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A B S T R A C T

The Iranian loess plateau is a unique area for its landscape and complex topography. There is however not any
legacy soil data available for this region. Based on soil knowledge and previous evidences, it is known that
various topographic attributes have considerable effects on soil development in such areas. To reach this goal,
random forest (RF) models were used to relate a large set of environmental covariates and a total of 64 soil
profiles in a part of the Iranian loess plateau.

The prediction of a soil map at four soil taxonomic levels was first carried out in an area of about 5390 ha.
Geomorphology, elevation and aspect were the most important covariates that impact on the predictive per-
formances of the soil map at each taxonomic level. The accuracy of the RF models was tested by 10-fold cross-
validation and reported using the overall accuracy and Kappa index, which were equal to 76% and 0.56 at
suborder level, 72% and 0.51 at great group level, 54% and 0.31 at subgroup level, and 40% and 0.23 at family
level, respectively. Conversely, the results of uncertainty, as reported by the confusion index (CI), indicated that
the uncertainty tends to increase towards lower taxonomic categories (i.e., from suborder to family level).

Having relied on the covariates importance, the impact of pixel size and accuracy of topographic attributes
were assessed with the aim of improving the prediction at a comparison area of 210 ha. Two Digital Elevation
Models (DEMs) were considered. The first one was derived from topographic lines initially drawn at 1:25,000
scale and a spatial resolution of 5 m (DEM A), while the second one was obtained at a 0.3 m spatial resolution
(DEM B) using an Unmanned Aerial Vehicle (UAV). At the suborder level, the overall accuracy was 95% and 78%
for the predicted maps with 0.3 × 0.3 m and 5 × 5 m pixel sizes, respectively. It is thus shown that the extracted
DEM from a UAV technique can lead to an improved accuracy for the spatial prediction of soil maps at different
taxonomic levels. Though this methodology could be used in other regions with limited soil data, its applicability
and benefits could also depend on the specific topography variations, pedology knowledge and covariates at
hand.

1. Introduction

The demand for soil maps is increasing over time as they are con-
sidered as a key element in many fields like, e.g., agricultural produc-
tion (Keesstra et al., 2016), environmental pollution, climate change
(Bouma, 1997) and precision agriculture (Stoorvogel et al., 2015). Soil
maps are basic requirements in geoscience studies (Pahlavan Rad et al.,
2014). They are however not at hand in many countries, especially at
fine scales and at the national level (Zeraatpisheh et al., 2017).

Considering the large extent of some countries, it is almost impossible
to afford costly and time-consuming conventional soil survey methods
for producing these maps (Dobos et al., 2001; Mulder et al., 2011) due
to the large number of field observations they require (Stoorvogel et al.,
2009). Soil spatial estimation methods, termed digital soil mapping
(DSM, see McBratney et al., 2003), are thus regularly used as a sub-
stitute by soil scientists in order to account for available environmental
covariates based on the “scorpan” model, with
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where Sc is a soil property or class and where the various inputs re-
spectively relate to soil information, climate, organisms, relief, parent
materials, age and spatial position, while e is an error term. Based on
this idea, soil properties or classes have been predicted using a large set
of linear and nonlinear techniques (e.g. geostatistics, Emadi and
Baghernejad, 2014; fuzzy classification, Viloria et al., 2016; regression
tree, Taghizadeh-Mehrjardi et al., 2014; multinomial logistic regres-
sion, Kempen et al., 2009; Abbaszadeh Afshar et al., 2018; Rasaei and
Bogaert, 2019; random forest (RF), Pahlavan Rad et al., 2014; Sreenivas
et al., 2016; Camera et al., 2017; Teng et al., 2018; Wang et al., 2018).
The corresponding models are making use of environmental covariates
that can be derived from digital elevation models (DEMs), geomor-
phology/geology maps and remotely sensed data (Mulder et al., 2011;
Arrouays et al., 2014). In this study, RF has been used as it is considered
as an accurate and computationally fast technique based on an en-
semble of classification and regression trees (CART) that are aggregated
to provide the final prediction (Breiman, 2001; Breiman and Cutler,
2004). RF models have several advantages for predicting soil types, as
they are associated with high prediction performances with low biases,
low variances and no overfitting issues (Zeraatpisheh et al., 2017). They
can account both for continuous and categorical data (Grimm et al.,
2008) and identify the relevant subset of variables to be used based on
reiterative bootstrap sampling when creating each decision tree
(Taghizadeh-Mehrjardi et al., 2016).

For arid and semiarid regions, topography is considered as the most
important factor in the scorpan model (Jafari et al., 2013; Zeraatpisheh
et al., 2017). It is thus expected that using DEMs for deriving relevant
topographic attributes would be useful when it comes to predict soil
types or soil properties (Bagheri Bodaghabadi et al., 2016), especially in
areas characterized by important topographic variations. DEMs can be
obtained from different methods, including field studies, existing to-
pographic maps (Fabris and Pesci, 2005), or remote sensing from sa-
tellite or aerial photography (Höhle, 2009). New imaging techniques
based on unmanned aerial vehicle (UAV) are also able to provide high-
resolution information over relatively large areas (Hu et al., 2018).
They can be used for mapping different aspects of the environment
(Vega et al., 2015) and to reduce the burden of field-related activities
(Hosseinalizadeh et al., 2019a). Numerous studies have highlighted the
importance and accuracy of UAV techniques for land use mapping
(Laliberte et al., 2010), microtopography and hydrological studies
(Kung et al., 2011), landform map and terrain identification (Barneveld
et al., 2013), detection of gully erosion (Hu et al., 2018) and spatial
pattern modeling of gully headcuts (Hosseinalizadeh et al., 2019b).
Nevertheless, they have rarely been used in soil mapping studies.
Currently, there are only few studies (e.g. Cavazzi et al., 2013; Lacoste
et al., 2014) that suggest the potential benefits of using higher resolu-
tion DEMs and their derivatives for improving soil map predictions
when soil data are scarce, especially in arid and semiarid regions.

