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Abstract— An efficient method is presented to take into account
the radiation pattern deformation due to the presence of a finite
ground plane lying under an antenna array and above a layered
dielectric medium. The interactions between the antennas and
the ground plane are computed using two main algorithms:
on one hand, the near-field interactions are carried out using
inhomogeneous plane waves, and on the other hand, a new
formulation based on an analytical Hankel transform is derived
to handle the intermediate-field interactions. This formulation
expresses the electric field as a finite series of Hankel functions
and associated Anger–Weber functions. The method is validated
here for the second version of the square kilometer array (SKA)
log-periodic Antenna (SKALA2) and then applied to an SKA
low-frequency station (SKA1-LOW).

Index Terms— Anger–Weber functions, FEKO, Green’s func-
tion, inhomogeneous plane waves, method of moments (MoM),
square kilometer array (SKA).

I. INTRODUCTION

MANY applications involve a large array of antennas
above a ground plane. In some of these, the ground

plane cannot be considered as infinite but still appears as an
electrically large object. In this case, the method of images
does not yield an accurate estimate of the impact of the ground
plane on the radiation pattern of the array. For example, let us
consider the low-frequency antenna of the square kilometer
array (SKA) radiotelescope [1], [2] (see Fig. 1) on a finite
ground plane of 8 m in diameter. The antenna is positioned at
(x, y) = (−2 m, 0 m), off-centered to highlight the broken
symmetry of the radiation pattern. The radiation patterns
obtained using the method of images are compared in Fig. 2
to those where the finiteness of the ground plane is taken
into account using the method presented and validated in [3].
One can see that the patterns are rather different and that
the difference is more significant at low frequencies (up to
2 dB within 60◦ from broadside). This makes it clear that the
finiteness of the ground plane has to be included using, for
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Fig. 1. Second version of the SKA log-periodic antenna (SKALA2) [2].

instance, asymptotic techniques [4], [5] or full-wave simula-
tions [6] employing, for example, the integral equation (IE)
methods.

IE methods have proved reliable for the accurate estimation
of the electromagnetic properties of antenna arrays and also
for the effect of complex platforms. The method of moments
(MoM) [7] is often used to solve these equations. However,
the complexities of the impedance matrix filling and the
Gaussian elimination solution advise against the direct use of
this method for large arrays. This issue has been tackled for
decades and two categories of methods have been proposed.
The first one is based on iterative techniques such as the fast
multipole method (FMM) [8] and its multilevel version known
as the multilevel fast multipole algorithm (MLFMA) [9].
These methods need a new simulation every time the excitation
changes and can suffer from condition-number issues due
to fine-mesh details. Additionally, an uncertainty remains
regarding the number of iterations needed. The other cate-
gory of methods corresponds to non-iterative solvers. Among
these methods, we find the macro basis function (MBF)
method [10], characteristic basis functions (CBFs) [11], syn-
thetic function expansion (SFX) [12], and the entire/sub-
entire-domain (SED) basis functions [13]. These methods are
based on the assumption that the total current distribution
on the antennas can be decomposed into a limited number
of current distributions. An advantage of the non-iterative
techniques based on MBFs is that the embedded element
patterns (EEPs) can be efficiently calculated once the inter-
actions between MBFs have been described, compared to
methods based on multilevel fast multipole and its hybridiza-
tion [14] where a new series of iterations is required for
each EEP.Over the last decade, MBFs have become a useful tool
to compute the mutual coupling between antennas in large
irregular arrays. The MBFs can be constructed, for instance,
using plane wave excitations [15], sources on an equivalence
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Fig. 2. H-plane (φ = 0◦) and E-plane (φ = 90◦) radiation patterns of the
SKALA2 above an 8 m radius ground plane on semi-infinite dielectric medium
of permittivity � = 4.8 at (a) 50 MHz, (b) 110 MHz, and (c) 200 MHz, versus
infinite ground plane.

surface [16], or primary and secondary sources [17]. The use
of MBFs leads to much smaller systems of equations and
fast methods have been developed [18]–[20] to speed up the
calculation of the interactions between MBFs. Nevertheless,
when considering an electrically large finite ground plane,
the interactions between the latter and the MBFs rapidly
become prohibitive. That is the problem addressed in this
article: the extension of MBF-based methods from arrays
problem (for which MBFs are particularly well suited) to the
accurate analysis of arrays located on realistic finite ground
platforms. In this article, we consider the infinite ground plane
solution for the currents on the antennas and then we focus on
the interactions between antennas and the finite ground plane.
More precisely, the solution on the antennas is computed using
MBFs on an infinite ground plane. After that, the goal consists

