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Abstract Fault injection is a well known method to test the robustness and security vulnerabilities
of software. Software-based and hardware-based approaches have been used to detect fault injection
vulnerabilities. Software-based approaches typically rely upon simulations that can provide broad and
rapid coverage, but may not correlate with genuine hardware vulnerabilities. Hardware-based experiments
are indisputable in their results, but rely upon expensive expert knowledge and manual testing yielding
ad-hoc and extremely limited results. Further, there is very limited connection between software-based
simulation results and hardware-based experiments. This work bridges software-based and hardware-
based fault injection vulnerability detection by contrasting results of both approaches. This demonstrates
that: not all software-based vulnerabilities can be reproduced in hardware; prior conjectures on the fault
model for Electro-Magnetic Pulse attacks may not be accurate; and that there is a co-relation between
software-based and hardware-based approaches. Further, combining both approaches can yield a vastly
more accurate and efficient approach to detecting genuine fault injection vulnerabilities.

Keywords fault injection · vulnerability · statistical model checking · formal methods · EMP

1 Introduction

Fault injection is a commonly used technique to test the robustness or vulnerability of systems against
potential physical fault injection attacks. Testing for system robustness is generally applied for systems
that are deployed in hostile environments where faults are likely to occur. Such environments include
aviation, military, space, etc. where atmospheric radiation, Electo-Magnetic Pulse (EMP), cosmic rays
etc. may induce faults. Vulnerability of modifications to program behaviour via fault injection attacks
is a useful way to detect places where a malicious attacker could exploit a system via targeted fault
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injection. Since the underlying mechanism of a fault causing undesirable behaviour is common to both of
these scenarios, the detection of potential fault injection vulnerabilities is an important area of research.

To support this research requires being able to reproduce the effect of some kind of fault in an
experimental environment. There are two broad classes of approaches used to reproduce such faults,
either simulating the fault injection using a software based approach, or (re)producing the fault injection
with some specialised equipment as a hardware based approach.

The software based approach was first proposed as an alternative to requiring specialised hardware
to (re)produce a fault [6,22,54]. The typical software approach is to perform a simulation based upon a
chosen fault model; a model of how the fault affects the system.

The main advantage of software based approaches is that they are cheap and fast to implement since
they require only development skills and normal computing systems without any specialised hardware.
The main challenge for software based approaches is that they have not been validated against hardware
based approaches to verify that their results are co-related, i.e. that the vulnerabilities found by the
software based approaches are genuine.

The hardware based approach was proposed as a technique to study potential vulnerabilities which
may be created by environmental factors or potential malicious attacks [31]. The hardware based approach
consists of using specialised hardware to induce an actual fault on a specific device. Some examples
include: setting up a laser that can target specific transistors in a chip [45], setting up an X-ray beam
to target a transistor [3], mounting an EMP probe over a chip to disrupt normal behaviour [33], and
many others [5,7,50]. The main advantage of such hardware based approaches is that any detected
vulnerability is guaranteed to be genuine. The main challenge for such hardware based approaches is the
cost of specialised hardware and expertise to configure such an environment and conduct the experiments.

Since both software and hardware based approaches have advantages (and disadvantages), research
has proceeded using both approaches. Thus, there are many works that explore software based approaches
[12,30,36] or hardware based approaches [7,37,46]. Very few consider both [15,4] and these do not attempt
to find co-relations between the two. Due to the relative cost and also the potential for broader and faster
results, the more recent focus has been on improving software based approaches [21,36,39].

One challenge that has not been explored is the correspondence between software-based and hardware-
based fault injection vulnerability detection. This paper sets out to remedy this and bridge the gap be-
tween software-based and hardware-based fault injection vulnerability detection. This is achieved here by
performing both software-based and hardware-based fault injection vulnerability detection. The software-
based detection uses a generic process [21,20] and here implemented using software simulations of fault
injection and formal methods analysis using statistical model checking [28]. The hardware-based detec-
tion is performed using an EMP generator. The results of the two approaches are compared to explore
co-relations between them. The results of these experiments yielded several interesting outcomes.

– The software-based approach is able to find genuine fault injection vulnerabilities. However, there are
also many false-positive results where the software-based approach claims a vulnerability exists that
was not feasible to reproduce using the (EMP) hardware-based approach. This indicated that although
software-based approaches may be useful in identifying potential fault injection vulnerabilities, not
all such vulnerabilities are genuine.

– The hardware-based approach did not match any single model of how a fault affects the system using
the software-based approach. By having comprehensive results from the software-based simulation
it was possible to determine that the (EMP) hardware-based approach did not have a consistent or
exact effect on the hardware.

– The two approaches have a co-relation: both approaches agree on the effect and the location of
fault injection vulnerabilities (and other behaviours). The results here indicated that although the
software-based approach had false-positives, there were no false-negative results when considering the
fault models used here. This indicates that software-based detection can indicate likely locations for
vulnerabilities, and hardware-based approaches can be used to confirm (or refute) their feasibility.

– Combining both approaches can be used to rapidly locate genuine fault injection vulnerabilities,
even in code without known weaknesses. This paper presents a method to use the software-based
approach to identify the most potentially vulnerable locations and then (with some calculation)
these can be tested and confirmed (or refuted) using hardware-based approaches. In practice this
combined approach can vastly reduce the number of hardware experiments required to demonstrate
a vulnerability; here reducing the number of experiments from tens or hundreds of thousands to just
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210. Further, when applied to code without known weaknesses this can be used to rapidly determine
if vulnerabilities exist.

The key contributions of the paper are as follows:

– Performing software-based fault injection and hardware-based fault injection on common case studies.
– Comparing the results of software-based and hardware-based fault injections.
– Showing that software-based and hardware-based fault injections have a co-relation.
– Presenting a combined approach to fault injection vulnerability detection that is more effective than

either software-based or hardware-based alone.

The structure of the paper is as follows. Section 2 recalls background information helpful for under-
standing this work. Section 3 presents the main case study used in this work, and the various translations
and properties used. Section 4 overviews the experimental methodology. Section 5 considers the results of
the experiments. Section 6 introduces a second case study for further experiments. Section 7 discusses the
results and their implications. Section 8 explores how to combine software and hardware to improve fault
injection vulnerability detection. Section 9 recalls related works and contrasts with the work presented
here. Section 10 concludes.

2 Background

This sections recalls useful background information for understanding the rest of the paper. This includes
an overview of the definition of fault injection and how to reason about fault injection by fault models
and their typical classification. The two approaches (software and hardware) are both overviewed, along
with background on how they are implemented and justification for the decisions made in this work.

2.1 Fault Injection

Fault injection is any modification at the hardware level which may change normal program execution.
Fault injection can be environmental (e.g. background radiation, power interruption [6,31]) or intentional
(e.g. induced EMP [16,33], rowhammer [41,47,56]).

Environmental fault injection is due to the environment the system is operating in [18,31] An example
of this is one of the first observed fault injections where radioactive elements present in packing materials
caused bits to flip in chips [6].

Intentional fault injection occurs when the injection is done by an attacker with the intention of
changing program execution [33,41,47,56]. For example, fault injection attacks performed on crypto-
graphic algorithms (e.g. RSA [13], AES [45], PRESENT [55]) where the fault is introduced to reveal
information that helps in computing the secret key.

A fault injection vulnerability is a fault injection that yields a change to the program execution that
is useful from the perspective of an attacker. This is in contrast to other effects of fault injection that
are not useful, such as simply crashing a program, causing an infinite loop, or changing a value that
is subsequently over-written. Observe that the definition of a vulnerability is not necessarily trivial or
stable, the above example of a program crash may be a vulnerability if the attacker desires to achieve a
denial of service attack.

One challenge in understanding and reasoning about fault injection is to be able to understand the
effect that different kinds of faults can have upon the system that is affected. This requires some definition
of how to characterise a fault and its behaviour in a manner that can be used experimentally.

