
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20

International Journal of Human–Computer Interaction

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hihc20

Toward a Task-driven Intelligent GUI Adaptation by
Mixed-initiative

Nesrine Mezhoudi & Jean Vanderdonckt

To cite this article: Nesrine Mezhoudi & Jean Vanderdonckt (2020): Toward a Task-driven
Intelligent GUI Adaptation by Mixed-initiative, International Journal of Human–Computer Interaction,
DOI: 10.1080/10447318.2020.1824742

To link to this article: https://doi.org/10.1080/10447318.2020.1824742

Published online: 02 Oct 2020.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=hihc20
https://www.tandfonline.com/loi/hihc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10447318.2020.1824742
https://doi.org/10.1080/10447318.2020.1824742
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2020.1824742
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2020.1824742
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2020.1824742&domain=pdf&date_stamp=2020-10-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2020.1824742&domain=pdf&date_stamp=2020-10-02

Toward a Task-driven Intelligent GUI Adaptation by Mixed-initiative
Nesrine Mezhoudi a and Jean Vanderdonckt b

aDepartment of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal
University, Dammam, Saudi Arabia; bLouvain Research Institute in Management and Organizations, Université Catholique de Louvain, Louvain-la-
Neuve, Belgium

ABSTRACT
Adapting the user interface (UI) to the changing context of use is intended to support the interaction
effectiveness and sustain UI usability. However, designing and/or processing UIs adaptation at design
time does not encompass real situation requirements. Adaptation should have a cross-cutting and low-
cost impact on software patterning and appearance with regard to the situation and the ambient-
context. To meet this requirement, we present TADAP proposal for run-time adaptive and adaptable UI
based user feedbacks and machine learning. It allows a task-driven adaptation of the user interface (UI)
at runtime by mixed-initiative. The particularity of TADAP is the utilization of Machine Learning potential
to support context-aware runtime adaptation within model-driven UI. Further, TADAP allows the UI
adaptation by mixed-initiative (User and System) considering the user preferences (implicit and explicit)
during an interaction. Such a mixed-initiative runtime UI-adaptation tool provides recommendations on
how to personalize the UI. Further, it has the ability to track real-time users’ interventions and learn their
preferences. Diverse tests were performed and showed TADAP as a promising initiative for intelligent
model-driven UI adaptation.

1. Introduction

With today’s growing use of smart connected devices every-
where, interacting with Graphical User Interfaces (GUI) seeps
into most of our daily tasks. Therefore, adapting the UIs
intelligently to fit all requirements of the diverse context of
use and meet user preferences is mandatory. Interfaces are
required to survive changes in their context to enhance the
user’s control over tasks and improve their experience,
throughout smoothing their interaction and reducing their
errors. Accordingly, adaptation plays a principal role in the
success of interaction systems by allowing systems to be
accessible and easily manageable at runtime for different
users. The emerging smart environments’ appliances exhibit
similar properties in an effort to provide end-user customiz-
ability and extensibility. Runtime adaptation has become
readily available in an adaptive way. These facilities enable
systems to progress without recompilation, by generating
managing and executing adaptation decisions at runtime.

Divers adaptation techniques were identified in the litera-
ture ranging from the adaptability to the adaptivity, along
with systems mixing both techniques. Systems are recognized
adaptable if they permit their end-users to adjust a selection of
system parameters and adapt their behavior accordingly.
While adaptive systems are expected to adapt to the users
automatically based on the system’s assumptions about user
needs (Oppermann & Rasher, 1997). Both adaptability and
adaptivity features can be incorporated in systems at different

levels of functionality and representation with varying effec-
tiveness. Earlier, systems often need recompilation for
upgrades, which incur increased cost, delay, and risk. Hence,
in the current computational landscape of runtime, pervasive-
ness, and context-awareness, the support of runtime adapta-
tion becomes the crucial requirement to handle varying
resources, changing user needs, and system faults. Thus, mod-
els driven engineering involved runtime aspect, and then
models are no longer limited to use during the first cycle of
development (i.e at the design, implementation, and deploy-
ment), but then models are provided with dynamic behavior
and were evolved at runtime (Criado et al., 2012; Ghiani et al.,
2017). The use of such dynamic models permits one to make
reconfiguration decisions based on a global perspective of the
running system, apply analytic models to determine correct
adaptation strategies, and test the effectiveness of adaptations
through continuous system monitoring (Criado et al., 2012;
Hussain et al., 2018). However, an efficient implementation of
adaptation, that considers changing user preferences and takes
several contexts into account at runtime is still a challenge.
Since the user represents the most extensive and complex
dimension of context, accordingly the user involvement is
a crucial requirement to improve the usability of a UI.

To that end, Machine Learning (ML) as a field supporting
the solution of complex problems comes in to provide mean-
ingful help (Alpaydin, 2004; Barber, 2010; Bishop, 2006,
Mezhoudi, 2013). Throughout several techniques, ML put

CONTACT Nesrine Mezhoudi Nesrine.mezhoudi@gmail.com Department of Computer Information Systems, College of Computer Science and Information
Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION
https://doi.org/10.1080/10447318.2020.1824742

© 2020 Taylor & Francis Group, LLC

http://orcid.org/0000-0002-6580-6369
http://orcid.org/0000-0003-3275-3333
https://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2020.1824742&domain=pdf&date_stamp=2020-10-01

forward an incredible opportunity to advance UI contextuali-
zation and convey the adaptation within UI in the executing
environment; so far few works that effectively involve ML
techniques in finding the beneficial adaptation methods and
to solve context recognition questions.

In this paper, we present TADAP a task-based runtime
adaptation of the user interface. TADAP approach follows
a model-based approach generating UI from high abstract
specification to more concrete ones. It considers an abstract
task-oriented specification (task tree) together with an
abstract UI model specification (AUI) in order to remain
model-based and to allow for more flexibility in generating
UIs. TADAP is distinguished by an intelligent runtime adap-
tation embedded in model-based approaches. Moreover,
assuming machine learning appliances benefits and supports
a variety of interactions with the user, our approach operates
a different type of feedback during the learning process.

The rest of this paper is organized as follows; first, we
provide a comparative review of the state of art outlining
adaptation coverage of existing model-based approaches.
Afterward, we present our proposal for the runtime UI gen-
eration and adaptation process of TADAP taken together with
the task model, platform, and user interventions for adapta-
tion practices. TADAP proposal and its adaptation algorithms
have been applied and tested throughout a demonstrative case
study. Finally, we evaluate the tool via an empirical evaluation
and end-user testing.

2. Related works and challenges

There already exist a lot of approaches dealing with models
for the user interface dating back to the 1980s. Such model-
based approaches are aimed to user interface creation and
adaptation at runtime as well as design-time (Criado et al.,
2012; Mezhoudi, 2013; Paterno et al., 2008; Vanderdonckt &
Nguyen, 2019). Models were mainly adopted as User Interface
Description Languages (UIDLs) to define technology and
modality independent UI. Several UIDLs (UsiXml, UIML,
XIML, etc.) exist, commonly UsiXml is considered to have
the most comprehensive metamodel complying with the
CAMELEON reference framework. Additionally, it is possible
to define mappings and transformations between the various
levels of abstraction (Tasks Model, Abstract UI, Concrete UI,
and Final UI) (Akiki et al., 2016Enes Yigitbas et al., 2017;
Vanderdonckt & Nguyen, 2019).

