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ABSTRACT
Adapting the user interface (UI) to the changing context of use is intended to support the interaction 
effectiveness and sustain UI usability. However, designing and/or processing UIs adaptation at design 
time does not encompass real situation requirements. Adaptation should have a cross-cutting and low- 
cost impact on software patterning and appearance with regard to the situation and the ambient- 
context. To meet this requirement, we present TADAP proposal for run-time adaptive and adaptable UI 
based user feedbacks and machine learning. It allows a task-driven adaptation of the user interface (UI) 
at runtime by mixed-initiative. The particularity of TADAP is the utilization of Machine Learning potential 
to support context-aware runtime adaptation within model-driven UI. Further, TADAP allows the UI 
adaptation by mixed-initiative (User and System) considering the user preferences (implicit and explicit) 
during an interaction. Such a mixed-initiative runtime UI-adaptation tool provides recommendations on 
how to personalize the UI. Further, it has the ability to track real-time users’ interventions and learn their 
preferences. Diverse tests were performed and showed TADAP as a promising initiative for intelligent 
model-driven UI adaptation.

1. Introduction

With today’s growing use of smart connected devices every-
where, interacting with Graphical User Interfaces (GUI) seeps 
into most of our daily tasks. Therefore, adapting the UIs 
intelligently to fit all requirements of the diverse context of 
use and meet user preferences is mandatory. Interfaces are 
required to survive changes in their context to enhance the 
user’s control over tasks and improve their experience, 
throughout smoothing their interaction and reducing their 
errors. Accordingly, adaptation plays a principal role in the 
success of interaction systems by allowing systems to be 
accessible and easily manageable at runtime for different 
users. The emerging smart environments’ appliances exhibit 
similar properties in an effort to provide end-user customiz-
ability and extensibility. Runtime adaptation has become 
readily available in an adaptive way. These facilities enable 
systems to progress without recompilation, by generating 
managing and executing adaptation decisions at runtime.

Divers adaptation techniques were identified in the litera-
ture ranging from the adaptability to the adaptivity, along 
with systems mixing both techniques. Systems are recognized 
adaptable if they permit their end-users to adjust a selection of 
system parameters and adapt their behavior accordingly. 
While adaptive systems are expected to adapt to the users 
automatically based on the system’s assumptions about user 
needs (Oppermann & Rasher, 1997). Both adaptability and 
adaptivity features can be incorporated in systems at different 

levels of functionality and representation with varying effec-
tiveness. Earlier, systems often need recompilation for 
upgrades, which incur increased cost, delay, and risk. Hence, 
in the current computational landscape of runtime, pervasive-
ness, and context-awareness, the support of runtime adapta-
tion becomes the crucial requirement to handle varying 
resources, changing user needs, and system faults. Thus, mod-
els driven engineering involved runtime aspect, and then 
models are no longer limited to use during the first cycle of 
development (i.e at the design, implementation, and deploy-
ment), but then models are provided with dynamic behavior 
and were evolved at runtime (Criado et al., 2012; Ghiani et al., 
2017). The use of such dynamic models permits one to make 
reconfiguration decisions based on a global perspective of the 
running system, apply analytic models to determine correct 
adaptation strategies, and test the effectiveness of adaptations 
through continuous system monitoring (Criado et al., 2012; 
Hussain et al., 2018). However, an efficient implementation of 
adaptation, that considers changing user preferences and takes 
several contexts into account at runtime is still a challenge. 
Since the user represents the most extensive and complex 
dimension of context, accordingly the user involvement is 
a crucial requirement to improve the usability of a UI.

To that end, Machine Learning (ML) as a field supporting 
the solution of complex problems comes in to provide mean-
ingful help (Alpaydin, 2004; Barber, 2010; Bishop, 2006, 
Mezhoudi, 2013). Throughout several techniques, ML put 
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forward an incredible opportunity to advance UI contextuali-
zation and convey the adaptation within UI in the executing 
environment; so far few works that effectively involve ML 
techniques in finding the beneficial adaptation methods and 
to solve context recognition questions.

In this paper, we present TADAP a task-based runtime 
adaptation of the user interface. TADAP approach follows 
a model-based approach generating UI from high abstract 
specification to more concrete ones. It considers an abstract 
task-oriented specification (task tree) together with an 
abstract UI model specification (AUI) in order to remain 
model-based and to allow for more flexibility in generating 
UIs. TADAP is distinguished by an intelligent runtime adap-
tation embedded in model-based approaches. Moreover, 
assuming machine learning appliances benefits and supports 
a variety of interactions with the user, our approach operates 
a different type of feedback during the learning process.

The rest of this paper is organized as follows; first, we 
provide a comparative review of the state of art outlining 
adaptation coverage of existing model-based approaches. 
Afterward, we present our proposal for the runtime UI gen-
eration and adaptation process of TADAP taken together with 
the task model, platform, and user interventions for adapta-
tion practices. TADAP proposal and its adaptation algorithms 
have been applied and tested throughout a demonstrative case 
study. Finally, we evaluate the tool via an empirical evaluation 
and end-user testing.

2. Related works and challenges

There already exist a lot of approaches dealing with models 
for the user interface dating back to the 1980s. Such model- 
based approaches are aimed to user interface creation and 
adaptation at runtime as well as design-time (Criado et al., 
2012; Mezhoudi, 2013; Paterno et al., 2008; Vanderdonckt & 
Nguyen, 2019). Models were mainly adopted as User Interface 
Description Languages (UIDLs) to define technology and 
modality independent UI. Several UIDLs (UsiXml, UIML, 
XIML, etc.) exist, commonly UsiXml is considered to have 
the most comprehensive metamodel complying with the 
CAMELEON reference framework. Additionally, it is possible 
to define mappings and transformations between the various 
levels of abstraction (Tasks Model, Abstract UI, Concrete UI, 
and Final UI) (Akiki et al., 2016Enes Yigitbas et al., 2017; 
Vanderdonckt & Nguyen, 2019).

