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Abstract
Many application server backends leverage container tech-
nologies to support workloads formed of short-lived, but
potentially I/O-intensive, operations. The latency at which
container-supported operations complete impacts both the
users’ experience and the throughput that the platform can
achieve. This latency is a result of both the bootstrap and
execution time of the containers and is impacted greatly by
the performance of the I/O subsystem. Configuring appro-
priately the container environment and technology stack
to obtain good performance is not an easy task, due to the
variety of options, and poor visibility on their interactions.

We present in this paper a benchmarking tool for the
multi-parametric study of container bootstrap time and I/O
performance, allowing us to understand such interactions
within a controlled environment. We report the results ob-
tained by evaluating a large number of environment config-
urations. Our conclusions highlight differences in support
and performance between container runtime environments
and I/O subsystems.
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1 Introduction
Containers have emerged as a standard approach for envi-
ronments supporting on-demand, short-lived execution of
computational tasks. Examples of such environments include
Function-as-a-Service (FaaS) platforms [11] and edge com-
puting environments [8, 9]. More specifically, our motivating
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example is an automatic grading platform named INGIn-
ious [2, 3]. This platform is used extensively at UCLouvain
and other institutions around the world to provide computer
science and engineering students with automated feedback
on programming assignments, through the execution of se-
ries of unit tests prepared by instructors. It is necessary that
the student code and the testing runtime run in isolation from
each others. Containers answer this need perfectly: They
allow students’ code to run in a controlled and reproducible
environment while reducing risks related to ill-behaved or
even malicious code.
Service latency is often the most important criteria for

selecting a container execution environment. Slow response
times can impair the usability of an edge computing infras-
tructure, or result in students frustration in the case of IN-
GInious. Higher service latencies also result in higher aver-
age resource utilization and, therefore, in lower achievable
throughput. In the context of a FaaS platform, this can result
in lower return-on-investment. For INGInious, where large-
audience coding examsmay involve hundreds of submissions
per minute, it results in increased resource requirements.
Many factors influence service latency. We focus in this

paper on the impact of the I/O subsystem. We consider its
impact on latency both in the bootstrap phase (i.e., prior to ex-
ecuting a function, service a request with an edge service, or
running an INGInious task) and in the actual execution phase
(i.e. when accessing a database or using the file system).

A difficulty that deployers of container-based execution
environments face is the diversity of choices available to
support their workloads, i.e. the technical components of
their container execution environment. This choice starts,
obviously, with the actual container runtime environment. In
addition to container solutions based on Linux’s namespaces
and cgroups functionalities, such as runc, crun or LXC, alter-
natives are rapidly emerging that blur the lines between OS-
level and machine-level virtualization. Lightweight machine
virtualization technologies such as Firecracker [1] reduce
the delay for bootstrapping an actual virtual machine, while
retaining its better isolation properties compared to OS-level
virtualization. Other solutions, such as Kata Containers [7],
allow running containers directly over an hypervisor, be
it Firecracker or KVM. Alternatives are not limited to the
runtime environment. Deployers must also make choices for
the storage subsystem, that influence the performance of I/O
intensive container workloads: We identify for instance no
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less than 8 different storage drivers that can interface with
the different abovementioned container runtime solutions.

Contribution We are interested in this paper in the im-
pact of the container environment on service latency, both
for bootstrap and execution. It is difficult to identify which
component impacts most these latencies in production envi-
ronments given their intrinsic complexity and the influence
of multiple external factors, such as the existing load on the
platform or the co-existence of other workloads.
Our first contribution is therefore a benchmarking tool

that helps to isolate the factors related to the configuration
of the container execution environment by performing a
systematic experimental analysis of a large number of valid
configurations, i.e. combinations of possible technological
choices at the various levels of the container execution envi-
ronment stack. We identify the components that influence
I/O performance and therefore service latency as: the con-
tainer manager, the container runtime, the storage driver,
the base image used for the container, and finally the control
group mechanism. Considering all compatible alternatives
for these components, the benchmarking tool evaluates a
total of 72 valid configurations. These configurations reflect
the requirements of the INGInious application, but are also
characteristic of other service backends requirements (i.e.
the need for isolation, resource management, network access
and a writable filesystem).
As our second contribution, we present in this paper the

key insight and results that we obtained by running our
tool with five workloads representative of containers mak-
ing intensive use of the I/O subsystem. In a nutshell, we
highlight the importance of using lightweight and low-level
container runtimes and the important influence of the stor-
age drivers on I/O subsystem performance and, as a result,
on perceived bootstrap and execution latencies. Our com-
plete results are available in the companion report [5]. Our
datasets and benchmarks are also publicly available [4].