Model-based approaches generally use model-driven engi-
neering (MDE) techniques for the generation of the UI.
Addressing issues relating to the simplification of the process
of UI creation and providing an infrastructure to allow appli-
cations to run on different platforms with different capabil-
ities were a common purpose (Gajos et al., 2006). To adapt
the UI to their context of use is an ultimate requirement,
different adaptation rules are predefined in accordance with
context features. Assuming the diversity of interaction’s plat-
forms and environments, it is obvious to accommodate dif-
ferent and heterogeneous contextual constraints. Adaptations
involve all abstraction levels of model-based UI. Whereas
optimizing the UI by accommodating context requirements
can result in an adverse change in performance when it

doesn’t meet user choice (Rosman et al., 2014). Therefore,
user preferences still the most relevant constraint to define
adaptation. And then human interventions are typically
needed to verify and/or correct the result of such adaptation
(Mezhoudi & Vanderdonckt, 2015). According to (Rosman
et al., 2014) the customization of adaptation decisions is made
more complex by the way in which users learn and the extent
to which history can contribute to their choice behavior.
These purposes require a more refined user model that sup-
ports the optimization process. To that end, different
approaches have been proposed addressing adaptation pro-
blems; and introduced the context information at different
levels. Almost all of them stimulate adaptation via an adaptive
behavior (Blumendorf et al., 2010; Bodart et al., 1995; Breiner
et al., 2011, 2009; Chu et al., 2004; Clerks et al., 2004; Criado
et al., 2012; Eisenstein. et al., 2000; Ghiani et al., 2017;
Mitrovic et al., 2005, 2007). The primary goal is to ensure
pervasive property for user interfaces and having the ability to
change during the runtime of the interactive application due
to a contextual change.

Different adaptation purposes and context features were
addressed; In Roam (Chu et al., 2004), the authors apply models
at runtime to build multi-platform adaptation. Then applica-
tions allow a user to transfer/migrate a running application
between varied devices effortlessly. Adaptation in (Clerks et al.,
2004; Mitrovic et al., 2005, 2007) considered user preferences,
and then such approaches supported the creation of context-
sensitive user interfaces. Usually, the task models are used for
improved understanding of the logic of utilization, and then
support considering usability guidelines during the design
phase. Task models can also support usability evaluation during
execution. For instance, TRIDENT (Bodart et al., 1995), Roam
(Chu et al., 2004), DynaMo-AID (Clerks et al., 2004), ADUS
(Mitrovic et al., 2005, 2007), Teresa (Paterno et al., 2008) Breiner
(Breiner et al., 2011, 2009), Criado (Criado et al., 2012) and
(Blumendorf et al., 2010) derive a context-sensitive UI from
a task task-oriented languages which allow for greater flexibility
in generating user interfaces from the abstract specification.
Commonly, existing systems provided some mechanism to auto-
matically generate user interfaces and using a simple rule-based
approach, where each type of data was matched with precisely
one type of interactors. TRIDENT (Bodart et al., 1995) was
probably the first system to take more complex context informa-
tion into account when generating user interfaces. It provides
a decision tree that takes into account a broad set of discrimi-
nants and represents progress toward automated user interface
design. TIMM (Eisenstein. et al., 2000) capitalizes on an adaptive
algorithm allowing automated model-based interface design.
The adaptive behavior focuses on predicting user behavior
using Markov-based models. ADUS (Mitrovic et al., 2005,
2007) capitalizes on monitoring transparently the user behavior
at run-time, learn and anticipate potential user actions through-
out interface accordingly. A different advanced adaptation was
defined by Supple (Gajos et al., 2006), It defines the interface
generation as a discrete constrained optimization problem and
solves it with a branch-and-bound algorithm using constraint
propagation. Supple supports both adaptation modes for perso-
nalizing generated interfaces, and convoy automatic user-driven
customization. However, the supple generation process does not

2 N. MEZHOUDI AND J. VANDERDONCKT

benefit a task specification and then it addressed mainly direct
manipulation systems. Most of the recent work aims at consid-
ering end-users feedback during interaction for adaptation.
Egoki system (Gamecho et al., 2015) focused on the accessibility
of the UI throughout adopting a model-based approach for
generating adaptive user-centered UIs. The system is aimed at
automatically tailoring UIs to the end-user with special needs
(physical, sensory, and cognitive disabilities). Egoki system has
issues with the model’s generation and the design of the final UI
(Gamecho et al., 2015).

The user context and user experience were the key evalua-
tion factors for (Hussain et al., 2018), A-UI/UX-A presented
an authoring tool supporting an allowing the adaptation of
user interface based on diverse factors, such as user disabilities
and environmental factors. WiSel employs an adaptation
approach for context-aware selection of widgets. It consists
of a mixed-initiative adaptation approach capitalizing on user
feedbacks and addressing usability threats (Mezhoudi et al.,
2015). (Enes Yigitbas et al., 2017; Ruiz-López et al., 2013;
Yigitbas et al., 2020) addressed self-adaptive model-driven
user interfaces. Commonly they focused on a model-driven
engineering approach to generate context-aware self-
adaptation mechanisms. (Yigitbas et al., 2020) distinguishes
by supporting the automatic generation of context services to
monitor and detect context information changes.

The major dilemma of existing UI development approaches is
the utilization of a restricted set of pre-defined contexts and
adaptation rules. Such rule-based approaches performed adapta-
tion at runtime. In practice, adaptation is executed once the rules
that satisfy the conditions are executed. Recent rule-based systems
consider advanced adaptation rules to support complex context-
of-use situations (Yigitbas et al., 2020). However, despite the
advantages of rule-based systems (flexible, easy to integrate, sup-
port context etc.), their responsiveness for context changes is
limited. One of the main challenges in a rule-based system is
that adaptation rules have variable precision and usefulness for
end users. Thereby, monitoring and adjusting the rules helps in
maintaining the precision of adaptation of the system and user
satisfaction.

Mostly adaptation rules are static, and their modification is
costly or impossible. However, AI-powered adaptations are
more context-driven and responsive. Intelligent systems are
intended to make decisions based on the real context as well
as user information and user interactions. For instance, ML
technology goes further and allows the systems to learn from
the end-user interactions, and feedback, and make adaptation
decisions accordingly.

Further, previous adaptive systems implementation has
a flexibility issue since the adaptation code is mostly entwined
with the functional core of the application. However, there is
a need to design loosely coupled systems allowing the support of
new context-of-use, and then extend the functional core and re-
adapt the generated UIs accordingly. We argue that separating the
UI code from the core logic of the application would improve
flexibility and speed up the development of adaptive behavior.
Further, with respect to existing approaches dealing with UI
models at runtime, there still lacks a common understanding
and a suitable methodology for the definition of runtime models.
The commonly raised questions are about the connection of the

models of design time to runtime architecture, beside synchroni-
zation and validation of adaptation decision on models at
runtime.

This work involves studying how to implement and man-
age novel interactions in intelligent interfaces by capitalizing
on ML techniques and user feedback. The focus of TADAP
proposal is to address the context-awareness requirement in
the runtime application definition. Generated UI should be
smartly reactive and provide a suitable and optimized inter-
action scenario depending on context-related events. TADAP
is particularly interested in the UI generation from the task
model, considering user-centeredness, and investigates the
application of ML techniques in the support of context-
aware adaptation. TADAP operates different types of user
feedbacks (implicit and explicit) to learn, validate, and decide
adaptation. We assume that monitoring user interaction
increases the system predictability to perform adaptations
fitting the end-user expectations. In addition to reducing the
potential for not expected adaptions and user frustration,
which lead to the interaction downfall.

