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Introduction

Calculus of homotopy functors is a method introduced by Goodwillie in the
1990’s [Goo90, Goo92, Goo03] which gives a way to approximate homotopy
functors by "polynomial functors". This yields to a Taylor tower to approximate
those functors very analogous to the approximation of functors in one variable
by their Taylor series. T. Goodwillie and its successors (N. Kuhn, G. Arone, M.
Ching) have thoroughly developed this theory for functors in the category of
topological spaces and/or spectra (which are a "stabilized" version of topological
spaces). In this thesis, we develop this theory for more algebraic categories,
such as the category of algebras over an operad. As an example of operad, there
is the Lie operad: Lie. An algebra over this operad is exactly a differential
graded Lie algebra.

Before explaining our results, let us recall the main ideas of Goodwillie
calculus. We consider homotopy functors F : Top∗ −→ Top∗ between the
category of pointed topological spaces. These are covariant functors which
preserve weak equivalences. Goodwillie calculus ([Goo90, Goo92, Goo03]) is
basically meant to analyze certain notions on such functors F. Namely,

1. There is the notion of polynomial functor of degree n, that we will define
later on (in Def 2.2), and which can briefly be thought as:

- A polynomial functor of degree 0 is a constant functor (up to homo-
topy);

- A polynomial functor of degree 1, or sometimes just called linear
functor, is a functor which turns a homotopy pushout square into a
homotopy pullback square. 1;

- More generally, a polynomial functor of degree n generalizes this
idea with higher cubical diagrams;

- A polynomial functor of degree n is in particular a polynomial func-
tor of degree n+ 1;

1A homotopy pushout( resp. pullback) is a variation of pushout (resp. pullback) which
preserves weak equivalences

3
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2. There is the notion of polynomial approximation of an arbitrary functor.
In fact, given a functor F, one associates a polynomial functor PnF of
degree n, (for any n) and a natural transformation pnF : F −→ PnF.
This construction comes with a universal property which says that: any
natural transformation from F to any other polynomial functor G of
degree n factors uniquely (up to homotopy) via pnF. In other words,
PnF is the "best possible" polynomial approximation of F.

In Goodwillie calculus, we study polynomial functors and we construct approx-
imation of arbitrary functors. The approximation of the functor F gives rise
to a tower

F −→ ...PnF −→ Pn−1F −→ ...P0F (1)

which converges to F in many cases when some nice connectedness properties
are satisfied. This tower is called the "Taylor tower" of F and PnF is seen as
an analogue of the n-th polynomial approximation Pnf of an analytic function
f : R −→ R.

Before motivating this analogy, we will make a very short detour to give
some insight of a new category: the category of spectra Sp which is built out
of Top∗. For this, remind first the suspension functor Σ : Top∗ −→ Top∗ where
the suspension of a pointed topological space (X, ∗) is given by the homotopy
pushout square

X //

��

∗

��
∗ // Σ(X)

For instance, the suspension of the circle is the 2-dimensional sphere

Σ(S1) = S2.

Formally, a spectrum X ∈ Sp consists of a sequence of spaces X = (X0, X1, ..., Xn, ...)
along with continuous maps

ΣXn −→ Xn+1

satisfying some properties (see [HSS00]). This definition might be technical, but
a non expert reader can think of Sp as a category where the suspension functor
Σ : Sp −→ Sp, defined similarly as in Top∗, has an inverse Σ−1 : Sp −→ Sp. A
link between the categories Sp and Top∗ is given by the functor

Σ∞ : Top∗ −→ Sp

X 7−→ (X,ΣX,Σ2X, ...,ΣkX, ...)

This functor has a right adjoint generally denoted Ω∞ : Sp −→ Top∗.
To see the analogy between Goodwillie calculus and the classical Newton

and Leibniz calculus for analytic functions, consider the "difference" DnF be-
tween the polynomial approximations of F of degree n and of degree n− 1. In
homotopy theory, this means taking the homotopy fiber
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DnF (X) := hofiber (PnF (X) −→ Pn−1F (X)),

that we call the "n-th layer of the tower". This is a categorical version of making
(in classical calculus) the difference

dnf(x) = Pnf(x)− Pn−1f(x) (2)

which is the n− th term of the Taylor series. It is well known that this n− th
term is given by the formula

dnf(x) = f (n)(0)
n! xn (3)

The following formula which appears in Goodwillie’s results ([Goo03, Thm
2.1, Thm 3.5]) analyses more precisely the functor DnF.

Theorem 0.1 (Goodwillie). There is a spectrum ∂nF ∈ Sp, with an action of
the symmetric group Σn, and an equivalence (natural in X)

DnF (X) ' Ω∞(∂nF ∧
hΣn

(Σ∞X)⊗n) (4)

where (...)hΣn is the space of (homotopy) orbits with respect to the Σn action,
also called the Borel construction associated to the diagonal action of Σn on
the two factors.

Surprisingly, the formulas (2) and (4) are very similar in the sens that: ∂nF
plays the role of the coefficient f (n)(0); the input (Σ∞X)⊗n plays the role of xn
while the orbit over the set of permutations Σn plays the role of the division by
the number of permutations n!. Because of this striking analogy, we say that:
the Σn-spectrum ∂nF is the n− th derivative of F.

Even if Theorem 0.1 gives a fairly explicit description of the layers DnF (X),
this is not enough to completely describe the Taylor tower (1). One of the
natural and non trivial question is then the following:

Question 1. Can we recover the Taylor tower {PnF}n of F from the sequence
∂∗F = (∂0F, ∂1F, ..., ∂n, ..) of its derivatives?

In classical calculus, this is a trivial question as we know that

Pnf(x) =
n∑
k=0

fk(0)
k! xk.

But in functor calculus, PnF is not simply given by Pn−1F and DnF. Recently,
G. Arone and M. Ching came out with an optimistic refinement of Question 1.
by asking the following:

Question 2 ([AC11]). Which additional structure should we endow on the se-
quence ∂∗F = (∂0F, ∂1F, ..., ∂n, ..) in order to recover the Taylor tower {PnF}n
of F?



6 CONTENTS

They started their analysis on a result of Ching ( [Chi05]) which says that:
given the identity functor Id : Top∗ −→ Top∗, then the sequence ∂∗Id is
a "monoid" in the category of symmetric sequences. In other words, ∂∗Id
is an operad. These authors investigated in their article ([AC11, Remarks
17.27, 18.14, 19.3.]) the influence of the ∂∗Id-module structure on ∂∗F (for an
arbitrary functor F ) and they have built a so-called "fake" tower Φ∗F. This fake
tower is equivalent to the Taylor tower P∗F up to a certain "Tate spectrum"
which vanishes in characteristic 0.

In this thesis, we follow the Arone-Ching strategy to investigate the Taylor
towers of functors defined on algebraic categories, more precisely on the cate-
gories of algebras over operads in chain complexes. In that setting and when
the underlying field is of characteristic 0, we have been able to get very explicit
models for both the derivatives ∂∗F and the Taylor tower {PnF}n≥0.

Goodwillie, Arone-Ching study functors F : C −→ D, where C and D are
each either Top∗, sSet(category of simplicial sets) or Sp. In our research, we
make the following replacement

Top∗ // AlgO: The category of algebras over the operad O;

Sp // Ch: The category of Z-graded chain complexes over a field k.

A typical example of such operad O is the Lie operad, O = Lie and an algebra
over Lie is exactly the differential graded Lie algebra AlgLie = DGL.

On the other hand, our transposition is relevant as in rational homotopy
theory, the rational localization of Top∗ (resp. Sp) is equivalent to DGL (resp.
Ch). However, note that the equivalences between these algebraic and topo-
logical categories are only given by zig-zag. Hence our transposition is far from
relying in a sort of transfer structure theorem.

The idea of extending Goodwillie’s constructions to other categories is al-
most old as the theory itself. One of the early contributors is Kuhn ( [Kuh07]).
Among the other published papers in this sense , we can quote: Walter [Wal06],
Pereira [Per13], G.Biedermann and O. Röndigs [BR14], D. Barnes and R. El-
dred [BE16], J. Lurie [Lur17, § 6 ].

As we stated above, one can seeDGL as the category AlgLie of algebras over
the "Lie operad". In this process, the object called "Lie operad" is a sequence
of chain complexes which has in arity two the Lie bracket [x1, x2], and more
generally in arbitrary arity n live all the n-length brackets [x1, ...[xn−1, xn]].
In other words, the Lie operad is meant to encode all the operations that one
can define on a Lie algebra. Likewise, the commutative operad "Com" governs
all the operations that one can define on a commutative algebra. Finally, note
that these operads "Com" and "Lie" are monoid in a certain category, thus it
will make sense to consider modules over Lie and modules over Com.
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Summary of results

In this thesis, we study Goodwillie theory in AlgO : The category of algebras
over an arbitrary operad O of Ch+(the category of non-negatively graded chain
complexes). However, in this introduction, as we avoid a formal definition of
operads, we present our results in the explicit case of the Lie operad as people
not familiar with operads could follow. Hence, our statements are all given on
AlgLie = DGL.

Among the authors who studied the extension of Goodwillie calculus, we
make a focus on Kuhn’s research who formulated in [Kuh07] a general model
category requirement for running Goodwillie’s arguments to an arbitrary homo-
topy functor F : C −→ D. By investigation, our algebraic categories Ch,Ch+, DGL
meet Kuhn’s requirements. Therefore we get freely (using the Kuhn’s or Good-
willie’s construction) the Taylor tower for functors. However, we don’t have
yet a formula for DnF as in Equation (4), hence the object ∂∗F is still mean-
ingless. This is because, in Kuhn’s argument, he will additionally require that
the categories C and D are tensored over sSet. This is not our case since there
is not a genuine tensoring of the category Ch over sSets.

In the first step of our research, we have conducted a preliminary investiga-
tion in other to show that in this algebraic setting, we have a formula for the
functors DnF similar to Equation (4).

Theorem A ( Theorem 2.22 ). We assume char(k)=0. Let C,D = Ch,Ch+
or DGL and let F : C −→ D be a homotopy functor. There is a chain complex
∂nF ∈ Ch, with an action of the symmetric group Σn, such that we form an
equivalence (natural in L)

DnF (L) ' Ω∞(∂nF ⊗
hΣn

(Σ∞L)⊗n) (5)

Formula (5) is completely analogous to Goodwillie’s formula (4 ) , but we
need to explain the meaning of Σ∞ and Ω∞ in our algebraic setting:

- The functor Σ∞ : DGL −→ Ch associates to any Lie-algebra L, its
derived indecomposable part. For instance if L = LV is the free Lie
algebra generated by a chain complex V, then Σ∞(L) ' V.More generally,
Σ∞L is equivalent to the Chevalley-Eilenberg functor applied to the DGL
L(see [?]) :

Σ∞L ' C∗(L) = (Λ(sL), d).

- The functor Ω∞ : Ch −→ DGL associates to a Z-graded chain complex
(V, d), the N-graded chain complex

V ′ = [(ker (V0
d0−→ V−1), V1, V2, ..., Vk, ...), d]

endowed with a trivial Lie-bracket.

Theorem A was originally proved by Walter [Wal06] in the special case of
the Lie operad. In this thesis, we generalize this to the case of any O-algebra,
where O is a reduced operad.
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Now that we have this result, we can reconsider Question 1 and thus Ques-
tion 2 in our context. We arrive now at the most important result of this thesis
which is an explicit description of the Taylor tower {PnF}n for homotopy func-
tors F : DGL −→ Ch when the ground field is of characteristic 0.

We first state the result before describing some of its ingredients.

Theorem B (Theorem 5.35 ). We assume char(k)=0. Let F : DGL −→ Ch
be a simplicial and finitary functor and P = B(Com)∨. Then the Taylor tower
of F is given by

PnF (L) ' B(∂∗≤nF, P, L) (6)

where ∂∗≤nF is the truncated symmetric sequence of chain complexes

∂∗≤nF := (∂0F, ∂1F, ..., ∂nF, 0, ..., 0, ...).

To make sense, we need to explain the various ingredients in this theorem.
In a nutshell:

- A finitary functor is a functor which commutes with directed or filtered
colimits;

- Com is the commutative operad;

- B(Com)∨ is the linear dual of its bar-construction. In fact B(Com)∨ =
Lie∞ which is a cofibrant replacement of the Lie operad;

- B(∂∗≤nF, P, L) is the bar construction with coefficients that we will ex-
plain below;

- A simplicial and finitary functor is a technical hypothesis on functor which
is valid in more interesting homotopy functors.

In Theorem B, we need a structure of right B(Com)∨-module on ∂∗F which is
not explicit in Theorem A. This right module structure will be the consequence
of Theorem C below, but first let us explicitly explain what we mean by the
bar-construction. Namely, we will explain the chain complex B(Lie) called "
bar-construction " on the Lie operad (cf § 1.7). This is roughly speaking a
combinatorial object made of colored non planar trees where a vertex of the
tree with two entries is colored with the Lie bracket : [x1, x2]; and in general
a vertex of the tree with n entries is colored with an nth iteration of the Lie
bracket: [x1...[xn−1, xn]]. Here below is an example of a tree T which lives in
B(Lie)(5). The number 5 refers to the set of index {1, 2, 3, 4, 5} which is used
to label the leaves of the tree.
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1

""

2

��

3

&&

4

��

5

zz
[x1, x2]

$$

[x1, [x2, x3]]

xx
[x1, x2]

��

Fig 1. The tree T.

There is a natural decomposition map on the bar construction which con-
sists of un-grafting trees. For instance the above tree T of B(Lie)(5) could be
decomposed into a tree T1 ∈ B(Lie)(2) which is the root sub-tree of T, the
tree T2 ∈ B(Lie)(2) and T3 ∈ B(Lie)(3) which was both grafted on T1. This is
shown here below in Fig 2.

1

""

2

||
[x1, x2]

��

1

""

2

��
[x1, x2]

��

3

$$

4

��

5

zz
[x1, [x2, x3]]

��

T1 ∈ B(Lie)(2) T2 ∈ B(Lie)(2) T3 ∈ B(Lie)(3).
Fig 2. Decomposition of T

This decomposition of the tree T is encoded by the formula:

B(Lie)(5) −→ B(Lie)(2)⊗B(Lie)(2)⊗B(Lie)(3) (7)

More generally, this operation looks like this :

B(Lie) −→ B(Lie) ◦B(Lie) (8)

where the right hand side B(Lie)◦B(Lie) of Equation (8 ) generalizes the right
hand side of Equation (7 ) as we consider all possible decompositions.

More generally, there is the notion of bar construction with coefficients
B(R,Lie, L), provided a right Lie-module R and a left Lie-module L. It is
also defined with trees and the only change resides on the way one labels the
vertices on a tree. This bar construction also has a decomposition.

The conclusion of this detour is the following:

- The notion of bar construction B(Lie) is defined with trees and is actu-
ally a cooperad (with the decomposition (8)). Therefore, its linear dual
B(Lie)∨ is an operad;
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- There is also the bar construction with coefficients B(R,Lie, L) which is
a chain complex with some extra that will appear latter.

This bar-construction exists for any operad, and not only Lie. In particular
B(Com) for the commutative operad.

Theorem C (Theorem 5.10). We assume char(k)=0. Given a simplicial func-
tor F : DGL −→ Ch, there is a filtered diagram BF of right Com-modules R
such that we get a quasi-isomorphism

∂∗F ' colim
R∈BF

B(R,Com, I)∨ (9)

In this expression,

- Com is the "commutative" operad which governs the operations on a
commutative algebra.

- I is the trivial symmetric sequence I = (0,k, 0, ..., 0, ...). It is always a left
Com-module.

The statement of Theorem B might not tell you too much because it doesn’t
specify R or BF , but let us first say that when F is a finite filtered colimit of
representable functors (see below), then we can take

R = Nat(FΩ∞I, I⊗∗) = {Nat(FΩ∞I, I⊗n)}n

where

- the functor FΩ∞I is the composite

Ch+
I−→ Ch

Ω∞−→ DGL
F−→ Ch;

- the functor I⊗n is given by

I⊗n : Ch+ −→ Ch, V 7−→ V n;

- Nat(FΩ∞I, I⊗∗) is the chain complex of natural transformations.

In this case, BF = {R} is the category with a single object.
Using the decomposition of the bar construction (in the general case) analo-

gous to Equation (8) where Lie is replaced by Com, and then taking the dual,
one can deduce that the derivative ∂∗F is a right module over the monoid
P = B(Com)∨ which is actually equivalent to the Lie operad. In other words,
we get the following:

Corollary B-1. ( Corollary 5.11) Using Equation (9), we can endow ∂∗F with
the structure of a B(Com)∨-right module.

We still need to explain what we mean by "simplicial functors" in Theorem
B and in Theorem C.
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Functors that we study in Goodwillie calculus are always "homotopy func-
tor" in the sense that they send weak equivalences to weak equivalences (in
topological spaces this mean weak homotopy equivalences and in categories re-
lated to chain complexes it means quasi-isomorphisms, that is morphisms that
induce an isomorphism in homology).

Actually many (and maybe even all ) such homotopy functors are simplicial
functors (for which we give a special definition in our setting). The key point
on these functors is that they can be built out of "representable functors" which
have the form:

Nk[HomDGL(LV ,−⊗Apl•)] (10)

where

- LV is a quasi-free differential graded Lie algebra;

- Apl• is the simplicial commutative algebra of polynomial of differential
forms;

- For any Lie algebras L then

k[HomDGL(LV , L⊗Apl•)]

is the free simplicial chain complex generated by the simplicial set

HomDGL(LV , L⊗Apl•).

- N : sV ectk −→ Ch is the normalization functor;

Remark 0.2. The results we have presented in this section was given when
the ground field is of characteristic 0. This is a technical requirement as many
constructions such as the homotopy pushouts and pullback formulas was given
under this restriction. However the result of Theorem A can be extended to
any characteristics ( when D = Ch) if we put now restrictions on the operad
O (e.g. like being cofibrant as a symmetric sequence).

Furthermore, the restriction of Theorem B and Theorem C in 0 character-
istic is due to a serious obstruction.

Perspectives. In this thesis, we give in Theorem B an explicit description of
the Taylor tower of simplicial functors F : DGL −→ Ch. We conjecture that
Theorem C could be extended to simplicial functors F : DGL −→ DGL but
we have not yet the proof.

Some evidence of our conjecture is that, the identity functor Id : DGL −→
DGL is a simplicial functor and its derivatives are given by:

∂∗Id = Lie

We know that the Taylor tower of Id is given by (in [KP17])

PnId(L) ' B(Lie∗≤n, P, L)

So the question is:
Can we extend Theorem C to simplicial functors F : DGL −→ DGL?
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Outline. This thesis has the following outline:
- The first chapter gives the classical definitions and constructions on algebraic
categories. Namely, we remind the categories Ch, Ch+, and AlgO (The reader
can find their location in the Index). We remind some notions on operads and
cooperads such as the cobar-bar duality. We explore the homotopy theory of
the category AlgO. More precisely, we study homotopy limits and homotopy
colimits. Then we construct an explicit characterization of homotopy pushouts
and homotopy pullbacks in this category. In application, we get an explicit
model for the loop and suspension functors. At the end of the chapter, we
give a short resume which contents the objects that we will need in the next
chapters.
- In the second chapter, we introduce Goodwillie calculus in algebraic context.
In particular, we construct the Taylor tower and study the derivative through
cross-effect and multilinearization. The goal of this chapter is to prove Theorem
A. This theorem is the foundation of our functor calculus approach as we deduce
from it the notion of derivatives ∂∗F, for any homotopy functors F. At the
end of this chapter, we compute explicitly the derivatives of many interesting
functors. In particular of Id : AlgO −→ AlgO,Σ∞Ω∞ : Ch −→ Ch and some
representable functors in Ch.

In the rest of the thesis, we will now try to answer to Question 2 raised in
this introduction.
- The goal of chapter 3 is to construct enriched categories (associated to AlgO)
that will permit us to get additional properties on functors F : AlgO −→ Ch.
Namely we will build a simplicial category Alg′O whose objects are the same
as the category AlgO. People familiar with this theory know from Hinich’s
work that the category AlgO (or DGL in particular) is itself enriched over
simplicial sets. But, for some technical reasons, this is not the enrichment that
we consider. We further deduce from Alg′O a category ÃlgO which is enriched
over Ch. On the other hand, the category Ch is enriched over itself. We will
then consider enriched functors F̃ : ÃlgO −→ Ch. These enriched functors will
uniquely induce each a real functor F : AlgO −→ Ch that is our focus.
- Chapter 4 appears as the next step after the foundation of Chapter 3. In this
chapter, we describe the model structure on the category of enriched functors.
This is in fact a cofibrantly generated model structure, so it permits a cellular
decomposition of enriched functors. In other words, we show that simplicial
functors are filtered homotopy colimits of representable functor as (10).
- Chapter 5 has two important parts. We first prove Theorem B using the
cellular decomposition of functors introduced in Chapter 4. We then have all
the ingredients to state and prove Theorem C in the second part.

Finally in the last section of this chapter (§5.5) we compute as example
the Taylor tower of two functors: the representable functor and the forgetful
functor

ÃlgO(X,−), IU(−) : AlgO −→ Ch.



CHAPTER 1

Algebraic categories

1.1 Background on chain complexes

We consider that chain complexes are over a field k of any characteristics. The
purpose of this section is to fix conventions and review basic properties which
are the background of our constructions. A summary of the most important
construction in this first chapter is given in section 1.14 and the hasty reader
could jump there to have an overview of the chapter.

In this thesis, we denote by Ch the category of Z- graded chain complexes
over k. Objects in this category are pairs (V, d) where V is a graded vector space
V = ⊕n∈ZVn, and d : V −→ V (called the differential) which is a morphism of
graded vector spaces which decreases the degree by 1 and satisfies the equation
d2 = 0. Morphisms in this category are degree 0 maps f : V −→ V which
are compatible with the differentials. This category has a symmetric monoidal
structure. The tensor product of chain complexes V,W ∈ Ch is defined by:

(V ⊗W )n := ⊕
p+q=n

Vp ⊗Wq

with the differential such that: ∀x ⊗ y ∈ Vp ⊗ Wq, d(x ⊗ y) = d(x) ⊗ y +
(−1)px⊗ d(y). The unit of the monoid −⊗−, which we denote abusively k, is
the chain complex having k in degree 0 and is trivial in all other degrees. The
switch morphism T : V ⊗W −→W ⊗ V involves the Koszul sign: T (x⊗ y) =
(−1)pqy ⊗ x.

The tensor product −⊗− has a right adjoint hom(−,−) given by:
hom(V,W ) := ⊕

i∈Z
homi(V,W )

where homi(V,W ) denotes the vector space of morphisms f : V∗ −→ V∗+i of
degree i.

Similarly We denote by Ch+, the sub-category of Ch which consist of non
negatively graded chain complexes. There is a natural adjunction between
these two categories given by

13
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I : Ch+ � Ch : red0

where I is the inclusion functor defined by I(V )t :=
{
Vt if t ≥ 0
0 if t < 0 and where

for any chain complex C∗, red0(C∗)t :=
{
Ct if t > 0
ker(d0) if t = 0

Finally, we denote by Ch− the sub-category of Ch which consist of non
positively graded chain complexes.

In this thesis, when we will say chain complexes, we will mean either Ch or
Ch+ depending on the context, and we will be more precise if needed.

Twisted chain complex

Let (V, dV ) be a chain complex. A twisting homomorphism of degree −1,
d : V −→ V is a morphism of graded vector space of degree −1 which is added
to the internal differential dV to produce a new differential dV + d : V −→ V
on V. The equation (dV + d)2 = 0 is equivalent to the equation

dV (d) + d2 = 0

in HomCh+(V, V ), with dV (d) := dV d+ddV . This later equation will be called
the equation of twisting homomorphism and the new chain complex (V, dV +d)
is called the twisted chain complex associated to (V, dV + d).

Model category structure on Ch+

The category Ch+ is a cofibrantly generated model category (for instance see
[Qui67, II p. 4.11, Remark 5 ], [DS95, Thm 7.2]):

- weak equivalences are quasi-isomorphisms;

- fibrations are the morphisms that are surjective in degree > 0;

- cofibrations are monomorphism with degreewise projective cokernels.

Since k is a field, all objects are cofibrant and fibrant in this model category.
In addition, this category is proper closed.

Model category structure on Ch

The category Ch is a cofibrantly generated model category (for instance see
[HPS97, remark after Thm. 9.3.1]):

- weak equivalences are quasi-isomorphisms;

- fibrations are surjections and

- cofibrations are morphisms having the left lifting property with respect
to trivial fibrations.

In this model category, the cofibrations, that we do not describe explicitly, are
in particular degreewise split injections.



1.2. Dold-Kan correspondence 15

1.2 Dold-Kan correspondence

The category of non negatively graded chain complexes Ch+ is Quillen equiv-
alent to the category sV ectk of simplicial vector spaces over k. More precisely
there are two functors:

N : sV ectk −→ Ch+

A• 7−→ NA•

is the normalization functor defined as follows: (NA•)n consists of the
subgroup of An that is killed by the face maps di, i < n. The differential
(NA)n −→ (NA)n−1 is given by (−1)ndn.

Γ : Ch+ −→ sV ectk

V 7−→ HomCh+(Nk4•, V )

Theorem 1.1. ([Dol58, Thm1.9], [SS03, §4]) The pair (N,Γ) and (Γ, N)
are Quillen equivalences with respect to these model categories.

1.3 Operads of chain complexes

1.3.1 Symmetric sequences

We give here the definition of a symmetric sequence along with the monoidal
structure on the category of symmetric sequences. We refer to [Chi12, § 2.] for
more details on this topic. We denote by FinSet the category whose objects are
finite sets and whose morphisms are bijections. Let FinSet0 be the subcategory
of FinSet whose objects are the finite sets r := {1, ..., r} for r ≥ 0 (with 0 the
empty set), and whose morphisms are bijections.

In this thesis, we will only consider symmetric sequences and operads on
Ch or Ch+ and therefore we specialize our definition to that context.

Definition 1.2 (Symmetric sequence). Let C = Ch or Ch+.

1. A symmetric sequence in the category C is a functor M : FinSet −→ C.
We denote the category of all symmetric sequences in C by [FinSet, C]
(in which morphisms are natural transformations).

2. The composition M ◦ L, of the two symmetric sequences M and L, is
defined by:

(M ◦ L)(J) :=
∞
⊕
r=0

[ ⊕
J=J1q...qJr

M(r)⊗ L(J1)...⊗ L(Jr)]Σr . (1.1)

where Σr acts diagonally by permuting the sets J1, ..., Jr on one hand and
on the other hand using the internal action on M(r).
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3. The unit symmetric sequence I is given by

I(J) = k, if |J | = 1, and I(J) = 0 otherwise;

Any symmetric sequence M : FinSet −→ C is determined, up to canonical
isomorphism, by its restriction M : FinSet0 −→ C. This restriction consists of
the sequence M(0),M(1),M(2), ... of objects in C, together with an action of
the symmetric group Σr on M(r), hence the name "symmetric sequence."

The category (Ch+,⊗,k) (resp. (Ch,⊗,k) ) is closed symmetric monoidal
since the tensor product ⊗ has a right adjoint, so it preserves all colimits.
Therefore ([FinSet, Ch+], ◦, I) (resp. ([FinSet, Ch], ◦, I)) is a monoidal cate-
gory.

1.3.2 Operads

Let C = Ch+ or Ch. An operad in C is a monoid in ([Finset, C], ◦, I).
The unit operad is the symmetric sequence I of Definition 1.2 with the only

multiplication I(1)⊗ I(1) −→ I(1) which is the multiplication in I(1) = k.
An augmented operad is an operad O together with a morphism of operads

ε : O −→ I.
A reduced operad is an operad O such that O(0) = 0 and O(1) = k. Note

that a reduced operad is automatically augmented. The category of augmented
operads in C is denoted OpC .

1.4 Algebra over an operad

Let O be an augmented operad in Ch+. An O−algebra consists of a chain
complex (X, d) together with structure maps, for any n ≥ 0:

mn : O(n) ⊗
Σn
X⊗n −→ X,

satisfying the appropriate compatibility conditions, and where the symmetric
group Σn acts diagonally by (on one hand) its usual action on O(n) and by
(on other hand) permuting the factors of X⊗n.

Maps of O−algebras are given by chain complex morphisms f : X −→ X ′

which are degree 0 and preserve the O−algebra structures of X and X ′. The
category of O-algebra is denoted AlgO.

Free O-algebra

A free O-algebra is an algebra of the form (O(V ), d0) where

- O(V ) = ⊕
n≥0
O(n) ⊗

Σn
V ⊗n and

- the differential d0 : O(V ) −→ O(V ) is induced in the usual way by the
differentials {d : O(n) −→ O(n)}n and d : V −→ V.
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There is an obvious forgetful functor U : AlgO −→ Ch+ which is the right
adjoint of the functor

O(−) : Ch+ −→ AlgO
V 7−→ O(V ).

Quasi-free O-algebra

A quasi-free O-algebra is an algebra of the form (O(V ), d,m), where the dif-
ferential d = d0 + δ consists of:

- A linear part d0 : O(V ) −→ O(V ) defined as in the above free case;

- A non-linear part δ = d1 +d2 +... : O(V ) −→ O(V ) induced by derivation
on the restrictions di : V −→ O(i) ⊗

Σi
V ⊗i.

Literally a quasi-free algebra is a twisted free O-algebra (O(V ), d0) with
the twisting homomorphism δ which respects the O-algebra structure. They
are called "almost free O-algebras" in [GJ94].

Model category structure on AlgO

The adjunction between the free and forgetful functors

O(−) : Ch+ � AlgO : U

permits to define the projective model structure on AlgO (see [GJ94, Thm 4.4]).
Namely weak equivalences(resp. fibrations) of AlgO are equivalences (resp.
fibrations) in the underlined category Ch+. The cofibrations are morphisms
having the right lifting property with respect to acyclic fibrations. In particular,
cofibrant O-algebras are retract of quasi-free algebras.

1.5 Module over an operad

A right (resp. left) module over an operad O consists of a symmetric sequence
R (resp. L) together with a structure map

R ◦ O −→ R (resp. O ◦ L −→ L)

satisfying usual associativity as unit axioms.
A morphism of right (resp. left) O-modules f : R −→ R′ (resp. f : L −→

L′) is a morphism of symmetric sequences which is compatible with the right
(resp. left) module structure.

The category of right (resp. left) O-module is denoted by O-mod (resp.
mod-O ).
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Left module generated by O-algebras

Given an O-algebra X, there is an associated left O-module X̂ concentrated in
arity 0 defined as follows {

X̂(0) = X ;
X̂(n) = 0 if n > 0.

The left module structure map

m : O ◦ X̂ −→ X̂

is induced uniquely by the O-algebra structure maps mn : O(n) ⊗
Σn
X⊗n −→ X.

This defines an embedding functor −̂ : AlgO −→ O-mod.

1.6 Cooperad of chain complexes

The notion of cooperad in Ch+ is dual to the notion of operad in Ch+. The
dual notion consists of considering the opposite category ((Ch+)op,⊗, ICh).We
define the dual composition product ◦̂ of two symmetric sequences by replacing
the coproduct in the Definition 1.2 (in Equation (1.1 )) with a product. That
is

(M ◦̂L)(J) :=
∞∏
r=0

[
∏

J=J1q...qJr

M(r)⊗ L(J1)...⊗ L(Jr)]Σr . (1.2)

where Σr acts by permuting the sets J1, ..., Jr and on M(r) in the usual way.
Note that if the symmetric sequence L is connected (L(0) = 0), then the

external product( over r) in (M ◦̂L)(J) of Equation (1.2) is always a finite
product. Since finite products and direct sums are equivalent in the underlying
category Ch+, we will have the isomorphism

M ◦̂L ∼= M ◦ L.

Definition 1.3 (Cooperad). 1. A cooperad in Ch+ is a triple (Q,mc, ηc),
where Q is a symmetric sequence in Ch+ together with maps (of chain
complexes)

mc : Q −→ Q◦̂Q and ηc : Q −→ I

satisfying the co-associativity, the left and right co-unit condition.

2. A coaugmented cooperad is a cooperad Q together with a morphism of
cooperads εc : I −→ Q from the trivial cooperad.

3. A coaugmented cooperad Q is connected when Q̃ := coker(εc) is concen-
trated strictly in positive degree.

4. A cooperad Q is reduced if Q(0) = 0 and Q(1) = k.
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Note that reduced cooperads are automatically coaugmented.
In this paper, we only consider connected coaugmented cooperads. A mor-

phism of connected coaugmented cooperads f : Q −→ Q′ is a morphism of
symmetric sequences which is compatible with the product ◦̂. The category of
connected coaugmented cooperads is denoted coOpCh+ .

1.7 Coalgebra over a cooperad

Another dual analogy with operads is the notion of the coalgebra over a co-
operad. That is, any chain complex Y together with a structure map, ∀n,
mc
n : Y −→ Q(n) ⊗

Σn
Y n satisfying the appropriate compatibility conditions.

The maps of Q-coalgebras are degree 0 chain complex morphisms f : Y −→ Y ′

which preserves the structures of Y and Y ′. One denotes the category of Q-
coalgebras by coAlgQ.

Model category on coAlgQ
One assume now that the cooperad Q is connected. One consider the canonical
adjunction:

U : coAlgQ � Ch+ : Q(−)

where U : coAlgQ −→ Ch+ is the forgetful functor andQ(−) : Ch+ −→ coAlgQ
is the co-free functor.

We use this adjunction to define an injective model structure on coAlgQ (see
[GJ94, Thm 4.7]). Namely weak equivalences(resp. cofibrations) of coAlgQ are
weak equivalences(resp. cofibrations) in the underlined category weak Ch+.
The fibrations are morphisms having the left lifting property with respect to
acyclic cofibrations.

1.8 Bar construction

In this section:

- We define colored trees. These are non planar trees whose vertices and
leaves are colored using symmetric sequences. The notion of "Tree" is
fundamental to define the bar construction and cobar constructions.

- We define the two sided bar construction on an augmented operad O, and
denoted B(R,O, L), provided a right O-module R and a left O-module
L. This is a symmetric sequence of chain complexes.

- We raise the fact that when R = L = I, the bar construction B(O) :=
B(I,O, I) is a cooperad.

- Using the two sided bar construction notion, we define the bar construc-
tion B(O, X) (on a given O-algebra X). This will be a B(O)-coalgebra.
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1.8.1 Tree

We discuss in this part colored trees. We will illustrate two kinds which are
different in terms the level of coloring. Finally, we will define a combinatorial
object which is obtained by coloring the "space" of trees with a single symmetric
sequences.

J-tree

Let J be a finite set. A J−tree is an abstract oriented tree with one outgoing
edge at the bottom, and ingoing edges on the top indexed by J. These ingoing
and outgoing edges are the external edges of the tree. The other edges are
called internal edges. The structure of a J-tree T is defined by a set of vertices
V (T ), a set of edges E(T ), together with a source map s : E(T ) −→ V (T )q J
and a target map t : E(T ) −→ V (T ) such that given an edge v e−→ w ∈ E(T ),
s(e) := v and t(e) := w.

The sources of the ingoing edges are not considered as vertices. They are
called leaves and labeled by elements of J. The source of the outgoing edge is
an internal vertex called the root ot T. We write in(v) ⊂ E(T ) for the set of
edges of T whose target is the vertex v. The inputs of the vertex v ∈ V (T ) is
the set Jv ⊂ V (T )q J formed either by the sources of the edges of in(v) or by
leaf indexes.

j1

e1
  

j2

e2

��

j3

e3
  

j4

e4

��

j5

e5
~~

v1

e6
!!

v2

e7
}}

r

e8

��

In the above tree, J = {j1, j2, j3, j4, j5}; r is the root, inv(v1) = {e1, e2}
and Jv1 = {j1, j2}.

The set of J−trees, denoted by θ(J), is equipped with a natural groupoid
structure. Formally, an isomorphism of J−trees θ : T ′ −→ T is defined by
bijections θV : V (T ′) −→ V (T ) and θE : E(T ′) −→ E(T ) preserving the source
and target of edges. In other word, θ(J) is the groupoid of J−labeled trees
and non-planar isomorphisms.

(J −R−M − L)-tree

Let J be a finite set, and R,M,L three symmetric sequences on chain com-
plexes.

A (J −R−M − L)-tree is a colored tree T (y, c, x) whose:

- The root r is labeled by y ∈ R(Jr);
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- Each internal vertex v ∈ V (T ) is labeled by cv ∈ M(Jv) and c :=
⊗

v∈V (T )
cv;

- Finally, the leaves {lj , j ∈ k} of T are labeled by a partition J = J1 q
...q Jk : ∀j, xj ∈ L(Jj) and x := ⊗

j∈k
xj .

1.8.2 Two sided bar construction

The bar construction is a combinatorial object which is in operad theory an
analogue to free modules or free groups in classical algebra. We define the bar
construction using trees.

Given a symmetric sequence M and a tree T , we can always define a new
symmetric sequence by labeling the vertices of the tree T with the elements of
M. The free object associated to M and denoted by F (M) consists of: chain
complexes (F (M)(J), ∂0), for any finite set J, defined as

F (M)(J) = ⊕
T∈θ(J)

T (M)/ ≡

where T (M) = ⊗
v∈V (T )

M(Jv), and the equivalence classes are made of non

planar isomorphisms of J−trees. The differential ∂0 is induced naturally by
the differentials of the chain complexes (M(Jv), ∂Jv ).

A bijection θ : J −→ J ′ gives an isomorphism F (M)(J) −→ F (M)(J ′)
by relabeling the leaves of the underlined trees. In this way F (M) becomes a
symmetric sequence in chain complexes.

Definition 1.4 (Two sided bar construction). Let O be an augmented operad,
R be a right O-module and L be a left O-module. The two sided bar construction
B(R,O, L) is the symmetric sequence of chain complexes given by: for any
finite set J,

B(R,O, L)(J) := (R ◦ F (sÕ) ◦ L(J), ∂0 + ∂), with Õ = ker ε.

