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In this paper we study turbulent thermal convection driven by free-surface evaporation
at the top and a uniformly heated wall at the bottom. More specifically, we report
on direct numerical simulations of the problem in hand over 1.25 decades of Rayleigh
numbers. A shear-free boundary on top of a cubic domain acts as an approximation
of a free surface. At the same location we consider different evaporation rates which
form the basis of a temperature gradient assigned as a non-zero Neumann boundary
condition. The corresponding lower wall temperature is fixed and we assess the thermal
mixing water-side. The set-up is considered a simplified model of the turbulent natural
convection in the upper volumes of spent-fuel pools of nuclear power plants. Surface
temperatures are investigated over a range of 40 K, resulting in a sixteenfold increase in
evaporation rates. Our work allows for the first time, analysis of the mean flow statistics
of this particular thermal convection configuration. Results show that a shear-free surface
increases heat transfer within the domain, however the exponent in the provided power-
law relation, Nu = 0.178Ra0.301, is similar to that of classical turbulent Rayleigh-Bénard
Convection. Further, the free-slip accelerates the fluid after impingement on the upper
boundary. This has a significant effect on the structure of the contained large-scale
circulation. Analysis of the flow statistics then show how the shear-free surface introduces
inhomogeneities in thermal boundary layer heights. Overall, the investigated turbulent
convection configuration shows unique traits, borrowing from both turbulent Rayleigh-
Bénard convection and evaporative cooling.

Key words: thermal convection, direct numerical simulations, turbulence, evaporative
cooling, non-Oberbeck-Boussinesq conditions

1. Introduction

In this paper we report on Direct Numerical Simulations (DNS) of evaporation-driven
turbulent thermal convection in a pool. With liquid water as the working medium,
we approximate an evaporating free surface by imposing a heat flux at a shear-free
upper boundary. Over a series of simulations we then investigate the effect of increasing
evaporation rates on the flow field below. Evaporation-driven natural convection is
studied extensively in oceanography but is also encountered in industrial applications
such as in the spent-fuel pools of nuclear power plants.

High-temperature free-surface evaporation is of particular interest. Taking Fukushima
2011 as an example, a loss-of-cooling accident in the spent-fuel pools resulted in fuel
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uncovery due in part to inventory loss at sub-saturation pool temperatures. In this
situation, heat is added to the upper volume of the pool from the fuel assemblies
below and is predominantly evacuated via evaporation at the free surface. In the nuclear
industry it is imperative to have an understanding of, and the capabilities to predict,
the effect of free-surface evaporation on thermal mixing in the pool. An improved
understanding will in turn lead to better predictions of the physics in the early-stages of
the accident and forms the basis of the motivation for this work.

Turbulent convection and free-surface evaporation are the inter-dependent physical
phenomena of interest. In order to fix ideas, consider an initially quiescent velocity
field water-side. Evaporation at the free surface would induce convective motion below.
This configuration is known as evaporative cooling; see figure 1a. Conversely, if heat is
added from below and simultaneously evacuated above then a flow is induced similar to
turbulent Rayleigh-Bénard Convection (RBC); see figure 1b. The problem in hand, shown
schematically in figure 1c, can be understood as a combination of these two well-known
thermal convection configurations.

Turbulent RBC is most commonly studied as a fluid uniformly heated from below
and cooled from above with solid upper and lower boundaries; for reviews see Siggia
(1994); Ahlers et al. (2009) and Lohse & Xia (2010). The flow and thermal dynamics
are determined by the geometry of the system, the temperature difference across it
and the resulting variation in fluid properties. The two dimensionless parameters that
then govern the flow are the Prandtl, Pr = ν/κ, and Rayleigh, Ra = |g|β∆T H3/(νκ),
numbers. In these expressions, |g| is the magnitude of gravitational acceleration, β the
thermal expansion coefficient, H the height of the domain, ν the kinematic viscosity, ∆T
the temperature difference between lower and upper boundaries and κ is the thermal
diffusivity.

The system response to a given Ra and Pr is measured in terms of the dimensionless
numbers for heat flux and turbulence; respectively the Nusselt (Nu) and Reynolds (Re)
numbers, where the velocity for the latter is representative of the large-scale circulation
(LSC) (Ahlers et al. 2009). This circulation, or mean wind, sweeps across the upper and
lower boundaries stabilizing the thermal boundary layers, and simultaneously creating a
hydrodynamic boundary layer with its shear (Sun et al. 2008). The shape of the container
is the final control parameter which plays a particularly important role in determining
the structure of the LSC. Experimental work has largely concentrated on cylindrical
geometries (Chavanne et al. (1997); Niemala et al. (2000); Verzicco & Camussi (2003)),
however a significant body of work also exists for the cubic domain.

Turbulent RBC in a cubic domain has been studied experimentally by Daya & Ecke
(2001). Therein, measurements of velocity and temperature root-mean-square (rms)
quantities in the bulk of the flow showed differences to that seen in corresponding cylin-
drical domains at the same Ra and Pr. This conclusion was later confirmed numerically
by Foroozani et al. (2014) where the LSC structure in a cubic domain is also discussed
further. Kaczorowski & Xia (2013) carried out highly resolved DNS of turbulent RBC in
a cube for water and air over five decades of Ra, investigating velocity and temperature
structure function scaling and heat transfer in the bulk. Later, Foroozani et al. (2017)
carried out large-eddy simulations over long-time periods investigating the dynamics of
LSC reorientations. They found that all flow reorientations were due to lateral rotations
during which the large-scale flow entered a transient state, non-aligned with the diagonal.
In this study we do not extend our DNS to such long time periods and choose time-
averaging intervals that are representative of a stable LSC.

Evaporative cooling can be studied by visualizing the flow field below an evaporating
interface (Spangenberg & Rowland 1961). Early observations noted that cool water
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Figure 1. A comparison of thermal convection configurations and their temperature profiles:
(a) evaporative cooling, (b) turbulent RBC, and (c) the current configuration.

accumulates along lines on the surface before plunging downwards in vertical sheets,
taking surrounding fluid with it and creating an uneven surface layer. The role of an
upper thermal boundary layer as a source for thermal plumes has qualitative similarities
to turbulent RBC where plumes break away from a cooled upper wall, falling rapidly
into the interior (Howard 1966). However, in evaporative cooling the plunging sheets are
broken-up and dissipated by diffusion before interacting with an adiabatic bottom wall.
There is a clear deviation from turbulent RBC here where the container bottom wall is
heated and from which thermal plumes are also released from a second thermal boundary
layer; see figure 1.

Further, Flack et al. (2001) measured velocities and subsequent turbulence quantities
beneath an evaporating water surface. In that study, measurements were made for a
shear-free, clean surface, i.e. without surfactants, where it was found that the turbulent
kinetic energy peaked at the free surface. Volino & Smith (1999) aimed to link the surface
temperature field to sub-surface velocity measurements but encountered difficulties due to
sub-surface vortices interacting with the surface temperature measurements. Bukhari &
Siddiqui (2006) also observed the turbulent structure beneath an air/water interface and
noted that these vortices increase in number and magnitude as a result of an increasing
heat flux. To the authors knowledge, no large-scale circulation has been observed in
the evaporative cooling configuration. The LSC structure in the present configuration is
however of interest, given the similarities with turbulent RBC.

In an earlier study, Katsaros et al. (1976) studied experimentally the thermal boundary
layer behaviour below an evaporating water surface and also found a scaling relationship,
Nu = 0.156Ra0.33, for the evaporative cooling configuration, i.e. with a heat flux across
one free boundary. Whereas, Straus (1973) derived Ra−Nu scaling relations for turbulent
RBC between two rigid plates and between two free boundaries. The exponent in both
power-law scalings was the same. Much research in the turbulent RBC community has
since concentrated on measuring the Nu dependence on Ra; one example (Niemala et al.
2000) covering a particularly large range of Ra provides Nu = 0.124Ra0.309 . The current
configuration shown in figure 1c has one rigid plate and one free boundary; it is of interest
therefore to find the Ra −Nu scaling for this unique set-up. A comparison of both the
heat transfer effectiveness and power-law exponent can then be made with similar thermal
convection configurations.

