compute the recognition rate (computed as the ratio of positive recognitions divided by the total

number of trials) and the execution time (computed in milliseconds as the time for pre-processing

a candidate gesture and recognizing its result class) for the 7 (Recognizer) × 6 (Dataset) =

42 basic configurations following the typical method used in the literature to evaluate gesture

recognizers [2–4, 50, 52, 55]: the user-independent scenario evaluates the recognition on gestures

produced by users who are different from those used for training the recognizer; the user-dependent
scenario evaluates the recognition on gestures produced by users who are the same who trained

the recognizer.

4.2.1 User-Independent Scenario. One template is randomly selected for each gesture class from

all participants and saved for the testing. Then, a training set is obtained by randomly choosing 𝑇

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:10 Mehdi Ousmer et al.

templates for each gesture class for all users. They should be different from the templates previously

selected for the testing. Then, the recognizer is trained on the resulting training set. Each time a

candidate is positively recognized, an internal counter is incremented. This operation is repeated

100 times for each 𝑇 : 𝑇={1, 2, 4, 8, 16} for the SHREC2019 and MadLabSD, 𝑇={1, 2, 4, 8, 11} for

the 3DTCGS. While 𝑇={2, 3, 4, 8, 16} the SHREC2019 and MadLabSD, and 𝑇={2, 3, 4, 8, 11} for the
3DTCGS, for the Rubine’s recognizer 3D extensions (𝑅3𝐷 and 𝑅𝑆). In the end, the number of

recognized gestures is averaged to get the recognition rate and formatted as a percentage. Overall,

we performed 6 (Dataset) × 5 (Sampling) × 5 (Number of Templates) × 100 (repetitions) × 7

(Recognizer) = 105,000 recognition trials.

4.2.2 User-Dependent Scenario. One template is randomly selected from each gesture class for

each user. Next, for each user, a set of randomly selected 𝑇 templates is created for every gesture

class different from the templates selected for the testing previously from the same user. Then,

the recognizer is trained on the resulting training dataset. Each time a candidate is positively

recognized, an internal counter is incremented. This operation is repeated 100 times for each user

and for each 𝑇 depending on the recognizer: 𝑇={2, 3, 4, 8} for 𝑅3𝐷 and 𝑅𝑆 , 𝑇={1, 2, 4, 8} for the
others. In the end, the number of recognized gestures is averaged to get the recognition rate and

show it in a percentage format for each 𝑁 and for each recognizer. Only the MadLabSD dataset

was used because SHREC2019 does not identify the gesture’s emitter and 3DTCGS only includes

one template per user for each gesture class. Overall, we performed 4 (Dataset) × 10 (users) × 5

(Sampling) × 4 (Number of Templates) × 100 (repetitions) × 7 (Recognizer) = 560,000 recognition

trials. If we sum up all trials, a grand total of 665,000 trials is obtained.

5 RESULTS
We used IBM SPSS V27 to perform a series of one-way ANOVAs for evaluating the effect of the

recognizer, the number of templates𝑇 , and the sampling𝑁 on the recognition rate and the execution

time. We used Tukey’s HSD post-hoc analysis when Levene’s test [25] did not indicate unequal

variances, and Games-Howell when it did. Data were submitted to a Bonferroni Type I correction

before handling. Table 2 summarizes these results for all datasets and per individual dataset.

5.1 Recognition Rate
5.1.1 User-independent Scenario. The recognizers are sorted in decreasing order of their recogni-

tion rate averaged on all datasets as follows (see overall results in Fig. 14 and individual results per

dataset in Fig. 9 to 13 in Appendix B): $𝑃+3 is superior to $𝐹 , then 𝐹𝐻 , $𝑄3
, $𝑃3

, ended by the two

Rubine conditions 𝑅3𝐷 and 𝑅𝑆 . $𝑃+3 is 9.98% more accurate than its successor $𝐹 , which is roughly

in the same interval as 𝐹𝐻 , $𝑄3
, and $𝑃3

, which is in turn 15.29% more accurate than 𝑅3𝐷 . The

overall difference between the recognizers was statistically very highly significant (𝐹6,10459 = 352.89,
∗∗∗𝑝<.001, 𝜂2=.019 (–)). Table 6 details the results of ANOVAs for all datasets (column “Overall”)

and per dataset. For example, $𝑃+3 is more accurate than $𝐹 with a very high significant difference

(𝑞=21.18) with a small effect size, more accurate than 𝐹𝐻 with a very high significant difference

but without effect size, more accurate than $𝑄3
without any effect size, and so forth. In short, $𝑃+3

is more accurate than all other recognizers with a very highly significant difference, the effect

size ranging from none to medium. The difference between $𝐹 and 𝐹𝐻 , $𝑄3
is not significant, but

becomes significant over $𝑃3
with a medium effect size, over 𝑅3𝐷 and 𝑅𝑆 with a large effect size.

5.1.2 User-dependent Scenario. The recognizers are sorted in decreasing order of their recog-

nition rate averaged on all datasets as follows (see right part of Fig. 10 to Fig. 13 in Appendix B):

$𝑃+3 is superior to 𝐹𝐻 , then $𝐹 , $𝑄3
, $𝑃3

, ended by the two Rubine conditions 𝑅3𝐷 and 𝑅𝑆 . $𝑃+3
is only 2.04% more accurate than its successor 𝐹𝐻 , which is roughly in the same interval as $𝐹 ,

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:11

$𝑄3
, and $𝑃3

, which is in turn 25.66% more accurate than 𝑅3𝐷 . The overall difference between the

recognizers was again statistically very highly significant. Table 7 details the results of ANOVAs for

the four 3DMadLab domains (column “Overall”) and per domain. For example, $𝑃+3 is more accurate

than $𝐹 (𝑞=14.38), 𝐹𝐻 (𝑞=13.62), $𝑄3
(𝑞=16.13), and $𝑃3

(𝑞=19.50), all with a very high significant

difference and a small effect size. In short, $𝑃+3 is more accurate than all other recognizers with a

very high significant difference, the effect size ranging from small to large. Similarly, the difference

between $𝐹 and 𝐹𝐻 , $𝑄3
is not significant, but becomes significant over $𝑃3

without any effect

size, over 𝑅3𝐷 and 𝑅𝑆 with a small and large effect size, and so forth.

