
Open Educational Resources for Computer Networking
O. Bonaventure

UCLouvain, Belgium

olivier.bonaventure@uclouvain.be

Q. De Coninck

UCLouvain, Belgium

quentin.deconinck@uclouvain.be

F. Duchêne

UCLouvain, Belgium

fabien.duchene@uclouvain.be

A. Gégo

UCLouvain, Belgium

anthony.gego@uclouvain.be

M. Jadin

UCLouvain, Belgium

mathieu.jadin@uclouvain.be

F. Michel

UCLouvain, Belgium

francois.michel@uclouvain.be

M. Piraux

UCLouvain, Belgium

maxime.piraux@uclouvain.be

C. Poncin

UCLouvain, Belgium

chantal.poncin@uclouvain.be

O. Tilmans

Nokia Bell Labs, Belgium

olivier.tilmans@nokia-bell-labs.com

ABSTRACT
To reflect the importance of network technologies, networking

courses are now part of the core materials of Computer Science

degrees. We report our experience in jointly developing an open-

source ebook for the introductory course, and a series of open

educational resources for both the introductory and advanced net-

working courses. These ensure students actively engage with the

course materials, through a hands-on approach; and scale to the

larger classrooms and limited teaching staff, by leveraging open-

source resources and an automated grading platform to provide

feedback. We evaluate the impact of these pedagogical innovations

by surveying the students, who indicated that these were helpful

for them to master the course materials.

CCS CONCEPTS
• Applied computing → Education; • Networks → Network
protocols; Programming interfaces; Network experimenta-
tion;

KEYWORDS
Education, Open Educational Resources

1 INTRODUCTION
In less than half a century, computer networks have revolution-

ized our society. While a few packets were exchanged between

ARPANet nodes almost fifty years ago, nearly anyone can now

access the Internet at any time and anywhere using mobile devices.

The structure of networking courses is closely linked to the popu-

larity of the technology. The first courses were aimed at training the

researchers who were developing the new networks and protocols,

e.g., using Bertsekas and Gallager’s textbook [2]. As the popularity

of the Internet rose, a growing number of universities included

networking courses in their curriculum in the eighties and nineties.

As the students were not exposed to real computer networks, many

textbooks adopted a bottom-up approach starting from the physical

layer and moving progressively up to the application layer, such

as Andrew Tanenbaum’s textbook [16]. Since the late 1990s, most

students have been exposed to the Internet. For such students, and

even more for today’s ones, a top-down approach is much more

motivating. This approach has been used by Jim Kurose and Keith

Ross [10]. They start from the application layer by leveraging the

practical knowledge of students. Then, they dissect the lower layers

and reveal the main principles and protocols used on the Internet.

During the last ten years, we have written and expanded a free

and open-source networking textbook [3] that has been adopted

by various universities around the world to teach the introductory

networking course. The first edition of our open-source networking

textbook used the top-down approach. After a few years, feedback

from the students indicated that they had difficulties with this ap-

proach. When a layer is explained using this approach, students

need to learn the basic principles, algorithms and details of the de-

ployed protocols all at the same time. Many of them had difficulties

to separate key principles from protocol details. It has been demon-

strated that students achieve a deeper understanding of a topic both

by frequent exercises and by effective feedback [5]. However, due

to the sharp increase of students attending the course, we also faced

the challenge of a shrinking amount of time that professors and

teaching assistants can dedicate to a given student. To address these

issues, we revised the course organization and adopted a hybrid

approach.

The first half of the course introduces all the key principles of

computer networking using a bottom-up approach. It begins with

a brief description of the physical layer, then describes the datalink

layer using an abstract protocol to illustrate the principles of reliable

delivery protocols. It then introduces the different organizations of

the network layer, the separation between the control-plane and

the data-plane, as well as key routing algorithms such as link-state

and distance vectors without diving into protocol specific issues.

The course then explores the transport layer, and explains the need

for congestion control. Finally, key principles for network security

conclude the first half of the course.

The second part of the course adopts a top-down approach using

the key Internet protocols to illustrate how the principles described

earlier are put into practice in the global Internet. Students learn

practical aspects of employing those key Internet protocols through

a combination of projects, labs and web-based tools. The automa-

tion of practical exercises helped us to scale up the course with the

growing number of participants. In particular, we leverage an auto-

mated grading platform named INGInious [6] to provide detailed

feedback on student answers, which improve their motivation and

understanding of the course [1, 5].