The differential ∂0 is induced in the natural way by the differentials of the chain
complexes {(R(J ′), dJ′)}J′⊆J , {(O(J ′), dJ′)}J′⊆J , and {(L(J ′), dJ′)}J′⊆J . The
second differential ∂ = ∂R + ∂O + ∂L of this complex is the derivation which
integrates the structure morphisms: mR : R ◦ O −→ R,mL : O ◦ L −→ L, and
mO : O ◦ O −→ O ( for explicit description, see [Fre04, § 4.4.3.]).

The example in Fig. 1 below shows how ∂ is applied to a J−R−sÕ−L-tree:
Let xj ∈ L(Jj) for j = 1, 2, 3, 4 and J1q J2q J3q J4 = J and c1, c2 ∈ Õ(2)

and y ∈ R(2);
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Fig 1.

Decomposition of the two sided bar construction

Let O be an augmented operad, R be a right O-module and L be a left O-
module. The two sided bar construction B(R,O, L) has a natural decomposi-
tion map

B(R,O, L) −→ B(R,O, I)◦̂B(I,O, L) (1.3)



1.8. Bar construction 23

that we intend to describe in this part. Roughly speaking, this decomposition
consists of ungrafting trees.

Using the notations on Trees introduced in Section 1.8.1, an element in
the summand B(R,O, L) = R ◦ F (sÕ) ◦ L(J) can be presented as a colored
(J − R − sÕ − L)-tree T (y, c, x) together with a partition J = J1 q ... q Jk
where, the root r of T is labeled by y ∈ R(Jr), each internal vertex v ∈ V (T )
is labeled by cv ∈ sÕ(Jv) and c := ⊗

v∈V (T )
cv; finally the leaves {lj , j ∈ k} of T

are labeled by a partition J = J1 q ...q Jk with xj ∈ L(Jj), and x := ⊗
j∈k

xj .

A tree colored tree T (y, c, x) can be seen as (Ii−I−sÕ−L)-trees: Ti(1, ci, xi), i ∈
{1, ..., n}, grafted each on a single (n−R− sÕ − I)-tree T ′(y, c, 1) with exactly
n leaves, where:

- the leaves of a tree Ti(1, ci, xi) are labeled by a partition Ii = J1ni q ...q
Jαni

- c1 ⊗ ...⊗ cn = c;

- x1 ⊗ ...⊗ xn = x;

- 1 is the unit in the field k.

In other words, we have

T (y, c, x) = T ′(y, c, 1)[T1(1, c1, x1), ..., Tn(1, cn, xn)]. (1.4)

The right hand side of Equation (1.4) is isomorphic to

T ′(y, c, 1)⊗ T1(1, c1, x1)⊗ ...⊗ Tn(1, cn, xn)

which lives in B(R,O, I)◦̂B(I,O, L)(J).
The morphism of Equation (1.3) is defined naturally by means of this iden-

tification.

1.8.3 Bar construction on O

This is a two sided bar construction on O when we consider trivial the left and
right O-modules.

Definition 1.5 (bar construction). Let O be an operad. If R = L = I, the bar
construction B(O) is obtained from Definition 1.4: for any finite set J,

B(O)(J) := (F (sÕ)(J), ∂0 + ∂), with Õ = ker ε.

The more important thing to know about this simple case is that we actu-
ally get a cooperad structure map on the bar construction B(O), obtained by
replacing L = R = I in Equation (1.3). This is proved in [[GJ94, §1.7]].

Lemma 1.6. Let O be an augmented operad. Then the bar construction B(O)
is a connected coaugmented cooperad.
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1.8.4 Bar construction on O-algebras

We define the bar construction B(O, X) on an O-algebra X using the two sided
bar construction. For that, we consider the embedding functor

−̂ : AlgO −→ O-mod

(defined in Section 1.5) from O-algebras into the category of left O-modules.

Definition 1.7 (Bar construction on algebras). Let X be an algebra over an
augmented operad O. We define the bar construction on O with coefficient in
X as the chain complex:

B(O, X) := (B(I,O, X̂)(0), ∂0 + ∂)

The bar construction B(O, X) is not only a chain complex. It is actually a
B(O)-coalgebra. The coalgebra structure map is obtained by replacing L = X̂
and R = I in Equation (1.3).

Lemma 1.8. Let O be an augmented operad and let X be an O-algebra. Then
the bar construction B(O, X) is a coalgebra over the cooperad B(O).

On the other hand, note that B(O, X) is the infinite sum

B(O, X) = ⊕
n≥0

B(O)(n) ⊗
Σn
X⊗n.

1.9 Cobar construction

Let (Q,Q mc−→ Q ◦Q,Q ηc−→ I, I εc−→ Q) be a connected coaugmented cooperad
in Ch+, and denote Q̃ := coker(εc).

We consider the cobar construction of Q with coefficients in a right Q-
comodule R and a left Q-comodule L, whose the definition is dual to that of
the bar construction in Definition 1.4. We also indicate Fresse ([Fre04, § 4.7.1])
as a reference for this part.

Definition 1.9 (cobar construction). We consider the above notations.

1. The cobar construction Bc(R,Q,L) is the symmetric sequence: for any
finite set J, sequence:

Bc(R,Q,L)(J) := (R ◦ F (s−1Q̃) ◦ L(J), ∂0 + ∂∗), with Q̃ = coker(εc).

The differential ∂0 is induced in the usual way and ∂∗ = ∂R + ∂Q + ∂L

is the dual of the twisting differential ∂ in Definition 1.4.

2. When L = R = I, then Bc(R,Q,L) will simply be denoted Bc(Q).

In this definition, the cooperad Q needs to be connected to avoid the case
where F (s−1Q̃) has elements in negative degree.
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1.10 Cobar-Bar adjunction on operads

The bar and construction that we have defined in the previous sections respec-
tively on operad and cooperads and not just dual in their construction. They
are actually adjoint functors.

We are now ready to state the next theorem which gives a duality between
the bar construction and the cobar construction.

Theorem 1.10. [GJ94, Theorem 2.17] The functors

Bc(−) : coOpCh+ � OpCh+ : B(−)

between the categories of connected coaugmented cooperads and the category of
augmented operads, form and adjoint pair Bc(−) ` B(−).

In addition, it is proved in [GK95, Theorem 3.2.16] that the unit η : Q −→
BBc(Q) and the counit % : BcB(O) −→ O of this adjunction are quasi-
isomorphisms.

We end this part by reminding a useful homotopy invariance property of the
bar construction carried by the bar-cobar adjunction. More precisely, under
the quasi-isomorphism Bc(B(O)) %−→

'
O, we deduce that any O-algebra X has

a natural Bc(B(O))-algebra structure . We use this assumption to state the
next lemma.

Lemma 1.11. Let X ∈ AlgO. The morphism of B(O)-coalgebras

B(%,X) : B(Bc(B(O)), X) −→ B(O, X)

is a weak equivalence.

Proof. We form the following diagram

B(Bc(B(O)), X) = BBcB(O) ◦ X̂
B(%) // B(O, X) = B(O) ◦ X̂

B(O, X) = B(O) ◦ X̂

η◦X̂

OO
Id

33

where η : B(O) −→ BBcB(O) is the unit of the cobar-bar adjunction (Bc, B)
applied to the cooperad Q = B(O).

Since η is a quasi-isomorphism, it follows thatB(%) is also a quasi-isomorphism.

1.11 Cobar-Bar adjunction on O-algebras

We have defined in Section 1.8.4 the bar construction functor

B(O,−) : AlgO −→ coAlgB(O)

between the category of O-algebras and the category of B(O)-coalgebras. In
this section, we construct a left adjoint of B(O,−) which is actually a left
Quillen equivalence
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ΩO(−) : coAlgB(O) −→ AlgO

Note that the functor ΩO(−) that we we define, which is also called "cobar
construction" in the literature is different from the functor Bc given in Def-
inition 1.9 which is mainly used for modules (symmetric sequences). In this
section, when we will say cobar construction on a coalgebra, we always mean
the functor ΩO(−).

1.11.1 Cobar construction on Q-coalgebras

Let Q be a connected cooperad on chain complexes and Y a Q-coalgebra. We
define here the cobar construction with a "twisting cochain" as it appears in
[GJ94] and [LV12, § 11.2.8.].

We consider to have from now a reduced operad O such that Bc(Q) '−→ O.
This later morphism induces a degree 0 morphism s−1Q̃ −→ Õ which gives a
morphism π : Q̃ −→ Õ of degree −1. The morphism π is generally named in
the literature twisting cochain (see [GJ94, def 2.16]).

We use π to define the composite

w : Y
mcY // Q(Y ) // Q̃(Y )

π(Y ) // Õ(Y ) // O(Y )

The derivation dw : O(Y ) −→ O(Y ) of degree −1 associated to this w satis-
fies the equation of twisting homomorphism d(w) + dw.w = 0 on Y. This is
equivalent to say that (O(Y ), d+ dw) is a quasi-free O-algebra.

Definition 1.12 (cobar construction on a Q-coalgebra). The cobar construc-
tion on Y, associated to the twisting cochain π : Q̃ −→ Õ, and denoted Ωπ(Q,Y )
is the quasi-free O-algebra

Ωπ(Q,Y ) = (O(Y ), d+ dw)

where d is the internal differential of O(Y ) induced by the complexes O and Y.

Notation 1. When Q = B(O) and π is the natural projection (of degree −1)
B̃(O) −→ Õ, then the cobar construction Ωπ(Q,Y ) will simply be denoted
ΩO(Y ).

We form the cobar-bar adjoint pair

ΩO(−) : coAlgB(O) � AlgO : B(O,−)

whose the unit and co-unit functors have the following property:

Theorem 1.13 ([GJ94], Theorem 2.19). Given an O-algebra X and a B(O)-
coalgebra Y, the co-unit ΩO(B(O, X)) −→ X and the unit Y −→ B(O,ΩO(Y ))
are weak equivalences.

With the model structure defined on coAlgB(O) and AlgO, we can see that
the cobar-bar adjunction is actually a Quillen pair, and Theorem 1.13 completes
in proving that this adjunction is a Quillen equivalence.
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1.11.2 Cofibrant replacement in AlgO
In this part, we use the co-unit of the cobar-bar adjunction on algebras to
construct a functorial cofibrant replacement of any O-algebra. We raise the
reader’s attention on the following:

- The operad O is now a reduced operad;

- The field k must satisfy one of the following conditions:

(a) The field k is a field of characteristic 0 with no other restriction of
the operad O;

(b) The field k is of any characteristic, but the operad O and coop-
erad B(O) must be Σ∗-cofibrant, to mean cofibrant objects in the
category of symmetric sequences.

- We are not saying that we have a Quillen equivalence between algebras
and coalgebras in this case (at least, it not clearly stated in our reference
papers). However given a reduced operad O, which is in particular an
augmented operad, it make sens to consider in this case the adjunction
counit % : BcB(O) −→ O (in Theorem 1.10). On the other hand, given an
O-algebra X, it also make sens to consider the counit ΩO(B(O, X)) −→
X (in Theorem 1.13 ).

The results we use in this section was given for chain complexes over a
ring in their original versions. Since we are only working on a field k, we have
rephrased these results in our context to keep our notations and assumptions.
An interested reader can check out the references provided for more complete
statements.

Proposition 1.14. ([Fre04, Prop 3.1.12.] ) We assume that the ground field
k is of any characteristic. Let O be a reduced operad. Then the cobar-bar
adjunction unit % : BcB(O) −→ O is a quasi-isomorphism.

Theorem 1.15. ([Fre09, Thm 4.2.4]) Let O be any Σ∗-cofibrant operad. Let Q
be any Σ∗- cofibrant reduced cooperad ( Q(0) = 0 and Q(1) = k) together with
a twisting cochain θ : Q̃ −→ Õ associated to a weak equivalence φθ : Bc(Q) '−→
O.

If X is a O-algebra which is cofibrant as a chain complex, then the cobar-bar
co-unit

ΩO(B(O, X)) −→ X

defines a weak equivalence and Xc := ΩO(B(O, X)) forms a cofibrant replace-
ment of X in the category AlgO.

Note that when we consider Q = B(O) and φθ = % (in Proposition 1.14),
then Theorem 1.15 generalizes Theorem 1.13 which is only true in characteristic
0.

We end this section by defining the cofibrant replacement functor

(−)c : AlgO −→ AlgO
X 7−→ ΩO(B(O, X))
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1.12 Definition of the functors Ω∞ and Σ∞

We define in this section two functors:

Ω∞ : Ch −→ AlgO and
Σ∞ : AlgO −→ Ch

which have the following properties:

- The functors Σ∞ and Ω∞ are homotopy invariant functors;

- These functors do not form adjoint pair but the composite Σ∞Ω∞ is a
comonad.

A reader familiar with homotopy theory in topological spaces might be in-
terested with the relation between these functors and the usual ones defined
between the category Top∗ of topological spaces and the category Sp of spec-
tra. In fact these functors are used in describing the loop and the suspension
functors in the category AlgO. For more detail, we refer to Proposition 1.25
and Corollary 1.29.

Let O be a reduced operad. The natural augmentation ε : O −→ I is used
to define a functor:

I ◦
O
− : AlgO −→ AlgI = Ch+

given by I ◦
O
X := colimCh+(I(O(X)) ⇒ I(X))

The first map of this colimit is produced by the multiplication I ◦ O −→ I
which is in fact the augmentation ε; The second map is given by the O-algebra
structure map O(X) −→ X.

We define the abelianization functor as its composite with the forgetful
functor

(−)ab : AlgO
I◦
O
−
−→ Ch+

I
↪→ Ch

where I is the inclusion functor defined by I(V )t :=
{
Vt if t ≥ 0
0 if t < 0

Lemma 1.16. The abelianization functor has a right Quillen adjoint functor
given by:

Ω∞ : Ch red0−→ Ch+
(−)triv−→ AlgO

where for any chain complex C∗, red0(C∗)t :=
{
Ct if t > 0
ker(d0) if t = 0

and (−)triv is the functor which assigns to any non negative graded chain
complex the trivial O-algebra structure.

Proof. It will be sufficient to prove the adjunctions

I ◦
O
− a (−)triv and I a red0
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The second adjunction is straightforward. For the first adjunction, we define
the map

γ : HomCh+(I ◦
O
X,W ) −→ HomAlgO (X, (W )triv)

f 7−→ (X −→ I ◦
O
X

f−→ f)

One can check easily that this map is well defined. The inverse of this map is
defined as follows:

γ′ : HomAlgO (X, (W )triv) −→ HomCh+(I ◦
O
X,W )

Let h ∈ HomAlgO (X, (W )triv). We have by definition of algebra structure the
relation ε(1W ) ◦ O(h) = h ◦m, where m : O ◦ O −→ O is the operad multipli-
cation.

On the other hand, we have I(h) ◦ ε(1X) = ε(1W ) ◦ O(h). Therefore, we
deduce the relation h ◦m = I(h) ◦ ε(1X). Thus using the universal property of
the co-equalizers, there is a unique map f : I ◦

O
X −→ W such that h is the

composite h : X −→ I ◦
O
X

f−→W. One can check easily that γγ′ = Id and that
γ′γ = Id. This part proves the adjunction.

Now to prove that the pair (−)ab a Ω∞ is a Quillen par, it is sufficient
to prove that Ω∞ preserves fibrations ( surjections) and acyclic fibrations (
quasi-isomorphic surjections). This is again straightforward since the model
structure defined on the category AlgO is the projective one induced by the
model structure of Ch+, and the functor red0 is a homotopy functor.

We then deduce from the above analysis that we have an adjunction pair

(−)ab : AlgO Ch : Ω∞.>

The functor (−)ab does not preserves quasi-isomorphisms in general, apart
from preserving quasi-isomorphisms between quasi-free algebras (since they are
cofibrant objects in AlgO), Its derived associate functor is what is called in the
literature Quillen homology.

Definition 1.17 (Quillen homology). If X is an O-algebra, the Quillen ho-
mology TQ(X) of X is the O-algebra I h◦

O
X.

We will give in the next lines an explicit model of the functor TQ(−) which
we will need to define Σ∞.

We have defined in Section 1.11.2 the cofibrant replacement functor (−)c :
X 7−→ ΩO(B(O, X)). Using this expression, we make the following computa-
tion:

TQ(X) ' I ◦
O
Xc

= I ◦
O

(O(B(O, X)))

= UB(O, X),
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where U : CoalgB(O) −→ Ch+ is the forgetful functor. Under this last quasi-
isomorphism, we will consider the functor UB(O,−) as our explicit model for
the functor TQ(−) and we will denote by Σ∞ the composite:

AlgO
Σ∞

22
B(O,−) // CoalgB(O)

U // Ch+
� � I // Ch

Roughly speaking, Σ∞ a the homotopy invariant version of the abelianiza-
tion functor, thus it is not adjoint to the functor Ω∞. However, there is the
following important property:

Proposition 1.18. The composite T = Σ∞Ω∞ : Ch −→ Ch is a comonad.

Proof. To prove the result, it will be sufficient to prove that T is the composite
of a true right and left adjoint functors. For this, we consider two adjunctions

coAlgB(O)

U //
Ch+

I //

B(O,(−)triv)
oo Ch

red0

oo ,

where the top functors are each left adjoint functor and the bottom functors
are each right adjoint functors. We then observe that the associate comonad
is IUB(O, (−)triv)red0 ∼= Σ∞Ω∞.

Note that the comonad structure map T −→ TT on T explained in Propo-
sition 1.18 is essentially given by the cooperad coproduct

B(O) −→ B(O) ◦B(O).

We can extend the construction of the functors Σ∞ and Ω∞ to other cate-
gories as follows:

- Σ∞ := I : Ch+ −→ Ch;

- Σ∞ = Id : Ch −→ Ch;

- Ω∞ = red0− : Ch −→ Ch+;

- Ω∞ = Id : Ch −→ Ch.

1.13 Homotopy limits and colimits in AlgO
The purpose of this section is to remind a brief notion of homotopy limits and
colimits, and give their explicit description in AlgO in terms of holims and
hocolims in chain complexes.

Let C and D be any of the categories AlgO, coAlgB(O) and Ch+. These
categories are complete and cocomplete. The authors of [DHKS04] proved, in
a general argument for complete and cocomplete model categories, that holims
and hocolims always exists in C and are homotopical unique (see [DHKS04,
19.2]). More explicitly, given a small category J, and an J-diagram D in C, they
replace D through a functor D 7−→ Dvf (resp. D 7−→ Dvc) which associate a so
called "virtually fibrant replacement" (resp "virtually cofibrant replacement")
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Dvf (resp. Dvc) such that there is a map D '−→ Dvf (resp. Dvc
'−→ D) natural

in D. These replacement functors have the following properties(see [DHKS04,
20.5]):

1. The limit (resp. colimit) functor in C turns an objectwise weak equiva-
lence between two virtually fibrant (resp. cofibrant) diagrams into a weak
equivalence between fibrant (resp. cofibrant) objects in C;

2. Any Quillen adjoint pair F : C � D : G induces the adjoint pair F J :
CJ � DJ : GJ which has the following properties

(a) F J preserves virtual cofibrancy and weak equivalence between vir-
tually cofibrant diagrams.

(b) GJ preserves virtual fibrancy and weak equivalence between virtu-
ally fibrant diagrams.

According to this vocabulary we can now set the definition of holims and ho-
colims:

Definition 1.19. Given an J-diagram D in C,

holimC(D) := limC(D)vf and hocolimC(D) := colimC(D)vc.

In practice, Dwyer-Spalinski explains, in [DS95, § 10.], that computing the
homotopy pullback of a diagram X

g−→ Z
f←− Y in a model category C involves

replacing Z by a fibrant object and replacing the maps X g−→ Z and Y f−→ Z
by fibrations.

Dually, computing the homotopy pushout of a diagram D : X g←− Z f−→ Y
in a model category C involves replacing Z by a cofibrant object and replacing
the maps Z g−→ X and Z f−→ Y by cofibrations (see [DS95, § 10.]).

These process of computing homotopy pullbacks and pushouts are simplified
in right and left proper model categories:

Definition 1.20 (Proper model category). 1. A model category C is right
proper when a pullback of a fibration over an equivalence is an equivalence.
In other words, consider the pullback diagram:

P //

��

X

��
Y // Z

If X −→ Z is a fibration and Y −→ Z is an equivalence, then P −→ X
is an equivalence.

2. A model category C is left proper when a pushout of a cofibration over an
equivalence is an equivalence.

Lemma 1.21. If C is a right proper model category, then the homotopy pullback
of a diagram X

g−→ Z
f←− Y can be computed by replacing Z by a fibrant object

and replacing at least one of the maps f and g by a fibration.



32 Chapter 1. Algebraic categories

Proof. We consider a diagram D : X g−→ Z
f←− Y and we assume that Z is

a fibrant object and that the map f is a fibration. Using the above Dwyer-
Spalinski’s argument, we want to show that the limit of D is equivalent to the
homotopy colimit of D. More precisely, considering the factorization

X
g //

'   

Z

X ′
g′

>> >> ,

we form the diagram

X

'
��

g // Z

=
��

Y
foooo

=
��

X ′
g′
// // Z Y

f
oooo

We want to show that the limit of the two horizontal diagrams are equivalent.
To prove this, we consider the diagram

X ′ ×
Z
Y

����

// X ×
Z
Y

����

// Y

����
X ′ '

// X
g
// Z

The outer square is a pullback by construction. Therefore, using pullback
properties, we deduce that the most left square is also a pullback. In addition
the category C is right proper, so we deduce that the map X ′ ×

Z
Y −→ X ×

Z
Y

is an equivalence.

Dually, we have the next lemma for homotopy pushout diagrams in left
proper model categories.
Lemma 1.22. If C is a left proper model category, then the homotopy pushout
of a diagram X

g←− Z
f−→ Y can be computed by replacing Z by a cofibrant

object and replacing at least one of the maps f and g by a cofibration.
Remark 1.23. 1. The category Ch+ is left and right proper;

2. Since the model structure on the category AlgO is a projective one induced
by the model structure of Ch+, we deduce that AlgO is right proper;

3. Since the model structure on the category coAlgB(O) is an injective one
induced by the model structure of Ch+, we deduce that coAlgB(O) is left
proper;

4. Even if the category AlgO is not left proper, using a Reedy’s result ([Hir03,
Prop 13.1.2]), to compute the homotopy pushout of a diagram X

g←−
Z

f−→ Y in AlgO where all the algebras X,Y and Z are cofibrant, we can
follow the conclusion of Lemma 1.22.
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1.13.1 Model for the loop of an O-algebra

In any model category, the suspension of an object is defined as the homotopy
pullback

ΩX //

��

∗

��
∗ // X

The goal of this section is to give an explicit model for the loop of O-algebra.

Theorem 1.24. Let k be a field of characteristic 0. Given X ∈ AlgO, there is
a weak equivalence of O-algebras

ΩX ' (red0s
−1X)triv

An important consequence of this theorem is that any loop in AlgO has a
trivial O-algebra structure. More precisely,

Proposition 1.25. Let k be a field of characteristic 0. If Y is an O-algebra
such that Y ' ΩX then there is a weak equivalence of O-algebras

Y ' Ω∞UY

Proof. From Theorem 1.24, we deduce that Y ' Ω∞s−1X. When we ap-
ply the forgetful functor U, we get the quasi-isomorphism in chain complexes
UY ' UΩ∞s−1X.We apply again the functor Ω∞ and get the O-algebra weak
equivalences

Ω∞UY ' Ω∞UΩ∞s−1X ∼= Ω∞s−1X ' Y.

The rest of this part is dedicated to the proof of Theorem 1.24. We will
produce in fact an explicit model for homotopy pullbacks in AlgO.

As observed in Remark 1.23-(2) and in Lemma 1.21, the homotopy pullback
of a diagram D : X g−→ Z

f←− Y in AlgO is calculated using observations in
the underlined category Ch+. Since any O-algebra is fibrant, it reduces to
replace the map f by a fibration (to mean a surjection in positive degrees).
The replacement of f is done through a its factorization by an acyclic map
followed by a fibration. In this process, we need to construct a new O-algebra
associated to Z called "path object".

Construction of path objects in AlgO
Let I = (∧(t, dt), d) be the free differential graded commutative algebra gener-
ated by the element t in degree 0 and dt in degree −1, with differential d given
by d(t) = dt and d(dt) = 0. It is useful to notice that an element α of I has
the form α = P (t) +Q(t)dt with P,Q ∈ k[t].

There are natural commutative algebra maps s0 : k −→ I and p0, p1 : I −→
k defined as: ∀(α = P (t) +Q(t)dt ∈ I) and k ∈ k,
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p0(α) := P (0), p1(α) := P (1) and s0(k) = k

s0 is a quasi-isomorphism and p0s0 = p1s0 = 1k.
For any O-algebra Z, there is a natural O-algebra structure on I ⊗ Z (see

[Liv99, §2.4]) given by : If a ∈ O(n), αi ⊗ xi ∈ I ⊗ Z, for 1 ≤ i ≤ n,

m(a⊗ α1 ⊗ x1 ⊗ ...⊗ αn ⊗ xn) := ±α1...αn ⊗mZ(a⊗ x1 ⊗ ...⊗ xn⊗);

One then get the factorization in O-algebras (unbounded algebras)

Z
s0⊗Z // I ⊗ Z

p0⊗Z
//

p1⊗Z //
Z

which yield to the diagram in AlgO :

Z
sZ0 // red0(I ⊗ Z)

pZ0

//
pZ1 //

Z

One can prove that pZ0 and pZ1 are trivial surjections in positive degrees.

Definition 1.26 (path object). A path object associated to an O-algebra Z is
the O-algebra ZI := red0(I⊗Z) together with the O-algebra morphisms pZ0 , pZ1
and sZ0 .

Construction of homotopy pullbacks in AlgO
Let us consider the commutative diagram in AlgO :

Y

f
&&

1Y

''

(sZ0 f,Y )

''
Z

sZ0 ''

ZI ×
Z
Y

π1

��

π2

' // Y

f

��
ZI

pZ0

'
// Z

where the square in the middle is a pullback. From the left triangle, we build
the following factorization of f :

Y
(sZ0 f,Y )
'
////

f=pZ1 s
Z
0 f ""

ZI ×
Z
Y

pZ1 π1

��
Z

(1.5)

Lemma 1.27. The morphism pZ1 π1 : ZI×
Z
Y −→ Z is a fibration of O-algebras.
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Proof. It is sufficient to show that the induced map in Ch+ is a surjection in
positive degrees. We consider and element z ∈ Z with degree |z| ≥ 1. Then
the pair (zt, 0) is an element of ZI ×

Z
Y as pZ0 (zt) = 0. On the other hand,

pZ1 π1(zt, 0) = z.

We use the above factorization to replace f in a diagramD : X g−→ Z
f←− Y

by the fibration pZ1 π1.

Proposition 1.28. Given an O−algebra diagram D : X g−→ Z
f←− Y, a

homotopy pullback of D is the O−algebra PD = X ×
Z
ZI ×

Z
Y, namely

PD = limAlgO (X g−→ Z
pZ1 π1←− ZI ×

Z
Y ).

Proof. This follows from the factorization (1.5) and Lemma 1.21.

Proof of Theorem 1.24. We consider the map

Φ : (red0s
−1X)triv −→ ΩX

s−1x 7−→ (0, dt⊗ x, 0)

Our objective is to prove that Φ is well defined and is a weak equivalence.
We first prove that Φ is a map of O-algebras. Namely let x1, ..., xn ∈ X,

and a ∈ O(n), (n ≥ 2), then

mΩX(a⊗ Φ(s−1x1)⊗ ...⊗ Φ(s−1xn)) = (0, dtn ⊗mX(a⊗ x1 ⊗ ...⊗ xn), 0)
= 0 ( since dtn = 0)

This computation proves that Φ is a map of O-algebras as the O-algebra struc-
ture on (red0s

−1X)triv is trivial. It is obvious that the map Φ commutes with
the differentials of the two complexes.

Now we prove by hand that H∗(Φ) is injective and surjective. Let us take

x = a0 + Σ
l≥1
tlal + Σ

k≥0
tkdtbk ∈ XI such that (0, x, 0) ∈ ΩX ∩Kerd

where for each l and k, al, bk ∈ X;

(0, x, 0) ∈ ΩX ⇐⇒ pX1 (x) = 0 = pX0 (x)
⇐⇒ a0 = 0 = Σ

l≥1
al

One can also see that

dx = 0⇐⇒∀l ≥ 1, dal = 0 and Σ
l≥1
ltl−1dtal = Σ

k≥0
tkdtdbk
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This last equality implies that ∀l ≥ 1, al = 1
l dbl−1 and thus Σ

l≥1
1
l dbl−1 = 0 One

then get:

x = Σ
l≥1

1
l
tldbl−1 + Σ

l≥1
tl−1dtbl−1

= Σ
l≥1

1
l
(tldbl−1 + ltl−1dtbl−1)

= d( Σ
l≥1

1
l
tlbl−1)

= d( Σ
l≥1

1
l
tlbl−1 − t Σ

l≥1

1
l
bl−1 + t Σ

l≥1

1
l
bl−1)

= d( Σ
l≥1

1
l
tlbl−1 − t Σ

l≥1

1
l
bl−1) + d(t Σ

l≥1

1
l
bl−1)

One can see that Σ
l≥1

1
l t
lbl−1 − t Σ

l≥1
1
l bl−1 ∈ ΩX and that d(t Σ

l≥1
1
l bl−1) = dt ⊗

Σ
l≥1

1
l bl−1, therefore

[x] = [dt⊗ Σ
l≥1

1
l bl−1] = H∗(Φ)([s−1 Σ

l≥1
1
l bl−1])

This implies that H∗(Φ) is surjective.
To prove that H∗(Φ) is injective, let’s take [s−1x] ∈ (red0s

−1X)triv such
that H∗(Φ)([s−1x]) = 0. This implies that dtx = dx, for a given x ∈ ΩX. As
before we set x = Σ

l≥1
tlal + Σ

k≥0
tkdtbk, with Σ

l≥1
al = 0. An easy comparison on

the degree of the polynomials proves that

dtx = Σ
l≥1
ltl−1dtal + Σ

l≥1
tldtdal − Σ

k≥0
tkdtdbk ⇐⇒ x = a1 − db0 and ∀l ≥ 2, al = 1

l
dbl−1

=⇒ x = − Σ
l≥2

1
l
dbl−1 − db0 = d(− Σ

l≥1

1
l
bl−1)

this means that [s−1x] = 0 and proves that H∗(Φ) is injective.

1.13.2 Model for the suspension of an O-algebra

In any model category, the suspension of an object is defined as a homotopy
pushout

X //

��

∗

��
∗ // ΣX

The goal of this section is to give an explicit model for the suspension of O-
algebras, which holds when k is of any characteristic.

Theorem 1.29. Given Z ∈ AlgO, there is a weak equivalence of O-algebras

ΣZ ' O(sUB(O, Z))
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In particular, a suspension of an O-algebra is always equivalent to a free
O-algebra.

The rest of this part is dedicated to the proof of Theorem 1.29. We will pro-
duce in fact an explicit model for homotopy pushouts in AlgO. Our approach is
a dual version of homotopy pullback. More precisely, we would like to compute
the homotopy pushout of a diagram D : X g←− Z

f−→ Y in AlgO. Since this
category is not left proper, we replace this diagram by an equivalent one

Dc : Xc gc←− Zc fc−→ Y c

where

(−)c : Z 7−→ Zc := ΩO(B(O, Z))

is the cofibrant replacement functor defined in Section 1.11.2. Note that all
the objects in the diagram Dc are now cofibrant, therefore using Remark 1.23,
we can use the result of Lemma 1.22, which means that we only have to take
a factorization of the map f c by a cofibration followed by an equivalence. For
this factorization of f c, we need to define a new O-algebra associated to Zc
called " cylinder object".

Construction of a cylinder of a quasi-free O-algebra

We assume that k is a field of characteristic 0.We give in this part the construc-
tion of a cylinder of a quasi-free O-algebra in the same line that the definition
for differential graded Lie algebras in [Tan83, II.5.], and for closed DGL’s in
[BFMT16, § 5.].

Let (O(V ), d) be a quasi-free O-algebra, and let V ′ be a copy of V. We
define :

- O(V )⊗̂I := (O(V ⊕ V ′ ⊕ sV ′), D), where: (sv′)n = v′n−1, Dv
′ = 0,

Dsv′ = v′, Dv = dv.

- λ0 : (O(V ), d) −→ O(V )⊗̂I the canonical injection;

- p : O(V )⊗̂I −→ (O(V ), d) is the O-algebra morphism given by:
p(v) = v; p(v′) = p(sv′) = 0; p is a quasi-isomorphism since O(V ′ ⊕ sV ′)
is acyclic.

- i : O(V )⊗̂I −→ O(V )⊗̂I is the degree +1 O-algebra derivation given by:
i(v) = sv′; i(sv′) = i(v′) = 0;

- TheO-algebra derivation of degree 0, θ = Di+iD verifies θD = Dθ, θ(v′) =
θ(sv′) = 0.We have the induced automorphism of O-algebras eθ = Σ

n≥0
θn

n!

( with inverse e−θ).

The automorphism eθ is well defined for the following reason: let v ∈ Vn.
We write down explicitly the differential d of (O(V ), d) by d = d1 + d2 + ...,
where dkv ∈ O(k) ⊗

Σk
V ⊗k, for any given k. Computation gives that θ2(v) =

θi(d2v + d3v + ...) ∈ O(V<n)⊗̂I. Therefore we deduce inductively that for any
x ∈ O(V )⊗ I, there always exist an integer nx such that θnx(x) = 0.
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- We define the second injection λ1 : (O(V ), d) −→ O(V )⊗̂I by, λ1(v) =
eθ(v).

The couple (O(V )⊗̂I, λ0, λ1, p) forms a cylinder of (O(V ), d).

Construction of homotopy pushouts in AlgO
Let Z be an O-algebra and we have Zc := ΩO(B(O, Z)). The cylinder object
defined above and associated to Zc will be simply denoted

Zc⊗̂I := (O(V ⊕ V ′ ⊕ sV ′), D1),

where V = B(O, Z).
Let Z f−→ Y in AlgO, we apply the functor (−)c to get the weakly equivalent

morphism Zc
fc−→ Y c. Let us consider the commutative diagram in AlgO :

Zc
fc //

λ0 '
��

Y c

1Y c
=

��

'j2

��
Zc⊗̂I

j1 //

p
**

Zc⊗̂I q
Zc
Y c

fcpq1Y c
((

Zc

fc

22 Y c

where the square in the middle is a pushout. From the lower triangle, we can
then build the following factorization of f c :

Zc
j1λ1 //

fc
,,

Zc⊗̂I q
Zc
Y c

'
fcpq1Y c

$$
Y c

We use this later factorization to replace f c in the diagramDc : Xc Zc
fc //gcoo Y c

by the cofibration π1λ1.

Proposition 1.30. We assume that char(k)=0. Given a O-algebra diagram

D : X Z
f //goo Y , a homotopy pushout of D is given by CD = Xc q

Zc

Zc⊗̂I q
Zc
Y c. Namely

CD = colimAlgO ( Xc Zc
π1i1 //gcoo Zc⊗̂I q

Zc
Y c ).

Proof. This is a dual analogue of the proof of Proposition 1.28.
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Remark 1.31. If D : X Z
f //goo Y is a diagram of quasi-free O-

algebras, then we don’t need the cofibrant replacement functor (−)c in the con-
struction, and we have

CD = X q
Z
Z⊗̂I q

Z
Y.

In the particular case of computing the suspension ΣX of an O-algebra X,
we can simply apply the homotopy pushout model in Proposition 1.30. We will
show roughly that the suspension of an O-algebra is a free O-algebra.

Proposition 1.32. We assume that char(k)=0. Let (O(V ), d) be a quasi-
free algebra with the notation for the differential: d = d1 + d2 + .... Then
Σ(O(V ), d) ' (O(sV ′), D1), where D1(sv′) := −sd1v

′ and V ′ is a copy of
(V, d).

Proof. We set for short Z = (O, d);
In Proposition 1.30, we have proved that (0q

Z
Z⊗̂I q

Z
0, D) ' ΣZ.

Since (eθ)ab(v) = v′ + sd1v
′, we deduce that in (0q

Z
Z⊗̂I q

Z
0)ab,

[Dsv′] = [v′]
= [v′ + sd1v − sd1v

′]
= [−sd1v

′]

Now we consider the morphism of O-algebras

ψ : (O(sV ′), D1) −→ (0q
Z
Z⊗̂I q

Z
0, D)

given by ψ(sv′) = [sv′].
This is a well defined chain complex morphism since [Dψ(sv′)] = ψ(D1(sv′))

and in addition B(O, ψ) ' ψab is a quasi-isomorphism, therefore ψ is a quasi-
isomorphism.

Remark 1.33. The result of Proposition 1.32 holds in general when the ground
field k is of any characteristic. In fact, we have the following pushout diagram

O(V ) //

��

O(V ⊕ sV ) ' 0

��
0 // O(sV )

This is also a homotopy pushout diagram, thus we deduce that ΣO(V ) ' O(sV ).

Proof of Theorem 1.29. We make the following computation

ΣZ ' ΣBc(B(O), B(O, X)) (Using Thm 1.15)
' O(sUB(O, Z)) ( Using Proposition 1.32 and Remark 1.33 )
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1.13.3 Filtered colimits in AlgO
In this section we remind two important properties of filtered colimits in AlgO.
These are colimits of filtered diagrams of O-algebras.

Proposition 1.34. ([Fre17, Prop 1.3.6-(a)]) Let O be an operad on Ch+
(resp. Ch). The forgetful functor U : AlgO −→ Ch+ (resp. U : AlgO −→ Ch)
preserves filtered colimits.

Roughly speaking, this result says that filtered colimits in AlgO are com-
puted in the ground category Ch+ or Ch.

Lemma 1.35. In AlgO, filtered homotopy colimits commute with finite homo-
topy limits.

Proof. Let J be a right filtered diagram and K be a small category. Consider
a functor F : J ×K −→ AlgO.

The goal of this proof is to show that the canonical morphism

colim J limKF
%−→ limKcolim JF

is an isomorphism.
It is sufficient to prove that the morphism of chain complexes U% is an

isomorphism, where U : AlgO −→ Ch+ ↪→ Ch is the forgetful functor. On the
other hand, we have

Ucolim J limKF ∼= colim J limKUF

since U commutes with filtered colimit in AlgO and U commutes with limits
in AlgO as a right adjoint functor.

