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Introduction
Transport and planning analyses mostly start from simple and available geo-
graphic urban data, often driven by administrative considerations. The impact of 
the delineation of the studied area or the size and shape of chosen basic spatial 
units is almost always set aside, although their impact on the results of transport 
models is clearly demonstrated (see Jones, Peeters, &Thomas, 2017; Thomas, 
Jones, Caruso, & Gerber, 2018). This contribution focuses on the impact of the 
nature of the data used for the partitioning of Brussels city centre. These partitions 
are a first step in the process of bridging transport analysis and planning through 
transport demand revealed by diverse dimensions of the city (e.g. social, morpho-
logical, economic, etc.).

Partitioning an urban space into groups of places sharing similar properties is 
common practice for urban geographers and sociologists since the seminal work 
of the Chicago school (1930s). It is a way to classify elementary spatial units 
to better understand their similarities and discrepancies and, above all, to better 
understand intra-urban spatial structures and dynamics within the city. This is usu-
ally done in terms of the socio-economic composition of each place but can also 
be done in terms of interrelationship between georeferenced populations or that 
of built-up morphologies: each of these aspects are relevant to figure out the intra-
urban homo- or heterogeneity. Identifying parts of a city that are similar is part of 
a nomothetic approach of geography, as opposed to an idiographic one focusing 
on the strict unicity of each place. Stressing common properties of places avoids 
putting too much emphasis on too specific results of the same processes. We take 
part in this approach here by mobilizing new data and recent innovative methods 
and by applying them to Brussels.

Quantitative revolution (1960s) has facilitated these analyses methodologi-
cally, with the development of factorial and cluster analysis, and faster and faster 
computing systems, even if available data to describe elementary spatial units 
were rather scarce (urban factorial ecology). Digital revolution has recently expo-
nentially increased the amount of available data (Floridi, 2012; Kitchin, 2013) 
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and, among them, a lot of localized information. This does not mean that these 
data did not exist before, yet the detection, the registration, the share and the use 
of these data reached an unprecedented level since the end of the 20th century. 
The risk with these new emerging data sciences is that some scientists dive into 
data before elaborating on the specific goals of the research and could lead to data 
crunching rather than modelling.

Two general kinds of information are commonly used to classify urban elemen-
tary spatial units. First, attributes characterizing each elementary spatial unit can 
be used to compare places based on these specific properties. These attributes can 
either describe the population living in the units, the economic activities or the 
characteristics of the built environment. Uni-, bi- and multivariate analyses are 
used to consider one or many attributes (Xi) to characterize locations, sometimes 
followed by clustering places into groups sharing common properties (i.e. clus-
ters). Second, geographers use information about the functional interrelationship 
(wij) between couples of elementary spatial units i and j. In that case, graph theory 
can help geographers to analyse the network of interrelations between places, as 
well as community detection algorithms. The latter aim at delineating groups of 
places that are highly connected (i.e. communities). For urban geographers inter-
ested since a long time in describing and understanding intra-urban structures and 
dynamics, the emergence of Information and Communication Technology (ICT) 
data (Global Positioning System, sensors, etc.) offers new ways to get information 
about places (Xi) and interrelationships between them (wij). But what do these new 
data add to urban geography knowledge?

Limiting urban analyses to ICT data is, for sure, not appropriate nowadays: 
there are no time series, and the spatial representativeness is often questionable. 
Some parts of the population can be totally missing in the data coverage.1 There-
fore, censuses and surveys are both still relevant for measuring urban complexity. 
Censuses have the advantage of being well defined, covering almost the entire 
population and comparable through time. ICT data measure other aspects, often 
in a very short time lag and at the individual level (see e.g. Longley, Adnan, & 
Lansley, 2015; Kitchin, 2013; Miller & Goodchild, 2015).

