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Kopietz F, Rupar K, Berggreen C, Säll J, Vertommen D,
Degerman E, Rider MH, Göransson O. Inhibition of AMPK activ-
ity in response to insulin in adipocytes: involvement of AMPK pS485,
PDEs, and cellular energy levels. Am J Physiol Endocrinol Metab
319: E459–E471, 2020. First published July 14, 2020; doi:10.1152/
ajpendo.00065.2020.—Insulin resistance in obesity and type 2 diabe-
tes has been shown to be associated with decreased de novo fatty acid
(FA) synthesis in adipose tissue. It is known that insulin can acutely
stimulate FA synthesis in adipocytes; however, the mechanisms un-
derlying this effect are unclear. The rate-limiting step in FA synthesis
is catalyzed by acetyl-CoA carboxylase (ACC), known to be regulated
through inhibitory phosphorylation at S79 by the AMP-activated
protein kinase (AMPK). Previous results from our laboratory showed
an inhibition of AMPK activity by insulin, which was accompanied by
PKB-dependent phosphorylation of AMPK at S485. However,
whether the S485 phosphorylation is required for insulin-induced
inhibition of AMPK or other mechanisms underlie the reduced kinase
activity is not known. To investigate this, primary rat adipocytes were
transduced with a recombinant adenovirus encoding AMPK-WT or a
nonphosphorylatable AMPK S485A mutant. AMPK activity measure-
ments by Western blot analysis and in vitro kinase assay revealed that
WT and S485A AMPK were inhibited to a similar degree by insulin,
indicating that AMPK S485 phosphorylation is not required for
insulin-induced AMPK inhibition. Further analysis suggested an in-
volvement of decreased AMP-to-ATP ratios in the insulin-induced
inhibition of AMPK activity, whereas a possible contribution of
phosphodiesterases was excluded. Furthermore, we show that insulin-
induced AMPK S485 phosphorylation also occurs in human adi-
pocytes, suggesting it to be of an importance yet to be revealed.
Altogether, this study increases our understanding of how insulin
regulates AMPK activity, and with that, FA synthesis, in adipose
tissue.
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INTRODUCTION

A major function of white adipose tissue is to store excess
energy in the form of triglycerides, which can rapidly be
hydrolyzed into fatty acids (FAs) in the event of energy
deprivation (10). Adipose tissue dysfunction, for example,
reduced de novo FA synthesis and inadequate storage of fat, is
believed to cause insulin resistance, which is a strong predictor
of type 2 diabetes (T2D) (22, 52).

An emerging drug target for the treatment of insulin resis-
tance and T2D is the AMP-activated protein kinase (AMPK)
(9, 14). AMPK was shown to be activated by antidiabetic drugs
like metformin and thiazolidinediones, and its activation is
associated with reduced glucose production and lipid accumu-
lation in the liver as well as increased glucose uptake in muscle
and improved insulin sensitivity (3, 5, 15, 16, 32, 37, 39,
59). AMPK is a heterotrimeric protein consisting of a catalytic
�-subunit and the regulatory �- and �-subunits. It is described
as a cellular fuel gauge, which senses and regulates cellular
energy levels. A drop in the ratio of AMP/ADP to ATP
(AMP/ATP ratio) induces AMPK activation by promoting
net-phosphorylation of the activity-controlling site T172 in the
�-subunit, as well as allosterically, by binding of AMP or ADP
to the �-subunit (21). Once activated, AMPK functions to
restore cellular energy levels by switching on energy-generat-
ing processes like FA oxidation and shutting down energy-
consuming processes like FA synthesis (25, 31, 37, 42, 45, 49).

The rate-limiting step in FA synthesis is the conversion of
acetyl-CoA to the active FA precursor malonyl-CoA, which is
catalyzed by acetyl-CoA carboxylase (ACC) (23, 40). Insulin
was previously shown to promote ACC activation by reducing
inhibitory phosphorylation of ACC on S79, a site known to be
phosphorylated by AMPK in adipocytes (6, 18, 24). However,
the mechanism underlying this insulin-induced dephosphory-
lation of ACC S79 remains unclear. One of our own studies in
primary adipocytes revealed that the regulation of ACC activ-
ity by insulin is highly dependent on protein kinase B (PKB/
Akt) activity (6). Pharmacological inhibition of PKB resulted
in a reversal of the insulin-induced dephosphorylation of ACC,
which was also accompanied by a reduction in insulin-induced
lipogenesis (incorporation of glucose into lipids). Moreover,
our study showed that AMPK is phosphorylated at S485 in a
PKB-dependent manner in response to insulin, and this was
associated with a reduction of AMPK activity. Whether the
phosphorylation of AMPK S485 is required for the inhibition
of AMPK by insulin and S485-mediated AMPK inhibition
underlies the activating effect of insulin on ACC and FA
synthesis remains unknown.

In addition to our observation in adipocytes, PKB-dependent
AMPK S485 phosphorylation has also been shown in several
other models. In 2006, two independent studies in rodent
cardiac muscle reported PKB-induced AMPK S485 phosphor-
ylation, suggested to antagonize AMPK T172 phosphorylation
by liver kinase B1 (LKB1) and with that AMPK activation (30,
53). Another study demonstrated that AMPK S485 phosphor-Correspondence: F. Kopietz (franziska.kopietz@med.lu.se).
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ylation inhibits subsequent activation of AMPK in different
human tumor cell lines and suggested that this effect was due
to conformational changes rendering AMPK T172 inaccessible
to phosphorylation (26). Furthermore, inhibition of AMPK
T172 phosphorylation in response to PKB-dependent S485
phosphorylation was also reported in vascular smooth muscle
cells and was suggested to be involved in the downregulation
of AMPK activity in human hepatoma cells infected with
hepatitis C virus (36, 44).