Despite the previously mentioned studies, DSM techniques are still
rarely used in some parts of the world due to the lack of available soil
data (Zhu et al., 2008; Stoorvogel et al., 2009; Zhao et al., 2020;
Zeraatpisheh et al., 2020). This is typical when soil sampling is be-
coming difficult or impossible due to steep slopes, high elevations,
rocky outcrops or lack of access paths. As emphasized in Table 1, nu-
merous studies have been done using soil data sets involving more than
100 soil samples, but much less efforts have been devoted when con-
sidering smaller sample sizes.

As reported by Zeraatpisheh et al. (2020), soil data shortage is a
common situation in many countries including Iran, where soil scien-
tists are thus attempting to produce soil maps based on a limited set of
field data. In parallel, little attention has been paid to the use of high-
resolutions DEMs and their derivatives as an attempt to improve DSM in
semiarid regions (Table 1). Accordingly, the present study aims to show
how using high-precision environmental covariates can significantly

help increase the quality of the predicted soil map. In our study, two
scenarios are assessed: (i) soil classes are mapped at different taxonomic
levels (i.e., suborder, great group, subgroup and family levels) and are
predicted and validated with the same dataset using RF models by re-
lying on the environmental covariates and a limited number of soil
profiles in an area of 5390 ha; (ii) soil maps are predicted with two
pixel sizes to investigate the effect of the spatial resolution of topo-
graphic data obtained from topographic lines at 1:25,000 scale (with
5 × 5 m raster resolution, denoted hereafter as DEM A) and from UAV
technique (with 0.3 × 0.3 m raster resolution, denoted hereafter as
DEM B) for improving DSM predictions at a 210 ha comparison area.
The corresponding predicted soil maps are compared and the benefit of
high-resolution covariates for improving predictions of soil mapping is
discussed.

Overall, the methodology proposed here is believed to be innovative
with respect to at least two aspects: (i) using a limited soil data set to
map soil classes at different taxonomic levels, and (ii) to the best of our
knowledge, there is no previous study at such a high (i.e. 0.3 × 0.3 m)
spatial resolution that relies on UAV techniques for DSM. This study
could hopefully be useful in similar situations in other regions, by
highlighting how high-resolution topographic attributes can at least
partially compensate for the lack of soil data when it comes to predict
soil maps.

2. Materials and methods

The workflow used in this study is summarized in Fig. 1 and in-
cludes four phases, i.e., (i) selection of the study areas through two
mentioned scenarios; (ii) data preparation (field investigation, en-
vironmental covariates, aerial photos and DEMs, soil sampling and la-
boratory soil analysis), (iii) soil maps prediction using RF at different
taxonomic levels, and (iv) final validation of these maps.

2.1. Description of the study area

The study area is a part of the Iranian loess plateau, located in
Golestan province (Fig. 2), where no soil mapping studies were pre-
viously conducted. It covers an area of 5390 ha (55°13′ 26″–55°09′ 36″
E and 37°36′ 37″–37°41′ 41″ N) (Fig. 2c), with 350 mm mean annual
precipitation and 17 °C mean temperature. The main land uses are
crops and rangeland. The area has experienced intensive human ac-
tivities, especially in flat parts for wheat production. The soil moisture
and temperature regimes are dry Xeric and Thermic, respectively (Soil
Survey Staff, 2014). The parent material is varying from North to South
and is composed of marl, marl dominant with shale and loess, lime-
stone, clay deposits and reddish-brown lower Pleistocene loess (LPL),
loess deposit and reworked loess. The loess deposits preserve valuable
information on climate change and landscape development during the
Quaternary (Khormali and Kehl, 2011). Due to a complex topography
and the lack of appropriate access paths, little information is available
on soil development and geomorphology of the region. It is however
known that in the semiarid climate of this loess plateau, aspect plays an
important role on soil development through the preservation of
moisture and dense vegetation for north-facing slopes, unlike south-
facing ones (Maleki et al., 2018). According to the role of topography
on soil development, a part of the study area, referred hereafter as the
comparison area (Fig. 2c), was selected in order to compare and eval-
uate the effect of spatial resolution of topographic attributes for soil
mapping. This comparison area is about 210 ha (55°08′ 55″–55°09′ 47″
E and 37°37′ 10″–37°37′ 49″ N) and is characterized by a loess parent
material.

2.2. DEM and aerial images obtained from UAV

An UAV technique was used to obtain aerial images and to build a
DEM at a 0.3 m spatial resolution over the comparison area. The UAV
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was DJI Phantom-2 quadcopter (DJI, 2016) equipped with a Gopro
Hero3 + digital camera capable of recording 12 MP images (Fig. 3a).
Before flying, ground control points (GCP) were located using a Trimble
R3 differential GPS (DGPS). The longest flight time was about 30 min. A
total of 212 RGB (Red-Green-Blue) images were obtained in jpeg format
under calm weather conditions (e.g. sunny, with no clouds and

rainfall). Images were quality controlled, i.e. images taken during take-
off and landing or in general images reducing the quality of the pro-
cessing or increasing the processing time were discarded (Liu et al.,
2018). The Pix4Dmapper software version 2.0.100 (see https://pix4d.
com) was used to extract orthophotos and the DEMs over the compar-
ison area.

Table 1
Summary of representative DSM publications predicting soil classes or properties.