The closest configuration to the one investigated in the present study is that of Zikanov
et al. (2002). Therein, the authors studied numerically the turbulent convection occurring
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in warm shallow ocean during adverse weather events. A heat flux was implemented at
the free-slip upper boundary to represent evaporation and the lower boundary was a rigid
wall. One main difference between Zikanov et al. (2002) and this study is in the geometry
of the domain; where Zikanov et al. (2002) used periodic boundaries in the horizontal
directions, we have a wall-bounded domain. Further, in Zikanov et al. (2002) results are
presented on the initial unsteady phase of the flow from a quiescent state whereas in
this paper, a steady state is pursued. This produces novel Ra scaling of both Nu and a
Reynolds number in the centre of the domain; enabling comparisons with similar thermal
convection configurations.

An earlier thermal convection study of ours (Hay & Papalexandris 2019) assumed
a fixed temperature drop across a cuboid domain while enforcing periodicity in one
horizontal direction. The impact of both the free-slip and non-Oberbeck Boussinesq
conditions were then assessed. The former was shown to play an important role both
on Nu and on the mean temperature profile across the domain. The values for Nu were
increased when compared to turbulent RBC for the same Ra; an expected result given the
earlier work of Straus (1973). Moreover, the mean temperature profile was shifted towards
the colder upper boundary temperature. This was the case even when considering the
competing non-Oberbeck Boussinesq effects which, for the case of water as the working
fluid, tends to shift the bulk temperature towards the warmer lower wall temperature.
The bulk of the domain was therefore significantly cooler than that seen in turbulent
RBC.

In summary, the thermal convection set-up investigated here is novel and characterized
by its similarities to the well-known configurations of turbulent RBC and evaporative
cooling. The configuration shown in figure 1c has been investigated experimentally in
the past, however the aims were to measure gas-side flow and, importantly, evaporation
rates (Boelter et al. 1946; Bower & Saylor 2009). We utilize these latter results in our
study and extend the analysis water-side in order to further understanding on the role
of free-surface evaporation on thermal mixing in liquid pools.

The paper is organized as follows. First we present the governing equations, followed
by a detailled discussion on the estimation of evaporation rates. Next, we outline the
numerical set-up and elaborate on the resolution requirements for the DNS. Subsequently,
we analyse the numerical results in two parts. In the first, we provide time-averaged flow
properties such as Nu, Re and the LSC structure. We then focus on the flow statistics
by plotting vertical profiles of time and horizontally averaged flow properties and analyse
the effect of increasing Ra, before drawing conclusions.

2. Governing equations

We consider only the flow beneath the evaporating surface and as such the working fluid
is liquid water, which is treated as Newtonian. We investigate flows without invoking
the Oberbeck-Boussinesq approximation and therefore take into account variations of
the density and transport properties with temperature. For this reason, the system of
governing equations is the low-Mach number approximation of the compressible Navier-
Stokes-Fourier equations (Majda & Sethian 1985; Lessani & Papalexandris 2006),

∂ρ

∂t
+∇ · (ρu) = 0 , (2.1)

∂ (ρu)

∂t
+∇ · (ρuu) = ∇ · τ −∇p + ρg , (2.2)
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∂ (ρcpT )

∂t
+∇ · (ρcpuT ) = ∇ · (λ∇T ) +

dp0 (t)

dt
, (2.3)

where u = (u, v, w). In (2.2), p stands for the sum of the 2nd-order term of the low-
Mach-number expansion of the pressure and the bulk viscous pressure (Georgiou &
Papalexandris 2018; Papalexandris 2019). Also τ , stands for the deviatoric part of the
viscous stress tensor, defined as τ = µ(∇u+ (∇u)T− 2

3 (∇·u)I), where I is the identity
matrix and µ the dynamic viscosity.

In (2.3), cp is the specific heat, λ the thermal conductivity and p0(t) the 1st-order
component of the asymptotic expansion of pressure at the zero-Mach limit, interpreted
as the thermodynamic pressure. According to the low-Mach number expansion, it is
spatially uniform and a function of time only. For open domains, p0 is equal to the
ambient pressure whereas for closed domains, p0 varies with time and can be computed
from the equation of state of the working medium. In this study the domain is open. For
this reason, p0 is constant and set to the ambient pressure of one atmosphere. We note
that the mass loss leaving the system due to evaporation is not modelled and the surface
level is constant throughout. For the highest evaporation case the mass loss through the
free-surface would be equivalent to 3%. This is considered to have a minor effect on the
free surface level over the simulation times considered.

In order to close the system of governing equations, an isobaric “equation of state”
for the water density is required. More specifically, a ρ − T relation is introduced. This
relation is a fourth-order polynomial fit (2.4) of the tabulated data in Lemmon et al.
(2010) for water density at one atmosphere and over the temperature range of interest.
The other fluid thermodynamic properties, λ and µ are also calculated from a quartic
polynomial fit of the form (2.4) with data originating from the same reference. For a
generic quantity φ, this fit reads

φ = c4T
4 + c3T

3 + c2T
2 + c1T + c0 . (2.4)

An example set of coefficients for the fits of ρ/p0, λ and µ are provided in table A1.

For the case with the largest ∆T , the dynamic viscosity and the thermal conductivity
vary respectively by 24% and 2% over the temperature range of interest. In other words,
even though the density variations are small, the induced variations in the transport
properties of water are non-negligible. On the other hand, cp varies by a maximum
of only 0.4% over the maximum temperature range investigated. It is thus taken as a
constant, case-dependent, value in all simulations; see table A1. We note that with the
aforementioned variations in fluid properties, Pr varies by 26% across the domain for
the highest evaporation case.

For the numerical solution of (2.1) - (2.3) we employ a second-order accurate time-
integration scheme for convective and diffusive terms, taking into account the current and
the two previous time steps. Regarding the spatial discretization, the governing equations
are discretized using second-order central difference schemes on a collocated grid system.
A flux interpolation technique is used in the spirit of Rhie & Chow (1983), to avoid
pressure odd-even decoupling (Weller et al. 1998; Lessani & Papalexandris 2006, 2008).

For the pressure-velocity coupling a PISO-type projection method is used, similar to
the methods proposed by Issa (1985) and Oliviera & Issa (2001) for incompressible flows.
The divergence of the momentum equation is taken and the continuity equation is used
as a constraint to formulate the variable-coefficient Poisson equation to be solved for
p. In this low-Mach-number PISO algorithm, the temporal derivative of the density,
∂ρ
∂t , emerges on the left-hand side of the Poisson equation which would be zero for the
incompressible case.
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3. Estimation of evaporation rates

For specified thermal boundary conditions at the walls of the pool and for given ambient
conditions, the evaporation rate depends on the gas-side transport phenomena. In the
present work however, the focus is not on such phenomena but on the thermal mixing
water-side. For this reason, we only solve for the flow field below the free surface, referred
to interchangeably herein as the interface. This in turn requires the mean temperature at
the interface to be specified, from which the evaporation rates and temperature gradients
at the interface can then be estimated. Also for a given mean interface temperature,
the bottom-wall temperature is not known in advance and must be estimated a priori
on a case-by-case basis. As first approximations we take estimations from high-surface
temperature evaporation experiments, where data is provided for temperature drops
across water domains during evaporation. These are subsequently refined in preliminary
simulations until the correct temperature drop is found.

In this section we obtain realistic approximations of the heat losses at the upper
boundary, as well as the corresponding lower wall temperatures. This will enable the
assignment of thermal boundary conditions in the following section. To estimate these
quantities we start with an energy balance across the interface which provides the
following relation,

q̇
′′

add = q̇
′′

conv + q̇
′′

evap . (3.1)

Here, the right-hand side terms, q̇
′′

conv and q̇
′′

evap, represent respectively the convective
and latent heat losses per unit surface area to the ambient gas-side environment. The
left-hand side term, q̇

′′

add, represents the heat added to the interface from the water-side.

By expanding this latter quantity and q̇
′′

evap, we arrive at the following,

∂T

∂y

∣∣∣
w

=
1

λw

(
q̇
′′

conv + ṁ
′′
hlv

)
, (3.2)

where ṁ
′′

is the evaporative mass flux, hlv is the interface-temperature-dependent latent
heat of evaporation and λw∂T/∂y|w is the mean heat flux at the water-side of the
interface, with λw as the thermal conductivity of water at the mean interface temperature,
Tint. The task is then to find approximations for the right-hand side terms in (3.2) which
will form the basis of our non-zero Neumann boundary condition.