of speeding up the calculation of fields radiated by MBFs on
the antennas and projected on testing functions on the finite
ground plane. Two complementary approaches will be used for
near-field (up to about one wavelength) and intermediate-field
distances. Near-field interactions are computed with inhomo-
geneous plane waves [21], as briefly initiated in [3]. Such
a decomposition combines well with MBF representation of
source currents and the number of plane waves remains limited
at small lateral distances (measured parallel to the ground
plane). However, the efficiency of that approach falls off as
the ground plane becomes electrically large. For interactions
at intermediate distances (larger than one wavelength), a for-
mulation based on an analytical Sommerfeld Integral (SI) is
employed (see background in Appendix A). First, a Fourier
series decomposition of the MBF radiation pattern is applied to
separate the radial wavenumber and azimuthal dependencies,
providing the result as a sum of Hankel transforms. The ratio-
nal function fitting method (RFFM) [22] is then used to rapidly
obtain an accurate estimate of the spatial electric field radiated
by an MBF. The formulation leads to an electric field decom-
posed into cylindrical waves, expressed with a combination of
Hankel functions and associated Anger–Weber functions [23].
After that, considering the same set of MBFs for every
antenna, the electric field is projected on regularly spaced
sampling points of the finite ground plane for each MBFs.
Those tables can be reused for each antenna considered as
a source. The electric field radiated by all antennas is then
integrated on testing functions, providing an excitation vector
for the ground plane. The MoM system of equations is
finally solved for the ground plane to obtain the equivalent
currents. The formulation is very efficient for the analysis
of large antenna arrays located over a large finite ground
plane.

The remainder of this article is organized as follows.
Section II states the mathematical definitions and gives the
electric field radiated by an MBF using inhomogeneous plane
waves decomposition. The analytical form of the interac-
tions between a given MBF and observation domains is
derived for the intermediate field in Section III. Section IV
explains how the methods described in Sections II and III
are combined with the MoM to obtain the ground plane
equivalent currents and acceleration tools based on the sym-
metry of the ground plane are also described. The pro-
posed approach is then applied and validated to the
SKA [1], [2] low-frequency array lying on a finite circular
ground plane above a semi-infinite dielectric medium and
the simulation time is evaluated. Conclusion is drawn in
Section VI.

II. INHOMOGENEOUS PLANE WAVES RADIATED BY MBFS

This section recalls the mathematical framework for the
decomposition of the electromagnetic fields into plane waves
and for the MBF approach used in this article. The expression
of the field radiated by an MBF in terms of inhomogeneous
plane waves is then derived.
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The fields are decomposed into plane waves using the
following conventions:

�E = (−m̂ ATE + ê ATM)e−jkx x e−jky ye±jkzz (1)

�H = 1

η
(ê ATE + m̂ATM)e−jkx xe−jky ye±jkzz (2)

where A is the complex amplitude of the plane wave, the ±
sign denotes the propagation in the ∓z-direction, and η is the
medium impedance. The wave vector �k = (kx , ky, kz) satisfies
k2

x + k2
y + k2

z = k2 = ω2μ�, with k being the wavenumber,
and μ and � the permeability and permittivity of the medium,
respectively. To satisfy the radiation condition, Im{kz} ≤ 0 is
imposed. The TE and TM polarization vectors are defined as
follows [24]:

m̂u = 1

β

⎡⎣−ky

kx

0

⎤⎦ and êu = 1

βk

⎡⎣kxkz
kykz

−β2

⎤⎦ (3)

for waves propagating in the +z-direction and

m̂d = 1

β

⎡⎣−ky

kx

0

⎤⎦ and êd = 1

βk

⎡⎣−kxkz
−kykz

−β2

⎤⎦ (4)

for wave propagating in the −z-direction. �β = (kx , ky) is the
transverse (radial) wave vector and β = (k2

x + k2
y)

1/2 (super-
scripts u and d stand for upward and downward, respectively).

Let us consider the MoM system of equations: Zi = v
where Z is the MoM impedance matrix, i is the vector
containing the coefficients to be determined, and v is an
excitation vector. Both the vectors i and v are composed of
subvectors im and vm , where m corresponds to a given antenna.
The matrix Z is composed of blocks Zmn corresponding to
the interaction between antennas m and n. As shown in [25],
the MBF approach allows for the reduction in the size of that
system of equations through the introduction of a matrix Q
in which each column corresponds to an MBF. In a nutshell,
the solution is approximated as im = Q ir

m such that i r , which
contains significantly less unknowns then i , can be obtained
with the following reduced system of equations:

Zrvr = i r (5)

where Zr
mn = QH Zmn Q and vr

m = QH vm with QH the
transposed conjugate of Q.

In this article, the MBFs are constructed with primary and
secondary excitations [17]. The MBF m can be written as

�Jm =
∑

n

κn,m �jn(�r �) (6)

where �jn(�r �) is the nth elementary basis function of the
antenna and κn,m is the coefficients of the nth basis function
corresponding to the MBF m, which is also corresponding
to the entry (n, m) of the matrix Q. The solution on a given
antenna is obtained by summing all the MBFs weighted by the
coefficients contained in i r . Such decomposition, combined
with fast techniques for the interactions between MBFs, are,
for instance, exploited in [26] to calculate the EEPs in large
arrays placed on the infinite ground plane. We now look for a
fast technique to evaluate the field radiated by the MBFs on

the finite ground plane. Denoting by �En,m the field incident to
the ground plane due to the MBF m on the antenna n, the total
incident field can be expressed as

�Etot =
Na∑
n

Nm∑
m

ir
n,m

�En,m (7)

where Na is the number of antennas, Nm is the number of
MBFs per antenna, and i r

n,m is the coefficient specific to the
MBF m and the antenna n. The vector i r is obtained by
solving (5). Note that (7) can be efficiently evaluated if the
same set of MBFs is used on each antenna.

