
PyDL8.5: a Library for Learning Optimal Decision Trees

Gaël Aglin , Siegfried Nijssen and Pierre Schaus
ICTEAM, UCLouvain

{firstname.lastname}@uclouvain.be

Abstract
Decision Trees (DTs) are widely used Machine
Learning (ML) models with a broad range of appli-
cations. The interest in these models has increased
even further in the context of Explainable AI (XAI),
as decision trees of limited depth are very inter-
pretable models. However, traditional algorithms
for learning DTs are heuristic in nature; they may
produce trees that are of suboptimal quality under
depth constraints. We introduce PyDL8.5, a Python
library to infer depth-constrained Optimal Decision
Trees (ODTs). PyDL8.5 provides an interface for
DL8.5, an efficient algorithm for inferring depth-
constrained ODTs. The library provides an easy-
to-use scikit-learn compatible interface. It cannot
only be used for classification tasks, but also for re-
gression, clustering, and other tasks. We introduce
an interface that allows users to easily implement
these other learning tasks. We provide a number of
examples of how to use this library.

1 Introduction
Machine learning models are increasingly used in a wide
range of applications. However, an increasing concern is the
interpretability of machine learning models. Whether or not
human experts can understand a model can for instance be im-
portant to avoid ethical problems [Craven and Shavlik, 2014;
Ribeiro et al., 2018; Ribeiro et al., 2016a; Ribeiro et al.,
2016b; Ignatiev et al., 2019]. Decision trees have gained in-
terest in recent years for this reason, since they can be inter-
preted as rules that are interpretable by domain experts.

An important parameter for the interpretability of a deci-
sion tree is the depth of the tree. Deeper trees contain more
tests and more rules, and hence are often harder to interpret.

The most well-known algorithms such as CART [Breiman
et al., 1984] and C4.5 [Quinlan, 1993] use a greedy approach
to learn DTs. They select iteratively the best feature to split on
based on a heuristic (information gain, gini index) and con-
tinue this splitting process until a desired quality (eg., classi-
fication accuracy) is obtained or a desired depth is reached.

However, this greedy process has disadvantages. It has
been shown that trees found using greedy algorithms are sub-
optimal when also the depth is taken into account: greedy

trees that are sufficiently accurate are sometimes unnecessar-
ily deep, and depth-constrained trees are not sufficiently ac-
curate [Bertsimas and Dunn, 2017]. Moreover, to learn trees
for other tasks than classification, it is often necessary to de-
velop new heuristics [Blockeel et al., 1998], making it harder
to solve such tasks.

For this reason, in recent years researchers [Nijssen and
Fromont, 2007; Bertsimas and Dunn, 2017; Verwer and
Zhang, 2019; Hu et al., 2019; Verhaeghe et al., 2019;
Aglin et al., 2020] have studied algorithms for learning Op-
timal Decision Trees (ODTs): trees that under well-defined
constraints, such as on depth, achieve the highest possible
score on training data.

The main challenge in finding ODTs is the NP-hardness of
finding ODTs. Good search algorithms are needed to make
solving this task feasible. We recently showed that an algo-
rithm that we proposed, DL8.5, obtains the best performance
on a wide range of test cases [Aglin et al., 2020]. Indeed, on
commonly used UCI datasets DL8.5 computes ODTs within
seconds, making its use in an interactive demo possible.

In this paper, we introduce PyDL8.5, an open source
Python library that implements DL8.5 in an efficient and
extendible manner. Compared to other systems for finding
ODTs, it offers these advantages: (1) it offers better compu-
tational performance, as shown in our recent study [Aglin et
al., 2020]; (2) it is easy to use, as it is fully compatible with
scikit-learn; (3) it can easily be extended to solve other tree
learning problems than classification problems.

To deal with other learning problems, we implemented
DL8.5 such that it works for any optimization criterion that
is additive. Using our library, a user can express her opti-
mization criterion using any Python library of choice; the op-
timization criterion does not need to be linear or integer, as re-
quired in alternative methods based on MIP and SAT solvers.

This paper is organized as follows. In the next section, we
summarize DL8.5. Then, we present the PyDL8.5 library and
show examples of how to use it on some ML tasks.