As a first step in calculating q̇
′′

evap we fix the gas-side conditions at a distance far
from the interface. Estimates are taken from the experimental work of Martin & Migot
(2019) investigating high temperature evaporation, with values provided in table A2. In
this table, T∞ is the temperature far from the interface and p0 is the thermodynamic
pressure. The water vapour partial pressure, pv,∞, is calculated from a Wagner equation
(Poling et al. 2001), before taking into account the relative humidity, RH, also provided
in table A2. The water vapour mass fraction far from the interface, Yv,∞, can then be
found from the following relation,

Yv =
pvMw

pvMw + (p0 − pv)Ma
, (3.3)

where Mw and Ma are respectively the molar masses of water and air. Assuming a binary
mixture of water vapour and air, the mass fraction of air at the same location is found
from 1 − Yv,∞. The gaseous mixture density far from the interface, ρ∞, is calculated
from the mass fractions and the ideal-gas equation of state and is given in table A2.
Equivalently, we set the conditions at the interface representative of different evaporation
fluxes. First, Tint is selected and a corresponding saturation pressure, pv,int, is found. The
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Case Prf Scf Lef Rac Sh Rat Nut

1 0.71 0.61 0.86 1.5× 105 9.0 1.2× 105 10.1
2 0.72 0.61 0.85 2.0× 105 9.8 1.6× 105 10.8
3 0.74 0.60 0.81 4.0× 105 12.2 3.0× 105 12.6
4 0.77 0.59 0.78 5.3× 105 13.3 3.7× 105 13.3
5 0.78 0.59 0.75 6.0× 105 13.8 4.0× 105 13.7

Table 1. Gas-side dimensionless parameters. In this table Prf = νf/αf , Scf = νf/Df , and
Le = Scf/Prf . The non-dimensional groups Rac, Sh, Rat and Nut are defined in the text.

vapour mass fraction, Yv,int, and mixture density, ρint, are then calculated as above with
values provided in table A3.

We assume that, on the gas side, the transition from the interface conditions to those
far away takes place within a layer of finite thickness, referred to herein as a film.
Finding the mean of the interface values and those at a distance far away allows for
an estimation of the film properties. We require the quantities of ρf , cpf , µf and λf ,
representing respectively the film density, specific heat, dynamic viscosity and thermal
conductivity. Of these, both ρf and cpf are mass-averaged using the film mass fraction,
Yv,f , whereas the quantities of µf and λf are found from the kinetic theory of gases; see
Wilke (1950) and Mason & Saxena (1958) respectively. The film diffusion coefficients
for momentum, νf , and energy, κf , respectively the kinematic viscosity and the thermal
diffusivity are then found from a combination of the aforementioned properties. Finally,
the film mass diffusivity for the binary mixture of air and vapour, Df , is found from the
following relation (Marrero & Mason 1972),

Df = 1.87× 10−10 T
2.072
f

p0

(
m2

s

)
, (3.4)

where the thermodynamic pressure, p0, is equal to 1 atm. The film diffusion coefficients
are used to find the film Prandtl (Prf), Schmidt (Scf) and Lewis (Lef) numbers, all
of which are provided in table 1. For all cases examined herein, it was assumed that
Le = 1, implying that the concentration and thermal boundary layer heights above the
interface are equal. This allows us to find a gas-side concentration Rayleigh number using
properties based on the local water vapour mass fraction and temperature.

Pertinent experimental studies of free-surface evaporation include Boelter et al. (1946)
and Bower & Saylor (2009). Both measured evaporation rates into a quiescent air
environment; however Bower & Saylor (2009) used an improved set-up, allowing for
more realistic air-side natural convection conditions. Both papers provide Sherwood
number (Sh) correlations based on a relationship with the Schmidt number (Sc) and
the concentration Rayleigh number, Rac, defined as follows,

Rac =
|g| (ρ∞ − ρint)W

3

Dfµf
. (3.5)

Bower & Saylor (2009) then proposed the following correlation, used here to find an
estimation of the concentration boundary layer height, δc,

Sh = 0.23 Sc
1
3Rac

0.321 ≈ W

δc
. (3.6)

The fact that Sh is inversely proportional to the height of the concentration boundary
layer is again an analogy with heat transfer that holds in cases with Le = 1. The mass
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Case ṁ
′′

( kg
m2s

) q̇
′′
evap ( W

m2 ) q̇
′′
conv ( W

m2 ) ∂T
∂y

∣∣∣
w

( K
m

)

1 2.4× 10−4 580 90 1000
2 3.6× 10−4 860 130 2000
3 1.5× 10−3 3420 310 6000
4 2.8× 10−3 6480 420 10000
5 3.9× 10−3 9040 470 14000

Table 2. Fluxes at the interface. In this table ṁ
′′

is the mass flux, q̇
′′
evap is the evaporative heat

flux, and q̇
′′
conv is the convective heat flux. The prescribed temperature gradient, ∂T/∂y|w, is the

dimensional form of the non-zero Neumann upper thermal boundary condition. The values are
rounded to the nearest thousand to highlight their approximate nature.

flux can then be estimated with the following relation (Lienhard & Lienhard 2019),

ṁ
′′

=
ρfDf

δc
log (1 +Bm) , (3.7)

with the mass transfer driving force, Bm, defined as

Bm =
(Yv,∞ − Yv,int

Yv,int − 1

)
. (3.8)

Substituting (3.6) into (3.7) gives the following relation for the mass flux,

ṁ
′′

= Sh
ρfDf

W
log (1 +Bm) . (3.9)

The latent heat flux is then found from q̇
′′

evap = ṁ
′′
hlv and the final heat and mass fluxes

are provided in table 2.
Next, the convective heat loss is estimated by assuming that it is proportional to

the difference between the temperature of the interface, Tint, and the ambient gas-side
temperature, T∞, with the heat transfer coefficient, h, as the proportionality coefficient.
Overall we have the following,

q̇
′′

conv = h (Tint − T∞) , (3.10)

where h is estimated from the following correlation for a horizontal flat surface that is
warmer than the ambient air above (Lloyd & Moran 1974),

h W

λf
= Nut = 0.54Rat

1
4 . (3.11)

In the above relation, Rat is the gas-side thermal Rayleigh number,

Rat =
|g|β∞ (Tint − T∞)W 3

κfνf
, (3.12)

and W is the characteristic length-scale, the width of the domain. We provide values for
Rat and Nut in table 1 and q̇

′′

conv in table 2.
With the upper temperature gradient known, it remains to find an estimate for the

corresponding case-dependent lower-wall temperatures, Tlow. Martin & Migot (2019)
carried out evaporation experiments of water at high-surface temperatures and measured
the temperature drop between the water bulk and the interface, ∆Tu = Tbulk−Tint. They
reported that the temperature drop from the interface to the bulk increases in a non-
linear manner with increasing evaporation rate. They also observed that the temperature
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Case Ra Tint (K) Tlow (K) Tref (K)

1 7.5× 106 313.15 315.25 314.20
2 1.5× 107 318.15 321.65 319.90
3 5× 107 338.15 345.15 341.65
4 9× 107 348.15 358.15 353.15
5 1.3× 108 353.15 365.65 359.40

Table 3. Thermal boundary conditions: In this table Tint is the predicted interface value, Tlow

is the fixed lower wall temperature, and Tref is the mean pool temperature. The normalized

temperature is defined as θ̂ = (T − Tref) /∆T , so that the upper and lower boundary values

correspond to θ̂int = −0.5 and θ̂low = 0.5 respectively for all cases.

drop between the heated lower wall and the bulk, ∆Tl = Tlow−Tbulk, was approximately
equal to that between the bulk and the interface. That is, ∆Tl ≈ ∆Tu. Therefore, in our
configuration, the total temperature difference across the pool is first approximated as
follows,

∆T = Tlow − Tint = 2∆Tu , (3.13)

with ∆Tu estimated from the experiments of Martin & Migot (2019).
This first approximation is updated in preliminary simulations until the correct time

and area averaged Tint is found. As ∆Tu was reported to increase with evaporation rates,
the lower wall temperature, Tlow is case-dependent. A physical explanation for this is
seen in (3.1), where a higher evaporation flux is only possible with more heat added to
the interface from below. In the current configuration, this energy addition must be via
an increase in Tlow. The lower wall temperatures are provided in table 3, alongside the
predicted time and area-averaged Tint.

It is worth adding here an observation of Boelter et al. (1946), that evaporation
measurements were invalidated above an upper physical limit. In their experiments
boiling at the lower wall began at bulk water temperatures in excess of 361.15 K. In
table 3, we see that the Tlow of case 5 exceeds this limit; the results for this case are
therefore caveated but are included to explore the parameter space more completely. At
the other end of the scale, the smallest Ra investigated herein corresponds to an interface
temperature of 40 K. At lower temperatures, the associated evaporation rate produces
too small a ∆T to drive turbulent convection below.

