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Abstract

This paper considers linear fair risk sharing rules and the conditional mean risk sharing rule
for independent but heterogeneous losses that are gathered in an insurance pool. It stud-
ies the asymptotic behavior of individual contributions to total losses when the number of
participants to the pool tends to infinity. It is shown that (i) insurance at pure premium is
obtained for an infinitely large pool and (ii) the difference between the actual contribution
and the pure premium becomes ultimately Normally distributed. The linear fair risk sharing
rule approximating the conditional mean risk sharing rule is then identified, providing prac-
titioners with a useful simplification applicable within large pools. Also, the approximate
number of participants required to keep the volatility of individual contributions within an
acceptable range is obtained from the established asymptotic Normality.

Keywords: risk pooling, peer-to-peer (P2P) insurance, law of large number, central-limit
theorem, size-biased transform.
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1 Introduction and motivation

Pooling of risks has received considerable attention in actuarial science. Recently, this topic
has been re-visited in the context of peer-to-peer (or P2P) insurance systems. However, many
papers are restricted to the case of independent and identically distributed risks. Whereas
independence can be considered as reasonable, at least as an approximation, for many in-
surance risks, homogeneity is highly questionable. In this paper, we consider an insurance
pool where the participants are exposed to independent but heterogeneous losses and study
the asymptotic behavior of risk sharing rules as the number of participants increases.

Linear risk sharing rules are often applied in P2P insurance systems. In life insurance,
several proposals for mutual inheritance schemes have be made in the literature and highlight
such risk sharing rules. We refer the reader e.g. to Donnelly and Young (2017). As shown by
Donnelly (2015), the notion of fairness (i.e. the expected gain is zero for all participants) is
very relevant for this kind of pooling scheme. Schumacher (2018) discussed financial fairness
in the context of linear risk exchanges. In this paper, we compare the asymptotic behavior
of linear fair risk sharing rules to that of the conditional mean risk sharing rule proposed by
Denuit and Dhaene (2012), that has been sucessfully applied to P2P insurance by Denuit
(2019).

Nonlinear risk sharing rules have not received much attention so far. The reason may
be that they are not perceived as relevant for practice. The conditional mean risk sharing
rule defined by Denuit and Dhaene (2012) is however transparent and relatively easy to
communicate to participants (being based on the familiar concept of averaging), despite
being generally nonlinear. According to this rule, each participant contributes the conditional
expectation of the loss brought to the pool, given the total loss experienced by the entire pool.
The properties of the conditional mean risk allocation have been studied in Denuit (2019) and
Denuit and Robert (2020) when the number of participants is fixed. The conditional mean
risk sharing rule satisfies the risk exchange fairness condition and enjoys many attractive
theoretical properties so that it can be considered as a reference risk sharing rule in P2P
insurance applications.

Under the assumption of independent (but not too heterogeneous) risks, it is expected
that diversification takes place within the pool as the number of participants increases, and
that the financial contribution of each participant to the pool converges to the expectation
of his or her respective loss. In this paper, we study the asymptotic behaviors of the linear
and conditional mean risk sharing rules and extract a particular linear risk sharing rule that
is asymptotically equivalent to the conditional mean risk sharing rule. This is particularly
relevant for practice.

The remainder of this paper is organized as follows. In Section 2, we present the class of
fair linear risk sharing rules as well as the conditional mean risk sharing rule. In Section 3, it
is established that under mild technical conditions, the individual contributions converge to
the mathematical expectation of the loss (or pure premium) with probability one. In Section
4, we establish central-limit theorems for individual contributions. This is especially useful
to get an idea of the volatility of P2P contributions around the pure premium. The rate
and radius of convergence to the pure premium is studied in Section 5. The final Section 6
briefly discusses the results. For convenience, the proofs are gathered in appendix.

The following notation is adopted throughout the text. For two positive functions g1 and
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g2 defined in a neighborhood of infinity, we write g1 = o(g2) provided limx→∞ g1(x)/g2(x) = 0,
and g1 = O(g2) provided limx→∞ |g1(x)/g2(x)| <∞.

2 Risk sharing rules

2.1 Fair risk sharing rules

Consider n participants to an insurance pool, numbered i = 1, 2, . . . , n. Each of them faces
a risk Xi. By risk, we mean a non-negative random variable representing a monetary loss.
Throughout the paper, we assume that X1, X2, X3, . . . are mutually independent. Let us
denote

µi = E[Xi] > 0 and σ2
i = Var[Xi] > 0

the mean and the variance of Xi, respectively. Both µi and σ2
i are assumed to be finite

throughout the paper. We voluntarily exclude the cases where no randomness is present,
that is, µi = 0⇔ Xi = 0 with probability 1, and σ2

i = 0⇔ Xi = µi with probability 1.
Often in the literature devoted to insurance, the random variables Xi are assumed to

be identically distributed. In this paper, we depart from the homogeneous situation and
explicitly allow for different distributions.