Model-based approaches generally use model-driven engi-
neering (MDE) techniques for the generation of the UI. 
Addressing issues relating to the simplification of the process 
of UI creation and providing an infrastructure to allow appli-
cations to run on different platforms with different capabil-
ities were a common purpose (Gajos et al., 2006). To adapt 
the UI to their context of use is an ultimate requirement, 
different adaptation rules are predefined in accordance with 
context features. Assuming the diversity of interaction’s plat-
forms and environments, it is obvious to accommodate dif-
ferent and heterogeneous contextual constraints. Adaptations 
involve all abstraction levels of model-based UI. Whereas 
optimizing the UI by accommodating context requirements 
can result in an adverse change in performance when it 

doesn’t meet user choice (Rosman et al., 2014). Therefore, 
user preferences still the most relevant constraint to define 
adaptation. And then human interventions are typically 
needed to verify and/or correct the result of such adaptation 
(Mezhoudi & Vanderdonckt, 2015). According to (Rosman 
et al., 2014) the customization of adaptation decisions is made 
more complex by the way in which users learn and the extent 
to which history can contribute to their choice behavior. 
These purposes require a more refined user model that sup-
ports the optimization process. To that end, different 
approaches have been proposed addressing adaptation pro-
blems; and introduced the context information at different 
levels. Almost all of them stimulate adaptation via an adaptive 
behavior (Blumendorf et al., 2010; Bodart et al., 1995; Breiner 
et al., 2011, 2009; Chu et al., 2004; Clerks et al., 2004; Criado 
et al., 2012; Eisenstein. et al., 2000; Ghiani et al., 2017; 
Mitrovic et al., 2005, 2007). The primary goal is to ensure 
pervasive property for user interfaces and having the ability to 
change during the runtime of the interactive application due 
to a contextual change.

Different adaptation purposes and context features were 
addressed; In Roam (Chu et al., 2004), the authors apply models 
at runtime to build multi-platform adaptation. Then applica-
tions allow a user to transfer/migrate a running application 
between varied devices effortlessly. Adaptation in (Clerks et al., 
2004; Mitrovic et al., 2005, 2007) considered user preferences, 
and then such approaches supported the creation of context- 
sensitive user interfaces. Usually, the task models are used for 
improved understanding of the logic of utilization, and then 
support considering usability guidelines during the design 
phase. Task models can also support usability evaluation during 
execution. For instance, TRIDENT (Bodart et al., 1995), Roam 
(Chu et al., 2004), DynaMo-AID (Clerks et al., 2004), ADUS 
(Mitrovic et al., 2005, 2007), Teresa (Paterno et al., 2008) Breiner 
(Breiner et al., 2011, 2009), Criado (Criado et al., 2012) and 
(Blumendorf et al., 2010) derive a context-sensitive UI from 
a task task-oriented languages which allow for greater flexibility 
in generating user interfaces from the abstract specification. 
Commonly, existing systems provided some mechanism to auto-
matically generate user interfaces and using a simple rule-based 
approach, where each type of data was matched with precisely 
one type of interactors. TRIDENT (Bodart et al., 1995) was 
probably the first system to take more complex context informa-
tion into account when generating user interfaces. It provides 
a decision tree that takes into account a broad set of discrimi-
nants and represents progress toward automated user interface 
design. TIMM (Eisenstein. et al., 2000) capitalizes on an adaptive 
algorithm allowing automated model-based interface design. 
The adaptive behavior focuses on predicting user behavior 
using Markov-based models. ADUS (Mitrovic et al., 2005, 
2007) capitalizes on monitoring transparently the user behavior 
at run-time, learn and anticipate potential user actions through-
out interface accordingly. A different advanced adaptation was 
defined by Supple (Gajos et al., 2006), It defines the interface 
generation as a discrete constrained optimization problem and 
solves it with a branch-and-bound algorithm using constraint 
propagation. Supple supports both adaptation modes for perso-
nalizing generated interfaces, and convoy automatic user-driven 
customization. However, the supple generation process does not 
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benefit a task specification and then it addressed mainly direct 
manipulation systems. Most of the recent work aims at consid-
ering end-users feedback during interaction for adaptation. 
Egoki system (Gamecho et al., 2015) focused on the accessibility 
of the UI throughout adopting a model-based approach for 
generating adaptive user-centered UIs. The system is aimed at 
automatically tailoring UIs to the end-user with special needs 
(physical, sensory, and cognitive disabilities). Egoki system has 
issues with the model’s generation and the design of the final UI 
(Gamecho et al., 2015).

The user context and user experience were the key evalua-
tion factors for (Hussain et al., 2018), A-UI/UX-A presented 
an authoring tool supporting an allowing the adaptation of 
user interface based on diverse factors, such as user disabilities 
and environmental factors. WiSel employs an adaptation 
approach for context-aware selection of widgets. It consists 
of a mixed-initiative adaptation approach capitalizing on user 
feedbacks and addressing usability threats (Mezhoudi et al., 
2015). (Enes Yigitbas et al., 2017; Ruiz-López et al., 2013; 
Yigitbas et al., 2020) addressed self-adaptive model-driven 
user interfaces. Commonly they focused on a model-driven 
engineering approach to generate context-aware self- 
adaptation mechanisms. (Yigitbas et al., 2020) distinguishes 
by supporting the automatic generation of context services to 
monitor and detect context information changes.

The major dilemma of existing UI development approaches is 
the utilization of a restricted set of pre-defined contexts and 
adaptation rules. Such rule-based approaches performed adapta-
tion at runtime. In practice, adaptation is executed once the rules 
that satisfy the conditions are executed. Recent rule-based systems 
consider advanced adaptation rules to support complex context- 
of-use situations (Yigitbas et al., 2020). However, despite the 
advantages of rule-based systems (flexible, easy to integrate, sup-
port context etc.), their responsiveness for context changes is 
limited. One of the main challenges in a rule-based system is 
that adaptation rules have variable precision and usefulness for 
end users. Thereby, monitoring and adjusting the rules helps in 
maintaining the precision of adaptation of the system and user 
satisfaction.

