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Purpose: To introduce a new analytical methodology to calculate quantities of interest in particle
radiotherapy inside the treatment planning system. Models are proposed to calculate dose-averaged
LET (LETd) in proton radiotherapy.

Material and methods: A kernel-based approach for the spectral fluence of particles is developed
by means of analytical functions depending on depth and lateral position. These functions are
obtained by fitting them to data calculated with Monte Carlo (MC) simulations using Geant4 in lig-
uid water for energies from 50 to 250 MeV. Contributions of primary, secondary protons and alpha
particles are modeled separately. Lateral profiles and spectra are modeled as Gaussian functions to be
convolved with the fluence coming from the nozzle. LETd is obtained by integrating the stopping
power curves from the PSTAR and ASTAR databases weighted by the spectrum at each position.
The fast MC code MCsquare is employed to benchmark the results.

Results: Considering the nine energies simulated, fits for the functions modeling the fluence in-
depth provide an average R? equal to 0.998, 0.995 and 0.986 for each one of the particles considered.
Fits for the Gaussian lateral functions yield average R> of 0.997, 0.982 and 0.993, respectively. Simi-
larly, the Gaussian functions fitted to the computed spectra lead to average R> of 0.995, 0.938 and
0.902. LETd calculation in water shows mean differences of —0.007 £ 0.008 keV/um with respect
to MCsquare if only protons are considered and 0.022 £ 0.007 keV/pm including alpha particles. In
a prostate case, mean difference for all voxels with dose >5% of prescribed dose is 0.28 + 0.23 keV/
pm.

Conclusion: This new spectral fluence-based methodology allows for simultaneous calculations of
quantities of interest in proton radiotherapy such as dose, LETd or microdosimetric quantities. The
method also enables the inclusion of more particles by following an analogous process. © 2020
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14108]
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1. INTRODUCTION

Analytical pencil beam algorithms in proton therapy are now
widely used and accepted as a reliable method for dose calcu-
lation due to their accuracy and computational efficiency.'
This kind of algorithms use generally a model for the
response (absorbed dose) for a proton beamlet, that is, a ker-
nel, to be convolved with the input beam, computed from a
source beam model.*” Similarly, the kernel approach is also
commonly used for dose-averaged LET (LETd) calcula-
tions,” ® Most of these kernel approaches, although keep
accuracy in central axis calculations, are not able to describe
accurately the lateral profile observed when calculating LETd
in proton beams using MC. More generally, pencil beam
algorithms are not as accurate as Monte Carlo (MC)
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techniques, which can be considered as the gold standard,6
especially when dealing with inhomogeneities.” ® These
shortcomings of the kernel based models makes necessary to
add ad-hoc corrections or to use more complex models.”

Pencil beam algorithms also require dedicated functions
for each quantity to calculate, doubling the workload if both
dose and LETd need to be determined. Again, MC methods
are able to overcome this limitation since in a single simula-
tion it is possible to score several quantities in a volume of
interest. However, the computation requirements for MC sim-
ulations in terms of time and resources are clearly higher than
for analytical algorithms.

In this work, a different approach is proposed to address
calculations of different quantities of interest (QOIs) in pro-
ton therapy, and particularly, LETd. Instead of using specific
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quantity-depending kernels (such as dose kernels or LET ker-
nels), a more general kernel for the spectrum of proton beams
(in terms of kinetic energy or, equivalently, range of the parti-
cles) at each spatial point, that is, spectral fluence, is pro-
posed. This allows for a more MC-alike approach since the
information about the density of particles present and their
energy is taken into account along their whole path. Then,
simultaneous calculations for polyenergetic beams can be car-
ried out by integrating the corresponding function on the
energy for each QOI. Here, we present the particular results
for LETd by using the stopping power data from NIST. Addi-
tionally, in previous works we have developed some functions
dependent on the kinetic energy of protons to calculate dose-
mean linear energy (yp) and LETd from microdosimetry by
using MC simulations.'”'" The method presented here also
enables calculations of three-dimensional distributions of
these microdosimetric QOIs.

