
Whole-energy system models: the advisors for the energy transition

Francesco Continoa,∗, Stefano Moretb, Gauthier Limpensa, Hervé Jeanmarta
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1. What are whole-energy system models?

Climate change is making the transition to more
renewable and sustainable energy systems an urgent
global priority. Countries and communities around
the world are developing their respective long-term
energy plans, and deciding on the key resources and
technologies required to meet their future energy
needs. These developments are guided and supported
by energy models.

Energy models are simplified mathematical
representations of energy systems. They can consider
a global scale—top-down—or they can start from the
small scale with finer technical details—bottom-up.
These models perform an energy balance: resources
can be imported or extracted; these resources are
transported, stored, and converted by energy
conversion technologies if necessary, with the
ultimate goal of supplying end-use demand
(electricity, transport, heating, and the production of
goods) [1].

Altogether, the number of energy system models
is overwhelming (483 in a recent review [2]), with
each model answering slightly different questions
[3]. We focus here on energy system optimisation
models that include all forms of
energy—whole-energy—and find the optimal
pathways to convert resources into end-use energy
demand. Future energy systems will be smart,
flexible, highly renewable, and sector-coupled. To
study and plan such complex systems, whole-energy
system models look at the energy system in its
entirety. They are instrumental in understanding the
effects of past policies, and in devising scenarios that
account for complex interactions and synergies
among different technologies, energy vectors, and
specific needs [4].

2. It is not only about the power sector

Historically, energy models have been developed
for the power sector, being tools for planning and
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dispatch to ensure the power grid stability. As the
energy transition requires a large penetration of
renewable energy sources—mostly electricity based
like solar and wind—the power sector will maintain a
key role. However, there is more to consider than just
the power sector. Future energy systems will be
strongly sector-coupled: mobility and heat are—and
will be—high energy consumers even if provided by
electricity through heat pumps and electric vehicles
(electrification). Focusing solely on the power sector
will thus not be enough.

Solar and wind are intermittent and
non-dispatchable. Therefore, energy storage will be
an essential part of the system, even if the demand
can become partially flexible, backups are
implemented, or we resort to curtailment. This
energy storage may not always be in the form of
batteries. For example, chemical energy carriers
could be our only way to store very large amounts of
energy (from 100 GWh) [5].

Storage presents many challenges for research
(e.g. what is the rate of storage degradation?),
engineering (e.g. how can we make storage more
efficient?), and economy (e.g. how can we integrate
storage in the market?). But these challenges also
offer opportunities. The most significant being the
opportunity to couple diverse sectors. For example,
renewable electricity can be stored as ammonia (one
of the potential chemical energy carriers) and
subsequently used in the fertiliser industry—coupling
the energy and industry sectors. As another example,
electric vehicle smart charging and heat storage
solutions can serve as buffers for the electricity grid.
Multi-sector multi-vector whole-energy system
models aim to account for all of these opportunities.

Electrification is also a matter of timescale: the
increase will be gradual. We currently obtain 80% of
our final energy through combustion, ignoring this
massive share is unreasonable. Combustion will need
to improve (pollutant reduction), and to evolve
(alternative fuels, some produced from electricity). It
will remain to be an important provider of energy
during the transition, and the most probable solution
for some specific activities (e.g. planes, cement,
glass).

Realistic planning will need to integrate all of the
dimensions of the energy system without falling
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short of an integrated optimum; this is again the main
motivation of whole-energy system models.

3. System thinking vs. isolated thinking

Many projects focus on designing the perfect
solution to a given energy problem: they design the
most efficient boiler or they introduce innovative
urban wind turbines. Yet, these exciting solutions
cannot be evaluated in isolation. Their full potential
can only be truly assessed and realised when
integrated in the whole energy system. This system is
usually so complex that many interactions cannot be
anticipated, even if they appear obvious in hindsight.
The efficiency of the ultimate photovoltaı̈c cell is not
as meaningful until it is integrated within a module,
and connected to an inverter. We also cannot
disregard how the electricity is to be used (end-use,
conversion to fuels, heat pumps, etc).

The optimal conversion route might also depend
on the system configuration. As an example,
converting biomass to biofuels can allow an overall
reduction in terms of greenhouse gas emissions.
However, to exploit this potential, it is necessary to
link the production of biofuels to a wider deployment
of the corresponding efficient end-use technologies.
Only an analysis within such a context could point
towards the best combination of routes [6].

Still, energy system models require a detailed
and exhaustive characterisation of all technologies.
Failure to do so properly may lead to biased results.
For example, oversimplifying the diversity of
alternative fuels into one surrogate could hide their
true potential in various applications (e.g. in the
chemical industry). As another example, taking the
efficiency of heat pumps from laboratory tests, and
not in real conditions, could overestimate their
usefulness. Therefore, there is a strong need for
properly documented data which consists of not only
the nominal performance, but includes the whole
range of operating conditions—ultimately the goal of
the many projects developing these technologies. In
this context, several initiatives aim at centralising
data from various sources (e.g. the Open Power
System Data platform [7]).