Mostly adaptation rules are static, and their modification is 
costly or impossible. However, AI-powered adaptations are 
more context-driven and responsive. Intelligent systems are 
intended to make decisions based on the real context as well 
as user information and user interactions. For instance, ML 
technology goes further and allows the systems to learn from 
the end-user interactions, and feedback, and make adaptation 
decisions accordingly.

Further, previous adaptive systems implementation has 
a flexibility issue since the adaptation code is mostly entwined 
with the functional core of the application. However, there is 
a need to design loosely coupled systems allowing the support of 
new context-of-use, and then extend the functional core and re- 
adapt the generated UIs accordingly. We argue that separating the 
UI code from the core logic of the application would improve 
flexibility and speed up the development of adaptive behavior. 
Further, with respect to existing approaches dealing with UI 
models at runtime, there still lacks a common understanding 
and a suitable methodology for the definition of runtime models. 
The commonly raised questions are about the connection of the 

models of design time to runtime architecture, beside synchroni-
zation and validation of adaptation decision on models at 
runtime.

This work involves studying how to implement and man-
age novel interactions in intelligent interfaces by capitalizing 
on ML techniques and user feedback. The focus of TADAP 
proposal is to address the context-awareness requirement in 
the runtime application definition. Generated UI should be 
smartly reactive and provide a suitable and optimized inter-
action scenario depending on context-related events. TADAP 
is particularly interested in the UI generation from the task 
model, considering user-centeredness, and investigates the 
application of ML techniques in the support of context- 
aware adaptation. TADAP operates different types of user 
feedbacks (implicit and explicit) to learn, validate, and decide 
adaptation. We assume that monitoring user interaction 
increases the system predictability to perform adaptations 
fitting the end-user expectations. In addition to reducing the 
potential for not expected adaptions and user frustration, 
which lead to the interaction downfall.

The characterization of the stated approaches is presented 
in (Table 1). We identify considered abstraction levels for the 
UI specification according to the spinal column of model- 
based UI (Task, Abstract, Concrete, and final). Then applied 
adaptation is characterized in terms of type (adaptive and/or 
adaptable) and execution time (runtime or design time). 
Moreover, as user involvement is an ultimate requirement 
for adaptation, we identify the support of end-users during 
the whole adaptation process through feedbacks. Both implicit 
and implicit feedback exhibits different characteristics of 
users’ preferences with both pros and cons. The feedback 
allows evaluating the adaptation decisions taken rather than 
instructs by giving the correct choice. This is what creates the 
need for active exploration of users’ reactions through their 
explicit opinions besides implicit one and user behavior.

3. The TADAP method

Quite a few of existing tools involve adaptivity within a model- 
driven engineering perspective by rendering interfaces on multi-
ple types of platforms, or by considering specific user capacity 
and disability. TADAP proposal distinguishes by the particular-
ity of imposing a specific reflection on the architectural model of 
adaptation in order to guarantee a harmonious integration 
between the UI adaptation and the UI generation at runtime.

(1) The system is intended to produce an adaptive UI, 
considering the user feedbacks beside the context of 
use. This feedback will be gathered implicitly and 
explicitly via user intervention, behavior and interac-
tion history, then must participate immediately in the 
customization of the interface.

(2) Furthermore, TADAP provides a controllability fea-
ture-allowing the user to customize the UI via an expli-
cit adjustment of adaptation parameters. Afterward, we 
present an extensive description of TADAP (Task- 
Based Adaptation) depicting a ‘smart’ task-based UI 
generator enabling extensive (user-) and (system-) 
initiated adaptations at runtime.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3



3.1. The supported context

Given that design-time generated UIs fail to provide the 
required flexibility, it is required to consider the evolution of 
the context data and to involve end-user during the time of 
use. The principal challenge is to ensure that adaptation 
decisions are computed dynamically considering the actual 

Table 1. Characterization of existing approaches regarding supported models, adaptation strategies, AI/machine learning 
use and feedbacks support.

Table 2. ANOVA test results on the average rate of Workload consuming.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between 
columns)

1142 3 380.5 F (3, 44) = 3.136 P = .0348

Residual (within columns) 5338 44 121.3
Total 6480 47

Table 3. ANOVA parameters.

ANOVA summary

F 3.136
P value 0.0348
P value summary *
Are differences among statistically significant? (P < .05) Yes
R square 0.1762

Table 4. ANOVA test results on the average rate of workload consuming for 
explicitly and implicitly adapted sessions.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between 
columns)

986.7 2 493.4 F (2, 49) = 4.378 P = .0178

Residual (within columns) 5522 49 112.7
Total 6509 51
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context of use circumstances and that UI changes are exe-
cuted at run-time without interruption.

The definition of the context of use involves different 
parameters that have an impact on the system use such as 
place, device, time, tasks, interaction history, user preferences, 
and other social aspects. Artificial intelligence and ML tech-
niques support the consideration context parameters for 
adaptation (Genaro Motti et al., 2012). TADAP focused on 
a set of parameters for the adaptation purpose such as; (1) the 
interaction platform, which is involved in terms of screen size, 
this parameter will contribute the adaptation decision to avoid 
encumbering GUIs. (2) The Task model in terms of comple-
teness, task dependency and redundancy as well as the inter-
action history and task fulfillment. Further, it considers (3) 
the end user preferences as the main adaptation feature to 
sustain UI usability. User preferences are gathered during 
interaction through their feedbacks expressed explicitly and 
implicitly (Mezhoudi et al., 2015, Genaro Motti et al., 2012).

Accordingly, TADAP recognizes context variations <plat-
form, user preferences, tasks>, identifies appropriate adapta-
tion decisions, and generate new adapted UI during the same 
interactive session.