2.2 Fault Model

There are a wide variety of approaches to reason about a fault model that describe how a system
is affected by fault injection [52,39,32,25,42,17,21,20]. This section briefly overviews the key points
regarding fault models as used in this work and their relation to the literature, however this does not
include a comprehensive discussion of all possible fault model descriptions, approaches, or uses.
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Fig. 1: Software Process Diagram

The goal of a fault model here is to describe how the system is affected by the fault injection attack
in a manner that can be used for understanding or reasoning about the fault. Here the focus is on how
the system is affected, and describing this in a manner that can be simulated and checked using the
experimental methodologies considered. This means that the fault models considered here are typically
related to modifications of the binary program, for example changing the value of a bit or byte within
the program itself. These kinds of faults can be described as compile time faults [22,20] where the fault is
persistent once injected into the program. Note that although this is described as “compile time”, these
faults can correspond to any modification that is persistent (as opposed to transient [58]). Compile time
faults can correspond to faulting the binary before loading, while in memory, or for some parts, even
faulting the cache. Also when the faulted part of the binary is only executed once, then compile time
fault models correspond to transient fault models. Recent work has shown the effectiveness of persistent
fault models in practice [35].

The fault models here are focused on describing the effect of the fault on the binary structure of the
program. This is done to be able to contrast between software-based and hardware-based fault injection.
Details of the fault models used here and their definitions appear in Section 4.1 when describing the
experimental methodology.

2.3 Software Process

This section overviews the process used for software-based fault injection vulnerability detection. This
process is adapted from previous work [21,20] where it was demonstrated to be effective.

An overview of the process as depicted in Figure 1 is as follows. The process starts with the binary file
and the file of the properties to check upon the binary. The binary file is then translated to the modelling
language for the model checker. The properties are validated to hold on the model using statistical model
checking (SMC). The fault injection is then simulated on the binary file in order to produce mutant
binaries. The models corresponding to mutant binaries are generated in the same manner as before.
The properties are then checked upon the mutant binaries using SMC. A difference in the results of the
validation and checking the property indicates a fault injection vulnerability created by the simulated
fault injection and instance of the fault model.

Note that this process adapts from the process proposed by Given-Wilson et al. [21] in two ways.
Firstly, here the properties are specified independently of the binary whereas in Given-Wilson et al.’s
work the properties are embedded in the binary. Secondly, here SMC is used in place of Model Checking
(MC).

The rest of this section overviews background on the formal methods used in the software based
process used in the experiments here.

The overall process described above (and adapted from [21,20]) does not rely upon a particular formal
method for checking and validating the properties. In [21,20] MC was used and produced results although
there were limitations with the model checker used and some results proved to be inconsistent due to
the model checker being bounded [20].
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The underlying benefit of using MC is that all possible states of the system can be explored, and so
the property absolutely proven to hold or not [24]. Unfortunately due to the complexities of modeling
low-level machine behaviour and handling complexities related to memory, stack, and other architectural
details, in practice only bounded model checking [9] was used in prior work [21,20].

To address these issues this work uses SMC that is able to operate efficiently over much larger
and more complex spaces [28]. The underlying mechanism of SMC is to run a single trace through the
model and check the properties on this trace. Many such traces are run, and statistical methods used to
approximate whether the properties hold (or not) and with some level of certainty.

The main limitation of SMC is that SMC cannot ensure all possible states have been checked, and so
cannot give absolute results (except when the state space is small). This means that very rare or hard
to find problems may not appear in the results, and that absolute guarantees cannot be given unless the
entire state space is checked (as in MC).

SMC has another advantage that is useful here: unknown values can be randomly chosen with no
significant impact on the efficiency of the results. Here this means that if a previously unknown memory
address is accessed, the SMC engine can assign a random value and continue efficiently. By contrast, MC
would have to assume all possible values for this new (and previously unknown) word and so cause an
enormous increase in the state space to explore. (This is another instance of the state space explosion
problem of MC [24,28])

In both MC and SMC properties are used to define the correct or incorrect behaviour of the model.
Here properties are used to define specific vulnerabilities that may be introduced by fault injection.

In this work the properties are specified using Bounded Linear Temporal Logic (B-LTL). B-LTL is
chosen here for being able to represent the key concepts required and being compatible with the SMC
tool used for the experiments here (see Section 4.1). The properties here are mostly specified using simple
(in)equality relations, however the temporal and bounding operations can be exploited to account for
infinite loops induced by fault injection. The above provides a high level overview of the key concepts.
Further detail of how this is done in the context of this work is shown in Sections 3 & 4.1.

2.4 Hardware Process

This section overviews the hardware process used for detecting fault injection vulnerabilities. This process
is common to many prior works [19,43,48,38].

An overview of the process is as follows. The first step is to experiment on the chosen target hardware
with the chosen hardware fault induction technique. This step concludes when a configuration is found
that allows the hardware fault injection to change program execution. The second step is then to load
a program onto the target hardware that has a believed vulnerable point. The third step is to try and
align the injected fault with the believed vulnerable point to demonstrate a fault injection vulnerability.
A vulnerability has been demonstrated if the fault injection can change the program execution in the
desired way with significant consistency.

3 Case Study: Control Flow Hijacking

This section presents the main case study used in this work. This control flow hijacking case study
(CFH) [48,11] is chosen to have a known class of vulnerability that is straightforward to understand.
The example here is presented in C source code, and assembly code for ARMv7-M Thumb-2. Finally, for
the case study the correct, vulnerable, and incorrect program executions are defined.

Note that the case study contains trigger instructions that change the voltage of some pins observable
to the hardware fault injection tools. These were used to improve precision in the hardware calibration
as described in Section 4.2. However, no result in this work relies upon the existence of these triggers.

This case study is chosen to demonstrate a control flow hijacking vulnerability. The goal for the
attacker is to output a specific value (0x55555555) that can only be reached by hijacking the control
flow of the program execution.

The test_persistence function that is of interest is shown below.

uint32_t test_persistence (void){

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_SET);
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uint32_t status = 0;

if (pin_correct ==1) {

status =0 xFFFFFFFF;

} else {

status =0 x55555555;

}

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_7 , GPIO_PIN_RESET);

return status;

}

Listing 1: C Code

Here the attacker wishes to hijack the function control flow to return 0x55555555 even when pin_correct

has the value 1. Since in the code being experimented on pin_correct always has value 1, the program
behaviour can be defined to be one of the following outcomes. The correct behaviour for this case study
is to return 0xFFFFFFFF. The program is vulnerable when the return value is 0x55555555 (achieved via
some form of fault injection). Any other return value is considered to be incorrect program execution.
Note that if the program does not terminate or does not provide a return value this is classified as
crashed.

The corresponding ARMv7-M Thumb-2 assembly instructions for the test_persistence function
are shown below.

08000 aa0 <test_persistence >:

8000 aa0: b510 push {r4 , lr}

8000 aa2: 480a ldr r0 , [pc , #40]

8000 aa4: 2180 movs r1 , #128

8000 aa6: 2201 movs r2 , #1

8000 aa8: f001 f91c bl 8001 ce4

8000 aac: 4b08 ldr r3 , [pc , #32]

8000 aae: 4807 ldr r0 , [pc , #28]

8000 ab0: 681b ldr r3 , [r3 , #0]

8000 ab2: 2180 movs r1 , #128

8000 ab4: 2b01 cmp r3 , #1

8000 ab6: bf0c ite eq

8000 ab8: f04f 34ff moveq.w r4 , #0 xFFFFFFFF

8000 abc: f04f 3455 movne.w r4 , #0 x55555555

8000 ac0: 2200 movs r2 , #0

8000 ac2: f001 f90f bl 8001 ce4

8000 ac6: 4620 mov r0 , r4

8000 ac8: bd10 pop {r4 , pc}

8000 aca: bf00 nop

Listing 2: File Address Locations, Machine Instruction Codes, and Assembly Code

There are several instructions that are of significance to correct program execution. The instruction
at 8000ab0 that loads to r3 the value at memory address [r3, #0]. The instruction at 8000ab4 that
compares the register r3 with the value #1. Then the instruction at 8000ab8 that loads the value
0xFFFFFFFF into the register r4 if the prior condition is satisfied. Similarly the instruction at 8000abc

loads the value 0x55555555 into r4 when the prior condition is not satisfied. Then the instruction at
8000ac6 that moves to the return register r0 the return value from register r4. Observe that faulting
any of these would have an effect on correct program execution. There may also be other less obvious
ways to use fault injections to alter the behaviour of the program, the above are provided to illustrate
(and are not exhaustive).