Cities are complex by definition, and the analysis of their complexity includes, 
among the already mentioned analyses made on people and interactions, the mor-
phology of their built-up components (see e.g. Thomas & Frankhauser, 2013). 
Therefore, some other analyses will focus on morphology, by using density, 
fractal dimension and the natural cities method applied to the footprints of the 
buildings. This will allow the comparison of characteristics of people and their 
interrelationships through locations with the morphological features of places. 
In this chapter, we focus on the Brussels Capital Region (noted as BCR, which is 
an administrative and political entity on its own), that constitutes the dense urban 
core of the capital city of Belgium.2 This allows highlighting intra-urban spatial 
structures.

Four partitions are here elaborated on a selection of data and methods and are 
presented in the following sections (by order of appearance): a classical “urban 
factorial ecology”, a community detection based on interrelationships revealed 



188  Arnaud Adam et al.

by mobile phone calls and from two different ways of measuring the building 
footprint: a combination of fractal dimension and the density of buildings, and the 
“natural city” method. Finally, the two last sections present the conclusions and 
open the discussion.

Urban factorial ecology: a benchmark
Urban factorial ecology was scientifically very fashionable in early quantitative 
spatial analysis (1960s; see e.g. Berry  & Rees, 1969; Hunter, 1972; Johnston, 
1978) and had already been applied to Brussels before (see e.g. Dujardin, Selod, & 
Thomas, 2008). The aim of these methods is to identify groups of places for which 
inhabitants have similar characteristics (Xi; socio-economic, ethnic, demographic, 
etc.) by means of a factorial analysis followed by a clustering method (Pruvot & 
Weber-Klein, 1984). We here use a principal component analysis and a hierarchi-
cal cluster analysis in order to identify spatial clusters and further interpret them 
in terms of classical “urban models”.

In the frame of this chapter, several analyses were performed with different 
sets of variables, with and without a preliminary component analysis. The results 
in terms of urban spatial structure are a little sensitive to the used method; here, 
we develop one example. The data used are provided at the scale of the neigh-
bourhood by the Institut Bruxellois des Statistiques et d’Analyses.3 The selected 
attributes (Appendix A) are available online as well as a clear definition of each 
variable, making the data collection simple and reproducible. Among the 145 
neighbourhoods of the BCR, 27 are excluded from the analysis because they are 
not inhabited (mostly correspond to green spaces or industrial zones). The selec-
tion of a large number of variables (48) is inspired by the literature on factorial 
ecology, in order to catch the socio-economic conditions, as well as the demo-
graphic and ethnical conditions of each spatial unit.

As expected, variables are highly correlated and can easily be summarized in 
four components (see Appendix B for the composition of each component). The 
score of the two first components are rather organized in concentric structures: 
the first one around the centre (mainly an age gradient), and the second around  
the European quarter (mainly a “metropolitan activities” gradient). The third com-
ponent is organized in sectors and is largely based on income and characteristics 
of the housing stock: large income and large dwellings in the south-east and low 
income and small dwellings in the north-west. The fourth component reveals a 
structure in “donut”, highlighting places specialized in residential functions at a 
certain distance from the city centre.

A ward hierarchical cluster analysis based on the scores of the Principal Com-
ponent Analysis (PCA) is then conducted for grouping the neighbourhoods that 
share similar profiles. Indicators for finding the best number of clusters (Cubic 
Clustering Criterion, entropy, Dunn, Calinski-Harabasz, shape of dendrogram) 
show that the optimal number of clusters turns around five to seven. The solu-
tion with six clusters is here illustrated (Figure 11.1-a), six being also a number 
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comparable to the number of mobile phone communities that are extracted and 
presented in the specific section.

Results (Figure 11.1-a) confirm former analyses conducted (see e.g. Vandermot-
ten & Vermoesen, 1995; Thomas & Zenou, 1999): Brussels combines two struc-
tures strongly shaping the city: a concentric and a radial one (Hoyt, 1939). The 
factorial ecology analysis confirms the existence of two crowns around the Central 
Business District (CBD). Cluster 2 corresponds to the CBD with high values of the 
scores of the second component, little residential. The first crown is mainly resi-
dential, characterized by a high population density (positive values on Component 
4) and divided into two sectors: Cluster 1 (pink) in the south-east which is mainly 
residential and better-off (high income, large dwellings) and Cluster 3 (green) in 
the north and west (low income, small housings). The second crown is also divided 
into two parts even if Cluster 6 (orange) and Cluster 4 (purple) are less marked 
than those of the first crown. Last, Cluster 5 (blue) corresponds to specific urban 
structures such as large hospitals, sports halls or cultural centres.