5.1.3 User-dependent vs. User-independent Scenario. The $𝑃+3 recognizer remains the most

accurate for the first domain (i.e., the ten digits) in both user-dependent (𝑀=98.45%) and user-

independent scenarios (𝑀=88.08%). For all values of 𝑁 , a high recognition rate is obtained as

soon as with one template and the best recognition rate for more templates. With two or more

templates (𝑇>2) used for training, 𝑅3𝐷’s curve surpasses all the other curves except the $𝑃+3 in the

user-independent scenario and is competitive with other $-like recognizers in the user-dependent

scenario. With less than three templates, 𝑅3𝐷 is inaccurate, which explains why its overall rate

is inferior to the others, except for 𝑅𝑆 . In the user-independent scenario, $-like recognizers are

belong to an envelope that progressively grows when 𝑁 grows. In the user-dependent scenario,

their curves are confounded most of the time. The recognition rates of the second domain, i.e., the
lowercase letters a-j, are quite similar to the first domain with a margin of about 1-2%. For the third

domain, i.e., the simulation symbols, $-like recognizers are close to perfection in the user-dependent

Recognizer Datasets
Overall SHREC 3DTCGS Domain 1 Domain 2 Domain 3 Domain 4

UD UI UI UI UD UI UD UI UD UI UD UI

$𝑃+3 rate (M) 74.40 87.48 86.94 84.28 98.45 88.08 98.81 87.87 99.26 94.45 93.86 66.36

rate (SD) 1.73 13.68 0.75 2.22 4.13 2.34 3.67 1.27 2.78 0.76 0.92 1.65

time (M) 0.53 0.77 0.36 1.24 0.54 0.76 0.53 0.77 0.49 0.69 0.54 0.81

time (SD) 1.43 0.85 0.64 2.00 0.87 1.37 0.87 1.39 0.78 1.24 0.88 1.46

$𝐹 rate (M) 68.13 79.54 79.36 78.83 96.22 76.38 96.78 75.45 97.67 85.66 91.76 57.94

rate (SD) 1.89 16.08 3.55 2.76 6.98 1.63 6.70 3.28 5.26 1.28 1.07 1.68

time (M) 0.42 0.59 0.29 0.91 0.41 0.57 0.42 0.58 0.38 0.53 0.45 0.67

time (SD) 1.04 0.63 0.48 1.40 0.63 0.96 0.64 1.00 0.57 0.91 0.69 1.15

𝐹𝐻 rate (M) 68.46 79.49 79.28 78.84 96.21 76.05 96.69 75.78 97.70 85.55 91.96 57.75

rate (SD) 1.89 16.28 0.93 2.80 6.97 3.20 6.79 3.24 5.28 1.26 1.04 1.70

time (M) 0.94 1.23 0.49 2.41 0.92 1.07 0.92 1.08 0.93 1.14 0.97 1.19

time (SD) 2.55 1.65 0.94 4.22 1.62 2.04 1.62 2.07 1.66 2.13 1.70 2.30

$𝑄3
rate (M) 67.36 79.09 79.36 78.45 95.79 75.20 96.28 74.55 97.51 84.88 91.31 57.02

rate (SD) 1.91 16.54 0.93 2.94 7.22 3.21 7.05 3.22 5.47 1.31 1.09 1.72

time (M) 3.12 3.76 3.01 4.81 3.14 3.55 2.97 3.53 3.13 3.42 3.25 4.27

time (SD) 4.16 3.14 2.94 5.39 3.11 3.70 2.89 3.67 3.19 3.51 3.36 4.92

$𝑃3
rate (M) 65.90 77.50 78.10 77.43 95.28 72.57 95.70 71.55 97.18 82.92 90.68 54.98

rate (SD) 1.93 16.88 0.96 2.99 7.70 3.19 7.54 3.28 5.93 1.40 1.12 1.73

time (M) 8.71 10.94 4.80 20.79 8.59 9.83 8.65 10.19 8.72 9.87 8.88 10.16

time (SD) 24.45 16.76 10.02 39.79 16.49 20.69 16.62 21.38 16.76 20.87 17.15 21.12

𝑅3𝐷 rate (M) 60.80 67.22 52.51 74.48 75.60 72.57 75.94 70.33 76.93 76.52 72.99 54.40

rate (SD) 2.98 24.93 1.61 2.29 38.46 6.49 38.48 6.45 38.83 3.43 3.74 2.69

time (M) 0.08 0.08 0.05 0.12 0.06 0.07 0.06 0.06 0.07 0.08 0.10 0.10

time (SD) 0.027 0.016 0.013 0.018 0.004 0.009 0.005 0.005 0.005 0.009 0.002 0.007

𝑅𝑆 rate (M) 50.04 57.45 40.82 68.82 69.07 58.37 70.76 58.10 73.36 67.98 65.04 43.49

rate (SD) 2.63 23.56 1.51 2.50 36.18 5.77 36.86 5.66 38.01 3.24 3.48 2.35

time (M) 0.03 0.03 0.02 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04

time (SD) 0.012 0.007 0.006 0.011 0.002 0.002 0.005 0.005 0.003 0.003 0.004 0.002

Table 2. Summary of recognition rates and execution times for all datasets and per individual dataset.

Recognizers are sorted in decreasing order of their average recognition rate for all datasets.

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:12 Mehdi Ousmer et al.

scenario with $𝑃+3 being the champion in both cases (𝑀=99.26% and𝑀=94.45%, respectively). The

results for the user-independent scenario are slightly superior to those obtained for the previous

domains. However, the rates are very low for the fourth domain (i.e., the CAD symbols) in the

user-independent scenario (they are all below 66%), but still very good for the user-dependent

scenario (between𝑀=93.86% for $𝑃+3 and𝑀=90.68% for $𝑃3
).

For all four domains, the recognition rate significantly decreases when we are switching from

the user-dependent scenario to the user-independent scenario, which was expected. Recognizing

a 3D trajectory that is different from the templates used for training remains more demanding

than re-identifying an already existing one. Fig. 3 depicts the loss of recognition rate in terms of a

difference of percentage from user-dependent to user-independent. 𝑅3𝐷 wins the lowest averaged

difference of percentage (𝑀=11, 75%), but its global recognition rate is below the $-like recognizers.

The second place is occupied by $𝑃+3, which undergoes the next lowest averaged difference of

percentage (𝑀=17.50% on four domains), followed by $𝐹 , 𝐹𝐻 , $𝑃+3, $𝑃3
, and 𝑅𝑆 .

In conclusion, $𝑃+3 reasonably resists to user-independence while keeping the best recognition

rate. The two first domains, i.e., digits and letters, remain constant in terms of recognition loss

for each recognizer, again with a loss of 12% for $𝑃+3. Overall, the third domain benefits from the

minimum loss, probably because of straightforward symbols, and the fourth domain suffers from

the maximum loss, probably because of the most uncommon symbols.

Recognizer Scenario
G1 G2 UI UD

$𝑃+3 $𝐹 21.18,***, S 14.38,***, S

𝐹𝐻 21.30,***, – 13.62,***, S

$𝑄3
22.89,***, – 16.13,***, S

$𝑃3
27.50,***, S 19.50,***, S

𝑅3𝐷 37.75,***, S 31.19,***, M

𝑅𝑆 61.51,***, M 21.18,***, S

$𝐹 𝐹𝐻 0.11, n.s. 0.76, n.s.
$𝑄3

1.70, n.s. 1.75, n.s.
$𝑃3

6.31,***, M 5.11,**, –

𝑅3𝐷 16.56,***, L 16.81,***, S

𝑅𝑆 40.32,***, L 41.48,***, L

𝐹𝐻 $𝑄3
1.58, n.s. 2.51, n.s.

$𝑃3
6.19,***, M 5.87,***, –

𝑅3𝐷 16.44,***, L 17.57,***, S

𝑅𝑆 40.22,***, L 42.25,***, L

$𝑄3
$𝑃3

4.61,***, S 3.36, n.s.
𝑅3𝐷 14.86,***, L 15.06,***, S

𝑅𝑆 36.61,***, L 39.73,***, L

$𝑃3 𝑅3𝐷 10.24,***, L 11.69,***, S

𝑅𝑆 34.01,***, L 36.37,***, M

𝑅3𝐷 𝑅𝑆 23.75,***, L 24.67,***, S

Table 3. ANOVAs computed for the 7 Recognizers in the user-independent (UI) and user-dependent (UD)

scenarios: G1=group 1, G2=group 2. For each dataset, three data are provided: the 𝑞 value resulting from the

ANOVA, the significance of the p value if any (***𝑝≤.001), and Cohen’s d coefficient for effect size ((S)mall

when 𝑑≥.02, (M)edium when 𝑑≥.05, (L)arge when 𝑑≥.08, and (–) when no significant effect size (𝑑<.02)).