2. MATERIALS AND METHODS
2.A. General calculations of QOls

Stopping power for protons and other particles is generally
available in terms of the kinetic energy of the particle from
different databases.'*'> Such energy-dependent functions
need the knowledge of the particle spectrum in order to be
used. In this way, if ¢(r) is the fluence at a point r, given the
spectral fluence ¢ (E;r) = d¢(r)/dE at a certain point r, the
average value for a generic energy-dependent function
q = q(E) at that point will be given by

[ q(E)$p(E;r)dE
[ ¢(E;r)dE

Possible simple examples of quantities based on electronic
stopping power S(E) that can be calculated with Eq. (1) are:
(i) dose, by introducing ¢(E) = S(E)/(Ap) in the integration,
where A is the cross-sectional area of a voxel and p is the
physical density of water; or (b) track-averaged LET, Lz, by
simply exchanging ¢(E) = S(E). Furthermore, more complex
quantities can be calculated as well, such as dose-averaged
LET (Lp), by computing separately Eq. (1) with
g(E) = S*(E) and g(E) = S(E) and dividing the final results.
The latter example is used in this work to show results.
Therefore, this work is centered on how to determine
¢ (E;r) as this quantity allows for a variety of different cal-
culations of interest.

In Eq. (1), the spectral fluence ¢ (E) acts as a weight for
each spectral component in the energy-dependent function
q(E). Equivalently, if the relation between energy and range
in the continuous slow-down approximation (CSDA) is
known, R = R(E), then the average value for ¢ at a point r
can be alternatively computed as

q(r)_fq Ybg(R;r)dR

J ¢r(R;r)dR

q(r) = 0

(©))
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where ¢x(R;r) = d¢(r)/dR is the fluence range-density, that
is the relative number of particles per cross-sectional unit
area with CSDA range equal to R with respect to the total
number of particles per cross-sectional unit area at r. This
second approach is preferred because of practical reasons.
Concretely, the variation of stopping power and other QOIs
with the CSDA range is smoother than with the particle
energy, assuming as this relation R(E) = oFEP, that is, the
Bragg-Kleeman rule."* Therefore, if the energy-dependent
functions {¢;(E)} and the transform rule to CSDA range
R = R(E) are known, according to Eq. (2), our problem is
reduced to the determination of ¢g(R;r) at each point of
interest.

2.B. Application to clinical beams

A clinical beam is generally composed of the superposi-
tion of several layers, being each one of them calculated inde-
pendently. In a pencil beam scanning (PBS) system, a beam
is composed of spots that are magnetically scanned to achieve
a conformal dose distribution. Note that a layer is here
defined by a nominal energy, a reference system (beam angle
and isocenter position) and a two-dimensional map of spot-
fluence weights. In this context, ¢, (R;r) is the total resulting
fluence range-density and is obtained as a combination of the
fluence range-density for each beam, which, in turn, is a
combination of the individual fluence coming from each
spot. Let Ny be the number of layers present in a given beam
and ¢ ;(R;r) the fluence range-density for the i-th layer. If
¢,(r) is the total fluence that the i-th layer carries to the point
r, then

Z ¢i(r)pgi(R;r)
Pr(Rir) = —F——— A3)
Z:l ¢i(r)

Equation (3) represents a weighted average for the differ-
ent spectral fluence converging at a point r, in which the
weights are their corresponding fluences. Consequently, it
becomes necessary to determine the number of particles per
area unit carried by each layer at each point. This determina-
tion, however, is a problem frequently solved in pencil beam
algorithms as follows. A treatment planning system (TPS)
with pencil beam scanning (PBS) system, should provide the
following information of a layer: (a) its nominal energy with
a certain initial spread 1;,;; and (b) the lateral width of the
spots alampm(z) on that layer at a certain reference depth, nor-
mally the isocenter." In this sense, ¢ (r) can be obtained by
summing the contributions from every individual spot com-
posing it and, in turn, that contribution for each spot is
obtained from the composition of different infinitely narrow
beam, usually called beamlets. Then, it is convenient to sepa-
rate the problem of determining ¢, ,,..;(r) for each beamlet
into two different functions: one depending only on the depth
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in water (integrated fluence, that is, total number of particles
at each depth) and the other depending on the lateral distance
to the beam propagation axis p at each depth z,
d)heumlet (r) = ( Wlf( )/(D0)¢Iar beamlet(p7 )’ where (Dim(z)/q)o
represents the fraction of particles arriving at each depth with
respect to the total number of particles coming from the water
surface.

NOW, 6/ar,spor (2) refers to the width of the spot’s lateral pro-
file for the fluence at a depth z for a layer, which becomes lar-
ger as it goes away from the source due to the beam
divergence. Furthermore, when those particles travel through
matter (particularly, water), they undergo scattering processes
thus the lateral distribution of particles becomes broader. This
can be incorporated by generating a lateral kernel for a beam-
let, which, essentially, represents the probability density for a
particle to reach each lateral position. In other words, if at a
certain depth z the probability density for a single particle to
be scattered up to a lateral distance p is given by
K (052) = Dlar peamier (P 2)» then the fluence for a spot at that
point will be given by the convolution.