Therefore the proof reduces to proving that

colim J limKUF
U%−→ limKcolim JUF

is an objectwise isomorphism of chain complexes and this is known.

1.14 Resume of chapter 1

In this chapter, we gave some preliminaries on the algebraic categories of respec-
tively Z-graded and N-graded chain complexes: C = Ch,Ch+; the category of
symmetric sequences: [FinSet, C]; the category of operads: OpC , the category
of Q-coalgebras: coAlgQ, where Q is a cooperad; the categories of respectively
O-algebras and right O-modules: AlgO, O-mod, where O is a reduced operad.

In this section, we remind a couple of functors and adjunctions on a checking
list, so that the reader could feel more comfortable with our notations in the
upcoming chapters.

We have the adjunctions

(a)
O(−) : Ch+ AlgO : U.>
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where O(V ) is the free O-algebra generated by the chain complex V and
U is the forgetful functor.

Dually, given a cooperad Q, we have the adjunction

(b)
U : coAlgQ Ch+ : Q(−).>

where Q(V ) is the cofree Q-coalgebra generated by V.

(c) We have a straightforward adjunction between Z-graded and N-graded
chain complexes:

I : Ch+ Ch : red0.

>

(d) Another important adjunction is

(−)ab : AlgO Ch : (red0−)triv.>

where (−)ab consists in killing the decomposable and (red0V )triv is the
chain complex red0V with a trivial O-algebra structure.

Note that all the above functors are homotopy functors except the functor
(−)ab. A "homotopy" version of (−)ab is the functor Σ∞ defined below.

We have also defined various bar constructions:

(e) The two sided bar construction B(R,O, L), provided a left (resp. right)
O-module L (resp. R) which is a symmetric sequence;

(f) The bar construction on an operad B(O) := B(I,O, I). This symmetric
sequence is a cooperad and the defined functor B(−) has a left adjoint
called the cobar construction Bc(−). In other words, we have the adjunc-
tion

Bc(−) : coOpCh+ OpCh+ : B(−).>

(g) The bar construction on an O-algebra X which is the chain complex
B(O, X) := B(I,O, X̂)(0). This chain complex is actually aB(O)-coalgebra
and the defined functor B(O,−) has a left adjoint called the cobar con-
struction ΩO(−). In other worlds, we have the adjunction

ΩO(−) : coAlgB(O) AlgO : B(O,−).>

(h) The counit of this cobar-bar adjunction is a good cofibrant replacement
functor (−)c = ΩO(B(O,−)) on O-algebras.

We have three versions of loop and suspension functors Ω and Σ, defined
with homotopy pushouts and homotopy pullbacks respectively.
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C Σ : C −→ C Ω : C −→ C

Ch s s−1

Ch+ s red0s
−1I

AlgO ΣX ' O(sB(O, X) (red0s
−1I−)triv (if char(k)=0)

We have thee versions of the functors Σ∞ and Ω∞ given as follows:

C Σ∞ : C −→ Ch Ω∞ : Ch −→ C

Ch Id Id

Ch+ s red0

AlgO IUB(O,−) (red0−)triv

The functors
Σ∞ : AlgO Ch : Ω∞.

do not form a strict adjunction as we have reminded that Ω∞ is the right
adjoint of (−)ab. However, we have the following facts:

(i) The functors Σ∞ and (−)ab coincide on cofibrant O-algebras;

(j) The composite Σ∞Ω∞ : Ch −→ Ch is a comonad.

(k) In AlgO when char(k)=0, if Y ' Ω(X) then Y ' Ω∞(UX).
This literally says that, in characteristic 0, any loop space of O-algebra
has a trivial algebra structure.



CHAPTER 2

Calculus of functors

In all this chapter, we assume that C,D = Ch,Ch+ or AlgO.
In this chapter, we discuss the basics of functor calculus for functors F :

C −→ D. More precisely, we approximate a functor F with a sequence {PnF}n
of so-called polynomial functors. This is a general construction due to Good-
willie in the cases C,D = Top (category of topological spaces) or Sp (category
of spectra). Kuhn showed in his research (see [Kuh07]) that Goodwillie’s con-
structions of the approximation work in many other categories and among
those, our categories of interest here.

The approximation of functors gives rise to a "Taylor tower"

−→ PnF −→ Pn−1F −→ ... −→ P0F. (2.1)

A first step in the understanding of this tower is the study of the difference
between two consecutive terms also called the "homogeneous part of the tower":

DnF = hofib(PnF −→ Pn−1F ). (2.2)

Goodwillie obtained a concrete description of DnF in Top and Sp (see formula
(0.1) in the introduction).

In this chapter, we study an analogous description in our algebraic setting.
More precisely, we show in Theorem 2.22 that there always exists a chain
complex, ∂nF, called "Goodwillie derivatives" with an action of the symmetric
group on n letters Σn such that

DnF (X) ' Ω∞(∂nF ⊗
hΣn

(Σ∞X)⊗n). (2.3)

Our formula for DnF generalizes the result of Walter in [Wal06] who proved
that formula when C,D = Ch,Ch+ or DGL. At the end of this chapter, we
will use the formula for the derivatives to deduce the following derivatives: ∀n,

43
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• ∂n(Id : AlgO −→ AlgO) ' O(n) (in Proposition 2.41);

• ∂n(Σ∞Ω∞ : Ch −→ Ch) ' B(O)(n) (in Proposition 2.42);

•
∂n(hom(E, I⊗k)Σk : Ch −→ Ch) '

{
0 if n 6= k;
hom(E,k) if n = k.

(in Proposition 2.43);

• ∂n(NkHomCh+(V ⊗Nk4•,−) : Ch+ −→ Ch) ' hom(V,k)⊗n
(in Proposition 2.44).

These four derivatives will be a key ingredient in our description of the Taylor
tower in Chapter 5.

The chapter has the following guidelines:

- In §2.1, we fix the terminologies in the functor category.

- In §2.2, we construct the tower of polynomial approximation {PnF}n of
a given functor F : C −→ D. This includes the notion of "polynomial"
functors that we introduce at the beginning of this section.

- In §2.3, we analyze the functor DnF. In other words, we establish the
above Equation (2.3). Our construction mimics the Goodwillie’s argu-
ment in the sense that we construct ∂∗F by "multi-linearizing" the "cross-
effect". We also discuss these notions in the section. Finally, we introduce
the notion of "co-cross-effect" which is used in practice to compute ∂∗F.

- In §2.4, we compute the Goodwillie derivatives of a couple of functors.

2.1 Functor category

In this section, we put hypothesis on the functors F : C −→ D we are interested
in Goodwillie calculus. These functors should respect the model structure of
the categories C and D.

Definition 2.1 (Homotopy functor).
1. The functor F is reduced if F (0) ' 0;

2. F is a homotopy functor if it preserves weak equivalences.

3. F is finitary if it preserves filtered homotopy colimits.

In this chapter, the functors F that we consider are always homotopy func-
tors. Since the category C is not small in the three cases, we do not impose a
model structure on the class of such functors. However we will use the following
terminology:

Definition 2.2. 1. A natural transformation F −→ G is a weak equivalence
if F (X) −→ G(X) is a weak equivalence for all X ∈ C;
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2. Given a diagram of functors D = {Fα}α, we call hocolim D the functor
defined by: ∀X ∈ C,

hocolim D(X) := hocolimC
α

(Fα(X))

3. Dually for the homotopy limit. In particular, a diagram of functors

H −→ F −→ G

is a (homotopy) fiber sequence if

H(X) −→ F (X) −→ G(X)

is a (homotopy) fiber sequence for all X ∈ C.

2.2 Polynomial functors

The goal of this section is to define n-excisive functors also known as polynomial
functors of degree ≤ n. Roughly speaking, a polynomial functor of degree
≤ 1 is a covariant homotopy functor that sends homotopy pushout squares to
homotopy pullback squares. The generalization in higher degree involves the
notion of "strongly" (co)-cartesian cube that we now define.

2.2.1 Cubical (co)-cartesian cubes

Definition 2.3.
1. A n-cube in C is a functor X : P(n) −→ C, where P(n) is the poset of

subsets of n := {1, ..., n}.

2. X is Cartesian if the natural map

X (∅) −→ holim
T∈P(n)−{∅}

X (T )

is a weak equivalence.

3. X is co-Cartesian if the natural map

hocolim
T∈P(n)−{n}

X (T ) −→ X (n)

is a weak equivalence.

4. X is a strongly co-Cartesian if X |P(T ): P(T ) −→ C is co-Cartesian for
all 2 ⊆ T ⊆ n.

Example 2.4. We define the strongly co-Cartesian n-cube X = S∗(X1, ..., Xn),
for objects X1, ..., Xn in C, as follows:

∀T ⊆ [n], X (T ) := q
i∈T

Xi (in particular X (∅) = 0).
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The maps in the cube X are inclusions of the form Xi −→ Xi qXj (since C is
a pointed category).

For instance when n = 2,

X = S∗(X1, X2) =


0 //

��

X2

��
X1 // X1 qX2


Definition 2.5 ([Kuh07], 4.6). Let X ∈ C and T be a finite set. We define the
joint X ∗ T, of X and T, to be the homotopy cofiber of the folding map

X ∗ T =hocof (q
T
X

5−→ X)

Example 2.6.
- X ∗ 0 = hocof (0 −→ X) ' X;

- X ∗ 1 = hocof (X −→ X) ' 0;

-

X ∗ 2 = hocof (X qX 5−→ X)
' hopo (0←− X −→ 0)
' ΣX

Hence for X ∈ AlgO,

X ∗ 2 ' ΣΩO(B(O, X)) ' ΩO(sUB(O, X)).

We can use the joint of Definition 2.5 to define natural strongly co-Cartesian
cubes.

Proposition 2.7. ([Wal06, lemma 7.1.4]) Given X ∈ C and n ≥ 1, the n-cube

χn(X) : P(n) −→ C
T 7−→ X ∗ T

is a strongly co-Cartesian.

Proof. If T,R, S are disjoint subsets in n then we have a homotopy pushout

q
T
X //

��

q
T∪S

X

��
q
T∪R

X // q
T∪S∪R

X

which induces the homotopy pushout
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X ∗ T //

��

X ∗ (T ∪ S)

��
X ∗ (T ∪R) // X ∗ (T ∪ S ∪R)

Therefore every 2-face of the cube χn(X) is a homotopy pushout which implies
that χn(X) is strongly co-Cartesian.

2.2.2 Polynomial functors

In this short part, we define "excisive" functors which are also called "polyno-
mial" functors in many places in the literature.

Definition 2.8 (n-excisive functor).

1. A homotopy functor F : C −→ D is n-excisive if whenever X is a strongly
co-Cartesian n+ 1-cube in C, F (X ) is a cartesian cube in D;

2. A homotopy functor F : C×n −→ D is multilinear if it is 1-excisive and
reduced in each variables.

There are several properties for excisive functors and the next lemma will
be often used in this thesis.

Lemma 2.9. Given a fiber sequence

F −→ G −→ H

of functors C −→ D, if any two of the functors are n-excisive, so is the third.

Proof. We give the proof in the particular case when F and H are n-excisive.
The other cases follow the same idea. Let X be a strongly co-cartesian n-cube
in C. We have

F (X ) ' hofib(G(X ) −→ H(X )) (2.4)

When we apply the total homotopy fiber functor (thofib) to the left and to the
right hand side of Equation (2.4), and since hofib commutes with thofib, we
get

thofib(F (X )) ' hofib(thofib(G(X )) −→ thofib(H(X )))

Now since F andH are n-excisive, it follows that thofib(F (X )) ' 0 ' thofib(H(X )).
Therefore thofib(G(X )) ' 0 and since G has values in D whose underlying
category is Ch, we deduce using the long sequence argument that G(X ) is a
n-cartesian cube.
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2.2.3 Polynomial approximation and the Taylor tower.

Many functors are not excisive and a trivial example is the identity functor

Id : AlgO −→ AlgO.

In this section, we build the n-polynomial approximation of any homotopy
functor F. We follow the lines of [Kuh07, § 4 and § 5](and implicitly [Goo03]).
The idea of the construction is that, since the cube

χn(X) : n ⊃ T 7−→ X ∗ T (2.5)

is strongly co-cartesian (by Proposition 2.7), we replace F by a functor which by
design sends the strongly co-cartesian cube χn(X) to a cartesian cube. It turned
out that this guarantee that PnF is n-excisive and is the best approximation.
This is the content of the next definition and properties.

Definition 2.10.
1. We define a functor TnF : C −→ D by:

TnF (X) := holim
T∈P(n+1)−{∅}

F (χn(X)(T ))

This comes with a natural map tnF : F (X) = F (χn(X)(∅)) −→ TnF (X);

2. We write T inF to denote the functor defined inductively out of TnF by

T i+1
n F := Tn(T inF )

3. We define a functor PnF : C −→ D by:

PnF := hocolim (F tnF−→ TnF
Tn(tnF )−→ T 2

n(F ) T
2
n(tnF )−→ ...).

This comes with a natural map pnF : F −→ PnF.

Example 2.11. If the functor F : C −→ D is homotopy and reduced, then

T1F (X) = holim (F (X ∗ 1) −→ F (X ∗ 2)←− F (X ∗ 1))
' holim (0 −→ F (ΣX)←− 0)
' ΩF (ΣX).

Therefore inductively we get

P1F ' hocolim
p→∞

ΩpFΣp.

Remark 2.12. By construction, the functor Pn− is basically a filtered ho-
motopy colimit. Since filtered colimits commute with finite limits (see Lemma
1.35), we deduce that Pn− preserves fiber sequences.

Theorem 2.13. [Goo03]
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1. The functor PnF is n-excisive;

2. The natural transformation pnF : F −→ PnF is homotopy universal in
the sense that any natural map

u : F −→ G,

where G is n-excisive, factors uniquely (up to homotopy) through pnF.

Remark 2.14. The properties (1) and (2) of Theorem 2.13 say in other words
that PnF is the "best possible" n-excisive approximation of F.

Proposition 2.15.
1. If F is n-excisive, then tnF is a weak equivalence;

2. If F is n-excisive, then pnF is a weak equivalence;

The inclusion of categories P(n) −→ P(n+ 1) induces a map

TnF −→ Tn−1F

which extends formally to give a map

qnF : PnF −→ Pn−1F.

Definition 2.16. ([Goo03, 1.13]) The Taylor tower of F is the tower of exci-
sive approximations

:
qn+1F

��
PnF

qnF

��
Pn−1F

qn−1F

��
:

q2F

��
P1F

q1F

��
F

p0F
//

p1F

77

pn−1F

DD

pnF

GG

P0F

2.2.4 Homogeneous functors

Definition 2.17 (homogeneous functors). F is called n-homogeneous if

- F is n-excisive and
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- Pn−1F ' 0.

Proposition 2.18. [Goo03, Prop 1.17] The functor

DnF := hofib(PnF
qnF−→ Pn−1F )

is n-homogeneous.

There is a delooping of homogeneous functors. This was originally proved by
Goodwillie in [Goo03, Lemma 2.2] and repeated by Kuhn in [Kuh07, Lemma
5.7] who quoted again Goodwillie’s paper for the proof.

Lemma 2.19. ( [Goo03, Lemma 2.2]) Let F : C −→ D be a homotopy and
reduced functor. There exists a n-homogeneous functor RnF : C −→ D fitting
into a fiber sequence of functors

PnF −→ Pn−1F −→ RnF.

Remark 2.20. If in addition the functor F in Lemma 2.19 is n-homogeneous,
then we have

F ' PnF ' ΩRnF.

Therefore, in the particular case that char(k)=0, D = AlgO, we can rewrite F
using Proposition 1.25 as follows:

F ' Ω∞IUF,

where U : AlgO −→ Ch+ is the forgetful functor. This means literally that if
F : C −→ AlgO is n -homogeneous, then F (X) always has a trivial O-algebra
structure.

Finally, we end this section with a result of Goodwillie which shows that
every multilinear functor produces naturally a homogeneous functor.

Lemma 2.21. ([Goo03, Lemma 3.1]) If F : C×n −→ D is multilinear (1-
excisive and reduced in each variable), then the functor F ◦ 4 : C −→ D is
n-homogeneous. Here 4 : C −→ C×n is the diagonal map.

2.3 Characterization of homogeneous functors

The goal of this part is to give an explicit description of the functor DnF. In
other words, the main result is the following:

Theorem 2.22. Let C,D = Ch,Ch+ or AlgO, and F : C −→ D be a homotopy
functor. We assume that char(k)=0. There is an unbounded chain complex
∂nF with an action of the symmetric group Σn such that if F is either finitary
or X is finite, then we have a weak equivalence

DnF (X) ' Ω∞(∂nF ⊗ (Σ∞X)⊗n)hΣn
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This result gives a very good understanding of the layers of the Taylor
tower described in Definition 2.16. We get in fact a monomial expression of
DnF which roughly speaking depends on a single and constant coefficient ∂nF.
That is essentially the reason why P∗F is called "Taylor tower", making the
analogy with the classical calculus of functions.

Since any arbitrary n-homogeneous functor H is equivalent to DnH, we can
claim that any homogeneous functors has a monomial shape as in Theorem 2.22.

To prove the theorem, we will mimic Goodwillie’s constructions. In fact,
we will multi-linearize homogeneous functors using the "cross-effect". In this
process we will need to discuss the notion of "cross-effect" and discuss the
interaction between the cross-effect and homogeneous functors.

2.3.1 Cross-effect

We define in this part the n-th cross-effect of functors which is a fundamental
tool to study the layers DnF of the Taylor tower. To motivate this notion, we
first recall an analogy in classical calculus.

Let f(x) be a function of one variable. The n-th cross-effect of the function
is defined as

crnf(x1, ..., xn) := Σ
I⊂n

(−1)n−|I|f( Σ
i∈I
xi)

for example

cr1f(x1) = f(x1)− f(0);

cr2f(x1, x2) = f(x1 + x2)− f(x1)− f(x2) + f(0).

When this function is polynomial, its degree n terms is closely related to
its cross-effect. In fact, the following properties are easy to establish:

1. If f is polynomial of degree ≤ n,

- crnf is a n-multilinear function;

- crnf = 0 if and only if deg(f) ≤ n− 1.

2. If h is homogeneous of degree n, then

h(x) = crnh(x, ..., x)
n! .

We will develop this analogy for the cross-effect of functors and study their
properties.

There are two equivalent ways to define the cross effect associated to a
functor. One can define it as a homotopy fiber (hofib) and one can also define
it as a total homotopy fiber (thofib). These definitions are reported here bellow.

Definition 2.23 (Cross-effects). We define crnF : C×n −→ D, the nth cross-
effect of F, to be the functor of n variables given by

crnF (X1, ..., Xn) = hofib{F ( q
i∈n

Xi) −→ holim
T∈P0(n)

F ( q
i/∈T

Xi)}
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This is equivalent to define the nth cross-effect of F as:

crnF (X1, ..., Xn) = thofib(T ⊇ n 7→ F ( q
i/∈T

Xi)). (2.6)

Example 2.24. The first cross-effect of F is

cr1F (X1) := thofib(F (X1) −→ F (0))
= hofib(F (X1) −→ F (0))

In other words, cr1F is the "reduction" of the functor F. When F is already
reduced, then cr1F ' F.

The second cross-effect of F : C −→ D is

cr2F (X1, X2) := thofib


F (X1 qX2) //

��

F (X2)
��

F (X1) // F (0)


= hofib

 hofib


F (X1 qX2)

��
F (X1)

 −→ hofib


F (X2)
��

F (0)




Proposition 2.25. If F : C −→ D is a n−excisive functor such that crnF ' 0,
then F is (n− 1)−excisive.

Proof. (i) We define the n-cube X = S∗(X1, ..., Xn), for objects X1, ..., Xn

in C, as follows:

∀T ⊆ [n],X (T ) := q
i∈T

Xi

X (∅) = 0

and the maps in the cube X are inclusions. We associate to this cube X
the n-cube S(X1, ..., Xn) which has the same objects with X , but where
the inclusions are reversed to the projections. Let U : D −→ Ch be
the forgetful functor when D = AlgO and be the identity functor when
D = Ch+. We make the following computations:

U thofib F (X ) ∼= thofib UF (X ) = thofib UF (S∗(X1, ..., Xn))
= Ωn thofib UF (S(X1, ..., Xn))
= Ωncrn(UF )(X1, ..., Xn)
= ΩnUcrnF (X1, ..., Xn) ' 0,

One will then conclude from these that thofib F (X ) ' 0( or equiv-
alently that F (X ) is cartesian) for all strongly co-cartesian cubes X
in which X (∅) = 0, since any such cube X is naturally equivalent to
S∗(X ({1}), ...,X ({n}))(see [Goo92, Proposition 2.2]).

(ii) Let ∀T ⊆ [n], and a, b ∈ [n]. Given an arbitrary strongly co-cartesian
n-cube X in C, put
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X ′(T ) = hocolim(0←− X (∅) −→ X (T ))

We have the following commutative diagram

X (∅) //

��

X (T )

��

// X (T ∪ {a})

��
0 // X ′(T ) // X ′(T ∪ {a})

where the largest square is a homotopy pushout along with the most left
square. It then follows that the most right square is also a homotopy
pushout and therefore that the following square is a homotopy pushout:

X (T ) //

��

X (T ∪ {a})

��
X ′(T ) // X ′(T ∪ {a})

and therefore it follows that

X ′(T ) //

��

X ′(T ∪ {a})

��
X ′(T ∪ {b}) // X ′(T ∪ {a, b})

is a homotopy pushout diagram. This proves that the n-cube X ′ is
strongly co-cartesian and that the map X −→ X ′ is a strongly co-
cartesian n+ 1-cube. F is n-excisive, thus F (X ) −→ F (X ′) is cartesian.
In addition since X ′(∅) = 0, we deduce from (i) that F (X ′) is cartesian
and conclude that F (X ) is also cartesian.

Proposition 2.26. ([Goo03, Prop 3.3]) If F is n-excisive, then 0 ≤ m ≤ n,
crm+1F is (n −m)-excisive in each variable. In particular, if F is n-excisive
then crnF is multilinear, and if F is (n− 1)-excisive then crnF ∼ 0.

Remark 2.27. The cross-effect commutes with fiber sequences, thus in partic-
ular, we have the fiber sequence

crnDnF −→ crnPnF −→ crnPn−1F

Since Pn−1F is (n − 1)-excisive, Proposition 2.26 says that crnPn−1F ' 0.
Therefore we obtain the natural equivalence

crnDnF
'−→ crnPnF.
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2.3.2 Cross-effect and homogeneous functors

Proposition 2.28. Let F and G be two n−homogeneous functors C −→ D,
and a natural transformation F

J−→ G. If crn(J) : crnF −→ crnG is an
equivalence, then so is J.

Proof. Let H = hofib(F J−→ G). Since the functor P∗− preserves fiber se-
quences, we see that PnH ' H and that Pn−1H ' 0. In particular, the functor
H is n-excisive. On the other hand, since the cross effect commutes with fiber
sequences (in fact holims commute with themselves), we have

crnH ∼= hofib(crnF
crnJ−→ crnG) ' 0.

Therefore, the functor H satisfies all the hypothesis of Proposition 2.25, thus
H is n− 1-excisive . Hence we have H ' Pn−1H ' 0.

Finally, we deduce from the long exact sequence obtained from the homo-
topy fiber sequence (of J) that J is a weak equivalence.

Proposition 2.29. Let D = Ch+ or Ch and H : C −→ D be a n-homogeneous
functor. Then there is a weak equivalence (natural in X)

((crnH) ◦ 4(X))hΣn ' H(X)

given one of the two hypothesis below:

1. If D = Ch+, and char(k)= 0 ;

2. If D = Ch, and k is a field of any characteristic.

Proof. We consider the composite (of natural transformations)

JH : ((crnH) ◦ 4(X))hΣn −→ (H(q
n
X))hΣn −→ H(X)

The goal in this proof is to show that JH is an equivalence. We start by making
the following remark: the functor crnH is multilinear (see Proposition 2.26).
Thus the composite crnH ◦ 4 is again n-homogeneous (see Lemma 2.21);

Therefore, if crnJH is an equivalence, by applying Proposition 2.28, we will
deduce the result. We will now prove that crnJH is an equivalence.

We set L(X) = crn(H)(X, ...,X)hΣn and we make the following computa-
tions:

crnL(X1, ..., Xn) = thofib(n− T 7→ L(q
T
Xi)) (2.7)

= thofib(n− T 7→ crnH(q
T
Xi, ...,q

T
Xi)hΣn) (2.8)

= thofib(χ)hΣn , (2.9)

where

- The cube χ is defined by χ : n− T 7→ crn(H)(q
T
Xi, ...,q

T
Xi);
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- Equation (2.9) is justified in the following cases: - When D = Ch, the
homotopy orbit (−)hΣn which is essentially a colimit commutes with tho-
cofib (total homotopy cofiber) and thocofib is equivalent in Ch to thofib;
- When D = Ch+ and k is in characteristic 0, then homotopy orbit
(−)hΣn are equivalent to homotopy fixed points (−)hΣn and this later is
essentially a limit, so commutes with thofib.

On the other hand, the functor crnH is multilinear (see Proposition 2.26). We
deduce the weak equivalence (natural in T )

χ(n− T ) '−→
∏

π:n→T
crn(H)(Xπ(1), ..., Xπ(n)). (2.10)

Let’s consider the map π : n→ n and consider the cube Yπ defined by:

Yπ(n− T ) =
{
crn(H)(Xπ(1), ..., Xπ(n)) if π(n) ⊆ T
0 otherwise

The morphism (2.10) is equivalent to χ(n− T ) '−→
∏

π:n→n
Yπ(n− T ).

- If π is not a permutation and then not a surjection, we can find an element
s /∈ π(n). All the maps Yπ(n − T ) −→ Yπ(n − T ∪ {s}) are isomorphisms, so
Yπ is cartesian. Hence thofib(Yπ) ' 0;

- If π is a permutation, thofib(Yπ) ∼= Yπ(n) = crnH(Xπ(1), ..., Xπ(n)).
Therefore thofib(χ) '−→

∏
π∈Σn

crnH(Xπ(1), ..., Xπ(n)). Thus

thofib(χ)hΣn
'−→ (

∏
π∈Σn

crnH(Xπ(1), ..., Xπ(n)))hΣn

'−→ crnH(X1, ..., Xn).

2.3.3 Multi-linearizing the cross-effect

In this section, we will consider n-variable functors and in particular, those
which are linear in each variable. The cross-effect crnF of a functor F is a
n-variable functor which is reduced in each variable. In this part, we will
multilinearize crnF by applying the first term functor P1−, of the Taylor tower,
to each variable of its variables.

Definition 2.30. 1. The functor LnF : Cn −→ D is obtained from crnF by

LnF (X1, ..., Xn) ' hocolim
pi→∞

Ωp1+...+pncrnF (Σp1X1, ...,ΣpnXn)

2. The functor 4nF : C −→ D is obtained from LnF by:

4nF = (LnF ) ◦ 4



56 Chapter 2. Calculus of functors

where 4 : C −→ C×n is the diagonal map. The symmetric group Σn acts
on 4nF by permuting its n entries of the cross effect crnF.

Remark 2.31. 1. When D = AlgO, the filtered homotopy colimit in the
definition of the functor LnF can be seen, using Proposition 1.34, as a
homotopy colimit in the underlying category of chain complexes ;

2. The functor LnF of Definition 2.30 can also be seen as the multilineariza-
tion of F. That is:

(a) The functor obtained by applying the first Taylor approximation
functor P1 to each variable position of the multi-variable functor
crnF. For instance,
i. L1F = P1F (see Example 2.11);
ii. L2F (X,Y ) = P1(Y 7−→ P1(X 7−→ cr2(X,Y )));
iii. and so on.

(b) The functor LnF is multilinear(1-excisive and reduced on each vari-
able) by construction.

3. The functor 4nF is n-homogeneous using Lemma 2.21.

Lemma 2.32. There is a natural weak equivalence

Pn(LnF ◦ 4) ' Ln(PnF ) ◦ 4.

Proof. One make the following observation:

Tn(LnF ◦ 4)(X) := holim
T∈P0(n+1)

hocolim
pi→∞

Ωp1+...+pncrnF (Σp1(X ∗ T ), ...,Σpn(X ∗ T ))

(2.11)
' holim
T∈P0(n+1)

hocolim
pi→∞

Ωp1+...+pncrnF ((Σp1X) ∗ T, ..., (ΣpnX) ∗ T )

(2.12)
= holim
T∈P0(n+1)

hocolim
pi→∞

Ωp1+...+pn thofib(A ⊇ n 7→ F ( q
n−A

((ΣpjX) ∗ T ))

(2.13)
' holim
T∈P0(n+1)

hocolim
pi→∞

Ωp1+...+pn thofib(A ⊇ n 7→ F (( q
n−A

ΣpjX) ∗ T )

(2.14)
'hocolim

pi→∞
Ωp1+...+pn thofib(A ⊇ n 7→ TnF ( q

n−A
ΣpjX))

(2.15)
=hocolim

pi→∞
Ωp1+...+pncrn(TnF )(Σp1X, ...,ΣpnX) (2.16)

=Ln(TnF ) ◦ 4(X) (2.17)

where

Equation (2.12) is due to the isomorphism Σpj (X ∗ T ) ∼= (ΣpjX) ∗ T, for
each j;
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Equation ( 2.14) is due to the isomorphism q
n−T

(ΣpjX∗T ) ∼= ( q
n−T

ΣpjX)∗

T, for each T ⊆ n;

Equation (2.15) is because finite holims commute with filtered colimits
(see Lemma 1.35), and holims commute with loops Ω and total fibers.

One also deduce from this observation steps that the following square is com-
mutative

LnF ◦ 4
= //

tnLnF◦4
��

LnF ◦ 4

LntnF◦4
��

Tn(LnF ◦ 4) ' // Ln(TnF ) ◦ 4

Thus we can deduce by induction on the iterations from this square that

Pn(LnF ◦ 4) ' (LnPnF ) ◦ 4.

Given the diagonal (homogeneous) functor 4nF : C −→ D, associated to
a homotopy functor F, we can always deduce a homogeneous functor 4̂nF :
C −→ Ch with values in chain complexes.

Definition 2.33. Given a functor F : C −→ Ch+, we define the functor
L̂nF : Cn −→ Ch+ by

L̂nF (X1, ..., Xn) ' hocolim Ch
pi→∞

(s−p1−...−pnIcrnF (Σp1X1, ...,ΣpnXn))

where I : Ch+ −→ Ch is the inclusion functor.

Definition 2.34. We define a functor 4̂nF : C −→ Ch as follows:

1. When D = AlgO, then

4̂nF = (L̂nUF ) ◦ 4

where U : AlgO −→ Ch+ is the forgetful functor and ;

2. When D = Ch+, then
4̂nF = (L̂nF ) ◦ 4

3. When D = Ch, then 4̂nF := 4nF.

Note that the functor 4̂nF is n-homogeneous for the same reason as 4nF
in Remark 2.31.

Lemma 2.35. We assume char(k)=0 and D = AlgO. Then there is a weak
equivalence of O-algebras: for any X ∈ C,

4nF (X) ' Ω∞4̂nF (X).
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Proof. The functor 4nF is n-homogeneous, thus using Lemma 1.25 we have
the equivalence 4nF (X) ' Ω∞IU4nF (X) where U : AlgO −→ Ch+ denotes
the forgetful functor. Now it remains to compute U4nF (X).

U4nF (X) ' hocolimCh+
pi→∞

[red0s
−p1−...−pnIcrnUF (Σp1X, ...,ΣpnX)]

' red0 hocolimCh
pi→∞

[s−p1−...−pnIcrnUF (Σp1X, ...,ΣpnX)]

' red04̂nF (X)

This last equivalence is justified by the fact that the functor red0 commutes
with filtered colimits. Finally, by applying Ω∞I to the last equation, we obtain

Ω∞IU4nF (X) ' Ω∞Ired04̂nF (X) = Ω∞4̂nF (X).

2.3.4 Proof of Theorem 2.22

The key ingredient behind the proof of Theorem 2.22 is the following result:
Theorem 2.36. If char(k)=0, then there is a weak equivalence

DnF (X) ' Ω∞(4̂nF (X)hΣn).
where (−)hΣn denotes the homotopy orbits. When D = Ch then this result
holds when the ground field k is of any characteristic.

The straight consequence of this result is that, we can write DnF (X) in
terms of the homotopy indecomposable Σ∞X.
Corollary 2.37. If char(k)=0 and C = AlgO, then Then there is a weak equiv-
alence

DnF (X) ' Ω∞H(red0Σ∞X)
where H : Ch+ −→ Ch is the n-homogeneous functor given by:

H(V ) := 4̂n(FO(−))(V )hΣn .

When D = Ch then this result holds when the ground field k is of any charac-
teristic.
Proof. The functor H is n-homogeneous since it is the n-th stabilization of the
cross effect of FO(−).

Let X be an algebra over the operad O and F : AlgO −→ D be a homotopy
and reduced functor. We observe that

4̂nF (X) ' Ωn(4̂nF )(ΣX) ( since L̂nUF is n-multilinear )

' Ωn(4̂nF )(O(sUB(O, X))) ( since ΣX ' O(sUB(O, X)) from Corollary 1.29)

' Ωn4̂n(FO(−))(sUB(O, X)) ( since O(−) commutes with coproducts)

' 4̂n(FO(−))(UB(O, X)) ( since L̂n(UFO(−)) is n-multilinear )

' 4̂n(FO(−))(red0Σ∞X) ( since red0I = IdCh+)
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One deduce from this observation that (4̂nF (X))hΣn ' 4̂n(FO(−))(red0Σ∞X)hΣn .
Using Theorem 2.36, we obtain the quasi-isomorphism

DnF (X) ' Ω∞(4̂n(FO(−))(red0Σ∞X)hΣn) (2.18)

To prove Theorem 2.22 , we finally need the next lemma.

Lemma 2.38. Let C = Ch+ or Ch. Let Lr : C×r −→ Ch be a r-multilinear
functor. Then for any chain complexes V1, ..., Vr and finite chain complexes
W1, ...,Wr, there is a zig-zag of quasi-isomorphisms

W1 ⊗ ...⊗Wr ⊗ Lr(V1, ..., Vr) ' Lr(W1 ⊗ V1, ...,Wr ⊗ Vr).

Proof. 1. We first consider the case r = 1 and we want to construct a zig-
zag of quasi-isomorphisms W ⊗ L1(V ) ' L1(W ⊗ V ), for a given chain
complex V and a finite chain complex W.
Let us consider the following commutative diagram

L1(sV ⊕ V )

��

0'oo ' //

��

L1(sV )⊕ s−1L1(sV )

��
L1(sV ) L1(sV )=oo = // L1(sV )

L1(0)

OO

0'oo = //

OO

0

OOOO

A homotopy limit functor applied on each column gives the zig-zag of
quasi-isomorphisms

L1(V ) '←− • '−→ s−1L1(sV ) (2.19)

where the homotopy limit result of the first column in due to the fact
that the functor L1 is linear, which induces the pullback diagram

L1(V ) //

��

L1(sV ⊕ V )

��
0 // L1(sV )

The zig-zag of Equation (2.19) can also be re-written as:

sL1(V ) '←− • '−→ L1(sV )

which is then equivalent to

ku⊗ L1(V ) '←− • '−→ L1(ku⊗ V )

for a given homogeneous element u of degree 1. One deduce inductively
from this construction that ,∀n ≥ 0, we have
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(ku)n ⊗ L1(V ) '←− • '−→ L1((ku)n ⊗ V )

Therefore , given any homogeneous element u of an arbitrary degree, we
have a zig-zag of quasi-isomorphisms

αu : ku⊗ L1(V ) '←− • '−→ L1(ku⊗ V )

If W = (ku⊕ kv, d) is a chain complex with 2 generators, we set αu +αv
to be the composite

αu+αv : W ⊗ L1(V ) •'oo ' // L1(ku⊗ V )⊕ L1(kv ⊗ V ) ' // L1(W ⊗ V ) ,
where the last quasi-isomorphism is due to the fact that L1 is linear. We
generalize this construction inductively on the number of generators to
any arbitrary finite chain complex W.

2. In the case that r = 2, let L2,V1 be the linear functor V2 7−→ L2(V1, V2);
One have:

W1 ⊗W2 ⊗ L2(V1, V2)
∼=−→W1 ⊗ (W2 ⊗ L2,V1(V2))

'←− • '−→W1 ⊗ L2,V1(W2 ⊗ V2)
∼=−→W1 ⊗ L2,W2⊗V2(V1)

'←− • '−→L2,W2⊗V2(W1 ⊗ V1) = L2(W1 ⊗ V1,W2 ⊗ V2)

Again, we generalize this argument inductively to any arbitrary r.

Proof of Theorem 2.22. We give the proof in the three different cases.

1. When C = AlgO, we define the Σn-chain complex

∂nF := 4̂n(FO(−))(k)

where FO(−) is the composite

Ch+
O(−)−→ AlgO

F−→ D.

Here k is seen as a chain complex concentrated in degree 0 and the con-
struction 4̂n(−) appears in Definition 2.34.
On the other hand, by Corollary 2.37, if we set V := red0Σ∞X ∈ Ch+,

DnF (X) ' Ω∞(4̂n(FO(−))(V )hΣn)

Since 4̂n(FO(−))(V )hΣn = L̂n(FO(−))(V, ..., V )hΣn and that L̂n(FO(−))
is multilinear, we deduce using Lemma 2.38, the Σn-equivariant zig-zag
of quasi-isomorphisms (for Σ∞X finite) :

(Σ∞X)⊗n ⊗ 4̂n(FO(−))(k) '←− • '−→ 4̂n(FO(−))(Σ∞X)
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Therefore we deduce the quasi-isomorphism

(Σ∞X)⊗n ⊗
hΣn

4̂n(FO(−))(k) '←− • '−→ 4̂n(FO(−))(Σ∞X)hΣn .

In addition, if F is finitary then L̂n(FO(−)) is finitary on each variable.
In this case for any arbitrary algebra X, we rewrite Σ∞X as a filtered
colimit of its finite subcomplexes and then apply again Lemma 2.38.

2. When C = Ch+, this is a particular case of AlgO when O = I.

3. When C = Ch, we have from Theorem 2.36 the equivalence

DnF (V ) ' Ω∞(4̂nF (V )hΣn).