Community detection in ICT data: phone basins
Nowadays, there is no need to wait for official census data to “measure” the city: 
the emergence of new sources of data now allows to sense its “pulses” in real-
time. Contrarily to census data describing attributes of places in terms of socio-
economic, demographic and ethnic characteristics of their inhabitants (previous 
section), ICT data enable to characterize and follow people in space and time. 
ICT data are particularly useful to monitor daily life and short-term processes by 
detecting and measuring changes within space (Lee & Lee, 2014). They undoubt-
edly open new perspectives in interaction analyses and urban geography (Batty 
et al., 2012). This also allows the capture of intra-urban interrelationships between 
places (wij). The availability of such data increases every day due to the multiplica-
tion of apps on smartphones that enable following people and their geolocations.

We here limit ourselves to one example: mobile phone calls. They already have 
been proved to be very useful in monitoring and mapping the de facto popula-
tion, as well as people’s spatial mobility and social networks (Blondel, Krings, & 
Thomas, 2010; Griffiths, Hostert, Gruebner, & Van der Linden, 2010; Batty et al., 
2012). It enables one to better grasp the interactions between people and their 
environment (see e.g. Ahas et al., 2015; Deville et al., 2014). With this type of 
data, it is common to extract groups of people or locations with remarkably high 
interactions, leading to what is called communities.

If this kind of data are nowadays very attractive for approximating “social net-
works”, they also appear to have major limitations (see e.g. Calabrese, Ferrari, & 
Blondel, 2014) including a time-consuming “cleaning” phase. The data are not 
publicly available, and several operators share the market with no information on 
market shares. It is quite common that the data are aggregated due to confidential-
ity issues (no distinction between professional and private use; calls are, in our 
case, located to the closest antenna and not at the exact location of the call).
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We here use one month of phone communications of one of the three major 
service providers operating in Belgium (April/May 2015). The database includes 
all mobile phone calls, ignoring their duration, between two phone numbers from 
the provider, geocoded by antenna at the hour of the call. The data set is here lim-
ited to the calls for which both antennas are located in the BCR, that is more than 
4.9 million calls. To approximate the coverage of each antenna and to improve the 
readability of the maps, a Voronoi diagram is designed around each antenna (see 
Adam et al., 2017).

Methods of community detection based on modularity maximization are often 
adopted to detect communities of nodes that interact in large data sets (New-
man, 2004). The inputs of these methods are limited to links between nodes (the 
weights associated with the edges). If the nodes are geocoded, results can further 
be mapped, and a spatial partition of the studied area is then obtained. To group 
together the nodes that are tightly connected and hence detecting communities, 
these methods search for a compromise between minimizing the connections 
between nodes classified in different communities (the cut) and maximizing the 
number of communities (the diversity; Delvenne, Yaliraki, & Barahona, 2010). 
The Louvain Method is considered as a standard heuristic to maximize the modu-
larity value despite its limitations (see e.g. Fortunato, 2009; Traag, 2013; Del-
venne, Schaub, Yaliraki, & Barahona, 2013). It is commonly applied because it 
quickly finds partitions of nodes that maximize the modularity without defining a 
priori central places and/or thresholds (Adam et al., 2018a, Thomas et al, 2017).

Applied to the BCR mobile phone data set, the Louvain Method endogenously 
detects six communities that can be called “phone basins”. A phone basin corre-
sponds to antennas that have a higher propensity to call other antennas than any 
antenna classified in other communities. In order to avoid a suboptimal solution, 
the algorithm is run 1,000 times (Adam et al., 2018b). Hence, for each partition, 
each node can be characterized by the percentage of runs for which it is associated 
to the same community and so measuring the stability of the partition.