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020



In this paper, we report on our experience in developing various

teaching materials to supplement networking courses. This paper

is organized as follows. In Section 2, we report on our experience

with a set of online open educational resources enabling students

to better understand various introductory networking concepts. In

Section 3, we present three projects enabling students to better un-

derstand how networking protocols are implemented and deployed.

We also report on the lessons we learned when using these projects.

To quantify the impact of these pedagogical innovations, we sent a

survey to students who attended our introductory course. We re-

ceived 128 replies, mainly from last year’s attendees, but also from

students who took the course during the previous two years. We

provide the key findings of this survey throughout the text. Finally,

we conclude with a discussion of the benefits of open educational

resources.

2 TEXTBOOK VERSUS INTERACTIVE EBOOK
The first version of our ebook, written a decade ago, was structured

as a regular book that was distributed online in PDF and HTML

format. Many students printed the ebook and annotated it. As

indicated by various studies [14], students tend to learn better on

printed books than purely online. However, our experience shows

that an online approach brings several benefits to a networking

ebook. Our first modification was to add hyperlinks to all RFCs and

articles cited in the bibliography. This was a simple change, but

shortly after we were positively surprised that a growing fraction

of students asked questions about some of these references and

cited them correctly in their project reports. 55% of the surveyed

students confirm that they follow (always or frequently) links to

find additional information.

Students not only learn by reading the teaching material in the

ebook and by listening to their professors or teaching assistants.

They also learn by answering questions. An important benefit of

having an online ebook is that it enables the students to interact

with the course in different ways. Throughout the years, we have

developed several types of exercises enabling students to test their

knowledge of the teaching material during their learning process.

When answering to these exercises, students often make mistakes

which are integral part of their learning process. Students can

benefit from these mistakes provided that they receive accurate

feedback rapidly.

We integrated the ebook with the INGInious code-grading plat-

form [6]. INGInious is an open-source project enabling professors to

propose various types of exercises to students, and to automatically

provide feedback and grade their answers. Most INGInious exer-

cises require the students to write code in a programming language.

This code is then compiled and graded by unit tests that verify

whether the student correctly answered the question. INGInious

exercises are implemented as scripts that receive answers provided

by a student and compute the desired feedback. As such, INGInious

also supports open questions (e.g., where the answers are short

numerical values) and multiple-choice questions.

2.1 Multiple choice and short questions
Our ebook includes dozens of interactive multiple choice questions

covering a wide range of topics. In order to encourage the students

Figure 1: Questions with a short answer provide immediate
feedback to the students.

to answer these questions several times (e.g., during their first read,

and later when they prepare the exam), each question contains two

sets of answers: positive and negative ones. When displayed, each

question is then dynamically constructed by a JavaScript module

that randomly selects one correct answer and n invalid ones. To

provide feedback, each possible answer has an associated comment.

As the student selected their answer, the corresponding comment

is then shown. For invalid answers, the comment thus provides

the explanation that enables the student to correct their misun-

derstanding. 58% of our students report they answered (always or

frequently) the multiple choice questions directly while reading

the ebook, and 88% during the semester. 73% reused them while

preparing for the exam.

Multiple choice questions are not a panacea. For some concepts,

it is interesting to ask questions requiring a short answer such as a

number or a few words, prone to automated grading through pat-

tern matching. It is often more challenging for a student to answer

such a question than to guess one answer among n choices. The

expected answer structure (i.e., pattern) lets us still use INGInious

to automate the grading and feedback generation. One example is

shown in Figure 1. This exercise is used while the students learn the

standard BGP routing policies [7]: customer-provider (represented
as a directed red arrow) and the shared-cost peerings (represented
as a blue line with the equal sign). The students try to determine

the BGP routes that each AS receives for a given prefix and enter

the corresponding AS paths. INGInious then parses the answer, and

immediately provides detailed feedback enabling the students to

learn from their mistakes if any.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020



2.2 Socket programming
Most networking courses include an introduction to socket pro-

gramming. This low-level API is the classical way to develop net-

worked applications that interact with the transport layer, mainly

TCP and UDP. Several textbooks [8, 15] describe these interactions

in detail. Despite the qualities of these textbooks, many students

have difficulties in understanding several of the key concepts that

underlie the development of networked applications. For example,

some students have difficulties in understanding the difference be-

tween big-endian and little-endian. Many of them forget to check

the return values of system calls or cannot correctly parse data

received from the network.