We know that 4̂nF (V ) = L̂nF (V, ..., V ) and since LnF is multilinear,
we use again Lemma 2.38 to deduce the weak equivalence

V ⊗n ⊗
hΣn

4̂nF (k) '←− • '−→ 4̂n(F (−))(V )hΣn .

Now it remains to prove Theorem 2.36.

Proof of Theorem 2.36. 1. Assume that D = AlgO. The functor DnF is n-
homogeneous, thus using Lemma 1.25 we have the equivalenceDnF (X) '
Ω∞IUDnF (X). By applying Proposition 2.29 to the functor H = UDnF,
we have the equivalence

crn(UDnF ) ◦ 4hΣn
'−→ UDnF (2.20)

We then deduce the equivalence

DnF (X) ' Ω∞(Icrn(UDnF ) ◦ 4hΣn) (2.21)

On the other hand, the functor DnF is n homogeneous, thus crnDnF is
multilinear. The natural map

p1...p1crnPnF : crn(UDnF ) −→ Ln(UDnF ), (2.22)

which consists of applying P1 to any variable of crnDnF, is an equivalence.
The combination of Equations (2.21) and Equations (2.22) gives the
equivalences

DnF (X) ' Ω∞(ILn(UDnF ) ◦ 4hΣn)
' Ω∞(ILn(UPnF ) ◦ 4hΣn) (since crnPnF ' crnDnF )
' Ω∞(IPn(4nUF )hΣn) (using Lemma 2.32)
' Ω∞(I(4nUF )hΣn) (since 4nF is n excisive)
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In addition, we know from Lemma 2.35 that

4nF (X) ' Ω∞4̂nF (X) (2.23)

By applying U to Equation (2.23 ), we get 4nUF (X) ' red04̂nF (X).
We then conclude

DnF (X) ' Ω∞(I(red04̂nF (X))hΣn) (2.24)

' Ω∞(Ired0(4̂nF (X))hΣn) (2.25)

' Ω∞(4̂nF (X)hΣn) (2.26)

2. The cases D = Ch+ and Ch use an analogous argument used in the first
case.

2.3.5 Co-cross-effect

In the particular cases where C = Ch+ or Ch and D = Ch, we can also describe
the cross-effect of a functor F using the total homotopy cofiber (thocofib)
of a certain cube. This dual construction, also called the "co-cross-effect",
was considered by McCarthy [McC01, 1.3] in studying dual calculus, and the
equivalence between the cross-effect and co-cross-effect was proved by Ching
[Chi10, Lemma 2.2] for functors with values in spectra.

Let W1, ...,Wn ∈ C, we associate the n-cube X in C defined as follows:

- T ⊆ n,X (T ) := ⊕
i∈T

Wj ;

- For T ( n and j ∈ n\T, the map X (T ) −→ X (T ∪ {j}) (in the cube) is
induced by the inclusion

⊕
i∈T

Wi −→ ( ⊕
i∈T

Wi)⊕Wj

x 7−→ (x, 0)

Definition 2.39 (Co-cross-effects). Let C = Ch+ or Ch and F : C −→ Ch be
a homotopy functor. The nth co-cross effect of F is the functor crnF : C×n −→
Ch which computes the homotopy total fiber of F (X ). That is:

crnF (W1, ...,Wn) := hocofib{holim
T(n

F ( ⊕
i∈T

Wi) −→ F (W1 ⊕ ...⊕Wn)}.

Similarly to Equation (2.6), we can equivalently define the co-cross-effect as
the total homotopy cofiber (thocofib):

crnF (W1, ...,Wn) = thocofib(T ⊇ n 7→ F ( ⊕
i∈T

Wi)) (2.27)

Lemma 2.40. ([Chi10, Lemma 2.2]) Let C = Ch+ or Ch and F : C −→ Ch
be a homotopy functor. Then the nth cross-effect of F is equivalent to the nth
co-cross-effect of F. That is:
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crnF (W1, ...,Wn) '−→ crnF (W1, ...,Wn)

Proof. Since Ch is a stable category and that in C, finite products and finite
coproducts are isomorphic, we simply mimic Ching’s proof.

2.4 Examples: Computing the Goodwillie derivatives

In this section, we show how we compute the Goodwillie derivatives for a couple
of interesting functors.

Proposition 2.41. The Goodwillie derivative of the identity functor Id :
AlgO −→ AlgO is given by:

∂∗Id ' O.

Proof. A straight computation gives the result.

∂nId 'hocolim
pi→∞

s−p1−...−pncrnI(O(Σp1k), ...,O(Σpnk))

=hocolim
pi→∞

s−p1−...−pnthofib(n− T 7→ O( ⊕
i∈T

Σpik))

∼=hocolim
pi→∞

s−p1−...−pnO( ⊕
i∈n

Σpik)

=hocolim
pi→∞

s−p1−...−pn
⊕
r≥0

(O(r)⊗Σr ( ⊕
i∈n

spik)⊗r)

=O(n)⊗Σn (k)⊗n ∼= O(n).

Proposition 2.42. The Goodwillie derivative of the comonad Σ∞Ω∞ : Ch −→
Ch is given by:

∂∗Σ∞Ω∞ ' B(O).

Proof. A straight computation gives the result.

∂nΣ∞Ω∞ 'hocolim
pi→∞

s−p1−...−pncrnΣ∞Ω∞(Σp1k, ...,Σpnk)

=hocolim
pi→∞

s−p1−...−pnthofib (n− T 7→ B(O)( ⊕
i∈T

Σpik))

∼=hocolim
pi→∞

s−p1−...−pnB(O)( ⊕
i∈n

Σpik)

=B(O)(n)⊗Σn (k)⊗n ∼= B(O)(n).

The next two examples consist of computing the derivatives of two partic-
ular functors which will be particularly important and used in chapter 5.

Proposition 2.43. Let E be an unbounded chain complex with a Σn action.
We define the functor

hom(E, I⊗n)Σn : Ch −→ Ch

W 7−→ hom(E,W⊗n)Σn
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Then
∂khom(E, I⊗n)Σn '

{
0 if k 6= n;
hom(E,k) if k = n.

Proof. In fact we use Lemma 2.40 to obtain the quasi-isomorphism:

crn(hom(E, I⊗n)Σn)(W1, ...,Wn) ' // hom(E, crn(I⊗n)(W1, ...,Wn))Σn

'
��

hom(E, thocofib (n ⊇ T 7→ ( ⊕
i∈T

Wi)⊗n)Σn)

On the other hand the maps in the cube n ⊇ T 7→ ( ⊕
i∈T

Wi)⊗n are inclusions,
therefore the homotopy cofiber is a strict cofiber. Computation gives:

thocofib (n ⊇ T 7→ ( ⊕
i∈T

Wi)⊗n) ' tcofib (n ⊇ T 7→ ( ⊕
i∈T

Wi)⊗n)

' ⊕
σ∈Σn

Wσ(1) ⊗ ...⊗Wσ(n)

We then deduce:

crn(hom(E, (−)⊗n)Σn)(W1, ...,Wn) ' hom(E, ⊕
σ∈Σn

Wσ(1) ⊗ ...⊗Wσ(n))Σn

' hom(E,W1 ⊗ ...⊗Wn)

Now when we consider each Wi = kspi and apply hocolim
pi→∞

s−pi− to the cross
effect, we get the result.

A similar computation by hand shows that ∂khom(E, I⊗n)Σn ' 0 when
k 6= n.

Let V be a finite non negatively graded chain complex. By finite, we mean
of finite dimension in each degree and bounded above. We define the functor

NkHomCh+(V ⊗Nk4•,−) : Ch+ −→ Ch+

where,

- N : sAb −→ Ch+ is the normalization functor;

- kHomCh+(V ⊗Nk4•,W ) denotes the free simplicial k-vector space gen-
erated by the simplicial set HomCh+(V ⊗Nk4•,W ).

Proposition 2.44. We assume that the ground field k is of characteristic 0.
Let V ∈ Ch+. Then we have the quasi-isomorphism (in Ch)

∂nNkHomCh+(V ⊗Nk4•,−) ' hom(V,k)⊗n

Before we give the proof of Proposition 2.44, we remind the following fact
which seems to be a classical construction: Let p ∈ N, A be a simplicial k-vector
space and consider the following notations:
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- We write S1 to mean the simplicial model of the circle. S1 is naturally
considered as pointed and Sp denotes the smash product Sp = (S1)∧p.

- If (X•, ∗) is a pointed simplicial set, then k̃X• := kX•/k ∗ .

- We write A[p] to mean the simplicial k-vector space given level-wise by
A[p] := k̃[Sp]⊗A which is in other word the pth-suspension of A;

A[p] is a p-connected Kan complex (as any simplicial abelian group), thus the
Hurewicz map A[p] h−→ k̃A[p], which is in fact induced by the unit of the
adjoint pair k(−) : sV ectk � sSet : U, is 2p-connected. The Hurewicz theorem
stated on this current form appears in [GJ99, Chap III, Thm 3.7] for abelian
groups, and the rational Hurewicz case appears in [KK04].

In addition, considering the natural projection

l : k̃A[p] −→ A[p]
⊕
i
xi 7−→ Σ

i
xi

since the composite A[p] h−→ k̃A[p] l−→ A[p] is the identity, we deduce that the
map l is also 2p-connected. Therefore the map

Ωpk̃A[p] Ωp(l)−→ ΩpA[p]

is p-connected and the map

hocolim
p→∞

Ωpk̃A[p] −→ hocolim
p→∞

ΩpA[p]

is a weak equivalence of simplicial abelian groups. Now using the fact that the
functor N is in the same time a Quillen left and right functor in the Dold Kan
correspondence we deduce the quasi-isomorphism

hocolim
p→∞

ΩpN k̃A[p] −→ hocolim
p→∞

ΩpNA[p]. (2.28)

Proof of Lemma 2.44. We use Lemma 2.40 to obtain the quasi-isomorphism:

crn(NkHomCh+(V ⊗Nk4•,−))(W1, ...,Wn)

'

��
thocofib (n ⊇ T 7→ NkHomCh+(V ⊗Nk4•, ⊕

i∈T
Wi))

On the other hand the functors N : sAb −→ Ch+ and k(−) : sSet −→ sAb are
left Quillen functors, we therefore have the equivalences

thocofib (NkHomCh+(V ⊗Nk4•, ⊕
i∈T

Wi)) ' Nk thocofib(HomCh+(V ⊗Nk4•, ⊕
i∈T

Wi))

' Nk thocofib( ⊕
i∈T

HomCh+(V ⊗Nk4•,Wi))

Since the maps in the n-cube of pointed simplicial sets
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T 7−→ ⊕
i∈T

HomCh+(V ⊗Nk4•,Wi)

are inclusions, the total homotopy colimit is the strict total cofiber (tcofib),
and computation shows (inductively) that

tcofib ( ⊕
i∈T

HomCh+(V ⊗Nk4•,Wi)) ∼= (2.29)

Nk(HomCh+(V ⊗Nk4•,W1) ∧ ... ∧HomCh+(V ⊗Nk4•,Wn)) ∼= (2.30)

N(k̃HomCh+(V ⊗Nk4•,W1)⊗ ...⊗ k̃HomCh+(V ⊗Nk4•,Wn)) (2.31)

We then conclude the quasi-isomorphism:

crn(C̃h+(V,−))(W1, ...,Wn) ' N k̃HomCh+(V⊗Nk4•,W1)⊗...⊗N k̃HomCh+(V⊗Nk4•,Wn)
(2.32)

If V is bounded below degree k, we have

HomCh+(V ⊗Nk4•, sp+kk) ∼= HomCh+(Nk4•, hom(V, sp+kk)) (2.33)
∼= HomCh+(Nk4•, hom(V,k)⊗ sp+kk) (2.34)
←−
'

HomCh+(Nk4•, hom(V,k)⊗ skk)[p]
(2.35)

where the weak equivalence (2.35) is given by the weak equivalence of simplicial
vector spaces

HomCh+(Nk4•, hom(V,k)⊗ skk)⊗HomCh+(Nk4•, spk)

'
��

HomCh+(Nk4•, hom(V,k)⊗ sp+kk)

defined in [SS03, (2.8), p 295].
Now, when we replaceA in the map (2.28) withHomCh+(Nk4•, hom(V,k)⊗

skk) and compose it with Ωk(−), we get the quasi-isomorphisms

hocolim
p→∞

ΩpN k̃HomCh+(Nk4•, hom(V,k)⊗ spk)

hocolim
p→∞

Ωp+kN k̃HomCh+(Nk4•, hom(V,k)⊗ skk)[p]

'

��

'

OO

hocolim
p→∞

Ωp+kNHomCh+(Nk4•, hom(V,k)⊗ skk)[p]

'

��
hocolim
p→∞

Ωp+khom(V,k)⊗ sp+k ' hom(V,k)
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where the last equivalence is induced by the isomorphism of the Dold Kan
equivalence

NHomCh+(Nk4•, hom(V,k)⊗ skk) ∼= hom(V,k)⊗ skk

Using this above equivalence, we consider the specific case Wi = spik in
Equation (2.32) and apply the functor hocolim

pi→∞
to the left-hand and right-hand

side of this same equation, we get the quasi-isomorphism

∂nNkHomCh+(V ⊗Nk4•,−) ' hom(V,k)⊗n.





CHAPTER 3

Simplicial categories

LetO be a reduced operad in Ch+. Our goal in this thesis is to study Goodwillie
calculus for homotopy functors F : AlgO −→ Ch (or other analogous functors).
An approach for this is to describe the derivatives of F. We have shown (in
Theorem 2.22) that these derivatives are given by the formula

∂nF = 4̂nF (O(k))

where 4̂nF is the stabilization of the cross effect on F. This formula only gives
the structure of a symmetric sequences on the derivatives ∂∗F.

In order to re-construct the Taylor tower {PnF}n≥1 from the derivatives
of F, we will need more structure on ∂∗F, more precisely the structure of left
O-module. We will build that structure in Chapter 5 and our strategy will be
to first do it in the special case when F is a representable functor and then infer
it for filtered homotopy colimits of those. To get that many homotopy functors
are actually filtered colimits of representable functors, we will introduce in
Chapter 4 a model category structure on the category of functor [C, Ch] where
the cofibrant generators (or "cells") are exactly the representable functors.

To do this properly, we need to consider homotopy functors which are actu-
ally sort of simplicial functors, or more precisely enriched over Ch. This passes
through a suitable Ch-enrichment of algebraic categories Ch+ and AlgO which
is not completely straightforward. The goal of this chapter is to describe pre-
cisely these Ch-enriched structures on Ch+, AlgO and Ch (the later being the
classical one).

The Ch-enriched categories that we will build are not genuine enrichment of
the categories Ch+ and AlgO in the sense that the discretization of our enriched
categories is actually as linearization of the set-categories Ch+ and AlgO. To
emphasize this distinction we will denote our enriched categories ÃlgO and
C̃h+ (as well as C̃h although the discretization of C̃h is the standard Ch).

Our strategy relies of the work of Hinich who proved in [Hin97, § 4.8] that

69
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the category AlgO is a simplicial model category with the enriched hom functor

Map(X,Y ) := HomAlgO (X,Y ⊗Apl•) (3.1)

where ∀n ≥ 0, Apln is the (commutative) algebra of the polynomial of differ-
ential forms. This enrichment is not sufficient for us since it is not yet suitable
for homotopy theory. In fact, the representable Map(X,−) that arises from
this enrichment does not preserves weak equivalences. We will then replace
this hom set with

Map(X,Y ) := HomAlgO (Xc, Y ⊗Apl•) (3.2)

where Xc is a well chosen cofibrant replacement of X.
This will define a category enriched over simplicial sets and closely related

to AlgO. At this point, we are not done yet. We would like an enrichment
over chain complexes and the hom set of Equation (3.2) is not abelian, so we
can not directly use the normalization functor N (of Dold Kan § 1.2) to get to
chain complex. Therefore we will replace the hom set of Equation (3.2) with

Map(X,Y ) := NkHomAlgO (Xc, Y ⊗Apl•) (3.3)

This will define the Ch-enriched category that we will consider. After these
constructions, we will consider Ch-enriched functors F : AlgO −→ Ch that we
will generally named "simplicial" functors. This name does not mean that these
are simplicially enriched functors in the strict sense, but it just keep encoding
the fact that the Ch-enrichment is after-all due to Equation (3.1) which endows
AlgO with a strict simplicial enrichment property.

We go beyond this discussion in this chapter and make an analogous dis-
cussion for the category Ch+.

The chapter has the following guidelines:

- In §3.1, we define the simplicial structure on AlgO based on the Hinich’s
construction; We define a simplicial enriched category Alg′O and deduce
the construction of a Ch-category ÃlgO;

- In §3.2, we make an analogous construction as in §3.1 to define the sim-
plicial enriched category Ch′+ and a Ch-category C̃h+.

- In §3.3, we remind the enrichment of the Ch-category C̃h = Ch;

- In §3.4, we describe the discrete categories associated to the categories
ÃlgO, C̃h+ and C̃h.

- In §3.5, we define simplicial functors. These are Ch-enriched functors
compatible with the Ch-enrichments of §3.1, §3.2 and §3.3.

- Finally in section §3.6, we give example of simplicial functors.
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3.1 The Ch-enriched category ÃlgO
In this section we use the Hinich’s construction of simplicial structure on AlgO
to define a simplicial category Alg′O. We will take the normalized functor N :
sV ectk −→ Ch+ and the free abelian functor k(−) : sSet −→ sV ectk to deduce
the Ch-enriched category ÃlgO.

3.1.1 The Hinich’s simplicial structure on AlgO
In the Hinich’s paper [Hin97, § 4.8], the based category is Ch and here in our
case, the operad O along with O-algebras are constructed over Ch+. However
his construction still applies to this context as we explain bellow:

There are natural inclusions:

I : Ch+ −→ Ch

V 7−→ I(V )

where I(V )k := Vk if k ≥ 0 and I(V )k := 0 if k < 0.

ι : OpCh+ −→ OpCh

O 7−→ ιO := {I(O(n))}n

ι : AlgO −→ AlgιO
(X,mX) 7−→ ιX = (I(X), I(mX))

There is the adjunction

ι : AlgO � AlgιO : κ

where κ(X,mX) := (red0(X), red0(mX)).
Note that the unit of this adjunction 1 −→ red0ι is an isomorphism. We

finally get the bijections

HomAlgO (X,Y ) ∼= HomAlgO (X, red0ιY )
∼= HomAlgιO (ιX, ιY )

We now remind the Hinich’s simplicial enrichment of AlgιO and deduce the
simplicial enrichment on AlgO by the means of these above bijections. We
define the simplicial commutative differential graded algebra Apl• = {Apln}n
by:

- The chain algebra Apln is defined by

Apln := ∧(t0,...,tn,dt0,...,dtn)
(Σti−1,Σdti)

where |ti| = 0 and |dti| = −1
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- The face and degeneracy morphisms are the unique chain algebra mor-
phisms ∂i : Apln+1 −→ Apln and sj : Apln −→ Apln+1 satisfying

∂i : tk 7→

 tk k < i;
0 k = i
tk−1 k > i

and

sj : tk 7→

 tk k < j;
tk + tk+1 k = j
tk+1 k > j

- the multiplication m : Apl• ⊗ Apl• −→ Apl• is defined level-wise by
concatenation.

Let Y ∈ AlgιO. Note that Apln being a commutative differential graded k-
algebra, the tensor product Y ⊗ Apln admits a natural ιO-algebra structure.
We define the bi-functor

AlgopιO ×AlgιO −→ sSet

(X,Y) 7−→ HomAlgιO (X,Y⊗Apl•)

This gives a simplicial enrichment structure on AlgιO (see [Hin97, § 4.8]). We
then deduce the bi-functor

Map(−,−) : AlgopO ×AlgO −→ sSet

(X,Y ) 7−→ HomAlgO (X, red0(Y ⊗Apl•))

which gives a simplicial enrichment on AlgO.

3.1.2 A homotopy friendly simplicial category Alg′O
Given an O-algebra X, the representable functor provided by Hinich’s con-
structions in § 3.1.1

Map(X,−) : AlgO −→ sSet

is not a homotopy functor in general. However the bi-functorMap(−,−) satis-
fies the pushout axiom (see [Hin97, § 4.8.4]) and a consequence is the following
property:

(P ) : If X is cofibrant, then the representable functor Map(X,−) is a
homotopy functor.

Since we intend to use all this development in Functor Calculus where we
only use homotopy functors, we will now replace X by a particular cofibrant
replacement denoted Xc. Recall that cofibrant replacements in AlgO are given
by the cobar-bar adjunction (see § 1.11.2). Namely for X ∈ AlgO,

Xc := ΩO(B(O, X)).

The goal of this section is to define a simplicial category Alg′O :
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Proposition 3.1 ( Simplicial enriched category Alg′O ). There is a sSet-
category (or simplicial enriched category), denoted Alg′O, whose:

- Objects are O-algebras;

- The enriched hom functor is given by: ∀X,Y ∈ AlgO,

Map(X,Y ) := HomAlgO (Xc, red0(Y ⊗Apl•));

- The composition is γ and the unit is η• given respectively in Equation
(3.5) and Equation (3.4).

The rest of this section is devoted to the proof of Proposition 3.1. We
will first construct the maps γ and η• and then prove that they satisfy all the
enrichment conditions.

(I)- There is a natural morphism of simplicial vector spaces

σ : UB(O, red0(Y ⊗Apl•)) −→ red0(IUB(O, Y )⊗Apl•)

where U : coAlgB(O) −→ Ch+ is the forgetful functor and σ is given by
the maps:

σ : B(O)(n) ⊗
Σn

(red0(Y ⊗Apl•))⊗n ↪→red0(B(O)(n) ⊗
Σn
Y ⊗n ⊗Apl⊗n• )

1⊗mn−→ red0(B(O)(n) ⊗
Σn
Y ⊗n ⊗Apl•)

−→red0(B(O, Y )⊗Apl•)

where mn is the nth iteration of the multiplication

m : Apl• ⊗Apl• −→ Apl•.

The example below gives the construction of σ3 on a tree in B(O)(3) :
given y1, y2, y3 ∈ Y and a, b, c ∈ Aplk,

y1 ⊗ a

��

y2 ⊗ b

yy

y3 ⊗ c

��&&

�� σ3 //

y1

��

y2

||

y3

��!!

��

⊗m(a⊗ b⊗ c)
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(II)- Similarly as for σ, we define a map

ρ : ΩOB(O, red0(Y ⊗Apl•)) −→ red0(ΩOB(O, Y )⊗Apl•)

which is obtained with the iteration of the multiplication

m : Apl• ⊗Apl• −→ Apl•.

(III)- Given a B(O)-coalgebra map g : B(O, Y ) −→ B(O, red0(Z ⊗Apl•)), we
define the morphism of B(O)-coalgebras:

ξ(g) : B(O, red0(Y ⊗Apl•)) −→ B(O, red0(Z ⊗Apl•))

to be the adjoint of the composite

ΩOB(O, red0(Y ⊗Apl•))
ρ−→ red0(ΩOB(O, Y )⊗Apl•)
g̃−→ red0(red0(Z ⊗Apl•)⊗Apl•)
−→ red0(Z ⊗Apl• ⊗Apl•)
m−→ red0(Z ⊗Apl•)

where g̃ : ΩOB(O, Y ) −→ red0(Z⊗Apl•) is the adjoint of g and m is the
multiplication

m : Apl• ⊗Apl• −→ Apl•.

(IV)- Now ,∀X ∈ AlgO, let

η• : S0 −→ HomcoAlgB(O)(B(O, X), B(O, red0(X ⊗Apl•)))

be the morphism of simplicial sets defined aritywise by: ∀n ≥ 0,

ηn(∗) = B(1⊗εn) : B(O, X) ∼= B(O, red0(X⊗k)) −→ B(O, red0(X⊗Apln))
(3.4)

where ε• : k −→ Apl• is the unit of Apl•.

(V)- Define a map of sets

γ : Map(X1, X2)⊗Map(X2, X3) −→Map(X1, X3) (3.5)

on generators fi ∈ HomcoAlgB(O)(B(O, Xi), B(O, red0(Xi+1⊗Apl•))), i =
1, 2 by:

γ(f1 ⊗ f2) := ξ(f2) ◦ f1

Lemma 3.2. The map γ of Equation (3.5) is a morphism of simplicial sets.

Proof. To prove that γ is well defined, we have to prove that it is compatible
with the face and degeneracy maps. Let di be the ith face of

HomcoAlgB(O)(B(O, X1), B(O, red0(X3 ⊗Apl•)))
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induced by ∂i : Aplk+1 −→ Aplk.
By hypothesis, ∂i commutes with the product mapm of Apl•. Thus we have

m(∂i ⊗ ∂i) = ∂im.

Thus a straight computation gives

di(γ(f2 ⊗ f1)) =B(O)(1⊗ ∂i)ξ(f2) ◦ f1 (3.6)
=ξ(dif2)⊗ dif1 (3.7)

A similar argument can be made for degeneracy maps.

Proof of Proposition 3.1. We need in fact to prove that the couple (γ, η•) sat-
isfies the associativity and the unit axioms (see [Bor94, § 6.2.1]) .

1. For the associativity of γ, we consider the algebras X1, X2, X3, X4 ∈
AlgO, and morphisms fi ∈ HomcoAlgB(O)(B(O, Xi), B(O, red0(Xi+1 ⊗
Apl•))), i = 1, 2, 3. We want to show that

γ(f3 ⊗ γ(f2 ⊗ f1)) = γ(γ(f3 ⊗ f2)⊗ f1)

This comes straightforward from computations. In fact One can check
that

ξ(f3) ◦ ξ(f2) = ξ(ξ(f3) ◦ f2),

which is itself due to the associativity of

m : Apl• ⊗Apl• −→ Apl•

2. For the unit axiom, let f ∈ HomcoAlgB(O)(B(O, X), B(O, red0(Y⊗Apl•))).
Computation shows that ξ(η•) = Id, thus

γ(η• ⊗ f) = ξ(η•) ◦ f = f.

On the other hand, since Im (η•) = B(O, X) we deduce that

γ(f ⊗ η•) = ξ(f) ◦ η• = f.

3.1.3 The Ch-enriched category ÃlgO

Corollary 3.3 (Ch-enriched category ÃlgO ). There is a Ch-category (or
Chain complex enriched category), denoted ÃlgO, whose:

- Objects are O-algebras;

- The enriched hom functor, denoted ÃlgO(−,−) is given by : ∀X,Y ∈
AlgO,
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ÃlgO(X,Y ) := NkHomAlgO (ΩO(B(O, X), red0(Y ⊗Apl•));

- The composition and the unit are deduced from γ and η•.

Proof. The result follows from the proof of Proposition 3.1. More precisely,
since the functor N : sAb −→ Ch+ is monoidal (see [SS03]) and that the
free abelian functor k(−) : sSet −→ sAb is also monoidal, we deduce that
N(kγ) : ÃlgO(X,Y )⊗ÃlgO(Y, Z) −→ ÃlgO(X,Z) along with the unit N(kη•) :
k −→ ÃlgO(X,X) satisfy the enrichment properties stated in [Bor94, § 6.2.1].

3.2 The Ch-enriched category C̃h+

One can see in particular a non negatively graded chain complex as an algebra
over the trivial operad O = I = (0,k, 0, ..., 0, ...). In that case the functor,
∀V,W ∈ Ch+,

Map(V,W ) := HomCh+(V, red0(W ⊗Apl•))

can be taken (using Proposition 3.1) to define a sSet-category (or a simplicial
enriched category) associated to Ch+.

Note that W ⊗Apl• (resp. W ⊗Nk4•) is a simplicial (resp. cosimplicial)
frame associated to W. We refer to [Fre17, §3.2] for discussion on the framing
construction. Technically, that is a notion often used when the category of
interest (Ch in our case) is not tensored over the base monoidal category (sSet
in our case).

We then use [Fre17, Thm 3.2.15] to claim the existence of a zig-zag of
quasi-isomorphisms

HomCh(I(V )⊗Nk4•, I(W )) '−→ • '←− HomCh(I(V ), I(W )⊗Apl•) (3.8)

Using the quasi isomorphisms (3.8), we make the following computation

HomCh+(V, red0(I(W )⊗Apl•)) ∼= HomCh(I(V ), I(W )⊗Apl•)
' HomCh(I(V )⊗Nk4•, I(W ))
∼= HomCh+(V ⊗Nk4•,W )

We will then define a different simplicial enriched category associated to
Ch+ which is more handy but equivalent up to homotopy to the one we get
from Proposition 3.1.

Proposition 3.4 (sSet-enriched and Ch-enriched categories Ch′+ and C̃h+ ).

1. There is a sSet-category (or simplicial enriched category), denoted Ch′+,
whose:

- Objects are objects in Ch+;
- The enriched hom functor is given by: ∀V,W ∈ Ch+,
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Map(V,W ) := HomCh+(N(k4•)⊗ V,W );

2. There is a Ch-category (or Chain complex enriched category), denoted
C̃h+, whose:

- Objects are objects in Ch+;
- The enriched hom functor, denoted C̃h+(−,−) is given by : ∀V,W ∈
Ch+,

C̃h+(V,W ) := NkHomCh+(N(k4•)⊗ V,W );

Before we prove Proposition 3.4 , we first define the composition map cor-
responding to Map(−,−). We define the map

ϕ : Map(V1, V2)⊗Map(V2, V3) −→Map(V1, V3) (3.9)

on generators fi ∈ HomCh+(Vi ⊗N(k4•), Vi+1), i = 1, 2 by: ϕ(f1 ⊗ f2) is the
composite:

V1 ⊗N(k4•) 1⊗4 // V1 ⊗ (N(k4•)⊗N(k4•)) ∼= (V1 ⊗N(k4•))⊗N(k4•)

f1⊗1
��

V2 ⊗N(k4•) f2 // V3

Lemma 3.5. The map ϕ of Equation (3.9) is a morphism of simplicial sets.

Proof. To prove that this is well defined, we make the following computation:
Let di be the ith face map of HomCh+(V1 ⊗N(k4•), V2) given by the ith co-
face map di : N(k4k) −→ N(k4k+1). Then we have the following commutative
diagram (due to the fact that N(k4•) is a co-simplicial coalgebra)

V1 ⊗N(k4k) 1⊗di //

1⊗4
��

V1 ⊗N(k4k+1)

1⊗4
��

V1 ⊗N(k4k)⊗N(k4k)
1⊗di⊗di

// V1 ⊗N(k4k+1)⊗N(k4k+1)
f1⊗1

// V2 ⊗N(k4k+1)
f2

// V3

We can then translate this into the following computation

di(ϕ(f1 ⊗ f2)) =di(f2(f1 ⊗ 1)(1⊗4))
= f2(f1 ⊗ 1)(1⊗4)(1⊗ di)
= f2(f1 ⊗ 1)(1⊗ di ⊗ di)(1⊗4)
= f2((f1(1⊗ di))⊗ di)(1⊗4)
= f2(di(f1)⊗ di)(1⊗4)
= di(f2)(di(f1)⊗ 1)(1⊗4)
= ϕ(di(f1)⊗ di(f2))

A similar argument can be made for degeneracy maps.
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We define the unit map associated to a chain complex V as follows: The
map

η• : S0 −→ HomCh+(V ⊗N(k4•), V )

is the morphism of simplicial sets defined aritywise by: ∀n ≥ 0,

ηk(1) = 1⊗ ηk : V ⊗N(k4k) −→ V ⊗ k ∼= V

where η• : N(k4•) −→ k is the co-unit of the coalgebra N(k4•) .

Proof of Proposition 3.4. 1. We need now to prove that the couple (ϕ, η)
satisfies the associativity and the unit axioms (see [Bor94, § 6.2.1]) .

(a) For the associativity of ϕ, we consider the algebras V1, V2, V3, V4 ∈
Ch+, and morphisms fi ∈ HomCh+(Vi ⊗N(k4•), Vi+1), i = 1, 2, 3.
We construct the following commutative diagram

V1 ⊗N(k4•) 1⊗4 //

1⊗4
��

V1 ⊗N(k4•)⊗N(k4•)

1⊗4⊗1
��

V1 ⊗N(k4•)⊗N(k4•)
1⊗1⊗4

//

f1⊗C•

��

V1 ⊗N(k4•)⊗N(k4•)⊗N(k4•)

f1⊗1⊗1
��

V2 ⊗N(k4•)
1⊗4

// V2 ⊗N(k4•)⊗N(k4•)

f2⊗1
��

V3 ⊗N(k4•)
f3

// V4

where the upper diagram is commutative since the coproduct 4 is
coassociatif. We then deduce that
f3(f2 ⊗ 1)(1⊗4)(f1 ⊗ 1)(1⊗4) = f3((f2(1⊗4))⊗ 1)(1⊗4)

and this proves that the composition map ϕ is associative.
(b) For the unit axiom, let f ∈ HomCh+(V ⊗N(k4•),W ). The left and

right co-unit diagrams of the coalgebras N(k4k), k ≥ 0, lead to that
ϕ(η• ⊗ f) = f and ϕ(f ⊗ η•) = f.

2. This follows from 1. using the fact that the functors k− : sSet −→ sAb
and N : sAb −→ Ch+ are monoidal.

3.3 The Ch-enriched category C̃h

The category Ch is monoidal with the graded tensor product − ⊗ −, and
closed with the internal hom functor hom(V,W ). It is then straightforward
that the category Ch, which we often denotes C̃h, is enriched over itself with
the enrichment functor given by hom(−,−) which we often denote C̃h(−,−).
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3.4 Discretization of Ch-enriched categories

To any Ch-enriched category C̃, one can associate an underlying category C̃0
which has the same objects of C̃. The set of morphisms in C̃0 between X,Y ∈ C̃0
is defined by

HomC̃0
(X,Y ) := HomCh(k, C̃(X,Y ))

which corresponds exactly to the 0-cycles in C̃(X,Y ).

3.4.1 Discretization of ÃlgO

The set of morphisms between X,Y ∈ (ÃlgO)0 is given by

Hom(ÃlgO)0
(X,Y ) := HomCh(k, NkHomAlgO (Xc, red0(Y ⊗Apl•)))

Since ÃlgO(X,Y ) is concentrated in non-negative degrees, it is clear that
this set is exactly the set of 0 degree elements of ÃlgO(X,Y ) and we have

Hom(ÃlgO)0
(X,Y ) = kHomAlgO (Xc, Y ) (3.10)

Therefore the underlying category associated to the Ch-category ÃlgO is not
the usual category AlgO but some linearization of it (after taking the cofibrant
replacement of the source).

Remark 3.6. Given X,Y ∈ AlgO, there is an injection (morphism of sets)

HomAlgO (Xc, Y ) −→ HomCh(k, ÃlgO(X,Y ))

which sends any morphism of HomAlgO (Xc, Y ) to its corresponding generator
in

kHomAlgO (Xc, red0(Y ⊗Apl0)) = kHomAlgO (Xc, Y ).

On the other hand, using the cobar-bar adjunction co-unit

Xc := ΩO(B(O, X) −→ X,

we get the morphism of sets HomAlgO (X,Y ) −→ HomAlgO (Xc, Y ). We there-
fore deduce the morphism of sets

ϑ : HomAlgO (X,Y ) −→ Hom(ÃlgO)0
(X,Y ) (3.11)

Equation (3.11) defines in other words a functor:

ϑ : AlgO −→ (ÃlgO)0

where (ÃlgO)0 is the underlying category of ÃlgO and ϑ is the identity on
objects.
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3.4.2 Discretization of C̃h+

As in § 3.4.1, the set of morphisms between V,W ∈ (C̃h+)0 is given by

Hom(C̃h+)0
(V,W ) := kHomCh+(V,W )

Therefore the underlying category associated to the Ch-category C̃h+ is
not the usual category Ch+ but some linearization of it. However, as in § 3.4.1
there is natural injection (morphism of sets): given V,W ∈ Ch+,

ϑ : HomCh+(V,W ) −→ Hom(C̃h+)0
(V,W ) (3.12)

which sends any morphism of HomCh+(V,W ) to its corresponding generator
in kHomCh+(N(k40)⊗ V,W ) = kHomCh+(V,W ).

Equation (3.12) defines in other words a functor:

ϑ : Ch+ −→ (C̃h+)0

where (C̃h+)0 is the underlying category of C̃h+ and ϑ is the identity on
objects.

The functor ϑ has a left inverse

ζ : (C̃h+)0 −→ Ch+ (3.13)

which is the identity on objects and whose, on morphisms

ζ : Hom(C̃h+)0
(V,W ) −→ HomCh+(V,W ) (3.14)

is the natural surjection of vector spaces.

3.4.3 Discretization of C̃h

The set of morphisms between V,W ∈ (C̃h)0 is given by

Hom(C̃h)0
(V,W ) := HomCh(V,W )

In this case, the underlying category associated to C̃h is the category Ch. In
this case, the functors

ϑ : Ch −→ (C̃h)0 (3.15)

ζ : Hom(C̃h)0
(V,W ) −→ HomCh(V,W ) (3.16)

are in each case the identity functor.

3.5 Simplicial functors

Definition 3.7 (simplicial functors). Let C and D be either AlgO, Ch+ or Ch.
A simplicial functor F̃ : C̃ −→ D̃ is a Ch-functor between the Ch-enriched
categories C̃ and D̃. Namely, this consists of giving:
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1. for every X ∈ C, an object F̃ (X) ∈ D̃;

2. for every pair X,Y ∈ C, a morphism of chain complexes

C̃(X,Y ) F̃X,Y−→ D̃(F̃ (X), F̃ (Y ))

satisfying the composition and the unit axioms (see [Bor94, 6.2.3] or
[Kel05, §1.2 (1.5), (1.6)]).

Instead of calling such functors Ch-functors as in our reference papers, we
decided to change the name to "simplicial functors" in order to encode the fact
that the enrichment on C̃ and D̃ (when these are either AlgO or Ch+) are
induced by a simplicial structure (see Proposition 3.1 and Proposition 3.4).

We will see in what follows that simplicial functors induce functors in the
usual sense.