The runtime context-awareness is carried by the concept of 
‘at run-time triggered reification process’ started on the user 
or the system request. The UI is then re-reified partially, only 
not accomplished tasks, taking into account context changes. 
New adaptation decisions will be applied for the following 
screens using the partial reification processes ensuring local 
adaptation. Despite the ‘locality’ of adaptation, previous 

containers (displaying performed tasks) are supported in 
adapting and designing the next one. TADAP architecture 
aims at avoiding the adaptation of previously filed actions 
while creating the next container. Only tasks that appeared 
in previous containers, but not accomplished will be consid-
ered for adaptation and displayed in the next reified UI 
container. Previously displayed UI container keeps their 
initial setting to ensure coherence and avoid user’s disruption. 
Giving that the reifications process based on adaptation deci-
sions results in plenty of options, the selection of the appro-
priate adapted solutions need to be guided by quality 
measures. To handle the discrimination of a better solution, 
we define different scores that are computed for each result in 
order to find the best one according to an assigned score 
function.

Figure 1 depicts TADAP adaptation scenario through the 
partial reification concept. The process points out a real-time 
adaptation using partial reification triggered during one inter-
active session. Initial generated FUI 1 support mainly the 
platform. Then once the interaction is started, the user- 
action-prediction module is triggered and a partial reification 
of an adapted FUI2 will take place considering new context 
data<tasks, user preferences>. Adaptations are availed in the 
abstract UI level ‘Abstract Container2ʹ.

To ensure such adaptation we proceed to Markov Model 
for the user behavior monitoring and the prediction of user 
behavior. We can resume the process of user behavior pre-
diction with the Markov chain in three steps; first creating 
and monitoring sequences of actions (tasks), then learning an 
N order Markov chain model (or establishing all the order 
from one to N), and finally predicting the next most likely 
user action in view of his interaction history. Accordingly, the 
adaptation approach outlines the advantages of:

● Involving agents: System, User.
● Learning system (Adaptation process takes into account 

“nearly” directly the evolution of the collected data and 
the context of use)

● Enabling and facilitating controllability
● Enhancing the granularity of adaptation

Figure 1. TADAP adaptation scenario.

Table 5. ANOVA test results on the average rate of Workload consuming for 
explicitly and implicitly adapted sessions.

Tukey’s multiple 
comparisons test

Mean 
Diff.

95% Cl of 
diff. Significant? Summary

NotAdapted vs. 
ImplicitlyAdapted

6.660 −2.175 to 
15.50

No ns

NotAdapted vs. 
ExplicitlyAdapted

−3.256 −12.98 to 
6.466

No ns

ImplicitlyAdapted vs. 
ExplicityAdapted

−9.917 −18.36 to 
−1.472

Yes *
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3.2. Runtime adaptability: The controllability feature

TADAP supports user controllability on the UI and the whole 
adaptation process and affords the interaction with 
a controllability feature. A controllability feature is an exten-
sion of the final UI, where a scoreboard of reflected adapta-
tion parameter is displayed allowing the adjustment of their 
relevance for adaptation. Parameters control consists of 
adjusting the weight attributed to each sub-score to balance 
their importance in deriving the final score. The considered 
parameters are determined by the task model completeness, 
monitoring user behavior, feedbacks, graphical appurtenance 
of widgets, and the platform weight. Accordingly, the con-
trollability feature displays a list of tunable parameters, allow-
ing the end-user to define the weights associated with each 
sub-score in order to balance its importance in the final score. 
Considered parameters revealed in Figure 2 are defined as 
follows:

● The accuracy of considering the completeness of the 
task model

● The accuracy of user guidance by behavior monitoring, 
which is used for the score of actions given the user 
behavior prediction (u.b.p.).

● The level of consideration of Feedbacks.
● This locality provides an opportunity to consider or not 

the content of the previous containers in the designing 
of the next one.

● Concerning actions that appear in previous containers, 
but which are not filed.

● Graphical connection between widgets implementing 
actions belonging to the same parent task in this reifica-
tion process.

● The platform weight that defines the maximal number 
of elements displayed on the screen.

On the left-bottom border, a preview of the best-scored 
AUI models is shown. By moving the mouse on these buttons, 
the preview is displayed in the centric frame replacing the 
scoreboard. A simple click on the preferred preview triggers 
the reification of associated AUI to end the adaptation.

3.3. Runtime intelligent adaptivity: Learning and 
predicting user behavior

The main benefits of gathering interaction data are making 
adaptation decisions and helping users to better realize their 
tasks by predicting their behavior. Various Machine Learning 
techniques were deployed in different ways to support pre-
dictive approaches. It determines future users’ actions by 
considering the user profile or model that links information 
about the user or the task to expectations concerning beha-
vior. Markov chain was widely used for several prediction 
related issues. Likewise, TADAP deploys Markov models for 
predicting the action a user will take next given already 
performed sequence of actions. Markov models are repre-
sented by three parameters < A, S, T > Where:

A: set of all potential actions that can be accomplished by the 
user;

S: set of all potential states established by Markov model;

Figure 2. GUI associated to the controllability feature.
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T: Transition Probability Matrix (TPM),
where tij: = probability (Performed action = j) when pro-

cess state = i.
In a more complicated model, the predictions are com-

puted by looking at more than one action performed by the 
user. And then the approach is generalized to the Kth-order 
Markov model, which computes the predictions by looking at 
the last K actions performed by the user. However, these 
higher-order models intensify the weaknesses associated with 
high state-space complexity, reduced coverage, and even poor 
prediction accuracy. To address this weakness, the Longest 
Repeating Subsequence (LRS) was combined with a Markov 
chain is used in order to decrease both spatial and temporal 
complexity. These complexities will be more important if we 
only use the Markov chain with entire sequences. According 
to (Mitrovic et al., 2005) the accuracies are quite the same in 
both cases. The Longest Repeating Subsequence (Pitcow and 
pirolli 99) is defined as: (1) The subsequence is a set of 
consecutive actions (follow each other’s in time) from 
a sequence, (2) The subsequence is repeated more than 
T time in the sequences (generally T = 1), (3) We only keep 
the longest subsequence (the LRS that are contained by bigger 
LRS can be pruned).