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:13

Re
co

gn
iti

on
 ra

te
 [%

]

Recognizer x Domain of MadLabSD (D1,…,D4)

88.08 87.87

94.45

66.36

76.05
75.78

85.55

57.75

76.38

75.45

85.66

57.94

75.20

74.55

84.88

57.02

72.57
71.55

82.92

54.98

72.57
70.33

76.52

54.40

58.37
58.10

67.98

43.49

12% 12%

5%

41%

27% 28%

14%

59%

25% 28%

14%

58%

28% 29%

15%

60%

31% 34%

17%

65% 4%
8% 1%

34% 18% 22%

8%

50%

98.45 98.81 99.26

93.86
96.21 96.69 97.70

91.96

95.79
96.78 97.67

91.76

96.28 96.28 97.51

91.31

95.28 95.70 97.18

90.68

75.60
75.94 76.93

72.99

69.07
70.76

73.36

65.04

40

50

60

70

80

90

100

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

P3DollarPlus FreeHandUni DollarFlex Q3Dollar P3Dollar Rubine3D RubineSheng

User independent User dependent

Fig. 3. Difference of percentage in recognition rate loss for all recognizers on the MadLabSD dataset [18], all

domains, when restricting the scenario from user-dependent to user-independent. Recognizers are sorted in

decreasing order of their global recognition rate.

5.2 Execution Time
Appendix D plots the execution time for the six datasets based on tables for the user-independent

scenario and the user-dependent scenario in Appendix D.2, resp. in Appendix D.3. For each table, a

colour key scheme is determined based on the median values of the execution times obtained in

these configurations. Grey lines of Table 2 report times averaged for all datasets.

5.2.1 User-independent Scenario. Fig. 15 plots the execution time in msec. for all recognizers

in all conditions for the 3DTCGS and SHREC2019 datasets. Overall, 𝑅3𝐷 (𝑀=.047, 𝑆𝐷=.013) and

𝑅𝑆 (𝑀=.017, 𝑆𝐷=.006) have the lowest and the most constant times in all configurations. On

the contrary, the $-like recognizers are the most time-consuming: $𝐹 (𝑀=.289, 𝑆𝐷=.490) is the

fastest recognizer among them, followed by $𝑃+3 (𝑀=.363, 𝑆𝐷=.649), 𝐹𝐻 (𝑀=.492, 𝑆𝐷=.956), $𝑄3

(𝑀=3.005, 𝑆𝐷=3.005) and $𝑃3
(𝑀=4.798, 𝑆𝐷=10.224). This difference suggests that feature-based

recognizers, like 𝑅3𝐷 and 𝑅𝑆 , are not influenced by the same parameters as template-based ones

(i.e., $𝑃3
, $𝑃+3, $𝑄3

, $𝐹 , and 𝐹𝐻). 𝑅𝑆 is the fastest recognizer in most 𝑁 and 𝑇 conditions, except

when 𝑁=4 and 𝑇≤4. The times for all $-like recognizers increase while 𝑁 and 𝑇 grow. $𝑄3
is the

slowest recognizer for 𝑁=4, 8. Other curves are under the $𝑄3
one but from 𝑁=16, $𝑃3

execution

times increase quickly and exceed the execution time of $𝑄3
for 𝑇=16 and it occurs even quicker

for 𝑁=32 and 𝑁=64, where $𝑃3
exceeds $𝑄3

immediately after 𝑇=4, resp., 𝑇=2. 𝑅𝑆 is three-time

faster than 𝑅3𝐷 : the ratio of their averaged execution times is
𝑡𝑅𝑆

𝑡𝑅3𝐷
=2.82. This ratio makes sense

considering that 𝑅3𝐷 computes 39 features of the candidate (3 times 13 features for the three planes

𝑋𝑌 , 𝑌𝑍 , and 𝑍𝑋) while 𝑅𝑆 computes 16 features once. For these feature-oriented recognizers,

the candidate is pre-processed, features are extracted and multiplied by pre-computed weights of

each class, then summed. The candidate’s class is designated by the larger sum resulting from this

calculation, which confirms a constant time influenced by the number of classes. The $𝐹 , $𝑃+3, and
𝐹𝐻 have short execution times compared to other $-like recognizers. $𝐹 and $𝑃+3 are better than
𝐹𝐻 ones, this variation is caused by the early abandoning of the two recognizers. The execution

times for all the conditions for this dataset are below 100 msec, the limit for a user to feel that a

system is operating in real-time [32].

The overall picture for 3DTCGS remains the same as for the SHREC2019: the execution times

increase for all the recognizers and conditions, which pushes the $𝑃3
over the limit of 100 msec.

This is due to the increase of the number of classes and samples per class in the dataset (26 classes

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:14 Mehdi Ousmer et al.

compared with 5 gestures for SHREC2019). We observe a rapid increase of the $𝑃3
curve which

surpasses the $𝑄3
just after 𝑇=4 for 𝑁=8.

The four 3DMadLab domains are depicted in Fig. 16 and Fig 17. Their results are analogous to the

first two datasets. Rubine-Sheng remains the fastest recognizer (𝑀𝐷1=.26 ms,𝑀𝐷2=.28 ms,𝑀𝐷3=.31

ms, and𝑀𝐷4=.41𝑚𝑠), whereas the $𝑃3
stays the slowest one (𝑀𝐷1=9.83ms,𝑀𝐷2=10.19ms,𝑀𝐷3=9.87

ms,𝑀𝐷4=10.16 ms). For the fourth domain containing the CAD symbols, the execution times are

slightly above the other domains, probably because their shape complexity with more crossing

points and angle variations require more comparisons.

5.2.2 User-dependent Scenario. The execution time curves of the four domains are depicted

in Fig. 18 and Fig. 19, resp. In contrast to the user-independent scenario, 𝑅𝑆 remains the fastest

recognizer in all conditions (𝑀𝐷1=.030 ms,𝑀𝐷2=.027 ms,𝑀𝐷3=.030 ms, and𝑀𝐷1=.042𝑚𝑠). The $𝑃3

curve is located under the $𝑄3
for 𝑁=4 (𝑀

$𝑃3=.058 ms and for𝑀
$𝑄3=.447 ms) and 𝑁=8 (𝑀

$𝑃3=.444

ms and𝑀
$𝑄3=.853 ms). The $𝑃3

execution time curve progressively increases as 𝑁 increases and it

intersects with the $𝑄3
at different points, the intersection point is determined by𝑇 . The execution

time for this scenario is larger than for the user-independent scenario because of the method used

in JavaScript to return the timestamp during the recognition. For the user-independent scenario, we

used performance.now(), which is a high performance method returning a value representing the

time spent since the beginning of the program with a precision of up to one microsecond, whereas

in the user-dependent scenario, we used date.now() which is a method returning the number of

milliseconds elapsed since UNIX epoch, which limits the precision by rounding it to 1 millisecond.