Definition 3.8 (Functors associated to simplicial functors). Let C = AlgO,
Ch+ or Ch. and D = Ch+ or Ch. A simplicial functor F̃ : C̃ −→ D̃ induces a
functor (in the classical sense) F : C −→ D. This is a functor whose

∗ on objects X ∈ C, F (X) := F̃ (X);

∗ on morphisms X f−→ Y, FX,Y (f) := ζHomCh(k, F̃X,Y )ϑ(f)

where,

- HomC(X,Y ) ϑ−→ C̃(X,Y ) is given in Equation (3.12) when C = Ch+, in
Equation (3.11) when C = AlgO, and in Equation (3.15) when C = Ch;

- ζ : HomCh(k, D̃(F̃ (X), F̃ (Y ))) −→ HomD(F̃ (X), F̃ (Y )) is the natural
surjection defined in Equation (3.14) when D = Ch+ and in Equation
(3.16) when D = Ch.

of vector spaces that make sense in the two cases.

Remark 3.9. If F̃ : C̃ −→ D̃ is a simplicial functor with D = Ch+ or Ch then
the associated functor F given in Definition 3.8 is defined by the commutative
diagram:

C̃0
F̃0 // D̃0

ζ

��
C

ϑ

OO

F
// D

Conversely, we can say that a classical functor F : C −→ D is a " simplicial
functor" when F̃ is well identified in such a way that the above diagram com-
mutes. In that sense, we will see a simplicial functor F : C −→ D as a usual
functor with an additional structure (given by this enrichment).

Notation 2. Based on Remark 3.9, we will abusively use the same notation for
simplicial functors F̃ and their associated functor F when there is no confusion
in the context.
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3.6 Examples of simplicial functors

Example 3.10 (Representable functor). Let C be either AlgO, Ch+ or Ch
and Z ∈ C. Then the representable functor C̃(Z,−) : C̃ −→ Ch is a simplicial
functor. In fact, the adjoint of the composition morphism

C̃(X,Y )⊗ C̃(Z,X) −→ C̃(Z, Y )

gives a morphism C̃(X,Y )
C̃(Z,−)X,Y // hom(C̃(Z,X), C̃(Z, Y )) .

Since the composition map is associative and satisfies the unit axiom, it
follows that the above maps satisfy the composition and the unit axiom.

Example 3.11 (Inclusion functor). The inclusion functor I : Ch+ −→ Ch is
simplicial. More precisely, I induces a simplicial functor Ĩ : C̃h+ −→ Ch given
by:

- Ĩ(V ) := I(V ) = V ;

- The simplicial structure on Ĩ is given by the morphism of chain complexes

ĨX,Y : NkHomCh+(N(k4•)⊗ V,W ) −→ NHomCh+(N(k4•)⊗ V,W )
∼=−→ NHomCh+(N(k4•), red0hom(V,W ))
−→ red0hom(V,W )
−→ hom(V,W )

where the first map is the natural projection
⊕
i

fi 7−→
∑
i

fi and the second

morphism is given by adjunction between the functors − ⊗ − and hom(−,−)
and the last one is given by the Dold Kan correspondence.

Example 3.12 (Tensor product of simplicial functors). Let C = Ch+ or AlgO.
If F̃ , G̃ : C̃ −→ Ch are two simplicial functors, then the tensor product F̃ ⊗ G̃ :
C̃ −→ Ch, which is defined level-wise by F̃ ⊗ G̃(X) := F̃ (X) ⊗ G̃(X), is a
simplicial functor. In fact there is a natural map

C̃(X,Y ) 4−→ C̃(X,Y )⊗ C̃(X,Y )

induced by the diagonal map of simplicial sets

Map(X,Y ) 4−→Map(X,Y )×Map(X,Y )

The adjoint of the map

F̃ (X)⊗ G̃(X)⊗ C̃(X,Y ) 4−→ F̃ (X)⊗ G̃(X)⊗ C̃(X,Y )⊗ C̃(X,Y )
F̃X,Y ⊗G̃X,Y−→ F̃ (Y )⊗ G̃(Y )

gives the morphism of chain complexes
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(F̃ ⊗ G̃)X,Y : C̃(X,Y ) −→ hom(F (X)⊗G(X), F (Y )⊗G(Y ))

which we can check satisfies the composition and the unit axiom.

Example 3.13. The combination of Example 3.11 and Example 3.12 produces
simplicial functors, ∀n ≥ 0,

I⊗n : Ch+ −→ Ch

V 7−→ V ⊗n

Example 3.14. If M is a right O-module, then we define the functor

B(M,O,−) : AlgO −→ Ch

X 7−→ B(M,O, X) :=
⊕
n

(B(M,O, X̂)(n), ∂0 + ∂),

where X̂ = (X, 0, ..., 0, ...) is the left O-module associated to X.
The functor B(M,O,−) is a simplicial functor. In fact, we consider the

following composite of morphism of simplicial sets:

HomcoAlgB(O)(B(O, X), B(O, red0(Y ⊗Apl•))) −→

(3.17)
HomCh+(⊕

n
M(n) ⊗

Σn
B(O, X)⊗n,⊕

n
M(n) ⊗

Σn
B(O, red0(Y ⊗Apl•))⊗n) −→

(3.18)
HomCh+(⊕

n
M(n) ⊗

Σn
B(O, X)⊗n,⊕

n
M(n) ⊗

Σn
red0B(O, Y )⊗n ⊗Apl⊗n• ) −→

(3.19)
HomCh+(⊕

n
M(n) ⊗

Σn
B(O, X)⊗n,⊕

n
M(n) ⊗

Σn
red0B(O, Y )⊗n ⊗Apl•) =

(3.20)

HomCh+(B(M,O, X̂), red0(B(M,O, Ŷ )⊗Apl•))
(3.21)

where:

- The map (3.17) is induced by the morphisms f 7−→ f⊗n;

- The map (3.18) is induced by the previously defined map

σ : B(O, red0(Y ⊗Apl•)) −→ red0(B(O, Y )⊗Apl•);

- The map (3.19) is induced by the product m : Apl• ⊗Apl• −→ Apl•;
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By applying Nk− to this composition, we get the morphism of chain complexes

B̃(M,O,−)X,Y : AlgO(X,Y ) −→NkHomCh+(B(M,O, X̂), red0(B(M,O, Ŷ )⊗Apl•))
(3.22)

−→NHomCh+(B(M,O, X̂), red0(B(M,O, Ŷ )⊗Apl•))
(3.23)

∼=−→NHomCh+(Nk4•, hom(B(M,O, X̂), B(M,O, Ŷ )))
(3.24)

−→hom(B(M,O, X̂), B(M,O, Ŷ )) (3.25)

where :

- Equation (3.23) is induced by the natural projection(morphism of chain
complexes)

kHomCh+(V,W ) −→ HomCh+(V,W )⊕
i

fi 7−→
∑
i

fi

- Equation (3.25) is given by the Dold-Kan correspondence.

One can check that B̃(M,O,−)X,Y satisfies the composition and the unit ax-
iom, and that B̃(M,O,−)X,Y and B(M,O,−)X,Y fit into the diagram of Re-
mark 3.9.

Example 3.15. We consider the Ch-category C = C̃h+ × C̃h+ associated to
the cartesian product Ch+ × Ch+, with the enrichment hom functor given by:
X = (V1, V2), Y = (W1,W2) ∈ Ch+ × Ch+,

C̃h+ × C̃h+((V1, V2), (W1,W2)) := C̃h+(V1,W1)⊗ C̃h+(V2,W2)

The composition (resp. the unit) is given by the product of two copies of the
composition (resp. unit) on C̃h+.

The functors

4 : Ch+ −→ Ch+ × Ch+ and Π : Ch+ × Ch+ −→ Ch+

V 7−→ (V, V ) (V,W ) 7−→ V ⊕W

are simplicial functors. More precisely, there are morphisms of chain complexes

Π̃X,Y : C̃h+(V1,W1)⊗ C̃h+(V2,W2) −→ C̃h+(V1 ⊕ V2,W1 ⊕W2)

induced by the morphisms of simplicial sets

HomCh+(V1 ⊗Nk4•,W1)×HomCh+(V2 ⊗Nk4•,W2) −→
HomCh+((V1 ⊕ V2)⊗Nk4•,W1 ⊕W2)

which is itself induced by the universal property of the pushout. One can check
that the maps Π̃X,Y satisfy the composition and the unit axioms, and that Π̃X,Y

and ΠX,Y fit into the diagram of Remark 3.9.
On the other hand, for the functor 4, we have the morphisms of chain

complexes:
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4̃V,W : C̃h+(V,W ) −→ C̃h+(V,W )⊗ C̃h+(V,W )

which is induced by the diagonal map of simplicial sets

HomCh+(V ⊗Nk4•,W ) −→ HomCh+(V ⊗Nk4•,W )×HomCh+(V ⊗Nk4•,W )
f 7→ (f, f)

As in the case of Π, we can check that the maps 4̃V,W defines an extension of
4 in the sense of Remark 3.9.





CHAPTER 4

The model category of simplicial functors

Let O be a reduced operad in Ch+ and let C = AlgO, Ch+ or Ch. We are
interested in studying the collection of simplicial functors F̃ : C̃ −→ Ch with
appropriate morphisms, viewed as a category. The key fact of this chapter
is that we can endow this category with the structure of cofibrantly generated
model category for which the cofibrant generators are the representable functor.
This fact will be of a fundamental importance in Chapter 5 because we will
infer the Goodwillie calculus of simplicial functors from the special case of
representable functors.

However we cannot consider the whole category of such functors without
incurring set theoretic problems. We will then restrict functors to the subcat-
egory of C which consists of finite objects. By finite object, we mean objects of
the subcategory Cfin that we defined bellow:

- Chfin (resp. Chfin+ ) is the subcategory of Ch (resp. Ch+ ) which
consists of chain complexes V∗ such that ∀n, dim Vn < +∞.

- AlgfinO is the subcategory of AlgO which consists of finitely generated
O-algebras.

In this chapter we define the Ch-category [Cfin, Ch] whose objects are simplicial
functors. We show that the underlying category [Cfin, Ch]0 has a cofibrantly
generated model structure. Since any cofibrant replacement functor in this cat-
egory has a cellular decomposition due to the small object argument, it follows
a cellular resolution for any simplicial functor. As a straight consequence of
this construction, we show that any simplicial functor in [Cfin, Ch]0 is a homo-
topy functor. Note that it seems that the converse is also true: any homotopy
functor should be equivalent to a simplicial functor by some results due to S.
Schwede, but we will not prove this.

The chapter has the following guidelines:

87
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- In §4.1, we describe the functor category [Cfin, Ch] which is the enriched
category of simplicial functors over chain complexes;

- In §4.2, we define a cofibrantly generated model structure on the category
[Cfin, Ch]0 underlying [Cfin, Ch].

- Section §4.3 is devoted to the cellular decomposition of simplicial func-
tors. We give properties of presented cell functors. These properties will
be very useful in Chapter 5. For instance they will be used to describe
an extra structure on the Goodwillie derivatives of simplicial functors
F : AlgO −→ Ch.

- In §4.4, we show that simplicial functors to preserve weak equivalences.

- Finally in §4.5, we compute the derived enriched natural transformation
between two tensor powers of the inclusion functor I : Chfin+ −→ Ch.
Namely we show that

Nat(Q(I⊗n), I⊗m) '
{

k[Σn] if n = m;
0 if n 6= m.

where Q is the cofibrant replacement functor.
This formula will be useful in Chapter 5 as to prove for instance that the
derivative ∂∗(I⊗n) is of finite type.

4.1 Functor category [Cfin, Ch]

Let C = AlgO, Ch+ or Ch. In this section, we define explicitly the functor
category [Cfin, Ch] (objects and morphisms). This is a particular case of a
general notion (in enriched categories) which is discussed in [Kel05, § 2.3].

In our case, the objects of this category are simplicial functors and mor-
phisms are enriched natural transformations. We are more explicit about what
we mean in the next definitions.

Definition 4.1 (Construction of Nat(−,−)). Let F̃ , G̃ : C̃fin −→ Ch be two
simplicial functors. We define the chain complex of natural transformations
from F̃ to G̃ by the formula

Nat(F̃ , G̃) := lim( Π
X∈Cfin

hom(F̃ (X), G̃(X)) ⇒ Π
X,Y ∈Cfin

hom(C̃(X,Y )⊗F̃ (X), G̃(Y )))

One of the maps in this equalizer

hom(F̃ (Y ), G̃(Y ))⊗ C̃(X,Y )⊗ F̃ (X) −→ G̃(Y )

is obtained using the enriched structure morphism of F

C̃(X,Y ) F̃X,Y−→ hom(F̃ (X), F̃ (Y ))

and the other map
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hom(F̃ (X), G̃(X))⊗ C̃(X,Y )⊗ F̃ (X) −→ G̃(Y )

is obtained using the enriched structure morphism of G̃

C̃(X,Y ) G̃X,Y−→ hom(G̃(X), G̃(Y ))

Definition 4.2 (Functor category). We denote by [Cfin, Ch] the Ch-category
whose

- objects are simplicial functors F̃ : C̃fin −→ Ch;

- hom-object between two simplicial functors F̃ , G̃ : C̃fin −→ Ch is the
chain complex Nat(F̃ , G̃).

In general, any enriched category has an underlying category (see [Kel05, §
1.3]). In our case here for the functor category [Cfin, Ch], the underlying cate-
gory, denoted [Cfin, Ch]0, has the same objects with [Cfin, Ch] but morphisms
are simplicial natural transformations, these are elements of the set obtained
by applying the functor HomCh(k,−) to Nat(F̃ , G̃). Equivalently, we can de-
fine simplicial natural transformations as it appears in [Bor94, Prop 6.2.8] or
[Kel05, §1.2 (1.7)]:

Definition 4.3 (Simplicial natural transformations). Let C = AlgO, Ch+ or
Ch. A simplicial natural transformation α : F̃ −→ G̃ between two simplicial
functors F̃ , G̃ : C̃ −→ Ch is a family of morphisms αX : F̃ (X) −→ G̃(X),
∀X ∈ C, such that the following diagram commutes:

C̃(X,Y )
F̃X,Y //

G̃X,Y
��

hom(F̃ (X), F̃ (Y ))

hom(1,αY )
��

hom(G̃(X), G̃(Y ))
hom(αX ,1)

// hom(F̃ (X), G̃(Y ))

We denote by Nat(F̃ , G̃)0 the set of simplicial natural transformations between
F̃ and G̃.

We now define explicitly the category [Cfin, Ch]0.

Definition 4.4 (Category of simplicial functors). We denote by [Cfin, Ch]0 the
category of simplicial functors F̃ : C̃fin −→ Ch and whose morphisms F̃ −→ G̃
are simplicial natural transformations.

Note that the category C̃fin is skeletally small, the collection of simplicial
natural transformations between two simplicial functors is a set. Therefore
[Cfin, Ch]0 is a category in the usual sense.
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4.2 Model structure on [Cfin, Ch]0
To define a model category structure on the category of simplicial functors
[Cfin, Ch]0, we simply follow the guidelines of [Hir03, 11.6.1]. Note that even
if we restrict our argument to C = AlgO, Ch+ or Ch, the model structure
that we define here below works (for an analogous argument) whenever C is an
arbitrary small Ch-category. The main result of this section is the following:

Proposition 4.5 (Projective model structure on simplicial functors). The cat-
egory [Cfin, Ch]0 is cofibrantly generated with the following properties:

- A (simplicial) natural transformation F̃ −→ G̃ is a weak equivalence
(resp. fibration) if and only if ∀X ∈ Cfin, F̃ (X) −→ G̃(X) is a quasi-
isomorphism (resp. fibration).

- The generating cofibrations(resp. trivial cofibrations) are of the form

V0 ⊗ C̃(X,−) r⊗1−→ V1 ⊗ C̃(X,−)

where V0
r−→ V1 is a generating cofibration (resp. trivial cofibration) in

chain complexes (these are described in [Hov99, § 2.1.])

The rest of this section is dedicated to the proof of Proposition 4.5.Roughly
speaking, we will say that the proof comes from the "Strong" enriched Yoneda
lemma and the Kan’s Theorem.

Lemma 4.6 (Strong enriched Yoneda Lemma). Let V ∈ Ch, X ∈ Cfin and
G̃ ∈ [Cfin, Ch]. Then there is an isomorphism

Nat(V ⊗ C̃(X,−), G̃) ∼= hom(V, G̃(X))

Proof. A map from the left to the right is given by the composite

Γ : Nat(V ⊗ C̃(X,−), G̃) −→ hom(V ⊗ C̃(X,X), G̃(X)) −→ hom(V, G̃(X))

where the first map is the natural projection(from the limit) and the second
map uses the unit k −→ C̃(X,X).

The inverse of this map, denoted Γ′, is given by the family {Γ′Y }Y ∈C whose
the element Γ′Y (∀Y ∈ C ) is the adjoint of the map:

hom(V, G̃(X))⊗ V ⊗ C̃(X,Y ) 1⊗G̃X,Y−→ hom(V, G̃(X))⊗ V ⊗ hom(G̃(X), G̃(Y ))

−→ G̃(X)⊗ hom(G̃(X), G̃(Y ))

−→ G̃(Y )

where the second and the third maps are evaluation maps.
The naturality in the family {Γ′Y }Y ∈C comes from the composition axiom

that satisfy the maps G̃Y,Y ′ and V ⊗ C̃(X,−)Y,Y ′ . We deduce from this that
Γ′ : hom(V, G̃(X)) −→ Nat(V ⊗ C̃(X,−), G̃) is well defined.

One can check that the maps Γ and Γ′ are inverse.
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Theorem 4.7 (D. M. Kan). Let M be a cofibrantly generated model category
with cofibrations I and generating cofibrations J. Let N be a category that is
closed under small limits and colimits, and let F : M � N : U be a pair of
adjoint functors. If we let FI = {Fu/u ∈ I} and FI = {Fv/v ∈ I} and if

1. both FI and FI permits the small object argument and

2. U takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on N in which FI
is a set of generating cofibrations, FI is a set of generating trivial cofibrations,
and the weak equivalences are the maps that U takes into a weak equivalence
in M. Furthermore, with respect to this model category structure, (F,U) is a
Quillen pair.

Sketch of the proof of Proposition 4.5. We only give the sketch of the proof as
this is the enriched version of [Hir03, 11.6.1.]. The argument is based on a
transfer of the model structure using the above Kan’s Theorem 4.7. We will
first define two categories.

1. Let Cdics be the discrete category whose objects are objects X of Cfin
and morphisms HomCdisc(X,Y ) := ∅;

2. Let [Cdics, Ch]0 be the category where objects are functors D : Cdics −→
Ch and morphisms Hom[Cdics,Ch]0(D,D′) := Π

X∈Cfin
HomCh(DX,D′X)

One can equivalently write [Cdics, Ch]0 ∼= Π
X∈Cfin

Ch and it is proved in [Hir03,
Prop 11.1.10] that this category has a cofibrantly generated model structure
with generating (resp. trivial ) cofibrations Idisc (resp. Jdisc) where

Idisc =
⋃

X∈Cfin
ICh × Π

Y ∈Cfin,Y 6=X
1φ

Jdisc =
⋃

X∈Cfin
JCh × Π

Y ∈Cfin,Y 6=X
1φ

where ICh (resp. JCh) denote the set of generating (resp. trivial) cofibration
in Ch, and 1φ : 0 −→ 0 is the identity (trivial) map of chain complexes.

We define the functor F : [Cdics, Ch]0 −→ [Cfin, Ch]0 as follows:

- on objects F(D) := ⊕
X∈Cfin

D(X)⊗ C̃(X,−);

- on morphisms, the map of setsHom[Cdics,Ch]0(D,D′) −→ Nat(F(D),F(D′))0
is given level-wise (∀X ∈ C) by the morphisms:

(DX r−→ D′X) 7−→ (DX ⊗ C̃(X,−) r⊗1−→ D′X ⊗ C̃(X,−))

Using the above enriched Yoneda lemma, we make the following compu-
tation

Nat(F(D), G̃)0 ∼= Π
X∈Cfin

Nat(DX ⊗ C̃(X,−), G̃)

∼= Π
X∈Cfin

HomCh(DX, G̃(X)) = Hom[Cdics,Ch]0(D,UG̃)
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where U : [Cfin, Ch]0 −→ [Cdics, Ch]0 is the functor which forgets the
enriched hom functor of C̃. One therefore deduce the adjunction

F : [Cdics, Ch]0 � [Cfin, Ch]0 : U

We will now apply the Kan’s Theorem to this adjunction. Note that

FIdisc = {V0 ⊗ C̃(X,−) r⊗1−→ V1 ⊗ C̃(X,−)|r ∈ ICh}
FJdisc = {V0 ⊗ C̃(X,−) r⊗1−→ V1 ⊗ C̃(X,−)|r ∈ JCh}

One can check using the same argument with Hirschhorn (in [Hir03, proof
of Theorem 6.1 ]) that FIdisc and FJdisc permits the small object argu-
ment. In addition, One can also check that the limits and the colimits
in [Cfin, Ch]0 are computed level-wise. It then follows that FJdisc-cell
complexes are obtained by pushouts of JCh-cell. These are then level-
wise weak equivalences. This proves that U takes FJdisc-cell complexes
to weak equivalences.

4.3 Cellular decomposition of simplicial functors

Definition 4.8 (Cell functors).
• A cell functor in [Cfin, Ch]0 is a cell complex with respect to the gener-
ating cofibrations described in Proposition 4.5.

• A presented cell functor F̃ is a cell functor together with a sequence of
functors

0 = F̃0 −→ F̃1 −→ ... −→ F̃

such that F̃ = colim
i

F̃i, and there are pushouts of the form

⊕
α∈Ai

V α0 ⊗ C̃(Xα,−) //

��

F̃i

��
⊕

α∈Ai
V α1 ⊗ C̃(Xα,−) // F̃i+1

where Ai is an indexing set, and each V α0 −→ V α1 is a generating cofibra-
tion of chain complexes, and each Xα is an object in Cfin.

Remark 4.9. If F̃ : C̃fin −→ Ch is a cell functor, then ∀X ∈ Cfin, F̃ (X) has
a cell structure. The cells are in 1− 1 correspondence with pairs (α, ε), where
α is one of the cells
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V α1 ⊗ C̃(Xα,−) −→ F̃

of F̃ and ε corresponds to a non-degenerate simplex Xα ⊗ 4k −→ X in
C̃(Xα, X).

Definition 4.10 (Cofibrant replacement for functors). Given F̃ ∈ [Cfin, Ch],
the small object argument (see [Hir03, § 10.5.16]) determines the cofibrant
replacement QF̃ of F̃ . QF̃ comes equipped with a natural cell structure

0 = (QF̃ )0 −→ (QF̃ )1 −→ ... −→ (QF̃ )i −→ ... −→ (QF̃ )

in which the i+ 1 cells are 1− 1 correspondence with commutative diagrams of
the form

V0 ⊗ C̃(X,−) //

��

(QF̃ )i

��
V1 ⊗ C̃(X,−) // F̃

Lemma 4.11. If F̃ : Ãlg
fin

O −→ Ch is a presented cell functor, then the
functor

F̃Ω∞I : C̃h
fin

+ −→ Ch

is equivalent to a presented cell functor in [Chfin+ , Ch]0 in which the cells cor-
respond 1-1 with the cells of F̃ .

Proof. We choose the following presentation of F̃ :

0 = F̃0 −→ F̃1 −→ ... −→ F̃i −→ ...

with the attaching cells(pushout diagrams) of the form:⊕
α
Wα

0 ⊗ ÃlgO(Xα,−) //

��

F̃i

��⊕
α
Wα

1 ⊗ ÃlgO(Xα,−) // F̃i+1

where Xα ∈ AlgfinO . When we pre-compose this diagram with Ω∞, we make
the following observation: ∀V ∈ Ch+,

ÃlgO(Xα,Ω∞I(V )) =NkHomAlgO (ΩO(B(O, Xα)), red0(Ω∞I(V )⊗Apl•))
(4.1)

∼=NkHomcoAlgB(O)(B(O, Xα), B(O)(red0(I(V )⊗Apl•)))
(4.2)

∼=NkHomCh+(UB(O, Xα), red0(I(V )⊗Apl•)) (4.3)
'NkHomCh+(UB(O, Xα)⊗Nk4•, V ) (4.4)

where
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- U : coAlgB(O) −→ Ch+ is the forgetful functor and is the left adjoint of
the co-free functor B(O)(−) : Ch+ −→ coAlgB(O);

- The quasi-isomorphism (4.4) is proved in §3.2.

Since Xα is a finite O-algebra, then B(O, Xα) is a finite chain complex.
Therefore, to define the cell structure on F̃Ω∞I, we simply set

(F̃Ω∞I)i := F̃iΩ∞I.

Definition 4.12 (Subcomplex of cell functors). Let F̃ : C̃fin −→ Ch be a
presented cell functor.

• A subcomplex C̃ of F̃ is a cell functor in [Cfin, Ch] with a presentation

0 = C̃0 −→ C̃1 −→ ... −→ C̃i −→ ... −→ C̃

where ∀i ≥ 0, there is a monomorphism C̃i −→ F̃i so that each cell α
of degree i in C̃i is obtained by an equivalent cell of degree i in F̃i via a
factorization of the attaching map

V α0 ⊗ C̃(Xα,−) //

%%

F̃i−1

C̃i

>>

In other words, the subcomplex C̃ is a subset of the cells of F̃ .

• A subcomplex C̃ of F̃ is finite if it has finitely many cells. The finite
subcomplexes of F̃ form a partially ordered set (under inclusion) which
we denote Sub(F̃ ).

This section has two independent results on presented cell functors. We
start with the first one which shows that we always have the a certain restriction
property for natural transformations between cell functors:

Proposition 4.13. Let F̃ , G̃, H̃ : Ch −→ Ch be presented cell functors, and
α : H̃ −→ F̃ G̃ be a natural transformation. If E is a finite subcomplex of H,
then there exist finite subcomplexes C ∈ Sub(F̃ ) and D ∈ Sub(G̃) such that α
restricts to E −→ CD. We then have the commutative diagram

E //

α|E

��

H̃

α
��

CD // F̃ G̃

To prove this result, we will need the following two intermediate lemmas.
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Lemma 4.14. If F̃ : C̃fin −→ Ch is a presented cell functor, then any cell

V1 ⊗ C̃(X,−) −→ F̃

factors through a finite subcomplex of F̃ .

Proof. Since F̃ = hocolim
i

F̃i, we will give the proof by induction on i. Let us

assume that we have the following property: any j cell, (j ≤ i), V1⊗C̃(X,−) −→
F̃j −→ F̃ factors through a finite subcomplex C of F̃

V1 ⊗ C̃(X,−) −→ C −→ F̃ .

Now consider the following single i+ 1 cell attachment pushout:

V0 ⊗ C̃(X,−) //

��

F̃i

��
V1 ⊗ C̃(X,−) // F̃i+1

The i + 1 attachment map V0 ⊗ C̃(X,−) −→ F̃i of the cell α is equivalent via
the (enriched) Yoneda lemma to the map V0 −→ F̃i(X), and since V0 is of finite
dimension, there is a natural factorization ,

V0 //

��

F̃i(X)

A
�.

<<

with A finite.
Each cell of A corresponds to a cell in F̃ which is of course of degree at

most i. By the induction hypothesis, each of these cells is contained in a finite
subcomplex of F̃ . Taking the union of all these gives a finite subcomplex C of
F̃ such that A ⊆ C(X). This is adjoint to

V0 ⊗ C̃(X,−) −→ C −→ F̃

We then set C ⊕ α as the finite subcomplex which contains α.

Lemma 4.15. Let C : Chfin −→ Ch be a cell functor, W be a cell chain
complex, and A be a finite chain complex. Then any morphism A −→ C(W )
factors as

A −→ C(L) −→ C(W )

where L is a finite subcomplex of W.

Proof. Since A is finite and C(W ) has a cell structure (see Remark 4.9), then
there exists a finite subcomplex B of C(W ) such that:
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A //

��

C(W )

B
-

<<

According to Remark 4.9, the cells of B consist of pairs (α1, ε1), ..., (αn, εn),
where αi ’s are cells of C and εi : Vαi⊗4ki −→W are non-degenerate simplices
in HomCh(Vαi ⊗4•,W ).

Since the domain of each εi is a finite chain complex, there is a natural
factorization

Vαi ⊗4ki //

$$

W

Li
�/

??

where Li is a finite subcomplex of W. Let L be a finite subcomplex of W which
contains the complexes L1, ..., Ln. We have then built the factorization

A //

��

W

B �� // C(L)

<<

Proof of Proposition 4.13. We give the proof by induction on the cells. We
consider the following single cell attachment

V0 ⊗ C̃h(V,−) //

��

E′

��
V1 ⊗ C̃h(V,−) // E

where α restricts to α|E′ : E′ −→ C ′D′ with C ′ (resp. D′ ) a finite subcomplex
of F (resp. G ). The Yoneda lemma applied to the diagram

V0 ⊗ C̃h(V,−) //

��

E′

��

// C ′D′

��
V1 ⊗ C̃h(V,−) // E // FG

is equivalent to diagram

V0 //

��

E′(V )

��

// C ′D′(V )

��
V1 // E(V ) // FG(V )
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Since D′(V ) and G(D) are cell complexes and that V0 and V1 are finite, we
obtain from Lemma 4.15 the factorization

V0 //

��

C ′(L0)

��

// C ′D′(V )

��
V1 // F (L1) // FG(V )

where L0 and L1 are finite subcomplexes ofD′(V ) and G(V ) respectively. Since
D′(V ) is a subcomplex of G(V ), we will assume that L0 ⊂ L1.

Applying the Yoneda lemma on the first square, we get:

V0 ⊗ C̃h(L1,−) //

��

C ′

��
V1 ⊗ C̃h(L1,−) // F

Using Lemma 4.14, the map V1⊗C̃h(L1,−) −→ F factors through a finite sub-
complex C of F which we assume contains C ′. We then have the factorization

V1 ⊗ C̃h(L1,−) −→ C −→ F.

We also have a diagram

L0 //

��

D′(V )

��
L1 // G(V )

which is equivalent by the Yoneda lemma equivalent to the diagram

L0 ⊗ C̃h(V,−) //

��

D′

��
L1 ⊗ C̃h(V,−) // G

Using the same trick as in the case of F , let D be a finite subcomplex of G
which contains D′ and fitting into a factorization

L1 ⊗ C̃h(V,−) −→ D −→ G.

The above factorizations gives the morphism

V1 −→ CD(V )←− FG(V ).

Finally, using the universal property of the pushout, we have the restriction
map

α|E : E −→ CD
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The second and independent result of this section is the decomposition of
cellular functor in term of their finite subcomplexes. This is an algebraic version
of [AC11, Cor 5.6, Cor 5.7].

Proposition 4.16.

1. If F̃ : C̃fin −→ Ch is a presented cell functor, then there is an isomor-
phism

F̃ ∼= colim
C∈Sub(F̃ )

C

2. If F̃ : C̃fin −→ Ch is a simplicial functor, then there is a zig zag of weak
equivalences

F̃ ' hocolim
C∈Sub(QF̃ )

C

Proof. 1. We assume that F̃ : C̃fin −→ Ch is a presented cell functor. We
will make an inductive approach. We consider the cellular decomposition
F̃ = colim

i
F̃i and we assume that the inclusion F̃i −→ F̃ factors as:

F̃i −→ colim
C∈Sub(F̃ )

C −→ F̃ .

Using Lemma 4.14, a i+ 1 cell V1 ⊗ C̃(X,−) −→ F̃i+1 −→ F̃ factors via
a finite subcomplex C of F :

V1 ⊗ C̃(X,−) //

&&

F̃i+1 // F̃

C
�.

==

We then have the following i+ 1-cell attachment pushout

⊕
α∈Ai

V α0 ⊗ C̃(Xα,−) //

��

F̃i

��

v�

))

""

⊕
α∈Ai

V α1 ⊗ C̃(Xα,−) //

++

F̃i+1 // F̃

colim
C∈Sub(F̃ )

C
� ?

OO
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where all the doted arrows fit into commutative diagrams. Using the uni-
versal property of the pushout F̃i+1, we have the factorization F̃i+1 −→
colim

C∈Sub(F̃ )
C −→ F̃ of the map F̃i+1 −→ F̃ .

We then deduce that the composition F̃ −→ colim
C∈Sub(F̃ )

C −→ F̃ is the

identity. The other composition colim
C∈Sub(F̃ )

C −→ F̃ −→ colim
C∈Sub(F̃ )

C is

obviously the identity.

2. If F̃ : C̃fin −→ Ch is an arbitrary simplicial functor, then using 1. and
the fact that the cofibrant replacement QF̃ is a presented cell functor, we
have

F̃
'←− QF̃ ∼= colim

C∈Sub(QF̃ )
C

It remains now to prove that this colimit is equivalent to the hocolim of
the same diagram. In fact this is a filtered colimit and each C is a chain
complexes valued functor. Since homology of chain complexes commutes
with filtered colimits, we deduce that

colim
C∈Sub(QF̃ )

C ' hocolim
C∈Sub(QF̃ )

C.

4.4 Homotopy property of simplicial functors

When we do homotopy theory, we are very sensitive to weak equivalences in the
same way as we care about homotopy functors (i.e. preserve weak equivalences)
when we do functor calculus. We have previously defined simplicial functors
and it is natural to ask whether theses functors, more precisely their associated
functor described in Definition 3.8 are homotopy. We prove in this section in
two lemmas that:

- Any simplicial functor F : Ch+ −→ Ch is a homotopy functor.

- Any simplicial functor F : AlgfinO −→ Ch is a homotopy functor.

Lemma 4.17. If k is a field of any characteristic and F : Ch+ −→ Ch is a
simplicial functor, then F preserves homotopy equivalences.

Proof. Let

V
f //

W
g

oo

be a homotopy equivalence pair between two chain complexes. Having a ho-
motopy of maps gf ∼ 1V is equivalent to have a homotopy H : V ⊗41 −→ Y
such that
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H|0 : V ⊗ k(0) −→ V is gf, and H|1 : V ⊗ k(1) −→ V is 1V .

We want to construct a homotopy equivalence pair

F (V ) //
F (W )oo

We consider the simplicial structure map of chain complexes associated to V :

FV,V : Ch+(V, V ) −→ hom(F (V ), F (V ));

We then make the following computations:

FV,V (dH) =FV,V (H|0 −H|1)
=FV,V (gf)− 1F (V )

=FW,V (g) ◦ FV,W (f)− 1F (V );

On the other hand, d(FV,V )(dH) = dV FV,V (H) + FV,V (H)dV . Since FV,V is a
morphism of chain complexes, we have

FW,V (g) ◦ FV,W (f) ∼ 1F (V ) with the homotopy FV,V (H).

A similar argument gives

FV,W (f) ◦ FW,V (g) ∼ 1F (W ).

Remark 4.18. If k is a field of characteristic 0, then any quasi-isomorphism
in Ch is a homotopy equivalence. In this case, Lemma 4.17 says that any
simplicial functor F : Ch+ −→ Ch preserves quasi-isomorphisms.

Lemma 4.19. Any simplicial functor F : AlgfinO −→ Ch preserves weak equiv-
alences.

Proof. 1. When F = V ⊗ÃlgO(X,−), it is known from the previous chapter
that F preserves weak equivalences.

2. We now suppose that F is a presented cell functor with the presentation

0 = F0 −→ F1 −→ ... −→ Fi −→ ... −→ F

and suppose that Fi preserves weak equivalences.
Since the pushout diagram

⊕
α
V α0 ⊗ ÃlgO(Xα,−) //

��

Fi

��
⊕
α
V α1 ⊗ ÃlgO(Xα,−) // Fi+1

is a homotopy pushout, thus it follows that Fi+1 preserves weak equiva-
lences. We then conclude that F preserves weak equivalences.
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3. Now we take an arbitrary simplicial functor F and consider QF its cofi-
brant replacement in [AlgfinO , Ch] which has a presented cell structure.
If f : Y '−→ Z be a weak equivalence in AlgO then QF (f) is a quasi
isomorphism from (2). We form the following commutative diagram

QF (Y ) ' //

'QF (f)
��

F (Y )

F (f)
��

QF (Z) ' // F (Z)

We deduce that F (f) is a weak equivalence.

4.5 Computation of the chain complexes Nat(Q(I⊗n), I⊗m)

In this section, I : Chfin+ −→ Ch denotes the inclusion functor viewed as a
simplicial functor in Example 3.11. We also denote by QI '−→ I the cofibrant
replacement of I in the model category [Chfin+ , Ch]0.

The goal of this section is to prove the the following:

Proposition 4.20. We assume that the ground field is of characteristic 0. If
n,m ∈ N, then

Nat(Q(I⊗n), I⊗m) '
{

k[Σn] if n = m;
0 if n 6= m.

where Q(I⊗n) denotes the cofibrant replacement of the functor Chfin+ 3
V 7−→ V ⊗n in the model category [Chfin+ , Ch]0.

This result was inspired by the work of Kuhn in [Kuh94, Lemma 6.12 ].
Before we give the proof of this result, we will need some homotopical properties
of the bi-functor Nat(−,−).

Proposition 4.21. Let C = AlgO, Ch+ or Ch. The objects Nat(F̃ , G̃) make
the functor category [Cfin, Ch]0 into an enriched model category over the sym-
metric monoidal category Ch.

Proof. We need to show that if F̃ � F̃ ′ is a cofibration and G̃′ � G̃ is a
fibration in [Cfin, Ch]0 then the map

Nat(F̃ ′, G̃′) −→ Nat(F̃ , G̃′) ×
Nat(F̃ ,G̃)

Nat(F̃ ′, G̃) (4.5)

is a fibration in Ch, and that it is a quasi-isomorphism if either F̃ −→ F̃ ′

or G̃′ −→ G̃ is. Since the category [Cfin, Ch]0 is cofibrantly generated, it is
sufficient to consider the case F̃ −→ F̃ ′ is either a generating cofibration or
a generating trivial cofibration V0 ⊗ C̃(X,−) r⊗1−→ V1 ⊗ C̃(X,−) in [Cfin, Ch]0,
where r : V0 −→ V1 is either a cofibration or a generating cofibration in Ch.
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Using the strong Yoneda Lemma to Equation (4.5), we get equivalently the
morphism of chain complexes

hom(V1, G̃′(X)) −→ hom(V0, G̃′(X)) ×
hom(V0,G̃(X))

hom(V1, G̃(X)) (4.6)

And this a is fibration since r : V0 −→ V1 is a cofibration and the map
G̃′(X) −→ G̃(X) is a fibration in Ch.