2 Learning ODTs using DL8.5
Given a binary training set D, and two parameters maxdepth
and minsup, the problem that is solved by the DL8.5 algo-
rithm is to find the decision tree argminT∈T f(T ), where

• T represents all decision trees of depth ≤ maxdepth in



which each leaf covers at least minsup examples of the
training data D;

• f(T ) is a scoring function that is additive over the leafs
of the tree T , that is, f can be written as f(T ) =∑

`∈leafs(T ) g(`), where g(`) ≥ 0 is a function that eval-
uates the quality of each leaf `, and g(`) is independent
of the order of the tests leading to leaf `.

In [Aglin et al., 2020] DL8.5 was introduced for the prob-
lem of classification; a scoring function g(`) was used that
evaluates the misclassification error of a leaf, that is, the num-
ber of instances covered by a leaf that do not belong to the
majority class of that leaf. However, the algorithm is correct
for other additive scoring functions as well.

DL8.5’s search algorithm relies on a mix of Dynamic Pro-
gramming and Branch-and-Bound search. It recursively ex-
plores all possible splits and selects the split with the lowest
score. Since different sequences of splits may select the same
set of instances in the data, the same subset of data may be
encountered multiple times during the search. DL8.5 uses a
caching system to reuse results. To prune the search space,
DL8.5 uses a bounding system. When a subtree is found, its
score is used as an upper-bound to restrict the quality of future
subtrees. Here DL8.5 exploits the additive nature of the scor-
ing function to prune a right-hand subtree when the left-hand
subtree provides an error greater or equal to the upper-bound.

Given its branch-and-bound nature, providing an initial
upper-bound on the quality of a tree can hence help the
search. This upper-bound is an optional parameter.

3 PyDL8.5
Architecture. Given the popularity of Python in data sci-
ence and AI, we implemented PyDL8.5 as a Python 3 library.
The core of the algorithm is written in C++ and uses 64-
bit vector operations to improve the performance. PyDL8.5
implements the fit/predict interface of the popular scikit-
learn library [Pedregosa et al., 2011] to make it easy to use
in combination with scikit-learn. An important component of
DL8.5 is the scoring function used to evaluate the leafs of a
tree. For the most common scoring functions, a fast imple-
mentation in C++ is provided. This is important as the func-
tion is called very often. Users can also write a scoring func-
tion in Python, although such functions may slow down the
execution. The library is hosted on PyPI1 and the source code
is available at https://github.com/aia-uclouvain/pydl8.5. The
following examples demonstrate how easily PyDL8.5 can be
used to implement many different ODT learning tasks.

Example Task 1: Shallow Classifiers. Listing 1 shows the
code needed to train an ODT classifier and predict on unseen
data. Note the simple integration in scikit-learn. The score
minimized by default by DL85Classifier is the misclassi-
fication error. In the listings 2 and 3, we will omit the code of
Listing 1 from line 1 to line 8.
1 import numpy as np
2 from sklearn.model_selection import train_test_split
3 from dl85 import DL85Classifier
4 # read the dataset and split into features and targets

1https://pypi.org/project/dl8.5/

5 dataset = np.genfromtxt("anneal.txt")
6 X, y = dataset[:, 1:], dataset[:, 0]
7 # split the dataset into training and test sets
8 X_train,X_test,y_train,y_test = train_test_split(X, y,

test_size=0.2)
9 # initialize the classifier , train and predict

10 clf = DL85Classifier(max_depth=3, min_sup=5)
11 clf.fit(X_train, y_train)
12 y_pred = clf.predict(X_test)

Listing 1: Code snippet to train a classifier

Example Task 2: Predictive Clustering. Predictive clus-
tering is an unsupervised task in which one aims to identify
clusters of good quality in the leafs of the tree and the tree can
be interpreted as a description of the clusters [Blockeel et al.,
1998]. Listing 2 shows how to implement this using a custom
scoring function error that calculates the sum of euclidean
distances from each point in a cluster to the centroid. Note
that no heuristic is needed, that this function is nonlinear, and
is written using NumPy code itself. A leaf_value function
is provided to determine the labels put in the leafs of the tree.