Since the SMC used here is unable to operate on the binary code (or assembly instructions), it is
necessary to translate the binary code into a language that can be input to the SMC engine. Listing
3 shows a part of the Reactive Model Language (RML) model corresponding to the assembly code in
Listing 2 (header information and variable declarations are not shown here).

Each binary (assembly) instruction in Listing 2 is translated to one or more lines in the RML model.
The structure of the lines of the RML model is as follows, illustrated using the first line as an example.
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– pc=66562 is the guard in the RML language. This represents the predicate over all the variables in
the model. Here pc represents the program counter and 66562 is the address of the instruction in the
binary.

– -> 1 is the probability of the transition. This express the probability that the model will take this
transition. Note that here all probabilities are 1 due to deterministic definitions of the instructions
[14].

– After the colon, (pc’ = 66564) & (r0’ = M0) is the update done by the transition if the guard is
true. Here the value of pc will be updated to the address of the next instruction, and the register r0
will receive the value of the memory address M0.

Observe that on lines 11 and 12 (and also 13 and 14) multiple lines have the same program counter
address but with different guards. These represent the conditional operation of line 13 (and 14) of the
instructions in Listing 2.

1 [] pc =66562 -> 1 : (pc ’ = 66564) & (r0 ’ = M0);

2 [] pc =66564 -> 1 : (pc ’ = 66566) & (r1 ’ = 128);

3 [] pc =66566 -> 1 : (pc ’ = 66568) & (r2 ’ = 1);

4 [] pc =66568 -> 1 : (pc ’ = 66572) & (lr ’ = 66572);

5 [] pc =66572 -> 1 : (pc ’ = 66574) & (r3 ’ = M1);

6 [] pc =66574 -> 1 : (pc ’ = 66576) & (r0 ’ = M1);

7 [] pc =66576 -> 1 : (pc ’ = 66578) & (r3 ’ = M0);

8 [] pc =66578 -> 1 : (pc ’ = 66580) & (r1 ’ = 128);

9 [] pc =66580 -> 1 : (pc ’ = 66582) & (flag ’ = ( r3 = 1 ) ) ;

10 [] pc =66582 -> 1 : (pc ’ = 66584) ;

11 [] pc =66584 & flag=true -> 1 : (pc ’ = 66588) & (r4 ’ = MAXVAL);

12 [] pc =66584 & !flag=true -> 1 : (pc ’ = 66588) ;

13 [] pc =66588 & flag=false -> 1 : (pc ’ = 66592) & (r4 ’ = 1431655765);

14 [] pc =66588 & !flag=false -> 1 : (pc ’ = 66592) ;

15 [] pc =66592 -> 1 : (pc ’ = 66594) & (r2 ’ = 0);

16 [] pc =66594 -> 1 : (pc ’ = 66598) & (lr ’ = 66598);

17 [] pc =66598 -> 1 : (pc ’ = 66600) & (r0 ’ = r4);

18 [] pc =66600 -> 1 : (pc ’ = 66604) & (sp ’ = 8);

19 [] pc =66602 -> 1 : (pc ’ = 66604) ;

Listing 3: Control Flow Hijacking RML Model

Observe that in Listing 3 the stack memory locations are instantiated to representative memory cells,
e.g. M0 and M1. These are initialised according to the binary instructions, and if no initial value is declared
then the SMC chooses a value at random.

The specified property for this case study will check the values of register r4. Under normal program
behavior the value of register r4 will eventually be 0xFFFFFFFF (or MAXVAL). The property to check for
vulnerability of this program is whether r4 can eventually have the value 0x55555555 (which is equal to
1431655765). The property is expressed in the BLTL form as follows:

F<=#1000 (r4=1431655765)

The property operates as follows.

– F is the temporal operator for eventually.
– <=#1000 expresses the bound, it gives the length of the run (number of steps) on which the property

must hold, since here the property is expressed in the bounded linear temporal language (BLTL).
– (r4=1431655765) checks if the output value could be 0x55555555. Note that under normal execution

and valid pin this case cannot happen without any fault injection.

Another property that is checked it to ensure that when the program counter is at the return point from
the function then the value of the return register is not the maximum value as shown below..

F<=#1000 (pc=66604 & r4!=MAXVAL)

Observe that this will also detect the vulnerability property above, while failing both properties
indicates correct behavior of the program. Thus, there are three possible outcomes from the checking:

7



– Vulnerable: when only the vulnerability property holds.
– Incorrect : when the incorrect property holds and the vulnerability property does not hold.
– Correct : when neither property holds and (for the properties tested) the program exits normally.

4 Experimental Methodology

This section discusses the experimental methodology used to conduct the experiments in this paper. The
overall methodology is as follows.

The first step is to take the case study, to perform extensive software fault injection simulations, and
to use the software process (see Section 2.3) to identify as many potential vulnerabilities as possible.
Incorrect program execution is also identified to help in later stages of the methodology. Finally, crashes
and other failures of program execution are exploited for calibration as described later.

The second step is to perform hardware fault injections on the entire function and to identify which
configurations yield statistically significant changes in program execution.

The third step is to compare the software and hardware results to: identify achievable fault injection
vulnerabilities using the hardware results; identify likely hardware fault models using the software results;
and to demonstrate that Software-Based Fault Injection and Hardware-Based Fault Injection techniques
have a co-relation.

The rest of this section details the environment and implementation for the experiments.

4.1 Software

The software-based experiments were performed by an implementation of the process described in Sec-
tion 2.3.

The implementation of the process presented in 2.3 can be seen in Figure 2. The implementation
begins with a binary file for ARM-v7 architecture and the properties specified in B-LTL (in separate
files).

The binary is translated to Reactive Module language (RML) using ArmL1. RML [26] is a state-based
language based on the Reactive Modules formalism [2] and used as the input language for Plasma Lab
[29]. The specified property is then validated to hold on the generated RML model using the SMC Plasma
Lab [29]. The mutant binaries corresponding to simulated fault injections are generated using SimFI2.
The RML models for the mutant binaries are generated using the ArmL tool. The properties are then
checked on the mutant models using SMC with Plasma Lab. Finally the results of model checking the
mutant models and the binary file model are compared for statistically significant differences. Note that
as mentioned in Section 2.3, SMC cannot give absolute results without full enumeration of the whole
space, and also previously unknown values are randomly instantiated. Note that it is possible for results
to be different but not in a statistically significant manner (e.g. if detecting whether a property can be
violated, detecting this 2 out of 100 runs or 1 out of 100 runs is unimportant, since the violation is
demonstrated).

The properties (see Section 3) are written in a separate file with the extension .bltl. This file will
be used by the model checker tool (Plasma Lab) to verify the generated mutants.

For software simulation various fault models can be simulated by SimFI. Since the Electro-Magnetic
Pulse (EMP) used here (see Section 4.2 below) does not have a single consistent fault model [33], multiple
fault models were considered here. The fault models tested here are as follows.

Z1b The zero one byte fault model (Z1b) simulates setting a single byte to zero (regardless of prior value).
This fault model corresponds to a malicious attack that is commonly achievable attack in practice
[53,45].

Z4b The zero four bytes fault model (Z4b) represents setting four bytes to zero (again regardless of prior
value). This is similar in concept to the Z1b fault model and attack, but captures behaviour more

1 ArmL is a translation tool that translates from ARM-v7 binaries to RML models.
2 The SimFI tool is a tool that simulates a wide variety of fault injection attacks on binaries. The tool takes a binary as an

input (regardless of the binary’s architecture). Based on the chosen fault model a mutant binary is generated, representing
the simulation of the chosen fault injection attack.
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Fig. 2: Software Implementation Diagram

related to the hardware model, since it reflects faulting some piece of the hardware that operates on
words rather than bits or bytes (such as the ARM Cortex-M3 bus used here) [14].

Nop The ARM NOP fault model (Nop) sets the targeted operation to a non-operation (NOP) instruction
for the chosen architecture (in this case 0x00BF for ARM-v7). The concept behind this model is that
it simulates skipping an instruction, a common effect of many runtime faults [34].