In addition, If r or G̃′(X) −→ G̃(X) , (∀X) is a quasi-isomorphism, then so
is the map (4.6).

A straight consequence of Lemma 4.21 is the next result.
Corollary 4.22. If F̃ � F̃ ′ is a trivial cofibration and G̃′ (which is always
fibrant) in [Cfin, Ch]0, then the natural map of chain complexes

Nat(F̃ ′, G̃′) −→ Nat(F̃ , G̃′)
is a quasi-isomorphism.

Moreover, if F̃ −→ F̃ ′ is simply a weak equivalence with F̃ and F̃ ′ cofi-
brant functors in [Cfin, Ch]0, using the Ken Brown’s Lemma, we deduce from
Corollary 4.22 that Nat(F̃ ′, G̃′) −→ Nat(F̃ , G̃′) is a quasi-isomorphism.

Now we start the analysis for the proof of Proposition 4.20 which uses the
following fundamental lemmas in the particular case n = m = 1.
Lemma 4.23. We assume that the ground field is of characteristic 0. There is
a quasi isomorphism of chain complexes

Nat(QI, I) ' k

The proof of this lemma will use the following key result:
Lemma 4.24. We assume that the ground field is of characteristic 0. There is
a weak equivalence in [Chfin+ , Ch]0

ρ : hocolim
p

s−pN k̃HomCh+(Nk4•, sp−) '−→ I

Proof. Consider the maps lp (∀p ≥ 0) defined as follows:

N k̃HomCh+(Nk4•, sp−) lp−→ NHomCh+(Nk4•, sp−) ∼= spI⊕
i

fi 7−→
∑
i

fi

The map ρ in the lemma is defined by first taking the adjoint of the maps
lp’s:

l̃p : s−pN k̃HomCh+(Nk4•, sp−) '−→ I

and then applying hocolim
p

on the domain.
We will prove in the first two items that the domain and the co-domain of

the natural projection lp are simplicial functors and that lp is itself a simplicial
natural transformation. We use these maps lp ,∀p, to prove in 3. that ρ is a
simplicial natural transformation between simplicial functors. In the last item
we show that ρ is a weak equivalence, that is a level-wise quasi-isomorphism.
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1. The simplicial structure on the functor

N k̃HomCh+(Nk4•, sp−) : C̃h+ −→ Ch

is almost defined as the simplicial structure of the representable functor
NkHomCh+(Nk4•,−) of Example 3.10. More precisely the simplicial
structure map

C̃h+(V,W ) Γp−→hom(N k̃HomCh+(Nk4•, spV ), N k̃HomCh+(Nk4•, spW ))

is adjoint to a map (in Ch)

C̃h+(V,W )⊗N k̃HomCh+(Nk4•, spV )
Γ
′
p−→ N k̃HomCh+(Nk4•, spW )

To define this map Γ′p, we consider the morphism of simplicial sets

HomCh+(Nk4• ⊗ V,W )×HomCh+(Nk4•, spV ) γ−→ HomCh+(Nk4•, spW )
f ⊗ g 7−→ γ(f ⊗ g)

where γ(f ⊗ g) is the composite

Nk4•
4 // Nk4• ⊗Nk4•

g⊗Nk4•

��
spV ⊗Nk4• ∼= spk⊗ (V ⊗Nk4•) spk⊗f // spk⊗W

In addition since the functors N and k(−) are monoidal, we apply Nk(−)
to γ and form the commutative diagram

NkHomCh+(Nk4• ⊗ V,W )⊗Nk∗
Nk(γ) //

1⊗i
��

Nk∗

i

��
NkHomCh+(Nk4• ⊗ V,W )⊗NkHomCh+(Nk4•, spV )

Nk(γ) // NkHomCh+(Nk4•, spW )

Taking the fiber of the vertical maps 1 ⊗ i and i, we get the map Γ′p. A
similar argument with item (a) in the proof of Proposition 3.4 permits
to claim that γ is associative and satisfies the unit axiom. Therefore Γ′p
and thus Γp satisfy these properties since N and k(−) are monoidal.

2. The functor NHomCh+(Nk4•, sp−) : Ch+ −→ Ch which is isomorphic
using the Dold-Kan correspondence to the functor spk⊗ I : Ch+ −→ Ch
induces clearly a simplicial functor as I does so (see Example 3.11).
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3. We prove now that ρ is a simplicial natural transformation. We consider
the natural projection

N k̃HomCh+(Nk4•, sp−) lp−→ NHomCh+(Nk4•, sp−) ∼= spI

which is a simplicial natural transformation in [C̃h+, Ch]0. In fact we
have the commutative diagram:

C̃h+(V,W )
Γp //

spk⊗ĨV,W
��

hom(N k̃HomCh+(Nk4•, spV ), N k̃HomCh+(Nk4•, spW ))

hom(1,lpW )
��

hom(spV, spW )
hom(lpV ,1)

// hom(N k̃HomCh+(Nk4•, spV ), spW )

which is equivalent by adjunction to the commutative diagram

N k̃HomCh+(Nk4•, spV )⊗ C̃h+(V,W )
Γp //

��

N k̃HomCh+(Nk4•, spW )

��
N k̃HomCh+(Nk4•, spV )⊗ hom(spV, spW ) // spW

Note that hom(spV, spW ) ∼= hom(V,W ). By applying hocolim
p

s−p− to
the above diagram, we deduce that ρ is a simplicial natural transforma-
tion.

4. We finally need to show that ρ is a weak equivalence. According to the
Hurewicz theorem ( see [GJ99, Chap III, Thm 3.7] and [KK04]), we have
the 2p-connected morphism of simplicial sets

hp : HomCh+(Nk4•, spW ) −→ k̃HomCh+(Nk4•, spW )

which is deduced from the unit of the adjoint pair k(−) : sV ectk � sSet :
U. On the other hand, considering the projection lp defined above in item
3. we form the composite

HomCh+(Nk4•spW ) hp−→ k̃HomCh+((Nk4•, spW ) lp−→
HomCh+(Nk4•, spW )

which is the identity on HomCh+(4•, spW )− {0}. Thus we deduce that
lp is also 2p-connected. We then have the p-connected map of simplicial
vector spaces:

Ωpk̃HomCh+((Nk4•, spW ) Ωp(lp)−→ ΩpHomCh+(Nk4•, spW ).

By applying the functor hocolim
p
− on this map, we get the a weak equiv-

alence of simplicial vector spaces

hocolim
p

Ωpk̃HomCh+(Nk4•, spW ) −→
hocolim

p
ΩpHomCh+(Nk4•, spW ).
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Finally we apply the normalization functor N(which is a left and thus
commutes with colimits) to get the quasi-isomorphism of chain complexes

hocolim
p

s−pN k̃HomCh+(Nk4•, spW ) −→

hocolim
p

s−pNHomCh+(Nk4•, spW ).

The computation on the co-domain of this later map using the Dold Kan
correspondence gives:

hocolim
p

s−pNHomCh+(Nk4•, spW ) ' hocolim
p

s−pspW 'W

Proof of Lemma 4.23. Using Lemma 4.24 and the fact thatNat(−, I) preserves
weak equivalences between cofibrant functors, we make the following compu-
tation

Nat(QI, I) ' Nat(hocolim
p

s−pQN k̃HomCh+(Nk4•, sp−), I) (4.7)

' holim
p

spNat(QN k̃HomCh+(Nk4•, sp−), I) (4.8)

At this point, we will compute the chain complexNat(QN k̃HomCh+(Nk4•, sp−), I).
We consider the (homotopy) pushout diagram of simplicial vector spaces

k∗ ∼= HomCh+(0⊗Nk4•,W ) //

��

0

��
kHomCh+(k⊗Nk4•,W ) // k̃HomCh+(k⊗Nk4•,W )

which induces a level-wise homotopy pushout diagram in chain complexes

NkHomCh+(0⊗Nk4•, sp−) //

��

0

��
NkHomCh+(k⊗Nk4•, sp−) // N k̃HomCh+(k⊗Nk4•, sp−)

When we apply Nat(Q−, I) to this diagram, we get the homotopy pullback
diagram

Nat(QNkHomCh+(0⊗Nk4•, sp−), I) 0oo

Nat(QNkHomCh+(k⊗Nk4•, sp−), I)

OO

Nat(QN k̃HomCh+(k⊗Nk4•, sp−), I)

OO

oo

(∗)
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We observe that the most right vertical map of the diagram (∗) is a weak
equivalence. In fact the functor NkHomCh+(0⊗Nk4•, sp−) is cofibrant (see
Appendix (6)). We then make the computation:

Nat(QNkHomCh+(0⊗Nk4•, sp−), I) ' Nat(NkHomCh+(0⊗Nk4•, sp−), I)
(4.9)

' s−pI(0) = 0 (4.10)

where the equivalence (4.10) is roughly given by the Yoneda lemma and ex-
plained in Appendix (6)−(5.51).

It follows that the most left vertical map of the pullback diagram (∗) is also
a weak equivalence. Therefore we have

Nat(QN k̃HomCh+(k⊗Nk4•, sp−), I) ' Nat(QNkHomCh+(k⊗Nk4•, sp−), I)
(4.11)

' Nat(NkHomCh+(k⊗Nk4•, sp−), I)
(4.12)

' Nat(NkHomCh≥p(k⊗Nk4•,−), s−pI)
(4.13)

= s−pk. (4.14)

where
- Equation (4.12) comes from the fact that the functor NkHomCh+(k ⊗
Nk4•, sp−) is cofibrant (see Appendix (6)).

- Equation (4.14) comes from the Yoneda lemma (see Appendix-(6)-(5.51)).
Using the equations (4.8) and (4.14) we deduce the following computation

Nat(QI, I) ' holim
p

spNat(QN k̃HomCh+(Nk4•, sp−), I)

' holim
p

sps−pk ' k.

We now consider the two functors:

4 : Chfin+ −→ Chfin+ × Chfin+ and Π : Chfin+ × Chfin+ −→ Chfin+

V 7−→ (V, V ) (V,W ) 7−→ V ⊕W

which extend to simplicial functors 4̃ and Π̃ in Example 3.15 between the
Ch-enriched categories C̃h

fin

+ × C̃h
fin

+ and C̃h = Ch.
We denote by Natbi(−,−) the functor whose input are the simplicial bi-

functors C̃h
fin

+ × C̃h
fin

+ −→ C̃h and returns a chain complex. This is obtained
explicitly by replacing C̃fin in Definition 4.1 by C̃h

fin

+ × C̃h
fin

+ .
The pairs (4,Π) and (Π,4) are adjoint; therefore we deduce the following

lemma which is an enriched case of a general argument (see [Emi17, Prop
4.4.6]).
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Lemma 4.25. Given any two simplicial functors F̃ : Chfin+ −→ Ch and G̃ :
Chfin+ × Chfin+ −→ Ch, there are isomorphisms

Nat(F̃ , G̃ ◦ 4̃) ∼= Natbi(F̃ ◦ Π̃, G̃) (4.15)

and
Nat(G̃ ◦ 4̃, F̃ ) ∼= Natbi(G̃, F̃ ◦ Π̃) (4.16)

Proof. We will only prove Equation (4.15) as the proof for Equation (4.16)
follows an analogous argument.

Let f = {fV,W : F̃ (V ⊕ W ) −→ G̃(V,W )}V,W ∈ Natbi(F̃ ◦ Π̃, G̃) and
g = {gV : F̃ (V ) −→ G̃(V, V )}V ∈ Nat(F̃ , G̃ ◦ 4̃);

If we denote by η : 1 −→ 4Π and ε : Π4 −→ 1 the unit and the co-unit
of the adjunction (Π,4) respectively. We define the morphisms γ and γ′ as
follows:

γ : Natbi(F̃ ◦ Π̃, G̃) −→
∏
V

hom(F̃ (V ), G̃(V, V ))

f 7−→ {F̃ (V ) F̃ (η)−→ F̃ (V ⊕ V ) fV,V−→ G̃(V, V )}V

γ′ : Nat(F̃ , G̃ ◦ 4̃) −→
∏
V,W

hom(F̃ (V ⊕W ), G̃(V,W ))

g 7−→ {F̃ (V ⊕W ) gV⊕W−→ G̃(V ⊕W,V ⊕W ) G̃(ε)−→ G̃(V,W )}V,W

One can check that γ(f) and γ′(g) satisfy the naturality in the underlying
diagrams to Nat(F̃ , G̃ ◦ 4̃) and Natbi(F̃ ◦ Π̃, G̃) respectively. Therefore these
maps factors uniquely to Nat(F̃ , G̃ ◦ 4̃) and Natbi(F̃ ◦ Π̃, G̃) respectively.

In addition we have the identity γ′γ(f) = f explained by the following
commutative diagram

F̃ (V ⊕W )
F̃ (Πη) //

=
((

F̃ (V ⊕W ⊕ V ⊕W )
fV⊕W,V⊕W //

F̃ (εΠ)
��

G̃(V ⊕W,V ⊕W )
G̃(ε) // G̃(V,W )

F̃ (V ⊕W )
fV,W

22

The first triangle commutes by the triangle identity property that satisfy the
adjunction; The second triangle comes from the naturality in the diagram un-
derlying Natbi(F̃ ◦ Π̃, G̃) that satisfy f.

A similar argument gives the identity γγ′(g) = g.

Given two simplicial functors F̃ , H̃ : Chfin+ −→ Ch, we define the bi-functor

F̃ � H̃(V,W ) := F̃ (V )⊗ H̃(W )
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Using this definition, the tensor product of two simplicial functors introduced
in Example 3.12 can be re-written as F̃ ⊗ H̃ := (F̃ � H̃) ◦ 4.

Lemma 4.26. If F̃ , G̃ : C̃h
fin

+ −→ Ch are two presented cell functors in
[Chfin+ , Ch]0, then the tensor product F̃ ⊗ G̃ is cofibrant.

Proof. Let H̃
β
�
'
K̃ be a fibration in [Chfin+ , Ch]0. We want to prove that the

natural map

Nat(F̃ ⊗ G̃, H̃) β∗−→ Nat(F̃ ⊗ G̃, K̃)

induced by β is a surjection. HereNat(−,−) denotes the set of enriched natural
transformations of simplicial sets.

1. We assume that F̃ = V ⊗ C̃h+(V ′,−) and G̃ = W ⊗ C̃h+(W ′,−). We
have

Nat(F̃ ⊗ G̃, H̃) ∼= Nat(F̃ , hom(W, H̃(W ′ ⊕−))) (4.17)
∼= hom(V, hom(W, H̃(W ′ ⊕ V ′))) (4.18)
∼= hom(V ⊗W, H̃(W ′ ⊕ V ′)) (4.19)

where the equations (4.17) and (4.18) are given by the enriched Yoneda
lemma and Lemma 4.25.
We deduce similarly that Nat(F̃ ⊗ G̃, K̃) ∼= hom(V ⊗W, K̃(W ′ ⊕ V ′)),
and that the map β∗ is equivalent to the surjection:

hom(V ⊗W, H̃(W ′ ⊕ V ′)) −→ hom(V ⊗W, K̃(W ′ ⊕ V ′))

2. We now consider the following presentation of F̃ :

F̃0 = ∗ −→ F̃1 −→ ... −→ F̃k −→ ... −→ F̃

and the following attachment

⊕
α
V α0 ⊗ C̃h+(V ′α,−) //

��

F̃i

��
⊕
α
V α1 ⊗ C̃h+(V ′α,−) // F̃i+1

The tensor product of this diagram with an arbitrary presented cell G̃
gives the pushout diagram
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⊕
α
V α0 ⊗ C̃h+(V ′α,−)⊗ G̃ //

(3)
��

F̃i ⊗ G̃

(4)
��

⊕
α
V α1 ⊗ C̃h+(V ′α,−)⊗ G̃ // F̃i+1 ⊗ G̃

Now since G̃ is cofibrant, all the maps

V α0 ⊗ C̃h+(V ′α,−)⊗ G̃ −→ V α1 ⊗ C̃h+(V ′α,−)⊗ G̃

are cofibrations. One then deduce that the map (3) is a cofibration and
therefore that (4) is a cofibration.

The result then follows inductively using 1. and 2.

Proof of Proposition 4.20 . We first remark that Q(I)⊗n is also a cofibrant
replacement of I⊗n (see Lemma 4.26) , therefore

Nat(Q(I⊗n), I⊗m) ' Nat(Q(I)⊗n, I⊗m).

On the other hand we make the following computation (using Lemma 4.25)

Nat(Q(I)⊗n, I⊗m) ∼= Nat(Q(I)⊗n, I�m ◦ 4m)
.

∼= Nat(Q(I)⊗n ◦Πm, I
�m)

where 4m : Chfin+ −→ (Chfin+ )×m and Πm : (Chfin+ )×m −→ Chfin+ are the
(m− 1)th-iteration of 4 and Π respectively.

Thus until now we have the equivalence

Nat(Q(I⊗n), I⊗m) ' Nat(Q(I)⊗n ◦Πm, I
�m).

It remains to develop the term Q(I)⊗n ◦Πm.

Let V1, ..., Vm ∈ Chfin+ ; then

Q(I)⊗n ◦Πm(V1, ..., Vm) = (Q(I)(V1 ⊕ ...⊕ Vm))⊗n

=
⊕

i1,...,in∈{1,...,m}

Q(I)(Vi1)⊗ ...⊗Q(I)(Vin)

=
⊕

i1,...,in∈{1,...,m}

Q(I) � ...�Q(I)(Vi1 , ..., Vin)

1. If n < m then

Nat(Q(I)�n, I�m) ∼= Nat(Q(I), I)⊗n ⊗Nat(k, I)⊗m−n

where we denote abusively k to mean the constant functor which is k for
any given input.
Since Nat(k, I) = 0, we have that Nat(Q(I)�n, I�m) ∼= 0.
We then deduce that Nat(Q(I⊗n), I⊗m) ' 0
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2. When n > m this is the dual case and analogue of the previous case.

3. If n = m we start with the easy case n = 2 and we generalize the con-
structions for any arbitrary n.

Q(I)⊗Q(I) ◦Π ∼= (Q(I)⊗Q(I)) ◦ pr1 ⊕ (Q(I)⊗Q(I)) ◦ pr2
⊕kΣ2 ⊗ (Q(I) �Q(I))

Since

Nat((Q(I)⊗Q(I)) ◦ pr1, I
�2) ∼= Nat(Q(I)⊗Q(I), I ⊗ (I(0))) ∼= 0,

and Nat((Q(I) ⊗ Q(I)) ◦ pr2, I
�2) ∼= Nat(Q(I) ⊗ Q(I), (I(0)) ⊗ I) ∼= 0,

we deduce that

Nat(Q(I)⊗Q(I) ◦Π, I�2) ∼= Nat(kΣ2 ⊗ (Q(I) �Q(I)), I�2)
∼= kΣ2 ⊗Nat(Q(I), I)⊗2

We know from Lemma 4.23 that Nat(Q(I), I) ' k. Therefore, we deduce
that Nat(Q(I)⊗Q(I), I ⊗ I) ' kΣ2.

For a general integer n, we remark that

Q(I)⊗n ◦Πn =
⊕

n
f
�k,k≥n

Q(I)�n ◦ Prf

where Prf (V1, ..., Vn) := (Vf(1), ..., Vf(n)).
If f /∈ Σn, then as the the case n = 2, we have

Nat(Q(I)�n ◦ Prf , I�n) ' 0.

Therefore we have

Nat(Q(I)⊗n ◦Πn, I
�n) '

⊕
Σn

Nat(Q(I)�n, I�n)

'
⊕
Σn

Nat(Q(I), I)⊗n

'
⊕
Σn

k = kΣn

Remark 4.27. An analogous and equivalent statement of Lemma 4.20 is the
following: If A and B are finite sets, then

Nat(Q(I⊗A), I⊗B) ' k[FinSet(A,B)]

where FinSet(A,B) denotes the set of bijections from A to B.



CHAPTER 5

Taylor tower of simplicial functors

In this chapter, we will give an explicit and fairly computable formula for the
Taylor tower {PnF} of a functor F : AlgO −→ Ch. This is the context of
Theorem 5.35 which roughly states that when F is simplicial and finitary, then

PnF (X) ' B(∂∗≤nF,BcB(O), X) (5.1)

Let us explain this formula in more detail. The externalB is the bar-construction
with coefficients and the cobar-bar BB(O) is the cofibrant replacement of O.
The left BcB(O)-module structure on X is induced from the obvious left O-
module structure on the O-algebra X.

For formula (5.1) to make, sense we also need to give a rightBcB(O)-module
structure on the truncated derivatives

∂∗≤nF = (∂0F, ..., ∂nF, 0, 0, ...)

In order to do so, we will prove in Theorem 5.10 the formula of the form

∂∗F ' B(Nat(FΩ∞I, I⊗∗), B(O)∨, I)∨ (5.2)

which induces for general reason a strict BcB(O)-module structure on the right
hand side. Here Nat(FΩ∞I, I⊗∗) is the chain complex of natural transforma-
tion between the functors :

FΩ∞I : Ch+ −→ Ch, V 7−→ F (Ω∞I(V ));

I⊗n : Ch+ −→ Ch, V −→ V ⊗n,

To give sense to formula (5.2), we need a left B(O)∨-module structure on
Nat(FΩ∞I, I⊗∗). This comes from the natural morphism of symmetric se-
quences

Nat(FΩ∞I, I⊗∗) ◦Nat(Σ∞Ω∞I, I⊗∗) −→ Nat(FΩ∞I, I⊗∗) (5.3)

111
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(see the map % of Equation (5.18) in the proof of Proposition 5.15 ) which turns
out to be associative because Σ∞Ω∞ is a comonad, and a natural map

λ∗ : B(O)∨ −→ Nat(TI, I⊗∗) (5.4)

explained at Equation (5.13) (which ought to be an equivalence). Combining
(5.3) and (5.4) gives the desired B(O)∨-module structure on Nat(FΩ∞I, I⊗∗).

Note that in this introduction we have limited our formulas in the special
case where F if a finite cellular functor. The general formulas will be stated
for general simplicial functors by taking a suitable filtered homotopy functors
or if we can prove that the derivative is of finite type.

Let us now explain the strategy of our proofs. The proof of Theorems 5.10
and 5.35 will pass through a first study of functors of chain complexes

F : Ch+ −→ Ch

Indeed in §5.1, for such functor we will associate the functor

ΨnF : Ch+ −→ Ch,W 7−→ hom(Nat(F, I⊗n),W⊗n)Σn

and we will prove that the natural evaluation map

F −→ ΨnF

induces an equivalence on the n-th layers, hence we will get the formula

∂∗F ' Nat(F, I⊗∗)∨

We will prove this formula by proving this first on representable functors
and our computation of derivatives from Chapter 2. We will then infer this
for any cellular functors by standard arguments. With this new formula for
the derivatives, we will deduce our formula for the derivatives of functors
F : AlgO −→ Ch by taking the standard cosimplicial resolution of F through
FΩ∞ and the comonad Σ∞Ω∞ as explained in §5.3.3

For the proof of Theorem 5.35, we will compare the right hand side of Equa-
tion (5.1) with the "fake Taylor tower" inspired by Arone-Ching and defined as
( see Lemma 5.27)

ΦnF (X) 'MaprightB(O)∨(B(∂∗FΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗∗≤n).

In this chapter, our based operad O is again a reduced operad on Ch+.
Since the dual of the bar construction B(O), that we denote B(O)∨, is not
always a cooperad, we will assume that our operad O is aritywise finite dimen-
sional. That is ∀n, dim(O(n)) < ∞. In many of our construction, we make
a use of Proposition 4.20 thus we will consider that the ground field k is of
characteristic 0. The functors F : AlgO −→ Ch that we consider here are all
homotopy functors (preserve weak equivalences). Note that simplicial functors
F : Ch+ −→ Ch are automatically homotopy functors (see Remark 4.18), and
the simplicial functors F : AlgfinO −→ Ch are also homotopy functors (see
Lemma 4.19).

The chapter has the following guidelines:
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- In §5.1, we give a new model for the Goodwillie derivatives of simplicial
functors F : Ch+ −→ Ch. This new model is expressed in term of the
enriched natural transformations described in Definition 4.4.

- In §5.2, we prove that the new model for the derivatives described in §5.1,
has a chain rule property.

- In §5.3, we give a new model for the derivatives of functors F : AlgO −→
Ch and we show that this model has a natural module structure over the
operad Bc(B(O)).

- We describe in §5.4, the Taylor tower of simplicial functors. This is the
main goal of the chapter, and we use in this description the main results
that we have developed throughout the other sections of this chapter.

- Finally in §5.5, we compute as example the Taylor tower of two functors:
the representable functor and the forgetful functor

ÃlgO(X,−), IU(−) : AlgO −→ Ch.

5.1 Dn-approximation of functors F : Ch+ −→ Ch

In this section, we give a Dn-approximation of presented cell functors F :
Ch+ −→ Ch. More precisely, we define ∀n a functor ΨnF such that:

• The derivatives of ΨnF are easily computable;

• There is a natural transformation ψF : F −→ ΨnF which is a Dn-
equivalence. Namely, DnψF : DnF −→ DnΨnF is a weak equivalence.

Definition 5.1. Let F : Chfin+ −→ Ch be a presented cell functor. Then we
define the functor ΨnF by

ΨnF (W ) := hocolim
C∈Sub(F )

hom(Nat(C, I⊗n),W⊗n)Σn (5.5)

where Sub(F ) is the set of finite subcomplexes of F.

let F : Ch+ −→ Ch be a presented cell functor and C ∈ Sub(F ). We define
the morphism

ψC : C(W ) −→ hom(Nat(C, I⊗n),W⊗n)Σn

to be the adjoint of the evaluation(equivariant) map :

C(W )⊗Nat(C, I⊗n) −→W⊗n

We have proved in Proposition 4.16 that F ' hocolim
C∈Sub(F )

C, thus we can define

the morphism

ψF : F (W ) ' hocolim
C∈Sub(F )

C(W ) −→ ΨnF (W ),
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which is induced by the morphisms ψC , and that we simply denote by

ψF : F −→ ΨnF.

The main result of this section is the following proposition.

Proposition 5.2. We assume char(k)=0. If F : Chfin+ −→ Ch is a presented
cell functor, then the morphism

ψF : F −→ ΨnF

is a Dn-equivalence.

A consequence of Proposition 5.2 is that we get an expression of derivatives
of simplicial functors in term of natural transformations. Given a simplicial
functor F : Ch+ −→ Ch, we denote by QF the cofibrant replacement of its
restriction in the category [Chfin+ , Ch].

Proposition 5.3 (Model for derivatives). We assume char(k)=0. If F :
Ch+ −→ Ch is a simplicial functor, then a model for the Goodwillie derivatives
of F is given by:

∂∗F ' hocolim
C∈Sub(QF )

hom(Nat(C, I⊗∗),k)

where Sub(QF ) denotes the category of finite subcomplexes of QF.

Proof of Proposition 5.3. If F : Ch+ −→ Ch is a simplicial functor, then its
restriction to Chfin+ that we abusively denote F has a cofibrant replacement
F
'←− QF, where QF has a presented cell structure. Using Proposition 5.2, we

have

∂nF
'←− ∂nQF

'−→ ∂nΨnQF.

On the other hand, we proved in Proposition 2.43 that

∂nΨnQF ' hocolim
C∈Sub(QF )

∂nΨnC

' hocolim
C∈Sub(QF )

hom(Nat(C, I⊗∗),k)

Therefore we get the result.

Proof of Proposition 5.2. The proof is done in 3 steps. We address the cases
where F is a representable functor, a finite presented cell functor and an arbi-
trary presented cell functor respectively.

1. We consider C = W0⊗C̃h+(V,−) : Chfin+ −→ Ch, where V,∈ Chfin+ ,W0 ∈
Chfin and we want to prove that the morphism

ψC : C(W ) −→ hom(Nat(C, I⊗n),W⊗n)Σn

is a Dn-equivalence. Note that C is a homotopy functor from §4.4. Us-
ing the characterization of the layers DnC in Corollary 2.22, it will be
sufficient to prove that the morphism
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4̂n(ψC) : 4̂nC(k) −→ 4̂n(hom(Nat(C, I⊗n), I⊗n)Σn)(k)

is a quasi-isomorphism, where 4̂nC is given in Definition 2.30 as the
stabilization of the cross effect crnC.

We start by computing the cross effect of the source and the target of
ψC .

(a) For the source of ψC , since C takes values in Ch, by Lemma 2.40 we
can replace the cross-effect by the co-cross-effect of Definition 2.39.
Moreover, since W0 ⊗ − : Ch −→ Ch is a Quillen left adjoint it
commutes with hocolims, and since the co-cross-effect is an iterated
homotopy colimit, we make the computation:

crn(W0 ⊗ C̃h+(V,−))(W1, ...,Wn) ' crn(W0 ⊗ C̃h+(V,−))(W1, ...,Wn)

'W0 ⊗ crn(C̃h+(V,−))(W1, ...,Wn)

Using Equation (2.32) in the proof of Proposition 2.44, we deduce
that:

crn(W0 ⊗ C̃h+(V,−))(W1, ...,Wn) '
W0 ⊗N k̃HomCh+(V ⊗4•,W1)⊗ ...⊗N k̃HomCh+(V ⊗4•,Wn).

(b) For the target of ψC , we write for short E = Nat(C, I⊗n) which is a
chain complex with a Σn-action. Note that E is finite since we have
by the Yoneda Lemma the isomorphism

E ∼= Nat(W0 ⊗ C̃h+(V,−), I⊗n)
∼= hom(W0, V

⊗n).

We then use again Lemma 2.40 as in (a) to make the following
computation:

crn(hom(E, I⊗n)Σn)(W1, ...,Wn) ' crn(hom(E, I⊗n)Σn)(W1, ...,Wn)
' crn(E∨ ⊗

Σn
I⊗n)(W1, ...,Wn)

' E∨ ⊗
Σn
crn(I⊗n)(W1, ...,Wn)

= E∨ ⊗
Σn

[ ⊕
σ∈Σn

Wσ(1) ⊗ ...⊗Wσ(n)]

' E∨ ⊗W1 ⊗ ...⊗Wn

' hom(E,W1 ⊗ ...⊗Wn)
' hom(hom(W0, V

⊗n),W1 ⊗ ...⊗Wn).

(c) The map crnψC is equivalent to crnψC which is, by the above com-
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putations, equivalent to the composite:

W0 ⊗N k̃HomCh+(V ⊗Nk4•,W1)⊗ ...⊗N k̃HomCh+(V ⊗Nk4•,Wn)

��
W0 ⊗ hom(V,W1)⊗ ...⊗ hom(V,Wn)

∼=
��

hom(hom(W0, V
⊗n),W1 ⊗ ...⊗Wn)

(5.6)
where the first vertical map is given by the projection

N k̃HomCh+(V ⊗Nk4•,−) −→ NHomCh+(V ⊗Nk4•,−) −→
hom(V,−)

and the second map is the composite of the adjoint of the obvious
evaluation maps. Note that this later map is an isomorphism since
Wi, i = 0, ..., n and V are finite dimensional chain complexes.
In addition, we showed at the end of the proof of Proposition 2.44
that, when we replace Wi = spik and apply the functor hocolim

p→∞
to

the projection map

s−pN k̃HomCh+(V ⊗4•, spk) −→s−pNHomCh+(V ⊗4•, spk)
−→s−pNHomCh+(4•, hom(V, spk))
−→s−phom(V, spk)

we get a quasi-isomorphism when char(k) = 0:

hocolim
p→∞

s−pNkHomCh+(V ⊗4•, spk) '−→ hom(V,k).

Applying this to each factor of the source of the map in ( 5.6), we
get a quasi-isomorphism

4̂nC(k) 'W0 ⊗ hom(V,k)⊗n

This completes the proof that 4̂n(ψC) is a quasi-isomorphism.

2. Now consider the following single cell attachment:

W0 ⊗ C̃h+(V,−) //

��

C ′

��
W1 ⊗ C̃h+(V,−) // C

(5.7)

This is also an objectwise (homotopy) pushout diagram. We apply the
functor Nat(−, I⊗n) to this diagram, we get the (homotopy) pullback
diagram in Ch :
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Nat(C, I⊗n) //

��

hom(W1, V
⊗n)

��
Nat(C ′, I⊗n) // hom(W0, V

⊗n)

The above diagram is again a (homotopy) pushout since the category Ch
is stable. Therefore we apply hom(−,W⊗n) to this diagram and get the
(homotopy) pullback diagram:

hom(hom(W0, V
⊗n),W⊗n) //

��

hom(Nat(C ′, I⊗n),W⊗n)

��
hom(hom(W1, V

⊗n),W⊗n) // hom(Nat(C, I⊗n),W⊗n)

(5.8)

We have a map between the two (homotopy) pushout diagrams (5.7) and
(5.8) induced by the morphisms ψF .

3. Since the functor Dn commutes with homotopy pushouts (for chain com-
plex valued functors), we deduce that if ψC′ is a Dn-equivalence then
so is ψC . In conclusion, the proof that ψC is a Dn-equivalence, for any
arbitrary finite presented cell functor C, follows by induction.

Corollary 5.4. If F : Ch+ −→ Ch is a cellular functor, then there is a
quasi-isomorphism

(∂∗F )∨ ' Nat(F, I⊗∗)

Proof. We know from Proposition 4.16-(1) that QF ∼= colim
C∈Sub(QF )

C so we de-

duce
Nat(QF, I⊗∗) ∼= lim

C∈Sub(QF )
Nat(C, I⊗∗)

On the other hand, given any finite cell functor C, the chain complexNat(C, I⊗∗)
is finite and we write

Nat(C, I⊗∗) ∼= hom(hom(Nat(C, I⊗∗)

We then deduce

Nat(QF, I⊗∗) ∼= lim
C∈Sub(QF )

hom(hom(Nat(C, I⊗∗),k),k)

∼= hom( colim
C∈Sub(QF )

hom(Nat(C, I⊗∗),k),k)

' hom(∂∗F,k)
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Corollary 5.5. Let F : Ch+ −→ Ch is a cellular functor. If ∂∗F or Nat(F, I⊗∗)
is of finite type then, there is a quasi-isomorphism

∂∗F ' Nat(F, I⊗∗)∨

Proof. This result is a consequence of Corollary 5.4 and the fact that any chain
complex of finite type is quasi-isomorphic to its bi-dual.

We will often use Corollary 5.5 to compute the derivatives of the tensor
powers of the inclusion I : Ch+ −→ Ch.

Remark 5.6. 1. The result of Proposition 4.20 says that the chain complex
Nat(QI⊗n, I⊗m) is of finite type ∀n,m ≥ 0. Then using Corollary 5.5 ,
we have the quasi-isomorphism

∂∗I
⊗n ' hom(Nat(QI⊗n, I⊗∗),k).

2. We have an analogous result for the comonad T := Σ∞Ω∞ : Ch −→ Ch
or more precisely the composite

TI = ⊕
n
B(O)(n) ⊗

Σn
I⊗n : Ch+ −→ Ch.

We have shown in Proposition 2.42 that ∂∗T ' B(O) which is of finite
type. On the other hand, it is straightforward that ∂∗T ' ∂∗TI. Hence
we deduce from Corollary 5.5 that there is a quasi-isomorphism

∂∗TI ' hom(Nat(QTI, I⊗∗),k) (5.9)

5.2 Chain rule property on derivatives

This section is dedicated to give the chain rule property for the new model of
derivatives established in Proposition 5.3. The main result is the following:

Proposition 5.7 (Chain rule for simplicial functors in Ch). We assume char(k)=0.
Let F,G : Ch −→ Ch be two simplicial functors, with F finitary. Then there
is a zig-zag of weak equivalences of symmetric sequences

∂∗(F.G) ' ∂∗F ◦ ∂∗G

For the proof of this result, we define a pro-object ∂∗F (associated to each
functor F ), and we remind the next elementary lemma which appears in [Chi10,
§6] in the context of spectra and in [AC11, Prop. 3.1], in a little more general
setting.

Lemma 5.8. If Ch G−→ Ch
F−→ Ch are two homotopy functors, then ∀n ≥ 0,

the natural map

Pn(FG)
Pn(pnF ) // Pn((PnF )G)

which is induced by pnF : F −→ PnF, is an equivalence.
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Proof. Let X ∈ Ch and U be a finite subset of n. The composite

G(X) // q
U
G(X) // G(q

U
X)

induces

G(X) // G(X) ∗ U // G(X ∗ U)

and we deduce tn(FG) : FG
tnF // (TnF )G // Tn(FG) , and in general

,∀k, we have the map(natural in k):

tkn(FG) : T kn (FG)
Tkn (tnF ) // T kn ((TnF )G) // T k+1

n (FG)

When we apply hocolim
k

(−) to the tkn(FG), we get:

Pn(FG)
Pn(tnF ) // Pn((TnF )G)

u(F,G) // Pn(FG)

Note that by construction u(F,G) ◦ Pn(tnF ) is equivalent to the identity 1 :
Pn(FG) −→ Pn(FG) and we denote it by u(F,G) ◦ Pn(tnF ) ∼ 1. An iterated
version of this construction gives the diagram

... // Pn(T k+1
n FG)

u(TknF,G) // Pn((T knF )G) // ...
u(F,G)// Pn(FG)

Pn(T knFG)

Pn(tnTknF )

OO

Pn(T k−1
n FG)

Pn(tnTk−1
n F )

OO

Pn(T k−1
n FG)

Pn(tnTk−1
n F )

OO

...

Pn(tnTk−2
n F )

OO

...

Pn(tnTk−2
n F )

OO

where, ∀k, we have u(T knF,G)◦Pn(tnT knF ) ∼ 1. Therefore the maps u(T knF,G)
induce a map vn(F,G) : Pn(Pn(F )G) −→ Pn(FG) so that

vn(F,G) ◦ Pn(pnF ) ∼ 1.

Now we want to prove the inverse equivalence Pn(pnF )◦vn(F,G) ∼ 1. For this
we consider the following commutative diagram

Pn(Pn(F )G)

Pn(pnPnF )
��

vn(F,G) // Pn(FG)

Pn(pnF )
��

Pn(P 2
n(F )G)

vn(PnF,G)
// Pn(Pn(F )G)
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Since vn(Pn(F ), G) ◦ Pn(pnPnF ) ∼ 1, we deduce that

Pn(pnF ) ◦ vn(F,G) ∼ 1.