Finally, we define the normalized temperature as follows,

θ̂ = (T − Tref)/∆T , (3.14)

with Tref as the mean of the lower wall and interface temperatures. If the estimations of
the evaporative heat losses and corresponding lower wall temperatures are correct, we
have θ̂int = −0.5 and θ̂low = 0.5, at the statistically stationary solution.

4. Numerical set-up

The computational domain is a cube of unity aspect ratio. As mentioned in the introduc-
tion, deviations away from the classical turbulent RBC set-up in the current configuration
are in both the hydrodynamic and thermal boundary conditions prescribed at the upper
boundary. Before expanding on this, we introduce dimensionless variables denoted by a
hat (.̂.) and provide reference values used for non-dimensionalization purposes in table
4. The reference length is the height of the cube, H, and is constant for all cases. With
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Ra Uff (
m

s
) ∆T (K) ρref (

kg

m3
) λref (

W

mK
) βref (

1

K
) νref (

m2

s
) κref (

m2

s
) Prref

7.5× 106 0.019 2.1 991.8 0.63 4.0× 10−4 6.4× 10−7 1.52× 10−7 4.2
1.5× 107 0.026 3.5 989.5 0.64 4.3× 10−4 5.8× 10−7 1.54× 10−7 3.8

5× 107 0.042 7.0 978.6 0.66 5.6× 10−4 4.2× 10−7 1.61× 10−7 2.6
9× 107 0.051 10.0 971.8 0.67 6.2× 10−4 3.6× 10−7 1.63× 10−7 2.2

1.3× 108 0.060 12.5 967.8 0.68 6.4× 10−4 3.4× 10−7 1.65× 10−7 2.1

Table 4. Reference values for non-dimensionalization purposes. The reference height, H, is
0.045 m for all cases.

the reference velocity as the free-fall velocity, Uff =
√
|g|Hβref∆T , we find a reference

free-fall time from tff = H/Uff . Finally, the reference temperature is the mean in the
pool, Tref , with all reference properties then relative to Tref .

The lower wall is located at ŷ = 0, the upper boundary at ŷ = 1 and, likewise, the
side walls at x̂ = 0 (ẑ = 0) and x̂ = 1 (ẑ = 1). No-slip velocity boundary conditions are
enforced at the side and lower walls. The free-slip condition is prescribed at the upper
boundary, i.e. ∂û

∂ŷ = ∂ŵ
∂ŷ = 0 and v̂ = 0 at ŷ = 1. This can be considered as a first order

approximation of a free surface. For the thermal boundary conditions outlined in the

previous section we have adiabatic side-walls with ∂θ̂
∂x̂ prescribed. At ŷ = 0 we set θ̂ = 0.5

as a Dirichlet boundary condition, whereas at ŷ = 1 we prescribe the non-zero Neumann
conditions provided in table 2. The non-dimensional form of the prescribed temperature

gradients are found by dividing by the case-specific ∆T/H, which gives ∂θ̂
∂ŷ = 21.4, 25.7,

38.6, 45.0 and 50.4 for cases 1–5 respectively.
As a result of the aforementioned boundary conditions, five hydrodynamic boundary

layers exist, one at each of the vertical side walls and one at the lower wall. On the other
hand, there are only two thermal boundary layers, at the cooled upper boundary and
heated lower wall. Finally, and with regard to the initial conditions, a linear temperature
profile from Tlow to Tint is employed across the vertical direction, whereas for the velocity
a quiescent field is enforced to which small random perturbations are applied.

The Rayleigh number is then calculated as follows,

Ra =
gβref(Tlow − Tint)H

3

νrefκref
, (4.1)

with the ∆T now specific to our boundaries. We provide values for Ra in table 3 and
herein refer to cases 1–5 via their corresponding Ra. An instantaneous view of typical
temperature isosurfaces are presented in figure 2 for the cases of Ra = 1.5 × 107 and
Ra = 9× 107; smaller flow structures appear as evaporation is increased.

5. Resolution requirements

The accuracy of a DNS is ensured only when the smallest length scales of the flow
are everywhere resolved. The first criterion is therefore to ensure adequate resolution
of the hydrodynamic and thermal boundary layers in the vertical direction. A universal
criterion based on the laminar Prandtl-Blasius boundary layer theory has been developed
by Shishkina et al. (2010). For all cases the thermal boundary layer height is predicted

as δ̂θ = 1
2Nu .

For the cases where Prref > 3, the a priori estimate of the dimensionless hydrodynamic
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(a) (b)

Figure 2. Instantaneous isosurfaces of the temperature field: (a) a low evaporation case
corresponding to Ra = 1.5× 107 and (b) a high evaporation case corresponding to

Ra = 9× 107.

boundary layer height, δ̂u, is given by

δ̂u =
1

2
E−1Nu−1Pr

1
3 , (5.1)

where the empirical constant E = 0.982. Then, according to Shishkina et al. (2010), the

minimum resolution requirements for δ̂u and δ̂θ, denoted by Nu and Nθ respectively, are

Nu =
√

2aE
1
2Nu

1
2Pr

1
3 , (5.2)

Nθ =
√

2aE
3
2Nu

1
2 , (5.3)

where the empirical constant a = 0.482.
Equivalently, where Prref < 3, the estimate of δ̂u is given by

δ̂u =
1

2
Nu−1Pr0.357−0.022logPr , (5.4)

and the minimum resolution requirements, Nu and Nθ, by

Nu =
√

2aNu
1
2Pr0.3215+0.011logPr , (5.5)

Nθ =
√

2aNu
1
2Pr−0.0355+0.033logPr . (5.6)

The values of Nu and Nθ are rounded to the next integer and are provided in table
5, where they are taken as minimum requirements for the number of points inside the
boundary layers. In fact, as can be seen by the difference in values of those in parentheses
and those outside, we intentionally over-resolve by a factor of two.

Further, in turbulent RBC the dissipation of turbulent kinetic energy peaks in the
near-wall regions. It is therefore important to ensure that the grid is adequately refined
in these regions too. Accordingly, we choose to refine equally in all directions using a
hyperbolic-tangent expansion from a minimum cell size at the boundaries to a maximum
in the centre of the pool. This results in ∆̂ymax = ∆̂xmax = ∆̂zmax in the centre.

The second resolution criterion is to ensure that the bulk of the domain is adequately
resolved. A satisfactory refinement can be predicted a priori by using the method of
Stevens et al. (2010), itself based originally on Grötzbach (1983). To this end, we recall

that the Kolmogorov scale η is defined as η = (ν3/ε)
1
4 , with ε as the kinetic-energy

dissipation. Moreover, for fluids at Pr > 1, it is the temperature microscale and not the
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Ra Nx ×Ny ×Nz Nu Nθ ∆̂ymin ∆̂ymax
∆
πη

∆
πηθ

7.5× 106 100× 100× 100 10 (5) 7 (3) 0.0028 0.0171 0.22 0.65
1.5× 107 130× 130× 130 12 (6) 8 (4) 0.0016 0.0144 0.25 0.68

5× 107 180× 180× 180 12 (6) 9 (4) 0.0012 0.0104 0.36 0.72
9× 107 200× 200× 200 12 (6) 9 (5) 0.0010 0.0094 0.44 0.76

1.3× 108 220× 220× 220 12 (6) 10 (5) 0.0009 0.0087 0.46 0.75

Table 5. Resolution criteria. In this table Ny is minimum number of points required in the
vertical direction to satisfy both bulk and boundary layer resolution requirements (we then set
Ny = Nx = Nz), Nθ is the minimum number of points in the thermal boundary layer, Nu is

the minimum number of points in the hydrodynamic boundary layer, ∆̂ymin and ∆̂ymax are
the minimum and maximum dimensionless cell size, and the penultimate and final columns
show the maximum ratio of cell size to the calculated a posteriori Kolmogorov and temperature
microscales respectively.

Kolmogorov equivalent that is limiting. Interestingly however, the temperature microscale
itself is Pr-dependent. That is, for fluids at Pr 6 1, the relevant temperature microscale
is the Corrsin scale, ηC = η/Pr

3
4 = (κ3/ε)

1
4 . Whereas, for Pr > 1 the Batchelor scale,

ηB = η/Pr
1
2 = (κ3Pr/ε)

1
4 , should be used (Tennekes & Lumley 1972). As a side-note,

ηC = ηB for the case of Pr = 1 (Batchelor 1959). The above analysis suggests that
the relevant temperature microscale for fluids at Pr > 1 should always be ηB; however
Grötzbach (1983), Stevens et al. (2010) and many other authors in the turbulent RBC
literature use ηC.