A striking first feature is that most contiguous Voronoi diagrams belong to the 
same community, this means that calls are more numerous between antennas that 
are closely located and that people call more often their closest neighbours than 
those farther located (Tobler, 1970): geography still matters! Table 11.1 represents 
the matrix of calls emitted and received between the six communities. For each 
community, the highest number of calls is observed between antennas belong-
ing to the same community; they correspond to the diagonal of the matrix. The 
intra-community calls represent more than 50% of the calls emitted or received 
by each community at the exception of Community 6 (45%). In terms of calls 
made between communities, Table 11.1 and Figure 11.1-c show different reali-
ties if the direction of the calls is taken into account. For instance, on one hand, a 
high number of calls is made from Community 1 to Community 2 (116,986 calls), 
and on the other, the antennas belonging to Community 2 were many times in 
communications with antennas from Community 4 (155,949 calls) as well as of 
Community 1 (123,096 calls).
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Table 11.1  Number of calls between communities

Communities 1 2 3 4 5 6

1 684,066 116,986 63,914 67,722 75,337 38,475
2 123,096 741,082 67,416 155,949 54,281 72,337
3 70,716 71,856 263,209 49,667 40,955 35,133
4 71,806 154,892 45,944 629,775 81,803 83,723
5 75,663 52,409 36,826 78,132 316,415 38,700
6 41,577 72,538 33,734 85,011 40,846 217,392

Figure 11.1-b clearly reveals the spatial organization of calls in the BCR. Two 
of them are located in the middle of the study area: a community centred on the 
Pentagon4 with an extension to the North Railway Station (Community 4) and 
another one around the EU offices (Community 1). These two communities con-
centrate 43% of the calls made within the BCR; the other communities are further 
organized in sectors around these two.

Morphometrics of built-up footprint
The objective of this section is to give an image of the built-up disparities and 
further partition the city in terms of built-up urban similar morphologies. The lit-
erature mentions many indices mainly issued from landscape ecology for measur-
ing and characterizing urban morphologies (see e.g. Medda, Nijkamp, & Rietveld, 
1998; Schwarz, 2010; Caruso, Hilal, & Thomas, 2017). We here select and com-
pare two methods to quantitatively grasp the morphological reality of Brussels: 
fractal dimension combined with density and the “natural cities” (presented in the 
following sections).

We use the 2009 Cadastral footprint of the buildings as well as the centroids 
of each building. Every isolated small (less than 20 m2) building was erased from 
the database. Analyses are performed on an area larger than the BCR (an area 
encompassing the entire former province of Brabant that surrounds the BCR) in 
order to avoid border effects. From this large set, we here isolated and present the 
results of the BCR. In this analysis, we take care of these border effects because it 
is well known that fractal dimension and “natural cities” methods are particularly 
sensitive to these border effects (Montero, Tannier, & Thomas, 2018).

Fractal dimension and density

Built-up urban fabrics with complex geometrical features cannot be described 
only by simple tools based on Euclidean geometry. Fractal geometry provides an 
interesting alternative to compare irregular forms, even at different spatial scales 
(Batty & Kim, 1992). Fractal dimension (D) characterizes the scaling behaviour of 
fractals, that is the fact that the same structure statically appears on smaller nested 



192  Arnaud Adam et al.

scales. For surfaces, D varies between 0 and 2: 2 corresponds to a homogeneous 
pattern where the mass is distributed uniformly over space, while 0 is a quite 
unrealistic value corresponding to isolated points without any particular spatial 
arrangement. The more D is different from 2, the more the patterns show empty 
areas of different sizes; these empty areas are distributed according to a strong 
hierarchical law. When D < 1, the pattern consists of disconnected, isolated ele-
ments concentrated in clusters which are separated by lacunas of different sizes. 
Hence, the lower D is, the less homogenously the built-up areas are distributed 
over space. Fractal dimension is independent of the unit of measurement (see e.g. 
Thomas, Frankhauser,  & De Keersmaecker, 2007; Thomas, Cotteels, Jones,  & 
Peeters, 2012).