FFB The FF one byte fault model (FFB) sets the value of byte to 0xFF. This is opposite in concept to
the Z1b fault model and attack, this may be an effect of EMP. The choice of using this here is to
consider when an EMP may fault the chip with the opposite electromagnetic effect (i.e. set all bits
to 1’s instead of 0’s).

Flip The flip fault model (Flip) simulates the flipping of a single bit, either from 0 to 1 or from 1 to 0.
This fault model is highly representative of many kinds of faults that can be induced, ranging from
those due to atmospheric radiation, to software effects such as the rowhammer attack [23].

The software simulation experiments were performed to simulate all listed fault models on all possible
addresses within the target function of the case study. The outcomes were then classified as: correct,
vulnerable, incorrect, or crashed as described in Section 3.

Observe that the Z4b and Nop affect multiple bytes (4 and 2 respectively). In practice the fault
injection experiments here applied these fault models to all possible addresses in the binary. In practice
this means that Z4b fault model faulted 4 bytes starting from the address targeted, i.e. faulting the
bytes at the address X and then also X + 1, X + 2, & X + 3. Similarly the Nop fault affects the byte
following the targeted address.

The simulations were conducted on a virtual machine configured with one CPU, 11.7GB of RAM, and
179.4GB of disk space running Linux Ubuntu 16.04 LTS. The virtual machine was hosted on a Macbook
Pro with 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and running macOS High Sierra 10.13.3.

4.2 Hardware

The hardware process also follows the standard approach to Hardware-Based Fault Injection as presented
in Section 2.4.

The chosen target hardware is a STM32 Value-Line Discovery (STM32VLDISCOVERY) STM32F100RB
board with ARM Cortex-M3 core Micro Controller (µC) running at 24MHz.

The chosen fault injection induction method is to induce a fault via EMP. The EMP signal is initiated
by a KEYSIGHT 33509B Waveform Generator that sends a signal through a KEYSIGHT 81160A Pulse
Function Arbitrary Noise Generator (a high precision pulse generator that helps in the manipulation of
the signal). The signal is then amplified using a MILMEGA 80RF1000-175 RF AMPLIFIER. Finally, it
is sent to a Probe RF B 0.3-3 that is configured above the target hardware.
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Fig. 3: Hardware-Based Fault Injection Probe Location

Initial experiments were then conducted to find a configuration that allowed consistent program
execution disruption. In practice this was achieved by placing the probe above the chip as depicted in
Figure 3.

Further experiments were conducted to calculate the latency of the various components. This allowed
calculation of the timing between the injection of the fault and observing the effect. Further, this allowed
calibration of the minimum and maximum possible delay between fault injection and observations of
effects. The delay between the injection of the fault and the observed effect was 0.08µs to 0.12µs.

For the case study, the program was loaded onto the target hardware. The triggers were then used to
calibrate the fault injection hardware tools and to verify the latency calculations were correct. Further,
the minimum and maximum clock cycle3 count was calculated for the case study functions (using the
Cortex-M3 technical reference manual [14]). These were then used to find the earliest start point and
latest end point of execution of the functions being considered (including a margin of error to ensure
complete coverage).

Once the bounds of the execution had been calculated, hardware faults were injected at 4ns intervals
starting from the earliest possible start point to the latest possible end point. The results as described
in Section 3 for each execution and fault injection are then recorded. This is then repeated 200 times to
gain significant information on the effects at each timing points. (This last step is done to account for
minor inconsistencies in effects, and due to the general imprecision of EMP faults, as well as due to fault
injection vulnerabilities not being achievable with high reliability in practice.)

4.3 Bridging Software And Hardware

This section shows how to bridge the software based and hardware based approaches (Sections 4.1 & 4.2
above) and then compare the results.

3 Each clock cycle is approximately 40ns.
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This comparison was done for each fault model from the software experiments with the results from
the hardware experiments. The number of clock cycles were calculated (up to the fault injection point,
since after this the results may be perpetuated), and then used to cross-reference with the address of
the fault from the software experiments. Then, the alignment of the clock cycles were varied to see if
there was a strong transition point where the hardware clearly changed from one instruction to another
(since the clock cycles are not perfectly aligned, and the hardware experiments injected many faults at
different times within each clock cycle’s length).

The above comparison was also performed for combinations of fault models, and for subsets of fault
models. Each combination of fault models was compared to see if multiple fault models combined matched
well with the hardware experiments. Similarly, subsets of the results within fault models were used
for some fault models. The Z1b and Nop in particular were tested with subsets of their results that
considered only being applied to: every second byte (i.e. at the start or end of many instructions), to
every fourth byte (i.e. at the start or end of many words), and to the first or second byte of every
instruction (i.e. which can be two or four bytes since the instruction lengths vary).

5 Results

This section presents the results from the experiments. This includes: the results of the software sim-
ulation experiments alone; the results of the hardware experiments alone; and relations between both
experiments.

5.1 Software

A detailed table of all the results can be seen in Figure 4. The byte address is the byte targeted by the
fault injection, the value is the byte value, the assembly instruction is the instruction containing the
targeted byte and the columns remaining columns refer to the fault model. A vulnerability is denoted
by Vul and an incorrect result by Inc for all fault models, except Flip where the red numbers indicate
vulnerability at the bit within the byte and blue indicates incorrect results. A more compact overview

is also presented in Figure 5. (The red coloured bytes indicate the presence of vulnerabilities and

the blue coloured bytes indicate the presence of incorrect results, absence of any colour indicates
correct behaviour.) Observe that all fault models indicated some vulnerabilities between bytes 800aad

and 8000ab8 . Additionally the Flip fault model indicated a vulnerability earlier at byte 8000aa8.
Incorrect results were detected from byte 800aab9 to byte 8000abd by all fault models except FFB.
All fault models indicated vulnerabilities between bytes 8000ab0 & 8000ab1, and 8000ab4 & 8000ab5.
However, there was no consensus on where the incorrect results of execution would appear amongst all
the fault models (or even only the fault models that had incorrect results).

The instruction ldr r3, [r3, 0] at byte address 8000ab0 in Listing 1, loads the value of the variable
pin_correct into the register r3. The simulation of a fault using the various fault models produces the
following effects. Using all the fault models (except for Nop), one can change the LDR instruction to MOV,
CMP or STR instruction. Using all the fault models, it is possible to change where the value of pin_correct
from register r3 to a different register (e.g. r0, r7 or r2). Using the Flip fault model, it is possible to
modify the memory address from where the value will be loaded, yielding an unknown (or effectively
random) value for pin_correct. Using the Nop fault model, it is possible to replace the instruction with
a NOP instruction and so the value of pin_correct is implicitly set to whatever was in r3 prior to this
point in execution. All the above effects will not set the register r3 to the correct value of the variable
pin_correct and so affect the comparison done later on line 11 in Listing 1.

The instruction cmp r3, 1 at byte address 8000ab4 in Listing 1 compares the value of the register r3
with 1, and updates the corresponding flags of the Application Program Status Register (APSR) based
on the result of the comparison. The simulation of a fault using the fault models produce the following
effects. Using the Z1b, Z4b and Flip fault model, it is possible to change the CMP instruction to MOV,
ADD or LDR instruction. Using all the fault models, it is possible to change the value of the number 1

the instruction compares with the register r3. Using the Nop fault model, it is possible to replace the
instruction with a NOP instruction. The above fault model’s modification will effect the comparison of
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byte address value assembly instruction Z1b Z4b Nop FFB Flip
8000aa0 b5 push {r4, lr}

8000aa1 10

8000aa2 48 ldr r0, [pc, #40]

8000aa3 0a

8000aa4 21 movs r1, #128

8000aa5 80

8000aa6 22 movs r2, #1

8000aa1 01

8000aa8 f0 bl 8001ce4 0,3
8000aa9 01

8000aaa f9

8000aab 1c

8000aac 4b ldr r3, [pc, #32]