Now, we let ∆ be the maximum length of a given computational cell. The maximum
wave-number seen by the grid, kmax = π/∆, must then be greater than the reciprocal
of the Kolmogorov and temperature microscales (Grötzbach 1983; Stevens et al. 2010).
The combination of the above relations leads to the following constraints,

∆ 6 πη = π
(
ν3/ε

) 1
4 , (5.7)

and either

∆ 6 πηC = π
(
κ3/ε

) 1
4 , (5.8)

or

∆ 6 πηB = π
(
κ3Pr/ε

) 1
4 . (5.9)

For fluids at Pr > 1, the questionable condition (5.8) oft-used by the turbulent RBC
community is nevertheless more stringent. For this reason, it is constraint (5.8) that is
used from hereon based on ηC, with this latter quantity now referred to as the temperature
microscale, ηθ.

Deardroff & Willis (1967) argued that the turbulent kinetic energy dissipation profile
in turbulent RBC is flat in the bulk of the flow. This led Grötzbach (1983) to assume
this dissipation to be constant and equal to the buoyant production. The hydrodynamic
resolution requirement based on the smallest Kolmogorov scale is then given by,

∆ 6 πη ≈ πH

(
Pr2

RaNu

) 1
4

. (5.10)

Next, using the Corrsin scale relation, ηθ/η = Pr
3
4 , (5.10) is transformed into an thermal
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resolution requirement as follows,

∆ 6 πηθ ≈ πH

(
1

RaPrNu

) 1
4

, (5.11)

with H as the height of the domain.
We note that a prediction of Nu is required in (5.10) and (5.11) and that, to the

authors knowledge, no correlation exists in the literature for the current configuration.
Previous studies showed that a first estimate for Nu can be obtained via a classical
Ra−Nu correlation from the literature, for example Nu = 0.124Ra0.309 (Niemala et al.
2000). Increasing this value by approximately 30% then allows for the shear-free upper
boundary effect to be taken into account. Preliminary simulations are then performed
on a coarse grid, where coarse is defined as reducing the number of cells necessary for a
resolved DNS by a factor of two in each direction, whilst still respecting the minimum
boundary layer refinements in table 5.

These preliminary simulations are run until statistically steady whereupon we take
statistics over 300 free-fall times and assess the time and area-averaged temperature at
the upper boundary. If this value corresponds to the predicted Tint provided in table
3, then the Ra provided in the same table is accurate and Nu is updated in (5.10)
and (5.11). The coarse grid solutions are then used for initialization purposes for the
fully-resolved DNS.

The number of cells in the x, y and z directions for the fully-resolved DNS are then
given respectively by Nx, Ny and Nz and are provided in table 5. In order to assess this
refinement a posteriori we find the ratios of grid spacing to the local Kolmogorov (5.7)
and temperature (5.8) microscales. The final two columns in table 5 show the maximum
ratios in the domain, where all refinements are shown to be adequate, that is smaller
than unity.

The time-step in our simulations is computed from a maximum Courant number of
0.25. As in Kaczorowski & Wagner (2008), the constraint on the time-step for numer-
ical stability purposes is then stricter than that of the Kolmogorov and temperature
timescales. The smallest of the flow timescales can therefore be considered well captured.

6. Numerical results and discussion

The results section is divided into two parts. First, we look at the mean flow character-
istics including the structure of the LSC, measurements of the rms of vertical velocity in
the bulk of the flow and the dimensionless heat transfer. We then analyse the turbulent
statistics across the vertical direction and in doing so assess the impact of increasing Ra
on boundary layer behaviour. The notation adopted is as follows: the mean of a generic
variable φ is denoted by 〈φ〉 and refers to averaging over time, additional averaging over
a given horizontal x − z plane is denoted by 〈φ〉xz, and over volume by 〈φ〉xyz. The

fluctuating component is then denoted by φ′ and the rms value by φrms =
√
〈φ′φ′〉. The

time averaging in our study was taken over 300 free-fall times which is similar to the
time interval used by Kaczorowski & Xia (2013) for the range of Ra investigated. We
later test the adequacy of this interval.

6.1. Mean flow properties

To assess the accuracy of the prescribed heat fluxes at the upper boundary, we
first analyse the time and area-averaged upper boundary temperatures. Figure 3 shows
the time-averaged normalized temperature at the upper boundary. We note first that
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Ra 〈θ̂int〉xz Nu δ̂θint δ̂θlow
1

2Nu
δ̂u (vrms)ctr Rectr (vrms)xyz Re

7.5× 106 -0.51 21.2 0.017 0.028 0.024 0.048 0.0008 56 0.0015 107
1.5× 107 -0.49 25.9 0.014 0.021 0.019 0.040 0.0010 76 0.0021 166

5× 107 -0.51 38.3 0.009 0.014 0.013 0.028 0.0016 168 0.0040 428
9× 107 -0.50 44.6 0.008 0.012 0.011 0.025 0.0021 254 0.0052 647

1.3× 108 -0.51 49.7 0.007 0.011 0.010 0.024 0.0025 326 0.0062 822

Table 6. Time-averaged results. Where 〈θ̂int〉xz is the time and area averaged normalized

interface temperature, Nu is the volume and time averaged Nusselt number, δ̂θint and δ̂θlow
are the thermal boundary layer heights at the interface and the lower wall respectively, whereas

δ̂u is the hydrodynamic boundary layer height at the lower wall. Rectr = (vrms)ctrH/νref is the

Reynolds number in the centre of the domain, where (vrms)ctr =
√
〈v′v′〉

ctr
(m/s) is the rms of

the vertical velocity in the same location. Re = (vrms)xyzH/νref is the global Reynolds number

where (vrms)xyz =
√
〈v′v′〉

xyz
(m/s) is the volume-averaged rms of the vertical velocity.

(a) (b)

Figure 3. Normalized temperature, θ̂, at the interface and lower wall for Ra = 9 × 107:

(a) side-view showing constant θ̂low = 0.5 on lower wall and spatially-variable θ̂int on upper

boundary (−1.14 < θ̂int < −0.33) and (b) Top view of upper boundary with superimposed
velocity vectors showing LSC impingement and subsequent flow direction.

in turbulent RBC with fixed temperature boundary conditions the coldest physical
temperature is θ̂ = −0.5, whereas in the current configuration cold spots appear near
the intersection of the upper boundary and side-walls corresponding to twice this value.
However, the time and area-averaged values, 〈θ̂int〉xz, are provided in table 6, where they
are seen to match well the predicted values in table 3. The prescribed heat fluxes are
therefore considered accurate.

The impingement point of the LSC can also be identified from the local peak in
temperature seen on the upper boundary in figure 3. This is a result of the hot plumes
released from the heated lower wall travelling with the mean wind. Further, we note that
the direction of the LSC at the shear-free boundary following impingement is also visible
from the superimposed velocity vectors in figure 3b.

We next examine the diagonal plane occupied by the large-scale circulation at Ra =
5×107 shown in figure 4a. Similar to turbulent RBC in a cube, the large-scale circulation
occupies the entire height of the domain. Further, the LSC creates recirculation zones in
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ŷr1

ŷr2

(a)

ŷr3 ŷr4

(b)

Figure 4. Diagonal planes showing θ̂rms fields at Ra = 5×107: (a) plane containing the LSC and
(b) the plane orthogonal to that shown in (a). The mean velocity vector field is superimposed
for clarity.

opposite top and bottom corners. However, contrary to turbulent RBC in a cube, these
recirculation zones are asymmetric in the current configuration. We define the coordinate
of the lowest point of the upper recirculation zone as ŷr1 . Equivalently, the highest point
of the lower recirculation zone is defined as ŷr2 . These values represent the ŷ at which the
vertical component of the mean velocity changes sign nearest the side-wall in figure 4a.
From the same figure, the recirculation zone at the lower wall visibly occupies a smaller
zone than its equivalent in the opposite corner, that is ŷr2 < 1− ŷr1 . The explanation is in
the role played by the shear-free boundary, accelerating the large-scale flow in the negative
y-direction. The limits of the recirculation zones, ŷr1 and ŷr2 , are provided in table 7 for
the five cases. We observe that as Ra is increased, the recirculation zones become taller
and thinner, as they are pushed towards the corner regions by the increasing strength of
the LSC.