The remainder of the section is devoted to the evaluation of
the field radiated by a given MBF using inhomogeneous plane
waves. Algorithms based on inhomogeneous plane waves have
been extensively used recently to compute the field radiated by
a given current distribution and tested by another distribution.
It allows for the reduction in the complexity of the interactions
between subdomains as their distance increases [27]. Error
bounds can be derived to determine the minimum number of
inhomogeneous plane waves needed for a given problem [28].
Besides, one may benefit from a compensation between alias-
ing and truncation errors when the integral is performed with
rectangles along the steepest descent path (SDP) [29].

Following the derivations shown in Appendix B reading the
Green’s function as the Weyl integral [30], the spatial electric
field radiated below a given MBF in free space (the index
m used in (6) will be suppressed) for a given polarization p
(TE or TM) can be written as follows:
�E p(x, y, z) = − jkη

(2π)2

∫∫ ∞

−∞
êp Fp(kx , ky)

×e−j(kx x+ky y−kzz)

2jkz
dkx dky (8)

where

Fp(kx , ky) =
∑

n

κn

∫∫∫
V �

êp · �jn(�r �)

×e j(kx x �+ky y�−kzz�) dV � (9)

is the radiation pattern of the MBF. In the obtaining of (8),
it has been taking into account that now

êp ·
[

I − �k�k
k2

]
· �jn = êp · �jn . (10)

In this method, it is necessary to deform the integration path
along the radial wavenumber into the complex plane to avoid
the singularity lying on the real axis. The path selected for the
radial wavenumber β = βR + jβI is given as [31]

βI = AβRe− βR
k (11)

with A a chosen constant. Note that, due to this contour
deformation, kx and ky will simultaneously include real and
imaginary parts, leading to a decomposition into inhomoge-
neous plane waves. The contour deformation can be rewritten
as an integration over real kx and ky coordinates, while still
respecting (11), as explained in [24] and [32].
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In this article, the antenna is standing above a layered
dielectric medium. The reflection by the soil can be handled
by computing the reflection coefficients [33] and adding their
contribution as follows [24]:

�E p(x, y, z) = −jkη

(2π)2

∫ ∫
Fp(kx , ky)

e−j(kx x+ky y−kzz)

2jkz

× [
êd

p + 
p(β)êu]dkxdky. (12)

Let us consider a vertical distance z� and a radial dis-
tance ρ between the basis functions of the antennas and
the testing functions of the ground plane. The number of
inhomogeneous plane waves needed remains limited when the
field of view ρ/z� is relatively small [28]. In our application,
the antenna’s lowest basis functions are relatively close to
the ground plane (z� around λ/10 at the central frequency).
In this case, the electric field cannot be efficiently estimated
over radial distances larger than about two wavelengths using
the inhomogeneous plane waves expansion. Hence, another
method is necessary for larger radial distances. Section III is
devoted to the development of a new technique to efficiently
obtain field projections at larger distances.

III. INTERMEDIATE FIELD

As stated above, the method based on inhomogeneous plane
waves looses its efficiency with increasing radial distance
between the MBFs and the ground plane testing functions. In
this section, we describe the steps leading to a new formulation
of the electric field radiated by an MBF. Starting from the
double-integral representation in (12), the transverse field
radiated on the plane z = 0 is re-expressed as a sum of
cylindrical waves using Hankel and associated Anger–Weber
functions.

First, let us apply a change of coordinates in (12). Defining
ρ, φ, and α such that x = ρ cos φ, y = ρ sin φ, kx = β cos α,
and ky = β sin α, the electric is given by

E p,i (ρ, φ) = −jkη

(2π)2

∫ ∞

0

∫ 2π

0
ep,i (β, α) Fp(β, α)

× G̃ p(β)e−jβρ cos(α−φ)dα βdβ (13)

where the subscript i refers to Cartesian component, x or y,
of the field tangential on the ground plane, and

G̃ p(β) = [1 ± 
p(β)]
2jkz

. (14)

Thus, the i th component of the total field is the sum of the con-
tributions of TE and TM polarizations: Ei = ETE,i + ETM,i .
Multilayered media are accounted for through an appropriate
reflection coefficient 
p(β), preceded by a sign which depends
on the polarization p (+ for TE and − for TM). The rest of the
development is similar for any polarization p and coordinate i .
From here, a truncated Fourier series of the radiation pattern
is used to separate dependencies on the radial wavenumber
and on the azimuthal angle

ep,i (β, α)Fp(β, α) =
N/2∑

n=−N/2

K̃n(β)ejnα (15)

where

K̃n(β) = 1

2π

∫ 2π

0
ep,i (β, α)Fp(β, α)e−jnαdα . (16)

Equation (13) then becomes

E p,i(ρ, φ) = −jkη

(2π)2

N/2∑
n=−N/2

∫ ∞

0
K̃n(β) G̃ p(β)

×
∫ 2π

0
e−jβρ cos(α−φ) e jnα dα β dβ (17)

where the sum and integration operators have been swapped.
Taking into account that the integration with respect to α
in (17) can be analytically solved as [34, Sec. 8.41]∫ 2π