Another way in which insulin can promote lipid storage is
by, in a PKB-dependent manner, inducing phosphodiesterase
3B (PDE3B) activity, thereby causing inhibition of catechol-
amine-induced lipolysis (6, 34, 56). Previous studies in adi-
pocytes showed that cAMP-elevating agents activate AMPK,
an effect which was lost when cotreating cells with insulin, and
reinstalled when pretreating with a PDE3B inhibitor (19, 47,
57). Furthermore, it has been demonstrated that stimulation of
lipolysis results in an elevated cellular AMP/ATP ratio, which
was suggested to be the mechanism whereby cAMP-elevating
agents cause AMPK activation (19). Altogether, these findings
suggest that insulin might cause an inactivation of AMPK by
activating PDE3B and thereby reducing lipolysis and the cel-
lular AMP/ATP ratio.

The aim of our study was to characterize the insulin-induced
inhibition of AMPK in primary adipocytes and to identify
mechanisms underlying this regulation. Together, this will
provide a greater understanding of how lipid storage in adi-
pocytes is regulated by insulin.

MATERIALS AND METHODS

Materials. Insulin was purchased from Novo Nordisk (Copenha-
gen, Denmark). Complete protease-inhibitor cocktail was from Roche
(Mannheim, Germany). Precast Novex SDS polyacrylamide bis-Tris
gels, DTT, and lauryl dodecyl sulfate (LDS) sample buffer were
purchased from Invitrogen (Carlsbad, CA). Dulbecco’s modified Ea-
gle’s medium (DMEM), gentamicin, 1,4-bis(5-phenyl-2-oxazolyl)
benzene, 2,2=-p-phenylene-bis(5-phenyloxazole) (POPOP), 2,5-di-
phenyloxazole (PPO), phenylisopropyl adenosine (PIA), anti-c-Myc-
agarose, free glycerol reagent, and cytochalasin B (CytB) were from
Sigma Aldrich (St. Louis, MO). p81 phosphocellulose cation-ex-
change paper was from Whatman (Dassel, Germany). 32P�-ATP and
3H-acetic acid were obtained from Perkin Elmer (Boston, MA).
AMARA peptide (AMARAASAAALARRR) was synthesized by GL
Biochem (Shanghai, China). Enhanced chemiluminescent (ECL) sub-
strates SuperSignal West Pico and SuperSignal West Femto were
obtained from Thermo Fisher Scientific (Rockford, IL). MK-2206 was
from Active BioChem (Hong Kong). 5-Aminoimidazole-4-carboxam-
ide-1-�-D-ribofuranoside (AICAR) was purchased from Toronto Re-
search Chemicals (Toronto, Canada) and A-769662 from Abcam
(Cambridge, UK). OPC 3911 was obtained from Otsuka Pharmaceu-
ticals (Tokyo, Japan) and Rolipram from Biomol International (Ham-
burg, Germany). Myc-AMPK constructs [wild type (WT), S485A, and
S485D] were a kind gift from Grahame Hardie, and recombinant adeno-
viruses (Ad-Myc-WT AMPK, Ad-Myc-S485A AMPK, and Ad-Myc-
S485D AMPK) were generated by Vector Biolabs (Malvern, PA).

Antibodies. The following primary antibodies were used for
Western blots: anti-AMPK (no. 2603), anti-AMPK-pT172 (1:
1,000; no. 2535), anti-AMPK-pS485 (1:1,000; no. 4185), anti-HSL
(no. 4107), anti-HSL-pS563 (1:1,000; no. 4139), anti-Raptor (1:
1,000; no. 2280), anti-Raptor-pS792 (1:1,000; no. 2083), anti-ACC
(1:1,000; no. 3662), anti-ACC-pS79 (1:1,000; no. 3661), anti-PKB-
pT308 (1:2,000; no. 9275), anti-GSK3�/� pS21/9 (1:1,000; no. 9331),
and anti-Myc (1:1,000; no. 2276), and were all purchased from Cell

Signaling Technology (Danvers, MA). Anti-�-actin (1:2,000; no.
A5441) was from Sigma Aldrich (St. Louis, MO) and anti-AS160
(1:1,000; no. 07-741) from Merck. Anti-PKB-pS473 (1:5,000; no. 44-
621G), anti-AS160-pT642 (1:1,000; no. 44-1071G), anti-GSK3�/� (1:
2,000; no. 44-610), and anti-rabbit secondary antibodies conjugated to
horseradish peroxidase (HRP) were from Thermo Fisher Scientific
(Rockford, IL). Anti-mouse secondary conjugated to HRP was from GE
Healthcare (Uppsala, Sweden).