As an example, let us illustrate one of the INGInious questions

that verifies whether a student correctly uses the socket layer to

interact with UDP. The students need to implement a client that

sends a vector of integer in a UDP datagram to a server and receives

in response a UDP datagram with the sum of these integers. Both

the client and the server are implemented in one function whose

correct operation is verified by INGInious. These questions are

verified with a script that compiles the C code and then runs a

series of unit tests. These unit tests validate different aspects of

the code written by students. Some of these tests include simple

assertions verifying that the correct value is returned for a given

set of parameters. Others are more subtle. For example, to verify

that the students correctly check the return values of the memory

allocation functions, our tests use library wrappers to intercept

these functions and force them to return errors in some tests. We

do the same for system calls such as send and recv. Our tests also
verify that the students use the network byte order when sending

and receiving integers.

We developed a similar exercise that uses TCP instead of UDP.

In this case, the client opens a connection to the server, sends its

vector of integers and waits for the answer. Our tests verify that

the client and server codes correctly use the socket interface. Some

of our tests cover corner cases that students often ignore at a first

glance. For this exercise, many students expect that when a server

issues a recv system call, it will also return the entire vector of

integers. This is what they usually observe from a small test in the

LAN on their computer. In reality, the recv system call returns the

number of bytes that have been received in-sequence. If the vector

was sent in multiple packets on a WAN, only a fraction of them

could be available when the server calls recv. Some of our tests

simulate this behavior to encourage the students to immediately

write code that handles all possible cases.

2.3 Learning protocols by dissecting packets
One of the objectives of many networking courses is to enable the

students to understand how network protocols operate. Most text-

books include a textual description of the protocol which includes

the packet format, a finite state machine and some examples. This

textual description is fine for the assiduous students, but many pro-

tocols rely on conventions that need to be well understood. While

these conventions can be explained with text or with some pseudo-

code, students better learn about these conventions by observing

and interacting with the protocols. For many students, using a

packet dissector like Wireshark or tcpdump makes the network

protocols become real, and they learn by observing the different

packets that are exchanged inside a network.

When observing packets, each of the fields that are included in

their headers have a specific role. Some of them have different roles

that depend on the values of specific flags. To reinforce their under-

standing, our ebook includes a series of INGInious exercises that

require the students to predict the value of specific fields of packets

in a given exchange. To develop such exercises, a professor simply

needs to collect packet traces in a real or emulated network.We

extended INGInious with a simplified packet dissector [12] that

presents packet traces similarly to Wireshark. The student can look
at the content of each packet and observe the values of the different

fields. The teacher can then mask some fields of the packet header

and ask the student to predict their values based on the context

provided by the other packets in the trace.

A simple example is provided in Figure 2. More precisely, INGIn-

ious shows the three packets that compose a TCP handshake in

random order. Packet #2 is the SYN packet sent by the client. Packet
#1 is the SYN+ACK that was returned by the server and packet #0
is the third packet of the handshake. In this exercise, INGInious

randomizes the packet trace and the students have to reorder them.

As the student submitted a wrong solution, Figure 2 thus addition-

ally shows the feedback provided by INGInious, when grading the

exercice.

According to our survey, 66% of the students who used this

exercise found it useful to understand the 3-way handshake.

2.4 Experimenting with real implementations
The INGInious exercises described in the previous sections enable

the students to learn the basic principles of the Internet protocols.

However, this is not sufficient to let them grasp how the protocols

behave in real networks, e.g., due to their distributed nature, or

due to implementation-specific behaviors. We thus complement the

INGInious exercises with hands-on exercises using real protocol

implementations.

Running virtual labs Many universities and enterprises use

labs equipped with routers, switches servers, and many cables.

However, given the growth in the number of Computer Science

students, it became impossible for us to manage and assign such

physical labs for more than two hundred students.