References Region Spatial extent Soil attribute Number of observations Spatial resolution of DEM

Zhu et al. (2008) Heilongjiang, China 6000 ha Class 45 10 m
Brungard (2009) Southwestern Utah, USA 30,000 ha Class 300 10 m
Stoorvogel et al. (2009) Senegalese Peanut Basin 103,000 ha SOC 40 30 m
Jafari et al. (2013) Zarand, Iran 90,000 ha Class 126 30 m
Pahlavan Rad et al. (2014) Golestan, Iran 85,000 ha Class 99 30 m
Zeraatpisheh et al. (2017) Borujen, Iran 86,000 ha Class 100, 80, 60 30 m
Yiming et al. (2017) Anhui, China 1.34 × l07 ha SOC 282 90 m
Abbaszadeh Afshar et al. (2018) Bam, Iran 100,000 ha Class 126 30 m
Mirakzehi et al. (2018) Sistan, Iran 60,000 ha Class 108 30 m
Rasaei and Bogaert (2019) Iran 1.05 × l06 ha Class 390 90 m
Silva et al. (2019) Posses watershed, Brazil 1200 ha Class 74 20 m

SOC: Soil organic carbon

Fig. 1. Workflow of the methodology used in this paper.
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2.3. Environmental covariates

Various environmental covariates including geomorphology map,
topographic attributes and remotely sensed index were used in this

study, as illustrated in Table 2. The soil adjusted vegetation index
(SAVI, Huete, 1988) was calculated from a Landsat 8 image acquired on
February 25, 2014 (U.S. Geology survey, 2014; http://glovis.usgs.gov)
and processed in the ENVI 4.4 software. Topographic attributes were

Fig. 2. (a) Golestan province in Iran (b) loess areas (Feiznia et al., 2005) and location of the study area (red rectangle) in the Iranian loess plateau (c) the geomorphic
surfaces map of the study area (Maleki et al., 2018). Codes in geomorphic surface map: FP121: Meanders belt, erosional surface, cultivated, FP221: Erosional or
depositional terraces, cultivated, FP321: Gully, uncultivated, VA111: Moderately flat, cultivated, VA112: Moderately flat with sinkhole and gully erosion in some
part, cultivated, VA113: Narrow valley with sinkhole and gully erosion in some part, cultivated, TB111: A relatively flat- topped area with steep side slopes, cul-
tivated, Hi111_1: Very steep complex slopes, south aspect, low density rangeland, Hi111_2: very steep complex slopes north aspect, dense rangeland, Hi121_3:
Complex aspect, no rangeland, Hi131_3: Steep complex aspect, no rangeland, Hi141_4: Steep complex aspect, low density rangeland, Hi151_3: Steep complex aspect,
no rangeland, Hi152_4: Complex aspect, low density rangeland, Hi161_6: Complex aspect, moderate density rangeland, Hi211_2: Moderately complex slope, north
aspect, dense rangeland, Hi211_1: Moderately complex slope, South aspect, low density rangeland, Hi212_5: Very steep complex slopes, north aspect, moderate dense
rangeland, Hi213_4: Very steep complex slopes, complex aspect, low density rangeland, Hi221_4: Steep complex slopes, complex aspect, low density rangeland.

Fig. 3. (a) the DJI Phantom-2 UAV that was used for image acquisition in this study (Photo taken by first author), (b) one of the UAV image over the comparison area
at 0.3 m spatial resolution, along with the locations the additional observations and field observations on the UAV image.
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derived from DEMs in the SAGA GIS software (Olaya, 2004). It should
be noted that the 5 m DEM over the study area was acquired from
topographic lines initially drawn at the 1:25,000 scale generated by the
National Cartographic Center of Iran. The 10 m resolution DEM was
corrected and resampled at 5 m resolution according to our need (see
Hengl, 2006) using 600 elevation points obtained by theodolites. Pre-
vious research by Kramm et al. (2017) in the Iranian loess plateau
showed that 5 m DEM achieved accuracies greater than 70% to gen-
erate classification of geomorphic map and topographic attributes,
while SRTM, ASTER GDEM and 10 m DEMs were not able to generate
accurate classification results. Therefore, there was a need for a grid
resolution that optimally reflects the variability of the elevation surface
(Hengl, 2006) and terrain complexity in our study area. To evaluate the
accuracy of the 5 m resolution DEM, 175 ground-truth points of Trimble
R3 DGPS were obtained during the field campaign. For each point, the
altitudes of the datasets were compared to the DGPS heights.

In parallel, the 0.3 m DEM (DEM B) obtained from UAV over the
comparison area were also used to extract topographic attributes in
order to investigate the effect of the spatial resolution of topographic
data on DSM. Geomorphic units were defined using aerial photo in-
terpretation (Zinck, 1989; Toomanian et al., 2006) from Google Earth
satellite imagery (Quickbird) and from UAV orthophotos in the study
and comparison areas, respectively. Pedologic and geomorphologic
knowledge (i.e., the relationship between soils and soil forming factors)
was used to delineate geomorphic units. Twenty geomorphic units were
identified in the study area (Fig. 2c). More details regarding geo-
morphic units can be found in Maleki et al. (2018). It should be noted
that geomorphic units prepared from UAV orthophotos were used for
two DSM frameworks in scenario 2. The environmental covariates were
used as predictors in these scenarios, as shown in Table 2.

2.4. Sampling scheme and profile description

The conditioned Latin Hypercube sampling (cLHS; Minasny and
McBratney, 2006) was used for all covariates mentioned in Table 2 at a
5 m spatial resolution based on a Matlab script (MathWorks, 2009). For
semi-detailed soil survey studies, one observation per 100 ha is usually
recommended (Rossiter, 2000). Therefore, 54 samples were considered

for the study area of 5390 ha. Due to lack of maps and soil information
over this study area, expert person knowledge was also used for
checking and sampling in the field. Based on an initial set of 90 po-
tential locations that were generated from cLHS, few profiles were first
selected and dug in the study area based on the expert knowledge of
field scientists. Kempen et al. (2009) emphasized that expert pedology
knowledge is indeed a key factor in building the model structure to
ensure correct pedological and statistical outputs, while Arrouays et al.
(2020) warned against the risks of blindly replacing pedological
knowledge with automated and machine-learning techniques. A total of
64 profiles were finally selected and dug (Fig. 2c) by combining at best
cLHS and expert knowledge. All profiles were described, sampled,
analysed, and classified up to the family level of the US Soil Taxonomy
(Soil Survey Staff, 2014).