In that order, combining both methods result in a quite 
intuitive technique that fits well with the problem of “User 
behavior prediction” which aims to predict potential actions 
given previously accomplished ones. Furthermore, in our case 
there is no need for various types of features to predict the 
next actions (like the case for weather prediction, speech 
recognition etc.), only “actions” feature type is considered. 
Accordingly, this prediction does not need complex optimiza-
tion techniques like Gaussian or Neural Network with gradi-
ent descent at the learning step. The prediction time (use the 
model, query prediction based on history) is quick since we 
just have to take the higher probabilities given the history. 
Further such prediction technique allows us to pass up the 
problem of contradictory rules, widely faced by rule-based 
approaches.

TADAP uses the user behavior prediction to improve the 
arrangement of abstract interaction units at the abstract user 
interface level. Then all data collected by implicit feedback are 
used into a tool called user behavior prediction. This tool uses 
a machine learning technique based on statistics to predict the 
next action(s) that will be accomplished by the user given the 
previous ones he filled. TADAP carries out prediction via 
a UserActionPrediction class which can be seen as 
a dynamic extension of the context of use where the data 
are processed to extract more useful data. This class needs 
an instance of “ActionMonitoringDB” as “raw material” and 
also takes as parameter the Markov order.

Accordingly, the process of user behavior prediction with 
the Markov chain considers probabilistic and statistical mod-
els rather than deterministic rules. It consists of three steps:

- First, generating and monitoring sequences of actions.
- Then learning an N order Markov chain model,
- Finally predict the next most probable action of the user 

thanks to its history of immediate action.

3.4. Runtime intelligent adaptivity: Modeling cost functions

As was pointed out, the differentiation of quality of generated 
interfaces is determined through a cost function, which pro-
vides quantitative metrics to enhance both the consistency 
and optimality of the selected solutions. Accordingly, it 
should be a common approach in the establishment of rele-
vant UI in different abstraction levels. For TADAP, defined 
scores are computed at runtime to be an input to determine 
the next adaptation decisions. First considered score gauging 
a UI, labeled ‘ContentScore’. This metric concerns composite 
abstract Interaction Unit (IU) (containers) without consider-
ing the arrangement of simple IU inside. A clustering algo-
rithm groups objects (action) according to their features in 
clusters basing on similarities.

A clustering algorithm minimizes the distance intra-class 
(distance between actions composing a cluster) and maxi-
mizes the distance inter-class (between the clusters). In our 
case, the clustering algorithm identifies UI containers and 
compute similarity regarding the minimum distance to reach 
a common parent in the task tree (ai,aj), this score increases 
when the actions of the container are close together hierarchi-
cally in the task model. Then the score could be computed 
considering the structure of the Task Model (TM), the users’ 
feedback ranking the solution and the cohesion of prediction.

A first variant of the ContentScore is computed according 
to the TM structure in terms of tasks hierarchy, relationship 
and weights. The measure is determined as follows:

ContentScoreTMðCompoundIUÞ ¼
XTasks

ti;tj
TaskWeight=Min DistanceToReachCommonarent ti; tjð Þð Þð Þ

(1) 

Where: t: subtasks of a common parent
Taskweight: value assigned by considering task type
DistanceToreachCommonParent(ti,tj): distance between 

nodes to reach the common Parent of ti,tj.
An alternative score of actions more complex is regarding the 

user behavior prediction (u.b.p.) is defined. The user behavior 
prediction module is not formed to compute the “container 
content score” since this technique takes by definition the order-
ing of the actions in account to evaluate the next most probable 
actions. There is thus an underlying notion of a sequence. To 
meet this requirement and remove the influence of the ordering 
of actions, we proceed to simulate all possible history and com-
pute all probabilities of the next task, and then we keep the well- 
ranked probability for each action. Formally the score of action is 
computed as in formula (2). Then the content score is calculated 
according to the formula (3).

OrderIndepProbabilityðCompoundIUÞ
¼ Max S 2 SimulatedSequencesð Þð

Y

t;hð Þ2S
P tnhð Þ (2)  

ContentScorePredictionðCompoundIUÞ

¼
Xtasks

t
OrderIndepProbability tð Þ � UbPfeatureweightð Þ (3) 
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Where: t: subtasks of a common parent, h: history of fulfilling 
task, UbPfeatureweight: weight of user behavior prediction.

An additional relevant metric is the Ordering score. Which 
considers mainly the position of the action inside the con-
tainer; in consequence, it’s more restrictive and easier to 
compute regarding user behavior prediction. We have just 
to consider the ordering of the actions inside the AUI 
model and consider their positions. The score is then more 
restrictive than above. The score of actions given the task 
model is computed in the following way:

OrdringScoreTaskModelðActionÞ ¼
i � taskmodelfeatureweightjmax iactions 0; i½ �:sublistOf DFS tmð Þð Þð Þ

(4) 

Where DFS(tm) generates a sequence of actions by exploring 
the task tree in depth first search. Thus, the more the 
sequence of actions inside the container respects the order 
defined by the task model, the more the score increase. As 
well as the content score, different variants of ‘Ordering Score’ 
could be computed according to the considered feature. For 
instance, regarding the Task Model, an AUI could be evalu-
ated for the degree of appropriateness and conformity to the 
task’s structure regarding both order and hierarchy. The score 
variant of actions given the user behavior prediction follows 
the next formula:

OrdringScorePredictionðActionÞ ¼

Xfulfilledactionsþactions

a;h
P ajhð Þ

(5) 

The main advantage of a clustering algorithm is its scalability 
for considering new characteristics as new dimensions, 
besides the possibility of weighting different features in 
order to discriminate valuable one according to their rele-
vance. Such scalability supports continuous adaption and 
improvement through data preparation without the need for 
designer input to adjust adaptation rules.