Outline We first present our methodology (§2). We then
detail the most significant results from our experiments (§3).
We finally review related work (§4) and conclude (§5).

2 Methodology
We detail how we select different container execution envi-
ronments how we evaluate their performance.

2.1 Metrics and tested components
We build a benchmarking tool that helps to quantify the im-
pact of different container technologies on the performance
of containerized applications. Our primary performance met-
rics are the startup latency and the time applications need to
complete their tasks (which we refer to as bootstrap and ex-
ecution latencies). Although other types of metrics, such as
CPU or memory utilization, might be of interest for certain
use cases, there are not our primary focus. Consequently,

Base image

Container manager

Container runtime

Control groupsStorage driver

Filesystem

interacts with

relies on

re
lie

s 
on

setup

us
es

Figure 1. Components of a container execution environ-
ment.

the tool assigns every test run the same amount of resources,
that is one logical CPU core and 1 GB of memory.
Deploying a container-based application requires a com-

bination of different complementary technologies. In the fol-
lowing, we will call such a combination a container execution
environment. Figure 1 gives an overview of its components:

• The container manager is a user-friendly tool which
allows to manage the lifecycle of containers, attach
their execution to a terminal etc.

• The container runtime is the system support mech-
anism responsible for creating, starting, and stopping
containers and allowing other low-level operations.

• A storage driver provides andmanages the filesystem
of a container. It ensures that each container filesystem
is isolated from that of other co-located containers.

• Control groups (cgroups) in Linux is used for OS-
level virtualization for controlling resource usage for
the processes belonging to a specific container.

• The base container image contains the operating
system to run inside the container.

For each of these components, various concrete imple-
mentations are available in the container ecosystem. Table 1
details the ones that we have considered in our benchmark-
ing tool. We consider three container managers and five
container runtime environments, three based on OS-level
virtualization (runc, crun and LXC) and two based on light-
weight machine-level virtualization (Kata containers over
QEMU or Firecracker). Two of the tested storage drivers pro-
vide file-based copy-on-write (aufs and overlay2) or block-
based copy-on-write (btrfs, devicemapper, lvm, zfs). The other
drivers (directory and vfs) do not support copy-on-write. For
the control groups, we prefer, where possible, cgroups v2
which is the newer version of cgroups (since Linux kernel
version 4.5) and tackles the flaws of the older version while
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Component Implementations
Container manager Docker, Podman, LXD
Container runtime runc, crun, LXC, Kata containers de-

fault runtime (with QEMU), Kata
containers with Firecracker

Storage driver aufs, btrfs, devicemapper, directory,
overlay2, vfs, zfs, lvm

Control groups cgroupv2 (for Podman with crun),
cgroup

Base container image Alpine, CentOS
Table 1. Studied container components.

keeping all of its functionalities. For the base container im-
age, we consider images provided by Docker based on the
lightweight Alpine distribution and the popular CentOS.

Having three different container managers, five different
container runtimes, eight storage drivers, and two base im-
ages to choose from, could give the impression that there are
240 possible container execution environments to evaluate.
This is not the case, as some of the components can only be
combined with certain others. For example, the container
manager LXD requires the LXC runtime and vice-versa and
is the only container manager that supports the directory
storage driver. On the other hand, Kata Containers with Fire-
cracker only supports the devicemapper storage driver. In
total, 72 configurations are valid out of the 240 combinations.
We provide a complete list of constraints and impossible
combinations in the companion report [5].

2.2 Workload
The benchmarking tool consists of the necessary scripts
and configuration files to evaluate the different container
execution environments under a set of predefined workloads.
We selected those workloads to highlight and isolate different
aspects of containerized applications, such as the bootstrap
latency or the execution latency of I/O intensive applications.
In the following, we describe five selected workloads that
we use in this paper — a more comprehensive list is available
in the companion report [5].

1. Hello World: Measures the time required to create a
container which will print Hello World on standard
output. This test mainly measures the startup latency
of a container application.

2. Database read: Measures the time required to read
the entire content of a SQLite database stored inside
the container filesystem. This test is performed for
5 different database sizes: 151.6 kB, 536.6 kB, 2.6 MB,
11.9 MB and 111.6 MB.

3. Database write: Measures the time required to write
content to a database stored inside the container filesys-
tem. We use the same data sizes as previously.

Processor Intel(R) Core(TM) i5-2410M
RAM 8GB DDR3 1333MT/s

Storage 256GB SSD SATA III (6GB/s)
Operation system Ubuntu server 18.04.4 LTS

Linux kernel version 4.15.0-101-generic
Table 2. Hardware configuration.

4. I/O read: Measures the time required to read a large
amount of files of small size (4 kB) with random con-
tent. This is repeated with 5 different numbers of files:
10, 100, 1000, 10 000 and 100 000 files.