Fortunately, it is possible to leverage open-source frameworks,

such as Netkit [13] and Mininet [11], to develop virtual labs that

can be easily used by students. In particular, Mininet leverages the

Linux namespaces to efficiently emulate several hosts, switches

and routers on a single Linux host. This enables the distribution of

virtual machines to the students, in which they can instantiate the

switches and hosts for their virtual lab. Mininet’s original purpose

is to enable experimentation in Software-Defined Networks (e.g.,

OpenFlow). While it is possible to add routing daemons to Mininet

and configure themmanually, many students lack the system admin-

istration background required to efficiently configure such daemons.

This creates a barrier preventing them from experimenting easily

with real routing protocols. To cope with this problem, we have de-

veloped a set of extensions to Mininet abstracting the configuration

and management of different routing daemons.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020



Figure 2: Students learn the TCP three-way handshake by
reordering packets.

IPMininet [18] is a set of Python classes extending Mininet

which provides a declarative API to instantiate IP networks. It

enables professors to distribute network topologies with specific

routing configuration, that student can then experiment with. For

example, we use IPMininet to deploy static routes on a network,

where some destinations are unreachable due to incomplete for-

warding tables or forwarding loops. Students are then asked to

correct the problem. For OSPF and RIP, IPMininet provides ab-

stractions so that a simple Python script can configure the IP pre-

fixes, set the link weights and launch the routing daemons. The

students can then capture packets, observe the routing tables of

the virtual routers and use ping or traceroute to interact with

the network. The BGP API of IPMininet is more comprehensive.

With a few lines of Python, students can configure simple BGP

routers that advertise prefixes. We also provide abstractions that

create the routing policies required to support customer-provider
and shared-cost peerings. IPMininet also supports the creation of

iBGP sessions and the configuration of Route Reflectors. This en-

ables the students to explore how BGP is used in large Internet

Service Provider networks. The list of network services for which

IPMininet provides a declarative API goes well beyond the above

routing daemons, and also includes e.g., PIM, BIND, SSH, IPTables,

Radvd—the complete list of which is available on its repository [18].

Unit-testing protocols To encourage students to explore TCP

and understand how mature TCP implementations such as the

Linux TCP stack behave, we use packetdrill. Packetdrill [4] is a
unit-testing tool that allows verifying the conformance of a TCP

stack to some tests. It was designed to validate the Linux TCP

stack. With packetdrill, students issue system calls such as read
and write, inject TCP or even ICMP packets in the Linux stack

with precise timing information, and observe how it reacts. By

writing small packetdrill tests, students gain a more in-depth

understanding of the operation of the Linux TCP stack, as well as

the behavior of the available configuration knobs available in the

implementation.

3 STUDENT PROJECTS
Students learn a lot through projects, which enable them to be

creative and expand their understanding of the course topics. The

main difficulty in creating student projects is to find the right bal-

ance between the time that the students spend on the project and

the skills that they learn. We developed two such projects for the

introductory networking course, spanning both of its halves. Put

together, those projects are worth 35% of the networking course

grade. In the first project, covering the basic principles, students

implement a simple reliable transport protocol using the socket

layer. This project is worth 20% of the course grade. During the

second project, they analyze the architecture and performance of

a popular web service, thus exploring how protocols are used in

practice. This is worth 15% of the course grade. Finally, our ad-

vanced networking course is structured around the third project

described in this section: the design and implementation an enter-

prise network. This third project shares some similarities with the

mini-Internet project from Holterback et al [9]. The main difference

is that we put emphasis on the services provided by enterprises

that run on their network, such as DNS, DHCP and web servers,

whereas the mini-Internet project is mainly focused on network

operator aspects. For reference, both networking courses in which

these project take place are worth 5 ECTS each, with 1 ECTS being

equal to 25-30 hours of work – including course, practical sessions,

personal study time, and evaluations.

3.1 Implementing a simple transport protocol
Our first project is proposed to pairs of students. This is a good

match for the implementation of a client-server protocol, as one

student can focus on the client side while the other focuses on

the server side. During the project, students need to develop a

simple transport protocol that uses window-based flow control,

acknowledgments, and two retransmission techniques. We vary

some details of the protocol every year to prevent students from

simply reusing code written by their predecessors.