6 DISCUSSION AND LIMITATIONS
The evaluation of the seven recognizers on the six datasets suggests the following considerations:

• $𝑃+3 stands out as the first-class recognizer for the 3D trajectories tested with the best

recognition rate in almost all conditions with a very high statistical significance, apart from a

few exceptions, such as when the number of templates is very reduced. It is the most robust

to user-independence in terms of rate loss and benefits of an excellent execution time in

almost all conditions, thus making it the first choice tenable for recognizing efficiently 3D

trajectories, especially in contrast to other recognizers.

• In contrast, 𝑅𝑆 is always the worst recognizer for the 3D trajectories tested. As it suffers from

low to very low recognition rates, it should be simply avoided.

• After the $𝑃+3 recognizer, there is a recurrent pattern in the ordering of subsequent rec-

ognizers both in terms of recognition rate and execution time: a first batch of other $-like

recognizers appears with $𝐹 , 𝐹𝐻 , $𝑄3
, and $𝑃3

and a second batch containing the two

feature-oriented algorithms, i.e., 𝑅3𝐷 and 𝑅𝑆 .

• The preference for recognizers belonging to the first batch, by contrasting and weighting

their recognition rate more than their execution time, is: $𝑃+3, $𝐹 , 𝐹𝐻 , $𝑄3
, and $𝑃3

.

• Our two $𝐹 and 𝐹𝐻 variations have some more flexibility, but significantly, improve the

recognition rate with a small to medium effect size.

• The preference for recognizers belonging to the second batch is: 𝑅3𝐷 is always before 𝑅𝑆 .

• $𝑃+3, our tri-dimensionalization of $𝑃+, gives superior results, as well as $𝑄3
for $𝑄 , and $𝑃3

for $𝑃 . 𝑅3𝐷 also gives superior results to 𝑅𝑆 in all conditions and 𝑅𝑆 should just be forgotten.

All reported results are averaged on all datasets, ranging from the simplest one to the most

complex one (e.g., Domain 4). In order to determine any effect of the datasets (i.e., SHREC2019,
3DTCGS, Domains 1–4 in the user-independent scenario and Domain 1–4 in the user-dependent

scenario) on the recognition rate and the execution time, we computed another series of one-way

ANOVAs (Table 4). The analyses showed a significant effect of the datasets on the recognition

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:15

Recognizer Effect User independent User dependent

𝐹5,144 𝑝 𝜂2 𝐹3,76 𝑝 𝜂2

$𝑃3
Datasets × Rates 21.75

∗∗∗
.43 (L) 8.66

∗∗∗
.25 (L)

Datasets × Time 1.15 n.s. .04 (–) 0 n.s. 0 (–)

$𝑄3
Datasets × Rates 21.87

∗∗∗
.43 (L) 8.86

∗∗∗
.26 (L)

Datasets × Time 0.61 n.s. .02 (–) 0 n.s. 0 (–)

$𝑃+3 Datasets × Rates 41.48
∗∗∗

.59 (L) 20.9
∗∗∗

.45 (L)

Datasets × Time 0.95 n.s. .03 (–) 0 n.s. 0 (–)

$𝐹 Datasets × Rates 22.1
∗∗∗

.43 (L) 8.45
∗∗∗

.25 (L)

Datasets × Time 0.93 n.s. .03 (–) 0 n.s. 0 (–)

𝐹𝐻 Datasets × Rates 22.48
∗∗∗

.44 (L) 8.28
∗∗∗

.25 (L)

Datasets × Time 1.55 n.s. .05 (–) 0 n.s. 0 (–)

𝑅3𝐷 Datasets × Rates 3.64
∗∗

.11 (M) 0 n.s. 0 (–)

Datasets × Time 147.18
∗∗∗

.84 (L) 357.48
∗∗

.93 (L)

𝑅𝑆 Datasets × Rates 6.07
∗∗∗

.17 (L) .19 0 n.s. .01 (–)

Datasets × Time 89.39
∗∗∗

.76 (L) 65.55
∗∗∗

.72 (L)

Table 4. The effect of dataset on the recognition rate and the execution time with the effect size ((L)arge

when 𝜂2≥.14, (M)edium when 𝜂2≥.06, (S)mall when 𝜂2≥.01, and (—) when there is a null effect size).

rate with a large effect size, but no significant effect on the execution time in both scenarios. A

medium effect size in the user-independent scenario was observed on the 𝑅3𝐷 recognition rate,

but no significant effect on it and on 𝑅𝑆 recognition rate in the user-dependent scenario. The

Tukey’s HSD and Games-Howell post-hoc analyses revealed that the recognizers got the lowest

rate for Domain 4 in the two scenarios. For instance, there were significant differences for the

$𝑃+3 recognition rate in user-independent scenario between the different datasets, Domain 4 vs.
SHREC2019 (𝑀Diff=−20.588,∗∗∗𝑝<.001), Domain 4 vs. 3DTCGS (𝑀Diff=−17.923,∗∗∗𝑝<.001), Domain 4

vs.Domain 1 (𝑀Diff=−21.720,∗∗∗𝑝<.001), Domain 4 vs.Domain 2 (𝑀Diff=−21.512,∗∗∗𝑝<.001), Domain

4 vs. Domain 3 (𝑀Diff=− 28.092,∗∗∗𝑝<.001), and Domain 4 vs. 3DMadLab (𝑀Diff=− 20.588,∗∗∗𝑝<.001).
There was also a significant effect of the datasets on 𝑅3𝐷 and 𝑅𝑆 execution time. The 𝑅3𝐷 execution

times are significantly different between each pair of datasets. Both 𝑇 and 𝑁 have a significant

impact on the recognition rate and execution time of most recognizers (Table 5):

• Regarding the $𝑃3
, $𝑄3

, $𝑃+3, $𝐹 , and 𝐹𝐻 , we observe a significant effect of both factors,

with a large effect size in the two scenarios. The Games-Howell analyses revealed that the

execution time is significantly slower as the number of points increases.

• The $𝑄3
execution time is not significantly impacted by the number of templates in both

scenarios. The effect of the number of templates on the execution time of $𝐹 is significant with

a medium effect size, the Game-Howell post-hoc analysis revealed no significant difference

between the execution times of each 𝑇 in the user-dependent scenario.

• As per 𝑅3𝐷 and 𝑅𝑆 , only𝑇 had a significant effect on the recognition rates with a large effect

size. The Game-Howell confirms that the recognizers are more accurate with more templates.

We now discuss some limitations of our experiment. Other recognizers, such as $3 [20] or

vector-based recognizers [42], were not considered, mainly due to their computational complexity.

Comparing them against the winner of this test, i.e., $𝑃3+, in the same conditions might be interest-

ing. Although we tested six different datasets, covering a wide range of 3D trajectories in terms

of variety, complexity, and familiarity, their gestures mostly represent semaphoric gestures [1]

associated to a particular meaning. The effect of depth on performing and recognizing such ges-

tures was not studied in this experiment, and represent an opportunity to test robustness to depth

instability. The 3D trajectories were tested within our framework (Fig. 2) running on a personal

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

198:16 Mehdi Ousmer et al.