(z)vpot = l”f /¢lat spot p Z (p, - p,Z)dp/ (4)

here, again, ¢y, ,,.,(p;z) represents the fluence for each spot
coming from the nozzle taking into account the beam
divergence and it is usually provided by the TPS and
modeled as a single Gaussian function  thus
¢lat,spot(p; Z) = exp(_pz/ <2612atvspoz(z)>)‘ Finauy’ the flu-
ence for the overall i-th layer is obtained by convolving again
the fluence for a single spot at each depth, ¢, (r), with its
two-dimensional map of spot weights produced by the PBS
system, w(x, y):

r) = /¢spot(x/7y,;z)w(x —)C,,y - y,)dx,dy, (5)

where now lateral coordinates have been transformed from
cylindrical to Cartesian. This way Eq. (5) provides the
weights in the weighted average of spectral fluences shown in
Eq. (3).

2.C. Beam components

Generally, we can distinguish between two different types
of particle components present in a beam according to their
different behavior in depth and laterally. In this work, we use
the distinction provided by the MC package Geant4'®'®: pri-
mary particles are those that have undergone only electro-
magnetic and hadronic elastic collisions while secondary
particles are those generated in nuclear inelastic collisions
and in charge-exchange processes. Furthermore, we can dif-
ferentiate between secondary particles with equal or different
nature than the primaries, for example, in a proton beam, we
have three categories: primary protons, secondary protons,
and the rest of secondary particles. Each one of these cate-
gories contains particles with diverse behavior. In other
words, the functions ®cax p(z) and Ky, p(p; z) vary depending
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on the type of particle P considered. Additionally, the fluence
range-density ¢ ;(R;r) also depends on the type of particle
so that each category needs to be considered separately up to
Eq. (3). Then, Eq. (2) becomes

fZP 1‘]P ¢RP(R r)dR
IZ ¢RPRr)dR

where Np is the number of types of particles and gp(R) and
¢ p(R;7) are, respectively, the function of interest and the
outcome of Eq. (2) for the type of particle P.

q(r) =

(6)

2.D. Models for proton beams: Monte Carlo
simulations

As said, a new methodology is here proposed, somehow
similar to a conventional pencil beam algorithm. However,
pencil beam algorithms traditionally model the dose (or LET)
deposited by a beamlet (i.e. a kernel). Then, the total dose for
a broad beam is computed by convolving the kernel across
the plurality of beamlets that a beam is composed of. It is
important to remark that we do not use dose- or LET-based
kernels, but fluence (i.e., number of particles per area unit,
which is closely related to dose) and, particularly, spectral
fluence (i.e., distribution of energy of the particles in a beam-
let). To our knowledge, while the majority of the functions
used here to model the fluence kernel are common from pen-
cil beam algorithms, the proposed kernels and procedures for
obtaining spectral fluence are new.

According to all above, in order to end up obtaining
the value ¢(r) we need to determine the functions
brp(R;T), @iy p(z) and K, p(p;z) for all the components
of the beam to be considered. We have developed analyti-
cal forms for these functions applied to the case of proton
beams with energies in the typical clinical range: from 50
to 250 MeV at intervals of 25 MeV. MC simulations for
the transport of 5-107 protons in liquid water have been
performed with Geant4 v10.5.0 for each one of these ener-
gies; QGSP_BIC_HP with the most accurate physics list,
G4EmStandardPhysics option4, was used. Three types of
particles are distinguished: primary protons, secondary
protons and secondary alpha particles. So far, the rest of
particles generated in such interactions are disregarded in
this model due to their low proportion' for the sake of
simplicity and efficiency.

It is worth to note that, apart from the explicit dependen-
cies already shown, the functions to model also depend on
the nominal energy of the layer under consideration, Ej,
therefore this dependency is introduced explicitly as well. As
seen in Eq. (4), the function K, p(p;z; Ey) needs first to be
convolved with @y y,,,, which is usually a Gaussian function
given by the TPS, and later with the spot weights map
w(x,y), as shown in Eq. (5). As the convolution operation
between Gaussian functions becomes as easy as a quadratic
sum of the g parameters, we look for single or multiple Gaus-
sians to model K, p(p; z; Ey) by fitting these functions to the
lateral distributions obtained from our MC simulations. For
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the depth dependency no special operations are needed so
that ®;,, p(z; Eo) is open to any functional form able to pro-
duce good agreement with MC data. Finally, ¢ »(R;r) can
be modeled as any well-behaved function to perform the inte-
grations in Eq. (6).