Isolation, stimulation, and lysis of primary adipocytes. Rat adi-
pocytes were isolated from epididymal adipose tissue of 36- to
38-day-old Sprague-Dawley rats (Taconic, Ejby, Denmark), as de-
scribed in Berggreen et al. (6). Animal experiments were approved by
the Regional Ethical Committee on Animal Experiments in Malmö/
Lund (approval nos. M286-10 and 5.8.18-18569/2018). Human adi-
pocytes were isolated from abdominal subcutaneous adipose tissue
collected from female subjects who underwent reconstructive breast
surgery [n � 15 individuals, body mass index (BMI) 26.1 � 2.4
kg/m2 (means � SD)]. All subjects gave their written informed con-
sent, and the studies were approved by the Regional Ethical Review
Board at Lund University (approval nos. 2013/298 and 2017/920).
Adipocytes were isolated by collagenase (1 mg/mL) digestion in a
shaking incubator at 37°C (28). Digests were filtered and washed with
Krebs-Ringer medium containing 25 mM HEPES pH 7.4, 200 nM
adenosine, 2 mM glucose, and 1% (wt/vol) BSA (KRH buffer). After
isolation, human adipocytes were incubated overnight in DMEM
containing 0.1 mg/mL gentamicin, 3.5% (wt/vol) BSA, and 200 nM
PIA (overnight incubation medium) at 37°C under 5% CO2. Subse-
quently, adipocytes were washed and resuspended in KRH buffer and
treated as indicated in the figures. Rat adipocytes were stimulated
directly after isolation. After stimulation, cells were washed in KRH
buffer without BSA and lysed in lysis buffer containing 50 mM
Tris·HCl, pH 7.5, 1 mM EGTA, 1 mM EDTA, 1 mM sodium
orthovanadate, 10 mM sodium-�-glycerophosphate, 50 mM sodium
fluoride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 1 mM DTT,
1% (wt/vol) NP40, and complete protease inhibitor (1 tablet/50 mL).
Lysates were centrifuged at 13,000 g for 15 min at 4°C, and protein
concentration in the supernatant was determined according to Brad-
ford (7).

Western blots. Cell lysates were heated in LDS sample buffer,
subjected to electrophoresis on precast Novex 4–12% bis-Tris gels,
and subsequently electrotransferred to nitrocellulose membranes.
Membranes were blocked for 30–60 min in 50 mM Tris·HCl pH 7.6,
137 mM NaCl, and 0.1% (wt/vol) Tween 20 (TBS-T) containing 10%
(wt/vol) skimmed milk and then probed with primary antibodies in
TBS-T containing 5% (wt/vol) BSA for 16 h at 4°C. Protein detection
was performed with HRP-conjugated secondary antibodies and ECL
substrate. Signals were visualized using a ChemiDoc XRS� system,
followed by analysis of band intensities with the software Image
Laboratory 6.0 (both from Bio-Rad; Hercules, CA).

Measurement of de novo fatty acid synthesis. After isolation, 700
�L of 3–4% (vol/vol) packed primary rat adipocytes in KRH buffer
(0.55 mM glucose, 3.5% BSA) were left untreated or stimulated with
the PKB inhibitor MK-2206 or AMPK activator A-769662 for 1 h and
subsequently incubated with or without insulin and 1 mM [3H]-acetate
(final concentration 	 0.8 �Ci/mL) for an additional 2 h at 37°C, 120
rpm shaking. Each stimulation was performed in triplicates. As a
blank, KRH buffer (without cells) was incubated with [3H]-acetate for
2 h. All reactions, including the blank, were stopped with 3.5 mL of
a toluene-based scintillation liquid containing 0.3 g/L POPOP and 5
g/L PPO. Samples were subjected to liquid scintillation counting, and
data were expressed as percentage of a nonpretreated sample after
subtraction of the blank value.

Adenovirus-mediated Myc-AMPK expression. Primary rat adi-
pocytes isolated as described above were incubated in overnight
incubation medium for 16–18 h at 37°C under 5% CO2, with adeno-
viruses encoding Myc-AMPK-WT, Myc-AMPK-S485A, or Myc-
AMPK-S485D, at a concentration of 50 
 106 plaque-forming units
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virus/mL cell suspension. Cells were then washed in KRH buffer,
stimulated as mentioned in the figure legends, and lysed as described
above.

Immunoprecipitation and in vitro assay of AMPK activity. Lysates
containing 5–10 �g of protein were incubated at 4°C for 1–2 h on a
shaking platform with anti-c-Myc-agarose. The immunoprecipitates
were washed twice with 500 �L lysis buffer, defined above, supple-
mented with 0.5 M NaCl and 1 mM DTT, and twice with 500 �L of
50 mM Tris·HCl pH 7.5, 0.1 mM EGTA, and 1 mM DTT. The kinase
activity was measured in a volume of 50 �L containing 50 mM
Tris·HCl pH 7.5, 0.1% 2-mercaptoethanol, 10 mM MgCl2, 0.1 mM
EGTA, 0.1 mM 32P�-ATP (final concentration 	 0.36 �Ci/mL), and
200 �M AMARA peptide for 20 min at 30°C. The assay was
terminated by applying 40 �L of the reaction mixture on p81 cation-
exchange phosphocellulose paper, followed by immersion of the
paper in 50 mM phosphoric acid and 5–6 subsequent washes in 50
mM phosphoric acid before liquid scintillation counting. Incorpora-
tion of 32P-phosphate was expressed as picomoles ATP incorporated
per milligram protein per minute (mU/mg).

