
Model Voyager: Visualization of CRF UI Models
Iyad Khaddam, Jean Vanderdonckt

Université catholique de Louvain (UCLouvain), Louvain Research Institute in Management and Organizations (LouRIM)

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium, Belgium

{firstname.lastname}@uclouvain.be

Figure 1: The Model Voyager on the “car rental” case study with hierarchy deployed.

ABSTRACT
This paper presents the Model Voyager, a web-based applica-

tion for visualizing user interface models structured accord-

ing to the four abstraction levels of the Cameleon Reference

Framework: tasks and concepts, abstract user interface, con-

crete user interface, and final user interface. This application

enables the designer to collect, edit, and manage collections

of user interface models for a project or for maintaining

an accessible catalogue of models, along with their illus-

trations. It also introduces three deployment mechanisms:

multi-reification, multi-abstraction, and multi-translation.

This paper demonstrates the applicability of the Model Voy-

ager on the “car rental” case study, a reference example cho-

sen by the W3C group on model-based user interfaces.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7984-7/20/06. . . $15.00

https://doi.org/10.1145/3393672.3398492

CCS CONCEPTS
•Human-centered computing→Graphical user inter-
faces; User studies; Empirical studies in interaction design;

KEYWORDS
Cameleon Reference Framework; Design Space Exploration;

Development path; Model-based user interface design; User

interface models; User interface model visualization.

ACM Reference Format:
Iyad Khaddam, Jean Vanderdonckt. 2020. Model Voyager: Visualiza-

tion of CRF UI Models. In ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’20 Companion), June 23–26,
2020, Sophia Antipolis, France. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3393672.3398492

1 INTRODUCTION
Model-Based User Interface Design (MB-UID) [11] consists

in applying a model-based approach in order to design or de-

velop one or many [13] user interfaces (UIs) of an interactive

system by involving various models such as, but not limited

to: task model, domain model, user interface model, plat-

form model, device model, user model, help model, etc. The

context of use is considered as a key aspect [3] in context-

sensitive user interfaces [2], typically represented by three

underlying models: a user model capturing user profiles or

https://doi.org/10.1145/3393672.3398492
https://doi.org/10.1145/3393672.3398492

EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France Iyad Khaddam, Jean Vanderdonckt

Final User Interface (FUI)

Concrete User Interface (CUI)

Abstract User Interface (AUI)

Task & Domain (T&D)

Source Context of use

User #1

Platform #1

Environment #1

Final User Interface (FUI)

Concrete User Interface (CUI)

Abstract User Interface (AUI)

Task & Domain (T&D)

Target Context of use

User #2

Platform #2

Environment #2

= information
= reification
= abstraction
= reflexion
= translation

Figure 2: The Cameleon Reference Framework between two
contexts of use.
clusters and related data (e.g., interaction preferences, cogni-

tive style), a platform model capturing essential parameters

potentially influencing the UI (e.g., screen resolution, interac-

tion capabilities), and an environment model characterizing

the physical and socio-organizational conditions where the

user is carrying out her interactive tasks with the platform

(e.g., location, level of stress, structure). The Cameleon Refer-

ence Framework (CRF) [1] structures MB-UID according to

four levels of abstraction with their corresponding models as

follows [10]: task and domain concepts (T&D), abstract user

interface (AUI), concrete user interface (CUI), and final user

interface (FUI). Having defined one context of use or more,

four types of relations are used to transition among these

models [10] (Fig. 2): abstraction from one level to an upward

level, reification from one level to a downward level, trans-

lation for a model at the same level of abstraction from one

context of use to another, and reflexion regarding a single

model at the same level of abstraction.

These examples suggest that the wide variety of models

involved in MB-UID, along with the traversal of relations

among them, leads to a problem of grasping the various de-

velopment paths [8] and understanding them. In other areas

of computer science, there are plenty of software for visualiz-

ing various models and the relations among them, including

for mapping, transformation, association, etc. For instance,

in database management systems, a domain model obtained

at the conceptual level is transformed into a logical database

model at the logical level and subsequently transformed into

a physical database at the physical level. Software exists that

support analysts in defining and editing the meta-model as-

sociated to these models [4], in establishing and visualizing

transformations among these (meta-)models, or for visualiz-

ing relations among them [17].

While several software exist for domain modelling, busi-

ness process modelling, database management, workflow

management, there is no counterpart for UI models. In order

to fill this gap, the contributions of this paper to the area of

Engineering Interactive Computing Systems are as follows:

• Model Voyager, a Web-based application for managing

CRF UI models of a project based on this structure.