For an easier understanding of the score computation 
module, a functional analysis is illustrated in Figure 3. All 
computed scores are assigned to an object instantiated from 
the Score class to keep track of the subscore for debugging or 

analysis purposes. A subscore is a part of the score and it is 
computed by using a specific feature, such as feedback or 
behavior prediction.

3.5. Model-based runtime adaptation: Reification

In this section, we put forward a simulation of the adaptation 
process execution (see Figure 4). We consider a simple task 
model as input, operating the reification and triggering the 
adaptation process.

The task tree is shown in Figure 4a. The execution of the 
reification module invokes the method “triggerAdaptation()” in 
charge of adapting and generation the first container. By the same 
trigger, all possible partial AUI are reified and scored via the 
method “calculateScore()” detailed above. The high scored AUI 
is reified and displayed to the user. Next Figure 4b illustrates 
a partial simulation of the AUI reification for the mentioned 
task tree.

The simulation describes different potential AUI and com-
putes their scores. The highest scored AUI is reified into FUI 
and displayed for the user (see Figure 4c). In our case, 
the second option was selected. The user should be able to 
trigger the controllability feature for handling the adaptation.

4. TADAP experiment

TADAP proposal is implemented in Java and provided with 
a simple module for final user interface (FUI) reification in 
order to show results. A simple task tree sample of banc 
transfer operation steps and the original interface generated 
during the first session before gathering the user feedbacks are 
shown in Figure 5.

4.1. Method

Then we suppose a list of executed sequences throughout 
diverse interactive sessions. Afterward, a new interface version 
is shown according to the new adaptation setting. As the 
system is expected to monitor all accomplished sequences, 
and implicitly gather additional contextual data affording the 
user behavior prediction. We execute five different sequences 

Figure 3. Input -Output of calculating score module.
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to perform both classic and IBAN transfers by changing the 
order of filling data. Then new adapted UI versions are reified 
in accordance with the partial reification concept depicted 
above. The reification module classes manage two reification 
methods, one dealing with the whole interfaces (getModels()), 
and one other dealing with partial interfaces 
(getPartialModels()). Partial reification requires more data, 
specific to the level of abstraction.

These data belong to the implementation of the adaptation 
architecture and they are not needed in case of whole interface 
reification, thus they are not specified in the abstract class 
“AdaptingInterface”. These data are obtained from a specialized 

class implementing the methods needed. The class is a particular 
architecture adaptation extending “AdaptingInterfaceArchII”. 
This specialized class will receive the context of use and the task 
model initialized by the “main” method. The constructor will 
initialize the reification classes: “ReifiTMtoAUIM” and 
“ReifiAUIMtoFUIM”. It will also initialize the 
“UserActionPrediction” tool to use it in the computing of the 
AUI scores.

Moreover, the system provides the user with the controllability 
feature allowing the adjusting and the supervision of the interface 
adaptation during the interactive session (Figure 2). Figure 6c 
illustrates a scenario for using the controllability feature.

Figure 4. (a) Simple Task Model. (b) The simulation of the reification process. (c) The displayed interface.

Figure 5. (a) The MoneyTansfer Task model. (b) First autonomous adapted UI: (user-feedback independent).
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● First, the user demotes the displayed interface by giving 
a low score and proposing corrections.

● Then the controllability feature is shown with a different 
alternative proposition for the current window.

● The user chooses a new interface description intended to 
be the most context-aware.

● Based on this choice, the system re-computes adapta-
tions for the next containers.

● The system allows the user to evaluate the adaptation. 
This option is implemented simply via a feedback star 
rating widget. This feedback is used to answer at the 

open question “What do you think about the 
container?”.

The widget can be viewed in all containers (Figure 7c). 
This kind of feedback is summative allowing a formative 
evaluation of the container.

4.2. The Users experience

According to Nielsen guide to usability testing; “the strength 
of the thinking-aloud method is to show what the users are 

Figure 6. (a) Scenario accomplishing a classic transfer. (b) Scenario of an IBAN transfers realization. (c) Scenario invoking the controllability feature.

Figure 7. (a). Average Time-consuming by users. (b) Average Time-consuming tasks for different iterations.
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doing and why they are doing it while they are doing it in 
order to avoid later rationalizations” (Nielsen et al., 2002). We 
decided to consider elicited verbal data since we believed that 
this would provide us with valuable information on the inter-
active session condition.

This decision relies on the results of a recent research 
addressing the suitability of the concurrent think-aloud pro-
tocol to evaluate usability problems (Fan et al. 2019). Fan et al. 
(2019) concluded that verbalization and speech features alone 
are reliable features to identify usability problems. However 
additive values may be enabled by supporting additional 
modalities such as facial expression and body language.

Further, several works have demonstrated the effectiveness 
of the think-aloud protocol for usability testing. It was stated 
as highly useful for gaining an understanding of interactive 
information behavior (Holzinger, 2005; Mingming Fan et al., 
2019; Nielsen et al., 2002; Sharon McDonald et al., 2012; Van 
Velsen et al., 2008). Van Velsen et al. (2008) recommend CTA 
for testing a working prototype and highlight its ability to 
support the evaluations that address both usability and adap-
tation output.

Experiment: During the study, 24 volunteer subjects (50% 
women, 50%men), from different countries (Belgium, Italy, 
Tunisia, Brazil, Syria, Algeria, France, Vietnam and China) 
and working in different domains such as mechanic, biology 
and computer sciences performed the experiment. The aver-
age age was 29 years, and all participants were eligible and 
familiar with the computer and they are all fluent French and 
English speakers.

Participants were asked to perform the Concurrent Think- 
Aloud CTA protocol following Ericsson and Simon definition 
(Ericsson & Simon, 1993).