Collection of medium for glycerol determination. Adipocyte sus-
pensions [300 �L of 5–10% (vol/vol) packed cells in KRH buffer]
were stimulated at 37°C, in a 150-rpm shaking incubator, as described
in the figure legends. When measuring glycerol release, cells were
allowed to rest on ice for 10 min after stimulation and the medium was
collected. Subsequently, cells were washed twice in KRH buffer
(without BSA) and lysed as described above. The cell lysates were
centrifuged for 15 min at 13,000 g, and the infranatant was collected.
The amount of glycerol released into the medium was measured with
an enzymatic method as previously described (12) or the help of the
commercially available free glycerol reagent (Sigma) and presented as
percentage of the basal sample.

Nucleotide measurements. Rat adipocyte suspensions [700 �L of
10% (vol/vol) packed cells in KRH buffer] were stimulated at 37°C
with increasing doses of insulin or 100 nM isoproterenol or preincu-
bated with MK-2206 (1 h) or cytochalasin B (30 min) and subse-
quently stimulated with insulin for 30 min as indicated in the figure.
Incubations were stopped by the addition of ice-cold KRH buffer
without BSA. After removal of the KRH buffer, cells were lysed in
400 �L 0.1 M perchloric acid in 40% methanol. Lysates were
centrifuged at 4°C, 4,000 rpm for 10 min. Supernatants were trans-
ferred to new tubes and centrifuged one more time. The pH of the final
supernatant was adjusted to 7 with 1.1 M (NH4)2HPO4 and samples
were dried in a vacuum concentrator. Dried pellets were resuspended
in water and purine nucleotides were measured by HPLC as described
in (48).

Statistical analysis. Results are presented as means �SD (� SD
for glycerol release) of several independent experiments (number
specified in figure legends). Western blot quantification data were
normalized to a control sample (100%) to account for variations in
absolute values in between experiments, which were analyzed on
separate gels and occasions. Statistical analysis was performed
using GraphPad Prism 8, and the respective tests are described in
the figure legends. Differences between two groups were consid-
ered significant when P � 0.05 (*P � 0.05, **P � 0.01, ***P �
0.001, ****P � 0.0001).

RESULTS

Insulin induces fatty acid synthesis and inhibits AMPK in a
PKB-dependent manner. For detailed characterization of the
involvement of PKB in the regulation of FA synthesis as well
as AMPK phosphorylation and activity, the PKB inhibitor
MK-2206 was employed in primary rat adipocytes. To verify
the potency of MK-2206, we monitored the phosphorylation of
PKB at the activity-controlling sites S473 and T308, which
was reduced in the presence of the inhibitor (Fig. 1A). Addi-

tionally, inhibition of PKB activity was also confirmed by
impaired phosphorylation of the downstream targets GSK3 and
AS160 in the presence of MK-2206 (Fig. 1B). Subsequently,
the effect of insulin, in the absence or presence of MK-2206,
on FA synthesis (incorporation of acetate into lipids) and
AMPK phosphorylation was investigated. As shown in Fig.
1C, PKB inhibition greatly reduced insulin-stimulated FA
synthesis in primary rat adipocytes, whereas in the basal state
no significant change was observed. The phosphorylation of
AMPK on the activity-promoting site T172 was significantly
decreased in a dose-dependent manner in response to insulin,
an effect that was abolished when inhibiting PKB (Fig. 1, D
and E). This effect of MK-2206, indicating a PKB-dependent
inactivation of AMPK, was confirmed by monitoring the
downstream AMPK substrates Raptor S792 and ACC S79. The
phosphorylation of these sites was reduced in response to
insulin, in the absence, but not in the presence, of MK-2206
(Fig. 1E). The insulin-induced decrease in AMPK activity was
accompanied by an increase in S485 phosphorylation, which
was also greatly reduced in the presence of MK-2206 (Fig. 1,
E and F). Furthermore, correlation analysis of fold changes in
AMPK pT172 versus pS485 at 100 nM insulin revealed a
significant correlation between decreased pT172 and increased
pS485 phosphorylation (Fig. 1G). In addition to the inverse
association between AMPK activity and S485 phosphoryla-
tion, the data in Fig. 1 also demonstrate an association between
low AMPK activity and high levels of FA synthesis. In line
with this, we also observed the opposite: AMPK activation by
the compound A-769662 (8) significantly inhibited the insulin-
induced increase in FA synthesis in adipocytes (Fig. 1C).

To explore whether the time frame for insulin-induced
changes in AMPK phosphorylation is compatible with a
causal role for S485 in the inactivation of the kinase,
adipocytes were treated with insulin for increasing time
periods. Western blot analysis of AMPK pT172 and pS485
demonstrated a significant decrease and increase, respec-
tively, already after 5 min, reaching the maximum of these
effects after 60 min (Fig. 2, A–C). These results further
indicate an inverse correlation between the phosphorylation
of these two sites on AMPK. The time-dependent, insulin-
stimulated inactivation of AMPK was again verified by a
decreased phosphorylation of Raptor at S792 and ACC at
S79 (Fig. 2C).