0
e−jβρ cos(α−φ)e jnαdα = −2π e jn(φ+3π/2) Jn(βρ) (18)

the electric field now reads

E p,i(ρ, φ) = jkη

2π

N/2∑
n=−N/2

e jn(φ+3π/2)

×
∫ ∞

0
K̃n(β) G̃ p(β) Jn(βρ) β dβ . (19)

The electric field is now written as a sum of Han-
kel transforms which can be rapidly evaluated with the
RFFM [22], which consists of writing part of the integrand
in a pole-residue form and applying the appropriate inte-
gration path. To this end, for every Fourier component n,
the product K̃n(β)G̃(β) is approximated as the following finite
pole-residue representation:

K̃n(β)G̃(β) =
M∑

q=1

aq,n

β2 − p2
q,n

, n = −N/2, . . . , N/2 (20)

where M is the number of residues, and aq,n and pq,n

are the amplitude and the position of the poles used to
approximate the function, respectively. Those coefficients can
be found by solving small system of equations based on total
least squares [31] or on the VECTFIT algorithm [35]–[37].
Using this formulation and multiplying the numerators and
denominators of (19) by βn−1, the electric field can be written
as

E p,i(ρ, φ) = jkη

2π

N/2∑
n=−N/2

ejn(φ+3π/2)

∫ ∞

0

M∑
q=1

aq,n

β2 − p2
q,n

× 1

βn−1 Jn(βρ) βn dβ. (21)

Note that the function (1/βn−1)
∑M

q=1 aq,n/(β
2 − p2

q,n) is
even with respect to β when n is odd and, conversely,
the function is odd when n is even. This observation will
lead to a closed-form expression for (21) through the use
of two theorems found in [38] regarding contour integration
(see Appendix C). Thanks to those two theorems, the electric
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field in (21) can now be expressed as

Ep,i (ρ, φ)

= −kη

4
×

⎡⎢⎣ N/2∑
n=−N/2

n even

e jn(φ+3π/2)
M∑

q=1

aq,n H (2)
n (pq,n ρ)

+
N/2∑

n=−N/2
n odd

e jn(φ+3π/2)
M∑

q=1

aq,nH+
n (pq,n ρ)

⎤⎥⎥⎦
(22)

where H (2)
n is the Hankel function of second kind and order

n, H+
n is a linear combination of both Anger and Weber

functions of order n (see Appendix C), the sign of pq,n =
(p2

q,n)
1/2 is taken such that the radiation conditions are sat-

isfied; i.e., such that Im{pq,n} < 0. It is, thus, necessary to
efficiently compute the Weber function for negative imaginary
arguments (see Appendix C).

To sum up, we first compute the radiation pattern of a
given MBF. The double integral in (13) is transformed into
a finite sum of single integrals through the use of a truncated
Fourier series of the radiation pattern. After that, the RFFM
is used to obtain a pole-residue form of the integrand. Finally,
a closed-form expression of the electric field (22) radiated
by the MBF is obtained thanks to contour integration. This
formulation allows us to directly evaluate the intermediate field
while keeping only a few poles and residues in memory.

IV. IES AND ACCELERATION

In this section, the MoM is applied to obtain the equivalent
currents on the ground plane. A tool based on circulant matrix
that accelerates the solution of the MoM system of equations
is presented. After that, the radiation patterns of the antennas
and ground plane are derived.

Starting from the antenna currents ia which result of a given
excitation (either at the element level to obtain the EEP or at
the array level to obtain the array pattern), obtained with an
infinite ground plane, the currents ig on the finite ground plane
can be obtained from the following MoM system of equations:[

Zga Zgg
] [

ia

ig

]
= [

0g
]

(23)

where [0g] is a vector containing zeros, Zga is the matrix
corresponding to the interaction between antennas and the
ground plane, and Zgg corresponds to the self-interaction of
the finite ground plane. In our case, the goal is to efficiently
compute Zgaia . This term is calculated by computing the fields
radiated by each of the MBFs, using the methods described in
Sections II and III, and then by projecting them on sampling
points of the ground plane. More precisely, the field incident
to the ground plane is tabulated on a rectangular grid for
each MBF. After that, the field radiated by a given antenna
is computed as the sum of the fields radiated by each MBF
weighted by the MBF coefficients specific to the antenna. The
procedure is repeated for each antenna to obtain (7). The total
field is then interpolated and integrated on the ground plane

testing functions using a three-point quadrature, thus obtaining
Zgaia . Finally, the MoM system of equations is solved to
obtain the ground plane equivalent currents.

Given the configuration of our problem, it is possible
to benefit from symmetries and redundancies. For example,
the ground plane considered is sectorially symmetrical and
can be discretized into identical angular sectors. Let us denote
as ns the number of sectors. From this discretization, the
following circulant MoM matrix [39] Zgg is obtained for the
basis functions on the ground plane:

Zgg =

⎡⎢⎢⎢⎣
Z11 Z12 . . . Z1ns−1 Z1ns

Z1ns Z11 . . . Z1ns−2 Z1ns−1
...