Description. The project is organized in four phases and the stu-
dents benefit from each of them. The first phase is a one week-long

bootstrap phase. During this phase, the students learn the basic

principles of the reliable protocols and write small functions in C

that are tested by INGInious. At the end of this phase, the students

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020



should have learned the basics of socket programming. They then

develop their first implementation of the simple transport protocol

during the three next weeks. This protocol runs on top of UDP for

practical reasons. We provide them with a Wireshark dissector to

analyze packets and a simple link simulator that introduces delays,

reordering and losses on a given UDP flow. At the end of this phase,

each pair of students has developed a prototype implementation

of the simple transport protocol. During the third phase, spanning

a week, we organize interoperability tests in which each student

pair is required to test its implementation with at least two other

implementations and report the results. Such inter-operability tests

enable the students to detect subtle bugs in their implementations.

We also allow students to leverage the results of these tests to ud-

pate their projects. This improves the quality of their projects and

thus their grades. By their nature, these interoperability tests verify

that different implementations can interact. If they succeed, it is

likely that the students have correctly implemented the protocol.

However, these tests do not tell anything about the architecture and

the quality of the student’s code. In a fourth and final phase of the

project, we organize a confidential peer-review phase during which

each student evaluates two anonymous implementations from other

groups of students. This peer-review is organized through a local

instance of the HotCRP conference reviewing website. Each student

has to answer a set of questions on the quality of the code, its

structure and correctness. We intentionally do not ask the students

to grade the project from other students in contrast with other

colleagues who use peer-reviews for grading. Once all of these

phases are over, the teaching staff thus receives for each project: i)
a complete implementation of the transport protocol; ii) an inter-

operability report; and iii) peer-reviews on the code quality. In

addition, a final test report is generated by a series of automated

tests defined by the teaching staff upon project submission. Com-

bined, these 4 elements enable the teaching staff to both quickly

grade each project and also provide a customized detailed feedback

to the students.

Lessons learned. 61% of our students totally agree or agree that

these INGInious exercises of the bootstrap phase were sufficient to

allow them to start the project.

Many professors would grade the project after the second phase,

i.e., right after the implementation phase. Our experience is that

by doing so, the students would miss many lessons that experi-

enced network engineers learn by interacting with others. When

new protocols are implemented, the engineers who develop the

first implementations often organize interoperability events to val-

idate their respective implementations. Such events are a unique

learning opportunity for the students as well. The interoperabil-

ity tests are stressful for the students (71% because it is a strict

deadline) but mainly helpful: 74% have discovered errors in their

implementation, 72% have identified ideas for improvements by

observing the behavior of other implementations and 82% modified

their implementation based on these tests.

We use the peer review phase to achieve different pedagogical

objectives. First, the peer reviews encourage the students to read

code written by other students. Code reviews are an important

part of the work of many computer scientists and it is important

to train the students to these activities. We insist on constructive

comments that can be used by the students who receive them to

improve the quality of their project. Second, these peer reviews

provide qualitative feedback to the students. Given the size of our

classes, we cannot anymore provide personalized feedback to each

student and have to rely on automated tests when grading projects.

The reviews returned by the students are graded and contribute

to a small fraction of the course grade. This phase of peer-review

pushes students to be diligent: 65% of students want to get a positive

report from their peers. According to students, peer-reviewing is

useful. 74% of our students have identified classical errors that they

would avoid in the future by reviewing the code of other students.

Furthermore, 73% have discovered good practices that they plan to

apply to future projects.

We have tested two strategies to allocate the peer reviews to the

students. Our first strategy was to randomly allocate two reviews

to each student. This strategy is simple to implement and works for

most students. Its main advantage is that each project is reviewed

by the same number of students. However, it leads to problems

with very good or very bad student projects. For such projects,

it is very difficult for an average student to provide constructive

feedback. We now randomly allocate five projects to each student

and then let they select the two of them that they will review. This

avoids difficulties with projects that are too weak or too strong,

but does not guarantee that all projects receive feedback from

other students. As we have no guarantee that all students write

the required reviews anyway, this problem is also present with the

initial allocation strategy.

3.2 Observing deployed protocols
During the second half of the course, we organize a six weeks long

project that encourages the students to improve their understand-

ing of key Internet protocols. This project starts shortly after the

presentation of the application layer and progresses in parallel with

the course. For this project, each student selects one website and

provides some short but precise four-pages two column paper de-

scribing how various Internet protocols have been tuned on this

website.