Insulin-induced inactivation of AMPK is not dependent on
S485 phosphorylation. To investigate whether AMPK S485
phosphorylation is required for the insulin-induced inhibition
of kinase activity, Myc-tagged AMPK�-WT or a nonphos-
phorylatable AMPK�-S485A mutant were expressed in pri-
mary rat adipocytes via adenoviral transduction. Cells trans-
duced with green fluorescent protein (GFP) served as a control.
Subsequently, the cells were stimulated with increasing doses
of insulin and AMPK phosphorylation and activity were mon-
itored. Western blot analysis showed that S485 phosphoryla-
tion was indeed prevented in cells expressing AMPK�-S485A
(Fig. 3A). However, AMPK T172 phosphorylation was signif-
icantly reduced by insulin in both AMPK�-WT and AMPK�-
S485A-expressing cells (Fig. 3A). Measurement of Myc-
AMPK�1 kinase activity in vitro (Fig. 3B) revealed a compa-
rable significant decrease in activity of both wild-type (WT)
and S485A AMPK in response to increasing doses of insulin.
Insulin-induced reduction in Raptor S792 and ACC S79 phos-
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phorylation (Fig. 3C) also confirmed that AMPK was inhibited
to a similar extent in cells expressing the WT and the S485A
mutant.

To further examine a possible role of S485 phosphorylation
in the regulation of AMPK activity, an AMPK�-S485D mu-
tant, mimicking phosphorylation at S485, was expressed and

Myc-AMPK�1 activity was measured. After normalizing
Myc-AMPK�1 activity to the varying transduction/expression
efficiencies of the different constructs (Myc-AMPK�1-WT,
S485A, S485D), basal (without insulin) kinase activities were
compared. The results showed no significant differences in
basal kinase activity; however, the S485A and S485D mutants

50

100

150

AM
PK

 p
S4

85
/A

M
PK

(%
of

 c
trl

 +
 1

00
nM

 In
su

lin
)

Insulin (nM) - 1 10 100 100101-

MK-2206 (10 M)

***

****

****

ns

25

50

75

100

125

PK
B 

pS
47

3
(%

of
 c

trl
 +

 1
00

nM
 In

su
lin

)

Insulin (nM)

PKB pS473

- 1 10 100 100101-

MK-2206 (10 M)

actin

***

ns

PKB pT308
actin

Insulin (nM)

AMPK

AMPK pT172

-

1 10 100 100101-

AMPK pS485

Raptor
Raptor pS792

---ACC

ACC pS79

A B

50

100

150

200

250

AM
PK

 p
T1

72
/A

M
PK

(%
of

 c
trl

ba
sa

l)

Insulin (nM) - 1 10 100 100101-

MK-2206 (10 M)

***

***

***

C D

E

MK-2206 (10 M)

-

F

25

50

75

100

125

150

G
SK

3
 p

S2
1/

G
SK

3
(%

of
 1

00
nM

 In
su

lin
)

Insulin (nM) - 1 10 100 100101-

MK-2206 (10 M)

****
****

***

ns

GSK3 /

pGSK3 /  S21/9

AS160

AS160 pT642

G

0.30 0.35 0.40 0.45 0.50 0.55 0.60

2

4

6

8

10

pT172 at 100 nM Insulin for 15 min
(fold of basal)

pS
48

5 
at

 1
00

 n
M

 In
su

lin
 fo

r 1
5 

m
in

(fo
ld

ba
sa

l)

r = -0.821; R2 = 0.674
p = 0.0453

25

50

75

100

125

150

FA
  s

yn
th

es
is

(%
of

 c
trl

 +
 In

su
lin

)

A-769662

- 1 10 100 300

MK-2206 A-769662MK-2206

M

basal Insulin (10 nM)

10- 1 10 100 30010

*

*
****

****

****

E462 REGULATION OF AMPK ACTIVITY BY INSULIN

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00065.2020 • www.ajpendo.org
Downloaded from journals.physiology.org/journal/ajpendo at Univ Catholique Louvain Bruxe (130.104.075.008) on September 17, 2020.



displayed tendencies to be more and less active than the WT,
respectively (Fig. 3D).

To investigate and compare the response of WT and S485A
AMPK to insulin in more detail, transduced cells were stimu-
lated with insulin for varying time periods (Fig. 4, A–C).
Although S485 phosphorylation was almost completely lost in
cells expressing the mutant, we did not observe any significant
differences regarding the reduction in T172 phosphorylation
(Fig. 4A) or Myc-AMPK�1 kinase activity (Fig. 4B) at any of
the insulin time points between WT and the S485A mutant.
The similar behavior of the two constructs was also demon-
strated by a comparable reduction in Raptor S792 and ACC
S79 phosphorylation (Fig. 4C) at different time points after
insulin stimulation of AMPK-WT and S485A-expressing cells.

Effect of insulin on activation of AMPK in response to
pharmacological AMPK activators. For further characteriza-
tion of the inactivation of AMPK by insulin, the effect of
pharmacological AMPK activators after treatment with in-
sulin was monitored. Primary rat adipocytes were preincu-
bated with or without insulin and subsequently stimulated
with either of the two AMPK activators, AICAR or
A-769662 (20). Western blot analysis demonstrated that
both compounds were able to activate AMPK, shown as
increased AMPK T172 (Fig. 5A) as well as Raptor S792
(Fig. 5B) and ACC S79 phosphorylation (Fig. 5C). After
preincubation with insulin, AICAR retained the ability to
increase AMPK activity, whereas the ability of A-769662 to
do so was abolished (Fig. 5, A–C). AMPK S485 phosphor-