2.5. Random forest models

A RF model is the result of an ensemble of randomized decision
trees that are used in order to improve the prediction accuracy
(Breiman, 2001). Each decision tree is obtained using bootstrap sam-
pling from the training data, using about 2/3 of the training data. Si-
milarly, a subset of the environmental covariates used to classify the
nodes is also chosen randomly for each tree. Two user-defined para-
meters are important in RF: the number mtry of environmental cov-
ariates used in each random subset and the number ntree of trees used in
the forest. Both parameters were optimized by iterating over mtry va-
lues ranging from 1 to the total number of covariates (19 in our study)
while ntree values were ranging from 100 to 10,000 by increments of
100 (Zhi et al., 2017). Additionally, mtry can also be selected based on
the calculation of the square root of total number of independent
variables (Mohammadi et al., 2017).

For our study, the importance of each covariate in the RF algorithm
was assessed using two methods, which are the mean decrease in ac-
curacy and the mean decrease in Gini (Myles et al., 2004) based on the
so-called out-of-bag error (Peters et al., 2007, Taghizadeh-Mehrjardi
et al., 2016, Zhi et al., 2017), where

Table 2
Environmental covariates used as predictors in scenarios 1 and 2.

Environmental data Soil forming factor Parameter used in scenario1 Parameter used in
scenario 2

Symbol Variable type Reference

Topographic attributes Topography Elevation * ELV Quantitative Wilson and Gallant
(2000)

Slope * Slope
Aspect * ASP
Curvature – Curv
Profile curvature – Profcurv
Plan curvature – Plancurv
Convergence – Converg
Classcurvature – Classcurv
Relative slope * Reltslp
Flow accumulation – Flowacc
Stream power index * LS
Topographic wetness index * TWI
Valley depth * valley Gallant and Dowling

(2003)
Multi-resolution valley bottom
flatness index

* Mrv

Multi-resolution of ridge top flatness
index

* Mrr

Topographic position index * TPI Weiss (2001)
Remote sensing attributes Vegetation Soil adjusted vegetation index * SAVI Huete (1988)
Landuse map Landuse * landuse Categorical –
Geomorphology map Parent material,

topograpy, soil
Geomorphology units * landform Categorical Toomanian et al. (2006)

The *symbol indicates the environmental covariates which were used for the comparison area with two spatial resolutions of 0.3 m and 5 m (scenario 2).
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with I [YOOB(Xi) ≠ Yi] an indicator function equal to 0 when the pre-
dicted and actual classes are the same and equal to 1 otherwise. For the
mean decrease in accuracy method, the true values of the variables are
replaced by values that are randomly generated for each tree and the
effect of this substitution on the prediction accuracy is computed. If this
substitution has no effect on the OOB error, the corresponding variable
is of low importance (Breiman and Cutler, 2004). The mean decrease in
Gini is measuring covariates importance by permuting the values of
each environmental covariate in OOB samples, so that environmental
covariates associated with the highest OOB error increase are the most
important ones (Breiman, 2001).

Modeling of Soil Taxonomy at the suborder, great group, subgroup
and family levels and assessing covariates importance was done using
the “randomForest”, “rpart”, and “caret” packages (Liaw and Wiener,
2002) in R version 3.4.3 (R Development Core Team, 2017) and
RStudio version 1.1.383 (RStudio, 2009–2017). The RF algorithm was
run too for the comparison area (scenario 2) with two spatial resolu-
tions (5 × 5 m and 0.3 × 0.3 m) for the environmental covariates and
using 19 soil profiles. However, as the number of soil profiles in the
comparison area is low, this is sufficient for a detailed soil survey study
as previously described in Section 2.4. While RF algorithms used in
DSM have shown acceptable performances (Camera et al., 2017; Silva
et al., 2019), concerns about the occurrence of unbalanced soil classes
are still raised on different landscapes. These soil classes can have
significant effects on the process of model fitting, model selection, and
output accuracies (Silva et al., 2019). Hence, additional observations
(AO) were selected, since increasing the number of field sampling
points is time-consuming and economically infeasible. The metho-
dology is explained in Silva et al. (2019).

As the dominant soil mapping class was the Haploxerepts (re-
presenting 10 of the soil samples at the comparison area), this leads to
highly imbalanced frequencies between classes. To overcome this issue,
AO were added for the less common soil classes (i.e. Calcixerepts and
Xerorthents) based on expert knowledge and photointerpretation from
high-resolution UAV imagery (Fig. 3b). The AO were increased until the
model training was well fitted according to the Kappa and overall ac-
curacy. The best models with the optimum dataset size were selected
after 100 repetitions of a 10-fold cross-validation procedure. As a result,
DSM at the comparison area was conducted using the environmental
covariates and 25 pedons (i.e. using six AO and the initial 19 field
observations). Although the soil data was limited in this study, one of
our goals was to precisely evaluate the performance of RF models based
on limited soil observations but using high-resolution covariates, so that
the findings could be extended to future DSM studies in regions with
limited soil database. As noted by Khaledian and Miller (2019), RF is
not sensitive to the number of observation points and thus appears as a
sound choice in our context.