Fractal dimension can be seen as a proxy of mean density, but the two are not 
spatially equivalent. Fractal dimension relates to morphology (the internal struc-
ture of the built-up areas) while mean density gives a rough idea of the occupation 
of the area. Geographically weighted fractal analysis is used for computing local 
fractal dimensions. This method mixes the sandbox multifractal algorithm (see 
e.g. Vicsek, 2002) and a geographically weighted regression with a kernel to esti-
mate the fractal dimension of cells in a regular grid (Sémécurbe, Tannier, & Roux, 
2019). In order to provide results at the finest possible resolution and to avoid esti-
mation problems of the fractal dimension, we use 250-m × 250-m resolution cells.

Density is here simply expressed as the ratio of the surface occupied by the build-
ings divided by the total surface of the basic spatial unit. The studied area is hence 
covered by a grid of squared cells for which two values are calculated: density and 
fractal dimension. A Ward clustering analysis is applied. Results are reported in 
Figure 11.1-d. The data set is clustered in four crowns in a clear centre–periphery 
structure. From the outskirts to the centre: (1) low density and non-homogeneous 
built-up surfaces, (2) average density and average fractal dimension, (3) high den-
sity and average homogeneity and (4) very high density and high homogeneity. 
This structure reminds clearly the classical concentric urban structure model of 
Alonso-Muth (see e.g. Verhetsel, Thomas, & Beelen, 2010).

From “natural cities” to “natural urban clusters”

A set of papers has recently been initiated by Jiang around the concept of “natu-
ral cities” (see e.g. Jia & Jiang, 2011; Jiang, 2013; Jiang & Miao, 2015). The 
methodology relies on a head/tail division rule to derive “natural” clusters (called 
“cities” in Jiang’s papers), based on the assumption that there are far more smalls 
things than larger ones. A triangulated irregular network (TIN) is used, made up 
of individual locations that are considered as nodes (initially street nodes and 
later any location-based social media users such as Twitter or Brightkite, here 
we adapt the method by using the centroid of each building in order to make the 
results comparable with the previous section). The method identifies the edges 
between the nodes (on the TIN) smaller than the average length of the edges as 
limits of “natural cities”. The method relies on the fact that the length of the edges 
follows a hierarchical distribution where the mean length is used as a threshold for 
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delineating the “cities” (large number of small edges corresponding to cities and 
small number of large edges corresponding to rural areas). The method appears to 
be very attractive in a “mechanical” way, but questions remain about its anchoring 
in urban geography theory and its combination with urban functional issues (see 
Montero et al., 2018, for a critical and comparative analysis). We here decided to 
use it for detecting intra-urban clusters within the BCR: Can the BCR be parti-
tioned into “natural urban clusters”? Are some parts of the city characterized by 
tighter networks than others?

If several authors have already supported the use of streets networks for delin-
eating cities (Jia & Jiang, 2011; Arcaute et al., 2015; Masucci, Arcaute, Hatna, 
Stanilov, & Batty, 2015), Thomas et al. (2012) showed that the spatial organiza-
tion of buildings within a city is rather different from that of street networks. 
Hence, in order to compare results with the previous section, we here consider the 
centroid of each building as the nodes used in the TIN.

The method delineates zones where the spatial proximity of the centroids is 
higher than the mean length in the study area (48 m). Patches are clearly identified 
and mapped (Figure 11.1-e). The white space between the patches corresponds to 
large boulevards, wide infrastructures as railways, green spaces, squares, etc., or 
simply built-up wards with larger distances between their centroids (larger build-
ings or larger gardens). Some coloured patches are large and reflect the history 
and geography of the city (see e.g. Vandermotten & Vermoesen, 1995). Some oth-
ers are very small, corresponding to specific allotments or pinpoint urban projects. 
Figure 11.1-e clearly tells another story even if some resemblance exist; there is a 
clear resemblance between socio-economic realities (Figure 11.1-a) and built-up 
landscapes (Figure 11.1-e) but the method used for extracting urban built-up land-
scapes influences the result (Figure 11.1-d and Figure 11.1-e are clearly different).