2.D.1. Number of particles with depth in water

The dependency of the number of primary protons (PP) at
each depth can be modeled, according to Ulmer’s work,* by a
function as the following one:

;. pp(z; Eo) _ <1 B f(Eo)Z> 1 | 4 erf R(Ey) —z
Do (Eo) R(Eo) ) 2 V21(Ey)

@)
where ®y(E)) is the number of protons reaching the water
surface (z = 0), R(Ey) is the CSDA range of protons with
energy Ey and £(Eyp) and t(E,) are the parameters of the
model. The dependency on the nominal energy of the layer is
addressed as follows: the function proposed in Eq. (7) is
fitted against the results from MC simulations for each one
of the simulated energies. Therefore, a set of values for the
parameters £(Ey) and 1(Ep) are obtained. To calculate the
function @, pp(z;Ep) for an energy E| between two
simulated energies, we first define the depth-scaled to the

range 7z, (Eo) = z/R(Ep). Then, @[,1I$PP(Z§C;E8) and

Dis pp (zf,c; Eé) are computed according to Eq. (6), where Eg

and Eé are, respectively, the immediately higher and lower
simulated energies to E{, and zlc and z}c are the depth-scaled
to the range corresponding to those energies. Finally, a linear
interpolation between those two values is performed so that

DQinepp (25 E)) = Djns,pp (Zic; E(l))
Ey-£, ®
E} - E;

+ (‘sz,PP (ZLJ E(T)) — @iy pp (Zfﬁ E(%))

This is the approach followed to compute all the functions
here presented for any nominal energy between the simulated
ones.

For the number of secondary protons (SP) at each depth,
we propose the function:

Pinesp(sEo) _ S(Eo)zl () (R(Eo) — 2
O(E) R(Ey) 2 V21(Ey) 9)
(OC()(E()) — Ocl(Eo)ZM(EU))

where ®((Ey), R(Ey), ¢(Ey) and t(Ep) are the same as in
Eq. (7) and ay(Ey), a1 (Ep) and oy (Ey) are the parameters to
be determined. These parameters have no physical meaning
since the function has been selected to achieve a good fit to
the MC results.

We also propose a similar function to model the propor-
tion of alpha particles (AP) in depth:
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@ ap(z; Eo) ) R(Ey) —z
TEO) = P4(27 EO) (1 +erf <\/§TAP(E0)>> (10)

where ®((Ey) and R(E,) are the same as in Eq. (7), t4p(Ep)
is a parameter and P4(z;Ep) is a fourth-grade polynomial
function that carries five additional parameters for each simu-
lated energy.

2.D.2. Lateral kernel

Lateral kernels for fluence are similar to other pencil beam
algorithms use for dose. Here, The lateral kernel K,, pp(p; z; Eo)
for the fluence of primary protons is modeled simply as a single
Gaussian centered at the central axis and normalized:

1 P>
K, (P;Z; EO) =7 < Xp| x5~
. V216 pp(z; Eo) 20—12at7PP(Z; Eo)
(1D

The parameter o4, pp(z; Eo) is enough to characterize the
function although its dependency on depth needs to be deter-
mined. In order to do that, for each simulated nominal energy
Ey, we fit K,, pp(p; z; Ep) to the obtained lateral distributions
at each depth z with intervals of 0.5 mm and obtain
01a,rr(z; Ep). The dependency of this parameter with depth is
modeled, for each nominal energy Ey, as a polynomial func-
tion:

Gla,pp(z; Eo) = aopp(Eo) + a1 pp(Eo)z + a2,PP(EO)Zz
+ a3 pp(Eo)7’
(12)

Lateral distributions for secondary protons have a more
prominent tale than for primaries, so that a second Gaussian
is needed for a better fit to the MC results. Therefore, we

wsp(z; Eo)

have
2
Kysp = exp| — 55 P
V2naop sp(z; Eo) 207 p(z Eo)

(I —wsp(z; Eo)) 0’
L wWsplEB0)) ool ——— ) 13y
V2nop sp(z; Eo) 20122,SP(1§ Eo)

where now three parameters are needed to characterize the
kernel: wsp(z;Eo), opn.sp(z;Ey) and opsp(z;Ep). These
parameters are obtained for each depth according to polyno-
mial functions of first, second and third-grade, respectively,
similar to the one in Eq. (12).