Recognizer Effect User independent User dependent

𝐹4,145 𝑝 𝜂2 𝐹3,76 𝑝 𝜂2

$𝑃3
Templates × Rates 16.31

∗∗∗
.31 (L) 16.80

∗∗∗
.40 (L)

Points × Rates 9.40
∗∗∗

.21 (L) 5.98
∗∗∗

.24 (L)

Templates × Time 5.69
∗∗∗

.14 (L) 4.04
∗∗∗

.14 (L)

Points × Time 25.27
∗∗∗

.41 (L) 24.87
∗∗∗

.57 (L)

$𝑄3
Templates × Rates 15.31

∗∗∗
.30 (L) 15.44

∗∗∗
.38 (L)

Points × Rates 9.90
∗∗∗

.21 (L) 6.22
∗∗∗

.25 (L)

Templates × Time 0.64 n.s. .02 (–) 0.09 n.s. 0 (–)

Points × Time 311.36
∗∗∗

.90 (L) 1587.00
∗∗∗

.99 (L)

$𝑃+3 Templates × Rates 11.46
∗∗∗

.24 (L) 7.99
∗∗∗

.24 (L)

Points × Rates 2.65
∗

.07 (M) 2.16 n.s. .10 (-)

Templates × Time 6.26
∗∗∗

.15 (L) 3.51
∗

.12 (M)

Points × Time 33.96
∗∗∗

.48 (L) 36.02
∗∗∗

.66 (L)

$𝐹 Templates × Rates 16.77
∗∗∗

.32 (L) 13.89
∗∗∗

.36 (L)

Points × Rates 8.66
∗∗∗

.19 (L) 6.88
∗∗∗

.27 (L)

Templates × Time 6.70
∗∗∗

.16 (L) 3.52
∗

.12 (M)

Points × Time 34.95
∗∗∗

.49 (L) 39.12
∗∗∗

.68 (L)

𝐹𝐻 Templates × Rates 16.25
∗∗∗

.31 (L) 13.83
∗∗∗

.35 (L)

Points × Rates 8.79
∗∗∗

.20 (L) 7.26
∗∗∗

.28 (L)

Templates × Time 6.62
∗∗∗

.15 (L) 4.76
∗∗

.16 (L)

Points × Time 22.65
∗∗∗

.39 (L) 23.83
∗∗∗

.56 (L)

𝑅3𝐷 Templates × Rates 89.56
∗∗∗

.71 (L) 12047.47
∗∗∗

1 (L)

Points × Rates 0 n.s. 0 (–) 0 n.s. 0 (–)

Templates × Time 0.42 n.s. .01 (–) 0.13 n.s. .01 (–)

Points × Time 0.14 n.s. 0 (–) 0.1 n.s. .01 (–)

𝑅𝑆 Templates × Rates 70.35
∗∗∗

.66 (L) 2258.11
∗∗∗

.99 (L)

Points × Rates 0 n.s. 0 (–) 0.09 n.s. 0 (–)

Templates × Time 1.21 n.s. .03 (–) 0.37 n.s. .01 (–)

Points × Time 0.19 n.s. .01 (–) 0.10 n.s. .01 (–)

Table 5. The effect of number of templates and points on the recognition rate and the execution time with

the effect size ((L)arge when 𝜂2≥.14,(M)edium 𝜂2≥.06, (S)mall 𝜂2≥.01, and (–) when null effect size).

computer, thus suggesting to reproduce the experiment in a real-world application to investigate

other user-oriented factors, like user experience, memorability, attractiveness, and system-oriented

factors, such as computational power and memory usage. While the effect of number of templates

and sampling is investigated, we did not explore the potential impact of the number of gesture

classes on recognition rates and execution times (5 for SHREC2019, 26 for 3DTCGS, and 10 for each

3DMadLabSD). It might be interesting to repeat the evaluation for the complete 3DMadLabSD at

once with 40 classes. We do not know however what is the maximal amount of gesture classes that

an end-user may remember.

We did not test some other recognizers, such as $3 [20] or vector-based recognizers [42, 46],

mainly because they apparently require more computational steps than our three-dimensionalized

versions. This remains to be proven. The 3¢ algorithm [10] was tested on SHREC2019, but not on

the other ones. Therefore, it might be interesting to test them in the same conditions against the

winner of this test, i.e., $𝑃3+.
Although we tested six different datasets, covering a wide range of 3D trajectories in terms

of variety, complexity, and familiarity, these gestures mostly represent semaphoric gestures [1]

associated to a particular meaning, not particularly to a movement. The 3D trajectories tested

represent more symbols drawn in thin air than genuine movement gestures. For example, a spiral

can be issued in many different ways, ranging from a flat drawing remaining mostly coplanar to a

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:17

depth-varying, representing a helicoidal spiral (Fig. 1-2). The effect of depth on performing and

recognizing such gestures was not studied in this experiment, and represent an opportunity to test

robustness to depth instability. Finally, the 3D trajectories were only tested for recognition inside

the framework, and not in a real-world application. This suggests repeating the same experiment

by deploying the framework for a particular application using the same dataset to test other factors,

like user experience, memorability, attractiveness, etc.

7 CONCLUSION
This paper is related to 3D trajectories, which are referred to as uni-stroke single-point gestures

performed in thin air. Such trajectories with their (𝑥,𝑦, 𝑧) coordinates could be interpreted as three

2D stroke gestures projected on three planes,i.e., 𝑋𝑌 , 𝑌𝑍 , and 𝑍𝑋 , thus making them admissible for

established 2D stroke gesture recognizers. In order to investigate whether these 3D trajectories could

be effectively and efficiently recognized via these recognizers, four 2D stroke gesture recognizers

selected from a target literature review, i.e., $P, $P+, $Q, and Rubine, are extended to the third

dimension: $𝑃3
, $𝑃+3, $𝑄3

, and Rubine-Sheng, an extension of Rubine for 3D with more features.

Two new variations are also introduced: $𝐹 for flexible cloud matching and FreeHandUni for

uni-path recognition. Rubine3D, another extension of Rubine for 3D which projects the 3D gesture

on three orthogonal planes, is also included. These seven recognizers are implemented together in

JavaScript in a testing framework to compare them against three challenging datasets containing

3D trajectories, i.e., SHREC2019 [8] and 3DTCGS [9] in a user-independent scenario, and 3DMad-

LabSD [18] with its four domains, in both user-dependent and user-independent scenarios. Our

study was within-factors with four independent variables: the seven recognizers, the six individual

datasets, the varying number of templates and the sampling, thus totalling 665,000 trials. Individual

recognition rates and execution times per dataset and aggregated ones on all datasets show a highly

significant difference between recognizers in most configurations, despite its original goal for user

interface fast prototyping: $𝑃+3, $𝐹 , FreeHandUni, $𝑄3
, $𝑃3

, Rubine3D, and Rubine-Sheng.

The potential effects of the dataset, the number of templates, and the sampling are also studied.

Since 3DMadLabSD is evaluated in both scenarios, the recognition loss when switching from

user-dependent to user-independent, the most constraining scenario, is also reported: $𝑃+3 remains

the most effective and efficient recognizer in terms of recognition rate, loss, and execution time.

We also release the testing framework developed in JavaScript for the purpose of the evaluation

as it is publicly available at https://github.com/Mehous/TestingFramework. Sub-parts contain the

seven recognizers, which can be reused in other contexts of use or experiments, for implementing

new versions of these recognizers or another version in other markup or programming languages,

and for future work contributing to research reproducibility, as recommended by ACM
1
.