2.6. Model evaluation

In this study, 10-fold cross-validation was used to test and evaluate
the results of RF models. Taghizadeh-Mehrjardi et al. (2016) explained
that this method is reliable and leads to unbiased results for small da-
tasets. The overall accuracy (Brus et al., 2011) and Kappa index
(Marchetti et al., 2011) are two error criteria that are widely used in
DSM approaches for building the training and test data sets (Brungard
et al., 2015) and for selecting the best model. Overall accuracy (OA)
corresponds to the total classification accuracy (Brus et al., 2011), with

=
∑ =OA

N
N

i
n

ii1
(3)

where Nii are the diagonal counts in the error matrix, N is the total
number of counts and n is the number of soil classes. The Kappa index

(K) is correcting this OA by accounting for the fact that part of the
agreement between predicted and true classes is due to chance (Maleki
et al., 2018; Abbaszadeh Afshar et al., 2018), so that

=
−

−
K OA CA

CA1 (4)

where CA is this chance agreement.
The producer's accuracy (PA) is the accuracy from the point of view

of the soil map maker (the producer), i.e. the chance that the jth soil
class is correctly classified when this soil class is the correct one (as
measured by N+j, the sum of the counts in the jth column of the error
matrix), with

=
+

PA N
Nj

ii

j (5)

The user’s accuracy (UA) is the accuracy from the point of view of
the map user, i.e. the chance that the jth soil class is correctly classified
when this soil class is the predicted one (as measured by Ni+, the sum of
the counts in the ith line of the error matrix), with

=
+

UA N
Ni

ii

i (6)

For more details about PA and UA for soil maps, see e.g. Bagheri
Bodaghabadi et al. (2016).

2.7. Assessment of prediction uncertainty

In DSM, the resulting predictions are always slightly erroneous, and
as a result, predictions are accompanied by uncertainty. On the other
hand, uncertainty is the result of a lack of confidence in reality while
the overall accuracy/ error represents the differences between observed
and predicted values of soil classes (Minasny and Bishop, 2008).

The Confusion Index (CI; Brungard et al., 2015; Esfandiarpour-
Boroujeni, et al., 2020) was used to report the prediction uncertainty at
each taxonomic level. In this method, the probable presence of each soil
class per pixel is calculated and CI is calculated as

= ⌊ − − ⌋−CI λ λ1 ( )max max 1 (7)

where λmax is the maximum probability per pixel and λ(max–1) is the
second highest probability per pixel. The CI values are thus in the [0,1]
interval, with higher values corresponding to higher uncertainties
(Esfandiarpour-Boroujeni, et al., 2020).

3. Results and discussion

3.1. Soil descriptions

The description of the various soil taxonomic levels for the 64
sampled soil profiles is given in Table 3. Inceptisols and Entisols were
the main observed soil orders (60 profiles), with few Alfisols (4 pro-
files). It should be mentioned that Alfisols are relict paleosols developed
in reddish brown lower Pleistocene loess (LPL) with intensive pedo-
genesis including secondary carbonate and gypsum, Fe-Mn coating, and
clay skins from more humid past climates in this area (Taheri et al.,
2016). In general, Inceptisols were mostly located in flat and north-
facing slopes while Entisols were concentrated in south-facing steep
slopes, thus confirming that soils in the study area are severely affected
by topography. The most observed soil taxonomic classes at the sub-
group and family levels were also related to Inceptisols comprising
48.4% of the study area (Table 3).

The lower soil diversity at the suborder and great group levels is
attributed mainly to the semiarid climate of the study area. The higher
soil diversity at the family level could be related to differences in parent
material, erosion, transportation and sedimentation of materials.
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3.2. Model performance

3.2.1. Model accuracy and uncertainty
High values of Kappa index and overall accuracy (above 70%) were

obtained at the suborder and great group levels (Table 4). Conversely,
the lowest Kappa index and overall accuracy were obtained at the fa-
mily level (Table 4). These results agree with those of Pahlavan Rad
et al. (2014) who used 99 soil profiles and found overall accuracy and
Kappa index values equal to 51.9% and 0.31, respectively at great
group level, and the lowest values at series level. Esfandiarpour-
Boroujeni et al. (2020) reported overall accuracy of 86%, 73%, 60%,
and 30% at suborder, great group, subgroup, and family levels, re-
spectively, using 120 soil profiles in the Shahrekord plain, Central Iran.
This agrees too with results of Zeraatpisheh et al. (2017) and Mirakzehi
et al. (2018) who observed decreasing values of Kappa index and
overall accuracy at the lower taxonomic levels. Our results, therefore
agree well with those of the previous studies, with reasonably better
predicted soil maps at different taxonomic levels based on limited data.
The main reason could be attributed to the use of high precision cov-
ariates, especially geomorphology map and some topographic deriva-
tives, which will be discussed in detail in Sections 3.2.2 and 3.3.

A tentative conclusion is that reducing field observations and pre-
paring soil maps at higher taxonomic levels can be an alternative when
financial issues and the lack of legacy soil data are limiting factors,
which will however be at the price of a lower accuracy. According to
Zeraatpisheh et al. (2017), reducing the sampling density from 100 to
80 (or to 60) observations reduces the preparing cost of the map by
20% (or by 40%), although Kappa index and map purity do not de-
crease at the same rate. They showed that Kappa index slightly de-
creased from 0.46 to 0.33 when sampling density reduced from 100 to
60 points at the order level while the map purity was still equal to 0.6.
Their results also indicate that Kappa index and map purity showed
little difference at different taxonomic levels (order, suborder, great
group, and subgroup) with different sample densities. In this regard,
Zhu et al. (2008) predicted a soil map in China at the subgroup level
(overall accuracy of 76%) with limited soil data (45 observations) by
using high-resolution auxiliary information, thus significantly reducing
the sampling costs and time.