Figure 4b shows the orthogonal plane to that given in 4a. We observe four counter-
rotating vortical cells, similar again to previous observations in wall-bounded turbulent
RBC. However, contrary to turbulent RBC in a box (Foroozani et al. 2014), the counter-
rotating vortical cells occupy more space in the upper volume of the pool than in the
lower. Their size can be qualitatively inferred by the locations of the peak θ̂rms on the
side-walls. The vertical coordinate at which the upper and lower counter-rotating vortical
cells interact is again found from the first ŷ at which the vertical component of the mean
velocity changes sign nearest the side-wall in figure 4b. For turbulent RBC in a box,
this occurs at ŷ = 0.5, whereas for the current configuration this location is found closer
to the lower wall; see ŷr3 = ŷr4 in table 7. The explanation is the same as for the LSC
plane; the rotating vortical cells accelerate towards the boundaries after impingement at
the shear-free surface. This is visible from the vector field in figure 4b, showing stronger
downward motion than upward. The structure of the LSC is thus visibly impacted by the
presence of the free surface. We again provide values for the recirculation zone limits, ŷr3

and ŷr4 , in table 7 and note that the counter-rotating vortical cells near the shear-free
surface occupy an increasingly larger zone as Ra is augmented. To better visualize the
LSC and the location of the points ŷri , i = 1 − 5, we plot in figure 5 time-averaged
streamlines coloured by the vertical velocity, v̂, for the Ra = 5× 107 case.

One consequence of the asymmetry is that the upper recirculation zone extends towards
the mid-plane of the domain at ŷ = 0.5. To better understand the LSC, we therefore
plot, in figure 6, the mean vertical velocity, 〈v̂〉, across the diagonal containing the LSC
at ŷ = 0.4. Therein, we observe the near-zero (vertical) velocity region in the centre of
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ŷr1

(a)

ŷr2

ŷr3 ŷr4

(b)

Figure 5. Time-averaged streamlines coloured by the vertical velocity, v̂, for the Ra = 5× 107

case. We annotate the figure with the direction of the LSC on the free-slip upper boundary as
well as the vertical limits of the recirculation zones.

Ra ŷr1 ŷr2 ŷr3 = ŷr4

7.5× 106 0.55 0.26 0.42
1.5× 107 0.52 0.27 0.42

5× 107 0.51 0.35 0.41
9× 107 0.50 0.38 0.40

1.3× 108 0.53 0.37 0.40

Table 7. Vertical limits of the recirculation zones. The coordinates ŷr1 to ŷr4 are shown in
figures 4 and 5.

the LSC, also visible in figure 4a. The peaks near the sidewalls correspond respectively
to the upward, x√

2H
≈ 0.03, and downward, x√

2H
≈ 0.97, motions of the LSC. Instead

of the symmetric peaks observed in the equivalent plot of Foroozani et al. (2017) (at
ŷ = 0.5), here the shear-free boundary accelerates the fluid following impingement. This
results in the magnitude of the downward velocity exceeding that of the upward. This
can also be clearly observed in the vector field superimposed onto figure 4a. The insets in
figure 6 show how the LSC is pushed towards the corner walls as Ra is increased; a trend
also noted in both Cioni et al. (1997) and Foroozani et al. (2017) for confined turbulent
RBC.

It is worth adding that LSC reorientations are a known phenomenon in thermal
convection configurations such as turbulent RBC (Cioni et al. 1997; Brown & Ahlers
2006; Foroozani et al. 2017). We also observed such events in our simulations. However,
since this paper does not concentrate on LSC reorientations, all results presented herein
are from simulations whose time-averaging periods correspond to a stable LSC. It is worth
adding that our simulations suggest fewer reorientation events occur in the current set-up
compared to that of turbulent RBC. It is thus tempting to imply that the free-slip upper
boundary may reduce the number of LSC reorientations. In other words, playing a similar
role to tilting the container, the free surface may encourage the LSC into a preferred
orientation (Cioni et al. 1997; Brown & Ahlers 2006). However, more simulations are
required over significantly longer time periods before conclusions should be drawn.
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Figure 6. Plot of the mean dimensionless vertical velocity, 〈v̂〉, along the diagonal line containing
the LSC at ŷ = 0.4. The insets show zooms near the corner regions. The legend is as follows:
Ra = 7.5 × 106 ( ), Ra = 1.5 × 107 ( ), Ra = 5 × 107 ( ), Ra = 9 × 107 ( ), and
Ra = 1.3× 108 ( ).

We next present analysis of the rms of the vertical velocity fluctuations in the centre
of the domain, (vrms)ctr =

√
〈v′v′〉

ctr
. Non-dimensionalizing by νref/H, provides the

following local Reynolds number,

Rectr =
(vrms)ctrH

νref
, (6.1)

Values of Rectr are provided in table 6 and are plotted in figure 7a, where the associated
power-law fit,

Rectr = 1.0× 10−3Ra0.68 , (6.2)

merits further discussion.
The turbulent RBC experiments of Daya & Ecke (2001) measured Rectr over 1.3

decades of Ra for cubic geometries and provided the power-law fit, Rectr = Raβ , with
β = 0.36 ± 0.05. Whereas Foroozani et al. (2014) found numerically Rectr = 0.31Ra0.39

over an increased range of Ra. Importantly, in both these studies the mean temperature in
the domain remained constant as Ra was increased. As a result, the viscosity used for the
non-dimensionalization in (6.1) was also constant between experiments (or simulations).

In contrast, the Rayleigh numbers investigated in this paper are updated via changes
in thermal boundary conditions. As such, both Tref and νref vary significantly between
cases, as shown in tables 3 and 4. We know this to be the cause of the discrepancy in
the exponents because, according to our simulations, a power-law fit of the (vrms)ctr data
reads,

(vrms)ctr ∝ Ra0.41 , (6.3)

see also figure 7a. The exponent in (6.3) is in good agreement with Daya & Ecke (2001)
and Foroozani et al. (2014) for turbulent RBC.

We also provide in table 6 the rms of the vertical velocity based on the combined
volume-time averages; (vrms)xyz =

√
〈v′v′〉

xyz
, as well as the associated global Reynolds

number, Re. We see the same trend in the power-law fits for the global data where we
have

Re = 1.0× 10−3Ra0.73 and (vrms)xyz ∝ Ra0.49 . (6.4)
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(a) Ra scaling of Rectr and (vrms)ctr. The
legend is as follows: Rectr data ( ), (vrms)ctr

data ( ), the power-law fits to the present
data: Rectr = 1.0 × 10−3Ra0.68 ( )
above and (vrms)ctr ∝ Ra0.41 ( ) below,
the power-law fit of Daya & Ecke (2001):
Rectr = Ra0.36 ( ), the power-law fit of
Foroozani et al. (2014): Rectr = 0.31Ra0.39

( ).











(b) Ra scaling of Nu. The legend
is as follows: Nu data ( ), power-
law fit to the present data:
Nu = 0.178Ra0.301 ( ) and
the power-law fit of Niemala et al.
(2000): Nu = 0.124Ra0.309 ( ).

Figure 7. Ra-scaling plots

Our fit of (vrms)xyz matches well that of Scheel & Schumacher (2014) for turbulent RBC
in cylindrical domains, according to which Re scales as Raβ , with β = 0.49±0.01. Please
note that, since (vrms)ctr and (vrms)xyz are dimensional quantities, only the exponents of
the corresponding power laws are of interest here.

Similarly to Daya & Ecke (2001), the explored parameter space is limited to a rather
short range of 1.25 Ra decades, what is of interest however is the similar scaling for the
vrms observed both globally and in the centre of the domain. Of course, the current set-
up differs from turbulent RBC due to the free-slip upper boundary. The similar scaling
for the rms of vertical velocity fluctuations in the bulk suggests that, away from the
boundaries, the behavior of this fluctuating quantity is similar for the two configurations.

The dimensionless heat transfer across any x−z plane is measured by the local Nusselt
number, Nuy, and is calculated from the sum of two contributions as follows,

Nuy =
√
RaPr 〈ρ̂v̂θ̂〉xz︸ ︷︷ ︸

Nuconv

−〈λ̂ ∂θ̂
∂ŷ
〉xz︸ ︷︷ ︸

Nudiff

. (6.5)

This relation is found from time and area-averaging of the dimensionless form of the
energy equation (2.3). The volume-averaged (global) Nusselt, Nu, is found from

Nu =
√
RaPr 〈ρ̂v̂θ̂〉xyz − 〈λ̂

∂θ̂

∂ŷ
〉xyz. (6.6)

For the flow in question, a statistically stationary solution gives Nuy as constant and
further equal to Nu. Indeed, for all examined cases, our simulations predicted constant
Nuy and in excellent agreement with Nu, the values of which are provided in table 6.
Moreover, for all cases investigated, the global value after 150 free-fall times, or half the
averaging time, changed by less than 1%. This finding suggests that the time-averaging
interval is indeed sufficient.