ACKNOWLEDGEMENTS
The authors of this paper are grateful to the anonymous ACM ISS reviewers for their detailed and

constructive comments on earlier versions of this manuscript. They also thank Radu-Daniel Vatavu

from University of Suceava for suggesting the research question addressed in this paper based

on [48] and for providing us with in-depth guidance for this evaluation.

1
See https://www.acm.org/publications/policies/artifact-review-and-badging-current

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://github.com/Mehous/TestingFramework
https://www.acm.org/publications/policies/artifact-review-and-badging-current

198:18 Mehdi Ousmer et al.

REFERENCES
[1] Roland Aigner, Daniel Wigdor, Hrvoje Benko, Michael Haller, David Lindbauer, Alexandra Ion, Shengdong Zhao, and

Jeffrey Tzu Kwan Valino Koh. 2012. Understanding Mid-Air Hand Gestures: A Study of Human Preferences in Usage of
Gesture Types for HCI. Technical Report MSR-TR-2012-111. https://www.microsoft.com/en-us/research/publication/

understanding-mid-air-hand-gestures-a-study-of-human-preferences-in-usage-of-gesture-types-for-hci/

[2] Ahmad Akl and Shahrokh Valaee. 2010. Accelerometer-based gesture recognition via dynamic-time warping, affinity

propagation, & compressive sensing. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
2270 – 2273. https://doi.org/10.1109/ICASSP.2010.5495895

[3] Lisa Anthony and Jacob O. Wobbrock. 2010. A Lightweight Multistroke Recognizer for User Interface Prototypes. In

Proceedings of Graphics Interface 2010 (Ottawa, Ontario, Canada) (GI ’10). Canadian Information Processing Society,

Toronto, Ont., Canada, Canada, 245–252. http://dl.acm.org/citation.cfm?id=1839214.1839258

[4] Lisa Anthony and Jacob O. Wobbrock. 2012. $N-ProTractor: A Fast and Accurate Multistroke Recognizer. In Proceedings
of Graphics Interface 2012 (Toronto, Ontario, Canada) (GI ’12). Canadian Information Processing Society, Toronto, Ont.,

Canada, Canada, 117–120. http://dl.acm.org/citation.cfm?id=2305276.2305296

[5] F. Argelaguet, M. Ducoffe, A. Lécuyer, and R. Gribonval. 2017. Spatial and rotation invariant 3D gesture recognition

based on sparse representation. In 2017 IEEE Symposium on 3D User Interfaces (3DUI). 158–167.
[6] Said Yacine Boulahia, Eric Anquetil, Richard Kulpa, and Franck Multon. 2017. 3D Multistroke Mapping (3DMM):

Transfer of Hand-Drawn Pattern Representation for Skeleton-Based Gesture Recognition. In Proceedings of the 12th
IEEE International Conference on Automatic Face Gesture Recognition (Washington, DC, USA) (FG ’17). IEEE, 462–467.
https://doi.org/10.1109/FG.2017.63

[7] R. Brunelli. 2009. Template Matching Techniques in Computer Vision: Theory and Practice. John Wiley & Sons, New

York.

[8] F. M. Caputo, S. Burato, G. Pavan, T. Voillemin, H. Wannous, J. P. Vandeborre, M. Maghoumi, E. M. Taranta II, A.

Razmjoo, J. J. LaViola Jr., F. Manganaro, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara, H. Nguyen, M. T. Tran, and A.

Giachetti. 2019. Online Gesture Recognition. In Eurographics Workshop on 3D Object Retrieval, Silvia Biasotti, Guillaume

Lavoué, and Remco Veltkamp (Eds.). The Eurographics Association. https://doi.org/10.2312/3dor.20191067

[9] Fabio Marco Caputo, Pietro Prebianca, Alessandro Carcangiu, Lucio D. Spano, and Andrea Giachetti. 2017. A 3 Cent

Recognizer: Simple and Effective Retrieval and Classification of Mid-air Gestures from Single 3D Traces. In Smart Tools
and Apps for Graphics - Eurographics Italian Chapter Conference, Andrea Giachetti, Paolo Pingi, and Filippo Stanco

(Eds.). The Eurographics Association. https://doi.org/10.2312/stag.20171221

[10] Fabio M. Caputo, Pietro Prebianca, Alessandro Carcangiu, Lucio D. Spano, and Andrea Giachetti. 2018. Comparing 3D

trajectories for simple mid-air gesture recognition. Computers & Graphics 73 (2018), 17 – 25. https://doi.org/10.1016/j.

cag.2018.02.009

[11] Hong Cheng, Lu Yang, and Zicheng Liu. 2016. Survey on 3D Hand Gesture Recognition. IEEE Transactions on Circuits
and Systems for Video Technology 26, 9 (2016), 1659–1673. https://doi.org/10.1109/TCSVT.2015.2469551

[12] Adrien Coyette, Sascha Schimke, Jean Vanderdonckt, and Claus Vielhauer. 2007. Trainable Sketch Recognizer for

Graphical User Interface Design. In Human-Computer Interaction – INTERACT 2007, Cécilia Baranauskas, Philippe
Palanque, Julio Abascal, and Simone Diniz Junqueira Barbosa (Eds.). Springer, Berlin, Heidelberg, 124–135.

[13] Elena-Gina Craciun, Ionela Rusu, and Radu-Daniel Vatavu. 2016. Free-Hand Gesture Recognizer Pseudocode. http:

//www.eed.usv.ro/mintviz/projects/GIVISIMP/data/Pseudocode2.pdf

[14] Richard O. Duda, Peter E. Hart, and David G. Stork. 2000. Pattern Classification. Wiley & Sons, New York.

[15] Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Gestures for Smart Rings: Empirical Results,

Insights, andDesign Implications. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong Kong, China)
(DIS ’18). Association for ComputingMachinery, New York, NY, USA, 623–635. https://doi.org/10.1145/3196709.3196741

[16] James Herold and Thomas F. Stahovich. 2012. The One Cent Recognizer: A Fast, Accurate, and Easy-to-Implement

Handwritten Gesture Recognition Technique. In Eurographics Workshop on Sketch-Based Interfaces and Modeling, Karan
Singh and Levent Burak Kara (Eds.). The Eurographics Association. https://doi.org/10.2312/SBM/SBM12/039-046

[17] M. Hoffman, P. Varcholik, and J. J. LaViola. 2010. Breaking the status quo: Improving 3D gesture recognition with

spatially convenient input devices. In 2010 IEEE Virtual Reality Conference (VR). 59–66.
[18] Jinmiao Huang, Prakhar Jaiswal, and Rahul Rai. 2019. Gesture-based system for next generation natural and intuitive

interfaces. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 33, 1 (2019), 54–68. https:

//doi.org/10.1017/S0890060418000045

[19] Sven Kratz and Maribeth Back. 2015. Towards Accurate Automatic Segmentation of IMU-Tracked Motion Gestures.