• A mechanism for transversal navigation among these

models following vertical and horizontal relations.

• A definition of multi-reification, multi-abstraction, and

multi-translation as three new mechanism for explor-

ing multipe UI alternatives from a single starting point.

• The illustration of the Model Voyager on the “car

rental”, a reference case study promoted by W3C [10].

2 RELATEDWORK AND BACKGROUND
Starting from a source context of use (Fig. 2), itself repre-

sented as a user, a platform, and a corresponding environ-

ment, the CRF structures the UI development life cycle based

on four levels and five relations, which are hereby summa-

rized (see [10] for more details). When another UI needs to

be developed for the same project, but for another target

context of use, these levels and relations could be traversed

to switch from the source context to the target context.

The task model is a representation of end users’ interaction
with the UI and is considered as one of the models charac-

terizing its behavior. It identifies the different types of end

users and their related tasks. It is created by the task analyst

to demonstrate to the different stakeholders the benefits of

the application.

The abstract user interface (AUI) allows having a rendering
of what the task model and domain model will provide [9].

The AUI is independent of any platform and environment.

The AUI is composed of different abstract interaction units

(AIUs) and their relationships. Two AIU categories exist:

• Abstract containers: represent a group of related (sub-

)tasks to be conveyed in the same container, such as in

the same window (for an application) or web page (for

a web site). Each container can be recursively decom-

posed into other containers or individual components.

• Abstract individual components: represent individual
objects that compose containers falling into four cate-

gories:

– Input: a user can input information into the software.

– Output: an information for the user.

– Navigation: a transition between two containers.

– Control: a user can control various methods of the

software. In addition to these components, we find

in the AUI model some relationship between the

different AIU composing the interface.

The Concrete User Interface (CUI) is based on the AUI and

concretizes it on one hand and is an abstraction of the final

user interface on the other hand. It uses Concrete Interac-

tion Units (CIU) and Concrete User Interface Relationships

(CUIR). CIUs are abstractions of concrete components. Con-

crete components examples include buttons, progress bars

Model Voyager: Visualization of CRF UI Models EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France

and text boxes. CIUs are not dependent of a programming

language, while concrete components are. CIUs are divided

into two groups: containers and individual objects. The con-

tainers are graphical components (sometimes invisible) that

contain both other containers or components. Individual CIU

objects cannot contain other CIUs. They allow collecting in-

formation, manipulating, changing and adapting a given

model. Each programming language defines its final individ-

ual objects. Based on the target language, we can translate

the CIUs into the appropriate corresponding ones on the FUI

level. There are also constraints on the CIUs, such as the

position, transition, alignment and adjacency. Actions can

be attached to CIUs in order to generate on the FUI level.

The final user interface (FUI) is the last step of the for-

ward engineering. It is the model with the lowest level of

abstraction. It consists in designing the concrete model of

the GUI into the chosen language of the platform [16]. At

this level, the platform, the user, and the environment are all

determined [9]. Still, we may take some decisions on the final

design. The CRF levels are linked together by four relations:

• Reification: is an operation where a model is trans-

formed into a model on a lower level of abstraction.

This operation can be repeated until the FUI is reached.

• Abstraction: is an operation where a model is trans-

formed into a model on a higher level of abstraction.

• Translation: is an operation where a model is trans-

formed to another model at the same level of abstrac-

tion, but for a different context of use. For instance,

multi-target user interfaces [1] are obtained by trans-

lation: each time another context of use is considered,

a translation from the source context to the target

context is triggered.

• Reflection: is an operation where a model is trans-

formed into another model at the same level of ab-

straction, for the same context of use.

Since MB-UID could involve all these models and relations

between them, many development paths are possible [8],

thus making it complex and challenging to manage as they

are not represented together. Some software attempt to par-

tially address this problem. For example, Quill [5] is a web

based development environment displaying multiple models

at the same time. Stakeholders collaboratively work on the UI

design following a forward engineering MB-UID.Quill visu-

alize any involved model and relation by employing spring-

based visualization techniques to represent, manipulate, and

map the models and to enhance the navigability among them.

For example, when a model fragment is identified, its decom-

position is progressively revealed via hyperbolic trees that

are expanded and collapsed depending on space available.

The Model Viewer (MoVi) [6, 7] visualizes multiple CRF

models and facilitates the navigation among them. It helps

in maintaining a global view of the models inside a project,

namely by propagating a change performed at one level to

its subsequent levels. Similarly, IdealXML [14] enables the

designer to textually create, delete, and edit relations among

the CRF UI models in a table. While these relations could be

indeed managed, there is no graphical representation.