...
. . .

...
...

Z12 Z13 . . . Z1ns Z11

⎤⎥⎥⎥⎦ (24)

where Zi j is the interaction between the angular sectors i
and j . This property allows us to reduce the matrix filling
time by a factor ns and solve the MoM system of equations
by inverting ns small matrices instead of inverting as a
whole Zgg. Let us define ig = [i T

g0, i T
g1, . . . , i T

gns−1]T
the

vector containing the solution of each angular sector and
vg = −Zgaia = [vT

g0, v
T
g1, . . . , v

T
gns−1]T

the excitation vector
resulting from the projection of (7) on the ground plane
testing functions. If we define ĩgn = ∑ns−1

m=0 igm e−jmn2π/ns

and ṽgn = ∑ns−1
m=0 vgm e−jmn2π/ns , then [39], [40]

Diag{Z̃11, . . . , Z̃1ns }ĩg = ṽg/ns (25)

where Z̃1n = ∑ns−1
m=0 Z1m e jmn2π/ns , ĩg =

[ĩ T
g0, ĩ T

g1, . . . , ĩ T
gns−1]

T
, and ṽg = [ṽT

g0, ṽ
T
g1, . . . , ṽ

T
gns−1]T

.
After that, the solution can be obtained as ign =∑ns−1

m=0 ĩgm e jmn2π/ns .
The radiation pattern of combined antennas and ground

plane has three main contributions:
1) The direct radiation from the antennas;
2) The reflection by the soil;
3) The contribution of the finite ground plane.

The direct radiation by a given MBF can be computed by
simply taking the following radiation integral:

Fp(û+) =
∑

n

κn

∫∫
�jn(�r �) · êu+

p e jk�r �·û+
dS (26)

with û+ = (kx , ky, kz)/k defining the unit vector associated
with the direction of a wave propagating with an elevation
angle θ ∈ [0, π/2]. The waves reflected by the soil are
accounted for by combining the previous equation for waves
propagating downward and the reflection coefficient of the soil.
The direct radiation of the MBF combined with the reflection
by the soil can be written as

Fp(û+) + 
p Fp(û−) (27)

with û− = (kx , ky,−kz)/k. Note that, if every antenna
supports the same set of MBFs, the array pattern can be
obtained by combining the radiation pattern of the MBFs with
the array factor. The third contribution is the radiation from
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the ground plane equivalent currents. The radiation pattern of
a given basis function can be computed as follows:

�Fgp(û+) = −j

λ
(û+ × ẑ × �f (kx , ky)) (28)

and

�f (kx , ky) = G̃(kx , ky) · j̃(kx , ky). (29)

G̃(kx , ky) being the spectral dyadic Green’s function and
j̃(kx , ky) the Fourier transform of the Rao–Wilton–Glisson
(RWG) basis functions representing the ground plane.

V. APPLICATION TO SKA1-LOW ARRAYS

For validation of the proposed method, we consider arrays
devoted to radio astronomy [2]. First, the method will be
validated in small arrays in comparison with the commer-
cial software FEKO [41]. After that, the method is applied
to the full array and a simulation time evaluation of the
algorithm is given. The stations of the low-frequency SKA
radio-telescope [1] will be lying on a large finite ground
plane and, as the antennas operate at relatively low frequencies
(50–350 MHz), these platforms can have a significant impact
on the radiation pattern. Due to the ground plane finiteness,
the method of images cannot be used and one must study
the coupling between the ground plane and the antennas.
A software named HARP [26] has been designed to efficiently
compute the mutual coupling between the antennas assuming
an infinite ground plane. HARP is based on an MBF approach
and a technique providing a model for the interactions between
MBFs. These MBFs are built using primary and secondary
excitations [17] and a current distribution is defined for each
of them on the whole antenna. It is found that the antenna
currents calculated with HARP constitute a good approxima-
tion of the exact solution including the finite ground plane.
Considering this approximation, the equivalent currents of the
finite ground plane can be obtained with the methods presented
in Sections II–IV. The ground plane is meshed here with
RWG basis functions [42]. The antenna considered is the sec-
ond version of the SKA log-periodic antenna (SKALA2) [2]
(see Fig. 1), which is meshed here with 1218 linear basis
functions. The SKALA2 antenna is a dual-polarized element
(X and Y polarization) made of four arms supported by
four spines. In this article, only the Y-oriented excitation is
considered, and similar results are obtained for excitation at
X-arms. Since the ground plane is of finite extent, the coupling
of the antenna with the soil has to be taken into account.
A picture of the SKALA2 antenna lying on a finite ground
plane lying itself on a semi-infinite soil is shown in Fig. 3.
Air and soil correspond to media 1 and 2, respectively. The
soil relative permittivity is considered �2 = 4.8. Given that
the antenna and the finite ground plane are lying above a
semi-infinite dielectric medium, the TE and TM reflection
coefficients defined as the ratio between the reflected and
incoming waves read [43]


TE(β) = ct1η2 − ct2η1

ct1η2 + ct2η1


TM(β) = ct1η1 − ct2η2

ct1η1 + ct2η2

(30)

Fig. 3. SKALA2 on a finite ground plane lying itself on an infinite soil.