Example 2.1 (Explanatory variables). A typical case is when predictive explanatory vari-
ables Zi for (a priori identically distributed) losses Yi are available. If the random vectors
(Y1,Z1), (Y2,Z2), . . . are independent and identically distributed then Xi is distributed as
Yi given Zi = zi. We therefore have µi = E[Yi|Zi = zi] and σ2

i = Var[Yi|Zi = zi].

Borch (1962) established that under mild assumptions, participants’ optimal risk sharing
depends only on aggregate loss Sn =

∑n
i=1Xi. Therefore we only focus on risk sharing

rules associated to comonotonic risk allocation schemes. We denote by hi,n(s) the amount
participant i contributes to the pool, where s =

∑n
i=1 xi is the sum of the realizations

x1, x2, . . . , xn of X1, X2, . . . , Xn.

Definition 2.2. A fair risk sharing rule is an allocation scheme such that, for all n =
1, 2, . . ., there exist (measurable) functions h1,n, . . ., hn,n satisfying

n∑
i=1

hi,n (s) = s for all s ≥ 0 and E[hi,n(Sn)] = E[Xi] for i = 1, . . . , n.

2.2 Linear fair sharing rules

When the participants enter the pool, they are informed about the amount hi,n(Sn) they
will have to contribute as a function of the total realized loss Sn. In the design of a recog-
nized scheme, it is important that the sharing rule represented by the functions hi,n is both
intuitively acceptable and transparent. In that respect, linear risk sharing schemes of the
form

hlini,n(Sn) = E[Xi] + ai,n (Sn − E[Sn]) , i = 1, 2, . . . , n,
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where
∑n

i=1 ai,n = 1 are especially appealing. Clearly, such linear risk sharing scheme allocate
the full risk Sn and satisfy the fairness constraint E[hi,n(Sn)] = E[Xi] for i = 1, . . . , n so that
linear rules hlini,n qualify as fair risk sharing rules according to Definition 2.2.

The rule described by the functions {hlini,n, i = 1, 2, . . . , n} can be understood as an
agreement between participants to pay the pure premium E[Xi] and to divide deviations of
Sn from the total pure premium E[Sn] (positive or negative) in proportion to the coefficients
ai,n. The numbers ai,n are called participation coefficients by Schumacher (2018). The
design of the allocation scheme then amounts to select an appropriate set of participation
coefficients ai,n. Several choices of participation coefficients are possible, as shown in the
next examples that will be used throughout this paper.

Example 2.3 (Proportional rule). Participants may agree to take a fixed percentage of
the total loss Sn, in accordance with the expected values of the risks they bring to the pool
compared to the total expected loss, that is,

apropi,n =
E[Xi]

E[Sn]
.

This is a financially fair rule, which is referred to as the proportional rule by Schumacher
(2018). The amount to be paid by participant i is

hpropi,n (Sn) = E[Xi] + apropi,n (Sn − E[Sn]) =
E[Xi]

E[Sn]
Sn.

This rule has been applied by Donnelly and Young (2017), for instance. With hpropi,n , volatility
is not accounted for because participants i1 and i2 with µi1 = µi2 contribute equally to the
total loss even if the respective variances σ2

i1
and σ2

i2
strongly differ. Also, the proportional

rule is unique since it is completely determined by the constraint of financial fairness.

Example 2.4 (Linear regression rule). Participants may also agree about a somewhat more
elaborate scheme. Since Var[Sn] <∞, we can also propose to share the total risk according to
the relative volatility of the risks brought to the pool, that is, to adopt participation coefficients
of the form

aregi,n =
σ2
i∑n

j=1 σ
2
j

.

Now, participants allocate the deviation from the pure premium according to the relative
volatility of the risk they bring to the pool, compared to the volatility of the total loss. The
corresponding risk sharing rule is the one that minimizes among all linear rules hlini,n the
expected squared difference between the risk Xi brought to the pool and the individual contri-
bution hi,n(Sn), that is,

E
[(
Xi − hregi,n (Sn)

)2]
= min

a∈R
E
[(
Xi − E[Xi]− a (Sn − E[Sn])

)2]
.

The solution a to this minimization problem is known to be

a =
Cov[Xi, Sn]

Var[Sn]
=

σ2
i∑n

j=1 σ
2
j

= aregi,n .
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The corresponding risk sharing rule

hregi,n (Sn) = E[Xi] +
σ2
i∑n

j=1 σ
2
j

(Sn − E[Sn]) , i = 1, 2, . . . , n,

is henceforth referred to as the linear regression rule. Here, deviations of the total loss Sn
from the pure premium E[Sn] are allocated among participants according to the volatility of
the risks brought to the pool.