Assessing the energy system as a whole unlocks
the potential for the full deployment of synergies and
generates unexpected results. For example, focusing
only on the power sector may lead to an oversizing of
battery storage, which comes at great expense.
(author?) [8] show that by focusing solely on the
electric system, 2 TWh of batteries are needed.
Whereas by analysing the energy system as a whole
and making use of synergies between sectors, the
capacity drops down to 0.3 TWh. As another
example, in Belgium, the need for batteries is mainly
replaced by thermal storage. By oversizing wind and
solar power production (65 TWh/year), the surplus
production can be converted using heat pumps
(30 GW) and stored as heat (4.5 TWh/year), whilst

during low renewable production, heat pumps are
switched off, reducing the demand on the electrical
system [9].

4. The real world is uncertain, a pathway
only makes sense if it is robust

Setting a sustainability target has been the goal
of many reports and conferences, but we also need to
navigate toward it materially. Progressing from the
energy system of today, to a more sustainable one of
the future, will require more than academic
discussion; as importantly, it will require a pathway
to implementation that can be realised. Owing to its
complexity, the energy-system transition may require
disruptive changes that are unlikely to be reached
with a linear progression towards the target. For
example, we do not know if the contribution of fossil
fuels should monotonically decrease, or when to
deploy storage to reach high renewable shares in the
long term. We also do not know if the transport
sector should be transformed first, and how this
transformation couples with industry. Many other
questions are left unanswered when we move from
where to go to how to get there.

Using models enables policy and decision
makers to steer towards rational and hopefully
optimal solutions. However, when obtaining the
optimum, the user is left with “what if” questions:
what if the operating conditions change (e.g. the
demand); what if the design parameters cannot be
precisely controlled (e.g. decentralised PV); or what
if the parameters of the models are uncertain
(e.g. fuel prices). All these questions must be
answered by integrating uncertainty quantification
into whole-energy system models. These methods
take the input uncertainties into account and
propagate them to the output, obtaining thereby a
range of possible solutions or even their probability
density functions [10, 11]. However, these methods
require knowledge about the input uncertainties. In a
whole-energy system, this knowledge embraces all
sectors, all factors, all energy vectors, and all
conversion systems. Yet, this knowledge does not
always need to be precise; often, it just needs to be
pragmatically included.

Ultimately, the planner needs to optimise a
system with uncertainties, performing thereby robust
design optimisation [12]. Thus, another optimisation
objective is added: to minimise the variance of the
performance. Most often, reducing the
variance—making the system more robust—
conflicts with optimising the performance, such that
there is a trade-off—a Pareto front. It leaves the
designer with a choice: what should be sacrificed in
performance to gain in robustness.

In such a complex and multi-sectorial context
with thousands of parameters, there is significant
room for uncertainty and a comprehensive analysis
can become a daunting task; similarly to combustion
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chemistry problems where many parameters remain
uncertain [13]. For robust optimisation, which
compounds optimisation with the uncertainty
quantification, the cost can become intractable: it is
the curse of dimensionality, the high computational
cost associated with the large number of parameters.
Minimising the cost is crucial, both for the robust
optimisation (e.g. with sparse polynomial chaos [14])
and the energy models (e.g. with the use of typical
days [15]).

Vested with such information, the planner can
make better decisions and compare the merits of
different configurations, trying to find a robust
pathway: a pathway that would be less affected by
uncertainties. Not applying our prior knowledge of
the uncertainties, even if limited, could lead to a
fragile pathway where the risk of failure would affect
our chances to reach the target.

As an illustration, energy models often rely on
long-term forecasts for important parameters, such as
the price of natural gas. These forecasts are
unfortunately seldom accurate [16]. (author?) [17]
showed that in the last 20 years, forecasts have
underestimated the evolution of European natural gas
prices by as much as 300%, and that this stimulated
exhaustive investments in gas-fired power plants that
eventuated to be too expensive to be operated. This
contributed to generating the current situation of
overcapacity in the European electricity market, with
installed capacities more than doubling peak demand
in many countries. The consequences have been
dramatic: as an extreme example, in the Netherlands,
newly constructed combined cycle power plants were
shut down in 2014 since they became
non-economically viable to operate. Considering
uncertainties in the planning process reduces the
overcapacity from 24% of the actual demand to less
than 10% [17].

5. Conclusion: the energy transition is an
interdisciplinary effort

Energy system modelling is a very active
research field. It tackles many challenges and tries to
answer many questions. Its primary purpose is to
guide us through the disruptive changes of the energy
transition. As such, it has a key role for the decision
and policy makers. Without it, how can one
realistically plan an optimal and sustainable energy
system? Aiming today at 80%—or
100%—renewable energy is a paradigm shift [18]; it
is a significant step forward, where future energy
systems may highly contrast that of today.

Searching for a robust pathway towards a
sustainable energy system involves navigating in
very uncertain waters. There can be various ways to
set the objective of this optimisation, but since we are
on a race with climate change, we believe there is
only one thing that matters: given the many
constraints (e.g. market, societal, economic), what

would be the most efficient way to reach a
sustainable energy system.

Decisions about the energy transition involve
much more than technical results [19]. These results
need to be integrated within energy market models so
they can integrate co-benefits—the synergies we
create alongside climate change mitigation [20]—or
the many obstacles like the rebound effect.
Ultimately, decisions also carry tradeoffs with access
to energy, risk, and security. The energy transition is
an interdisciplinary effort [21]. Blind technology
advancement is most probably not the way forward
for the transition towards sustainability. As the world
devises long-term energy plans, whole-energy system
models can guide us on the pathway towards
sustainability.
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