Gef3D [17] visualizes links between a conceptual view

(UML Class diagram), an external view (a structured UI), and

an external view (the final UI), thus enabling the end user to

better understand how these models and their components

are linked to each other, to edit them, and to see the impact.

Voyager 2 [4] provides a complete environment for defining

meta-meta-models, meta-models, and models governed by

them, as well as transformations at these three levels of ab-

straction. This environment mainly focuses on the domain

model and does not cover UI models. Mega-UI [15] is an en-

vironment helping analysts to manage all model perspectives

(i.e., model, meta-model, transformation) at various CRF lev-

els. It allows to navigate between components in the same

model and navigate from one model to another model only

in the same system. It does not present the external models

from another system that can contribute to the whole design.

Therefore, we observe that available tools are mainly

aimed at editing CRF UI models in order to support the UI

development life cycle, which is normal. There is no genuine

software for visualizing the various models and their rela-

tions for a single project, for one or multiple contexts of use,

which is precisely the goal of this work.

3 MODEL VOYAGER
The Model Voyager

a
consists of a web application enabling

any user to create a new project and to feed it with any

CRF UI model required to support its development life cycle

and for establishing relations among them. For each model,

the visitor can download the model information in an XML

format. A graphical schema is displayed on the web site and

can be downloaded as well. If the FUI model source code

is available, it can be downloaded too. The Model Voyager

provides two main functionalities for visitors:

• Display model information: any model is in the Model

Voyager according to simple data structure that is au-

tomatically displayed when selected.

• Navigate through levels: models involved in a single

project are displayed in a dynamic tree that can be ex-

panded and collapsed depending on model navigation.

Displaying Model Information
The Model Voyager stores a project or case study as a hier-

archy of directories, which can be recursively decomposed

into sub-directories. Each directory contains one CRF model

stored in a info.xml file with the following descriptive data:

a
Freely accessible at https://sites.uclouvain.be/mbui/index.php?t=

carRenting/v1

https://sites.uclouvain.be/mbui/index.php?t=carRenting/v1
https://sites.uclouvain.be/mbui/index.php?t=carRenting/v1

EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France Iyad Khaddam, Jean Vanderdonckt

Figure 3: Screenshots for different models: (1) The task, (2)
the AUI containers, (3) the CUI and (4) the FUI.

• title: the title of the current node corresponding to one
CRF level. For example, “Task model for renting a car”.

• subtitle: a more detailed header than the title. For ex-

ample, “This task model represents the expected way

to rent a car via the company”.

• text: the explanation of the current node. For example,

a textual description of a scenario covered by the task.

• rules used: the different rules used to achieve this

model, if any. Each rule can be expressed in natural

language, structured query language, or via a link to

the web site where all transformation rules have been

defined. For example, a set of rules used for deriving

an AUI from the “car rental” task model are: change

of the size of the interface (sourceInterface.size > out-
putInterface.size), groups different AIUs by category

(e.g., personal information, car information, additional

information, and result), decompose the “Enter birth-

date” task into three sub-tasks: “Enter year”, “Enter

month”, and “Enter day”).

• user type: link to user model in force at this level. For

example, link to “Tourist model”.

• platform type: link to the platform model in force at

this level. For example, link to “Smartphone model”.

• environment type: link to the environment model in

force at this level. For example, link to “Stressing place”.

In addition to the info.xml file, we can add screenshots for

the model. We can also add a URL to any external represen-

tation of the model. For example, Fig. 3 contains: one for a

task model, one for the AUI containers (on the task model),

one for the CUI and finally one for the FUI.

Figure 4: Example of multi-reification at the FUI level.
Navigate through Levels
Forward engineering in MB-UID basically exploits the reifi-

cation relation from one level to any subsequent level: task

to AUI, AUI to CUI, and CUI to FUI. Since this process can be

repeated at any level, it gives rise to a tree structure, where

each node holds a particular CRF model derived from the

previous one. Each tree node holds a particular CRF model

stored via its info.xml and image.png files: when a node is

selected, the dynamic tree expands the sub-nodes to enable

the visitor to drill down the models. When this node is se-

lected again, the dynamic tree collapses its sub-graph to let

the visitor moving up and down through the tree quickly,

while being informed on the current position. When a par-

ticular node is activated, detailed information on the model

in this node are displayed.