2.3 Conditional mean risk sharing rule

Of course, there is no reason to restrict the study to linear rules, only. Participants may
also agree about a nonlinear risk sharing mechanism in which the amounts allocated to the
participants are determined as general (i.e., not necessarily linear) functions of the realized
total loss. Denuit and Dhaene (2012) introduced a nonlinear risk sharing scheme that is
particularly attractive in the context of P2P insurance: the conditional mean risk sharing
defined as

h?i,n(Sn) = E[Xi|Sn], i = 1, 2, . . . , n. (2.1)

Since Var[Sn] <∞, we have

E
[(
Xi − h?i,n(Sn)

)2]
= min

h(·):Var[h(Sn)]<∞
E
[(
Xi − h (Sn)

)2]
.

In words, the contribution h?i,n(Sn) paid by participant i is the closest to the loss Xi brought
to the pool, in the sense that it minimizes the expected squared difference of the risk Xi and
any measurable function h(Sn) of the total loss Sn. The difference between hregi,n and h?i,n thus
corresponds to the class of risk sharing rules under consideration: with hregi,n , participants
restrict the risk sharing rule to be linear whereas with h?i,n they also allow for nonlinear risk
sharing rules. In both cases, the goal is to minimize the expected squared difference between
the risk brought to the pool by each participant and his or her contribution to the realized
total loss.

With h?i,n, participant i must contribute the expected value of the risk Xi brought to
the pool, given the total loss Sn. In the expected utility setting, every risk-averse decision-
maker prefers h?i,n(Sn) over the initial risk Xi so that the conditional mean risk sharing rule
appears to be beneficial to all participants (as an application of Jensen’s inequality). Denuit
and Dhaene (2012) established that the conditional mean risk sharing rule is Pareto-optimal
for all risk-averse economic agents behaving according to the expected utility paradigm,
as long as every function h?i,n is non-decreasing. The properties of this scheme have been
studied in Denuit (2019) and Denuit and Robert (2020) when the number of participants
is fixed. Notice that the conditional mean risk sharing rule is not based on individual
preferences beyond risk aversion. This is important for the applications to P2P insurance
where individual preferences cannot easily be elicited.

2.4 Relationships between sharing rules

In general, the conditional mean risk sharing h?i,n is not linear. Furman et al. (2018) studied
the case where h?i,n(Sn) = βiSn for some βi depending on the means of the risks under
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consideration (see Theorem 3.2 in that paper). Thus, h?i,n and hpropi,n coincide in these cases.
Denuit and Robert (2020) have also studied the asymptotic linearity of the conditional mean
risk sharing rule, for sufficiently large realizations of the total loss. It is shown there that
the rules h?i,n can be markedly nonlinear, depending on the respective characteristics of the
risks brought to the pool.

When Xi are identically distributed, apropi,n = aregi,n = 1/n and the three risk sharing rules
considered so far coincide:

X1, . . . , Xn identically distributed⇒ hpropi,n (Sn) = hrefi,n(Sn) = h?i,n(Sn) =
1

n
Sn.

This particular case has been extensively studied in the literature. The homogeneity as-
sumption is however very restrictive for applications because pooling must also apply to
heterogeneous risks, especially in the context of P2P insurance.

3 Almost sure behavior of participants’ contributions

The results derived in this section show that insurance at pure premium can be obtained from
the previous risk sharing rules when the number of participants tends to infinity. Without
loss of generality, we provide asymptotic results for participant i = 1.

3.1 Linear fair sharing rules

We begin with the fair linear risk sharing rules. The following result shows that the con-
tribution for each individual tends to the corresponding pure premium when the number of
participants increases, provided some mild technical conditions are fulfilled.

Proposition 3.1. If
∞∑
i=1

σ2
i a

2
1,i <∞, (3.1)

then
lim
n→∞

hlin1,n(Sn) = E[X1] with probability 1.

The proof of Proposition 3.1 is given in appendix. Condition (3.1) ensuring the conver-
gence to the pure premium is essentially the one underlying Kolmogorov’s strong law of large
numbers. It is generally fulfilled, as shown in the next examples.

Example 3.2 (Proportional rule). Assume that there exist constants d1 and d2 such that
the inequalities

µi ≥ d1 > 0 and σ2
i ≤ d2 <∞ hold for all i. (3.2)

Condition (3.2) is generally fulfilled in insurance applications, preventing pure premiums µi
to become too small and variances σ2

i to become too large. Then,

∞∑
i=1

σ2
i a

2
1,i = µ2

1

∞∑
i=1

σ2
i(∑i

j=1 µj

)2 ≤ µ2
1

d2
d21

∞∑
i=1

1

i2
<∞.

Therefore, Proposition 3.1 applies to hpropi,n provided (3.2) holds true.
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Example 3.3 (Regression rule). Assume that there exists a constant d3 such that

d3 < σ2
i ≤ d2 <∞ hold for all i. (3.3)

Compared to (3.2), (3.3) prevents variances σ2
i to become either too large or too small. Then,

∞∑
i=1

σ2
i a

2
1,i = σ2

1

∞∑
i=1

σ2
i(∑i

j=1 σ
2
j

)2 ≤ σ2
1

d2
d23

∞∑
i=1

1

i2
<∞.