The characterization of the stated approaches is presented
in (Table 1). We identify considered abstraction levels for the
UI specification according to the spinal column of model-
based UI (Task, Abstract, Concrete, and final). Then applied
adaptation is characterized in terms of type (adaptive and/or
adaptable) and execution time (runtime or design time).
Moreover, as user involvement is an ultimate requirement
for adaptation, we identify the support of end-users during
the whole adaptation process through feedbacks. Both implicit
and implicit feedback exhibits different characteristics of
users’ preferences with both pros and cons. The feedback
allows evaluating the adaptation decisions taken rather than
instructs by giving the correct choice. This is what creates the
need for active exploration of users’ reactions through their
explicit opinions besides implicit one and user behavior.

3. The TADAP method

Quite a few of existing tools involve adaptivity within a model-
driven engineering perspective by rendering interfaces on multi-
ple types of platforms, or by considering specific user capacity
and disability. TADAP proposal distinguishes by the particular-
ity of imposing a specific reflection on the architectural model of
adaptation in order to guarantee a harmonious integration
between the UI adaptation and the UI generation at runtime.

(1) The system is intended to produce an adaptive UI,
considering the user feedbacks beside the context of
use. This feedback will be gathered implicitly and
explicitly via user intervention, behavior and interac-
tion history, then must participate immediately in the
customization of the interface.

(2) Furthermore, TADAP provides a controllability fea-
ture-allowing the user to customize the UI via an expli-
cit adjustment of adaptation parameters. Afterward, we
present an extensive description of TADAP (Task-
Based Adaptation) depicting a ‘smart’ task-based UI
generator enabling extensive (user-) and (system-)
initiated adaptations at runtime.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3

3.1. The supported context

Given that design-time generated UIs fail to provide the
required flexibility, it is required to consider the evolution of
the context data and to involve end-user during the time of
use. The principal challenge is to ensure that adaptation
decisions are computed dynamically considering the actual

Table 1. Characterization of existing approaches regarding supported models, adaptation strategies, AI/machine learning
use and feedbacks support.

Table 2. ANOVA test results on the average rate of Workload consuming.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between
columns)

1142 3 380.5 F (3, 44) = 3.136 P = .0348

Residual (within columns) 5338 44 121.3
Total 6480 47

Table 3. ANOVA parameters.

ANOVA summary

F 3.136
P value 0.0348
P value summary *
Are differences among statistically significant? (P < .05) Yes
R square 0.1762

Table 4. ANOVA test results on the average rate of workload consuming for
explicitly and implicitly adapted sessions.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between
columns)

986.7 2 493.4 F (2, 49) = 4.378 P = .0178

Residual (within columns) 5522 49 112.7
Total 6509 51

4 N. MEZHOUDI AND J. VANDERDONCKT

context of use circumstances and that UI changes are exe-
cuted at run-time without interruption.

The definition of the context of use involves different
parameters that have an impact on the system use such as
place, device, time, tasks, interaction history, user preferences,
and other social aspects. Artificial intelligence and ML tech-
niques support the consideration context parameters for
adaptation (Genaro Motti et al., 2012). TADAP focused on
a set of parameters for the adaptation purpose such as; (1) the
interaction platform, which is involved in terms of screen size,
this parameter will contribute the adaptation decision to avoid
encumbering GUIs. (2) The Task model in terms of comple-
teness, task dependency and redundancy as well as the inter-
action history and task fulfillment. Further, it considers (3)
the end user preferences as the main adaptation feature to
sustain UI usability. User preferences are gathered during
interaction through their feedbacks expressed explicitly and
implicitly (Mezhoudi et al., 2015, Genaro Motti et al., 2012).

Accordingly, TADAP recognizes context variations <plat-
form, user preferences, tasks>, identifies appropriate adapta-
tion decisions, and generate new adapted UI during the same
interactive session.

The runtime context-awareness is carried by the concept of
‘at run-time triggered reification process’ started on the user
or the system request. The UI is then re-reified partially, only
not accomplished tasks, taking into account context changes.
New adaptation decisions will be applied for the following
screens using the partial reification processes ensuring local
adaptation. Despite the ‘locality’ of adaptation, previous

containers (displaying performed tasks) are supported in
adapting and designing the next one. TADAP architecture
aims at avoiding the adaptation of previously filed actions
while creating the next container. Only tasks that appeared
in previous containers, but not accomplished will be consid-
ered for adaptation and displayed in the next reified UI
container. Previously displayed UI container keeps their
initial setting to ensure coherence and avoid user’s disruption.
Giving that the reifications process based on adaptation deci-
sions results in plenty of options, the selection of the appro-
priate adapted solutions need to be guided by quality
measures. To handle the discrimination of a better solution,
we define different scores that are computed for each result in
order to find the best one according to an assigned score
function.

Figure 1 depicts TADAP adaptation scenario through the
partial reification concept. The process points out a real-time
adaptation using partial reification triggered during one inter-
active session. Initial generated FUI 1 support mainly the
platform. Then once the interaction is started, the user-
action-prediction module is triggered and a partial reification
of an adapted FUI2 will take place considering new context
data<tasks, user preferences>. Adaptations are availed in the
abstract UI level ‘Abstract Container2ʹ.

To ensure such adaptation we proceed to Markov Model
for the user behavior monitoring and the prediction of user
behavior. We can resume the process of user behavior pre-
diction with the Markov chain in three steps; first creating
and monitoring sequences of actions (tasks), then learning an
N order Markov chain model (or establishing all the order
from one to N), and finally predicting the next most likely
user action in view of his interaction history. Accordingly, the
adaptation approach outlines the advantages of:

● Involving agents: System, User.
● Learning system (Adaptation process takes into account

“nearly” directly the evolution of the collected data and
the context of use)

● Enabling and facilitating controllability
● Enhancing the granularity of adaptation

Figure 1. TADAP adaptation scenario.

Table 5. ANOVA test results on the average rate of Workload consuming for
explicitly and implicitly adapted sessions.

Tukey’s multiple
comparisons test

Mean
Diff.

95% Cl of
diff. Significant? Summary

NotAdapted vs.
ImplicitlyAdapted

6.660 −2.175 to
15.50

No ns

NotAdapted vs.
ExplicitlyAdapted

−3.256 −12.98 to
6.466

No ns

ImplicitlyAdapted vs.
ExplicityAdapted

−9.917 −18.36 to
−1.472

Yes *

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 5

3.2. Runtime adaptability: The controllability feature

TADAP supports user controllability on the UI and the whole
adaptation process and affords the interaction with
a controllability feature. A controllability feature is an exten-
sion of the final UI, where a scoreboard of reflected adapta-
tion parameter is displayed allowing the adjustment of their
relevance for adaptation. Parameters control consists of
adjusting the weight attributed to each sub-score to balance
their importance in deriving the final score. The considered
parameters are determined by the task model completeness,
monitoring user behavior, feedbacks, graphical appurtenance
of widgets, and the platform weight. Accordingly, the con-
trollability feature displays a list of tunable parameters, allow-
ing the end-user to define the weights associated with each
sub-score in order to balance its importance in the final score.
Considered parameters revealed in Figure 2 are defined as
follows:

● The accuracy of considering the completeness of the
task model

● The accuracy of user guidance by behavior monitoring,
which is used for the score of actions given the user
behavior prediction (u.b.p.).