Fig. 1. PKB-dependent AMP-activated protein kinase (AMPK) inactivation by insulin is accompanied by increased AMPK S485 phosphorylation. A, B, and D–F:
primary rat adipocytes were pretreated with (white bars) or without (black bars) 10 �M MK-2206 for 1 h, followed by stimulation with increasing doses of insulin
for 15 min as indicated. Phosphorylation of PKB S473 and T308 (A), GSK3�/� S21/9 (B), AS160 T642 (B), AMPK T172 (D and E), and S485 (E and F), as
well as Raptor S792 (E) and acetyl-CoA carboxylase (ACC) S79 (E), was analyzed by Western blot with phospho-specific antibodies and normalized to total
protein levels where indicated. Blots shown are representative of 3 independent experiments, and data are expressed as % of the nonpretreated, 100-nM
insulin-stimulated sample (A, B, and F) or the nonpretreated basal (without insulin) (D) in each experiment. C: primary adipocytes isolated from rat epididymal
adipose tissue were pretreated with the PKB inhibitor MK-2206 or AMPK activator A-769662 for 1 h, as indicated, and subsequently stimulated with 10 nM
insulin (gray bars) for another 2 h or left untreated (black bars). De novo fatty acid (FA) synthesis was measured as the incorporation of 3H-acetate into total
lipids in n � 4 independent experiments and expressed as % of the nonpretreated insulin stimulated sample. G: fold changes of AMPK T172 and S485
phosphorylation at 100 nM insulin were plotted against each other (R2 � 0.674, P � 0.0453, n � 6). Correlations were made using Pearson correlation test. A–D
and F: data are presented as means � SD, and statistical significance was determined by one-way ANOVA followed by Holm–Sidak’s multiple comparison test.
*P � 0.05, ***P � 0.001, ****P � 0.0001; ns, nonsignificant.
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ylation was induced to a comparable degree before stimu-
lating with either of the two activators (Fig. 5A).

Alternative mechanism for insulin-induced AMPK inhibi-
tion: the role of cAMP signaling/lipolysis and cellular energy
levels. Considering the previously reported role of lipolysis in
the regulation of AMPK activity via changes in the AMP/ATP
ratio, as well as the known antilipolytic effect of insulin, we
wanted to investigate whether changes in basal (unstimulated)
lipolysis could possibly be involved in the regulation of AMPK
activity by insulin (19, 43, 54). Primary adipocytes were
incubated with increasing doses of insulin and lipolysis was
measured as the release of glycerol. As shown in Fig. 6A,
insulin did not induce any significant lowering of lipolysis
under conditions where we observe AMPK inhibition (Fig. 1).
However, taking compartmentalization of cAMP into account,
it is still possible that AMPK regulation by insulin involves
cAMP in a PKA-dependent or -independent manner (1). Thus,
adipocytes were treated with a PDE3 inhibitor (OPC 3911) and
a PDE4 inhibitor (Rolipram) in the absence and presence of
insulin. Isoproterenol was used as a control. The results show
that both PDE inhibitors induced, in comparison to isoproter-

enol, a small increase in lipolysis (Fig. 6B, top). When adding
insulin in the presence of PDE inhibitors, no further changes in
lipolysis were detected (Fig. 6B, top). However, when analyz-
ing hormone-sensitive lipase (HSL) S563 phosphorylation, we
observed increased phosphorylation in the presence of the PDE
inhibitors, which in the case of Rolipram was counteracted by
insulin (Fig. 6B, bottom). This latter observation is in line with
the involvement of PDE3B, but not PDE4, in the ability of
insulin to inhibit catecholamine-induced lipolysis (13, 60).
When monitoring the effect of PDE inhibition on the ability of
insulin to reduce AMPK activity, measured as a decrease in
AMPK T172 as well as pACC S79 and Raptor S792 phosphor-
ylation, neither OPC 3911 (Fig. 6, C and E) nor Rolipram (Fig.
6, D and E) induced any significant changes compared with the
noninhibitor-treated cells.

With the finding that changes in basal lipolysis or other
cAMP-regulated processes are not likely to be involved in the
effect of insulin on AMPK activity, we wanted to investigate
whether insulin stimulation of primary adipocytes induces a
decrease in the cellular AMP/ATP ratio regardless of lipolysis,
which could account for the decreased AMPK activity. For this
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purpose, adipocytes were stimulated with increasing doses of
insulin as well as isoproterenol, known to increase the AMP/
ATP ratio, as a control (19). Cell extracts were then analyzed
by HPLC. Analysis of the nucleotide content revealed that
isoproterenol induced a robust increase in the AMP/ATP ratio,
whereas insulin stimulation indeed resulted in a dose-depen-
dent, significant decrease in the cellular AMP/ATP ratio (Fig.
7A, top). Furthermore, the results show that this observed
decrease in the AMP/ATP ratio by insulin was caused by an
increase in ATP levels and an even stronger decrease in AMP
levels (Fig. 7A bottom). With this result suggesting an insulin-
induced decrease in cellular AMP/ATP ratio as a possible
cause for reduced AMPK activity in response to insulin, we
wanted to investigate the involvement of PKB in this mecha-
nism. For this purpose, nucleotides were analyzed after treat-
ment of adipocytes with the PKB inhibitor MK-2206 before
insulin stimulation. The results demonstrated that PKB inhibi-
tion prevented the insulin-induced decrease in AMP/ATP ratio
(Fig. 7B). To address whether the observed decrease in AMP/
ATP ratio was due to increased glucose uptake in response to
insulin stimulation, nucleotides were also analyzed in adi-
pocytes pretreated with cytochalasin B (CytB), an inhibitor of
glucose transporters (27, 46). The results showed a comparable
insulin-induced decrease in AMP/ATP in nonpretreated and
CytB-treated cells (Fig. 7B).