Therefore, Proposition 3.1 applies to hregi,n provided (3.3) holds true.

Example 3.4 (Explanatory variables). Assume that there exists ε > 0 such that

E[(Var[Yi|Zi])
1+ε] <∞ and lim sup

n→∞
na1,n <∞, (3.4)

then
∞∑
i=1

σ2
i a

2
1,i <∞ with probability 1.

The reasoning is the following one: the series
∑n

i=1 σ
2
i /i

2 is almost surely convergent if for
some α > 1

P

[
σ2
i

i2
>

1

iα
i.o.

]
= 0.

But

P

[
σ2
i

i2
>

1

iα
i.o.

]
= lim

n→∞
P
[
∪∞n=i

{
Var[Yi|Zi] > i2−α

}]
≤ lim

n→∞

∞∑
n=i

P
[
Var[Yi|Zi] > i2−α

]
≤ lim

n→∞

∞∑
n=i

E[(Var[Yi|Zi])
1+ε]

i(2−α)(1+ε)
= 0

if α < (1 + 2ε) / (1 + ε).

Proposition 3.1 shows that the respective participants’ contributions tend to stabilize
when n increases and that the limiting value is the pure premium for linear fair risk sharing
rules.

3.2 Conditional mean risk sharing rule

Let us now consider the conditional mean risk sharing rule. Intuitively speaking, the impact
of X1 on Sn should vanish as n tends to ∞ as long as X1 does not dominate the remaining
X2, X3, . . .. Therefore, X1 and Sn become approximately independent for large pools and
it seems reasonable to expect that E[X1|Sn] tends to E[X1] as it would be the case if X1

and Sn were independent. This section formally establishes this result. Note however that
we are not able to do it with conditions as general as for the linear risk sharing rules.
In particular we will either assume that the random variables X1, X2, . . . are absolutely
continuous or have Poisson compound distributions with absolutely continuous severities.
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With such assumptions, it is actually possible to write the conditional mean E[X1|Sn] as
E[X1] multiplied by the ratio of two density functions (see Denuit (2019)) and to study the
asymptotic behaviors of these functions for independent and heteregeneous risks.

Henceforth, the variance of Sn is denoted by

s2n = Var[Sn] =
n∑
i=1

σ2
i .

The result derived for the conditional mean risk sharing requires the following technical
conditions:

Condition A: The random variables X1, X2, . . . are absolutely continuous with respective
probability density functions fX1 , fX2 , . . . and have finite moments up to order 3 (and
order 4 for X1).

Condition A’: The random variables X1, X2, . . . have Poisson compound distributions rep-
resented as

Xi =

Ni∑
k=1

Cik with Ni ∼ Poisson(λi), i = 1, 2, . . . , (3.5)

where the claim severities Cik are positive, absolutely continuous, distributed as Ci
with probability density functions fCi

and have finite moments up to order 3 (and
order 4 for C1), all these random variables being independent. There exist a positive
constant η, such that, for all i, λi > η.

Condition B: We have

lim sup
n→∞

sn+1

sn
<∞ and

∞∑
n=1

E
[
|Xn − µn|3

](
s2n2 ln2 s2n

)3/2 <∞
where ln2 t is defined for t ≥ 0 as ln(ln t) if ln t ≥ e and 1 otherwise.

Condition C: There exist positive constants g and G such that, for all n, we have

s2n ≥ ng and
n∑
i=1

E
[
|Xi − µi|3

]
≤ nG.

Moreover there exists a constant ε ∈ (0, g/24G) such that the characteristic functions
t 7→ E[eitXj ] of X1, X2, . . . satisfy∫

|t|>ε

n∏
j=1

∣∣E[eitXj ]
∣∣ dt = O

(
1

n

)
.

Let us now briefly comment on these conditions. Condition A requires the finiteness of
the first third moments (and also the fourth moment for X1). Except in the Pareto case,
this condition is generally fulfilled and appears to be very reasonable in the context of P2P
insurance (which is often restricted to the lower risk layer). The assumptions in Condition
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B come from Wittman (1985) who showed that they are sufficient for the law of iterated
logarithm to hold for independent random variables. The assumptions in Condition C have
been introduced in Petrov (1956, Theorem 2) to provide uniform approximations of the
probability density functions of sums of independent random variables.

Example 3.5 (Explanatory variables). Assume that E[Y 3
i ] < ∞, it follows by the law of

large numbers that

lim
n→∞

s2n
n

= lim
n→∞

1

n

n∑
i=1

σ2
i = E[Var[Yi|Zi]] with probability 1,

and that

lim
n→∞

1

n

n∑
i=1

E
[
|Xi − µi|3

]
= E

[
|Yi − E[Yi|Zi]|3

]
with probability 1.