Fig. 4. Radiation pattern of the SKALA2 above (a) 4 m, (b) 6 m, and
(c) 8 m, radius ground plane at 110 MHz.

with index 1 referring to the air and index 2 to the soil, and

cti = kz,i (β)

ki
. (31)

Let us consider the radiation pattern of an SKALA2 antenna
positioned at (x, y)= (0.5, 0.5) m on a circular ground plane
centered at (x, y) = (0, 0) of radii 4, 6, and 8 m, displayed
in Fig. 4. They have been computed using the presented
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Fig. 5. Radiation pattern of the SKALA2 above a 4 m radius ground plane
at 110 MHz, considering both lossless and lossy dielectric media for the soil.

Fig. 6. Radiation pattern of the two antennas above a 4 m radius ground
plane at (a) 110 MHz and (b) 350 MHz.

method and compared with the results from the commercial
software FEKO [41]. The planes φ = 0◦ and φ = 90◦ corre-
spond to the H-plane and E-plane, respectively. The simulation
results are consistent with those from FEKO. The simulation is
also done considering a complex permittivity �2 = 4.8− j6.24
for the soil. The results are compared to those of FEKO and to
those including a lossless soil in Fig. 5. A difference smaller
than 0.1 dB is observed between our results and those of
FEKO. Next, we consider two SKALA2 antennas with the
first one positioned in (x1, y1) = (1, 0) m and the second
one in (x2, y2) = (−1, 0) m. These antennas lie on a 4 m
radius ground plane. The radiation pattern obtained with the
proposed method and with FEKO is compared in Fig. 6 at
frequencies of 110 and 350 MHz, respectively. The results
agree with those of FEKO but differences of the order of 1 to
2 dBs appear in the H-plane sidelobes for the data at 350 MHz.
As already stated in [26], those differences could come from

Fig. 7. Configuration of the full SKA low-frequency station lying on a finite
ground plane lying itself on infinite soil.

Fig. 8. Component x of the electric field radiated on the ground plane by
the SKALA2 antenna at 110 MHz. The field is evaluated along y with x = 0.
Field computed with (a) (22) and (b) (12).

the differences between our antenna model and the one used
in FEKO.

Let us now consider 256 SKALA2 antennas lying on a finite
circular ground plane of 40 m diameter, as pictured in Fig. 7.
The array is irregular in order to randomize the sidelobes and
mutual coupling effects. The frequencies selected here are 50
and 110 MHz. Each antenna is meshed with 1218 linear basis
functions and the ground plane is meshed with 34 584 RWG
basis functions. For the HARP simulation, the final current
distribution on the antennas is obtained using 20 MBFs. The
interactions between MBFs and the finite ground plane are
obtained with the methods described in Sections II and III.
The method described in Section II is used for the near-field
interactions and the one described in Section III is used for
the intermediate-field interactions. The accuracies of these

Authorized licensed use limited to: Univ Catholique de Louvain/UCL. Downloaded on August 06,2020 at 12:13:37 UTC from IEEE Xplore.  Restrictions apply. 



2760 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 4, APRIL 2020

Fig. 9. Radiation pattern of the array at (a) 50 MHz: H-plane cut, (b) 50 MHz:
E-plane cut, (c) 110 MHz: H-plane cut, and (d) 110 MHz: E-plane cut.

methods are compared in Fig. 8 (a). In this figure, the reference
electric field is obtained with formula (12) using a great
number of 2048×2048 inhomogeneous plane waves for which
the convergence has been checked. The reference is compared
with the solution obtained with formula (12) using 64 × 64
inhomogeneous plane waves and with formula (22) using N =
10 and M = 12. In the near-field (ρ < λ), the accuracy of (22)
rapidly deteriorates due to the Hankel functions singularity.
In contrast, formula (12) using 64 × 64 inhomogeneous plane
waves provides a fast and good estimation of the electric
field for lateral distances ρ < λ. The error rapidly increases
for larger distances due to the increasing oscillations of the
integrand [28] and a larger number of integration points is
necessary as shown in Fig. 8(b). In this figure, the electric

Fig. 10. Cross-polarization and co-polarization of the array at (a) 50 MHz:
H-plane cut, (b) 50 MHz: E-plane cut, (c) 110 MHz: H-plane cut, and
(d) 110 MHz: E-plane cut.

field is computed with nk × nk inhomogeneous plane waves
for different values of nk. It is shown that the required number
of plane waves significantly increases with increasing distance
of interaction. The choice of ρ0 as a transition distance
(ρ0 = λ recommended here) from one method to the other
may be slightly dependent on the type of antenna. However,
we observed a broad range of possible values for ρ0 (typically
from 0.6λ to 2λ), without significant impact on computation
time nor accuracy. Here, we choose the inhomogeneous plane
waves expansion for ρ < λ with formula (12) using 64 × 64
inhomogeneous plane waves and formula (22) with 11 × 12
cylindrical waves is used for ρ ≥ λ, where the error is low
and stable.