It should also be noted that, from suborder to family levels, the
range of values for CI is increasing (Table 4), while conversely overall
accuracy is decreasing. This can be related to a higher number of soil

classes and thus a lower number of samples in each of these classes. As
shown in Table 4, the number of soil classes increases from 3 at the
suborder level to 10 at family level. Clearly, the number of soil classes
play an important role in the quality of the results. Similar results are
reported by Esfandiarpour-Boroujeni et al. (2020). At suborder and
great group levels, overall accuracy is quite similar, with a lower CI
range at the suborder level than at the great order level. The accuracy of
the predicted map is not the sole factor to explain the quality of the
map, but its uncertainty is important as well. Some studies (e.g.,
Lagacherie et al., 2019; Machado et al., 2019; Esfandiarpour-Boroujeni
et al., 2020) have interpreted the importance of uncertainty assessment
in predicting soil map.

The results of UA and PA for predicted classes at different taxonomy
levels generally confirm that classes with higher number of observa-
tions have higher UA and PA. As seen in Table 5 and Fig. 4, the highest
number of soil profiles at subgroup level is observed for the Typic
Haploxerepts and Typic Xerorthents classes, which have the highest
(above 60%) UA values. In general, soil classes with higher sampling
frequencies have higher UA’s and PA’s. Results reported by Kempen
et al. (2009), Brungard (2009), Pahlavan Rad et al. (2014), Mosleh et al.
(2016), and Rasaei and Bogaert (2019) are in line with those presented
here.

The class of Fine, mixed, active, thermic, Typic Xerorthents at fa-
mily level (Table 5) had a UA of 66.7% and PA of 100% in spite of its
low sampling frequency, while the class of Fine-loamy, mixed, active,
thermic, Gypsic Haploxerepts (with the same observations) exhibits a
UA and PA equal to 0%. However, there is a big difference in the fre-
quencies and land areas of these two classes at the subgroup level
(Gypsic Haploxerepts and Typic Xerorthents), with a distinct UA dif-
ference (0% and 92.3%, respectively). This is explained by the fact that
the strong relations of soil classes to some covariates could result in a
lower error even if their sampling frequency is lower than other classes
(Pahlavan Rad et al., 2014). Mosleh et al. (2016) also considered the
accuracy as being influenced by factors like soil variability, number of
soil samples and the ability of environmental covariates to explain soil
variations.

3.2.2. Covariate importance
As identified from the mean decrease in accuracy and the mean

decrease in Gini, the most important covariates are geomorphology,
elevation and aspect at suborder, great group and subgroup levels. At
family level, geomorphology, elevation, valley depth and TPI are the
most important ones (Fig. 5). The role of geomorphological processes is
thus confirmed at these four taxonomic levels. These results also agree
with those of Behrens et al. (2005), Jafari et al. (2013), Taghizadeh-
Mehrjardi et al. (2014), and Zeraatpisheh et al. (2017) who observed
the positive impact of using geomorphology maps when predicting soil
classes. For arid and semiarid regions, it is usual that the variability of
soil properties and classes are affected by parent material and topo-
graphic position, which are features that are well captured by a geo-
morphology map. The lower impact of aspect at soil family level can be

Table 3
Observed soil taxonomic classes and number of observations per class.

Order N Suborder n Great Group n Subgroup n Family n

Inceptisols 31 Xerepts 31 Calcixerepts 4 Typic Calcixerepts 4 Fine-loamy, mixed, active, thermic, Typic Calcixerepts 4
Haploxerepts 27 Gypsic Haploxerepts 7 Coarse-loamy, mixed, active, thermic, Gypsic Haploxerepts 4

Fine-loamy, mixed, active, thermic, Gypsic Haploxerepts 3
Typic Haploxerepts 20 Fine-loamy, mixed, active, thermic, Typic Haploxerepts 16

Coarse- Loamy, mixed, active thermic, Typic Haploxerepts 4

Entisols 29 orthents 29 Xerorthents 29 Lithic Xerorthents 3 Fine-loamy, mixed, active, thermic, Lithic Xerorthents 3
Typic Xerorthents 26 Fine-loamy, mixed, active, thermic, Typic Xerorthents 13

Coarse-loamy, mixed, active, thermic, Typic Xerorthents 10
Fine, mixed, active, thermic, Typic Xerorthents 3

Alfisols 4 Xeralfs 4 Haploxeralfs 4 Calcic Haploxeralfs 4 Fine, mixed, active, thermic, Calcic Haploxeralfs 4

Table 4
Results for Kappa index, overall accuracy, and confusion idex (CI) at different
soil taxonomic levels.

Taxonomic level Frequency Overall accuracy Kappa index CI

Suborder 3 76 0.56 0.06–0.64
Great Group 4 72 0.51 0.03–0.80
Subgroup 6 54 0.31 0.04–0.96
Family 10 40 0.23 0–1
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explained by the influence of elevation, TPI, valley depth and land use
on sediment transfer and erosion. The results of Brungard et al. (2015)
showed that the most accurate spatial predictions were generally in
agreement with the expected soil-landscapes relationships and topo-
graphic derivatives.

3.3. Effect of spatial resolution of topographic attributes through scenario 2
in comparison area

For the comparison area, the soil classes were predicted using to-
pographic attributes and geomorphology map as obtained from the
UAV technique at a 0.3 m spatial resolution and from the topographic
attributes at a 5 m spatial resolution. Due to the lack of enough soil
observations for some classes, soil modeling was not performed at fa-
mily level since RF modeling requires more than three observations per
class to meaningfully predict the probability of the class (Brungard
et al., 2015).