It is therefore easy to fix the values of the two positive constants g and G of Condition C.

We are now ready to state the main result of this section.

Proposition 3.6. If Conditions A (or A’), B and C stated above are all valid, then

lim
n→∞

h?1,n(Sn) = E[X1] with probability 1.

The proof of Proposition 3.6 is given in appendix. When insurance losses are independent
and identically distributed, Proposition 3.6 corresponds to Proposition 1.1 in Zabell (1980).

As established for linear fair risk sharing rules in Proposition 3.1, Proposition 3.6 shows
that the respective participants’ contributions tend to stabilize when the size n of the pool
grows (i.e. by recruiting infinitely many participants) when the conditional mean risk sharing
rule is adopted. Moreover, the limiting value is the pure premium.

These results appear to be very instructive as they link risk sharing to risk transfer
through insurance contracts: if paying ex-post a random contribution, hlini,n(Sn) or h?i,n(Sn),
for some finite n is not considered as attractive, then commercial insurance can be considered
as an alternative provided the participant is ready to pay more than E[Xi] to cover the
random fluctuations to be absorbed by equity capital.

4 Central-limit theorems for participants’ contributions

Let us investigate how the individual contribution fluctuates around the pure premium when
the size n of the group is large enough.

4.1 Linear risk sharing rule

For a linear risk sharing rule, we have

hlin1,n(Sn)− E[X1] = a1,n
(
Sn − E[Sn]

)
.

Therefore, if Sn−E[Sn] obeys a central-limit theorem then hlin1,n(Sn)−E[X1] is asymptotically
Normally distributed. This is formally stated in the next result, where the Lyapunov central-
limit theorem is used (Theorem 4.9 in Petrov, 1995).
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Proposition 4.1. Assume that Lyapunov’s condition holds, i.e., for some δ > 0,

lim
n→∞

(
s2n
)−1−δ/2 n∑

i=1

E
[
|Xi − µi|2+δ

]
= 0.

Then,
1

a1,nsn

(
hlin1,n(Sn)− E[X1]

) L→ Normal (0, 1) ,

where
L→ denotes the convergence in distribution.

The same result holds under alternative assumptions ensuring that (Sn−E[Sn])/sn con-
verges to the standard Normal distribution. We refer the reader to Chapter 4 in Petrov
(1995) for different statements.

Example 4.2 (Regression rule). When a1,n = σ2
1/s

2
n, we get

sn
σ2
1

(
hreg1,n(Sn)− E[X1]

) L→ Normal (0, 1) .

Example 4.3 (Explanatory variables). Lyapunov’s condition holds if E[|Yi−E[Yi|Zi]|2+δ] <
∞ for some δ > 0.

4.2 Conditional mean risk sharing rule

The following proposition shows that the regression sharing rule and the conditional mean
sharing rule are asymptotically equivalent, i.e. the fluctuations of the individual contribu-
tions around the pure premium are roughly identical for h?1,n and hreg1,n when n becomes large
enough. Given that both h?1,n(Sn) and hreg1,n(Sn) converge to E[X1] with probability 1, we thus
see that hreg1,n provides a reasonable approximation to h?1,n when the size of the pool becomes
large.

Proposition 4.4. If Conditions A (or A’), B and C stated above are all valid, then

sn
σ2
1

(
hreg1,n(Sn)− E[X1]
h?1,n(Sn)− E[X1]

)
L→ Normal

((
0
0

)
,

(
1 1
1 1

))
.

The proof of Proposition 4.4 is given in appendix. The stated result appears to be useful
to control the relative variations of individual contributions around the pure premium. Les
zε be the ε-quantile of the standard Normal distribution, leaving a probability ε to its right.
Proposition 4.4 then shows that

P

[∣∣h?1,n(Sn)− E[X1]
∣∣ ≤ zα/2

σ2
1

sn

]
≈ 1− α.

If we wish to limit the relative variations to β% of the pure premium, at confidence level
1− α, then we need a number n of participants such that

sn ≥
zα/2σ

2
1

βE[X1]
⇔
∑n

i=1 σ
2
i

σ2
1

≥
(
zα/2
β

CV[X1]

)2

,
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where CV[X1] is the coefficient of variation of X1. We thus see that the number n of
participants does not matter in itself but the proper unit is σ2

i /σ
2
1, that is, the relative

variability of the risks brought to the pool by participants i = 2, 3, 4, . . ., with respect to
participant 1. Of course, there is no reason to privilege participant 1. The same constraint
must thus hold for every participant.

5 Radius and rates of convergence

We know from Section 3 that hlin1,n(Sn) and h?1,n(Sn) both converge to E[X1] as n → ∞,
with probability 1, provided some technical conditions are fulfilled. In this section, we are
interested in the radius and the rates of convergence of hlin1,n(

∑n
i=1 µi+cn) and h?1,n(

∑n
i=1 µi+

cn) to E[X1] for different paths cn such that |cn| → ∞ as n→∞.