The radiation pattern of the full array made
of 256 SKALA2 antennas is displayed in Fig. 9(a)–(d)
and compared with the infinite ground plane case. Fig. 9(a)
and (b) shows that some important variations can appear at
low frequencies for elevation angles greater than 35◦. The
simulation shows that the ground plane finiteness is not of
great concern for the SKA1-low full station radiation pattern
at 110 MHz. Nevertheless, 1 dB variations can appear for
elevation angles greater than 60◦. More information about
the possible impact of sidelobes on the performance of the
SKA-low station can be found in [44]. The plots in Fig. 10
compare the co- and cross-polarization levels for the infinite
ground plane and finite ground plane cases. Those patterns
are obtained using the Ludwig-3 definition [45]. As observed
and discussed in [46], it appears that the cross-polarization
pattern is about 2 dB higher than the co-polarization pattern
in the main beam at low frequency. This high cross-pol
level does not prevent accurate polarization estimation when
both arms of each antenna are used, as explained in [47].
At 110 MHz, the co-polarization pattern is about 15 dB
higher than the cross-polarization pattern in the main beam.

The method presented here is performed after getting the
infinite ground plane solution from the HARP software [26].
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TABLE I

TIME EVALUATION OF THE PROPOSED METHOD AT 110 MHz

At a given frequency, the software HARP needs 3 h of
preprocessing and then the array can be simulated on infinite
ground plane for any configuration of the antennas posi-
tions. The simulation time of HARP is compared to those
of different commercial softwares in [26]. An evaluation of
the time required by the method proposed in this article
is given in Table I. The simulation is carried out using a
single computer equipped with an Intel Core i5-7500 CPU
with a 3.4 GHz clock and 24 GB of RAM. The software is
written in MATLAB language, release R2017a, along with
some C++ routines for the fast calculation of the ground
plane MoM matrix. Note that the first two steps in Table I
are independent of the ground plane and array configurations
and must be carried out only once for each frequency. Only
the last four steps need to be executed again if the position
of the antennas or the excitation port are modified (assuming
the new infinite ground plane solution on the antennas from
the HARP software). In this simulation, the radiation pattern
is obtained for 120 azimuthal angles × 91 elevation angles.
Note that the ground plane radiation pattern can be obtained
from (29) by computing the Fourier transform of the equivalent
currents of one angular sector. Indeed, the contribution from
the other sectors can be obtained by rotating and adding their
radiation patterns. The interactions between antennas and the
ground plane have been accelerated and most of the simulation
time is now allocated to the calculation of the ground plane
MoM matrix, as shown in Table I.

VI. CONCLUSION

The numerical analysis of finite antenna arrays has known
tremendous acceleration over the past two decades, among
others based on MBF representations. We tackled here the
challenge of the interaction with the near-field environment
through the analysis of scattering by the edges of the ground
plane underlying the array. In this article, an efficient method
for the fast and accurate calculation of scattering by a finite
ground plane lying under irregular antenna arrays is pre-
sented. The method is based on the efficient calculation of
the interactions between MBFs and the finite ground plane.
The interactions are carried out using algorithms based on

inhomogeneous plane waves in the near field and a new
formulation using Hankel and Anger–Weber functions is used
for the intermediate-field interactions. Moreover, the method
can be accelerated using circulant matrix for the finite ground
plane self-interaction. For applications such as the SKA [1],
this method provides higher accuracy for the EEP involved in
the calibration stage.

APPENDIX A
ANALYTICAL SI BACKGROUND

In the MoM [7], an essential step is the computation of SIs
to determine the spatial Green’s functions. Solving these infi-
nite integrals is a time-consuming process due to their oscil-
lating and slowly decaying behavior. The problem has been
tackled for decades and a great variety of solutions exist today.
Some techniques involve the Fast Hankel Transform [48],
the window function approach [49], or the integration along
the Sommerfeld integration path (SIP) with the integration on
the real axis accelerated through the partition-extrapolation
method [50]. Among those methods, the most popular ones
are the discrete complex image method (DCIM) [51] and the
RFFM [22]. Both methods are able to give simple forms of
the SIs for a great range of distances between the source and
observation domains. The DCIM gives the solution as a sum
of spherical waves but requires the analytical extraction of
cylindrical surface wave terms for far-field estimation. Indeed,
the far-field near the substrate is often dominated by those
cylindrical waves. The RFFM, however, directly describes the
result as a sum of cylindrical waves as a finite series of Hankel
functions. The RFFM, in contrast to the DCIM, fails to give
an accurate estimation in the near field due to the non-physical
singularity exhibited by the Hankel functions when the source
and the observation points do not lie in the same plane. In [31],
the RFFM is improved to solve the Hankel function singularity
problem.