Description. Every week, we encourage the students to focus

their analysis on one particular aspect of the studied website. At the

beggining of each week, we provide guidelines and suggest tools

that the students could use. We start from the simpler protocols

and then expand to more complex protocols, sometimes requiring

special tools. Before this project, the students have been exposed to

packet dissectors such as Wireshark and the exercises described in
Section 2.3. We start usually start by analyzing the configuration

of the DNS of studied website. With simple tools such as dig or

nslookup, the students can determine the number of nameservers,

the types of DNS records, the support for IPv4 and/or IPv6. Using

traceroute, they try to determine where the website is hosted. We

also provide to the students RIPE Atlas measurements from probes

located on different continents to the studied websites. This gives

some hints on how those websites rely on Content Distribution

Networks. During the recent years, the students have observed the

growing importance of IPv6 and DNSSec using these measurements.

The second week is devoted to HTTP. We leverage the developer

extensions of the Chrome, Firefox, and Safari browsers and first ask

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020



the students to analyze the number of servers that are contacted

when browsing a given web page. Students are usually puzzled

when they first observe that dozens of websites are usually con-

tacted to render a single web page. They then analyze the HTTP

headers to identify the non-standard ones and try to infer their

meaning. Another element of the HTTP analysis are the HTTP

cookies. The students are usually very surprised by the real utiliza-

tion of these cookies. During the last years, they have also started

to observe the deployment of HTTP/2.

The third week is devoted to the analysis of Transport Layer

Security (TLS). Ten years ago, TLS was reserved for banks and small

parts of e-commerce websites. During the last years, we have ob-

served an very significant increase in the number of websites that

use TLS. During this week, the students use either the developer

extensions of their browsers or openssl’s s_client to analyze

how websites negotiate TLS (e.g., version number, proposed crypto-

graphic schemes, and specific parameters). This analysis highlights

the complexity of the TLS configuration of large websites and the

trade-offs that they have to do. Students have also observed the

deployment of TLS 1.3.

During the fourth week, the students observe how TCP is used by

large web servers. They analyze the TCP options advertised by the

server, verify whether it supports Explicit Congestion Notification,

or try to infer its initial congestion window.

After this analysis, the students finalize their report. Our sched-

ule does not enable us to organize a peer-review round for this

project, but this would be very valuable. Each student report is

reviewed by one professor who provides some short feedback by

email and a grade. The best project reports are published on a volun-

tary basis on our department website and used as examples during

the next year.

Lessons learned. Initially, we encouraged each student to se-

lect one website to analyze. This offered a strong motivation for

the students as they studied a website that they used frequently.

However, grading those projects was difficult since all students ob-

served different optimizations. We now ask the students to vote for

their most popular websites and select a subset of them so that each

website is analyzed by about a dozen of students. This provides

a good diversity in what students can observe and simplifies the

grading, which is important with classes of 200 students and more.

An important point of this analysis is that students directly

observe that the Internet evolves. First, as they have access to a

selection of the past student works on other websites
1
, they see a

trend emerging over the years. Five years ago, the observedwebsites

were using HTTP version 1.1 over IPv4. Today, they often rely

on HTTP version 2.0 over TLS and IPv6. Second, as all teaching

materials are inevitably subsets and overviews of the protocols and

practices used in the Internet, this project allows students to finely

observe actual websites. They often find and learn from differences

between theory and practices, such as the use of custom HTTP

headers and the first deployments of QUIC. 73% of our students

confirm that observing protocols on real websites was motivating

and pushed them to surpass themselves. Finally, this introduce a

feedback loop to the teaching staff that can update the ebook to

1
Authors of those works gave explicit consent to their publishing.

describe and explain new practices based on what the students

observed.

3.3 Designing and implementing an enterprise
network

This project [17] is part of an advanced networking class. It builds

upon the skills learned during the introductory networking class

and could be used to conclude such a course.

Description. We start it with a detailed presentation of the

campus network by one our network engineers. This 2 hours pre-

sentation
2
highlights all the elements that compose a real network

(e.g., routing, load-balancers, web servers, monitoring infrastruc-

ture, firewalls) and explains many of the design choices they made

over the years. Some of these are purely technical, others are based

on economic factors. With this background, the students are tasked

in groups of four to six to design, build and test an evolution of the

campus network in a virtual environment that we provide them.