3.3.1. Model accuracy and uncertainty
The results for the overall accuracy and Kappa index are presented

in Fig. 6 at the 0.3 m and 5 m resolutions. The same training data were
used for both pixel sizes, so that the effect of the spatial resolution on
the model accuracy can be compared. Using the 0.3 m resolution for the
environmental covariates yields better performance at three taxonomic
levels compared to the 5 m DEM, with Kappa index and overall accu-
racy equal to 95% and 0.90 at suborder level, and 83% and 0.75 at
great group and subgroup levels (Fig. 6). These results also confirm that
using DEM B increases the accuracy of the predicted soil maps, with the
overall accuracy and Kappa index increase by about 17% and 20%,
respectively at the suborder, great group and subgroup levels. Ad-
ditionally, the results of CI indicate that the predicted map at 0.3 m
resolution was more reliable than at 5 m resolution at three taxonomic
levels (Table 6). This suggests that accurate high-resolution environ-
mental covariates have a beneficial effect on the accuracy and un-
certainty of the class prediction. In parallel, the UA at different taxo-
nomic levels ranges from 75% to 93% and from 45.4% to 90% for the
0.3 m and 5 m spatial resolutions, respectively (Table 6). The lowest
performances of UA and PA at 0.3 m resolution are observed for soil
classes with the lowest sampling frequencies (i.e. Calcixerepts and
Typic Calcixerepts). It is thus expected that UA could be reduced by

increasing the number of observations in these classes. The results of
Table 6 also show that using DEM B increases the UA of the predicted
soil classes (i.e. Haploxerepts and Typic Haploxerepts classes) by about
37% compared to DEM A. Only the five Haploxerepts and Typic Hap-
loxerepts classes at the great group and subgroup levels (out of the 11
identified frequencies) were correctly predicted by the 5 m resolution
(see UA results in Table 6; confusion matrix not shown here).

From Table 6, the maximum predicted areas are associated with
Xerepts, Haploxerepts, and Typic Haploxerepts at both spatial resolu-
tions, though there are differences in these predicted areas depending
on the resolution, as illustrated too in Fig. 7a and b. This difference in
predicted areas can be important for some classes depending on the
availability of soil samples. Typic Calcixerepts for instance, have a
predicted area that doubles when predicted at a 5 m resolution, and it
can be seen from Fig. 7b that this soil subgroup is predicted on valley
landform where soil samples are at hand.

An interesting point from Fig. 7c is that the soil map obtained from
UAV is consistent with the corresponding orthophoto. Mukherjee et al.
(2013) also compared some DEM-derived topographic attributes like
slope and drainage network density as obtained from ASTER and SRTM.
They stated that the accuracy of the topographic derivatives was di-
rectly related to the DEM used. Likewise, Lacoste et al. (2014) predicted
SOC map using topographic attributes derived from a 2 m light detec-
tion and ranging DEM (LiDAR DEM) combined with 70 soil samples
over a 10 km2 area. They extracted the topographic derivatives from
the 2 m DEM resampled at 5, 10 and 20 m. They concluded that terrain
attributes at the 5 m spatial resolution yield better performance for all
soil layers.

In combination with field checking, UAV images are valuable inputs
for the proper identification of the relationship between soil classes and
environmental covariates. However, there are two potential issues as-
sociated with the use of high-resolution DEMs: (i) using smaller pixels
leads to topographic attributes that may include very local spatial
features that are irrelevant when related to soil classes, thus increasing
the noise in the covariates and negatively impacting the quality of the
predicted maps, and (ii) using smaller pixels requires larger storage
capacity and induces longer processing time. In our study area, soil
classes in hillslopes were better predicted using the high-resolution
DEM (Fig. 7b), which is also consistent with Pain (2005) and Cavazzi
et al. (2013) who suggested that high-resolution DEMs are needed for

Table 5
Results for user’s accuracy (UA) and producer’s accuracy (PA) at suborder, great group, subgroup, and family levels.

Level Class Frequency Area (ha) UA (%) PA (%)

Suborder Xerepts 31 2777 80.6 83.3
Orthents 29 2168 86.2 73.52
Xeralfs 4 79 0 0

Great group Haploxerepts 27 2674 81.5 75.9
Xerorthents 29 2194 89.6 74.2
Calcixerepts 4 24 0 0
Haploxeralfs 4 132 0 0

Subgroup Gypsic Haploxerepts 7 309 0 0
Typic Haploxerepts 20 2280 65.0 50.0
Typic Xerorthents 26 2246 92.3 72.7
Typic Calcixerepts 4 45 0 0
Calcic Haploxeralfs 4 140 0 0
Lithic Xerorthents 3 4 0 0

Family Coarse-loamy, mixed, active, thermic, Gypsic Haploxerepts 4 384 0 0
Fine-loamy, mixed, active, thermic, Typic Haploxerepts 16 2004 75.0 41.3
Fine-loamy, mixed, active, thermic, Gypsic Haploxerepts 3 25 0 0
Fine-loamy, mixed, active, thermic, Typic Xerorthent 13 1263 30.7 28.5
Coarse-loamy, mixed, active, thermic, Typic Xerorthents 10 829 50.0 41.6
Coarse- Loamy, mixed, active thermic, Typic Haploxerepts 4 152 25.0 100
Fine-loamy, mixed, active, thermic, Typic Calcixerepts 4 102 0 0
Fine, mixed, active, thermic, Calcic Haploxeralfs 4 160 0 0
Fine-loamy, mixed, active, thermic, Lithic Xerorthents 3 15 0 0
Fine, mixed, active, thermic, Typic Xerorthents 3 91 66.7 100
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hilly and mountainous areas. The choice of the optimal spatial resolu-
tion is still an open question that would require additional work, pos-
sibly with combinations of other methods like, e.g., photo interpreta-
tion (see Silva et al., 2019). It is expected that this ideal resolution will
depend both on the topographic complexity of the landscape and on the
environmental covariates to be used.