For the lateral distribution of alpha particles fluence, a sin-
gle Gaussian can be used so that

+

1 P
Kuap(p; 5 E)) = —————exp| —=5—————
V216010 ap(2; Eo) 207, 4p(2; Eo)

(14)

where 64,.4p(z; Ep) is obtained as a function of depth by fit-

ting a third-grade polynomial function, as in the case of pri-
mary protons shown in Eq. (12).
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2.D.3. Fluence range-density or spectrum in terms
of CSDA range

While the previous functions are intended to provide flu-
ences similarly as done in other pencil beam algorithms, our
formalism differs when characterizing the kernels for beam-
lets’ spectra. In order to determine the spectral components of
the beam at each point, here ¢p p(R;7;Ep) represents the
probability density for the CSDA range at each spatial posi-
tion when a single particle of energy Ey is considered. For all
types of particles here presented, ¢ p(R;r; Ep) is modeled as
a single normalized Gaussian function, which is fully charac-
terized by two parameters: mean i p(r; Eg) and standard
deviation og p(r; Ep). This means that, at each point r, the
probability density for a particle of type P and initial energy
Ey corresponding to a given CSDA range is given by

1
Rir;Ey)) = ————¢x
¢R,P( IR 0) \/EO'R,P("; EO) p
(R — ug p(r; Eo))2
GIZQ,P (r; Eo)

s)

when a particle penetrates in water, its probability to appear
at a certain point decreases with the distance from the central
axis. In the same way, the particle energy spectrum also
depends on the position. Concretely, in a central axis point,
the particle likely will have a higher energy than in a radial

o
[—

i . s s L s
0 5 10 15 20 25 30
Depth {cm)
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point. In other words, the mean of ¢ p(R;r; Ey) decreases
radially. We can use, in a similar way than for the fluence, a
decomposition in terms of depth and lateral components thus

tr,p(r; Eo) = peax,p( Eo) Ky, , (3 7 Eo) (16)

where K, ,(p;z; Eo) = exp(—pz/zafmmi](z; Eo)> is taken
again as a Gaussian function on the radial position to the cen-
tral axis, as in Eq. (11) and represents the lateral variation for
the mean CSDA range fig p(r; Ep). The dependency of param-
eters pcay p(2; Eo) and Gjary, , (2; Eo) with depth is modeled
again by polynomial functions. An exception is the case of
primary protons, in which the mean of the spectrum in terms
of CSDA range is taken as the residual range, that is,
teax.p(z Eo) = R(Eg) — z. Note that K, ,(p;z;Eo) is, by
itself, a new lateral kernel, so that the actual mean value
Ur p(r; Eo) at a point r for a spot with lateral fluence in air
Do, 5poi (P 2) 18 given by a new convolution:

H%),;t(" i Eo) = eax p(z; Eo) / Diarspor (P 2) K p
(0" = P 2)Kp,, (0" — p3 23 Eo)dp (17)

where we have excluded the explicit energy dependency for
simplification. Note that the mean g p(r; Eg) needs to be
obtained by convolving the model for single particles, given
in Eq. (16), with the actual number of particles coming from

(b) 0.08

0.07

0.01 175
MeV Mev

0 5 10 15 20 25 30
Depth {cm)

Depth {cm)

FiG. 1. Fraction of (a) primary protons, (b) secondary protons and (c) alpha particles in depth respect to the number of protons arriving at water surface (Np).
Dashed lines represent the results obtained from Geant4 simulations for protons of 125 MeV (blue), 175 MeV (red) and 225 MeV (black). Solid lines are the fits
obtained with the functions shown in Egs. (7), (9) and (10) for the panels (a), (b) and (c), respectively. (a) -— Geant4 simulation; — Eq. (7). (b) -— Geant4
simulation; — Eq. (9). (¢) -— Geant4 simulation; — Eq. (10). [Color figure can be viewed at wileyonlinelibrary.com]
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FiG. 2. Parameters to characterize the lateral distribution for (a) primary protons, (b) secondary protons and (c) alpha particles for three different energies:
125 MeV (blue), 175 MeV (red) and 225 MeV (black). Polynomial functions are fitted to the points, obtained, in turn, by fitting a single Gaussian functions in
the cases (a) and (c) and Double Gaussian functions for the case (b) to the lateral profile at each independent depth. These parameters correspond to those in
Eqgs. (11), (13) and (14) and are used to build the lateral kernels at each depth and for each energy. (a) O Gy pp Obtained from Single Gaussian fit to Geant4 data;
— Polynomial fit; Equation (11). (b) O oy1,sp and wgp obtained from Double Gaussians fits to Geant4 data; + o sp obtained from Double Gaussians fits to
Geant4 data; — Polynomial fits. (¢) O Oy ap Obtained from Single Gaussian fit to MC data; — Polynomial fit. [Color figure can be viewed at wileyonlinelibra

ry.com]

the spot, which includes the lateral fluence kernel K,,(p; z) as
shown in Eq. (4). Again, the mean value at each point for the
overall layer is obtained by convolving Eq. (16) with the spot
weights map:

spot

iy (X, z Eo)w(x — X',y =y )dx'dy

HR,P("% Ey) = /
(18)

In contrast with the mean value, in order to reduce
the complexity of the model, standard deviation is con-
sidered as constant laterally, i.e. ogp(r;Ey) = orp(z; Ep).
This parameter, again, is modeled in depth as a polyno-
mial function.