The contributions of the convective and diffusive components of Nuy are shown in
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(a) (b)

Figure 8. Plots of the time and area-averaged components ofNuy. (a)Nuconv across the vertical
direction and (b) Nudiff zoom on lower boundary. The legend is as follows: Ra = 7.5×106 ( ),
Ra = 1.5× 107 ( ), Ra = 5× 107 ( ), Ra = 9× 107 ( ), and Ra = 1.3× 108 ( ).

figures 8a and 8b respectively. The convective component, Nuconv, tends to a non-zero,
albeit negligibly small, value inside the thermal boundary layers and is the dominant
contribution away from the walls. For the diffusive component, Nudiff , only the near-
wall contribution is shown, as it is negligible in the bulk. The definitions (6.5) and (6.6)
take into account the variable density and thermal conductivity of the working fluid.
However, these thermodynamic properties vary by a maximum of only 1.5% and 2%
respectively and hence the non-Oberbeck-Boussinesq effect on Nu is very small for the
flow considered.

With respect to the scaling with Ra we provide figure 7b where we find a power-law
fit of

Nu = 0.178Ra0.301 , (6.7)

over 1.25 decades of Ra. Again, although the explored parameter space could be con-
sidered limited, what is of interest here is the excellent agreement with the exponent of
Niemala et al. (2000) who obtained Nu = 0.124Ra0.309 for turbulent RBC. As Nu is
a measure of the total (convective plus diffusive) heat transfer to diffusive heat transfer,
the increased prefactor in our scaling is a result of the reduced number of hydrodynamic
boundary layers present; see also the relevant discussion in Straus (1973).

6.2. Flow statistics

In this section we compare vertical profiles of time and area-averaged flow fields. For
comparison against the more general thermal convection configuration of evaporative
cooling, figure 1a, we use the experimental references of Katsaros et al. (1976) and Flack
et al. (2001). Equivalently, for turbulent RBC, figure 1b, we use the DNS results of Kerr
(1996). Finally, for comparisons against the set-up most similar to ours, we select Zikanov
et al. (2002). In this latter paper, numerical experiments of turbulent convection driven
by surface cooling were carried out in a domain with periodicity in the x and z directions.

The profiles of the rms of the velocity components are presented in figure 9. Concerning
the rms of the vertical velocity fluctuations, v̂rms, an almost parabolic profile is observed
in figure 9a with zero values at the boundaries rising steeply towards a maximum in the
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(a) (b)

Figure 9. Plots of the rms of velocity fluctuations across the vertical direction: (a) rms of
vertical velocity fluctuations, v̂rms, (b) rms of in-plane velocity fluctuations, ūrms. The velocities
have been made dimensionless using νref/H. The legend is as follows: The legend is as follows:
Ra = 7.5 × 106 ( ), Ra = 1.5 × 107 ( ), Ra = 5 × 107 ( ), Ra = 9 × 107 ( ), and
Ra = 1.3× 108 ( ).

bulk. Overall, the profiles are similar to those for the flows seen in turbulent RBC of
Kerr (1996) and also to those reported by Zikanov et al. (2002), which had a shear-free
upper boundary.

However, contrary to the profile in Kerr (1996) and Zikanov et al. (2002) who both
considered periodic domains, the profile is not fully symmetric with respect to the mid-
plane ŷ = 0.5. This may be attributed to the non-periodic nature of our flow and the fact
that averages are taken across a horizontal which includes side-wall boundary layers. On
the other hand, we note that the free-slip condition has no significant effect on the profile
of v̂rms close to the upper boundary. This is due to the fact that the vertical velocity
component prescribed at both rigid walls and free-slip boundaries is zero.

In figure 9b we observe the profile of the fluctuating component of the in-plane velocity
defined as follows,

ūrms =
√
〈û′2 + ŵ′2〉xz . (6.8)

There is a clear asymmetry observed in the profile of the rms of in-plane velocity
fluctuations, where a hydrodynamic boundary layer is visible near the lower wall only.
The shear-free upper boundary results in the maximum in-plane velocity being found
at the surface, in line with figure 3b showing the presence of strong surface currents.
This observation has also been made experimentally by Flack et al. (2001) investigating
turbulent structures in evaporative cooling. The near-flat bulk profile observed in the
current configuration is different to the bulk profile seen by Kerr (1996) and later
Zikanov et al. (2002), where both noted a characteristic dip in the bulk. This feature of
our configuration is attributed to the container geometry, with its side-wall boundaries
leading to the formation of the counter-rotating vortical cells seen in figure 4b. This
flow structure results in higher rms values of in-plane velocity in the bulk. In fact, the
maximum bulk value seen in figure 9b corresponds to the vertical position at which the
counter-rotating vortical cells interact, ŷr3 = ŷr4 , provided in the last column of table 7.

The hydrodynamic boundary layer created by the shear of the large-scale circulation
has a height, δ̂u. According to Kerr (1996) and Xin & Xia (1997) this height can be
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Figure 10. Plots of the mean normalized temperature, 〈θ̂〉xz, across the vertical direction. The
top and bottom insets are zooms on the upper and lower boundary layers respectively. The
legend is as follows: Ra = 7.5 × 106 ( ), Ra = 1.5 × 107 ( ), Ra = 5 × 107 ( ),
Ra = 9× 107 ( ), and Ra = 1.3× 108 ( ).

estimated from the local peak in ūrms for which we provide values in table 6. It is
confirmed that, at the lower boundary, the hydrodynamic layer is substantially thicker
than the thermal one, as expected for Pr > 1. Further, as a result of the increasing shear
generated by the LSC, δ̂u is negatively correlated with Ra.

The profiles of the mean normalized temperatures are presented in figure 10, with the
insets showing the boundary layers at the upper boundary and lower wall. We first observe
that the normalized temperature in the bulk (or centre) of the flow, θ̂c, is smaller than

the reference (or mean), θ̂m = (θ̂int + θ̂low)/2 = 0. In other words, the mean temperature
profile is shifted towards the temperature of the cold upper boundary. Conversely, Ahlers
et al. (2006) showed that with water as the working fluid, the non-Oberbeck-Boussinesq

effect in turbulent RBC results in θ̂c > θ̂m. That is, if variable thermodynamic properties
are taken into account in turbulent RBC, the result is a mean bulk temperature shifted
towards that at the hotter lower wall. These two statements taken together suggest that
the free-slip and non-Oberbeck-Boussinesq effects are competing with the former being
dominant. A similar observation was reported in Hay & Papalexandris (2019) for flows
with a shear-free boundary under non-Oberbeck Boussinesq conditions but with a fixed
upper boundary temperature. We can therefore confirm that a shear-free upper boundary
plays an important role in the thermal mixing in the pool, irrespective of whether the
upper boundary temperature is fixed or spatially-variable. Further, the temperature drop
from the bulk to the interface,∆Tu, is shown to be 45% smaller than the temperature drop
between the lower wall and the bulk, ∆Tl. This observation merits future experimental
validation.

The rms plots of the normalized temperature fluctuations, θ̂rms, are provided in figure
11. The observed profile shows a single peak at the lower wall, a minimum value in
the bulk and a maximum at the upper boundary. This is in contrast to turbulent RBC
with fixed temperature boundaries which have zero θ̂rms values at the boundaries and
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maximums defining the thermal boundary layer heights at the top and bottom near-wall
regions. In our configuration, at the lower wall, the thermal boundary layer is contained
within its hydrodynamic equivalent. Within the thermal boundary layer, the rms of the
temperature fluctuations increase with distance from the lower wall, as a result of the
velocity fluctuations also increasing and more effectively stirring the fluid. The dip in
the bulk is due to the ejected plumes losing their temperature contrast with the core
fluid as they move through the domain (Tilgner et al. 1993). The maximum θ̂rms at the
shear free boundary can be explained by the peak in ūrms at the same location; water is
increasingly stirred up to the interface.