8000aad 08 Vul Vul
8000aae 48 ldr r0, [pc, #28] Vul Vul
8000aaf 07 Vul Vul
8000ab0 68 ldr r3, [r3, #0] Vul Vul Vul Vul 1,2,4,5,6,7
8000ab1 1b Vul Vul Vul Vul 0,1,5,6,7
8000ab2 21 movs r1, #128 Vul 6
8000ab3 80 Vul
8000ab4 2b cmp r3, #1 Vul Vul Vul Vul 0,1,2,3,4,5,6,7
8000ab5 01 Vul Vul Vul Vul 0,1,2,3,4,5,6,7
8000ab6 bf ite eq Vul Vul Vul 0,2,3,5,7
8000ab7 0c Vul Vul Vul 1,2,3,4,5
8000ab8 f0 moveq.w r4, #0xFFFFFFFF Vul Vul Vul 0,1,2,3,5
8000ab9 4f Inc Inc 1
8000aba 34 Inc 1
8000abb ff Inc 1,2,3,4,5,6,7
8000abc f0 movne.w r4, #0x55555555 Inc Inc 0,1,2,3
8000abd 4f Inc 1
8000abe 34

8000abf 55

8000ac0 22 movs r2, #0

8000ac1 00

8000ac2 f0 bl 8001ce4

8000ac3 01

8000ac4 f9

8000ac5 0f

8000ac6 46 mov r0, r4

8000ac7 20

8000ac8 bd pop {r4, pc}

8000ac9 10

8000aca bf nop

8000aca 00

Fig. 4: Detailed Software-Based Fault Injection Control Flow Hijacking Results

the register r3 value with 1, which will impact the choice of the correct branching in the following three
instructions.

The instruction ite eq on byte address 8000ab6 in Listing 1 defines the APSR flags to set to be used
by the following two instructions. The simulation of a fault using the fault models produce the following
effects. Using all the fault models (except FFB), it is possible to change the IT instruction to MOV, ADD
or LDR instruction. Using the Z1b, Z4b and Nop fault models, it is possible to replace the instruction
with a NOP instruction. Using the FFB and Flip fault model, it is possible to change branching order the
processor follows. All of these can yield changes to the APSR flags that will in turn alter the effects of
the following two instructions. In general, the alterations allow the branching behaviour to be inverted,
and thus yield an effective hijack of the control flow.

The instruction moveq.w r4, #0xFFFFFFFF on byte address 8000ab8 in Listing 1 sets the return
register r4 to the value 0xFFFFFFFF. The simulation of a fault using all fault models (except FFB)
produce the following effects. Using the Z1b, Z4b and Flip fault model, it is possible to change the
MOV instruction to ADD, STR or LDR instruction. Using all except the Flip fault model, it is possible
to replace the instruction with a NOP instruction. The above fault models modification will not set the
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Fig. 5: Overview of Software-Based Fault Injection Control Flow Hijacking Results

Control Flow Hijacking
Fault Model Mutants Number Vulnerabilities Detected Runtime

Z1b 44 7 2m14s
Z4b 44 9 1m52s
Nop 44 7 2m39s
FFB 44 3 1m42s
Flip 352 40 16m51s

Table 1: Experiment Runtime for Software-Based Fault Injection Control Flow Hijacking

return register to the correct value. So the returned value will be whatever was already in the register
r4 generally yielding an incorrect result.

Runtime information The experiment runtime is similar for each fault model except for the Flip fault
model. For the Z1b, Z4b, Nop and FFB fault models the runtime ranged between 1 minutes and 42
seconds and 2 minutes and 39 seconds, to verify all the corresponding generated mutants (see Table 1).
The Flip fault model experiment runtime was significantly longer with 16 minutes and 51 seconds
due to the greater number of mutants to verify. Overall, the verification of a single mutant requires
approximately 3 seconds. Note that the runtime information corresponds to the verification step using
the Plasma tool, the fault injection simulation step time is insignificant.

5.2 Hardware

This section overviews the results of the hardware experiments. Using the calculations described in
Section 4.2 the earliest possible start time for the test_persistence was calculated to be 0.8µs, and
the latest possible end time to be 2.084µs. The hardware experiments were thus conducted within this
range.

An overview of the results of the hardware experiments for the control flow hijacking case study can
be seen in Figure 6. Observe that vulnerabilities were grouped together in two groups. The larger group
between 1.192µs and 1.388µs, and the smaller group from 1.448µs to 1.492µs. The incorrect results are
in three groups: one from 1.308µs to 1.348µs, another from 1.424µs to 1.472µs, and a third from 1.692µs
to 1.744µs. There is also a single spike of incorrect results at 1.948µs.

Combining the known timing information with the clock cycle count for each instruction (from the
Cortex-M3 technical reference manual [14]), it is possible to approximate which instructions are being
loaded and executed at each fault injection timing. Note that for this particular ARM architecture the
processor fetches 32 bits at a time, which means that for a 16 bit instruction the processor will fetch
two instructions at a time. From all the above information the hardware fault injection vulnerabilities
in Fig. 6 can be mapped to the addresses in Listing 1.
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Fig. 6: Hardware-Based Fault Injection Control Flow Hijacking Results

The vulnerability detected between 1.192µs and 1.232µs corresponds to the ldr r3, [pc, #32]

instruction at byte address 8000aac in Listing 1. The vulnerability detected between 1.236µs and
1.312µs corresponds to the instructions ldr r0, [pc, #28] and ldr r3, [r3, #0] at byte ad-
dress 8000aae and 8000ab0. The incorrect result in 1.424µs to 1.472µs corresponds to the instructions
movs r1, #128 and cmp r3, #1 at byte address 8000ab2 and 8000ab4. The vulnerability detected
between 1.448µs and 1.492µs corresponds to the instructions ite eq and moveq.w r4, #0xFFFFFFFF

at byte address 8000ab4 to 8000ab8. The incorrect result in 1.672µs to 1.948µs corresponds to the
instructions mov r0, r4 and pop {r4, pc} at byte address 8000ac6 and 8000ac8.

Runtime information For the hardware experiments, the runtime is related to: how long the program
takes to execute, how long it takes to reset the devices, and the number of times to perform the fault
injection. For the results here 59620 experiments were performed (after calibration). The runtime for
the experiments (again, not including calibration) was approximately 5 hours. Due to re-calibration,
occasional intervention, and other factors the time taken is not exact, however the average runtime is
less than 0.3 seconds per experiment. Although each experiment is very fast, many need to be performed
to gain significant results, here yielding ∼ 60 seconds per fault timing, significantly slower than the
software-based process.

5.3 Comparison

This section compares the results of the software based and hardware based fault injection experiments
presented in the previous two sections (5.1 & 5.2). Note that for brevity detailed comparison is omitted
here although an attempt to align the results of the previous two sections is shown in Fig. 8. The rest of
this section discusses the more interesting observations.
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Fig. 7: Software-Based Fault Injection Control Flow Hijacking Results Only First Byte Instruction Results

byte address value assembly instruction Z1b Z4b Nop FFB Flip Hardware
8000aa0 b5 push {r4, lr}

8000aa1 10

8000aa2 48 ldr r0, [pc, #40]

8000aa3 0a

8000aa4 21 movs r1, #128

8000aa5 80

8000aa6 22 movs r2, #1

8000aa1 01

8000aa8 f0 bl 8001ce4 0,3
8000aa9 01

8000aaa f9

8000aab 1c

8000aac 4b ldr r3, [pc, #32] Vul
8000aad 08 Vul Vul Vul
8000aae 48 ldr r0, [pc, #28] Vul Vul Vul >Inc
8000aaf 07 Vul Vul Vul
8000ab0 68 ldr r3, [r3, #0] Vul Vul Vul Vul 1,2,4,5,6,7 Vul
8000ab1 1b Vul Vul Vul Vul 0,1,5,6,7 Vul
8000ab2 21 movs r1, #128 Vul 6 Vul
8000ab3 80 Vul Vul
8000ab4 2b cmp r3, #1 Vul Vul Vul Vul 0,1,2,3,4,5,6,7 Inc > Vul
8000ab5 01 Vul Vul Vul Vul 0,1,2,3,4,5,6,7 Inc > Vul
8000ab6 bf ite eq Vul Vul Vul 0,2,3,5,7 Inc > Vul
8000ab7 0c Vul Vul Vul 1,2,3,4,5 Inc > Vul
8000ab8 f0 moveq.w r4, #0xFFFFFFFF Vul Vul Vul 0,1,2,3,5 Vul > Inc
8000ab9 4f Inc Inc 1 Vul > Inc
8000aba 34 Inc 1 Vul > Inc
8000abb ff Inc 1,2,3,4,5,6,7 Vul > Inc
8000abc f0 movne.w r4, #0x55555555 Inc Inc 0,1,2,3
8000abd 4f Inc 1
8000abe 34