Complementarity of the four partitions
The four partitions presented in Figure 11.1 result from a unique objective (under-
standing the city), but the type of data and the methodology, as well as the basic 
spatial units, differ. Yet some commonalities are observed between the partitions, 
with some parts of the city being for example encompassed both in a given cluster 
in the factorial ecology and a specific community into the group of antennas.

An attempt at synthesis is proposed in Table 11.2. The spatial structure of each 
partition is clearly not similar, at the exception of the specificity of the core area 
that we found in each of them. Communities centred on the Pentagon and on EU 
offices are grouped in a socio-economic cluster characterized by a concentration 
of offices and urban facilities (CBD). The CBD and the first-crown in the factorial 
ecology are characterized by a dense and homogeneous organization of the built-
up environment according to the morphological classification. On the opposite, 
it is obvious that the comparison of a pure centre–periphery gradient (cluster-
ing using the fractal dimension and the built-up density) and a sectoral structure 
(communities based on cell phone data) will not lead to a strong resemblance 
between the two partitions.



Figure 11.1  Mapping Brussels differently (coloured version of this figure is to be found in 
https://atlas.brussels/publications/chapter-revisiting-urban-models-coloured-versions-of- 
figures/)

https://atlas.brussels
https://atlas.brussels
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The main explanation of the difficulties in comparing the different partitions 
origins from the fact that the elementary spatial unit is not the same in each anal-
ysis. The strict comparison is probably biased by the difference of size, shape 
and distribution of the basic spatial units (statistical neighbourhoods, Voronoi 
cells, grid cells) in the city. This is a constraint which we cannot overcome easily 
because the basic spatial unit is given by the data themselves, and this has to be 
kept in mind when comparing the different results. It reduces the possibilities of 
integrating the different kinds of data in a single approach.

Conclusion
With the example of Brussels, this contribution confirms the complexity of the 
urban structure and the difficulties in fitting data, method and objective. There 
is no unique way of measuring this complexity: each database and methodol-
ogy leads to different spatial structures. With this case study, the classical urban 
models are partly rediscovered by means of new tools and new data. Concen-
tric model (Alonso-Muth/Model of Burgess), sectoral model (Hoyt) and multiple 
nuclei model (Harris and Ullman) are clearly appearing in Figure 11.1 confirming 
former studies: Brussels is a superposition of different spatial patterns. Also, for 
results based on mobile phone data, there is a strong contiguity in the communi-
ties: one phones more people who are located closer, reminding one of Toblers’s 
first law of geography.5

The definition of the data needs to be controlled, as well as the underlying pro-
cesses and the research objectives. We cannot let the data speak by themselves, 
and this is especially true for new ICT data sources. We need to capture the mean-
ing of the data. For ages, geographers have struggled for individual locations to 
understand processes; ICT data do not change this, as most data are protected by 
confidentiality reasons (and further, once again, aggregated here by antennas).

Because we did not have the opportunity to conduct all four analyses with the 
same basic spatial units, the partitions obtained in this contribution are simply 

Table 11.2  Comparison of the four partitions of Brussels

Type of data Basic spatial units Approximative spatial 
structure of the 
clustering

Factorial ecology 
(PCA + clustering)

Socio-economic, 
conventional 
(census)

Statistical 
neighbourhoods

Combined centre–
periphery and 
sectoral structures

Communities based 
in cell phone

Relational, 
unconventional

Voronoi diagrams 
around antennas

Sectoral structure

Fractal dimension 
and density

Built-up footprints Cells grid Centre–periphery 
structure

“Natural cities” Built-up footprints 
(centroid)

/ Multiple nuclei
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juxtaposed and compared between them. Future works will now have to be dedi-
cated to the combination of partitions.