3.3.2. Covariates importance
Thirteen environmental covariates were considered at the compar-

ison area, as presented in Fig. 8. Since some topographic attributes were
constant over the area (e.g. curvature, profile curvature, and con-
vergence), they were not used for the prediction.

According to both selection methods (Fig. 8), geomorphology, as-
pect, elevation, TPI, LS (excepted at suborder level) and SAVI (excepted
at great group and subgroup levels) were identified as the most im-
portant environmental covariates for predicting the 5 m resolution soil
map at the three lower taxonomic levels. Geomorphology, valley depth,
elevation, aspect, LS (excepted at suborder level) and SAVI (excepted at
great group and subgroup levels) were the most important ones for the
0.3 m resolution soil map at all taxonomic levels. Geomorphology and
elevation have often been reported as potential predictors in DSM
(Pahlavan Rad et al., 2014; Zeraatpisheh et al., 2017; Silva et al., 2019).

The aspect map is also an important environmental covariate that led to
the correct identification of Haploxerepts and Xerorthents in the pre-
dicted map at 0.3 m resolution (Fig. 7b and 7c). These findings are
confirmed by previous studies conducted by Kramm et al. (2017) and
Maleki et al. (2018) in the Iranian loess plateau. As south-facing slopes
are characterized by a limited vegetation cover (Fig. 7c) and high
evaporation (to the opposite of north-facing slopes). SAVI is also di-
rectly related to these features (Maleki et al., 2018). This agrees with
Pahlavan Rad et al. (2014), who identified SAVI as the most important
covariate at all taxonomic levels when updating a soil map in Golestan
province, Iran.

At the 0.3 m resolution, valley depth is also identified as an im-
portant covariate and is associated with the occurrence of a calcic
horizon mapping unit (Fig. 7b), that typically occurs for low slopes and
elevations and for high soil depths and vegetation cover areas. The
results of Table 6 and Fig. 7 confirm this finding, as the Calcixerepts and
Typic Calcixerepts classes were detected on valley landform where soil
samples were available. Similarly, as reported by the Esfandiarpour-
Boroujeni et al. (2020), valley depth is a covariate of major importance
for predicting Calcic horizon in central Iran. These results show the
potential of using topographic attributes derived from a high-resolution
DEM when these attributes are intimately linked to the effective soil

Fig. 4. Predicted soil map (a) suborder (b) great group (c) subgroup and (d) family levels.
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Fig. 5. Mean decrease of accuracy and mean decrease of Gini covariates importance for the study area (a) at suborder level, (b) at great group level, (c) at subgroup
level and (d) at family level. Symbols for covariates are given in Table 2.

Fig. 6. Results for overall accuracy (OA) and Kappa index (KI) at different taxonomic levels using 0.3 m and 5 m spatial resolutions.

Table 6
Results for user’s accuracy (UA), producer’s accuracy (PA) and confusion idex (CI, i.e. uncertainty) at various soil taxonomic levels using DEMs with 0.3 m and 5 m
spatial resolutions.

Level Class Frequency CI Area UA (%) PA (%)

0.3 m 5 m 0.3 m 5 m 0.3 m 5 m 0.3 m 5 m

Suborder Xerepts 15 0.002–0.7 0.003–0.94 133 124 93.0 80.0 93.0 85.7
Orthents 10 76 85 90.0 80.0 90.0 72.7

Great group Haploxerepts 11 0.03–0.88 0–1 123 104 81.8 45.4 81.8 71.4
Xerorthents 10 82 97 90.0 90.0 90.0 69.2
Calcixerepts 4 4 8 75.0 75.0 60.0 50.0

Subgroup Typic Haploxerepts 11 0.03–0.88 0–1 123 104 81.8 45.4 81.8 71.4
Typic Xerorthents 10 82 97 90.0 90.0 90.0 69.2
Typic Calcixerepts 4 4 8 75.0 75.0 60.0 50.0
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forming factors. Whenever possible, our recommendation for preparing
soil class maps at a larger scale is thus to use topographic attributes that
are extracted from high-resolution DEMs, possibly using UAV techni-
ques.

4. Conclusions

The effect of the accuracy of topographic attributes for improving
DSM prediction were investigated in a semiarid region of Iran using two
datasets of environmental covariates and accounting for two spatial

Fig. 7. Predicted soil maps at subgroup level (a) with DEM A and (b) with DEM B, along with (c) orthoimagery at the comparison area as obtained from UAV.

Fig. 8. Mean decrease of accuracy and mean decrease of Gini covariates importance for the comparison area. For the 5 m resolution, parts (a), (c) and (e) refers to the
suborder level, great group level and subgroup level, respectively. For the 0.3 m resolution, parts (b), (d) and (f) refer to same levels, respectively. Symbols for
covariates are given in Table 2.
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resolutions of these covariates. More specifically, we investigated how
high-resolution environmental covariates (geomorphology maps and
DEM-derived topographic attributes using an UAV technique) could
help predict soil maps at various taxonomic levels using limited soil
data. Based on covariates importance assessment, the geomorphology
map and some topographic attributes were identified as the most im-
portant ones at all taxonomic levels. Using topographic attributes at a
0.3 m spatial resolution improved overall accuracy and Kappa index,
leading to predicted soil maps that are also in agreement with ortho-
photos over the study area. In addition, the results demonstrated that
the model accuracy is not the only factor to be accounted for when
interpreting the quality of a map, as uncertainty is important as well.
However, using higher resolution attributes does not automatically lead
to better results, as the proper identification of pedogenic properties
and soil forming factors influenced soil development is of major im-
portance. It can be concluded that a combination of sound DSM
methods, high-precision environmental data and expert knowledge
could lead to a reduced need for soil samples. This is particularly
beneficial for mapping large areas in areas that are facing a shortage of
soil data, as it is the case in Iran.
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