5.1 Linear fair sharing rules

In the case of linear risk sharing rule, we obviously have

hlin1,n

(
n∑
i=1

µi + cn

)
= E[X1] + a1,ncn

and therefore limn→∞ h
lin
1,n (
∑n

i=1 µi + cn) = E[X1] if cn = o (1/a1,n).

Example 5.1 (Regression rule). When a1,n = σ2
1/s

2
n, we get cn = o (s2n).

5.2 Conditional mean risk sharing rule

Zabell (1993) studied the behavior of random variables E[U |Vn+Wn] where the contribution
of Vn to the sum Vn + Wn is asymptotically negligible and both U and Vn are independent
of Wn. Considering U = Vn = X1 and Wn =

∑n
i=2Xi we find the problem investigated here.

Zabell (1993) showed in his Theorem 4 that the radius of convergence cn is smaller in general
for the conditional mean risk sharing rule than for the regression risk sharing rule.

Proposition 5.2 (Zabell (1993)). Assume that there exist α > 0 and 0 < β <∞ such that
for all n ≥ 1, s2n ≥ nα, E[|Xn − µn|2+δ] ≤ β for some 0 < δ ≤ 1. Assume further that for
every T > 0 ∫

|t|>T

n∏
j=1

∣∣E[eitXj ]
∣∣ dt = O

(
s−(2+δ)n

)
.

Then

h?1,n

(
n∑
i=1

µi + cn

)
= E[X1] +O

(
1

s1+δn

)
+O

(
|cn|
s2n

)
where cn = O (sn).
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Stronger results were derived by Zabell (1980) in the identically distributed case: under
the additional assumption that E[exp (γXρ

1 )] < ∞ for some γ > 0 and 0 < ρ ≤ 1, it is

shown there that cn = o(s
2/(2−ρ)
n ). Assuming that all moments of Xi exist, we prove that it

is possible to have a radius of convergence such that cn = o(s
5/3
n ) in the heteregeneous case.

Let us now introduce the following technical conditions:

Condition D: supx≥0 fXi
(x) ≤ Ci and infi≥1Ci > C > 0.

Condition E: There exists a constant K > 0 such that

E[|Xi − µi|k] ≤ k!Kk−2σ2
i , k = 3, 4, . . .

Condition F: supi≥1 σ
2
i <∞.

Example 5.3 (Explanatory variables). Assume that Yi given Zi = zi has an Exponential
distribution with parameter λi = λ (zi) for some mesurable function λ. Assume further that
there exists a positive constant K such that µi = E[Yi|Zi = zi] = 1/λi ≤ K, then Condition
E holds, as well as Condition D with a constant C < K−1.

We are now in a position to state the following result for the conditional mean risk sharing
rule.

Proposition 5.4. Assume that Conditions A, D, E and F are fulfilled. If cn = o(s
5/3
n ) then

h?1,n

(
n∑
i=1

µi + cn

)
= E[X1] +O

(
c3n
s5n

)
.

The proof of Proposition 5.4 is given in appendix.

6 Conclusion

In this paper, we have studied the behavior of three risk sharing rules when the size of the
pool becomes large: two linear fair sharing rules (proportional and linear regression ones) and
the conditional mean risk sharing rule. Under mild technical conditions, we have established
that (i) the individual contributions converge to the pure premium when the number of
participants tends to infinity and (ii) the fluctuations of these contributions around the pure
premium becomes ultimately Gaussian.

These results allowed us to identify the linear fair rule approximating the conditional
mean risk sharing rule, providing practitioners with a useful simplification applicable within
large pools. Also, the approximate number of participants needed to limit the variability of
individual contributions to an acceptable level can be obtained from this central-limit theo-
rem. This appears to be very useful for managing P2P insurance schemes since the volatility
of participants’ contributions is a crucial issue. The present paper offers practitioners an
approximate number of participants required to reach this goal, that can be refined in a
second stage using the actual distribution of participants’ losses.
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7 Appendix

7.1 Proof of Proposition 3.1

Kolmogorov’s strong law of large numbers ensures that given a sequence {bn, n = 1, 2, . . .}
such that bn →∞ as n→∞,

∞∑
i=1

σ2
i

b2i
<∞⇒ Sn − E[Sn]

bn
→ 0 with probability 1.

See, e.g., Theorem 6.7 in Petrov (1995). Now, since

hlin1,n(Sn) = E[X1] + a1,n (Sn − E[Sn]) ,

the result then follows from Kolmogorov’s strong law of large numbers with bn = 1/a1,n.
This ends the proof.