It consists of verbalizing what they are doing as they are 
doing it. CTA is the predominantly used method in usability 
testing due to its performance and easiness (Sharon 
McDonald et al., 2012). We followed Ericsson and Simon’s 
guidelines during testing sessions and did not probe or inter-
vene except to remind users to keep speaking if they keep 
silent for a long period (Ericsson & Simon, 1993). However, 
they are not able to ask any questions about the observation, 
while still undertaking the task. Further, and in order to 
surmount the CTA issues with usability, we followed 
(Mingming Fan et al., 2019) recommendations and guidelines. 
Also, we have found it useful for the participant to show 
a short (50 second) demo of thinking aloud session when 
conducting a simple login scenario. In this demo video, the 
participant verbalized her interaction and feeling about the UI 
besides telling her action. The video minimizes the time 
required to introduce the experience and provides a concrete 
example of how to express their interaction with the system 
(Mingming Fan et al., 2019).

Each participant was asked to do four operations with the 
interface, supposed to be generated and re-adapted regarding 
his or her conduct during the interaction, along with audio 
recordings of the users thinking aloud while performing tasks.

The target is to assess the TADAP prototype’s usability, first 
by observing the user behavior in performing tasks while oper-
ating the proposed adaptation approach. which allow to identify 
potential usability issues during performing the list of tasks. 

Further, the CTA allows to address and to evaluate the system 
in term of appropriateness of adaptation, User behavior, User 
performance, User experience etc. (Van Velsen et al., 2008)

Further, we focus on evaluating the interaction throughout 
analyzing the audio records to report the user experience and 
reflecting the user’s performance when using Tadapt’s gener-
ated interfaces. Participants were requested to describe their 
actions without giving explanations participants merely report 
how they go about completing a task.

4.3. Results

Once we have all participants’ records, we start the analysis by 
identifying where, within it, there are users sounds. We have 
a measurement of audio amplitude against time, which isn’t 
very easy to analyze.

In our evaluation, we focused on the user in order to detect 
potential usability issues. The main addressed concept is user 
performance when accomplishing the test. The literature 
defines user performance in terms of Learnability, acceptabil-
ity, and Ease of use (Van Velsen et al., 2008). The ease of use 
is mainly reflected by the number of successful phases com-
pletions (task success).

Learnability and adaptation-appropriateness are revealed 
by task completion, durations when executing tasks.

By the same token, Observing the user behavior allows 
detecting usability issues and faced problems; through obser-
vation, through verbalization or through a combination of 
observation and verbalization. The evaluation of end-users’ 
performances with TADAP showed an effective full comple-
tion since all participants were able to complete all phases 
however their performance varies. The next step consists of 
comparing user performances through verbalization. We 
began by identifying periods where there are certain efforts 
when users are talking. Based on the setting of the experience’ 
protocol described above, the verbalized interaction enables us 
to process the operative interaction time and detect where 
within the audio there is a sound (user is interacting). We 
trim silence from records; this function consists in determin-
ing a minimum volume (amplitude) threshold and duration 
(<20 dB for more than 2 seconds) and then simply does 
a volume analysis of the waveform looking for areas that 
meet these criteria.

As we said above, participants were asked to accomplish 
four “Money transfer” scenario resuming the two phases of 
the experiment.

The first phase: consist of two interactive sessions accomplish-
ing the full transfer task. It is aimed at verifying that the subject 
could recognize changes in the UI depending on the followed 
sequence when establishing the task. During the first 2 iterations, 
the user doesn’t intervene in adapting the UI. TADAP adaptive 
behavior is intended to generate user interfaces that are expected 
to be the fastest for a particular participant to utilize. At this 
phase, the supported customizations regard the interface 
arrangement that varies depending on human errors e.g., dis-
playing the next container without filling all information; and 
also depending on the order of tasks. Such adaptations decisions 
are implicitly invoked. For a typical scenario where forms are 
fulfilled in a systematized way, the user will not perceive 
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differences. Second phase: The second step of the experiment 
consisted in using explicit feedbacks to manage adaptation 
within the same interactive session. During the third iteration, 
we asked users to provide explicit feedback by ranking the UI 
and/or using the controllability feature when realizing the trans-
fer scenario. The goal was to allow each subject to explicit his 
preferences for adaptation in order to reduce the interaction load 
during the last iteration. In this step, we were especially inter-
ested in minimizing the period of the final iteration. We selected 
the “Money transfer” scenario since it is a simple daily life task. 
This choice is aimed at reducing learning difficulties that parti-
cipants may experience with a new interaction scenario. 
Together with the illustrative video, the difficulties became insig-
nificant the user’s learning curve is almost flat.

The trend is clear that the rate of time-consuming is lower in an 
adapted interface. To make this observation statically significant, 
the ANOVA ‘One-way analysis of variance’ test is conducted on 
the value. The following table shows the result of ANOVA test 
produced by the statistics tool GraphPadPrism (Table 3).

We were expecting subjects to be aware of variances during 
interaction according to the adaptation decisions deployed 
during the different phases of the experience (i.e the workload 
during second and fourth iterations is lower than the first 
one). There was a significant effect of adaptations on work-
load and time-consuming at the p <.05 level for the three 
conditions [F(3, 44) = 3.136 p = .0348] (Table 2).

Since significant variance between the performance (work-
load) means of different iterations was showed. The rate of task’s 
duration was significantly different, and we can confidently state 
that workload decrease with adaptations accordingly TADAP 
approach contributes the ease of use’ usability factor.

In a second phase, we analyze the same set of data by con-
sidering three groups of interaction session; the first group 
corresponds to interaction session with not adapted UI, 
the second considers the session where adaptations where trig-
gered explicitly, and the last group consider only the session 
where the adaptation was performed in an implicit way. We 
expect a significant variance between performances during an 
interactive session with implicitly adapted UI, session without 
adaptations and session where adaptation was invoked explicitly. 
Similarly, there was a significant effect of adaptations on perfor-
mance in term of workload and duration at the p < .05 level for 
the three conditions [F(2, 49) = 4.378 p = .0178] (Table 4).