Definition 5.9 (Pro object ∂∗F ). If F : Chfin+ −→ Ch is a presented cell
functor, then there is a pro-symmetric sequence of chain complexes, denoted
∂∗F, and given by

∂∗F := {Nat(C, I⊗∗)}C∈Sub(F )

Proof of Proposition 5.7. For the proof of this result, we will firstly define the
two maps involved in the zig-zag, and secondly prove that each of these maps
is a weak equivalence.

Let F,G : Ch −→ Ch be two simplicial functors. If E is a finite sub-
complex of Q(QF.QG), then using Proposition 4.13, the cofibrant resolution
α : Q(QF.QG) '−→ QF.QG restricts to a natural transformation E −→ CD,
where C ∈ Sub(QF ) and D ∈ Sub(QG). We then deduce the composite

Nat(C, I⊗∗) ◦Nat(D, I⊗∗) −→ Nat(CD,D⊗∗) ◦Nat(D, I⊗∗)
−→ Nat(CD, I⊗∗)
−→ Nat(E, I⊗∗)

which produces the morphism of pro- symmetric sequences:

µ∗ : ∂∗QF ◦ ∂∗QG −→ ∂∗Q(QF.QG)

The continuous dual of this morphism gives the morphism of chain complexes

µ∗ : ∂∗(QF.QG) −→ ∂∗F ◦ ∂∗G

Remark that this construction of µ∗ is natural in F and G. On the other hand,
If F is finitary then the cofibrant resolution QF −→ F in [Chfin, Ch]0 produces
the weak equivalences QF (X) '−→ F (X), for any X ∈ Ch. In particular we
have the weak equivalence QF.QG '−→ F.QG. In addition, we also get the weak
equivalence F.QG '−→ FG since F is finitary and preserves weak equivalences
(see § 4.4). In summary we form the composite

QF.QG
'−→ F.QG

'−→ FG,

and the zig-zag

∂∗(F.G) '←− ∂∗(QF.QG) µ∗−→ ∂∗F ◦ ∂∗G

At this point, it remains to prove that µ∗ is a weak equivalence.
Let us consider the diagram

∂n(F.G) µ∗ //

'
��

(∂∗F ◦ ∂∗G)(n)

'
��

∂n(PnF.G) µ∗ // (∂∗PnF ◦ ∂∗G)(n)
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where the vertical maps are induced by the natural transformation pnF : F −→
PnF ; The most left vertical map is an equivalence using Lemma 5.8 and the
fact that , for a given functor F, ∂n(PnF ) ' ∂nF. The right vertical quasi-
isomorphism is justified by the fact that: ∀k ≤ n, ∂kPnF ' ∂kF.

One deduce from this diagram that our proof reduces in proving that the
bottom horizontal map is a quasi-isomorphism. At this point we remark that
the functor ∂∗(−) respects fiber sequences and in particular the fiber sequence

DnF −→ PnF −→ Pn−1F

Therefore we only need to prove that we have the quasi-isomorphism

∂n(DnF.G) µ∗−→ (∂∗DnF ◦ ∂∗G)(n)

or more generally to prove , that given a k-homogeneous functor F (V ) =
E ⊗

Σk
V ⊗k, we have the quasi-isomorphism

E ⊗
Σk
∂nG

⊗k µ∗−→ ⊕
n�k

E ⊗
Σk
∂n1G⊗ ...⊗ ∂nkG

where

- ∂ni(−) := ∂ni(−),∀i;

- The direct sum on the right hand side is under the set of all surjections
n� k, with k fixed;

- Each sequence n1, ..., nk is the partition of n obtained by a surjection
n� k.

In more general case, given k functors G1, ..., Gk : Ch −→ Ch, we want to
prove that the following map is a quasi-isomorphism

∂n(G1 ⊗ ...⊗Gk) µ∗−→ ⊕
n�k

∂n1G1 ⊗ ...⊗ ∂nkGk

Again, since the functor ∂∗(−) commutes with fibration sequence, we can re-
duce to the case Gi(V ) := Ci ⊗

Σmi
V ⊗mi , and the map µ∗ is equivalent in this

case to

C ⊗
Σm1×...×Σmk

∂nI
⊗m µ∗−→ ⊕

n�k
C ⊗

Σm1×...×Σmk
∂n1I

⊗m1 ⊗ ...⊗ ∂nkI⊗mk

where C = C1 ⊗ ...⊗ Ck.
By Remark 5.9, the dual of the map

∂nI
⊗m µ∗−→ ⊕

n�k
∂n1I

⊗m1 ⊗ ...⊗ ∂nkI⊗mk

is equivalent to the morphism

⊕
n�k

Nat(QI⊗m1 , I⊗n1)⊗ ...⊗Nat(QI⊗mk , I⊗nk) −→ Nat(QI⊗m, I⊗n) (5.10)

Now using Remark 4.27, we re-write Equation (5.10) as the composition map
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⊕
n�k

k[FinSet(m1, n1)× ...× FinSet(mk, nk)] −→ k[FinSet(m,n)] (5.11)

and since this is an isomorphism, we are done.

5.3 New model for derivatives of functors F : AlgO −→ Ch

In this section, we give a new model for the Goodwillie derivatives of simplicial
functors F : AlgO −→ Ch. The goal is to establish the following theorem.

Theorem 5.10. We assume char(k)=0. If F : AlgO −→ Ch is a simplicial
finitary functor, then there is a quasi-isomorphism

∂∗F ' hocolim
C∈Sub(QF )

hom(B(Nat(CΩ∞I, I⊗∗), B(O)∨, I),k) (5.12)

where I(J) = k if |J | = 1 and I(J) = 0 otherwise.

We remind that I : Ch+ −→ Ch denotes the embedding functor.
Note that filtered colimits and filtered homotopy colimits of chain complexes

are equivalent since homology of chain complexes commutes with filtered col-
imits. Therefore the hocolim of Theorem 5.10 can be replaced by a strict
colimit.

The straight consequence of this result is the module structure that it en-
dows on the derivatives ∂∗F.

Corollary 5.11. Equation (5.12) of Theorem 5.10 endows the symmetric se-
quence ∂∗F with a structure of BcB(O)-module.

Proof. The proof is straightforward from Theorem 5.10. We use in fact the
usual decomposition of the bar-construction. This shows in fact that

B(Nat(CΩ∞I, I⊗∗), B(O)∨, I)

is a right BBc(O∨)-comodule. Then we take the linear dual of this comodule
structure map

B(Nat(CΩ∞I, I⊗∗), B(O)∨, I) −→ B(Nat(CΩ∞I, I⊗∗), B(O)∨, I) ◦BBc(O∨)

to get the module structure map

B(Nat(CΩ∞I, I⊗∗), B(O)∨, I)∨◦BcB(O) −→ B(Nat(CΩ∞I, I⊗∗), B(O)∨, I)∨.

The rest of this section is based on the proof of Theorem 5.10. We have
divided the proof into three major steps:

1. We first prove that, if F : AlgfinO −→ Ch is a presented cell functor
then ∂∗(FΩ∞) := {Nat(CΩ∞I, I⊗∗)}C∈Sub(F ) is a pro-right-module over
B(O)∨.
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2. Given a simplicial functor F : AlgfinO −→ Ch, we build an associated
cosimplicial functor Res•(F ) whose the totalization is equivalent to F.
The terms of this resolution are built with functors in [Chfin+ , Ch]0.

3. Finally, we will build a so-called Dn-approximation of F. This follows
an analogous idea of § 5.1. In fact, we will construct a functor ΦnF :
AlgO −→ Ch along with a natural transformation ψF : F −→ ΦnF
associated to F such that:

• The derivatives of ΦnF are easily computable;
• The natural transformation ψF : F −→ ΦnF is a Dn-equivalence.
Namely DnψF : DnF −→ DnΦnF is a weak equivalence.

This last assertion will use the cosimplicial resolution Res•(F ) of F and
the Dn-approximation developed in Section 5.1 for functors Ch+ −→ Ch.
Finally we will obtain Theorem 5.10 by computing the derivative of ΦnF.

5.3.1 Module structure on ∂∗FΩ∞

Definition 5.12. If F : AlgfinO −→ Ch is a presented cell functor, then we
denote by ∂∗(FΩ∞) the pro-symmetric sequence of chain complexes

∂∗(FΩ∞) := {Nat(CΩ∞I, I⊗∗)}C∈Sub(F ).

We denote by T the comonad T = (Σ∞Ω∞,mT , εT ), where the coproduct

mT : T −→ TT (resp. the co-unit εT : T −→ 1 )

is induced naturally by the cooperad coproduct

mc : B(O,−) −→ B(O) ◦B(O,−) ∼= B(O,−)Ω∞Σ∞

(resp. co-unit ε : B(O) −→ 1).

Given F : AlgfinO −→ Ch a presented cell functor, the right module struc-
ture that we want to construct on ∂∗FΩ∞ arises from a right T -comodule
structure on FΩ∞. This later structure is detailed in the next lemma.

Proposition 5.13. Let F : AlgfinO −→ Ch be a presented cell functor and
T be the comonad T = (Σ∞Ω∞,mT , εT ). Then the functor FΩ∞ is a right
T -comodule, with the structure map denoted η : FΩ∞ −→ FΩ∞T.

To prove this theorem, we will need the next lemma which uses the natural
B(O)-coproduct mc.

Lemma 5.14. Given X ∈ AlgO, there exists a natural map of chain complexes

ÃlgO(X,−) δ−→ ÃlgO(X,−)Ω∞Σ∞

such that the following diagram commutes
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ÃlgO(X,−) δ //

δ

��

ÃlgO(X,−)Ω∞Σ∞

AlgO(X,−)Ω∞mc
��

ÃlgO(X,−)Ω∞Σ∞
δΩ∞Σ∞

// ÃlgO(X,−)Ω∞Σ∞Ω∞Σ∞

Proof. Let Y ∈ AlgO. We have the isomorphism

ÃlgO(X,Y ) ∼= NkHomcoAlgB(O)(B(O, X), B(O, red0(Y ⊗Apl•)))

The multiplication of the element of the algebra Apl• on the leaves of trees
gives the map (defined in §3.1.2− (I))

σ : UB(O, red0(Y ⊗Apl•)) −→ red0(IUB(O, Y )⊗Apl•).

Using the map σ and the coalgebra comultiplication mc, we make the following
computation

B(O, red0(Y ⊗Apl•))
mc−→ B(O) ◦B(O, red0(Y ⊗Apl•))
∼=−→ B(O)(UB(O, red0(Y ⊗Apl•)))
σ−→ B(O)(red0(IUB(O, Y )⊗Apl•))
∼=−→ B(O, (red0(IUB(O, Y )⊗Apl•))triv)

On the other hand, we have the equivalences of O-algebras

red0(IUB(O,Ω∞V )⊗Apl•))triv ∼= [red0((Ired0)IUB(O,Ω∞V )⊗Apl•)]triv
∼= red0(I(red0IUB(O, Y ))triv ⊗Apl•)
∼= red0(IΩ∞Σ∞(Y )⊗Apl•)

Therefore the map δ follows.
Finally, since the multiplication m : Apl•⊗Apl• −→ Apl• is associative and

that mc : B(O,−) −→ B(O) ◦B(O,−) ∼= B(O,−)Ω∞Σ∞ is co-associative, we
deduce that the diagram given in the statement is commutative.

Proof of Proposition 5.13. We make the proof by induction on the cells of F.

1. We first assume that F is the representable functor F = ÃlgO(X,−)
(with X ∈ AlgO), and we want to prove that FΩ∞ is a right T -comodule.
Let V ∈ Ch. According to Lemma 5.14. We have a morphism of chain
complexes

ÃlgO(X,−) δ−→ ÃlgO(X,−)Ω∞Σ∞

Composing this map with Ω∞, we get η = δΩ∞

ÃlgO(X,Ω∞−) η−→ ÃlgO(X,−)Ω∞Σ∞Ω∞ = ÃlgO(X,Ω∞−)T.

The coassociativity and the counit properties of mc lead to that η is a
right T -comodule structure map.
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2. Let consider that F = C is a finite presented cell functor. Let consider
in particular the single cell attachment

W0 ⊗ ÃlgO(X,Ω∞−) //

��

C ′Ω∞

��
W1 ⊗ ÃlgO(X,Ω∞−) // CΩ∞

(∗)

This is objectwise a pushout diagram. Therefore the diagram

W0 ⊗ ÃlgO(X,Ω∞T−) //

��

C ′Ω∞T

��
W1 ⊗ ÃlgO(X,Ω∞T−) // CΩ∞T

(∗∗)

is also objectwise a pushout diagram. Therefore if there is a map η′ :
C ′Ω∞ −→ C ′Ω∞T so that the appropriate diagrams formed from (∗) to
(∗∗) commute, then the universal property of pushouts induces a mor-
phism η : CΩ∞ −→ CΩ∞T.
We assume in addition that the map η′ : C ′Ω∞ −→ C ′Ω∞T is coassocia-
tive, which means that the following diagram commutes:

C ′Ω∞ η′ //

η′

��

C ′Ω∞T

η′T
��

C ′Ω∞T
C′mT

// C ′Ω∞TT

Since the diagram

W0 ⊗ ÃlgO(X,Ω∞TT−) //

��

C ′Ω∞TT

��
W1 ⊗ ÃlgO(X,Ω∞TT−) // CΩ∞TT

(∗ ∗ ∗)

is objectwise a pushout diagram, and looking at the different maps be-
tween the diagrams (∗) and (∗∗∗), we deduce from the universal property
of pushouts that the two composites

CΩ∞ η−→ CΩ∞T ηT−→ CΩ∞TT
and

CΩ∞ η−→ CΩ∞T CΩ∞mT−→ CΩ∞TT
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are equal. It follows that if η′ is a right T -comodule map, then so is η.
It then follows by induction that for any finite presented cell functor C,
there is a right T comodule map η : CΩ∞ −→ CΩ∞T.
A similar argument works for the counit axiom.

3. For any arbitrary presented cell functor F, since we have the isomorphism
(see Proposition 4.16)

F ∼= colim
C∈Sub(F )

C,

we deduce that FΩ∞ is a right T -comodule with the structure map η :
FΩ∞ −→ FΩ∞T induced by the maps η : CΩ∞ −→ CΩ∞T (∀C ∈
Sub(F )).

We use the notations of Proposition 5.13 to deduce the module structure:

Proposition 5.15 (module structure on ∂∗(FΩ∞) ). Let F : AlgfinO −→ Ch be
a presented cell functor. Then the right T -comodule structure map η of Lemma
5.13 induces a morphism of pro-symmetric sequence

η∗ : ∂∗(FΩ∞) ◦B(O)∨ −→ ∂∗(FΩ∞)

which makes ∂∗(FΩ∞) into a pro-right-module over B(O)∨.

It remains now to prove this result. In the proof we will use the map λ∗ :

λ∗ : B(O)∨ −→ Nat(TI, I⊗∗) (5.13)

defined level-wise by: ∀n, λn as the composite

B(O)∨(n) ∼= B(O)∨(n)⊗ k −→ B(O)∨(n) ⊗
Σn
Nat(I⊗n, I⊗n) (5.14)

−→∼= Nat(B(O)(n) ⊗
Σn
I⊗n, I⊗n) (5.15)

−→ Nat(TI, I⊗n) (5.16)

where,

- The morphism (5.14) is induced by the map k −→ Nat(I⊗n, I⊗n) which
sends the unit 1 ∈ k to the class of the identity W⊗n Id−→W⊗n;
The diagonal Σn-action on the right hand of (5.14) is defined as follows:
Σn acts on B(O)∨(n) by its induced action on B(O)(n); and Σn acts on
Nat(F⊗n, G⊗n) by permuting the components in the domain F⊗n.

- The morphism (5.15) is the isomorphism

B(O)∨(n) ⊗
Σn
Nat(I⊗n, I⊗n) ∼= hom(B(O)(n), Nat(I⊗n, I⊗n))Σn

∼= Nat(B(O)(n) ⊗
Σn
I⊗n, I⊗n)
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- The morphism (5.16) is induced by the projection

TW −→ B(O)(n) ⊗
Σn
W⊗n.

We also define the morphism

Qλ∗ : B(O)∨ −→ Nat(QTI, I⊗∗) (5.17)

as the composite:

B(O)∨ λ∗−→ Nat(TI, I⊗∗) Nat(t,I
⊗∗)−→ Nat(QTI, I⊗∗)

where t : QT '−→ T is a cofibrant resolution of T in [Chfin, Ch]0.

Proof of Proposition 5.15. To define η∗, we need to define the intermediate
morphism % of pro-objects

% : ∂∗FΩ∞ ◦Nat(T, I⊗∗) −→ ∂∗FΩ∞ (5.18)

as the collection of the morphisms: ∀C ∈ Sub(F ),

Nat(CΩ∞I, I⊗∗) ◦Nat(TI, I⊗∗) −→ Nat(CΩ∞TI, T⊗∗) ◦Nat(TI, I⊗∗)
−→ Nat(CΩ∞TI, I⊗∗)
Nat(η,I⊗∗)−→ Nat(CΩ∞I, I⊗∗)

We then define the morphism η∗ as the composite

η∗ : ∂∗(FΩ∞) ◦B(O)∨ ∂∗(FΩ∞)◦λ∗−→ ∂∗(FΩ∞) ◦Nat(TI, I⊗∗) %−→ ∂∗(FΩ∞),

where λ∗ is given in Equation (5.13). To make the notation easier, we will
replace the product ∂∗(FΩ∞)◦λ∗ by 1◦λ∗, to mean that this morphism applies
λ∗ on the second term in the circle product, and the first term in unchanged.
We will also adopt the same convention in general to define maps on the circle
products.

1. To prove that η∗ is a module structure map, we first prove the asso-
ciativity. Let C ∈ Sub(F ), we sometimes use the notation ∂∗(CΩ∞) =
Nat(CΩ∞I, I⊗∗) to simplify the expressions. We consider the following
diagram :

∂∗(CΩ∞) ◦ (B(O)∨)◦2 = //

=
��

∂∗(CΩ∞) ◦ (B(O)∨)◦2
η∗◦1

//

1◦λ∗◦λ∗
��

∂∗(CΩ∞) ◦B(O)∨

1◦λ∗
��

∂∗(CΩ∞) ◦ (B(O)∨)◦2
1◦λ∗◦λ∗

//

1◦(mc)∨

��

∂∗(CΩ∞) ◦Nat(TI, I⊗∗)◦2
%◦1
//

1◦m∗T
��

∂∗(CΩ∞) ◦Nat(TI, I⊗∗)

%

��
∂∗(CΩ∞) ◦ (B(O)∨)

1◦λ∗
// ∂∗(CΩ∞) ◦Nat(TI, I⊗∗)

%
// ∂∗(CΩ∞)
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where,

- the multiplication (mc)∨ : B(O)∨ ◦B(O)∨ −→ B(O)∨ is the dual of
the cooperad coproduct mc;

- m∗T is the composite

Nat(TI, I⊗∗) ◦Nat(TI, I⊗∗) −→ Nat(TTI, TI⊗∗) ◦Nat(TI, I⊗∗)
−→ Nat(TTI, I⊗∗)
Nat(mT ,I⊗∗)−→ Nat(TI, I⊗∗)

One can easily check that the two top squares are commutative. The
bottom most left square commutes since one can check that the following
diagram is commutative

B(O)∨ ◦B(O)∨
λ∗◦λ∗

//

(mc)∨

��

Nat(TI, I⊗∗) ◦Nat(TI, I⊗∗)

m∗T
��

B(O)∨
λ∗

// Nat(TI, I⊗∗)

The most right bottom square commutes due to the coassociativity of the
comodule structure map η : CΩ∞ −→ CΩ∞T of Proposition 5.13 :

CΩ∞ η //

η

��

CΩ∞T

CΩ∞mT
��

CΩ∞T
ηT
// CΩ∞TT

2. If ε∨ denotes the dual of the cooperad co-unit ε : B(O) −→ 1, then the
unit diagram,

Nat(CΩ∞I, I⊗∗) ∼= Nat(CΩ∞I, I⊗∗) ◦ 1 1◦ε∨ //

=
++

Nat(CΩ∞I, I⊗∗) ◦B(O)∨

η∗

��
Nat(CΩ∞I, I⊗∗)

is commutative using the counit property of η : CΩ∞ −→ CΩ∞T

CΩ∞(W ) η //

=
''

CΩ∞T (W )

CΩ∞(ε)
��

CΩ∞1(W )
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5.3.2 Cosimplicial resolution of functors F : AlgfinO −→ Ch

Let F : AlgfinO −→ Ch be a presented cell functor. We define the cosimplicial
object Res•(F ) associated to F and the comonad T = Σ∞Ω∞ as follows:

for any integer r, Resr(F ) := FΩ∞T rΣ∞

The right T -comodule structure map η : FΩ∞ −→ FΩ∞T (see Lemma 5.13)
and the comonad coproduct mT : T −→ TT are used in the classical way to
construct the cofaces d0 : Resr(F ) −→ Resr+1(F ) and ,for 0 < i ≤ r, di :
Resr(F ) −→ Resr+1(F ) respectively. The codegeneracies sj : Resr+1(F ) −→
Resr(F ), for 0 ≤ j < r, are induced by the comonad unit T −→ 1.

We define the totalization of cosimplicial chain complexes as it appears in
[Fre17, § 3.3.13.].

Definition 5.16 (Totalization functor). We define the totalization of a cosim-
plicial chain complex X• as the end (in the category of chain complexes):

Tot(X•) =
∫
n∈4 hom(Nk4n, Xn)

Remark 5.17. In our reference [Fre17, § 3.3.13.], it is explicitly stated that the
object in the argument of the end

∫
n∈4 is a simplicial frame( [Fre17, § 3.2.2]).

In our case (chain complex) one can see that , given V ∈ Ch, hom(Nk4n, V )
is a simplicial frame associated to V.

Now we are ready to state the main result of this part.

Proposition 5.18. If F : AlgfinO −→ Ch is a presented cell functor, then there
is a weak equivalence

F
'−→ T̃ ot(Res•(F ))

where T̃ ot(Res•(F )) is the totalization functor applied to the (Reedy) fibrant
replacement of Res•(F ).

Remark 5.19. Since totalization Tot of chain complexes is equivalent to ho-
motopy totalization T̃ ot (see [ALTV08, Remark, p6], [BK72]), Proposition 5.18
is equivalent to saying that we have a weak equivalence

F
'−→ Tot(Res•(F ))

The rest of this part is dedicated to the proof of Proposition 5.18. We
remind the following definition of "extra codegeneracies" as it is reported in
[MV15, Definition 9.1.24].

Definition 5.20 (Extra codegeneracies). 1. An augmentation of a cosim-
plicial chain complex X• is a space X−1 and a map d0 : X−1 −→ X0

such that
d1d0 = d0d0 : X−1 −→ X1 (5.19)

2. We call extra codegeneracies of an augmented cosimplicial space X−1 −→
X•, a collection of maps
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s−1 : Xn+1 −→ Xn, n ≥ −1

satisfying

s−1d0 = Id,

s−1di = di−1s−1, i ≥ 1,
s−1si = si−1s−1, i ≥ 0.

Given an augmented cosimplicial chain complex X• with the augmentation
d0 : X−1 −→ X0, The Equation (5.19) ensures that there is a unique map
X−1 −→ Xn, n > 0 given by composing d0 : X−1 −→ X0 with the cofaces in
X•. We consider the map

(d0)n+1 : X−1 −→ Xn, n > 0

by composing d0 : X−1 −→ X0 with the cofaces d0 : Xi −→ Xi+1, i < n. This
defines a morphism of cosimplicial chain complexes

p : X−1 −→ X• (5.20)

where X−1 is taken as a constant cosimplicial chain complexes.
We state the following result which says literally that an augmented cosim-

plicial chain complex with extra codegeneracies has a totalization equivalent to
its augmentation. The proof imitates [MV15, Proposition 9.1.25].

Proposition 5.21. If an augmented cosimplicial chain complex X−1 −→ X•

has extra codegeneracies, then the map Tot(p) : X−1 −→ Tot(X•), induced by
the map p from (5.20), is a homotopy equivalence of chain complexes.

Proof. Our candidate to be the homotopy inverse of Tot(p) is the map

Tot(q) : Tot(X•) −→ X−1

induced by the map q : X• −→ X−1 which is itself obtained by the collection
of maps

(s−1)n+1 : Xn −→ X−1

defined by composing the extra codegeneracies n+ 1-times.
One can remark that the composite

X−1 (d0)n−→ Xn (s−1)n−→ X−1

is the identity since s−1d0 = Id. It follows that Tot(q)Tot(p) = Id on X−1.
It remains now to show that Tot(p)Tot(q) ∼ Id on Tot(X•).
Let (f0, f1, ..., fn, ...) be an object in Tot(X•) ⊂

∏
n
hom(Nk4n, Xn). We

will prove inductively that (d0)k+1(s−1)k+1fn ∼ fn, for k ≤ n

1. We prove here that d0s−1fn ∼ fn. The morphism f1 : Nk41 −→ X1

gives a chain homotopy between d0f0 and d1f0. Therefore s−1f1 gives a
chain homotopy between s−1d0f0 = f0 and s−1d1f0 = d0s−1f0.

For fn, in general we consider the restriction of fn+1 to
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Nk41 ↪→ Nk4n+1 −→ Xn+1

which gives a chain homotopy between s−1d0fn = fn and s−1d1fn =
d0s−1fn.

2. We make the following computation

(d0)k+1(s−1)k+1fn = (d0)k(s−1)k+1dk+1fn (5.21)
∼ (d0)k(s−1)k+1d0fn (5.22)
= (d0)k(s−1)kfn (5.23)
∼ d0s−1fn (5.24)
∼ fn (5.25)

where

- In (5.22), the chain homotopy dk+1fn ∼ d0fn is given by the re-
striction of fn+1 to the edge Nk41 ↪→ Nk4n+1 −→ Xn+1 whose
vertices are [0] and [k + 1];

- The homotopy (5.24) is obtained by repeating a similar process as
(5.21) and (5.22) to reduce to k − 1 and so on.

- The homotopy (5.25) is deduced from 1.

In conclusion we have (d0)n+1(s−1)n+1fn ∼ fn and this proves the Tot(p)Tot(q) ∼
Id on Tot(X•).

Proof of Proposition 5.18. Using Remark 5.19, we have to prove that

F
'−→ Tot(Res•(F )).

Moreover, based on Proposition 5.21, we only have to prove that there is a mor-
phism F −→ Res0(F ) such that F −→ Res•(F ) is an augmented cosimplicial
chain complex with extra codegeneracies.

(1) The cosimplicial object Res•(F ) has a natural augmentation

F (X) −→ Res0(F )(X) = FΩ∞Σ∞(X)

defined inductively from the representable functors. Namely,

(a) ∀X ∈ AlgO, there is a natural map

ÃlgO(X,−) δ−→ ÃlgO(X,−)Ω∞Σ∞

given by Lemma 5.14. Roughly speaking, this is given by the B(O)-
coalgebra coproduct

mc : B(O,−) −→ B(O) ◦B(O,−).

(b) The morphism in (a) extends inductively to a morphism
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δ : C −→ CΩ∞Σ∞

for any finite presented cell functor C : AlgfinO −→ Ch. In addition,
since the multiplication m : Apl• ⊗ Apl• −→ Apl• is associative
and that mc : B(O,−) −→ B(O) ◦ B(O,−) ∼= B(O,−)Ω∞Σ∞ is
co-associative, we form the following commutative diagram

C
δ //

δ

��

CΩ∞Σ∞

CΩ∞mc
��

CΩ∞Σ∞
ηΣ∞

// CΩ∞Σ∞Ω∞Σ∞

Finally, since F ∼= colim
C∈Sub(F )

C, this construction generalizes to a morphism

δ : F −→ FΩ∞Σ∞ and this defines an augmentation of the cosimplicial
object Res•(F ).

(2) The cosimplicial object Res•(F ) has extra codegeneracies

s−1 : Resk+1(F ) −→ Resk(F ), (∀k ≥ −1)

constructed again inductively from representable functors. Namely ∀Z,X ∈
AlgO, there is a sequence:

... // Res2(ÃlgO(Z,−))(X) // Res1(ÃlgO(Z,−))(X)

��
Res0(ÃlgO(Z,−))(X) = ÃlgO(Z,X)

induced by the sequence:

... // B(O) ◦B(O) ◦B(O, X)
ε◦B(O)◦B(O,X)// B(O) ◦B(O, X)

ε◦B(O,X) // B(O, X)

where ε : B(O) −→ k is the cooperad co-unit.

5.3.3 Dn-approximation of functors F : AlgO −→ Ch

In this section, we define aDn-approximation of simplicial functors F : AlgO −→
Ch. The development in this part follows the following road-map:

1. We remind the construction of the map of modules;

2. We make the construction of ΦnF ;

3. Then we make the construction of the map ψF : F −→ ΦnF ;

4. Finally, we prove that ψF is a Dn-approximation.
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(1) Map of modules

Definition 5.22 (Mapping object).
1. Let M,N be two symmetric sequences of chain complexes. We define the

chain complex

MapΣ(M,N) :=
∞
⊕
r=1

hom(M(r), N(r))Σr

2. Let M,N,P be two symmetric sequences in Ch. Then there is a natural
map

MapΣ(M,N) −→MapΣ(M ◦ P,N ◦ P )

constructed from the maps:

hom(M(r), N(r)) −→ hom(M(r)⊗P (n1)⊗...⊗P (nr), N(r)⊗P (n1)⊗...⊗P (nr))

which are themselves induced by the evaluation maps of the form

M(r)⊗ hom(M(r), N(r)) −→ N(r)

Definition 5.23 (Mapping objects for modules). Let O be a reduced operad
on Ch, and M,N be right O-modules. We define

MaprightO (M,N) = lim (MapΣ(M,N) ⇒MapΣ(M ◦ O, N))

where one of the arrows on the right hand side of this equation is induced by
the module structure map M ◦ P −→M, and the other map is the composite

MapΣ(M,N) −→MapΣ(M ◦ O, N ◦ O) −→MapΣ(M ◦ O, N)

where the first map is the map constructed in Definition 5.22-(2), and the second
morphism is produced by the module structure map N ◦ O −→ N.

Definition 5.24 (Mapping objects for pro-symmetric sequences). Let M :
I −→ Ch and N : J −→ Ch be two pro-symmetric sequences on chain com-
plexes. The map between M and N, denoted MapΣ(M,N)pro, the chain com-
plex

MapproΣ (M,N) := lim
j∈J

colim
i∈I

MapΣ(M(i), N(j))

(2) Construction of ΦnF

Definition 5.25 (Construction of ΦnF ). Let F : AlgfinO −→ Ch be a simplicial
functor. We define by ΦnF : AlgfinO −→ Ch the functor which assigns to any
O-algebra X, the chain complex

ΦnF (X) := hocolim
C∈Sub(QF )

T̃ ot(MaprightB(O)∨(∂∗CΩ∞ ◦ (B(O)∨)•+1, (Σ∞X)⊗∗≤n))
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This definition uses the fact that the symmetric sequence (Σ∞X)⊗∗ is a
right B(O)∨-module as it is explained here below.

Lemma 5.26. If X is an O-algebra, then the symmetric sequence (Σ∞X)⊗∗
is a right module over B(O)∨

Proof. The structure map

(Σ∞X)⊗∗ ◦B(O)∨ −→ (Σ∞X)⊗∗

is given by the composite

(Σ∞X)⊗∗ ◦B(O)∨ (mc)∗−→ (TΣ∞X)⊗∗ ◦B(O)∨

−→ (TΣ∞X)⊗∗ ◦Nat(TI, I⊗∗)
−→ (Σ∞X)⊗∗

where,

- the first map (mc)∗ is induced by the B(O)-coalgebra structure map

mc : B(O,−) −→ B(O) ◦B(O,−) ∼= TΣ∞;

- the second map is induced by the map λ∗ : B(O)∨ −→ Nat(TI, I⊗∗);

- the third map is induced by the evaluation maps of the form

T (Σ∞X) ◦Nat(TI, I⊗n) −→ (Σ∞X)⊗n.

There is an equivalent description of the functor ΦnF. Though we will es-
sentially use the version provided in Definition 5.25 in this section, it is also
important to consider this other description that we will use in the next section
to characterize {PnF}n.

Lemma 5.27. Let F : AlgfinO −→ Ch be a finite presented cell functor. Then
there is an equivalence

ΦnF (X) 'MaprightB(O)∨(B(∂∗FΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗∗≤n)

Proof. By definition, we have

ΦnF (X) := T̃ ot(MaprightB(O)∨(∂∗FΩ∞ ◦ (B(O)∨)•+1, (Σ∞X)⊗∗≤n))

' Tot(MaprightB(O)∨(∂∗FΩ∞ ◦ (B(O)∨)•+1, (Σ∞X)⊗∗≤n))

where the last equivalence is deduced from Remark 5.19 where we have ex-
plained that totalization and homotopy totalization coincide on chain com-
plexes. On the other hand, Tot which is technically a limit commutes with
MaprightB(O)∨(−, (Σ∞X)⊗∗≤n). We then have

ΦnF (X) 'MaprightB(O)∨(N(∂∗FΩ∞ ◦ (B(O)∨)•+1), (Σ∞X)⊗∗≤n)
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where N(∂∗FΩ∞ ◦ (B(O)∨)•+1) denotes the realization of the simplicial right
B(O)∨-module ∂∗CΩ∞ ◦ (B(O)∨)•+1.

Fresse showed in [Fre04, Thm4.1.8] that, there is a quasi-isomorphism

N(∂∗FΩ∞ ◦ (B(O)∨)•+1) ' B(∂∗FΩ∞, B(O)∨, B(O)∨),

and this is actually a morphism of right B(O)∨-module using the fact that

N(∂∗FΩ∞ ◦ (B(O)∨)•+1) ' N(∂∗FΩ∞ ◦ (B(O)∨)•) ◦B(O)∨.

Therefore, we deduce

ΦnF (X) 'MaprightB(O)∨(B(∂∗FΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗∗≤n).

Remark 5.28. Given an arbitrary simplicial functor F : AlgfinO −→ Ch, then
there is an equivalence

ΦnF (X) ' hocolim
C∈Sub(QF )

MaprightB(O)∨(B(∂∗CΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗∗≤n)

(5.26)

(3) Construction of the map ψF : F −→ ΦnF .

Let F : AlgfinO −→ Ch be a finite presented cell functor. To describe the
map ψF which appears in this proposition, we will need the next three lemmas.

We consider the composite: ∀X ∈ AlgO,

ψ′F : F (X) δ−→ FΩ∞Σ∞(X) −→MapΣ(Nat(FΩ∞I, I⊗∗), (Σ∞X)⊗∗)

where δ is the map defined in Lemma 5.14 and the second map is induced by
the evaluation map: ∀W ∈ Ch+,

FΩ∞I(W ) −→MapΣ(Nat(FΩ∞I, I⊗∗),W⊗∗).

Using the right B(O)∨-module structure on (Σ∞X)⊗∗ defined in Lemma
5.26, we prove in the next lemma that ψ′F factors through the module maps.

Lemma 5.29. Let F : AlgfinO −→ Ch be a finite presented cell functor.
The above defined morphism ψ′F factors via the corresponding mapping ob-

ject for right B(O)∨-modules . Namely, we have the commutative diagram

F (X)
ψ′F //

ψ′′F

**

MapΣ(Nat(FΩ∞I, I⊗∗), (Σ∞X)⊗∗)

MaprightB(O)∨(Nat(FΩ∞I, I⊗∗), (Σ∞X)⊗∗)

22

Proof. It is sufficient for us to prove that the following diagram commutes: for
every partition r = r1 + ...+ rk,
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F (X)⊗Nat(FΩ∞I, I⊗k)⊗B(O)∨(r1)⊗ ...⊗B(O)∨(rk) //

ψ′F
��

F (X)⊗Nat(FΩ∞I, I⊗r)

ψ′F
��

(Σ∞X)⊗k ⊗B(O)∨(r1)⊗ ...⊗B(O)∨(rk) // (Σ∞X)⊗r

where the horizontal morphisms are module structure maps and the vertical
ones are, roughly speaking, induced in the natural way by ψ′F .

Let α ∈ Nat(FΩ∞, I⊗k) ⊆
∏

V ∈Chfin
hom(FΩ∞(V ), V ⊗k) and , given a par-

tition r = r1 + ... + rk, we take αi ∈ B(O)∨(ri) and λ∗(αi) the correspond-
ing natural transformation in Nat(T, I⊗ri) (via the map λri : B(O)∨(ri) −→
Nat(T, I⊗ri)), for i = 1, ..., k.

We have the following commutative diagram which is induced by the natu-
rality of α

F (X) δ // FΩ∞Σ∞X

α

��

FΩ∞mcX // FΩ∞TΣ∞X

α

��
(Σ∞X)⊗k

(mcX)⊗k
// (TΣ∞X)⊗k

λ∗(α1)⊗...⊗λ∗(αk)
// (Σ∞X)⊗r

,

where the map δ ( defined in the proof of Proposition 5.18) is induced naturally
by the B(O)-coalgebra coproduct

mc
X : B(O, X) −→ B(O) ◦B(O, X) ∼= B(O,−)Ω∞Σ∞X

Now since the structure mc
X is co-associative, we have (FΩ∞mc

X) ◦ δ =
η ◦ δ (see the above proof of Proposition 5.18) and therefore we deduce the
commutative diagram

F (X) δ //

δ

��

FΩ∞Σ∞X η // FΩ∞TΣ∞X

α

��
FΩ∞Σ∞X α // (Σ∞X)⊗k

(mcX)⊗k
// (TΣ∞X)⊗k

λ∗(α1)⊗...⊗λ∗(αk)
// (Σ∞X)⊗r

On the other hand, we define the map

η∗,r : Nat(FΩ∞I, I⊗∗) −→ Nat(FΩ∞I, I⊗∗) ◦ (B(O)∨)r+1 (5.27)

which correspond to the r-th iteration of the B(O)∨-module structure mor-
phism

η∗ : Nat(FΩ∞I, I⊗∗) ◦B(O)∨ −→ Nat(FΩ∞I, I⊗∗)

defined in Proposition 5.15.
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Definition 5.30. We define the map

ψF : F (X) −→ ΦnF (X) (5.28)

which is induced by the composite of the map ψ′′F of Lemma 5.29 and the maps
MaprightB(O)∨(η∗,r, (Σ∞X)⊗∗) (∀r) :

MaprightB(O)∨(∂∗FΩ∞, (Σ∞X)⊗∗) −→MaprightB(O)∨(∂∗FΩ∞◦(B(O)∨)r+1, (Σ∞X)⊗∗)

(4) Statement and proof of the Dn-approximation

Proposition 5.31. We assume char(k)=0. If C : AlgfinO −→ Ch is a finite
presented cell functor, then the morphism

ψC : C −→ ΦnC

given in Definition 5.30 is a Dn-equivalence.