The students have the full freedom to modify the network topol-

ogy, while still keeping the overall network cost equivalent, and

install the software and protocols that they select. We host a copy

of the virtual network of each group on a remote server, and setup

layer-2 bridges, provide external connectivity advertized through

BGP, and a custom DNS TLD. The students can thus build a mini-

Internet through BGP peerings (direct or through their connectivity

provider that we manage), and build a customized DNS hierarchy.

We additionally provide them with a looking glass of what we ob-

serve about their network (e.g., advertized prefixes, reachability,

latency). At the end of the project, students submit a report on their

implementation and design choices, which is then anonymously

peer-reviewed by other groups, similarly to the first project (§3.1).

Lessons learned. Leaving them this much freedom forces them

to explore various open-source tools to compare their features. This

is not so different from the work that network engineers would

need to do to procure new switches or new routers. A project typi-

cally requires the students to explore new or emerging protocols.

We only consider IPv6 and ignore IPv4. Furthermore, we’ve asked

the students to multi-home their campus network to two different

providers that use Provider Aggregatable prefixes. This forces the

students to explore how these prefixes can be delegated to the end

hosts. We encourage them to distribute two IPv6 addresses, one

from each provider prefix, to each host. This creates some practical

issues with routing and firewall configurations, but enables the

students to learn the limits of the current networking technologies.

Finally, in order to ensure that students make progress, we schedule

weekly appointments of 15 minutes with all groups to provide guid-

ance on eventual blocking points. Once all groups have a running

network, we then replace these appointments by physical presence

in the lab rooms at well-defined hours.

4 THE BENEFITS OF OPEN-SOURCE
The Internet relies on a wide range of open-source software from

operating systems like Linux or FreeBSD to client and server ap-

plications. When we started to write the open-source Computer

2
The slides for the 2018 session are available at https://github.com/cnp3/

CampusNetwork/blob/master/docs/ucl_network_qhunin.pdf .

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

https://github.com/cnp3/CampusNetwork/blob/master/docs/ucl_network_qhunin.pdf
https://github.com/cnp3/CampusNetwork/blob/master/docs/ucl_network_qhunin.pdf


Networking: Principles, Protocols and Practice ebook a decade ago,

our motivation was to contribute back to the community. Students

report that having access to the book sources encourages them

to contribute to its improvement (35%) and to look at other open-

source projects (37%), which is an unusual way to expose them to

the open-source movement.

Students cannot simply learn networking by reading textbooks.

They need a variety of activities to master this complex topic. We

have developed and released various open education resources

which can be used during networking classes. A key element of

these resources is that they enable the students to learn from their

mistakes, from the simple multiple choice questions, providing in-

stantaneous feedback to the students, to the interoperability tests

and the peer-reviews that encourage the students to provide con-

structive feedback. We encourage other networking educators to

fork, adapt and contribute to these open educational resources.

Acknowledgements
We would like to thank all the students, teaching assistants and

colleagues who have provided comments and suggestions over

the years. Jean-Martin Vlaeminck and Mathieu Xhonneux imple-

mented the socket exercises. Maxime Mawait, Antoine Rime, Au-

gustin Delecluse and Louis Navarre developed several IPMininet
exercises. This work was partially supported by UCLouvain’s OER

development fund.

Open Educational Resources
An online copy of the different editions of Computer Networking:
Principles, Protocols and Practice ebook is freely available at https:

//www.computer-networking.info. The source code of the book, its

exercises, IPMininet, as well as software used during the different

projects can all be found in the repositories listed at https://github.

com/cnp3 under permissive open-source licenses. We use GitHub to

receive pull requests against those resources. Any contributors can

review them. Contributions are vetted for correctness before being

integrated.We encourage educators and students alike to contribute

to these resources by translating them in other languages, providing

updates to the ebook, or adding new exercises.

REFERENCES
[1] Alberola, J. M., and García-Fornes, A. Using feedback for improving the learn-

ing process in programming courses. IEEE Revista Iberoamericana de Tecnologias
del Aprendizaje 9, 2 (2014), 49–56.

[2] Bertsekas, D., and Gallager, R. Data Networks. Prentice-Hall Internat. Ed.
Prentice-Hall International, 1992.

[3] Bonaventure, O., et al. Computer networking : Principles, protocols and

practice, 2019. https://www.computer-networking.info - Accessed Jun-20-2020.