7.2 Proof of Proposition 3.6

Consider a non-negative random variable X with distribution function FX and strictly pos-
itive expected value E[X]. The size-biased transform of FX is the distribution function FX̃
defined as

FX̃(x) =
E
[
XI[X ≤ x]

]
E[X]

,

where I[·] denotes the indicator function (equal to 1 if the event appearing within the brackets
is realized, and to 0 otherwise). In the case of absolutely continuity, when X has a positive

probability density function fX on (0,∞), X̃ possesses the probability density function

fX̃(x) =
xfX(x)

E[X]
.

The moments of X̃ are related to those of X by the relation

E[X̃k] =
E[Xk+1]

E[X]
for k = 1, 2, . . . .

Let X̃1 be the size-biased versions of X1, assumed to be independent and independent of
X1, X2, . . . , Xn.

i) Let us first assume that Condition A holds. It is proved in Denuit (2019a, Proposi-
tion 2.3), that, if X1, X2, . . . , Xn are absolutely continous random variables with respective
probability density function fX1 , fX2 , . . . , fXn , then for any s > 0

h?1,n(s) = E[X1|Sn = s] = E[Xi]
fSn−X1+X̃1

(s)

fSn (s)
. (7.1)

The proof of Proposition 3.6 consists in approximating the density functions appearing in
the numerator and denominator of (7.1) by standard Gaussian density function.
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Define the sequences of constants

un =
n∑
i=1

µi, u1,n = µ̃1 +
n∑
j=2

µj, s21,n = σ̃2
1 +

n∑
j=2

σ2
j ,

and the sequences of random variables

Zn =
1

sn
(Sn − un) , S1,n = Sn −X1 + X̃1, Z1,n =

1

s1,n
(S1,n − u1,n) .

With
xn = un + snx and x1,n = u1,n + s1,nx,

we have
fZn (x) = fSn (xn) sn and fZ1,n (x) = fS1,n (x1,n) s1,n.

By Theorem 2 in Petrov (1956) and Condition C, we know that there exists a positive
constant C0 such that, for all n sufficiently large, the inequalities

|fZn (x)− ϕ (x)| ≤ C0√
n

and
∣∣fZ1,n (x)− ϕ (x)

∣∣ ≤ C0√
n

are both valid, where the positive constant C0 is independent of n and x, and where ϕ
denotes the probability density function of the standard Gaussian distribution.

Since

xn = u1,n + s1,n

(
sn
s1,n

x− µ̃1 − µ1

s1,n

)
,

we have

fS1,n (xn)

fSn (xn)
=

fS1,n

(
u1,n + s1,n

(
sn
s1,n

x− µ̃1−µ1
s1,n

))
fSn (xn)

=
sn
s1,n

fZ1,n

(
sn
s1,n

x− µ̃1−µ1
s1,n

)
fZn (x)

=
sn
s1,n

ϕ
(

sn
s1,n

x− µ̃1−µ1
s1,n

)
+O

(
1/n1/2

)
ϕ (x) +O (1/n1/2)

.

Moreover

ϕ
(

sn
s1,n

x− µ̃1−µ1
s1,n

)
ϕ (x)

= exp

(
1

s1,n
(µ̃1 − µ1)x+

1

2s21,n

(
x2
(
σ̃2
1 − σ2

1

)
− (µ̃1 − µ1)

)
− 1

s31,n
(µ̃1 − µ1)

(
σ̃2
1 − σ2

1

)
x

)
. (7.2)
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Note also that
sn
s1,n

=

√
1− σ̃2

1 − σ2
1

s21,n
= 1 +O

(
1

s21,n

)
.

Let

Yn =
Zn

(2 ln2 s2n)1/2
=

∑n
i=1(Xi − µi)(

2s2n ln2 s2n
)1/2 .

By Theorem 1.2 in Wittmann (1985), we know that Condition B ensures

lim sup
n→∞

|Yn| = 1 holds with probability 1.

Since ϕ (Zn) = ϕ(Yn (2 ln2 s
2
n)

1/2
), we deduce that 1/ϕ (Zn) = O (ln s2n) with probability 1

and that

ϕ
(

sn
s1,n

Zn − µ̃1−µ1
s1,n

)
+O

(
1/n1/2

)
ϕ (Zn) +O (1/n1/2)

=
ϕ
(

sn
s1,n

Zn − µ̃1−µ1
s1,n

)
/ϕ (Zn) +O

(
ln s2n/n

1/2
)

1 +O (ln s2n/n
1/2)

with probability 1. Now, as n→∞,

ϕ
(

sn
s1,n

Zn − µ̃1−µ1
s1,n

)
ϕ (Zn)

= exp

(
(2 ln2 s

2
n)

1/2

s1,n
(µ̃1 − µ1)Yn +

1

2s21,n

(
2 ln2 s

2
nY

2
n

(
σ̃2
1 − σ2

1

)
− (µ̃1 − µ1)

))

× exp

(
− 1

s31,n
(µ̃1 − µ1)

(
σ̃2
1 − σ2

1

) (
2 ln2 s

2
n

)1/2
Yn

)
→ 1 with probability 1.