5. I/O write: Measures the time required to write a large
amount of files of small size (4 kB) with random con-
tent. As in the previous test, this is repeated five times
for different numbers of files. To avoid being bottle-
necked by the creation of random content (depending
on the entropy capability of the system) an uncom-
pressed tar archive is simply extracted in this test.

Each test is repeated 20 times for each configuration. For
the results reported in the next section, we have used a rela-
tively modest testing environment whose characteristics are
detailed in Table 2. This represents a use case where contain-
ers should be launched on edge-computing class hardware.
That said, the benchmark tool and its scripts have been de-
signed to be reused as easily as possible, even helping with
the configuration of new test environments with Ansible
configuration files (playbooks). In this way, the experiments
can be easily repeated by interested researchers on other
types of hardware, for example of data-center class.

3 Results
In the following, we show interesting and noteworthy results
that illustrate the usefulness of our benchmarking tool for
comparing different container execution environments.

3.1 Impact of the storage driver
The choice of the storage driver directly impacts the starting
delay of the container. Firstly for the creation, where storage
drivers without any copy-on-write mechanism need to copy
the whole file system (like vfs), then for starting the container
during which the container filesystem needs to be accessed
for read operations, and finally during the execution of an
application to access the necessary files.
As mentioned in §2.1, components have different con-

straints on the storage drivers they can use. To illustrate the
impact of the drivers on container performance, we have
therefore chosen a configuration that supports most of the
presented storage drivers and therefore allows a direct com-
parison: the container managerDocker with the runc runtime
and the Alpine image.
Figure 2 shows the time needed to create, start and exe-

cute the Hello World workload using the different storage
drivers. Note that the bootstrap time is the combination of
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Figure 2. Creation, Start, and Execution time of the Hello
World workload using Docker, runc and the Alpine image.

Figure 3. Database Write benchmark (execution time) with
Docker and runc. Note the logarithmic y-axis.

the create and start times. The two fastest drivers aufs and
overlay2 rely on the same union file system mechanism, with
overlay2 being slightly faster than aufs. The devicemapper
driver needs considerably more time to create and start the
container and should therefore not be used if low latency is
desired. Execution times are similar for all drivers.
Figure 3 shows the execution time of the Database write

benchmark. The file-based copy-on-write of overlay2 and
aufs makes them slower than btrfs and devicemapper with
block-based copy-on-write because the former have to copy
the whole database table before they can modify it. Note that
vfs makes a full copy of the container filesystem at container
creation time, which explains its good performance here
and, given the small size of the Alpine image, also in the
Hello World benchmark above. The reason for the poorer
performance of zfs with large database sizes is not clear.

3.2 Base image
In general, the size of the base image has only little influence
on the container runtime performance when used with a
copy-on-write storage driver. Although the Alpine image

provided by Docker is only 5.6 MB, while the CentOS image
size is 203 MB, they behave similarly, as shown in the left
and center plots in Figure 4 for the I/O read benchmark. For
this figure, we chose the btrfs and overlay2 storage drivers.
Both drivers showed a good overall performance in §3.1, but,
as visible in the figure, overlay2 can handle workloads that
involve a large number of files better than btrfs.

However, the base image can also have sometimes a com-
plex and difficult to debug impact on container performance.
This is illustrated by the right plot in Figure 4, which shows
the benchmark results for the I/O write benchmark. Obvi-
ously, the benchmark runs much slower with Alpine than
with CentOS. This effect is likely caused by differences in
the tar tool provided by the distributions’ respective pack-
age repositories. We noticed that the implementation in the
Alpine image makes a lot more system calls (about three
times more) than the CentOS one.

Overall, the choice of CentOS for the base image can then
be justified by its maturity. It had been around for a while, it
is widely used outside of container applications, and is more
likely to include optimizations in the different tools available.
When those tools are not required though, the minimalist
design and light weight of Alpine can make it a good choice.

3.3 Container runtime
The container runtimes supported by the benchmarking tool
differ considerably in their capabilities and implementations.
For Figure 5, we selected four runtimes and report the results
for the Hello World benchmark using the overlay storage dri-
ver, which is the best performing driver for this benchmark
according to Figure 2. We have also included results for the
slower devicemapper driver since this is the only driver sup-
ported by Kata Containers with Firecracker.