Insulin-induced regulation of AMPK activity in human
adipocytes. To explore whether the regulation of AMPK ac-
tivity by insulin is also of relevance in humans, primary
adipocytes isolated from subcutaneous human adipose tissue
were treated with increasing doses of insulin and AMPK
phosphorylation at T172 and S485 and ACC S79 phosphory-
lation was monitored. Similar to what we observed in rat
adipocytes, AMPK S485 phosphorylation increased in a dose-
dependent manner in response to insulin (Fig. 8A). However,
although we observed a decrease in AMPK pT172 phosphor-
ylation at 10 nM insulin in the majority of the experiments
(Fig. 8B), the variation was large and no significant changes in
the average response to insulin were detected—a result that
was also reflected in the level of ACC S79 phosphorylation
(Fig. 8C). Analysis of fold changes in AMPK pT172 versus
pS485 at 10 nM insulin showed no significant correlation
between these two phosphorylations (Fig. 8D).

DISCUSSION

In our previous study (6), we demonstrated that insulin
stimulation of primary rat adipocytes induces a PKB-depen-
dent AMPK S485 phosphorylation, which is associated with
decreased AMPK T172 phosphorylation and kinase activity. In
our present study, we showed that AMPK S485 phosphoryla-
tion is no requirement for reduced kinase activity. However,
we have identified alternative mechanisms involving reduced
cellular energy levels and PDEs, which could be responsible
for mediating the insulin-induced inhibition of AMPK.

In the current study, we used the pharmacological PKB
inhibitor MK-2206 to show that insulin-induced S485 phos-
phorylation and inhibition of AMPK is dependent on active
PKB, which is in line with our previous result obtained with
the less-specific inhibitor Akti1/2 (6). This observation is also
in agreement with other studies, showing PKB-dependent
AMPK�1-S485 phosphorylation in different cell models, as
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well as in vitro—the latter suggesting that S485 is a direct
target for PKB (26, 30, 44, 53).

A key finding in this paper is that the activity of the
nonphosphorylatable AMPK S485A mutant was still inhibited
by insulin, down to a level similar to that of WT AMPK. This
clearly demonstrates that S485 phosphorylation is not a pre-
requisite for the ability of insulin to inhibit AMPK in adi-
pocytes. Nevertheless, our results suggest that S485 phosphor-
ylation might, under some conditions, contribute to the regu-
lation of AMPK activity because when normalizing to
expression levels (Myc), S485A AMPK showed a tendency to
be more active, whereas the phospho-mimetic S485D mutant
appeared to be less active than WT AMPK, at least under basal
conditions.

In contrast to our results, previous studies using the
AMPK S485A mutant demonstrated a requirement of Akt/
PKB-dependent S485 phosphorylation for the inhibition of
AMPK activity in rat hearts as well as the human-derived
HEK-293 cell line (26, 30). However, it is important to
mention that both of these studies focused on the role of

S485 phosphorylation in the prevention of subsequent
AMPK activation by LKB1 in vitro or by AMPK activators
in cells. In contrast, the aim of our study was to test the
requirement of insulin-induced S485 phosphorylation for
inhibition of basal AMPK activity, i.e., in the absence of
exogenous AMP activators, with the ultimate goal to deter-
mine the mechanism by which insulin increases FA synthe-
sis under physiological conditions.

Furthermore, we found that insulin pretreatment impaired
the ability of the pharmaceutical activator A-769662 to
activate AMPK. AICAR, however, was able to activate
AMPK despite prior insulin treatment. The differences in
the ability of AICAR and A-769662 to activate AMPK in
the presence of insulin might be due to their differential
mechanisms of action. Whereas AICAR acts as an AMP-
mimetic, which, like AMP, binds to the �-subunit (33),
A-769662 binds to the so-called ADaM site located at an
interface between the �- and �-subunit (20, 50, 51). Con-
sidering the different binding sites, one way to interpret the
observation that insulin seems to affect AMPK activation by
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A-769662 more than that by AICAR, which binds much
closer to the affected phosphorylation sites, is that S485
does not play an important role in insulin-induced inhibition
of AMPK. In the future, it would be interesting to further
investigate the mechanism by which insulin affects AMPK
activation by these two activators.

Having observed that S485 phosphorylation is dispensable,
we investigated additional mechanisms that might be involved
in insulin-induced AMPK inhibition, leading to decreased
ACC S79 phosphorylation and subsequently increased FA
synthesis. It has previously been demonstrated by us and others
that AMPK is activated in a cAMP-dependent manner, likely
through reduced lipolysis and cellular AMP/ATP ratio, as a
result of energy-consuming re-esterification of FAs (19, 47,
57). Therefore, we investigated the role of cAMP signaling/
lipolysis in the insulin-induced inhibition of AMPK activity.
The results showed that increasing doses of insulin did not
result in significant changes in glycerol release, indicating that
lipolysis is not likely to be involved in the inhibition of AMPK
activity by insulin. To determine whether other cAMP-depen-
dent pathways could possibly be involved in the regulation of

AMPK activity by insulin, we employed the two PDE inhibi-
tors OPC 3911 and Rolipram. Although both PDE inhibitors
induced an increase in cAMP levels, measured as an increase
in HSL S563 phosphorylation and glycerol release, neither of
the inhibitors prevented the inhibition of AMPK by insulin. Of
note here is that the increase in basal lipolysis observed when
inhibiting PDEs was only marginal compared with the cate-
cholamine-induced lipolysis, indicating low basal cAMP pro-
duction/lipolysis. Therefore, we were not surprised that insu-
lin-induced effects on basal lipolysis could not be detected.
Furthermore, responses induced by this minor change are not
likely to be of physiological relevance.