Implementation
To realize this dynamic tree, a PHP script parses the hierar-

chy of (sub-)directories and its contained files to automati-

cally generate a JSON file used as input to the dynamic tree,

rendered by the JavaScript InfoVis Toolkit
b
. Adding a new

model at any level simply consists in adding a new directory

at the right place in the hierarchy. The Model Voyager up-

dates its visualization by re-running the script each time this

structure is modified. When a node is selected, a JavaScript
executes an Ajax request on info.xml to display its contents

and establish the links following the relations.

Finding Similar Models
For the three types user, platform, and environment, the

Model Voyager displays the link “Similar models” next to it

to find similar models with related contexts of use. This link

opens a new window (Fig. 6-c): the visitor browses different

variations of the model per context of use. Similarity is de-

fined dynamically, based on existing models within the tool.

When two variations co-exist for the same context of use,

b
See https://philogb.github.io/jit/

https://philogb.github.io/jit/

Model Voyager: Visualization of CRF UI Models EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France

Figure 5: The “Car rental” models in the Model Voyager.
a drop-down list filters the alternatives by context of use.

When multi-target UIs are devised in a project, reification is

repeated several times from a same starting point. In order

to reduce this repetition for all alternatives, we define a new

notion aimed at defining multi-target UIs at once: a multi-
reification consists in applying a synchronized reification at

a given CRF level of abstraction for the same project, but

for different contexts of use, and to semantically link them.

For example, Fig. 4 graphically depicts a multi-reification

performed at the CUI level for different target platforms:

instead of creating a single reification for each alternative,

the designer specifies the desired variations of the context

of use (here, three) and applies a multi-reification at once.

A multi-reification can be applied at any non-terminal CRF

level. Similarly, a multi-abstraction consists in applying a

synchronized abstraction at a given CRF level of abstrac-

tion for the same project, but for different contexts of use.

A multi-abstraction can be applied at any non-initial CRF

level. A multi-translation applies a synchronized translation

at any level for many targets. Model Voyager supports multi-

reification by allowing to navigate among these models once

the parent model is activated.

Scenarios
The Model Voyager browses the directory of one project or

case study at a time, whichwe call the scenario directory. One

can visit another scenario by clicking on the “Load scenario”

link on the top-left corner of the main page (Fig. 6-d).

It is possible to add anew scenarios but a user account on

the server is required. Users can collaborate by enriching

the content of a scenario with different models, and thus

collaborate to foster the exploration of the design space.

Instructions for this purpose are publicly available
c
.

4 A CASE STUDY: THE CAR RENTAL
Among others, the “car rental case study is a reference case

study studied in the frame of the W3C Charter Group on MB-

UID
d
. We will therefore consider it as a reference example to

c
See http://sites.uclouvain.be/mbui/guide.html

d
See use case UC1 in https://www.w3.org/TR/mbui-intro/

illustrate the capabilities of the Model Voyager. Particularly

useful are also those navigations offered by the Model Voy-

ager to traverse various levels of abstraction or at the same

level of abstraction, but also to travel along dimensions of

the context of use, and thus answering the question: if we

maintain the same CRF level of abstraction, what is the con-

sequence of changing the user model, the platform and/or

the environment?.

In the Model Voyager, one chooses the “Car Rental” sce-

nario and the version to visit. The first stop in the walk-

through is the task model. The task model is displayed in the

appropriate section (Fig. 5-Task), using the CTTE notation

[12]. On the right side, supplementary information on the

task model is displayed. To see how the task model changes

on a different platform, the link “Similar Model” should be

selected on the same line of “platform type”. This will open

variations of the task model for different platforms. The same

process is valid for the user and the environment. Activating

the task model node opens the sub-nodes for the AUIs (Fig. 5-

AUIs). In this scenario, five nodes are available representing

five AUI variations: two for vertical layouts for smartphones,

one for horizontal layout for a landscape tablet, one for small

screens and finally a generic one. Selecting any node shows

how the distribution of tasks in terms on AIUs is made. On

the right side, supplementary information on the AUI model

is displayed. Other variations of the AUI model based on the

current context of use or for another one are accessible by

browsing the “Similar models” link.

Activating an AUI model node opens the sub-nodes for the

CUIs (Fig. 5-CUIs). For instance, clicking on the generic AUI

node displays the three variations of CUI models. Clicking

on any of the CUI model nodes deploys the CUI containers.

One remarkable difference is the existence of several CUI

models: at the CUI level, we are getting closer to the final UI

and the widgets start to take their shapes. On the right side,

supplementary information on the CUI model is displayed.