We finally deduce that

lim
n→∞

E[X1|Sn] = E[X1] with probability 1,

as announced.
ii) Let us now assume that Condition A’ holds. It is proved in Denuit and Robert (2020)

that, for s > 0,

E [X1|Sn = s] = E [X1]
fSn+C̃1

(s)

P [Sn > 0] fSn|Sn>0 (s)
. (7.3)

Since for all i, λi > η, we have P [Sn = 0] ≤ e−nη. Moreover

snfSn|Sn>0 (xn) = fZn|Zn>−un/sn (x)

and it also holds that, for all n sufficiently large,∣∣fZn|Zn>−un/sn (x)− ϕ (x)
∣∣ ≤ C0√

n
.

The same reasoning as previously can therefore be followed.
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7.3 Proof of Proposition 4.4

We use the same notation as in the proof of Proposition 3.6. Note that by Condition C,
Lyapunov’s condition holds and therefore

Zn
L→ Normal (0, 1) .

Moreover by

h?1,n(Sn) = E[X1]
sn
s1,n

ϕ
(

sn
s1,n

Zn − µ̃1−µ1
s1,n

)
/ϕ (Zn) +O

(
ln s2n/n

1/2
)

1 +O (ln s2n/n
1/2)

with probability 1. Equation (7.2) leads to

h?1,n(Sn)− E[X1] =
σ2
1

s1,n
Zn +O

(
ln2 s

2
n

s21,n

)
=

σ2
1

sn
Zn +O

(
ln2 s

2
n

s21,n

)
with probability 1. It follows that

sn
σ2
1

(
h?1,n(Sn)− E[X1]

)
= Zn +O

(
ln2 s

2
n

s1,n

)
.

This ends the proof.

7.4 Proof of Proposition 5.4

Let Zn = (Sn − un) /sn. By Theorem 6.1 in Saulis and Statulevicius (1991), we have, for x
such that |x| ≤ cn/sn = o (sn),

fZn (x)

ϕ (x)
= exp

(
x3

sn
λn

(
x

sn

))(
1 +O

(
x

sn

))
where

λn (x) =
∞∑
k=0

γk,nx
k

is a power series which converges in a certain neighbourhood of the origin and γk,n are
expressed in terms of cumulants of Zn. In particular

γ0,n =
1

6s2n

n∑
i=1

Γ3 (Xi − µi)

where Γ3 (X) is the third cumulant of the random variable X. Note that, by Condition E,
supn≥0 |γ0,n| <∞.
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Using the same notation as in the proof of Proposition 3.6, we have

fZ1,n (x)

ϕ (x)
= exp

(
x3

s1,n
λ1,n

(
x

s1,n

))(
1 +O

(
x

s1,n

))
with

λ1,n (x) =
∞∑
k=0

γ1,k,nx
k

and

γ1,0,n =
1

6s21,n

(
Γ3

(
X̃1 − µ̃1

)
+

n∑
i=2

Γ3 (Xi − µi)

)
.

We also have

E [X1|Sn = un + xsn] = E[X1]
sn
s1,n

fZ1,n (In (x))

fZn (x)
.

with

In (x) =
sn
s1,n

x− µ̃1 − µ1

s1,n
.

Let us recall that

s21,n = s2n +
(
σ̃2
1 − σ2

1

)
= s2n

(
1 +

σ̃2
1 − σ2

1

s2n

)
and therefore

s1,n = sn
(
1 +O

(
s−2n
))
.

We have

fZ1,n (In (x))

fZn (x)
=

(
1 +O

(
x

sn

))
exp

(
I3n (x)

s1,n
λ1,n

(
In (x)

s1,n

)
− x3

sn
λn

(
x

sn

))
.

Note that

λn

(
x

sn

)
= γ0,n +O

(
x

sn

)
and

λ1,n

(
In (x)

s1,n

)
= γ1,0,n +O

(
In (x)

s1,n

)
= γ0,n +

1

6s21,n

(
Γ3

(
X̃1 − µ̃1

)
− Γ3 (X1 − µ1)

)
+O

(
x

sn

)
= γ0,n +O

(
x

sn

)
.

Moreover

I3n (x) = x3
(

1 +O

(
1

sn

))
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and it follows that

exp

(
I3n (x)

s1,n
λ1,n

(
In (x)

s1,n

)
− x3

sn
λn

(
x

sn

))
= exp

(
x3

sn

(
1 +O

(
1

sn

))(
γ0,n +O

(
x

sn

))
− x3

sn

(
γ0,n +O

(
x

sn

)))
= exp

(
O

(
x3

s2n

))
.

If cn = o(s
5/3
n ), we therefore have

h∗1,n(sn) = E[X1] +O

(
c3n
s5n

)
,

as announced.
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