Clearly, Kata Container solutions are the slowest, although
their performance is relatively close to OS-virtualized solu-
tions. Unlike the latter, they run the application in small
virtual machines, which provide better isolation than ordi-
nary containers, but come with a greater overhead in the
startup phase because a whole kernel has to be loaded and
started. Their usage can be easily justified for applications
with long container lifetime and where a better isolation
is needed. Another point worth to mention is the longer
start time of Kata Containers with Firecracker (kata-fc) com-
pared to Kata Containers with QEMU (kata-runtime), even
when both are using the same storage driver. It should be
however noted that Firecracker has not been conceived to
run under Kata Containers’ hood and might perform better
when running standalone. Furthermore, Firecracker has ad-
vantages that are not subject to our benchmarking tool, for
example the memory footprint, which is smaller than with
QEMU. Finally, Kata Containers uses a feature of QEMU (vN-
VDIMM) that accelerates access to the filesystem and that is
not present in Firecracker.
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Figure 4. Comparison of Alpine and CentOS with the I/O benchmarks. Left: Creation time, I/O read benchmark. Center:
Execution time, I/O read benchmark. Right: Execution time, I/O write benchmark. All experiments use Docker and runc.

Figure 5. Creation, Startup, and Execution time of Hello
World for different container runtimes with Docker and the
Alpine image.

For applications where the lifecycle of the container is
short and the isolation provided by simple namespaces is
good enough, crun does a better job than runc. The per-
formance difference can be possibly explained by the fact
that the former is implemented in C, while the latter is im-
plemented in Go. The difference is more obvious during
the start and execution as those are the phases where low-
level operations are made by the container runtime (entering
namespaces, setting control groups, forking processes).

3.4 Container manager
All tested container managers provide good performance
with the considered workloads. This is shown in Figure 6 for
the Hello World benchmark using crun (with the exception
of the LXD manager which requires the LXC runtime). We
notice that Podman is slightly slower than the other man-
agers, but given its relatively young age, its focus might not
be yet fully on performance, but rather on features.

An interesting feature of Podman is its support for rootless
containers. Processes launched in rootless containers are
not owned by root (although they are mapped to the root

Figure 6. Creation, Startup, and Execution time of Hello
World for different container managers with crun (resp. LXC
for LXD) and the Alpine image.

uid inside the container) and the container runtime is not
executed as root either. In Docker, the default choice is to run
the container manager and the processes inside the container
as root. Unfortunately, having rootless containers also comes
with a cost as we can also see in Figure 7: Creating a rootless
container takes more time (left image). In addition, rootless
containers can not use OverlayFS. An alternative based on a
user-space implementation using FUSE shows significantly
lower performance (center and right image) compared to the
original overlay2 driver.

4 Related work
Performance of container environment is not a new con-
cern. Back in 2013, Xavier et al. compared the different con-
tainerization technologies existing back then (LXC, OpenVZ,
VServer) and Xen [13]. They showed that virtualization with
Xen was giving really poor performances (notably I/O perfor-
mances) but a much better isolation. Later, in 2017, Kozhir-
bayev et al. made an updated comparison of container tech-
nologies, comparing LXC and Docker, the two main actors
in play at that time [10].
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Figure 7. Comparison of rootfull to rootless containers with the I/O benchmarks. Left: Creation time, I/O read benchmark.
Center: Execution time, I/O read benchmark. Right: Execution time, I/O write benchmark. All experiments use crun.

In 2015, Felter et al. also made a point about the perfor-
mance degradation in terms of I/O in both virtualized and
containerized environment comparing them to native per-
formances [6]. They also showed that when using volumes,
containerized environment can offer nearly the native perfor-
mances. We did not elaborate this point as in our considered
use cases all resources available to the container must be
contained within its isolated file system.

Recent new design proposals for container support, with a
focus on the cold start problem, have been proposed recently,
such as SOCK [11] and Nuka [12]. Integrating such tools in
our benchmarking solution should be an easy task, should
these systems becomemainstream and compatible with other
available technologies.
5 Conclusion
We presented in this paper the design of a benchmarking
tool for evaluating the relative performance of container
execution environments, with a focus on I/O-related per-
formance. Our ambition was to allow selecting the most
appropriate combination of technologies within a controlled
environment, rather than in the difficult-to-understand pro-
duction environment where multiple factors can influence
performance outside of the I/O subsystem. In the context of
our motivating example, INGInious, the results of this study
may help designers select the most cost-effective solution
for running automated execution of students’ code, and our
findings also apply to other domains such as edge clouds or
function-as-a-service environments.

While we analyzed a large number of configurations, our
benchmarking tool could be augmented to support other
technological choices and cover more representative cases.
For instance, we did not consider the possibility to use un-
privileged containers with LXD on the basis of our use case
requirements, and we did not consider other machine virtual-
ization solutions than QEMU and Firecracker for supporting
Kata containers.We believe, nonetheless, that adding support
for these technologies should be relatively straightforward
to implement in our publicly available code [4].
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