Finally, visualizing data is now current for ICT data, but modelling and linking 
the results to theory and planning are challenging exercises. There is a clear need 
to develop and understand methods and link them, first, with spatial theories in a 
multidisciplinary context before the results can be applied in planning exercises. 
ICT data are an opportunity to renew quantitative geography, especially as big 
data enables managing the complexity of interrelationships at local/global scales 
to add information to conventional data, but big data do not replace them. There 
is further a clear need for analysis comparing the obtained networks at different 
scales and for different node definitions (assortativity). Each of the three dimen-
sions we focused on in this chapter brings a distinct point of view and a specific 
added value. One of the further steps could now be to use methods that mix com-
munity detection based on the interactions and cluster analyses based on similari-
ties between places. ICT data are not only a smokescreen: they open new avenues 
for further dynamic multidisciplinary analyses and for modelling urban realities 
for the purpose of transport planning.
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Notes
1	 For example, there is an over representation of young and male Twitter users in the total 

resident population in London (Longley et al., 2015).
2	 Results shown here are parts of a broader project named Bru-Net that is financed by 

the Brussels Research Agency and that aims at measuring spatial communities in the 
whole metropolitan area around Brussels (former province of Brabant). We here limit 
our analyses to the Brussels Capital Region (BCR), the 19 administrative municipalities 
of the Brussels core.

3	 The “Monitoring des Quartiers” is an interactive tool available online. It has the objec-
tive to make available a selection of indicators that characterize disparities and dynamics 
within the BCR. Not all data are from the same date. Its availability makes the analysis 
easily reproducible. Retrieved from http://ibsa.brussels/chiffres/chiffres-par-quartier#.
WnoZLOjOXyQ.

4	 Usual name of the area located inside the former 14th-century walls of the city.
5	 “Everything is related to everything else, but near things are more related than distant 

things” (1970).
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% children in the neighbourhood and around, enrolled in kindergartens in the 
neighbourhood.

% children in the neighbourhood and around, enrolled in a primary school in the 
neighbourhood.

Population density (inhabitants/sq km).
Offices density (sq meters/sq km).
% of buildings with 5 floors and more.
% of impervious surfaces.
% dwellings built before 1961.
% households unsatisfied with the cleanness of the environment around their housing.
% of population aged 18–29.
% of population aged 65–79.
% population aged 80 and more.
Average age (years).
Mobility index (sum of the immigrants and emigrants divided by total population).

Sedentariness index (non-migrants divided by the total population).
% of couples with children in total number of private households.
% of EU population (EU15) in the total population.
% of North Africa population in the total population.
% of Latin America population in the total population.
% of Sub-Saharan Africa population in the total population.
% of foreigners in the total number of inhabitants.
% of inhabitants with French nationality.
% people living alone within the 18–29y old.
% people living alone within the 65 and more.
Mean size of private household.
Index of masculinity (number of men *100 divided by the number of women).
% of the 0–17y old. in the total population.
% population aged 65 and more.Economic dependence coefficient (number of 0–17 y and 

65+ y divided by the number of 18–64 y).
Ageing coefficient (%) (population of 65+y divided by the population of 0–17y).
Activity rate (%) (number of actives divided by population of 18–64 y).
Application rate (%) (total number of unemployment people divided by population of 

18–64 y)
Unemployment rate (%) (total number of unemployment people divided by the active 

population)
Medium income of the tax report (€).
% of the salaried within the labor force.Employment rate (%).

Appendix A
48 variables used in the  
factorial ecology
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Absolute difference between male and female activity rates.
% households residing in an apartment.
% dwellings under 55 sq meters.
% dwellings larger than 104 sq meters.
Average area of a dwelling (sq m).
Average area of a dwelling by inhabitant.
% of the social housing (number of social housing for 100 households).
% dwellings occupied by the owner.
Number of renovation subsidies (for 1000 households) (‰).
% of inhabitants living close from a public transportation stop (250 m from the bus, 400m 

from a tram and 500m from the metro).
Density of private households (number of private households divided by the area of the 

district)
% of children (less than 18y) living in a household without labour income.
% inhabitants estimating themselves not to be in good health.



Appendix B

Figure 11.B  Four first principal components of the PCA based of variables listed in Appen-
dix A (coloured version of this figure is to be found in https://atlas.brussels/publications/
chapter-revisiting-urban-models-coloured-versions-of-figures/)

https://atlas.brussels
https://atlas.brussels

	cover-reprint3111
	Adresse-reprint
	10.4324_9780429488719-12