In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI EA ’15). Association for Computing Machinery, New York, NY, USA, 1337–1342.

https://doi.org/10.1145/2702613.2732922

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://www.microsoft.com/en-us/research/publication/understanding-mid-air-hand-gestures-a-study-of-human-preferences-in-usage-of-gesture-types-for-hci/
https://www.microsoft.com/en-us/research/publication/understanding-mid-air-hand-gestures-a-study-of-human-preferences-in-usage-of-gesture-types-for-hci/
https://doi.org/10.1109/ICASSP.2010.5495895
http://dl.acm.org/citation.cfm?id=1839214.1839258
http://dl.acm.org/citation.cfm?id=2305276.2305296
https://doi.org/10.1109/FG.2017.63
https://doi.org/10.2312/3dor.20191067
https://doi.org/10.2312/stag.20171221
https://doi.org/10.1016/j.cag.2018.02.009
https://doi.org/10.1016/j.cag.2018.02.009
https://doi.org/10.1109/TCSVT.2015.2469551
http://www.eed.usv.ro/mintviz/projects/GIVISIMP/data/Pseudocode2.pdf
http://www.eed.usv.ro/mintviz/projects/GIVISIMP/data/Pseudocode2.pdf
https://doi.org/10.1145/3196709.3196741
https://doi.org/10.2312/SBM/SBM12/039-046
https://doi.org/10.1017/S0890060418000045
https://doi.org/10.1017/S0890060418000045
https://doi.org/10.1145/2702613.2732922

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:19

[20] Sven Kratz andMichael Rohs. 2010. A $3 Gesture Recognizer: Simple Gesture Recognition for Devices Equipped with 3D

Acceleration Sensors. In Proceedings of the 15th International Conference on Intelligent User Interfaces (Hong Kong, China)
(IUI ’10). Association for Computing Machinery, New York, NY, USA, 341–344. https://doi.org/10.1145/1719970.1720026

[21] Sven Kratz and Michael Rohs. 2011. Protractor3D: A Closed-Form Solution to Rotation-Invariant 3D Gestures. In

Proceedings of the 16th International Conference on Intelligent User Interfaces (Palo Alto, CA, USA) (IUI ’11). Association
for Computing Machinery, New York, NY, USA, 371–374. https://doi.org/10.1145/1943403.1943468

[22] Per Ola Kristensson and Leif C. Denby. 2011. Continuous Recognition and Visualization of Pen Strokes and Touch-

Screen Gestures. In Sketch Based Interfaces and Modeling, Vancouver, BC, Canada, 5-7 August 2011. Proceedings, Tracy
Hammond and Andrew Nealen (Eds.). Eurographics Association, 95–102. https://doi.org/10.2312/SBM/SBM11/095-102

[23] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vocabulary Shorthand Writing System for Pen-based

Computers. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology (Santa Fe,

NM, USA) (UIST ’04). ACM, New York, NY, USA, 43–52. https://doi.org/10.1145/1029632.1029640

[24] Lynn Kysh. 2013. Difference between a systematic review and a literature review. (8 2013). https://doi.org/10.6084/m9.

figshare.766364.v1

[25] Howard Levene. 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in
Honor of Harold Hotelling, Ingram Olkin and Harold Hotelling et al. (Eds.). Stanford University Press, Palo Alto, CA,

USA, 278–292.

[26] Yang Li. 2010. Protractor: A Fast and Accurate Gesture Recognizer. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 2169–2172.

https://doi.org/10.1145/1753326.1753654

[27] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009. UWave: Accelerometer-Based Personalized

Gesture Recognition and Its Applications. Pervasive Mob. Comput. 5, 6 (Dec. 2009), 657–675. https://doi.org/10.1016/j.

pmcj.2009.07.007

[28] Mehran Maghoumi and Joseph J. LaViola. 2019. DeepGRU: Deep Gesture Recognition Utility. In Advances in Visual
Computing, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Daniela Ushizima, Sek Chai, Shinjiro Sueda,

Xin Lin, Aidong Lu, Daniel Thalmann, Chaoli Wang, and Panpan Xu (Eds.). Springer International Publishing, Cham,

16–31.

[29] Nathan Magrofuoco, Jorge Luis Pérez-Medina, Paolo Roselli, Jean Vanderdonckt, and Santiago Villarreal. 2019. Eliciting

Contact-Based and Contactless Gestures With Radar-Based Sensors. IEEE Access 7 (2019), 176982–176997. https:

//doi.org/10.1109/ACCESS.2019.2951349

[30] Antigoni Mezari and Ilias Maglogiannis. 2017. Gesture Recognition Using Symbolic Aggregate Approximation and

Dynamic TimeWarping on Motion Data. In Proceedings of the 11th EAI International Conference on Pervasive Computing
Technologies for Healthcare (Barcelona, Spain) (PervasiveHealth ’17). Association for Computing Machinery, New York,

NY, USA, 342–347. https://doi.org/10.1145/3154862.3154927

[31] Meredith Ringel Morris, Andreea Danielescu, Steven Drucker, Danyel Fisher, Bongshin Lee, m. c. schraefel, and

Jacob O. Wobbrock. 2014. Reducing Legacy Bias in Gesture Elicitation Studies. Interactions 21, 3 (May 2014), 40–45.

https://doi.org/10.1145/2591689

[32] J. Nielsen. 1994. Usability Engineering. Elsevier Science. https://books.google.be/books?id=95As2OF67f0C

[33] F. R. Ortega, A. Galvan, K. Tarre, A. Barreto, N. Rishe, J. Bernal, R. Balcazar, and J. Thomas. 2017. Gesture elicitation for

3D travel via multi-touch and mid-Air systems for procedurally generated pseudo-universe. In 2017 IEEE Symposium
on 3D User Interfaces (3DUI). 144–153.

[34] J. Reaver, T. F. Stahovich, and J. Herold. 2011. How to Make a Quick$: Using Hierarchical Clustering to Improve the

Efficiency of the Dollar Recognizer. In Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces
and Modeling (Vancouver, British Columbia, Canada) (SBIM ’11). ACM, New York, NY, USA, 103–108. https://doi.org/

10.1145/2021164.2021183

[35] Dean Rubine. 1991. Specifying Gestures by Example. In Proceedings of the 18th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’91). ACM, New York, NY, USA, 329–337. https://doi.org/10.1145/122718.122753

[36] Ugo Braga Sangiorgi, François Beuvens, and Jean Vanderdonckt. 2012. User Interface Design by Collaborative Sketching.

In Proceedings of the Designing Interactive Systems Conference (Newcastle Upon Tyne, United Kingdom) (DIS ’12).
Association for Computing Machinery, New York, NY, USA, 378–387. https://doi.org/10.1145/2317956.2318013

[37] Ovidiu Andrei Schipor, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2019. Euphoria: A Scalable, event-driven

architecture for designing interactions across heterogeneous devices in smart environments. Inf. Softw. Technol. 109
(2019), 43–59. https://doi.org/10.1016/j.infsof.2019.01.006

[38] V. M. Sethu Janaki, S. Babu, and S. S. Sreekanth. 2013. Real time recognition of 3D gestures in mobile devices. In 2013
IEEE Recent Advances in Intelligent Computational Systems (RAICS). 149–152.