2.E. Application to a particular quantity: Dose-
averaged LET calculation

Let us consider the case of calculating dose-averaged LET
using the fluence kernel proposed above. Dose-average LET
is defined as™
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JS*(E
JS(E
where S(E) is the electronic stopping power of the considered

particle as a function of its kinetic energy. This can be calcu-
lated according to Eq. (5) at each point r as,

fE ¢RP(R r)dR

E)¢p(E;r)dE 52( r)

Yo (E;r)dE — S(r)

Lp

(r) = (19)

= 20
- fZP:I ‘f’R,p(R;r)dR (20)
and
S DY R) ¢ p(R;r)dR
e J Z ¢>RP (R:r)dR @1)

where all symbols coincide with those in Eq. (6) exchanging
the generic quantity gp(R) by S3(R) and Sp(R), respectively.
Note that now the stopping power Sp(R) for the particle P is
expressed in terms of the CSDA range instead of the energy
of the particle. It is possible to perform such integrations by
using the model presented in the previous section and the
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FiG. 3. (a) Examples of spectra for primary protons, secondary protons and alpha particles in terms of continuous slow-down approximation range for a single-
layer proton beam of 150 MeV at a depth equal to 10 cm. (b) Mean of the spectra shown in (a) in depth for each type of particle for a single-layer proton beam of
150 MeV. For primary protons (left), this is modeled as the residual range, whereas for secondary protons (middle) and alpha particles (right) a third-grade poly-
nomial function is used. (c) Standard deviation of the spectra shown in (a) considered as a Gaussian function for a single-layer proton beam of 150 MeV for pri-
mary protons (left), secondary protons (middle) and alpha particles (right). (a) O Geant4 simulations; — Single Gaussian fits. (b) O Mean p p of the Gaussian
function fitted to Geant4 simulations; —Polynomial fits. (c) O Sigma o p of the Gaussian function fitted to Geant4 simulations; — Polynomial fits.

stopping power and range data for each energy in the NIST
databases.'

This model has been implemented in C# code and inte-
grated into the Varian Eclipse TPS (version 15) through
the Eclipse Scripting Application Programming Interface
(ESAPD?' in order to calculate three-dimensional (3D) dis-
tributions in real clinical proton beams. All calculations
were performed with a beam model of a pencil beam scan-
ning (PBS) system from IBA. A parallelepiped structure
with 10 cm in-length and square base (5.5 cm x 5.5 cm)
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is defined in a large cube of liquid water with its distal
face at 20 cm in-depth. A beam is generated in Eclipse to
produce a uniform dose over that structure. To benchmark
the results, the same geometry is simulated using the fast
MC code MCsquare®” by simulating 10° primary particles.
The LETd calculations are computed in MCsquare by
using the scoring method labeled as “C” in Cortes-Giraldo
and Carabe’s work.”> We performed two comparisons: (a)
only considering primary and secondary protons in both
systems and (b) adding just the alpha particles’
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FiG. 4. Calculations of LETd considering only protons with our fluence kernel-based method and with MCsquare (10° protons simulated) for a spread-out Bragg
peak with maximum range of 20 and 10 cm of modulation at (a) the central axis, (b) a lateral profile at depth = 11.5 cm and (c) another lateral profile at
depth = 17.44 cm. The positions of the lateral profiles are marked in (a) with gray vertical lines. Dose calculations with MCsquare are shown in gray dashed

lines. — Fluence kernel-based calculation; - —- MCsquare.

contribution in our method and in MCsquare, with a spe-
cially devoted version for this work.

Finally, we also have performed calculations in medium
different from water. In order to do that, the depth in
water, z, is replaced by the corresponding water-equivalent
thickness zwgr resulting from the beam raytracing through-
out all the previous equations. We consider a prostate case
treated with two single-field-optimized lateral beams and
compare the distributions of Lp resulting from our method
and MCsquare.