As AMPK activity is highly dependent on cellular energy
levels, we investigated the possibility that insulin might de-
crease the overall cellular AMP/ATP ratio, which could ac-
count for the inhibition of AMPK activity. Indeed, we observed
a dose-dependent, insulin-induced decrease in the cellular
AMP/ATP ratio, which was dependent on active PKB. This is
in line with the requirement of PKB for the insulin-induced
inhibition of AMPK activity and stimulation of FA synthesis.
Additionally, as the AMP/ATP ratio-lowering effect of insulin
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was maintained even though glucose uptake was inhibited, we
believe that insulin induces this effect independently of in-
creased glucose uptake. Together, these results indicate that the
reduction of AMPK activity in response to insulin does not
likely involve changes in cAMP levels or lipolysis but a
PKB-dependent decrease in the cellular AMP/ATP ratio. The

mechanism underlying this decrease in AMP/ATP ratio is still
to be elucidated.

Of note, a previous study performed in 3T3-L1 adipocytes
reported the opposite of our findings, namely an induction of
T172 phosphorylation and an increase in the cellular AMP/
ATP in response to insulin (35). Furthermore, whereas we
observed that the reduction of AMPK pT172 in response to
insulin was accompanied by reduced ACC S79, Liu et al. (35)
reported an increase in pT172 with no effect on ACC phos-
phorylation in 3T3-L1 adipocytes. This apparent contradiction
might indicate a specific difference in the insulin response
between cultured and primary adipocytes.

In addition to primary rat adipocytes, we demonstrated that
insulin treatment induces increased AMPK S485 phosphoryla-
tion in primary human adipocytes: an observation in line with
that by Albers et al. (2) in adipose tissue from subjects during
euglycemic clamp. In that study, a simultaneous decrease in
AMPK T172 phosphorylation in response to insulin was also
observed, although a strong decrease in AMPK pT172 was not
always associated with an increase in pS485. Conversely, in
our experiments, the phosphorylation of S485 in response to
insulin was evident in all subjects; however, there was a large
interindividual variation of the effect of insulin on AMPK
pT172 or ACC pS79, and thus no significant change was
detected. However, it is worth mentioning that in the majority
of the subjects that we analyzed, a decreased AMPK T172 and
ACC S79 phosphorylation was detected and there was a trend
toward an inverse correlation between pS485 and pT172.
Collectively, the data from human adipose tissue and adi-
pocytes suggest that insulin, like in rodent cells, induces S485
phosphorylation, which is possibly associated with AMPK
inhibition, at least in some subjects. However, as we observed
increased AMPK S485 phosphorylation but no change (or in
some individuals, even increased) AMPK T172 phosphoryla-
tion, this supports the previous conclusion from rat adipocytes
of S485 being negligible in the regulation of AMPK kinase
activity by insulin.

An ultimate goal of our investigations is to increase the
understanding of how insulin stimulates FA synthesis. De novo
lipogenesis only accounts for a small portion of the FAs that,
together with glycerol, make up adipose tissue triglyceride
stores (55). Nevertheless, previous studies show an inverse
correlation between insulin sensitivity in obesity and de novo
lipogenesis (4, 29). Additionally, recent studies identified a
new group of lipids, the FA esters of hydroxy FAs (FAHFAs),
which are synthesized as a result of de novo lipogenesis in
white but also in brown adipose tissue (52, 58). These lipids are
suggested to improve metabolic status, including promotion of
insulin-stimulated glucose uptake as well as a reduction in
proinflammatory responses (58). In insulin-resistant obesity,
the abundance of these lipids was shown to be greatly reduced
(58). Taken together, this highlights the importance of increas-
ing our understanding of how FA synthesis is regulated (58).

It has been demonstrated that the main phosphorylation
event required for regulating ACC activity is phosphorylation
at S79 (11, 41). Furthermore, ACC S79 clearly becomes
dephosphorylated following insulin stimulation, as shown in
both our current and previous work (6). So far, AMPK is the
only kinase shown to be required for S79 phosphorylation (11),
strongly suggesting an involvement of AMPK in the insulin-
induced increase in FA synthesis, which is also further under-
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lined by our observation of decreased insulin-induced FA
synthesis in response to AMPK activation by A-769662. Ad-
ditionally, with the help of a nonphosphorylatable ACC S79A
mutant, it was demonstrated that ACC S79 is the main ACC
site required to inhibit FA synthesis in response to AMPK
activation (17). To further delineate the mechanisms underly-
ing insulin-induced activation of ACC and FA synthesis, it
would be interesting to employ adipocytes isolated from the
ACC S79A knockin model previously described (38).

In summary, in this study we showed that AMPK S485
phosphorylation is not required for insulin-induced inhibition
of AMPK in adipocytes. Moreover, we demonstrated that
insulin-induced S485 phosphorylation also takes place in hu-
man adipocytes, making further investigations of the impor-
tance of S485 phosphorylation warranted. Additionally, we
reveal a decrease in cellular energy levels as an alternative
mechanism that might be involved in the regulation of AMPK
by insulin.
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