● The level of consideration of Feedbacks.
● This locality provides an opportunity to consider or not

the content of the previous containers in the designing
of the next one.

● Concerning actions that appear in previous containers,
but which are not filed.

● Graphical connection between widgets implementing
actions belonging to the same parent task in this reifica-
tion process.

● The platform weight that defines the maximal number
of elements displayed on the screen.

On the left-bottom border, a preview of the best-scored
AUI models is shown. By moving the mouse on these buttons,
the preview is displayed in the centric frame replacing the
scoreboard. A simple click on the preferred preview triggers
the reification of associated AUI to end the adaptation.

3.3. Runtime intelligent adaptivity: Learning and
predicting user behavior

The main benefits of gathering interaction data are making
adaptation decisions and helping users to better realize their
tasks by predicting their behavior. Various Machine Learning
techniques were deployed in different ways to support pre-
dictive approaches. It determines future users’ actions by
considering the user profile or model that links information
about the user or the task to expectations concerning beha-
vior. Markov chain was widely used for several prediction
related issues. Likewise, TADAP deploys Markov models for
predicting the action a user will take next given already
performed sequence of actions. Markov models are repre-
sented by three parameters < A, S, T > Where:

A: set of all potential actions that can be accomplished by the
user;

S: set of all potential states established by Markov model;

Figure 2. GUI associated to the controllability feature.

6 N. MEZHOUDI AND J. VANDERDONCKT

T: Transition Probability Matrix (TPM),
where tij: = probability (Performed action = j) when pro-

cess state = i.
In a more complicated model, the predictions are com-

puted by looking at more than one action performed by the
user. And then the approach is generalized to the Kth-order
Markov model, which computes the predictions by looking at
the last K actions performed by the user. However, these
higher-order models intensify the weaknesses associated with
high state-space complexity, reduced coverage, and even poor
prediction accuracy. To address this weakness, the Longest
Repeating Subsequence (LRS) was combined with a Markov
chain is used in order to decrease both spatial and temporal
complexity. These complexities will be more important if we
only use the Markov chain with entire sequences. According
to (Mitrovic et al., 2005) the accuracies are quite the same in
both cases. The Longest Repeating Subsequence (Pitcow and
pirolli 99) is defined as: (1) The subsequence is a set of
consecutive actions (follow each other’s in time) from
a sequence, (2) The subsequence is repeated more than
T time in the sequences (generally T = 1), (3) We only keep
the longest subsequence (the LRS that are contained by bigger
LRS can be pruned).

In that order, combining both methods result in a quite
intuitive technique that fits well with the problem of “User
behavior prediction” which aims to predict potential actions
given previously accomplished ones. Furthermore, in our case
there is no need for various types of features to predict the
next actions (like the case for weather prediction, speech
recognition etc.), only “actions” feature type is considered.
Accordingly, this prediction does not need complex optimiza-
tion techniques like Gaussian or Neural Network with gradi-
ent descent at the learning step. The prediction time (use the
model, query prediction based on history) is quick since we
just have to take the higher probabilities given the history.
Further such prediction technique allows us to pass up the
problem of contradictory rules, widely faced by rule-based
approaches.

TADAP uses the user behavior prediction to improve the
arrangement of abstract interaction units at the abstract user
interface level. Then all data collected by implicit feedback are
used into a tool called user behavior prediction. This tool uses
a machine learning technique based on statistics to predict the
next action(s) that will be accomplished by the user given the
previous ones he filled. TADAP carries out prediction via
a UserActionPrediction class which can be seen as
a dynamic extension of the context of use where the data
are processed to extract more useful data. This class needs
an instance of “ActionMonitoringDB” as “raw material” and
also takes as parameter the Markov order.

Accordingly, the process of user behavior prediction with
the Markov chain considers probabilistic and statistical mod-
els rather than deterministic rules. It consists of three steps:

- First, generating and monitoring sequences of actions.
- Then learning an N order Markov chain model,
- Finally predict the next most probable action of the user

thanks to its history of immediate action.

3.4. Runtime intelligent adaptivity: Modeling cost functions

As was pointed out, the differentiation of quality of generated
interfaces is determined through a cost function, which pro-
vides quantitative metrics to enhance both the consistency
and optimality of the selected solutions. Accordingly, it
should be a common approach in the establishment of rele-
vant UI in different abstraction levels. For TADAP, defined
scores are computed at runtime to be an input to determine
the next adaptation decisions. First considered score gauging
a UI, labeled ‘ContentScore’. This metric concerns composite
abstract Interaction Unit (IU) (containers) without consider-
ing the arrangement of simple IU inside. A clustering algo-
rithm groups objects (action) according to their features in
clusters basing on similarities.

A clustering algorithm minimizes the distance intra-class
(distance between actions composing a cluster) and maxi-
mizes the distance inter-class (between the clusters). In our
case, the clustering algorithm identifies UI containers and
compute similarity regarding the minimum distance to reach
a common parent in the task tree (ai,aj), this score increases
when the actions of the container are close together hierarchi-
cally in the task model. Then the score could be computed
considering the structure of the Task Model (TM), the users’
feedback ranking the solution and the cohesion of prediction.

A first variant of the ContentScore is computed according
to the TM structure in terms of tasks hierarchy, relationship
and weights. The measure is determined as follows:

ContentScoreTMðCompoundIUÞ ¼
XTasks

ti;tj
TaskWeight=Min DistanceToReachCommonarent ti; tjð Þð Þð Þ

(1)

Where: t: subtasks of a common parent
Taskweight: value assigned by considering task type
DistanceToreachCommonParent(ti,tj): distance between

nodes to reach the common Parent of ti,tj.
An alternative score of actions more complex is regarding the

user behavior prediction (u.b.p.) is defined. The user behavior
prediction module is not formed to compute the “container
content score” since this technique takes by definition the order-
ing of the actions in account to evaluate the next most probable
actions. There is thus an underlying notion of a sequence. To
meet this requirement and remove the influence of the ordering
of actions, we proceed to simulate all possible history and com-
pute all probabilities of the next task, and then we keep the well-
ranked probability for each action. Formally the score of action is
computed as in formula (2). Then the content score is calculated
according to the formula (3).

OrderIndepProbabilityðCompoundIUÞ
¼ Max S 2 SimulatedSequencesð Þð

Y

t;hð Þ2S
P tnhð Þ (2)

ContentScorePredictionðCompoundIUÞ

¼
Xtasks

t
OrderIndepProbability tð Þ � UbPfeatureweightð Þ (3)

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 7

Where: t: subtasks of a common parent, h: history of fulfilling
task, UbPfeatureweight: weight of user behavior prediction.