The straight consequence of this proposition is the next result which follows
from the fact that the functor Dn− commutes with the filtered colimit functor.

Corollary 5.32. We assume char(k)=0. If F : AlgfinO −→ Ch is a simplicial
functor, then the morphism

ψF : F ' hocolim
C∈Sub(QF )

C −→ ΦnF

which is induced by the maps ψC : C −→ ΦnC of Proposition 5.31, is a Dn-
equivalence.

To prove Proposition 5.31, we will use the cosimplicial approximationRes•(C)
associated to C developed in the previous section. Namely, we define the mor-
phism of chain complexes: ∀r ∈ N,

ψC,r : CΩ∞T r(Σ∞X) −→MapΣ(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r, (Σ∞X)⊗≤n)
∼= MaprightB(O)∨(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r+1, (Σ∞X)⊗≤n)

as follows: If β is the composite

β : Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r 1◦λr∗−→ Nat(CΩ∞I, I⊗∗) ◦Nat(TI, I⊗∗)r

−→ Nat(CΩ∞TIr, (TIr)⊗∗) ◦Nat(TIr, I⊗∗)
−→ Nat(CΩ∞TIr, I⊗∗)

and ev : Nat(CΩ∞TIr, I⊗∗)⊗CΩ∞T r(Σ∞X) −→ (Σ∞X)⊗∗ is the evaluation
map, we then set ψC,r as the adjoint of the map ev.(β ⊗ 1) :

(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r)⊗ CΩ∞T r(Σ∞X)
ev.(β⊗1) // (Σ∞X)⊗∗
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Lemma 5.33. We assume char(k)=0. Let C : AlgfinO −→ Ch be a finite
presented cell functor, and r ≥ 0. Then the morphism

ψC,r : CΩ∞T r(Σ∞X) −→MaprightB(O)∨(Nat(CΩ∞I, I⊗∗)◦(B(O)∨)r+1, (Σ∞X)⊗≤n)

is a Dn-equivalence.

Proof. In this proof, we will use the map of pro-symmetric sequences de-
scribed in Definition 5.24. We will sometimes use the notation ∂∗CΩ∞ =
Nat(CΩ∞I, I⊗∗) and Xn = (Σ∞X)⊗≤n to reduce the length of expressions.

When r = 1, we consider the following commutative diagram
colim

E∈Sub(Q(CΩ∞QT ))
MapΣ(Nat(E, I⊗∗),Xn)

(a)

��
colim

D∈Sub(QT )
MapΣ(Nat(CΩ∞D, I⊗∗),Xn)

(e) //

(b)

��

MapΣ(Nat(CΩ∞QT, I⊗∗),Xn)

(d)

��
colim

D∈Sub(QT )
MapΣ(∂∗CΩ∞ ◦Nat(D, I⊗∗),Xn)

(c) // MapΣ(∂∗CΩ∞ ◦Nat(QT, I⊗∗),Xn)

where

- The map (a) is induced by the cofibrant resolution α : Q(CΩ∞QT ) '−→
CΩ∞QT. Namely given any finite sub complex E ∈ Q(CΩ∞QT ), using
Proposition 4.13, the natural transformation α restricts to E −→ CΩ∞D,
for some finite subcomplex D ∈ Sub(QT ).We then deduce the composite
Nat(CΩ∞D, I⊗∗) −→ Nat(E, I⊗∗).

- The two vertical maps (b) and (d) in the square are induced by the
compositions Nat(CΩ∞I, I⊗∗)◦Nat(D, I⊗∗) −→ Nat(CΩ∞D, I⊗∗) and
Nat(CΩ∞I, I⊗∗)◦Nat(QTI, I⊗∗) −→ Nat(CΩ∞QTI, I⊗∗) respectively;
The two horizontal maps are induced naturally by the inclusions D ↪→
QT.

This diagram induces the commutative diagram

MapproΣ (∂∗Q(CΩ∞QT ),Xn)

(b)◦(a)
��

(e)◦(a) // MapproΣ (Nat(CΩ∞QTI, I⊗∗),Xn)

(d)
��

MapproΣ (Nat(CΩ∞I, I⊗∗) ◦ ∂∗QT,Xn)
(c) // MapΣ(Nat(CΩ∞I, I⊗∗) ◦Nat(QTI, I⊗∗),Xn)

where

- The map (b) ◦ (a) is induced by the map

µ∗ : Nat(CΩ∞I, I⊗∗) ◦ ∂∗QT −→ ∂∗Q(CΩ∞QT )

constructed in the proof of Proposition 5.7. We also proved there that
its continuous dual µ∗ is a weak equivalence, and here this means that
(b) ◦ (a) is a Dn-equivalence.
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- The map (c) is a Dn-equivalence using Remark 5.6-(2).

The above diagram generalizes by iteration , ∀r, to produce the following com-
mutative diagram

MapproΣ (∂∗Qr(CΩ∞QT )),Xn)

(1)
��

(4) // MapΣ(Nat(CΩ∞(QT )r, I⊗∗),Xn)

(3)
��

MapproΣ (Nat(CΩ∞I, I⊗∗) ◦ (∂∗QT )r,Xn)
(2) // MapΣ(Nat(CΩ∞I, I⊗∗) ◦Nat(QTI, I⊗∗)r,Xn)

where

- Qr(CΩ∞QT ) := Q(...Q(Q(CΩ∞QT )QT )QT...). This is an iterated con-
struction which consists of taking the cofibrant replacement of the functor
obtained when we pre-compose with QT.

- The map (1) is an iterated version of the map µ∗.

- The map (4) is constructed as previously but iteratively on the cofibrant
resolution sequence α :

Q(Q(...Q(CΩ∞QT )...)QT ) '−→ ...
'−→ Q(CΩ∞(QT )r) '−→ CΩ∞(QT )r

For the same reasons as previously, the maps (1) and (2) areDn-equivalences.
On the other hand, we have the following commutative diagram

Qr(CΩ∞QT )(Σ∞X)
(5) //

α'
��

MapproΣ (∂∗Qr(CΩ∞QT ), (Σ∞X)⊗≤n)

(4)
��

CΩ∞(QT )r(Σ∞X)
(6) // MapΣ(Nat(CΩ∞(QTI)r, I⊗∗), (Σ∞X)⊗≤n)

where (5) is given by the evaluation maps: ∀C ∈ Sub(Qr(CΩ∞QT )),

C(Σ∞X) −→MapΣ(Nat(CI, I⊗∗), (Σ∞X)⊗≤n)

and (6) is the evaluation map.
Using Proposition 5.2, we deduce that (5) is a Dn-equivalence after the

following remark:

∂nMapproΣ (∂∗Qr(CΩ∞QT ), (Σ∞X)⊗≤n) ' hocolim
C′∈Sub(Qr(CΩ∞QT ))

∂nMapΣ(Nat(C ′I, I⊗∗), (Σ∞X)⊗≤n)

' hocolim
C′∈Sub(Qr(CΩ∞QT ))

∂nhom(Nat(C ′I, I⊗n), (Σ∞X)⊗n)

' ∂nΨnQ
r(CΩ∞QT )(Σ∞X)

We now consider the following commutative diagram
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Qr(CΩ∞QT )(Σ∞X)
(1)◦(5) //

'α

��

MapproΣ (Nat(CΩ∞I, I⊗∗) ◦ (∂∗QT )r, (Σ∞X)⊗≤n)

(2)
��

CΩ∞(QT )r(Σ∞X)
(3)◦(6) //

'(7)
��

MapΣ(Nat(CΩ∞I, I⊗∗) ◦Nat(QTI, I⊗∗)r, (Σ∞X)⊗≤n)

(8)
��

CΩ∞T r(Σ∞X)
ψC,r

// MaprightB(O)∨(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r+1, (Σ∞X)⊗≤n)

where,

- The map (7) is given by (QT )r −→ T r, where t : QT '−→ T is the
cofibrant resolution of T ;

- The morphism (8) is induced by

Qλ∗ : B(O)∨ −→ Nat(QTI, I⊗∗)

(in Equation (5.17)) which is a weak equivalence by the computations
done in Remark 5.6. This means in particular that the map (8) is a
Dn-equivalence (by computation using Proposition 5.2 ).

Finally, since the composite (1) ◦ (5) is a Dn-equivalence, we deduce that
(3) ◦ (6) is a Dn-equivalence and therefore that ψC,r is also a Dn- equivalence.

Lemma 5.34. Let C : AlgfinO −→ Ch be a finite presented cell functor. There
is a commutative diagram of the form

CΩ∞(Σ∞X)
ψ′′C //

ηr

��

MaprightB(O)∨(Nat(CΩ∞I, I⊗∗), (Σ∞X)⊗∗)

Mapright
B(O)∨ (η∗,r,(Σ∞X)⊗∗)

��
CΩ∞T r(Σ∞X)

ψC,r

// MaprightB(O)∨(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)r+1, (Σ∞X)⊗∗)

where η∗,r (resp. ηr) is the r − th iteration of the B(O)∨-module (resp.T -
comodule ) structure morphism η∗ : Nat(CΩ∞I, I⊗∗)◦B(O)∨ −→ Nat(CΩ∞I, I⊗∗)
(resp. η : CΩ∞ −→ CΩ∞T ) defined in Proposition 5.15 (resp. Proposition
5.13).

Proof. The proof is only based on computation using the fact that the following
diagram is commutative

CΩ∞(Σ∞X) //

ηr

��

MapΣ(Nat(CΩ∞I, I⊗∗), (Σ∞X)⊗∗)

MapΣ(Nat(ηr,I⊗∗),(Σ∞X)⊗∗)
��

CΩ∞T r(Σ∞X) // MapΣ(Nat(CΩ∞TIr, I⊗∗), (Σ∞X)⊗∗)
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where the horizontal morphisms are evaluation maps.

We can now prove Proposition 5.31.

Proof of Proposition 5.31. The proof is based on the bellow diagram

C(X) δ //

δ

��

CΩ∞Σ∞(X)

ψ′′C
��

CΩ∞Σ∞(X)

η•

��

MaprightB(O)∨(Nat(CΩ∞I, I⊗∗), (Σ∞X)⊗∗≤n)

Mapright
B(O)∨ (η∗,r,(Σ∞X)⊗∗)

��
T̃ ot(CΩ∞T •Σ∞)(X)

ψC,r

// T̃ ot(MaprightB(O)∨(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•+1, (Σ∞X)⊗∗≤n)

This diagram is commutative using Lemma 5.34. In addition, the most left
vertical arrow is an equivalence (using §5.3.2), and hence is a Dn-equivalence.
In addition Lemma 5.33 shows that the bottom horizontal map is also a Dn-
equivalence. This completes this proof.

Now we have all the ingredient to prove Theorem 5.10. In fact, since we
have constructed the Dn-equivalence

ψF : F −→ ΦnF,

to compute the derivatives of F, we will simply compute the derivatives of ΦnF.

Proof of Theorem 5.10. Since the functor Dn- commutes with the totalization
Tot, we make the following computation:

∂nF ' ∂nQF ' ∂nΦnQF (5.29)

' hocolim
C∈Sub(QF )

T̃ot ∂nMaprightB(O)∨(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•+1, (Σ∞−)⊗∗≤n)

(5.30)

' hocolim
C∈Sub(QF )

T̃ot ∂nMapΣ(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•, (Σ∞−)⊗∗≤n)

(5.31)

' hocolim
C∈Sub(QF )

T̃ot ∂nhom(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•(n), (Σ∞−)⊗n)Σn

(5.32)

' hocolim
C∈Sub(QF )

T̃ ot hom(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•(n),k)

(5.33)
' hocolim
C∈Sub(QF )

hom(N(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•(n)),k)

(5.34)
' hocolim
C∈Sub(QF )

hom(B(Nat(CΩ∞I, I⊗∗), B(O)∨, I)(n),k) (5.35)

where
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- The quasi-isomorphism (5.29) comes from Corollary 5.32;

- The quasi-isomorphism (5.33) comes analogously using the cross effect as
in the proof of Proposition 5.2 in 1.(b).

- The functor N : sAb −→ Ch in (5.34) denotes the normalization functor;

- The quasi-isomorphism (5.35) is induced by the Fresse’s result ([Fre04,
Thm 4.1.8]):

N(Nat(CΩ∞I, I⊗∗) ◦ (B(O)∨)•) ' B(Nat(CΩ∞I, I⊗∗), B(O)∨, I).

5.4 The Taylor tower of simplicial functors

The aim of this section is to characterize the Taylor tower of simplicial functors
F : AlgO −→ Ch out of the characterization of homogeneous functors devel-
oped in Chapter 2. Indeed, we will use the additional structure we have found
on the derivatives ∂∗F along the way in this chapter.

This characterization will be given by functors of the form

B(M,O,−) : AlgO −→ Ch

X 7−→ B(M,O, X) =
⊕
n

(B(M,O, X̂)(n), ∂0 + ∂)

where

- M is a right O-module;

- X̂ = (X, 0, ..., 0, ...) is the left O-module associated to X.

An interest to this functor in Functor Calculus is not new. In fact the
Goodwillie tower of this functor has been studied in [KP17, § 2.6] with a
different notation: FRM , where R is the ground ring. These authors proved that
the Taylor tower B(M,P,−) identifies with

B(M∗≤1, P,X)←− B(M∗≤2, P,X)←− B(M∗≤3, P,X)←− ...

where M≤∗ is the truncation (above) of M.
In our case we will prove that, for a specific value for M and R = k,

this tower describes the whole category of polynomial simplicial (and finitary)
functors F : AlgO −→ Ch.

The main result of this section is given in the next theorem.

Theorem 5.35. If F : AlgO −→ Ch is a simplicial finitary functor and P :=
Bc(B(O)), then the Taylor tower of F is given by

PnF (X) ' B(∂∗≤nF, P,X),

To prove this result, we will use the following road-map:
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1. We first show that the Taylor tower P∗F is equivalent to the Fake tower
(that we will define);

2. We will next show that the fake tower is equivalent to a tower of functors
B(∂∗≤nF, P,−),∀n.

After these two development, we will then prove the theorem at the end of the
section.

(1) The Taylor tower is equivalent to the fake tower

Definition 5.36. (Fake tower) Let F : AlgfinO −→ Ch be a simplicial functor.
The fake tower {ΦnF} of F is given by

...
fn+1−→ Φn+1F

fn−→ ΦnF
fn−1−→ ...

f1−→ Φ1F (5.36)

where

- ΦnF (X) = hocolim
C∈Sub(QF )

MaprightB(O)∨(B(∂∗CΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗∗≤n)

as defined in Lemma 5.27;

- The maps fn : Φn+1F −→ ΦnF are naturally induced by the projection
of symmetric sequences (Σ∞X)∗≤n+1 −→ (Σ∞X)∗≤n.

We have constructed in Definition 5.30 the natural transformation

ψF : F (X) −→ ΦnF (X)

and we showed in Corollary 5.32 that this is a Dn− equivalence. Now we will
show that the fake tower is equivalent to the Taylor tower in characteristic 0.

Theorem 5.37. If F : AlgfinO −→ Ch is a simplicial functor, then the fake
tower of Definition 5.36 is equivalent to the Taylor tower of F.

In other to prove Theorem 5.37, we will first prove that the fake tower is
really made by excisive functors.

Lemma 5.38. Let F : AlgfinO −→ Ch be a simplicial functor. The functor
ΦnF : AlgfinO −→ Ch described in Definition 5.25 is n-excisive.

Proof. For an arbitrary simplicial functor F, since there is an equivalence

F ' hocolim
C∈Sub(QF )

C

and since the functor Pn− commutes with the filtered colimit hocolim
C∈Sub(QF )

(as

always), the proof resumes to the finite cellular functor case. We now assume
that F is a finite presented functor and we prove this result inductively.
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1. We consider the first term

Φ1F (X) = MaprightB(O)∨(B(∂∗FΩ∞, B(O)∨, B(O)∨),Σ∞X)

Since Σ∞X viewed as a symmetric sequence in a single degree has a
trivial B(O)∨-module structure, it implies the computation

Φ1F (X) ∼=MapΣ(B(∂∗FΩ∞, B(O)∨, I),Σ∞X) (5.37)
∼=hom(B(∂∗FΩ∞, B(O)∨, I)(1),Σ∞X)Σ1 (5.38)
∼=B(∂∗FΩ∞, B(O)∨, I)∨(1) ⊗

Σ1
Σ∞X. (5.39)

The last isomorphism is due to the fact that the chain complexB(∂∗FΩ∞, B(O)∨, I)(1)
is of finite type as F is finite.
We conclude from this step that the functor Φ1F is 1-homogeneous and
then in particular is 1-excisive.

2. To generate the inductive construction, we consider the fiber 4nF of the
map Φn

fn−1−→ Φn−1F which is given by the formula

4nF (X) = MaprightB(O)∨(B(∂∗FΩ∞, B(O)∨, B(O)∨), (Σ∞X)⊗n)

As in 1. since (Σ∞X)⊗n viewed as a symmetric sequence in a single degree
has a trivial module structure, we have the isomorphism

4nF (X) ∼= MapΣ(B(∂∗FΩ∞, B(O)∨, I), (Σ∞X)⊗n)

and computations as previously gives

4nF (X) ∼= B(∂∗FΩ∞, B(O)∨, I)∨(n) ⊗
Σn

(Σ∞X)⊗n.

This last equation shows that the functor 4nF is n-homogeneous and
thus in particular is n-excisive. On the other hand, we showed in Lemma
2.9 that given a fiber sequence of homotopy functors, if two of the functors
are excisive, then so is the third one. We apply this result here to claim
inductively that the functor ΦnF is n-excisive.

Proof of Theorem 5.37. Since ΦnF is n-excisive (see Lemma 5.38), the map
F −→ ΦnF of Proposition 5.31 factors via the morphism PnF −→ ΦnF. We
then form the following commutative diagram:

DnF
DnψF //

��

DnΦnF

��
PnF

PnψF //

��

PnΦnF ' ΦnF

��
Pn−1F

Pn−1ψF // Pn−1Φn−1F ' Φn−1F

DnψF is a weak equivalence using Corollary 5.32. Therefore we deduce
inductively that PnψF is a weak equivalence.
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(2) The fake tower is equivalent to the tower provided in Theorem
5.35

Definition 5.39. Let F : AlgO −→ Ch be a simplicial functor, n ≥ 0 and
P := Bc(B(O)). We define the functor Gn : AlgO −→ Ch by

Gn(X) := B(∂∗≤nF, P,X).

There is a tower of fibrations

...
gn−→ Gn

gn−1−→ Gn−1 −→ ...
g1−→ G1

where the morphism gn−1 : Gn −→ Gn−1 is induced by the projection of sym-
metric sequences ∂∗≤nF −→ ∂∗≤n−1F.

The main result of this part is the following:

Theorem 5.40. If F : AlgO −→ Ch is a simplicial functor and Gn : AlgO −→
Ch is the functor described in Definition 5.39, then there is a weak equivalence

Gn ' ΦnF

Before proving this theorem, we will first show in the next lemma the prop-
erties of the functor Gn.

Lemma 5.41. Let F : AlgO −→ Ch be a simplicial functor and n ≥ 0. The
functor Gn : AlgO −→ Ch described in Definition 5.39 is simplicial, finitary
and n-excisive.

Proof. We showed in Example 3.14 that Gn is simplicial. On the other hand
Gn is finitary since colimits distribute over the graded tensor product −⊗−(
which is a left adjoint). It remains now to prove that Gn is n-excisive. For this
we consider the following tower

...
gn−→ Gn

gn−1−→ Gn−1 −→ ...
g1−→ G1

We have the fiber sequence

B(∂nF, P,X) −→ Gn(X) gn−1−→ Gn−1(X) (5.40)

We make the computation

B(∂nF, P,X) ' ∂nF ⊗
Σn

(UB(P,X))⊗n (5.41)

' ∂nF ⊗
Σn

(UB(O, X))⊗n (5.42)

' ∂nF ⊗
Σn

(Σ∞X)⊗n (5.43)

where the map (5.42) is given by the quasi-isomorphism UB(P,X) '−→ UB(O, X)
proved in Lemma 1.11. We deduce that the functors G1 and B(∂nF, P,−), ∀n,
are n-homogeneous and in particular n-excisive.

At this point, the result follows inductively using Lemma 2.9 applied each
time, ∀n, on the fiber sequence



146 Chapter 5. Taylor tower of simplicial functors

B(∂nF, P,X) −→ Gn(X) gn−1−→ Gn−1(X)

Now, to prove Theorem 5.40, we will need to build the map (of vector
spaces)

Γn : ΦnF −→ Gn

We will then prove that Γn is a map of chain complexes and finally prove that
this is a weak equivalence. This construction follows a general argument which
is illustrated in the next two lemmas.

Lemma 5.42. Let R be a finite right B(O)∨-module and X be an O-algebra.
Then there is an isomorphism of chain complexes

Bc(R∨, B(O), B(I,O, X̂)) φ−→∼= MapB(O)∨(B(R,B(O)∨, B(O)∨), B(O, X)⊗∗)

Lemma 5.43. Let R be a finite right B(O)∨-module and X be an O-algebra.
Then there is a quasi-isomorphism

Bc(R∨, B(O), B(I,O, X̂)) ψ−→
'

B(Bc(R∨, B(O), I), BcB(O), X)

Before proving the above two lemmas, we need to fix some notations.

Notation 3. 1. A tree T in Bc(R∨, B(O), B(I,O, X̂)) has three levels:

- the first level consists of a root r ∈ R∨(k), for some integer k;
- the second level or the middle consists of trees β1, ..., βk, where βi ∈
BcB(O)(ni), for some integer ni;

- the last level or the top one consists of trees T1, ..., Tu ∈ B(O, X).

The tree T will be denoted T = [r(β1, ..., βk)](T1, ..., Tu).

2. Similarly, a tree T ′ ∈ B(R,B(O)∨, B(O)∨) has tree level:

- the first level consists of a root r′ ∈ R(k′), for some integer k′;
- the second level or the middle consists of trees α1, ..., αk, where αj ∈
BBc(O∨)(mj), for some integer mj ;

- the last level or the top one consists of trees q1, ..., qv in B(O)∨.

The tree T ′ will be denoted T ′ = [r′(α1, ..., αk′)](q1, ..., qv).

Proof of Lemma 5.42. Let T = [r(β1, ..., βk)](T1, ..., Tu) ∈ Bc(R∨, B(O), B(I,O, X̂)).
The morphism

φ(T ) : B(R,B(O)∨, B(O)∨) −→ B(O, X)⊗∗

T ′ = [r′(α1, ..., αk′)](q1, ..., qv) 7−→ φ(T )(T ′)

is defined by:
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- if k = k′, ni = mi,∀i and u = v, then

φ(T )(T ′) =< r, r′ >< β1, α1 > ... < βk, αk > m(T1⊗ ...⊗ Tu⊗ q1...⊗ qu)

where m : B(O, X)⊗∗ ◦ B(O)∨ −→ B(O, X)⊗∗ is the structure map of
the right B(O)∨-module B(O, X)⊗∗.

- If any of the above condition is not satisfied, then φ(T )(T ′) = 0.

By construction φ(T ) is a well defined morphism of right B(O)∨-modules. In
addition, φ is a well defined map of chain complexes as it is basically defined
by the means of evaluation maps.

On the other hand, let U : Ch −→ gV ectk be the forgetful functor from
the chain complex category Ch to the category gV ectk of graded vector spaces.
The functor essentially forget the differential of chain complexes. We make the
following computation:

UMapB(O)∨(B(R,B(O)∨, B(O)∨), B(O, X)⊗∗) ∼=UMapΣ(B(R,B(O)∨, I), B(O, X)⊗∗)
∼=UB(R,B(O)∨, I)∨ ◦B(O, X)
∼=UR∨ ◦BcBO ◦B(I,O, X̂)
∼=UBc(R∨, BcBO, B(I,O, X̂))

Note that Uφ is one of the map in this isomorphism and let φ′ being its inverse.
It remains now to show that φ′ commutes with the differentials from its domain
and codomain.

Since φd = dφ, we have equivalently d = φ′dφ. When we pre-compose this
last equation with φ′, we get dφ′ = (φ′dφ)φ′ = φ′d. Thus φ′ is a morphism of
chain complexes. This completes the proof.

Proof of Lemma 5.43. We define the morphism of vector spaces

ψ : Bc(R∨, B(O), B(I,O, X̂))
=R∨◦BcB(O)◦B(O)◦X̂

−→ B(Bc(R∨, B(O), I), BcB(O), X)
=R∨◦BcB(O)◦BBcB(O)◦X̂

as

ψ = R∨ ◦BcB(O) ◦ η ◦ X̂

where η : B(O) −→ BBcB(O) is the unit of the cobar-bar adjunction Bc ` B
applied to the cooperad B(O).

By definition, the morphism ψ preserves almost all the differentials. We
only have to show that the twisting differential δ0 induced by the left B(O)-
comodule

B(O, X) −→ B(O) ◦B(O, X)



148 Chapter 5. Taylor tower of simplicial functors

in the source Bc(R∨, B(O), B(I,O, X̂)) is converted (through ψ) into the twist-
ing differential δ1 induced by the right BcB(O)-module map

Bc(R∨, B(O), I) ◦BcBO
=R∨◦BcBO◦BcBO

−→ Bc(R∨, B(O), I)
=R∨◦BcBO

in the target B(Bc(R∨, B(O), I), BcB(O), X).
We have in fact the commutative diagram:

BcB(O) ◦B(O) ◦ X̂
BcB(O)◦η◦X̂ //

BcB(O)◦mc◦X̂
��

BcB(O) ◦BBcB(O) ◦ X̂

BcB(O)◦γ′◦X̂
��

BcB(O) ◦B(O) ◦B(O) ◦ X̂

γ◦B(O)◦X̂
��

BcB(O) ◦BcB(O) ◦BBcB(O) ◦ X̂

m◦BBcB(O)◦X̂
��

BcB(O) ◦B(O) ◦ X̂
BcB(O)◦η◦X̂ // BcB(O) ◦BBcB(O) ◦ X̂

where

- The map mc : B(O) −→ B(O) ◦B(O) is the cooperad co-multiplication;

- The map γ : BcB(O) ◦B(O) −→ BcB(O) is the composite

BcB(O) ◦B(O) −→ BcB(O) ◦BcB(O) −→ BcB(O)

where the first map is induced by the −1 inclusion map B(O) −→
BcB(O) and the second map is the operad multiplication. Note that
this multiplication is basically due by grafting trees;

- The map γ′ : BBcB(O) −→ BcB(O) ◦BBcB(O) is the composite

BBcB(O) −→ BBcB(O) ◦BBcB(O) −→ BcB(O) ◦BBcB(O)

where the first map is the cooperad coproduct and the second map is
induced by the −1 projection BBcB(O) −→ BcB(O);

- The mapm : BcB(O)◦BcB(O) −→ BcB(O) is the operad multiplication.
Note that this multiplication is basically due by grafting trees.

The most left vertical composite of this diagram is the twisting differential δ0
while the most right vertical composite is the twisting differential δ1. Therefore
we can conclude that ψ is a map of chain complexes. In addition, it is a
quasi-isomorphism as η is a quasi-isomorphism.

Proof of Theorem 5.40. Our goal in this proof is to establish that there is a
natural map Γn : ΦnF −→ Gn which is a weak equivalence.

Note that

Gn(X) = colim
C∈Sub(QF )

B(B(∂∗CΩ∞, B(O)∨, I)∨≤n, P,X) (5.44)
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Since the colimit of Equation (5.44) is a filtered colimit, this reduces to simply
define a map

Γn,C : ΦnC −→ B(B(∂∗CΩ∞, B(O)∨, I)∨≤n, P,−)

and prove that it is a weak equivalence, ∀C ∈ Sub(QF ).
In the case that R = ∂∗CΩ∞, the combination of Lemma 5.42 and Lemma

5.43 gives the diagram

Bc(R∨, B(O), B(I,O, X̂)) φ

∼=
//

ψ'
��

MapB(O)∨(B(R,B(O)∨, B(O)∨), B(O, X)⊗∗)

B(Bc(R∨, B(O), I), BcB(O), X)

Therefore Γn,C is simply the restriction of the composite ψ ◦φ−1 to the domain
ΦnC(X). Thus we are done.

Proof of Theorem 5.35. We observe the following fact: Let X be a O-algebra.
We have the cofibrant resolution ΩO(B(O, X)) '−→ X which provides X with
a functorial quasi-free O-algebra resolution. On the other hand, any quasi-free
O-algebra is a filtered colimit of finitely generated O-algebras.

Using this observation, and the fact that the two functors F andB(∂∗≤nF,O,−)
are both finitary (and thus PnF also), our argument reduces to proving that

PnF (X) ' B(∂∗≤nF, P,X), ∀X ∈ AlgfinO

On the other hand we proved in Theorem 5.40 that Gn ' ΦnF. In addition,
we proved in Theorem 5.37 that PnF ' ΦnF. The result then follows.

5.5 Examples

In this thesis, we have characterized the Taylor tower of simplicial functors
F : AlgO −→ Ch which is given by the formula

PnF (X) ' B(∂∗≤nF,BcB(O), X) (5.45)

We will now use this formula to describe the approximation of two functors,
which means concretely computing their derivatives (as a module) and plug
them respectively into Equation(5.45 ).

5.5.1 Example 1: Taylor tower of IU : AlgO −→ Ch

We consider the composite

AlgO
U−→ Ch+

I−→ Ch
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where U is the forgetful functor and I is the embedding functor. The com-
putation of the derivatives of the functor IU using the formula cross-effect is
straightforward as in Proposition 2.41 and gives

∂∗IU ' O

This proves also that ∂∗IU is in particular of finite type. Therefore using a
similar argument as in Corollary 5.5 and using Theorem 5.10, we can deduce
that

∂∗IU ' hom(B(Nat(QIUΩ∞I, I⊗∗), B(O)∨, I),k)

On the other hand, IUΩ∞I = I and since

Nat(Q(I⊗n), I⊗m) '
{

k[Σn] if n = m;
0 if n 6= m.

we get the equivalence

∂∗IU ' hom(B(I, B(O)∨, I),k) ∼= BcB(O).

In conclusion, we get the Taylor tower of IU by plugging this last compu-
tation in Equation(5.45 ):

PnIU(X) ' B(BcB(O)∗≤n, BcB(O), X)

which is also equivalent to

PnIU(X) ' B(O∗≤n,O, X)

5.5.2 Example 2: Taylor tower of the representable functor ÃlgO(X,−)

We consider in this example the representable functor AlgO −→ Ch defined as

ÃlgO(X,−) := NkHomAlgO (ΩOB(O, X), red0(Apl• ⊗−))

and we want to construct its Taylor tower. As previously we first compute its
derivatives using Theorem 5.10. This is given in the next proposition and its
proof is provided at the end of the section.

Proposition 5.44. Let X ∈ AlgO. The derivative of the representable functor
ÃlgO(X,−) : AlgO −→ Ch is given by the equivalence:

∂∗ÃlgO(X,−) ' B((Σ∞X)⊗∗, B(O)∨, I)∨

Now we use this result to get the Taylor tower of ÃlgO(X,−) by plugging
the computation of its derivatives in Equation(5.45 ):

PnÃlgO(X,−)(Y ) ' B(B((Σ∞X)⊗∗, B(O)∨, I)∨∗≤n, BcB(O), Y )
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Equivalently, we can use in addition Lemma 5.43, and give the approxima-
tion on the form

PnÃlgO(X,−)(Y ) ' Bc(R∨∗≤n, B(O), B(I,O, Ŷ ))

where

- R = (Σ∞X)⊗∗;

- Ŷ is the left O-module associated to the O-algebra Y.

Proof of Proposition 5.44. Using Theorem 5.10, we have the equivalence

∂∗ÃlgO(X,−) ' B(Nat(ÃlgO(X,Ω∞−), I⊗∗), B(O)∨, I)∨ (5.46)

Thus it remains to prove the equivalence : ∀n,

Nat(ÃlgO(X,Ω∞−), I⊗n) ' (Σ∞X)n. (5.47)

For this computation, we will need two arguments:

1. The functor ÃlgO(X,Ω∞−) is cofibrant in [Chfin, Ch]0. In fact consider
the diagram

G

'
����

ÃlgO(X,Ω∞−) // F

When we compose this diagram with Σ∞ : ÃlgO −→ Ch, we form the
following diagram in [AlgfinO , Ch]0 :

GΣ∞

'
����

ÃlgO(X,−) δ // ÃlgO(X,Ω∞Σ∞−) // FΣ∞

where δ is the natural transformation defined in Lemma 5.14.
Now since ÃlgO(X,−) is cofibrant in [AlgfinO , Ch]0, there is a map

ÃlgO(X,−) −→ GΣ∞

such that we get the following diagram

GΣ∞

'
����

ÃlgO(X,−) //

88

FΣ∞
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When we compose the above diagram with Ω∞, we get the diagram

GΣ∞Ω∞

'
����

// G

'
����

ÃlgO(X,Ω∞−) //

77

FΣ∞Ω∞ // F

where the most right square is induced by the comonad counit

T = Σ∞Ω∞ −→ 1.

This prove our claim.

2. We showed in the proof of Lemma 4.11 the weak equivalence

ÃlgO(X,Ω∞I−) ' C̃h+(UB(O, X),−), (5.48)

where U : coAlgB(O) −→ Ch+ is the forgetful functor.

Since the left and right hand side of Equation (5.48) is cofibrant in
[Chfin, Ch]0, then we use the fact thatNat(−, I⊗n) preserves weak equiv-
alences between cofibrant functors (see Corollary 4.22) to deduce that

Nat(ÃlgO(X,Ω∞−), I⊗n) ' Nat(C̃h+(UB(O, X),−), I⊗n) (5.49)
' (Σ∞X)n, (5.50)

where the last equation is deduced from the Yoneda Lemma.

Appendix

In this section, we generalize some of our constructions in Ch+ to the category
Ch≥p of p-bounded bellow chain complexes, for an arbitrary integer p. Note
that these two categories are equivalent. The main objective of the section is
to compute the chain complex Nat(C̃h+(V, sp−), I).

(1) The Ch-enriched category C̃h+ defined in §3.2 can be extended to the
Ch-category C̃h≥p. That is the enriched category whose

- Objects are chain complexes in Ch≥p;

- The enriched hom functor denoted C̃h≥p(−,−) is given by: ∀V,W ∈
Ch≥p,

C̃h≥p(V,W ) := NkHomCh≥p(Nk4• ⊗ V,W ).
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(2) The relation between C̃h+ and C̃h≥p is given through the following com-
putation:

C̃h+(V,W ) = NkHomCh+(Nk4• ⊗ V,W )
∼= NkHomCh(Nk4•, hom(V,W ))
∼= NkHomCh(Nk4•, hom(spV, spW ))
∼= NkHomCh+(Nk4• ⊗ spV, spW )
∼= NkHomCh≥p(Nk4• ⊗ spV, spW ) = C̃h≥p(spV, spW ).

(3) The notion of simplicial functors F̃ : C̃h≥p −→ C̃h can also be defined
as in §3.3.

(4) We define the chain complex NatCh≥p(F̃ , G̃) of natural transformation
between two simplicial functors F̃ , G̃ : C̃h≥p −→ C̃h similarly to Defini-
tion 4.1. More precisely,

NatCh≥p(F̃ , G̃) := lim(
∏

V ∈Chfin≥p

hom(F̃ (V ), G̃(V )) ⇒
∏

V,W∈Chfin≥p

hom(C̃h≥p(V,W )⊗

F̃ (V ), G̃(W )))

(5) There is a general version of the strong Yoneda lemma (see Lemma 4.6):

NatCh≥p(V0 ⊗ C̃h≥p(V,−), G̃) ∼= hom(V0, G̃(V )).

The proof is analogous to the proof of Lemma 4.6.

(6) Using the above items, we are ready to show that

Nat(C̃h+(V, sp−), I) ∼= s−pV (5.51)

We make the following computation
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Nat(C̃h+(V, sp−), I) =

(5.52)

lim(
∏

V ′∈Chfin+

hom(C̃h+(V, spV ′), V ′) ⇒
∏

V ′,W∈Chfin+

hom(C̃h+(V ′,W )⊗ C̃h+(V, spV ′),W )) =

(5.53)

lim(
∏

V ′∈Chfin+

hom(C̃h+(V, spV ′), V ′) ⇒
∏

V ′,W∈Chfin+

hom(C̃h≥p(spV ′, spW )⊗ C̃h+(V, spV ′),W )) =

(5.54)

lim(
∏

V ′∈Chfin≥p

hom(C̃h≥p(V, V ′), s−pV ) ⇒
∏

V ′,W∈Chfin≥p

hom(C̃h≥p(V ′,W )⊗ C̃h≥p(V, V ′), s−pW )) =

(5.55)

= NatCh≥p(C̃h≥p(V,−), s−pI) ∼= s−pV

(5.56)

More generally, there is an isomorphism (obtained in the similar way)

NatCh+(V0 ⊗ C̃h+(V, sp−), F̃ ) ∼= NatCh≥p(V0 ⊗ C̃h≥p(V,−), F̃ s−p−) (5.57)
∼= hom(V0, F̃ (s−pV )) (5.58)

There is a model structure on [Chfin≥p , Ch]0 analogous to §4.2 and Equation
(5.57) permits to claim that the functor V0 ⊗ C̃h+(V, sp−) : Ch+ −→ Ch is
cofibrant in [Chfin+ , Ch]0.
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