1 from dl85 import DL8Predictor
2 from sklearn.neighbors import DistanceMetric
3 eucl_dist = DistanceMetric.get_metric(’euclidean’)
4 # user-defined scoring function
5 def error(tids):
6 X_subset = X_train[list(tids),:]
7 centroid = np.mean(X_subset, axis=0)
8 distances = eucl_dist.pairwise(X_subset, [centroid])
9 return float(sum(distances))

10 # user-defined labels in the leaf
11 def leaf_value(tids):
12 return np.mean(X_train.take(list(tids)))
13 # initialize the search and run it
14 clf = DL85Predictor(max_depth=3, min_sup=5,

error_function=error, leaf_value_function=
leaf_value)

15 clf.fit(X_train)
16 predicted = clf.predict(X_test)

Listing 2: Code snippet of user-defined clustering

Example Task 3: 100% Accurate Classifiers. A recent
publication studied the problem of finding the shallowest tree
with perfect accuracy on training data (100%); it solved this
problem using a SAT solver [Avellaneda, 2020]. The fol-
lowing code shows how this problem can be solved using
PyDL8.5. We found that this simple piece of code typically
solves the same problem more rapidly. In this code, we ex-
ploit the fact that we can specify a maximum allowed error.

1 maxdepth = 1
2 while True:
3 clf = DL85Classifier(max_depth=maxdepth , min_sup=2,

max_error=1)
4 clf.fit(X, y)
5 if clf.error_ == 0:
6 break
7 maxdepth += 1
8 y_pred = clf.predict(X_test)

Listing 3: Code snippet to train the shallowest 100% accurate DT

We believe that our library can be used in many applica-
tions. Questions such as how well ODTs work in ensem-
bles, regression, probability estimation, multi-target predic-
tion, and so on, remain currently open, but can now be studied
easily using PyDL8.5.

Acknowledgements
This work was supported by Bpost.

https://github.com/aia-uclouvain/pydl8.5
https://pypi.org/project/dl8.5/


References
[Aglin et al., 2020] Gaël Aglin, Siegfried Nijssen, and Pierre

Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, 2020.

[Avellaneda, 2020] Florent Avellaneda. Efficient inference
of optimal decision trees. In Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, 2020.

[Bertsimas and Dunn, 2017] Dimitris Bertsimas and Jack
Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

[Blockeel et al., 1998] Hendrik Blockeel, Luc De Raedt, and
Jan Ramon. Top-down induction of clustering trees.
In Proceedings of the Fifteenth International Conference
on Machine Learning (ICML 1998), 1998, pages 55–63,
1998.

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen,
and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

[Craven and Shavlik, 2014] Mark W Craven and Jude W
Shavlik. Learning symbolic rules using artificial neural
networks. In Proceedings of the Tenth International Con-
ference on Machine Learning, pages 73–80, 2014.

[Hu et al., 2019] Xiyang Hu, Cynthia Rudin, and Margo
Seltzer. Optimal sparse decision trees. In Advances in Neu-
ral Information Processing Systems, pages 7265–7273,
2019.

[Ignatiev et al., 2019] Alexey Ignatiev, Nina Narodytska,
and Joao Marques-Silva. Abduction-based explanations
for machine learning models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
1511–1519, 2019.

[Nijssen and Fromont, 2007] Siegfried Nijssen and Elisa
Fromont. Mining optimal decision trees from itemset lat-
tices. In Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-
ing, pages 530–539, 2007.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[Ribeiro et al., 2016a] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. ” why should i trust you?” explain-
ing the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1135–1144, 2016.

[Ribeiro et al., 2016b] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. Model-agnostic interpretability of
machine learning. arXiv preprint arXiv:1606.05386, 2016.

[Ribeiro et al., 2018] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[Verhaeghe et al., 2019] Hélene Verhaeghe, Siegfried Ni-
jssen, Gilles Pesant, Claude-Guy Quimper, and Pierre
Schaus. Learning optimal decision trees using constraint
programming. In The 25th International Conference
on Principles and Practice of Constraint Programming
(CP2019), 2019.

[Verwer and Zhang, 2019] Sicco Verwer and Yingqian
Zhang. Learning optimal classification trees using a
binary linear program formulation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pages 1625–1632, 2019.


	Introduction
	Learning ODTs using DL8.5
	PyDL8.5