An additional relevant metric is the Ordering score. Which
considers mainly the position of the action inside the con-
tainer; in consequence, it’s more restrictive and easier to
compute regarding user behavior prediction. We have just
to consider the ordering of the actions inside the AUI
model and consider their positions. The score is then more
restrictive than above. The score of actions given the task
model is computed in the following way:

OrdringScoreTaskModelðActionÞ ¼
i � taskmodelfeatureweightjmax iactions 0; i½ �:sublistOf DFS tmð Þð Þð Þ

(4)

Where DFS(tm) generates a sequence of actions by exploring
the task tree in depth first search. Thus, the more the
sequence of actions inside the container respects the order
defined by the task model, the more the score increase. As
well as the content score, different variants of ‘Ordering Score’
could be computed according to the considered feature. For
instance, regarding the Task Model, an AUI could be evalu-
ated for the degree of appropriateness and conformity to the
task’s structure regarding both order and hierarchy. The score
variant of actions given the user behavior prediction follows
the next formula:

OrdringScorePredictionðActionÞ ¼

Xfulfilledactionsþactions

a;h
P ajhð Þ

(5)

The main advantage of a clustering algorithm is its scalability
for considering new characteristics as new dimensions,
besides the possibility of weighting different features in
order to discriminate valuable one according to their rele-
vance. Such scalability supports continuous adaption and
improvement through data preparation without the need for
designer input to adjust adaptation rules.

For an easier understanding of the score computation
module, a functional analysis is illustrated in Figure 3. All
computed scores are assigned to an object instantiated from
the Score class to keep track of the subscore for debugging or

analysis purposes. A subscore is a part of the score and it is
computed by using a specific feature, such as feedback or
behavior prediction.

3.5. Model-based runtime adaptation: Reification

In this section, we put forward a simulation of the adaptation
process execution (see Figure 4). We consider a simple task
model as input, operating the reification and triggering the
adaptation process.

The task tree is shown in Figure 4a. The execution of the
reification module invokes the method “triggerAdaptation()” in
charge of adapting and generation the first container. By the same
trigger, all possible partial AUI are reified and scored via the
method “calculateScore()” detailed above. The high scored AUI
is reified and displayed to the user. Next Figure 4b illustrates
a partial simulation of the AUI reification for the mentioned
task tree.

The simulation describes different potential AUI and com-
putes their scores. The highest scored AUI is reified into FUI
and displayed for the user (see Figure 4c). In our case,
the second option was selected. The user should be able to
trigger the controllability feature for handling the adaptation.

4. TADAP experiment

TADAP proposal is implemented in Java and provided with
a simple module for final user interface (FUI) reification in
order to show results. A simple task tree sample of banc
transfer operation steps and the original interface generated
during the first session before gathering the user feedbacks are
shown in Figure 5.

4.1. Method

Then we suppose a list of executed sequences throughout
diverse interactive sessions. Afterward, a new interface version
is shown according to the new adaptation setting. As the
system is expected to monitor all accomplished sequences,
and implicitly gather additional contextual data affording the
user behavior prediction. We execute five different sequences

Figure 3. Input -Output of calculating score module.

8 N. MEZHOUDI AND J. VANDERDONCKT

to perform both classic and IBAN transfers by changing the
order of filling data. Then new adapted UI versions are reified
in accordance with the partial reification concept depicted
above. The reification module classes manage two reification
methods, one dealing with the whole interfaces (getModels()),
and one other dealing with partial interfaces
(getPartialModels()). Partial reification requires more data,
specific to the level of abstraction.

These data belong to the implementation of the adaptation
architecture and they are not needed in case of whole interface
reification, thus they are not specified in the abstract class
“AdaptingInterface”. These data are obtained from a specialized

class implementing the methods needed. The class is a particular
architecture adaptation extending “AdaptingInterfaceArchII”.
This specialized class will receive the context of use and the task
model initialized by the “main” method. The constructor will
initialize the reification classes: “ReifiTMtoAUIM” and
“ReifiAUIMtoFUIM”. It will also initialize the
“UserActionPrediction” tool to use it in the computing of the
AUI scores.

Moreover, the system provides the user with the controllability
feature allowing the adjusting and the supervision of the interface
adaptation during the interactive session (Figure 2). Figure 6c
illustrates a scenario for using the controllability feature.

Figure 4. (a) Simple Task Model. (b) The simulation of the reification process. (c) The displayed interface.

Figure 5. (a) The MoneyTansfer Task model. (b) First autonomous adapted UI: (user-feedback independent).

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 9

● First, the user demotes the displayed interface by giving
a low score and proposing corrections.

● Then the controllability feature is shown with a different
alternative proposition for the current window.

● The user chooses a new interface description intended to
be the most context-aware.

● Based on this choice, the system re-computes adapta-
tions for the next containers.

● The system allows the user to evaluate the adaptation.
This option is implemented simply via a feedback star
rating widget. This feedback is used to answer at the

open question “What do you think about the
container?”.

The widget can be viewed in all containers (Figure 7c).
This kind of feedback is summative allowing a formative
evaluation of the container.

4.2. The Users experience

According to Nielsen guide to usability testing; “the strength
of the thinking-aloud method is to show what the users are

Figure 6. (a) Scenario accomplishing a classic transfer. (b) Scenario of an IBAN transfers realization. (c) Scenario invoking the controllability feature.

Figure 7. (a). Average Time-consuming by users. (b) Average Time-consuming tasks for different iterations.

10 N. MEZHOUDI AND J. VANDERDONCKT

doing and why they are doing it while they are doing it in
order to avoid later rationalizations” (Nielsen et al., 2002). We
decided to consider elicited verbal data since we believed that
this would provide us with valuable information on the inter-
active session condition.

This decision relies on the results of a recent research
addressing the suitability of the concurrent think-aloud pro-
tocol to evaluate usability problems (Fan et al. 2019). Fan et al.
(2019) concluded that verbalization and speech features alone
are reliable features to identify usability problems. However
additive values may be enabled by supporting additional
modalities such as facial expression and body language.

Further, several works have demonstrated the effectiveness
of the think-aloud protocol for usability testing. It was stated
as highly useful for gaining an understanding of interactive
information behavior (Holzinger, 2005; Mingming Fan et al.,
2019; Nielsen et al., 2002; Sharon McDonald et al., 2012; Van
Velsen et al., 2008). Van Velsen et al. (2008) recommend CTA
for testing a working prototype and highlight its ability to
support the evaluations that address both usability and adap-
tation output.

Experiment: During the study, 24 volunteer subjects (50%
women, 50%men), from different countries (Belgium, Italy,
Tunisia, Brazil, Syria, Algeria, France, Vietnam and China)
and working in different domains such as mechanic, biology
and computer sciences performed the experiment. The aver-
age age was 29 years, and all participants were eligible and
familiar with the computer and they are all fluent French and
English speakers.

Participants were asked to perform the Concurrent Think-
Aloud CTA protocol following Ericsson and Simon definition
(Ericsson & Simon, 1993).

It consists of verbalizing what they are doing as they are
doing it. CTA is the predominantly used method in usability
testing due to its performance and easiness (Sharon
McDonald et al., 2012). We followed Ericsson and Simon’s
guidelines during testing sessions and did not probe or inter-
vene except to remind users to keep speaking if they keep
silent for a long period (Ericsson & Simon, 1993). However,
they are not able to ask any questions about the observation,
while still undertaking the task. Further, and in order to
surmount the CTA issues with usability, we followed
(Mingming Fan et al., 2019) recommendations and guidelines.
Also, we have found it useful for the participant to show
a short (50 second) demo of thinking aloud session when
conducting a simple login scenario. In this demo video, the
participant verbalized her interaction and feeling about the UI
besides telling her action. The video minimizes the time
required to introduce the experience and provides a concrete
example of how to express their interaction with the system
(Mingming Fan et al., 2019).