8000abf 55

8000ac0 22 movs r2, #0

8000ac1 00

8000ac2 f0 bl 8001ce4

8000ac3 01

8000ac4 f9

8000ac5 0f

8000ac6 46 mov r0, r4 Inc
8000ac7 20 Inc
8000ac8 bd pop {r4, pc} Inc
8000ac9 10 Inc
8000aca bf nop

8000aca 00

Fig. 8: Detailed Combined Control Flow Hijacking Results

Overall observe that both approaches detected vulnerabilities in the instructions (starting) at byte
addresses 8000aad, 8000aae, 8000ab0, 8000ab4, 8000ab6, and 8000ab8 in Listing 1. However, no fault
was detected by the hardware prior to 8000aad (implying the Flip fault injection vulnerabilities here
could not be observed in the hardware-based fault injection experiments).
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Note that some “incorrect” results do not appear to co-relate since they are over-shadowed by vul-
nerable results. As presented in Section 3, the incorrect results were only shown when a vulnerability is
not detected. For this reason co-relations on incorrect results are hidden when there is a vulnerability.

However, the FFB fault model did not indicate any incorrect results anywhere (implying that the
FFB fault model may not be accurate representations of EMP effects).

Observe that since although all the fault models detected vulnerabilities in some of the same areas
as the hardware experimental results, the above implications suggest that the FFB and Flip models
do not appear to describe the effects of EMP accurately. This leaves the setting of byte(s) to zero (Z1b
and Z4b) and skipping instructions (Nop) as the best fit between the software based results and the
hardware based results.

The Z1b fault model matches quite well with having two groups of vulnerabilities, as well as two
groups of incorrect results. This corresponds closely to the hardware results that also have two distinct
groups of vulnerabilities, and of incorrect results (a third less clear group of incorrect results also exists).

The Z4b fault model matches well with the vulnerable results, but also has vulnerable results that are
not confirmed by the hardware. That said, the faulting of a whole word tends to produce vulnerabilities
that occur due to the faulting of a particular byte, that is the Z4b fault model in many cases induces
the same fault as the Z1b by setting a following byte at a later address to zero. Thus, the lack of gaps
in the vulnerabilities and the lack of a second group of incorrect results implies that while there is some
co-relation, the Z4b fault model does not match the EMP effects well.

The Nop fault model is similar to the Z1b fault model in having groups of vulnerabilities that match
very well with the hardware experiments. The lack of two groups of incorrect results however implies
that the Nop fault model does not accurately represent the EMP effect on the hardware. Considering
combinations and subsets of the fault models is straightforward from the above results and for the Z1b
and Nop fault models applied only to the first byte of each instruction those displayed in Fig. 7. Observe
the two fault models now matches but that no single fault model alone exactly matches the hardware
results. Considering the Z1b and Nop instructions combined (or combined, but taking only the Nop
targeting the first byte of each instruction) provides the closest match to the hardware results.

6 Additional Case Study: Backdoor

This section presents an additional case study with a weakness designed to be exploitable by fault
injection and not detectable by code analysis. Section 6.1 introduces the code and weakness. Section 6.2
presents the software experimental results for the backdoor case study. Section 6.3 highlights the hardware
experimental results. Section 6.4 overviews the comparison of the software and hardware results. Note
that the experimental methodology here is the same as in Section 4.

The choice to consider this additional case study was to both consider more complications in the
software-based process, and to attempt a different kind of hardware disruption. The further compli-
cations in the software-based process come from needing to handle multiple functions and movement
between them. The hardware disruption is also different since here the expected fault model to achieve
a vulnerability is an instruction skip (not altering values as in the control-flow hijacking case study).

6.1 Backdoor attack

This section recalls the Fault Activated Backdoor program from [48]. The core of the weakness in the
code is a backdoor function (shown in Listing 4) that is hidden in the program but cannot be reached
by any execution path. The normal behaviour of the program includes encryption with AES [51] yielding
a ciphertext. The backdoor function (when executed) replaces the ciphertext with the AES key, thus
allowing an attacker to observe the “ciphertext” and in practice learn the key. However, under normal
conditions the backdoor function can never be executed, and so will should not be detected by static or
dynamic code analysis.

The weakness here is built into the code in the blink_wait function shown in Listing 4. The value of
wait_for is defined to be 3758874636, which has two special properties. Firstly, this value is too large
to be loaded within a single ARMv7-M Thumb-2 instruction and so the value is stored as a separate
word in the assembly code. Secondly, this value if interpreted as an instruction corresponds to a jump
to a specific location (in practice the location of the backdoor function).
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void blink_wait (){

unsigned int wait_for =3758874636;

unsigned int counter;

for(counter =0; counter <wait_for;counter +=8000000);

}

void backdoor(void) {

int i;

for(i = 0; i < DATA_SIZE; i++){

ciphertext[i] = key[i];

}

HAL_GPIO_WritePin(LED3_GPIO_PORT , LED3_PIN , GPIO_PIN_SET);

}

Listing 4: Backdoor Case Study C code

The corresponding assembly code for the blink_wait function is shown in Listing 5. Observe that
the value of wait_for is stored at the end of the function at address 80005cc immediately after the POP

instruction at address 80005ca. Thus, an attacker that can cause this POP instruction to be skipped or
interpreted as something else (e.g. a MOV, ADD or LDR as observed in Section 5.1) would then execute this
value as a jump to the backdoor function.

08000598 <blink_wait >:

8000598: b580 push {r7, lr}

800059a: b082 sub sp , #8

800059c: af00 add r7 , sp , #0

800059e: 4b0b ldr r3 , [pc , #44]

80005 a0: 603b st r3, [r7, #0]

80005 a2: 2300 movs r3, #0

80005 a4: 607b str r3, [r7, #4]

80005 a6: e005 b.n 80005 b4

80005 a8: 687b ldr r3, [r7, #4]

80005 aa: f503 03f4 add.w r3, r3, #7995392

80005 ae: f503 5390 add.w r3, r3, #4608

80005 b2: 607b str r3, [r7, #4]

80005 b4: 687a ldr r2, [r7, #4]

80005 b6: 683b ldr r3, [r7, #0]

80005 b8: 429a cmp r2, r3

80005 ba: d3f5 bcc.n 80005 a8

80005 bc: f7ff ffe2 bl 8000584

80005 c0: 2003 movs r0, #3

80005 c2: f000 f8af bl 8000724

80005 c6: 3708 adds r7, #8

80005 c8: 46bd mov sp, r7

80005 ca: bd80 pop {r7, pc}

80005 cc: e00be00c

Listing 5: Backdoor Case Study Assembly

For the software experiments the correct behaviour is to never enter the backdoor function and
the vulnerable behaviour is any entry into the backdoor function. (Note that this precludes incorrect
results appearing since the ciphertext is not modified in the blink_wait function.) For the hardware
experiments the correct behaviour is to output the ciphertext as usual, vulnerable behaviour is to output
the key in the place of the ciphertext, and incorrect behaviour is to output some other value. (Note that
incorrect behaviour was never observed in the experiments.)

The choice to operate on the behaviour for the software on entering the backdoor function rather
than output was to detect any possible exploit that allows access to the hidden code, since the code inside
can be padded or modified to handle different access paths. That no incorrect results can be detected is
not interesting for the software experiments since these mostly indicate a fault that would store a value
at an incorrect address.

17



6.2 Software Experiment Results

An overview of the backdoor case study software experiment results can be seen in Figure 9. Observe
that all the fault models indicated possible vulnerabilities around bytes 80005ca. The Flip fault model
indicated in addition vulnerabilities at the byte 80005a7.