[4] Cardwell, N., Cheng, Y., Brakmo, L., Mathis, M., Raghavan, B., Dukkipati, N.,

Chu, H.-k. J., Terzis, A., and Herbert, T. packetdrill: Scriptable network stack

testing, from sockets to packets. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13) (2013), pp. 213–218.

[5] Crooks, T. J. The impact of classroom evaluation practices on students. Review
of educational research 58, 4 (1988), 438–481.

[6] Derval, G., Gego, A., Reinbold, P., Frantzen, B., and Van Roy, P. Automatic

grading of programming exercises in a MOOC using the INGInious platform.

EMOOCS’15 (2015), 86–91.
[7] Gao, L., and Rexford, J. Stable internet routing without global coordination.

IEEE/ACM Transactions on networking 9, 6 (2001), 681–692.
[8] Hall, B. Beej’s Guide to Network Programming. Jorgensen Publishing, 2011.

[9] Holterbach, T., Bü, T., Rellstab, T., and Vanbever, L. An open platform to

teach how the internet practically works. ACM SIGCOMM Computer Communi-
cation Review 50, 2 (2020), 45–52.

[10] Kurose, J., and Ross, K. Computer Networking: A Top-Down Approach, Global
Edition. Pearson Education Limited, 2017.

[11] Lantz, B., Heller, B., and McKeown, N. A network in a laptop: rapid prototyp-

ing for software-defined networks. In Hotnets 2010 (2010).
[12] Piraux, M. INGInious network trace problem. https://github.com/cnp3/

INGInious-problems-network-trace, Accessed Jun-20-2020.

[13] Pizzonia, M., and Rimondini, M. Netkit: network emulation for education.

Software: Practice and Experience 46, 2 (2016), 133–165.
[14] Singer, L. M., and Alexander, P. A. Reading on paper and digitally: What the

past decades of empirical research reveal. Review of Educational Research 87, 6
(2017), 1007–1041.

[15] Stevens, R., Fenner, B., and Rudoff, A. UNIX network programming, vol. 1.
Addison-Wesley Professional, 2004.

[16] Tanenbaum, A., and Wetherall, D. Computer Networks. Pearson. Pearson,
2013.

[17] Tilmans, O., and Jadin, M. Campus network project. https://github.com/cnp3/

CampusNetwork, Accessed Jun-20-2020.

[18] Tilmans, O., and Jadin, M. IPMininet. https://github.com/cnp3/ipmininet,

Accessed Jun-20-2020.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

https://www.computer-networking.info
https://www.computer-networking.info
https://github.com/cnp3
https://github.com/cnp3
http://dx.doi.org/10.1109/RITA.2014.2317529
http://dx.doi.org/10.1109/RITA.2014.2317529
https://books.google.be/books?id=MSVuQgAACAAJ
https://www.computer-networking.info
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell
http://dx.doi.org/10.3102/00346543058004438
http://hdl.handle.net/2078.1/182120
http://hdl.handle.net/2078.1/182120
http://dx.doi.org/10.1109/90.974523
https://beej.us/guide/bgnet/
http://dx.doi.org/10.1145/3402413.3402420
http://dx.doi.org/10.1145/3402413.3402420
https://books.google.be/books?id=IUh1DQAAQBAJ
https://books.google.be/books?id=IUh1DQAAQBAJ
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1868447.1868466
https://github.com/cnp3/INGInious-problems-network-trace
https://github.com/cnp3/INGInious-problems-network-trace
http://dx.doi.org/10.1002/spe.2273
https://doi.org/10.3102/0034654317722961
https://doi.org/10.3102/0034654317722961
https://books.google.be/books?id=w_d5ngEACAAJ
https://github.com/cnp3/CampusNetwork
https://github.com/cnp3/CampusNetwork
https://github.com/cnp3/ipmininet

	Abstract
	1 Introduction
	2 Textbook versus interactive ebook
	2.1 Multiple choice and short questions
	2.2 Socket programming
	2.3 Learning protocols by dissecting packets
	2.4 Experimenting with real implementations

	3 Student projects
	3.1 Implementing a simple transport protocol
	3.2 Observing deployed protocols
	3.3 Designing and implementing an enterprise network

	4 The benefits of open-source
	References