Each participant was asked to do four operations with the
interface, supposed to be generated and re-adapted regarding
his or her conduct during the interaction, along with audio
recordings of the users thinking aloud while performing tasks.

The target is to assess the TADAP prototype’s usability, first
by observing the user behavior in performing tasks while oper-
ating the proposed adaptation approach. which allow to identify
potential usability issues during performing the list of tasks.

Further, the CTA allows to address and to evaluate the system
in term of appropriateness of adaptation, User behavior, User
performance, User experience etc. (Van Velsen et al., 2008)

Further, we focus on evaluating the interaction throughout
analyzing the audio records to report the user experience and
reflecting the user’s performance when using Tadapt’s gener-
ated interfaces. Participants were requested to describe their
actions without giving explanations participants merely report
how they go about completing a task.

4.3. Results

Once we have all participants’ records, we start the analysis by
identifying where, within it, there are users sounds. We have
a measurement of audio amplitude against time, which isn’t
very easy to analyze.

In our evaluation, we focused on the user in order to detect
potential usability issues. The main addressed concept is user
performance when accomplishing the test. The literature
defines user performance in terms of Learnability, acceptabil-
ity, and Ease of use (Van Velsen et al., 2008). The ease of use
is mainly reflected by the number of successful phases com-
pletions (task success).

Learnability and adaptation-appropriateness are revealed
by task completion, durations when executing tasks.

By the same token, Observing the user behavior allows
detecting usability issues and faced problems; through obser-
vation, through verbalization or through a combination of
observation and verbalization. The evaluation of end-users’
performances with TADAP showed an effective full comple-
tion since all participants were able to complete all phases
however their performance varies. The next step consists of
comparing user performances through verbalization. We
began by identifying periods where there are certain efforts
when users are talking. Based on the setting of the experience’
protocol described above, the verbalized interaction enables us
to process the operative interaction time and detect where
within the audio there is a sound (user is interacting). We
trim silence from records; this function consists in determin-
ing a minimum volume (amplitude) threshold and duration
(<20 dB for more than 2 seconds) and then simply does
a volume analysis of the waveform looking for areas that
meet these criteria.

As we said above, participants were asked to accomplish
four “Money transfer” scenario resuming the two phases of
the experiment.

The first phase: consist of two interactive sessions accomplish-
ing the full transfer task. It is aimed at verifying that the subject
could recognize changes in the UI depending on the followed
sequence when establishing the task. During the first 2 iterations,
the user doesn’t intervene in adapting the UI. TADAP adaptive
behavior is intended to generate user interfaces that are expected
to be the fastest for a particular participant to utilize. At this
phase, the supported customizations regard the interface
arrangement that varies depending on human errors e.g., dis-
playing the next container without filling all information; and
also depending on the order of tasks. Such adaptations decisions
are implicitly invoked. For a typical scenario where forms are
fulfilled in a systematized way, the user will not perceive

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 11

differences. Second phase: The second step of the experiment
consisted in using explicit feedbacks to manage adaptation
within the same interactive session. During the third iteration,
we asked users to provide explicit feedback by ranking the UI
and/or using the controllability feature when realizing the trans-
fer scenario. The goal was to allow each subject to explicit his
preferences for adaptation in order to reduce the interaction load
during the last iteration. In this step, we were especially inter-
ested in minimizing the period of the final iteration. We selected
the “Money transfer” scenario since it is a simple daily life task.
This choice is aimed at reducing learning difficulties that parti-
cipants may experience with a new interaction scenario.
Together with the illustrative video, the difficulties became insig-
nificant the user’s learning curve is almost flat.

The trend is clear that the rate of time-consuming is lower in an
adapted interface. To make this observation statically significant,
the ANOVA ‘One-way analysis of variance’ test is conducted on
the value. The following table shows the result of ANOVA test
produced by the statistics tool GraphPadPrism (Table 3).

We were expecting subjects to be aware of variances during
interaction according to the adaptation decisions deployed
during the different phases of the experience (i.e the workload
during second and fourth iterations is lower than the first
one). There was a significant effect of adaptations on work-
load and time-consuming at the p <.05 level for the three
conditions [F(3, 44) = 3.136 p = .0348] (Table 2).

Since significant variance between the performance (work-
load) means of different iterations was showed. The rate of task’s
duration was significantly different, and we can confidently state
that workload decrease with adaptations accordingly TADAP
approach contributes the ease of use’ usability factor.

In a second phase, we analyze the same set of data by con-
sidering three groups of interaction session; the first group
corresponds to interaction session with not adapted UI,
the second considers the session where adaptations where trig-
gered explicitly, and the last group consider only the session
where the adaptation was performed in an implicit way. We
expect a significant variance between performances during an
interactive session with implicitly adapted UI, session without
adaptations and session where adaptation was invoked explicitly.
Similarly, there was a significant effect of adaptations on perfor-
mance in term of workload and duration at the p < .05 level for
the three conditions [F(2, 49) = 4.378 p = .0178] (Table 4).

Because we have found a statistically significant result in this
example, we needed to compute a post hoc test. We selected the
Tukey post hoc test. This test is designed to compare each of the
different iterations. We compare the means of three interaction
groups (not adapted, implicitly adapted and explicitly adapted)
(via one-way ANOVA, multiple comparisons considering itera-
tion 1 as the control group and alpha = 0.05 (Table 5).

Post hoc comparisons using the Tukey HSD test indicated
that the mean score for the implicitly and explicitly adapted
interactions was significantly different however no significant
difference between adapted and not adapted UI (Figure 8).

4.4. Discussion

In (Figure 7) we show the detail of time-consumption (dura-
tion) of the test steps; we can observe that the use of both

adaptation approaches reduces the total time spent by users to
complete the task. The average performance (reflecting the
user workload, time-consumption) is higher for the third
iteration since an additional task was executed when adjusting
the UI throughout the controllability feature.

The predictive algorithm, used by TADAP, utilizes the data
obtained from monitoring interaction sequence to predict the
users’ next most probable action. The resulting UIs are gen-
erated faster and consequent windows are adapted immedi-
ately with only one reification. In the consecutive version,
with predictive features, interface elements are defined
according to the monitored user interaction sequence.

We note that Pearson’s r for the correlation between itera-
tions was close to 1, which is called a positive correlation. In
our example, our Pearson’s r mean was of 0.7 was positive.
Likewise, the results were positive for the correlation between
not-adapted and adapted sessions (Table 6). We conclude that
the amount of time-consuming during iterations is propor-
tional to the subject due to the variety of profiles and skills.

In the second phase, we can observe that due to the controll-
ability features the interactive session was longer (Figure 7b),
however better results are obtained for the following session as
more accurate adaptations were applied based on explicitly
gathered users’ feedbacks. Greater improvement might be
obtained by adjusting the parameter setting that produces the
best results when customizing adaptation. Otherwise, it is clearly
visible that during the fourth iteration all participants were faster
in fulfilling the test (Figure 7b). Compared to rule-based
approaches, ML based adaptation are flexible and responsive.
This reflexibility supports continuous improvements of interac-
tion performance since adaptation decisions taken by the system
using the learning technique. ML techniques allow the system to
learn the best adaptations in various situations without decreas-
ing the system’s real-time quality.