3. RESULTS

Figure 1 shows the integrated fluence at each depth for
primary protons, secondary protons and alpha particles
obtained from simulations with Geant4. Fits for the functions
shown in Egs. (7), (9) and (10) are also shown. Results for
only three energies (125, 175, and 225 MeV) are shown to
ease the visualization. Similar trends are obtained for the rest
of the energies. As a measurement of the goodness of the fits,
for primary protons the nine simulated energies provide a
mean R?> = 0.998, for secondary protons R*> = 0.995 and for
alpha particles R*> = 0.986.
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Lateral distributions for primary protons and secondary
alphas are modeled as single Gaussian functions at every
individual depth considered. Whereas, for secondary protons,
a double Gaussian function is employed. The goodness of
these fits can be evaluated through the mean R? for each one
of the nine energies employed. The averages and standard
deviations of these sets of nine mean R* are 0.997 4 0.0004
for primary protons, 0.982 + 0.0007 for secondary protons
and 0.993 4+ 0.003 for alpha particles. Figure 2 shows the
dependency of the lateral ¢ for each case for the same three
selected energies than in Fig. 1.

The spectrum in terms of CSDA range for each compo-
nent is modeled as a single Gaussian function. Figure 3(a)
shows an example of the spectrum obtained from Geant4 MC
simulations and the fitted functions (beam energy of
150 MeV at 10 cm in depth). The overall goodness of this fits
is evaluated through the average of the mean R? parameters
obtained for each energy along all the considered depths:
0.995 + 0.001 for primary protons, 0.938 + 0.025 for sec-
ondary protons and 0.90 £ 0.02 for alpha particles. Fig-
ure 3(b) shows the dependency of the mean range on the
depth for the same beam energies. Note that the relation
between CSDA range and kinetic energy is different for
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FiG. 5. Calculations of LETd considering protons and alpha particles with our fluence kernel-based method and a specially compiled version of MCsquare that
includes only primary protons, secondary protons and secondary alpha particles (10° primary particles simulated) for a spread-out Bragg peak with maximum
range of 20 and 10 cm of modulation at (a) the central axis, (b) a lateral profile at depth = 11.5 cm and (c) another lateral profile at depth = 17.44 cm. The posi-
tions of the lateral profiles are marked in (a) with gray vertical lines. Dose calculations with MCsquare are shown in gray dashed lines. — Fluence kernel-based

calculation; - —- MCsquare.

protons and for alpha particles. Figure 3(c) shows the stan-
dard deviation for the Gaussian functions for the same beam
than in Figs. 3(a) and 3(b).

Figure 4 shows the comparison between the calculations
for LETd by using the fluence kernel method exposed in this
work and by MCsquare only considering primary and sec-
ondary protons. Results at the central axis are shown in
Fig. 4(a) whereas Figs. 4(b) and 4(c) show two lateral pro-
files at different depths. The mean difference between two
results along the central axis, taking samples separated by
1 mm, is —0.29 £+ 0.15 keV/um, where uncertainty is
expressed as one standard deviation of the mean difference.
For the whole three-dimensional distribution, we find a mean
difference of —0.007 £ 0.008 keV/pum. Points with a num-
ber of particles less than 1% of the total number of particles
coming for each layer are excluded from this computation.

The same case but adding the alpha particles’ contribution
to the fluence kernel and all the secondary heavier particles
in MCsquare is shown in Fig. 5. In this case, the mean devia-
tion at the central axis is found as —0.24 £ 0.14 keV/um,
meanwhile for the complete distribution it now goes to
—0.022 £ 0.007 keV/um.

Results of the calculations for Lp in a prostate case are
shown in Fig. 6. Besides the Lp distributions calculated with
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MCsquare and our method and their differences, dose distri-
bution obtained with MCsquare is also provided to contrast
areas in which Lp may result high but dose is very low. Mean
difference between MCsquare and our method in all the vol-
ume irradiated above 5% of the dose is equal to
0.28 keV + 0.23 keV/um. However, for the voxels con-
tained in the PTV, this mean difference decreases to
0.07 £ 0.11 keV/pum. In the rectum, in turn, mean difference
is 0.0 £ 0.8 keV/pm.

4. DISCUSSION

Results for LETd calculation show a good performance
of our fluence model, especially when only protons are
considered (see Fig. 4), in which not only central axis
profiles tend to coincide but also the characteristic lateral
curvature is met at any depth. We have chosen specifically
LETd to assess our method for two reasons: (a) the values
for the stopping power are extensively validated and (b) it
is a quantity strongly dependent on the spectrum and the
relative number of particles from each category rather than
on the overall number of particles, which would be the
case of quantities as energy or dose absorbed. Because of
that dependency, every part of the method needs to be
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FiG. 6. Calculations on a central axial plane for prostate case with two lateral beams and a prescribed dose of 70.2 Gy. (a) Lp calculated with MCsquare. (b) Lp
calculated with our method. (c) Difference between L calculated with MCsquare and with our method. (d) Dose distribution calculated with MCsquare. For (a),
(b) and (c), color bars are specified in keV/pm. For (d), values on the color bar indicate Gy. [Color figure can be viewed at wileyonlinelibrary.com]

correctly modeled so that acceptable agreements with MC
calculations can be found.