APPENDIX B
ELECTRIC FIELD IN FREE SPACE

The derivation provided here is similar to the one given
in [24] and [27]. Let us consider the free-space Green’s
function expressed as the Weyl integral [30]

G(R) = e−jk R

4π R

= 1

(2π)2

∫∫ +∞

−∞
G̃(kx , ky) e−j[kx (x−x �)+ky (y−y�)]

× dkxdky (32)

where R = |�r −�r �|, �r � = (x �, y �, z�) is the source coordinates,
and �r = (x, y, z) the observation coordinates. The spectral
Green’s function is given by

G̃(kx , ky) = e−jkz|z−z�|

2jkz
(33)

with k2
x + k2

y + k2
z = k2. The vector potential in free space due

to electric current density �Jb can be expressed as

�A(x, y, z) =
∫∫∫

V �
G(R) �Jb(x �, y �, z�) dV � (34)
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where V � is the volume enclosing the source. The spatial
electric field can be expressed as the summation of the inverse
Fourier transforms of both the TE and TM spectral electric
fields

�E(x, y, z) = �ETE(x, y, z) + �ETM(x, y, z)

= F−1{ẼTE(kx, ky, z)(−m̂)}
+ F−1{ẼTM(kx , ky, z)ê} (35)

where ẼTE and ẼTM are the spectral field of polarizations
TE and TM, respectively, F−1 denotes the inverse Fourier
transform operator and the components �ETE and �ETM are
the results of the inverse Fourier transform of the spectral
electric field in TE and TM polarizations, respectively. The
polarization vectors m̂ and ê associated with TE and TM
modes have been defined in Section II, respectively.

Since the ground plane is located below the antenna, mainly
downward waves are considered in this article, for which |z−
z�| can be written as z� − z such that exp(−jkz|z − z�|) =
exp(−jkzz�) exp( jkzz). The relation between the electric field
and the vector potential is given by

�E = −jkη

(
I + ∇∇

k2

)
· �A (36)

where I is the unit dyad and �A is obtained by inserting (32)
into (34) while swapping spatial and spectral integration. This
provides a spectral representation for �E in which a given
polarization p can be selected by projection on êp (defined
in Section II)

�E p = − jkη

(2π)2

∫∫ ∞

−∞
êp

e−j(kx x+ky y−kzz)

2jkz
êp ·

[
I − �k�k

k2

]
· �Fb(kx , ky) dkx dky (37)

with

�Fb(kx , ky) =
∫∫∫

V �
�Jb(�r �) e j(kx x �+ky y�−kzz�) dV �. (38)

APPENDIX C
INFINITE INTEGRAL INVOLVING BESSEL FUNCTION

Let us consider a function f (x), which is analytical except
for some singularities, such that the poles of f (x)Jn(xρ) are
simple poles not located on the positive real axis. If f (x) is
an odd function, then [38]∫ ∞

0
f (x)Jn(xρ) xn dx = jπ

∑
q

Resq [ f (x)H (2)
n (xρ) xn]

(39)

where ρ is a real positive constant, H (2)
n is the second-type

Hankel function of order n, and Resq [g(x)] defines the residue
of the function g for a given pole q . If the function f (x) is
even [38]∫ ∞

0
f (x)Jn(xρ) xn dx = jπ

∑
q

Resq [ f (x)H+
n (xρ) xn]

(40)

where H+
n (x) is a linear combination of an Anger function

Jn(x) and a Weber function En(x) [23, Sec. 10.1]

H+
n (x) = Jn(x) + jEn(x) . (41)

The Anger function is identified to the Bessel function
of the same order when n is a natural number, which is always
the case here. Details regarding the series representation of the
Weber functions are given below.

The Weber function [23, Sec. 10.1], [34, Sec. 8.58] is the
solution of an inhomogeneous Bessel equation. Its integral
form is defined as

En(z) =
∫ π

0
sin(nπ − z sin θ) dθ . (42)

The function can be written as the following expansion in
ascending powers of z [34, Sec. 8.581]:

En(z) = sin
nπ

2

∞∑
m=0

(−1)m
( z

2

)2m



(
m + 1 + n

2

)



(
m + 1 − n

2

)
− cos

nπ

2

∞∑
m=0

(−1)m( z
2

)2m+1



(
m + 3

2 + n
2

)



(
m + 3

2 − n
2

) .

(43)

This formulation is sufficiently efficient around the origin,
where it can be evaluated with few terms with high accuracy.
To the contrary, when |z| � 10 and n ≤ 5, more than
15 terms are needed in (43) to obtain a relative error of
0.001. At this point, it is more efficient to use an asymptotic
formulation of the function. In our approach, we need to
evaluate the Weber function of odd order for arguments lying
in the lower complex plane [see (22)]. The Weber function
can be efficiently evaluated for large arguments lying in the
upper plan as [23, Sec. 10.13]

En(z) = − Yn(z) − 1 + cos nπ

πz

×
[

1 − (12 − n2)

z2 + (12 − n2)(32 − n2)

z4 − . . .

]
− 1 − cos nπ

πz

[
n

z
− n(22 − n2)

z3

+ n(22 − n2)(42 − n2)

z5
− . . .

]
(44)

where Yn(z) is the second-type Bessel function. After inspect-
ing (43), the following equation can be deduced for any odd
order n:

En(z) = En(−z)

= En(z e jπ) (45)

which means that the asymptotic form (44) can be used for
negative imaginary z. With this formulation, when |z| � 10
and n ≤ 5, the Weber function can be evaluated with a relative
error less than 0.001 using (44) with two terms of the infinite
sum.
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