Further, we found that there is an opportunity to achieve
significant improvement by mixing adaptive and adaptable
behaviors during interaction with individuals. Both adaptabil-
ity and adaptivity focused on pursuing users’ interfaces that

Figure 8. Tukey: difference between group means.

Table 6. Correlation table of one-way ANOVA data.

Correlation Tabular
results

NotAdapted vs.
ImplicitlyAdapted

NotAdapted vs.
ExplicitlyAdapted

Pearson r Y Y

r 0.7783 0.7110
95% confidence

interval
0.3981 to 0.9303 0.2631 to 0.9068

R squared 0.6058 0.5055

12 N. MEZHOUDI AND J. VANDERDONCKT

generate personalized GUIs instead of treating all users the
same. According to results obtained in the experiments, it can
also be concluded that the TADAP is effective in identifying
user preferences by both adaptation approaches. These find-
ings reinforce once again the need for accurate prediction of
user preferences and appropriate adaptations.

Further, we assume that the perceived improvements of
interaction are due to the responsiveness of adaptation deci-
sions. An ML-based adaptation allows the adjustment of
adaptation with regards to change contrarily to the rules-
based system adaptation that offers a kind of “fixed” intelli-
gence. However, ML-based adaptation decisions are not
entirely clear compared to rule-based adaptations. Further
work could be elaborated at different levels of evaluation of
the context support and adaptation-context suitability.

5. Conclusion

This work presents a model-based environment for the genera-
tion of the context-aware graphical user interfaces at runtime.
A partial reification technique is introduced to support MB GUI
adaptation at runtime. It consists of the adaptation of potential
abstract user interface (container) and then predicting an opti-
mized adjustment of the next container by capitalizing on
machine learning techniques and user feedback.

At the analytical level, we have classified the literature of
the model-based UI reification algorithm and discussed the
relevance of prospecting AUI generation. At the methodolo-
gical level, we introduced different metrics used to assist and
control the generation of the AUI. Then, we detailed the
reification process and availed ML technique. We use
a machine learning technique based on statistics in order to
predict the next user-task(s) that will be accomplished by the
user given the previous ones he filled. Accordingly, adapta-
tions were based on explicit and implicit feedback besides the
user behavior prediction. The considered context of use cov-
ers all data specific to the user and some platform descriptors.
The main data specific to the platform is the size of the
displayed window for the interface. Generated UIs adjust
their dimensions based on the device that accesses them in
a responsive way. Concerning feedback, all the data captured
from interaction might adjust the container concerned by the
feedback, or influence more globally the adaptation process.
Moreover, we may consider the user behavior prediction to
predict the content of the widget based on the previous data
filled by the user. This kind of tool looks like an enhanced
auto compilation tool. It could be interesting to deal with
some kind of data processing/filtering adaptation mixed with
container content adaptation. Right now, we are generating all
the possible solutions, and then we select the bests according
to the score. It would be efficient to improve an existing
solution with a local search technique in order to reach
a better one without generating all the solutions by brute
force as we did. A local search algorithm can be deployed
for that. The algorithm was validated via a case study and
results were evaluated and discussed according to the Layout
appropriateness metric and user evaluation. Performance and
usability results demonstrate that there are significant benefits
through predicting future states of user interaction. The

results of the usability survey show that users perceive
a system more useful when it follows their preferences.

Acknowledgments

The authors would like to thank the anonymous referees for their valu-
able comments and helpful suggestions. They also thank all the partici-
pants involved in the studies and experiments.

ORCID
Nesrine Mezhoudi http://orcid.org/0000-0002-6580-6369
Jean Vanderdonckt http://orcid.org/0000-0003-3275-3333

References

Akiki, P. A., Bandara, A. K., & Yu, Y. (2016). Engineering adaptive
model-driven user interfaces. IEEE Transactions on Software
Engineering, 42(12), 1118–1147. https://doi.org/10.1109/TSE.2016.
2553035

Alpaydin, E. (2004, October). Introduction to machine learning. The MIT
Press.

Barber, D. (2010). Bayesian reasoning and machine learning. Cambridge
University Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blumendorf, M., Lehmann, G., & Albayrak, S. (2010). Bridging models

and systems at runtime to build adaptive user interfaces. In
Proceedings of the 2nd ACM SIGCHI symposium on Engineering inter-
active computing systems (EICS '10). Association for Computing
Machinery, New York, NY, USA, 9–18. https://doi.org/10.1145/
1822018.1822022

Bodart, F., Hennebert, A. M., Leheureux, J. M., & Vanderdonckt, J. (1995). A
model-based approach to presentation: A continuum from task analysis
to prototype. In Interactive Systems: Design, Specification, and
Verification (pp. 77–94). Springer, Berlin, HeHeidelberg.

Breiner, K., Bizik, K., Rauch, T., Seissler, M., Meixner, G., & Diebold, P.
(2011, July). Automatic adaptation of user workflows within model-
based user interface generation during runtime on the example of the
SmartMote. In International Conference on Human-Computer
Interaction (pp. 165–174). Springer, Berlin, Heidelberg.

Breiner, K., Maschino, O., Görlich, D., & Meixner, G. (2009). Towards
automatically interfacing application services integrated in an auto-
mated model-based user interface generation process. In: Proceedings
14th international conference on intelligent user interfaces IUI 09,
Sanibel Island, Florida, USA.

Chu, H. H., Song, H., Wong, C., Kurakake, S., & Katagiri, M. (1955).
Roam, a seamless application framework. Journal of Systems and
Software, 69(3), 209–226.

Clerckx, T., Luyten, K., & Coninx, K. (2014, July). DynaMo-AID: A
design process and a runtime architecture for dynamic model-based
user interface development. In IFIP International Conference on
Engineering for Human-Computer Interaction (pp. 77–95). Springer,
Berlin, Heidelberg.

Criado, J., Iribarne, L., Troya, J., & Vallecillo, A. (2012, September). An
mde approach for runtime monitoring and adapting component-
based systems: Application to wimp user interface architectures. In
2012 38th Euromicro Conference on Software Engineering and
Advanced Applications (pp. 150–157). IEEE. https://doi.org/10.1109/
SEAA.2012.27

Eisenstein, J., & Puerta, A. (2000, January). Adaptation in automated
user-interface design. In Proceedings of the 5th international confer-
ence on Intelligent user interfaces (pp. 74-81). https://doi.org/10.1145/
325737.325787

Ericsson, K., & Simon, H. (1993). Protocol analysis: verbal reports as data
(2nd ed.). MIT Press.

Fan, M., Lin, J., Chung, C., & Truong, K. N. (2019). Concurrent think-
aloud verbalizations and usability problems. ACM Transactions on
Computer-Human Interaction (TOCHI), 26(5), 1–35.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 13

https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.1145/1822018.1822022
https://doi.org/10.1145/1822018.1822022
https://doi.org/10.1109/SEAA.2012.27
https://doi.org/10.1109/SEAA.2012.27
https://doi.org/10.1145/325737.325787
https://doi.org/10.1145/325737.325787

Gajos, K. Z., Czerwinski, M., Tan, D. S., & Weld, D. S. (2006). Exploring the
design space for adaptive graphical user interfaces. In Proccedding of the
conference on advance visual international AVI ’06, (pp. 201–208). NY,
USA: ACM.