Even though our methodology uses convolution-superpo-
sition principles, as pencil beam algorithms do, the main dif-
ference here resides in the quantities to be superposed. While
dose or LETd-specific kernels directly convolve and super-
pose curves of those quantities, we sum, on the one hand, the
number of particles produced by each beamlet in a spot, and
average, on the other hand, the mean energy of the particles
traveling in that beamlet. These quantities can naturally be
superposed under any condition whereas for dose, some
assumptions need to be done: the energy deposition needs to
be concentrated close around the particle track. The case of
LETd is even worse: the non-linear component on the
squared stopping power cannot be superposed in this way
and artificial workarounds need to be incorporated to the lat-
eral kernels.

However, some major deviations from the fluence data
computed by Geant4 are observed in some cases. This is
especially the case for the number of alpha particles in depth,
as seen in Fig. 1(c), in which Eq. (9) appreciably deviates
from the curve obtained from Geant4 around the end of the
beam range. Nonetheless, the impact of these deviations is
reduced since, as protons’ stopping power increases in that
area, the relative contribution to the LETd of alpha particles
becomes small. Our models for secondary protons do not
seem accurate at the entrance region [see Fig. 2(b) and
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Figs. 3(b) and 3(c)]. This can be explained by the small num-
ber of secondary protons produced there [see Fig. 1(b)],
which makes unstable the Gaussian fits and, in turn, makes
the values erratic for the parameters. Yet, precisely due to its
relatively small number, the weight of these deviations in the
calculations is limited. Finally, the relatively low R> values
for the fits of Gaussian functions to the alpha particles are
acceptable as a compromise for a simple meaningful function
with few parameters, with the mean allowed to vary laterally.
We have included alpha particles in our formalism as they
represent the main secondary contributor, besides protons, in
clinical proton beams. Deuterons, for example, contributes to
dose deposition by <0.1%, roughly an order of magnitude
less than alpha.'” However, deuterons and other particles
might be incorporated following the same methodology to
develop kernels for their fluence and spectral fluence. The
contribution of alpha particles makes LETd increase espe-
cially at the entrance region, although our method seems to
slightly underestimate this compared to MCsquare (see
Fig. 5). However, the general agreement is remarkable and
the entrance area is not expected to be particularly relevant to
assess biological effect since LETd is relatively low there. In
any case, as shown with alpha particles as an example, the
contribution of any other particle can be added to the model
by following a similar process: (a) obtaining the 3D distribu-
tions (number of particles and energy spectrum) for produc-
tion of that particle in proton beams of a range of energies;
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(b) model the functions for the number of particles in depth
and laterally; and (ci) model the functions for the spectrum at
the central axis and laterally.

It is important to remark that the method to consider inho-
mogeneous media here presented is a simple displacement of
the calculated fluence according to the water-equivalent
depth. This may result in errors for the lateral contribution of
each beamlet to an adjacent point, especially around edges
between two media highly inhomogeneous. Therefore, a
more sophisticated method to overcome these situations is
desirable. However, as shown in Fig. 6, average differences
in Lp calculation as a surrogate of spectral fluence do not
tend to be high, especially in areas in which dose, that is, flu-
ence, is large.

Only LETd calculations are shown in this work as an exam-
ple of the potential of this method. It should be noted, though,
that an advantage here is the ability to simultaneously calculate
a number of QOIs. For instance, if a function for the depen-
dency of the dose on the energy of a particle, D = D(E), can
be found, then the same framework can be used to compute
dose and LETd, which may lead to an efficient optimization
process based on distributions of both quantities. Additionally,
as mentioned before, our published microdosimetric func-
tions'' can be employed in order to generate three-dimensional
distributions for them in commercial TPS.

5. CONCLUSIONS

A new analytical method to reproduce the three-dimen-
sional distributions of spectral fluence in particle therapy is
presented and particularized for the proton therapy case. The
advantage of this spectral fluence-based approach is that sev-
eral quantities of interest can be derived from the spectral flu-
ence by means of a convolution integral as long as the
dependency of those with the energy of the involved particles
is known. As a specific application, LETd results with this
approach look remarkably good even though only protons
and alpha particles are taken into consideration. The philoso-
phy of the method includes the potential of extending the
considered particles by following a process similar to pre-
sented here.
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