The vulnerabilities detected at byte 80005ca by all but one fault model correspond to the POP

instruction at 80005ca in Listing 5.
The instruction bd80 pop {r7, pc} at byte address 80005ca in Listing 5, stores the top value of

the stack into registers r7 and pc. This instruction indicates the end of the blink_wait function. The
simulation of the fault injection using the fault models produces the following effects. Using all the Z1b,
Z4b, and Flip fault models, it is possible to change the POP instruction to LSL, MOV, ADD, ... instructions.
Using the Nop fault model, it is possible to replace the instruction with a NOP instruction. Using the
Flip fault model, it is possible to modify the registers that will be modified after the pop. Here instead
of loading values of the stack into registers r7 and pc, it will only load the value into register r7. All the
above modifications will skip the execution of the POP instruction, and so execute the wait_for value
corresponding to a branching instruction to the backdoor function.

An interesting vulnerability which was detected at byte 80005a7 by the Flip fault model, corresponds
to the instruction b.n 80005b4 at 80005a6 in Listing 5. This instruction is a branching instruction, which
will jump to the instruction at 80005e8 in Listing 5. The effect of (simulated) fault injection using the
Flip fault model was to change the target address of the branch directly to the backdoor function.
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Fig. 9: Software-Based Fault Injection Backdoor Results

6.3 Hardware Experiment Results

An overview of the backdoor case study hardware experiment results can be seen in Figure 10. As before
(see Section 5.2) various measurements and experiments were performed to ensure the correct timing for
the fault injection, and 200 experiments were run to yield the results. Observe that the only vulnerabilities
were detected between 1.224µs and 1.260µs.

By calculating the execution to for the instructions, clock cycles, hardware latency, etc. the fault
injection at time 1.224µs to 1.260µs corresponds to the POP instruction at 80005ca in Listing 5.

6.4 Comparison

This section compares the results of the software based and hardware based fault injection experiments
from the previous two sections (6.2 & 6.3). Both approaches detected vulnerabilities in the instruction
at byte addresses 80005ca in Listing 5.

Due to the very limited hardware results (only a single spike of vulnerabilities and no incorrect
results), the comparison is both trivial and less interesting. All the fault models were able to detect a
vulnerability in the instruction at byte addresses 80005ca in Listing 5.
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Fig. 10: Hardware-Based Fault Injection Backdoor Results

The Z1b and FFB fault models detected a fault injection vulnerability at the exact same address as
the hardware approach and nowhere else. The Nop fault model also found a fault injection vulnerability
at 80005c9 since the Nop fault model changes the value of two bytes and so will impact the instruction at
byte address 80005ca. The Z4b fault model found faults at four byte addresses 80005c7 to 80005ca, but
in practice this was merely due to the size of the fault model, since all Z4b faults starting from 80005c7

set the byte 80005ca to zero. The Flip fault model was the only one to have a significant difference also
finding a fault injection vulnerability in the instruction at byte address 80005a7 in Listing 5.

Although this case study was small and had limited results some new information was still gained.
Further evidence for the lack of co-relation between the Flip fault model and EMP effects aligns with the
results of Section 5.3. The additional case study also demonstrated that both software-based approach
can operate over function boundaries, something that was not tested in the control flow hijacking case
study. Finally, the Nop fault model can co-relate with instruction skip behaviour in practice.

7 Discussion of Results

This section discusses the experimental results and what we can learn from them.

By comparing the software and hardware experimental results it is possible to determine which
software fault models best correspond to the EMP effects observed. Here the Z1b, Z4b and Nop fault
models had the closest correlation with the observations of the EMP faults induced. To some extent this
agrees with previous work [33] that observed that the most accurate fault model is an instruction skip (or
here Nop). However, there is also strong evidence from this work that other fault models, in particular
setting all of a byte or word to zeros (i.e. Z1b or Z4b), also correlate strongly with the effects of EMP.

Observe also that the software vulnerabilities generated using the Flip and FFB fault models did
not correspond well to the EMP fault injection results. Although the Flip and FFB fault models de-
tected some similar vulnerabilities to the other fault models, both fault models also detected a lot of
vulnerabilities which do not correspond to the hardware results. In particular the FFB fault model never
produced an incorrect result despite many being observed, and the Flip fault model had many vulnerable
or incorrect results that did not correlate with the EMP results.

Using the software results to learn about the hardware results is also possible. The hardware ex-
periment results do not indicate how the fault was achieved or what the actual fault model/effect was,
only the outcome. Knowing the specific effect of the fault injection on the hardware is a nontrivial task,
specially when using imprecise hardware techniques such as EMP. Hardware experiment results alone
are able to show that the injection of the fault create the desired vulnerability, but do not give detailed
information of what, where, or how the injected fault created the vulnerability. The results here indicate
that the strongest correlation is with instructions simply being faulted to have alternate or no effect
(i.e. the Z1b, Z4b, and Nop fault models). Further, since none of these fault models correlates exactly,
this implies (along with the inconsistent nature of achieving a vulnerable or incorrect outcome) that
EMP fault effects may vary and not have a single fault model.

From the experiment results one can observe that the hardware and software results do co-relate but
they do not exactly match. There are clearly locations in the assembly code where many fault models
indicate a vulnerability (or incorrect result) and these correlate very strongly with the locations where
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the hardware experiments were able to produce vulnerabilities (or incorrect results, respectively). This
clearly indicates that there is a co-relation between the software based and hardware based approaches.

Considering the results further, one key insight is that the software based experiments did not have any
false negatives. That is, every place where the hardware was able to produce a genuine vulnerability (or
incorrect result), the software based approaches indicated a vulnerability (or incorrect result, respectively)
for at least one fault model. (Indeed, this holds even when only considering the Z1b, Z4b, and Nop fault
models.) Thus, absence of any vulnerabilities or incorrect results according to software based experiments
implies that no such vulnerabilities or incorrect results should exist in practice.

The software based approach does produce false positive results. This outcome is not surprising since
many fault models were tested here, including ones unlikely to be possible with the hardware based
EMP fault injection. However, even when considering only the Z1b, Z4b, and Nop it is not clear that
every vulnerability or incorrect result can be reproduced by the EMP experiments. The conclusion here
is that software-based simulations can find vulnerabilities (or other behaviours) that may be infeasible
to reproduce in the hardware, or at least extremely difficult to achieve.

From all the above one can conclude that: on one hand software alone is not sufficient to claim that
vulnerability exist and is real, on the other hand hardware alone is not feasible to explore all the possible
configurations and locations in the target program. That is, the software can be quickly used to find many
potential vulnerabilities (or other results), but that these cannot be guaranteed to exist in practice. The
hardware can guarantee a vulnerability (or other outcome) when one is produced, but finding these is
extremely expensive in time and equipment, and this may be infeasible on larger programs.

8 Combined Approach

The natural extension of these hardware and software results is to consider how they could be combined.
This section discusses how this can be achieved to rapidly find genuine vulnerabilities that would be
infeasible with either approach alone. Observe that this approach does not rely upon any prior knowledge
of weaknesses in the code. If only the software-based approach is used then although the results are quick
to compute and require only a moderate amount of computational resources, there is no guarantee that
any of the results hold. Indeed, attempting to address too many false positives would be intensive on
developer resources and a waste of effort if the vulnerabilities are not genuine.

If only the hardware-based approach is used this is extremely expensive if not infeasible to test larger
programs. This requires many experiments to test each possible timing/location of fault injection on the
program over the program’s entire execution life-cycle.

The proposed combined approach is to use the software-based simulations to quickly find all the
potential vulnerabilities in a given program. This can be easily applied and automated [21,20] to yield
information on all the locations in the code that may be vulnerable. The hardware-based approach
can then be applied to test the most vulnerable locations to rapidly confirm (or refute up to some
margin of confidence) the existence of the vulnerability. In practice this requires some small amount of
computational resources for the simulations, and then only limited time and some calculation prior to
testing with the hardware to accurately target the right locations.

The rest of this section explores how the above combined approach could be applied to the case
studies here, and demonstrates the efficacy of the combined approach.