The same processes applies for the CUI model concerning

adaptation of the model to any context of use.

Activating a CUI model node opens the sub-nodes for

the FUIs. For instance, click on the AUI horizontal position,

then the CUI models, a node for the FUI appears (Fig. 5-FUI).

Selecting a FUI node shows how a CUI is reified into a FUI.

5 CONCLUSION
We presented the Model voyager, a web application man-

aging and visualizing UI models and relations structured

according to the Cameleon Reference Framework (CRF). We

explained the functionalities of the software, the models

presented, and information on these models.

We demonstrated the use of the tool to browse a model

through the “Car rental” case study. The goal of Model Voy-

ager is to allow visitors to visualize UI models according to

http://sites.uclouvain.be/mbui/guide.html
https://www.w3.org/TR/mbui-intro/

EICS ’20 Companion, June 23–26, 2020, Sophia Antipolis, France Iyad Khaddam, Jean Vanderdonckt

Figure 6: The tool screens: (a) the navigator, (b) model infor-
mation, (c) similar models and (d) model selection.
the four levels of the CRF. Reification and abstraction rela-

tions are supported in the dynamic tree, while reflexion and

translation are supported through the “Similar models” link.

The main contributed value of Model Voyager is to visu-

ally guide the visitor among the multiple CRF UI models,

to explore design alternatives at any level. This approach

fosters a design space exploration that could increase the ob-

servability and browsability of a same case study, especially

when considering different contexts of use. This design space

exploration is expected to become useful for practitioners

like analysts, designers, and developers who are responsi-

ble for managing several UI models, but also for teachers to

facilitate understanding the usage of the CRF by students.

We intend to turn Model Voyager into a shared reference

for the MB-UID community at large. We are looking after

more case studies and contents. This is an open invitation to

all interested parties to contact us in order to create accounts

for them to share their contents or to ask us to install an

instance of the tool on their own server.

REFERENCES
[1] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg,

Laurent Bouillon, and Jean Vanderdonckt. 2003. A Unifying Reference

Framework for multi-target user interfaces. Interacting with Computers
15, 3 (6 2003), 289–308. https://doi.org/10.1016/S0953-5438(03)00010-9

[2] José Creissac Campos and F. Martins. 1996. Context Sensitive User In-

terfaces. In Formal Aspects of the Human Computer Interface (electronic
Workshops in Computing), C. Roast and J. Siddiqi (Eds.). Springer-Verlag
London, Sheffield Hallam University, UK. http://www.springer.co.uk/

eWiC/Workshops/FACHI/

[3] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan.

2005. Context is Key. Commun. ACM 48, 3 (March 2005), 49–53.

https://doi.org/10.1145/1047671.1047703

[4] Vincent Englebert and Jean-Luc Hainaut. 1999. DB-MAIN: A Next

Generation Meta-CASE. Inf. Syst. 24, 2 (1999), 99–112. https://doi.org/

10.1016/S0306-4379(99)00007-1

[5] Vivian Genaro Motti, Dave Raggett, Sascha Van Cauwelaert, and Jean

Vanderdonckt. 2013. Simplifying the Development of Cross-platform

Web User Interfaces by Collaborative Model-based Design. In Proceed-
ings of the 31st ACM International Conference on Design of Communica-
tion (September 30-October 01, 2013) (SIGDOC ’13). ACM, New York,

NY, USA, 55–64. https://doi.org/10.1145/2507065.2507067

[6] Mufida Mir’atul Khusna, Gaëlle Calvary, Sophie Dupuy-Chessa, and

Yann Laurillau. 2015. MoVi: models visualization for mastering

complexity in model driven engineering. In Proceedings of the 2015
British HCI Conference, Lincoln, United Kingdom, July 13-17, 2015,
Shaun W. Lawson and Patrick Dickinson (Eds.). ACM, 281–282. https:

//doi.org/10.1145/2783446.2783611

[7] Mufida Mir’atul Khusna, Sophie Dupuy-Chessa, and Gaëlle Calvary.