Because we have found a statistically significant result in this 
example, we needed to compute a post hoc test. We selected the 
Tukey post hoc test. This test is designed to compare each of the 
different iterations. We compare the means of three interaction 
groups (not adapted, implicitly adapted and explicitly adapted) 
(via one-way ANOVA, multiple comparisons considering itera-
tion 1 as the control group and alpha = 0.05 (Table 5).

Post hoc comparisons using the Tukey HSD test indicated 
that the mean score for the implicitly and explicitly adapted 
interactions was significantly different however no significant 
difference between adapted and not adapted UI (Figure 8).

4.4. Discussion

In (Figure 7) we show the detail of time-consumption (dura-
tion) of the test steps; we can observe that the use of both 

adaptation approaches reduces the total time spent by users to 
complete the task. The average performance (reflecting the 
user workload, time-consumption) is higher for the third 
iteration since an additional task was executed when adjusting 
the UI throughout the controllability feature.

The predictive algorithm, used by TADAP, utilizes the data 
obtained from monitoring interaction sequence to predict the 
users’ next most probable action. The resulting UIs are gen-
erated faster and consequent windows are adapted immedi-
ately with only one reification. In the consecutive version, 
with predictive features, interface elements are defined 
according to the monitored user interaction sequence.

We note that Pearson’s r for the correlation between itera-
tions was close to 1, which is called a positive correlation. In 
our example, our Pearson’s r mean was of 0.7 was positive. 
Likewise, the results were positive for the correlation between 
not-adapted and adapted sessions (Table 6). We conclude that 
the amount of time-consuming during iterations is propor-
tional to the subject due to the variety of profiles and skills.

In the second phase, we can observe that due to the controll-
ability features the interactive session was longer (Figure 7b), 
however better results are obtained for the following session as 
more accurate adaptations were applied based on explicitly 
gathered users’ feedbacks. Greater improvement might be 
obtained by adjusting the parameter setting that produces the 
best results when customizing adaptation. Otherwise, it is clearly 
visible that during the fourth iteration all participants were faster 
in fulfilling the test (Figure 7b). Compared to rule-based 
approaches, ML based adaptation are flexible and responsive. 
This reflexibility supports continuous improvements of interac-
tion performance since adaptation decisions taken by the system 
using the learning technique. ML techniques allow the system to 
learn the best adaptations in various situations without decreas-
ing the system’s real-time quality.

Further, we found that there is an opportunity to achieve 
significant improvement by mixing adaptive and adaptable 
behaviors during interaction with individuals. Both adaptabil-
ity and adaptivity focused on pursuing users’ interfaces that 

Figure 8. Tukey: difference between group means.

Table 6. Correlation table of one-way ANOVA data.

Correlation Tabular 
results

NotAdapted vs. 
ImplicitlyAdapted

NotAdapted vs. 
ExplicitlyAdapted

Pearson r Y Y

r 0.7783 0.7110
95% confidence 

interval
0.3981 to 0.9303 0.2631 to 0.9068

R squared 0.6058 0.5055
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generate personalized GUIs instead of treating all users the 
same. According to results obtained in the experiments, it can 
also be concluded that the TADAP is effective in identifying 
user preferences by both adaptation approaches. These find-
ings reinforce once again the need for accurate prediction of 
user preferences and appropriate adaptations.

Further, we assume that the perceived improvements of 
interaction are due to the responsiveness of adaptation deci-
sions. An ML-based adaptation allows the adjustment of 
adaptation with regards to change contrarily to the rules- 
based system adaptation that offers a kind of “fixed” intelli-
gence. However, ML-based adaptation decisions are not 
entirely clear compared to rule-based adaptations. Further 
work could be elaborated at different levels of evaluation of 
the context support and adaptation-context suitability.

5. Conclusion

This work presents a model-based environment for the genera-
tion of the context-aware graphical user interfaces at runtime. 
A partial reification technique is introduced to support MB GUI 
adaptation at runtime. It consists of the adaptation of potential 
abstract user interface (container) and then predicting an opti-
mized adjustment of the next container by capitalizing on 
machine learning techniques and user feedback.

At the analytical level, we have classified the literature of 
the model-based UI reification algorithm and discussed the 
relevance of prospecting AUI generation. At the methodolo-
gical level, we introduced different metrics used to assist and 
control the generation of the AUI. Then, we detailed the 
reification process and availed ML technique. We use 
a machine learning technique based on statistics in order to 
predict the next user-task(s) that will be accomplished by the 
user given the previous ones he filled. Accordingly, adapta-
tions were based on explicit and implicit feedback besides the 
user behavior prediction. The considered context of use cov-
ers all data specific to the user and some platform descriptors. 
The main data specific to the platform is the size of the 
displayed window for the interface. Generated UIs adjust 
their dimensions based on the device that accesses them in 
a responsive way. Concerning feedback, all the data captured 
from interaction might adjust the container concerned by the 
feedback, or influence more globally the adaptation process. 
Moreover, we may consider the user behavior prediction to 
predict the content of the widget based on the previous data 
filled by the user. This kind of tool looks like an enhanced 
auto compilation tool. It could be interesting to deal with 
some kind of data processing/filtering adaptation mixed with 
container content adaptation. Right now, we are generating all 
the possible solutions, and then we select the bests according 
to the score. It would be efficient to improve an existing 
solution with a local search technique in order to reach 
a better one without generating all the solutions by brute 
force as we did. A local search algorithm can be deployed 
for that. The algorithm was validated via a case study and 
results were evaluated and discussed according to the Layout 
appropriateness metric and user evaluation. Performance and 
usability results demonstrate that there are significant benefits 
through predicting future states of user interaction. The 

results of the usability survey show that users perceive 
a system more useful when it follows their preferences.
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