We denote by δ̂θlow and δ̂θint the heights at the hot wall and cold interface respectively.
The height of the thermal boundary layer on the lower wall can be defined as the location
of the local peak in temperature variance (Kerr 1996). We then readily find δ̂θlow from

figure 11 and provide values in table 6. We observe however, that the maximum θ̂rms

across the vertical direction appears at the upper boundary; we must then estimate δ̂θint
by another means. An alternative method is proposed by Katsaros et al. (1976), where
the thermal boundary layer height at an evaporating interface is defined as follows,

δθint = −λw
Tint − Tbulk

q̇
′′
tot

, (6.9)

with q̇
′′

tot as the total heat flux, i.e. the sum of the convective and latent contributions,
applied at the interface and λw as the thermal conductivity of water at the interface. Note
that this quantity is calculated from equation (3.2) and the rounded values of ∂T/∂y|w
from table 2. The dimensional Tbulk is interpreted from figure 10 and we provide values for
δ̂θint in table 6. A similar approach is used in the turbulent RBC literature for calculating
a boundary layer thickness scale based on the local temperature gradients at the hot and
cold walls (Ahlers et al. 2006; Stevens et al. 2010; Scheel & Schumacher 2014).

We next focus on the inhomogeneities between the upper and lower thermal boundary
layers. In particular, δ̂θlow is larger than δ̂θint , in accordance with the observations made
regarding the vertical mean temperature profile. This observation was also made in Hay
& Papalexandris (2019) but for a fixed temperature upper boundary, as opposed to
the spatially-variable interface temperature investigated here. We attribute the inhomo-
geneities to the presence of the shear-free boundary. Sun et al. (2008) state that the
thermal boundary layers in turbulent RBC are not isolated from but modified (and
stabilized) by the viscous shear of the LSC. This same shear also produces the hydrody-
namic boundary layers which are dynamically coupled to their thermal equivalents. The
asymmetry introduced by the differing hydrodynamic boundary conditions results in an
asymmetric LSC whose modifying (and stabilizing) capacity on the thermal boundary
layers is, of course, impacted. The thinner thermal boundary layer above is therefore a
result of the increase in LSC velocity and associated shear. Further, and with similar
reasoning, the thermal boundary layer thinning effect with increasing Ra is confirmed
from table 6.

We also provide in table 6 the estimation for thermal boundary layer heights in RBC
between two rigid plates, 1

2Nu , which assumes symmetry between the upper and lower
boundaries. We find that despite the asymmetry introduced by the shear-free surface,
the relation (δ̂θlow + δ̂θint) ≈ 1

Nu still holds.
In terms of third-order statistics we provide in figure 12 the skewness of the normalized

temperature,

Ŝθ =
〈θ̂′3〉xz
θ̂3

rms

. (6.10)



Evaporation-driven turbulent convection in water pools 23

Figure 11. Plots of the rms of the normalized temperature fluctuations, θ̂rms, across the vertical
direction. The top and bottom insets are zooms on the upper and lower boundaries respectively.
The legend is as follows: Ra = 7.5 × 106 ( ), Ra = 1.5 × 107 ( ), Ra = 5 × 107 ( ),
Ra = 9× 107 ( ), and Ra = 1.3× 108 ( ).

We observe a negative skewness profile near the lower wall inside the thermal boundary
layer turning positive just outside, similar to that seen in turbulent RBC (Castaing et al.
1989). There is then a change in sign at ŷ ≈ 0.4 and contrary to the situation at the lower
wall, the upper boundary skewness is never positive. This is in contrast to turbulent RBC
between rigid plates where the profile is symmetric and where the change in sign occurs
at the mid-height, i.e. ŷ = 0.5 (Kerr 1996). The uniquely negative skewness underneath
the evaporating surface is a feature of evaporative cooling and seen experimentally in
Katsaros et al. (1976). Further, the predominantly negative skewness profile represents
more intense and frequent plume formation at the shear-free surface which then travel
in the negative direction, similar to the observation reported by Zikanov et al. (2002). In
summary, the skewness profile in figure 12 shows unique traits of the current turbulent
convection configuration, which borrows characteristics from both turbulent RBC and
evaporative cooling.

7. Summary and conclusions

In this article direct numerical simulations have been carried out of a thermal convection
set-up with similarities to both turbulent Rayleigh-Bénard convection and evaporative
cooling. The flow is a simplified model of the water-side thermal mixing occurring beneath
an air-water interface during high temperature evaporation of spent-fuel pools. Five cases
have been evaluated with the heat fluxes applied at the upper boundary approximating
the evaporative heat loss. For the geometry chosen, a sixteenfold increase in evaporation
rate induces a 1.25 decade change in Rayleigh number for the convective flow beneath the
interface. For each case investigated, the statistically steady time-averaged temperature
at the upper boundary has significant spatial variation, but the time and area-averaged
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Figure 12. Plots of the normalized temperature skewness, Ŝθ, across the vertical direction.
The legend is as follows: Ra = 7.5 × 106 ( ), Ra = 1.5 × 107 ( ), Ra = 5 × 107 ( ),
Ra = 9× 107 ( ), and Ra = 1.3× 108 ( ).

value matches well with the predicted temperatures corresponding to the prescribed heat
fluxes.

The upper boundary is also shear-free and as such, is an approximation of a free
surface. One consequence of the free slip at the upper boundary is the asymmetric large-
scale circulation. The large-scale circulation impinges the upper surface near one corner,
where it is subsequently accelerated, suggesting the presence of strong surface currents,
before falling back down in the opposite corner. This acceleration leads to inhomogeneous
recirculation zones in the cubic geometry, which become taller and thinner with increasing
Ra. As a result, the structure of the large-scale circulation is effected by the presence of
the free surface.

Another impact of the shear-free surface is an increase in convective heat transfer, Nu.
The provided power-law fit, Nu = 0.178Ra0.301, shows a similar exponent to turbulent
RBC but with an increased prefactor due to the reduced number of hydrodynamic
boundary layers. Our definition of Nu takes into account the variable density and thermal
conductivity, however these thermodynamic properties vary by a maximum of only 1%
and 2% respectively and hence the non-Oberbeck-Boussinesq effect on Nu is very small
for the flow considered.

Further, a shear-free upper boundary is shown to introduce inhomogeneities in the
heights of thermal boundary layers between the lower wall and upper boundary. This
is in spite of taking into account the variable thermodynamic properties of water which
tend to have the opposite effect. Such an observation is novel for the current set-up with
a spatially-variable temperature boundary condition on the upper surface.

The modelled flow is an idealized system whereby the evaporation rate at the interface,
although representative in an overall sense, is applied uniformly; the evaporation rate
is constant in time and space. For a more realistic dynamic boundary condition based
on local surface temperatures, a similar time and area-averaged interface temperature is
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expected to emerge and will be the focus of future research.
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Appendix A

In this appendix we first provide an example of the polynomial coefficients for calculation
of the thermodynamic properties of water using (2.4). We then provide the gaseous
mixture properties at a distance far from the interface and at the interface itself.

c4 c3 c2 c1 c0
ρ
p0

−5.18× 10−13 7.79× 10−10 −4.63× 10−07 1.21× 10−04 −1.53× 10−03

µ 6.85× 10−12 −1.01× 10−08 5.59× 10−06 −1.39× 10−03 1.32× 10−01

λ −7.96× 10−11 1.24× 10−07 -7.88× 10−05 2.40× 10−02 −2.20

Table A1. Polynomial coefficients for water thermodynamic properties at Ra = 5 × 107. The
values provided are a fit over the case specific temperature range of interest given in table 3.
We note that the case-specific cp is set constant at 4179, 4181, 4190, 4198, and 4202 J/kgK for
cases 1− 5 respectively.

T∞ (K) p0 (Pa) RH (%) pv,∞ (Pa) ρ∞
(

kg
m3

)
298.15 101325 40 1270 1.18

Table A2. Gaseous mixture properties far from the interface. In this table, RH is the relative
humidity (%), pv,∞ is the water vapour pressure after taking into account RH, and ρ∞ is the
mass-averaged gaseous mixture density far from the interface.
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Case Tint (K) pv,int (Pa) ρint

(
kg
m3

)
1 313.15 7400 1.14
2 318.15 9600 1.12
3 338.15 25100 1.06
4 348.15 38600 1.01
5 353.15 47400 0.99

Table A3. Gaseous mixture properties at the interface. In this table, pv,int is the saturation
vapour pressure at the mean interface temperature, Tint, and ρint is the interface mass-averaged
gaseous mixture density.