2016. Mastering Model Driven Engineering complexity by interactive

visualization. Technique et Science Informatiques 35, 2 (2016), 175–202.
https://doi.org/10.3166/tsi.35.175-202

[8] Quentin Limbourg and Jean Vanderdonckt. 2009. Multipath Trans-

formational Development of User Interfaces with Graph Transforma-

tions. In Human-Centered Software Engineering - Software Engineer-
ing Models, Patterns and Architectures for HCI, Ahmed Seffah, Jean

Vanderdonckt, and Michel C. Desmarais (Eds.). Springer, 107–138.

https://doi.org/10.1007/978-1-84800-907-3_6

[9] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent

Bouillon, and Murielle Florins. 2004. USIXML: A User Interface De-

scription Language Supporting Multiple Levels of Independence. In

Proceedings of Workshops in connection with the 4th International Con-
ference on Web Engineering (ICWE ’04). Engineering Advanced Web
Applications (28-30 July, 2004) (DIWE ’04), Maristella Matera and Sara

Comai (Eds.). Rinton Press, 325–338.

[10] Gerrit Meixner, Gaëlle Calvary, and Joëlle Coutaz. 2014. Introduction

to Model-Based User Interfaces - W3C Working Group Note. https:

//www.w3.org/TR/mbui-intro/

[11] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. 2011. Past,

Present, and Future of Model-Based User Interface Development. i-com
Zeitschrift für interaktive und kooperative Medien 10, 3 (2011), 2–11.

https://doi.org/10.1524/icom.2011.0026

[12] G. Mori, F. Paterno, and C. Santoro. 2002. CTTE: support for devel-

oping and analyzing task models for interactive system design. IEEE
Transactions on Software Engineering 28, 8 (2002), 797–813.

[13] Fabio Paternò and Carmen Santoro. 2002. One Model, Many Interfaces.

In Computer-Aided Design of User Interfaces III, Proceedings of the Fourth
International Conference on Computer-Aided Design of User Interfaces,
May, 15-17, 2002, Valenciennes, France, Christophe Kolski and Jean

Vanderdonckt (Eds.). Kluwer, 143–154.

[14] Francisco Montero Simarro and Víctor López-Jaquero. 2006. Ide-

alXml: An Interaction Design Tool. In Computer-Aided Design Of
User Interfaces V, Proceedings of the Sixth International Conference
on Computer-Aided Design of User Interfaces, CADUI 2006 6-8 June
2006, Bucharest, Romania, Gaëlle Calvary, Costin Pribeanu, Giuseppe

Santucci, and Jean Vanderdonckt (Eds.). Springer, 245–252. https:

//doi.org/10.1007/978-1-4020-5820-2_20

[15] Jean-Sébastien Sottet, Gaelle Calvary, Jean-Marie Favre, and Jöelle

Coutaz. 2009. Megamodeling and Metamodel-Driven Engineering for
Plastic User Interfaces: MEGA-UI. Springer London, London, 173–200.
https://doi.org/10.1007/978-1-84800-907-3_8

[16] Jean Vanderdonckt. 2005. A MDA-Compliant Environment for Devel-

oping User Interfaces of Information Systems. In Advanced Informa-
tion Systems Engineering, Oscar Pastor and João Falcão e Cunha (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 16–31.

[17] Jens von Pilgrim and Kristian Duske. 2008. Gef3D: A Framework for

Two-, Two-and-a-Half-, and Three-Dimensional Graphical Editors.

In Proceedings of the 4th ACM Symposium on Software Visualization
(SoftVis ’08). Association for Computing Machinery, New York, NY,

USA, 95–104. https://doi.org/10.1145/1409720.1409737

https://doi.org/10.1016/S0953-5438(03)00010-9
http://www.springer.co.uk/eWiC/Workshops/FACHI/
http://www.springer.co.uk/eWiC/Workshops/FACHI/
https://doi.org/10.1145/1047671.1047703
https://doi.org/10.1016/S0306-4379(99)00007-1
https://doi.org/10.1016/S0306-4379(99)00007-1
https://doi.org/10.1145/2507065.2507067
https://doi.org/10.1145/2783446.2783611
https://doi.org/10.1145/2783446.2783611
https://doi.org/10.3166/tsi.35.175-202
https://doi.org/10.1007/978-1-84800-907-3_6
https://www.w3.org/TR/mbui-intro/
https://www.w3.org/TR/mbui-intro/
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1007/978-1-4020-5820-2_20
https://doi.org/10.1007/978-1-4020-5820-2_20
https://doi.org/10.1007/978-1-84800-907-3_8
https://doi.org/10.1145/1409720.1409737

	Abstract
	1 Introduction
	2 Related Work and Background
	3 Model Voyager
	Displaying Model Information
	Navigate through Levels
	Implementation
	Finding Similar Models
	Scenarios

	4 A Case study: the Car Rental
	5 Conclusion
	References