For the control flow hijacking case study, ∼ 59620 hardware experiments were conducted to generate
the results shown in Fig. 6. (This number accounts only for experiments after calibration, latency tests,
etc.) Overall, these experiments indicated a vulnerability with probability less than 0.00469, and only
in certain locations. Thus, to find one requires some significant investment in time to scan the entire
function and test each location frequently enough to be likely to find a genuine vulnerability. However, if
the software experiments are used to guide the hardware experiments, it is possible to target exactly the
timing 1.344µs, which could then demonstrate a vulnerability with 0.999 probability requiring only 10
passes over 21 timings (total 210 experiments). Thus, this approach could bring the number of hardware
experiments required down orders of magnitude and still confidently confirm or refute a fault injection
vulnerability. For the backdoor case study the possibility to find the vulnerability using hardware alone is
significantly lower since the location is unique and has a low probability of success. Overall the combined
probability of both targeting the right timing and inducing a fault in an experiment is 0.0000957. However,
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if guided by the software results that all indicated a specific location to test (i.e. 1.248µs) then the
probability to detect a fault is 0.999.

Observe that in both the case studies vulnerabilities were already expected and the locations could
be guessed or calculated in advance. However, using the combined approach described here does not
require this prior knowledge since the software simulations can be performed to find the likely locations
to confirm or refute with hardware experiments.

This implies that there is no need to know in advance whether a fault injection vulnerability exists.
The software can be used to locate any potential fault injection vulnerabilities, and the hardware used to
confirm or refute their feasibility of exploitation. This combined approach is more accurate than software
simulations alone (since the false positives are refuted), and much cheaper than the hardware alone since
much less experiments are required to demonstrate or refute vulnerabilities.

9 Related Work

This section recalls recent works related to the detection of fault injection vulnerabilities. These are
divided according to their general approach as being either software or hardware based.

9.1 Software Based Approach

This section recalls recent related works that use software based approaches for detection of fault injection
vulnerabilities.

One recent work which uses formal methods to detect vulnerabilities is [27]. Here the authors present a
symbolic LLVM-based Software-implemented Fault Injection (SWiFI) evaluation framework for resilience
evaluation. In SWiFI the fault injection simulation and the vulnerability detection are done on the
intermediate language LLVM-IR, which limits accurate simulation of fault models closely related to low
level hardware effects.

The Symbolic Program Level Fault Injection and Error Detection Framework (SymPLFIED) [36] is a
program-level framework to identify potential vulnerabilities in software. The vulnerabilities are detected
by combining symbolic execution and model checking techniques. The SymPLFIED framework is limited
as SymPLFIED only supports the MIPS architecture [40].

Lazart [39] is a tool that can simulate a variety of fault injection attacks and detect vulnerabilities
using formal methods. The Lazart process begins with the source code which is compiled to LLVM-IR.
The simulated fault is created by modifying the control flow of the LLVM-IR. Symbolic execution is then
used to detect differences in the control flow, and thus detect vulnerabilities. One of the main limitations
of Lazart is that it is unable to reason about or detect fault injection attacks that operate on binaries
rather than the LLVM-IR.

In [44] the authors propose combining the Lazart process with the Embedded Fault Simulator (EFS)
[8]. This extends from the capabilities of Lazart alone by adding lower level fault injection analysis that
is also embedded in the chip with the program. The simulation of the fault is performed in the hardware,
so the semantics of the executed program correspond to the real execution of the program. However,
EFS is limited to only considering instruction skip faults (equivalent to NOPs of Section 4.1).

An entirely low level approach is taken by Moro et al. [34] who use model checking to formally prove
the correctness of their proposed software countermeasures schemes against fault injection attacks. The
focus is on a very specific and limited model of fault injection that causes instruction skips and ignores
other kinds of attacks. Further, the model checking is over only limited fragments of the assembly code.

A less formal approach is taken in [1] where experiments are used for testing the TTP/C protocol
in the presence of faults. Rather than attempting to find fault injection attacks, they injected faults to
test robustness of the protocol. They combined both hardware testing and software simulation testing,
comparing the results as validation of their approach.

A fault model inference focused approach is taken by Dureuil et al. [17]. They fix a hardware model
and then test various fault injection attacks based upon this hardware model. Fault detection is limited
to EEPROM faults on the ARMv7-M architecture. The fault model is then inferred from the parameters
of the attack and the embedded program. The faults are simulated upon the assembly code and the
results checked with predefined oracles on the embedded program.
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9.2 Hardware Based Approach

This section recalls recent related works that use hardware based approaches for detection of fault
injection vulnerabilities.

In [46] the authors apply electromagnetic and optical attacks to the RSA algorithm, a well known
algorithm used in various cryptographic systems. The authors presented a successful attack on the RSA
algorithm implementation over an 8-bit architecture micro-controller. Experiments showed that the faults
can affect program flow as well as the SRAM content and the flash memory.

Skorobogatov [49] showed using a laser, one can effect certain memory cells SRAM and cause them
to switch. The experiments were conducted on an PIC16F84 micro-controller. The advantage of using a
laser is that they can accurately target a single bit to modify.

In [10] the authors present a practical laser fault attack which target creating fault in the Deep Neural
Networks (DNN) on a low-cost micro-controller.

Another type of hardware attack was presented in [7] where the authors showed that they can per-
form successful attacks by alternating the power supply. The experiments were performed on a software
implementation of the AES and RSA crypto algorithm running on a ARM9 CPU. The result showed
that it was possible to retrieve the full 256-bit key of the AES crypto algorithm, and reproduce with
cheaper equipment a known attack against RSA.

In [37,57] the authors present a survey of the different hardware based approach techniques used to
inject a fault. The authors also refer to relevant works where the various fault injection techniques are
used. For many other recent and older works on hardware fault injection and their approaches we refer
the reader to these works.

9.3 Software and Hardware Based Approaches

Although very few works in the literature considered both software and hardware fault injection together,
this section briefly discusses these works.

In [15] the authors attempt to detect faults at runtime that have been inserted at runtime using either
software or hardware-based techniques. They concluded that their software-based approach could not
emulate the hardware-based approach of single bit-level faults, although they considered this possible
in future. Compared to the work presented in this paper, the experiments conducted were limited, the
objective was to test the system using different approaches and no combination proposition was given.

In [4] the authors consider four different approaches to fault injection (one software and three hard-
ware) and examine what kinds of faults were created, and how well they were detected by runtime
systems. The only software-based fault model considered was the Flip model used here, and this did
not co-relate with the other hardware-based fault injection methods; EMP, heavy-ion radiation, and pin-
forcing. The authors concluded that the four fault injection techniques are complementary. No attempt
was done to propose a combined approach using the software and the hardware one.

10 Conclusion

Both software based and hardware based approaches have been used to detect fault injection vulnerabil-
ities. However, the two approaches have not been directly compared before in the manner presented in
this paper. This work presents both software based formal methods analysis and hardware based exper-
iments performed on the same case studies. The results of these experiments are compared to explore
what can be learned by bridging between the two approaches.

The results here show that software based approaches do find genuine fault injection vulnerabilities.
Although software based approaches may suffer from some false positives, they (when done with multiple
fault models) do not have any false negative results. (Although the benchmarks here are of course limited
in scope, this provides insight into broader challenges in this area.) This allows for software based
approaches to provide useful information about potential fault injection vulnerabilities. The results here
also showed that (contrary to prior work [32]) EMP effects do not have a single fault model. The results
here indicated that multiple fault models together best represent the effects of EMP fault injection attack.
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In practice, these fault models correspond to an EMP effect either wiping a byte or word (by setting all
the bits to zero) or skipping an instruction.

More generally the results show that there is a co-relation between both approaches. This gives
support to research that uses software based approaches to simulate or approximate hardware experi-
ments. Further as mentioned above, the co-relation can be used to influence our knowledge about both
approaches and refine our understanding of them.

Combining both software based and hardware based approaches is also vastly more effective in iso-
lating and confirming the existence of a fault injection vulnerability. In practice by combining both
approaches finding previously unknown vulnerabilities on whole programs becomes feasible. In the fu-
ture this should allow the much more rapid discovery of genuine fault injection vulnerabilities that do
not require prior knowledge or intuition on the part of the researcher.
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17. Dureuil, L., Potet, M.L., de Choudens, P., Dumas, C., Clédière, J.: From code review to fault injection attacks: Filling
the gap using fault model inference. In: International Conference on Smart Card Research and Advanced Applications,
pp. 107–124. Springer (2015)

18. Ecoffet, R.: In-flight anomalies on electronic devices. In: Radiation Effects on Embedded Systems, pp. 31–68. Springer
(2007)
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