[39] Jia Sheng. 2004. A Study of AdaBoost in 3D Gesture Recognition. technical report CSC2515. Department of Computer

Science, University of Toronto. http://www.dgp.toronto.edu/~jsheng/doc/CSC2515/Report.pdf

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://doi.org/10.1145/1719970.1720026
https://doi.org/10.1145/1943403.1943468
https://doi.org/10.2312/SBM/SBM11/095-102
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.6084/m9.figshare.766364.v1
https://doi.org/10.6084/m9.figshare.766364.v1
https://doi.org/10.1145/1753326.1753654
https://doi.org/10.1016/j.pmcj.2009.07.007
https://doi.org/10.1016/j.pmcj.2009.07.007
https://doi.org/10.1109/ACCESS.2019.2951349
https://doi.org/10.1109/ACCESS.2019.2951349
https://doi.org/10.1145/3154862.3154927
https://doi.org/10.1145/2591689
https://books.google.be/books?id=95As2OF67f0C
https://doi.org/10.1145/2021164.2021183
https://doi.org/10.1145/2021164.2021183
https://doi.org/10.1145/122718.122753
https://doi.org/10.1145/2317956.2318013
https://doi.org/10.1016/j.infsof.2019.01.006
http://www.dgp.toronto.edu/~jsheng/doc/CSC2515/Report.pdf

198:20 Mehdi Ousmer et al.

[40] Beat Signer, U. Kurmann, and Moira C. Norrie. 2007. iGesture: A General Gesture Recognition Framework. In 9th
International Conference on Document Analysis and Recognition (ICDAR 2007), 23-26 September, Curitiba, Paraná, Brazil.
IEEE Computer Society, 954–958. https://doi.org/10.1109/ICDAR.2007.4377056

[41] EugeneM. Taranta, II and Joseph J. LaViola, Jr. 2015. Penny Pincher: A Blazing Fast, Highly Accurate $-family Recognizer.

In Proceedings of the 41st Graphics Interface Conference (Halifax, Nova Scotia, Canada) (GI ’15). Canadian Information

Processing Society, Toronto, Ontario, Canada, Canada, 195–202. http://dl.acm.org/citation.cfm?id=2788890.2788925

[42] Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo, Corey R. Pittman, and Joseph J. LaViola Jr.

2017. Jackknife: A Reliable Recognizer with Few Samples andManyModalities. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York, NY, USA, 5850–5861.

https://doi.org/10.1145/3025453.3026002

[43] Nicanor Valdez, Ronnie Besas, China Yu, Donna Dumalaon, and Rowel Atienza. 2014. 3D gestures on 2D screens for

mobile games. In Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile (Bali, Indonesia) (APWiMob
’14). IEEE, 232–237. https://doi.org/10.1109/APWiMob.2014.6920274

[44] Jean Vanderdonckt, Nathan Magrofuoco, Suzanne Kieffer, Jorge Pérez, Ysabelle Rase, Paolo Roselli, and Santiago

Villarreal. 2019. Head and Shoulders Gestures: Exploring User-Defined Gestures with Upper Body. In Design, User
Experience, and Usability. User Experience in Advanced Technological Environments, Aaron Marcus and Wentao Wang

(Eds.). Springer International Publishing, Cham, 192–213.

[45] Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez-Medina. 2018. !!FTL, an Articulation-Invariant Stroke Gesture

Recognizer with Controllable Position, Scale, and Rotation Invariances. In Proceedings of the 20th ACM International
Conference on Multimodal Interaction (Boulder, CO, USA) (ICMI ’18). Association for Computing Machinery, New York,

NY, USA, 125–134. https://doi.org/10.1145/3242969.3243032

[46] Radu-Daniel Vatavu. 2012. 1F: One Accessory Feature Design for Gesture Recognizers. In Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces (Lisbon, Portugal) (IUI ’12). ACM, New York, NY, USA, 297–300.

https://doi.org/10.1145/2166966.2167022

[47] Radu-Daniel Vatavu. 2013. The impact of motion dimensionality and bit cardinality on the design of 3D gesture

recognizers. International Journal of Human-Computer Studies 71, 4 (2013), 387 – 409. https://doi.org/10.1016/j.ijhcs.

2012.11.005

[48] Radu-Daniel Vatavu. 2017. Improving Gesture Recognition Accuracy on Touch Screens for Users with Low Vision. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 4667–4679. https://doi.org/10.1145/3025453.3025941

[49] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2012. Gestures As Point Clouds: A $P Recognizer

for User Interface Prototypes. In Proceedings of the 14th ACM International Conference on Multimodal Interaction
(Santa Monica, California, USA) (ICMI ’12). Association for Computing Machinery, New York, NY, USA, 273–280.

https://doi.org/10.1145/2388676.2388732

[50] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2014. Gesture Heatmaps: Understanding Gesture

Performance with Colorful Visualizations. In Proceedings of the 16th International Conference on Multimodal In-
teraction (Istanbul, Turkey) (ICMI ’14). Association for Computing Machinery, New York, NY, USA, 172–179.

https://doi.org/10.1145/2663204.2663256

[51] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2018. $Q: A Super-quick, Articulation-invariant Stroke-

gesture Recognizer for Low-resource Devices. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (Barcelona, Spain) (MobileHCI ’18). ACM, New York, NY, USA, Article 23,

12 pages. https://doi.org/10.1145/3229434.3229465

[52] Santiago Villarreal-Narvaez, Jean Vanderdonckt, Radu-Daniel Vatavu, and Jacob O. Wobbrock. 2020. A Systematic

Review of Gesture Elicitation Studies: What Can We Learn from 216 Studies?. In Proceedings of the 2020 ACM Designing
Interactive Systems Conference (Eindhoven, Netherlands) (DIS ’20). Association for Computing Machinery, New York,

NY, USA, 855–872. https://doi.org/10.1145/3357236.3395511

[53] Tracy Westeyn, Helene Brashear, Amin Atrash, and Thad Starner. 2003. Georgia Tech Gesture Toolkit: Supporting

Experiments in Gesture Recognition. In Proceedings of the 5th International Conference on Multimodal Interfaces
(Vancouver, British Columbia, Canada) (ICMI ’03). Association for Computing Machinery, New York, NY, USA, 85–92.

https://doi.org/10.1145/958432.958452

[54] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures Without Libraries, Toolkits or Training: A

$1 Recognizer for User Interface Prototypes. In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (Newport, Rhode Island, USA) (UIST ’07). ACM, New York, NY, USA, 159–168. https:

//doi.org/10.1145/1294211.1294238

[55] Mais Yasen and Shaidah Jusoh. 2019. A systematic review on hand gesture recognition techniques, challenges and

applications. PeerJ Computer Science 5 (Sept. 2019), e218. https://doi.org/10.7717/peerj-cs.218

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://doi.org/10.1109/ICDAR.2007.4377056
http://dl.acm.org/citation.cfm?id=2788890.2788925
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1109/APWiMob.2014.6920274
https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/2166966.2167022
https://doi.org/10.1016/j.ijhcs.2012.11.005
https://doi.org/10.1016/j.ijhcs.2012.11.005
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/2388676.2388732
https://doi.org/10.1145/2663204.2663256
https://doi.org/10.1145/3229434.3229465
https://doi.org/10.1145/3357236.3395511
https://doi.org/10.1145/958432.958452
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.7717/peerj-cs.218

Recognizing 3D Trajectories as 2D Multi-stroke Gestures 198:21

[56] Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Anderson, and Xiang Cao. 2012. Foundational Issues

in Touch-Surface Stroke Gesture Design — An Integrative Review. Foundations and Trends in Human–Computer
Interaction 5, 2 (2012), 97–205. https://doi.org/10.1561/1100000012

Received July 2020; revised August 2020; accepted September 2020

Proceedings of the ACM on Human-Computer Interaction, Vol. 4, No. ISS, Article 198. Publication date: November 2020.

https://doi.org/10.1561/1100000012