Gamecho, B., Minón, R., Aizpurua, A., Cearreta, I., Arrue, M., Garay-
Vitoria, N., & Abascal, J. (2015). Automatic generation of tailored
accessible user interfaces for ubiquitous services. IEEE Transactions on
Human-Machine Systems, 45(5), 612–623. https://doi.org/10.1109/
THMS.2014.2384452

Genaro Motti, V., Mezhoudi, N., & Vanderdonckt, J. (2012).). Machine
Learning in the Support of Context-Aware Adaptation. In Workshop
On Context-Aware Adaptation of Service Front-Ends (Pisa, 13/11/
2012). In: Francisco Javier Caminero Gil, Fabio Paternò, Jean
Vanderdonckt, Proceedings of the workshop on context-aware adapta-
tion of service front-ends

Ghiani, G., Manca, M., Paternò, F., & Santoro, C. (2017). Personalization
of context-dependent applications through trigger-action rules. ACM
Transactions on Computer-Human Interaction (TOCHI), 24(2), 14.
https://doi.org/10.1145/3057861

Harvey Motulsky, Comprehensive Analysis and Powerful Statistics,
Simplified, http://www.graphpad.com/scientific-software/prism/

Holzinger, A. (2005). Usability engineering methods for software
developers. Communications of the ACM, 48(1), 71–74. https://doi.
org/10.1145/1039539.1039541

Hussain, J., Hassan, A. U., Bilal, H. S. M., Ali, R., Afzal, M., Hussain, S.,
... & Lee, S. (2018). Model-based adaptive user interface based on
context and user experience evaluation. Journal on Multimodal User
Interfaces, 12(1), 1–16. https://doi.org/10.1007/s12193-018-0258-2

Mezhoudi, N. (2013). User interface adaptation based on machine learn-
ing and user feedback (Intelligent User OInterface IUI.13).

Mezhoudi, N., Khaddam, I., & Vanderdonckt, J. (2015) Wisel: A mixed
initiative approach for widget selection. In Proceedings of the 2015 con-
ference on research in adaptive and convergent systems, (pp 349–356).
ACM.

Mezhoudi, N., & Vanderdonckt, J. (2015, March). A user’s feedback
ontology for context-aware interaction. In 2015 2nd world symposium
on web applications and networking (WSWAN) (pp. 1–7). IEEE.

Mitrovic, N., Royo, J. A., & Mena, E. (2007). Performance analysis of an
adaptive user interface system based on mobile agents. In Handbook of
research on user interface design and evaluation for mobile technology.

Mitrovic, N., Royo, J. A. A., & Mena, E. (2005). Adaptive user interfaces
based on mobile agents: Monitoring the behavior of users in a wireless
environment. In I symposium on ubiquitous computing and ambient
intelligence, Spain. Thomson- Paraninfo.

Nielsen, J., Clemmensen, T., & Yssing, C. (2002). Getting access to what goes
on in people‟s heads? – Reflections on the think-aloud technique. In
Proceedings of 2nd NordiCHI conference, Aarhus, Denmark, (pp.
101–110). NY: ACM.

Oppermann, R., & Rasher, R. (1997). Adaptability and adaptivity in
learning systems. Knowledge Transfer, 2, 173–179.

Paterno, F., Santoro, C., Mantyjarvi, J., Mori, G., & Sansone, D. (2008).
Authoring pervasive multimodal user interfaces. International Journal
of Web Engineering and Technology, 4(2), 235–261. https://doi.org/10.
1504/IJWET.2008.018099

Rosman, B., Ramamoorthy, S., Mahmud, M. H., & Kohli, P. (2014). On user
behaviour adaptation under interface change. In Proceedings of the 19th
international conference on Intelligent User Interfaces (pp. 273–278) .

Ruiz-López, T., Rodríguez-Domínguez, C., Rodríguez-Fórtiz, M. J.,
Ochoa, S. F., & Garrido, J. L.: Context-aware self-adaptations:
From requirements specification to code generation. In:
Ubiquitous computing and ambient intelligence. context-awareness
and context-driven interaction—7th International Conference,
UCAmI 2013, (pp. 46–53). December 2 –6, 2013. Carrillo, Costa
Rica. Proceedings.

Sharon McDonald, H., Edwards, M., & Tingting, Z. (2012). Exploring
think-alouds in usability testing: An international survey. IEEE
Transactions on Professional Communication, 55(1), 2–19. https://
doi.org/10.1109/TPC.2011.2182569

Van Velsen, L., Van Der Geest, T., Klaassen, R., & Steehouder, M. (2008).
User-centered evaluation of adaptive and adaptable systems:
A literature review. The Knowledge Engineering Review, 23(3),
261–281. https://doi.org/10.1017/S0269888908001379

Vanderdonckt, J., & Nguyen, T.-D. (2019). MoCaDiX: Designing cross-device
user interfaces of an information system based on its class diagram.
Proceedings of the ACM on human-computer interaction 3, (p. 17). EICS.

Yigitbas, E., Jovanovikj, I., Biermeier, K., Sauer, S., & Engels, G. (2020).
Integrated model-driven development of self-adaptive user interfaces.
Software and Systems Modeling, 1–25.

Yigitbas, E., Sauer, S., & Engels, G. 2017. Adapt-UI: An IDE sup-
porting model-driven development of self-adaptive UIs. In
Proceedings of the ACM SIGCHI symposium on engineering inter-
active computing systems (EICS ‘17), (pp. 99–104). New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.
1145/3102113.3102144)

About the Authors

Nesrine Mezhoudi is an Assistant Professorat the IT Department at
Imam Abdulrahman Bin Faisal University. Sheholds a Ph.D. from the
Catholic University of Louvain, Belgium, and a master‘sdegree in com-
puter science from the University of Gabes. Her researchesinterests are
Human-Computer Interaction, Intelligent User Interfaces,Model-Based
approaches.

Jean Vanderdonckt is Full Professor of Computer Science at Louvain
School of Management, Université catholique de Louvain,Belgium. He
received M.Sc. degrees in mathematics, in computer science, and the Ph.
D. degree from the University of Namur,Belgium. His research interests
include HCI, engineering interactive systems, intelligent user interfaces,
usability engineering.

14 N. MEZHOUDI AND J. VANDERDONCKT

https://doi.org/10.1109/THMS.2014.2384452
https://doi.org/10.1109/THMS.2014.2384452
https://doi.org/10.1145/3057861
http://www.graphpad.com/scientific-software/prism/
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1007/s12193-018-0258-2
https://doi.org/10.1504/IJWET.2008.018099
https://doi.org/10.1504/IJWET.2008.018099
https://doi.org/10.1109/TPC.2011.2182569
https://doi.org/10.1109/TPC.2011.2182569
https://doi.org/10.1017/S0269888908001379
https://doi.org/10.1145/3102113.3102144
https://doi.org/10.1145/3102113.3102144

	Abstract
	1. Introduction
	2. Related works and challenges
	3. The TADAP method
	3.1. The supported context
	3.2. Runtime adaptability: The controllability feature
	3.3. Runtime intelligent adaptivity: Learning and predicting user behavior
	3.4. Runtime intelligent adaptivity: Modeling cost functions
	3.5. Model-based runtime adaptation: Reification

	4. TADAP experiment
	4.1. Method
	4.2. The Users experience
	4.3. Results
	4.4. Discussion

	5. Conclusion
	Acknowledgments
	References
	About the Authors

