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Abstract

Symmetric positive definite (SPD) matrices have become funda-
mental computational objects in many areas, such as medical imaging,
radar signal processing, and mechanics. For the purpose of denois-
ing, resampling, clustering or classifying data, it is often of interest to
average a collection of symmetric positive definite matrices. This pa-
per reviews and proposes different averaging techniques for symmetric
positive definite matrices that are based on Riemannian optimization
concepts.
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1 Introduction

A symmetric matrix is positive definite (SPD) if all its eigenvalues are pos-
itive. The set of all n× n SPD matrices is denoted by

Sn++ = {A ∈ Rn×n | A = AT , A � 0},

where A � 0 denotes that all the eigenvalues of A are positive; and an ellipse
or an ellipsoid {x ∈ Rn | xTAx = 1} is used to represent a 2×2 SPD matrix
or larger SPD matrix, see Figure 1.
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Figure 1: Visualization of an SPD matrix. The axes represent the directions
of eigenvectors and the lengths of the axes are the reciprocals of the square
roots of the corresponding eigenvalues.
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Figure 2: An example of the swelling effect of the arithmetic mean.

SPD matrices have become fundamental computational objects in many
areas. For example, they appear as diffusion tensors in medical imaging [25,
32, 60], as data covariance matrices in radar signal processing [15, 42], and
as elasticity tensors in elasticity [50]. In these and similar applications, it is
often of interest to average or find a central representative for a collection
of SPD matrices, e.g., to aggregate several noisy measurements of the same
object. Averaging also appears as a subtask in interpolation methods [1]
and segmentation [58, 16]. In clustering methods, finding a cluster center
as a representative of each cluster is crucial. Hence, it is desirable to find a
center that is intrinsically representative and can be computed efficiently.

2 ALM Properties

A natural way to average a collection of SPD matrices, {A1, . . . , AK}, is
to take their arithmetic mean, i.e., G(A1, . . . , AK) = (A1 + · · · + AK)/K.
However, this is not appropriate in applications where invariance under in-
version is required, i.e., G(A1, . . . , AK)−1 = G(A−11 , . . . , A−1K ). In addition,
the arithmetic mean may cause a “swelling effect” that should be avoided
in diffusion tensor imaging. Swelling is defined as an increase in the ma-
trix determinant after averaging, see Figure 2 or [32] for more examples.
An alternative is to generalize the definition of the geometric mean from
scalars to matrices, which yields G(A1, . . . , AK) = (A1 . . . AK)1/K . How-
ever, this generalized geometric mean is not invariant under permutation
since matrices are not commutative in general. Ando et al. [8] introduced
a list of fundamental properties, referred to as the ALM list, that a matrix
“geometric” mean should possess:

P1 Consistency with scalars. IfA1, . . . , AK commute thenG(A1, . . . , AK) =
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(A1 · · ·AK)1/K .

P2 Joint homogeneity. G(α1A1, . . . , αKAK) = (α1 · · ·αK)1/KG(A1, . . . , AK).

P3 Permutation invariance. For any permutation π(A1, . . . , AK) of (A1, . . . ,
AK), G(A1, . . . , AK) = G(π(A1, . . . , AK)).

P4 Monotonicity. IfAi ≥ Bi for all i, thenG(A1, . . . , AK) ≥ G(B1, . . . , BK)
in the positive semidefinite ordering, i.e., A ≥ B iff A − B � 0, i.e.,
A ≥ B means that A − B is positive semidefinite (all its eigenvalues
are nonnegative).

P5 Continuity from above. If {A(n)
1 }, . . . , {A

(n)
K } are monotonic decreasing

sequences (in the positive semidefinite ordering) converging to A1, . . . ,

AK , respectively, then G(A
(n)
1 , . . . , A

(n)
K ) converges to G(A1, . . . , AK).

P6 Congruence invariance. G(STA1S, . . . , S
TAKS) = STG(A1, . . . , AK)S

for any invertible S.

P7 Joint concavity. G(λA1+(1−λ)B1, . . . , λAK+(1−λ)BK) ≥ λG(A1, . . . ,
AK) + (1− λ)G(B1, . . . , BK).

P8 Invariance under inversion. G(A1, . . . , AK)−1 = G(A−11 , . . . , A−1K ).

P9 Determinant identity. detG(A1, . . . , AK) = (detA1 · · · detAK)1/K .

These properties are known to be important in numerous applications,
e.g. [20, 43, 50]. In the case of K = 2, the geometric mean is uniquely
defined by the above properties and given by the following expression [17]

G(A,B) = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 , (1)

where Z
1
2 for Z � 0 is the unique SPD matrix such that Z

1
2Z

1
2 = Z. How-

ever, the ALM properties do not uniquely define a mean for K ≥ 3. There
can be many different definitions of means that satisfy all the properties.
The Karcher mean, discussed in Section 3.1, is one of them.

3 Geodesic Distance Based Averaging Techniques

Since Sn++ is an open submanifold of the vector space of n×n symmetric ma-
trices, its tangent space at a point X, denoted by TX Sn++, can be identified
with the set of n×n symmetric matrices. The manifold Sn++ becomes a Rie-
mannian manifold when endowed with the affine-invariant metric,1 see [58],

1The family of Riemanian metrics that satisfy the affine invariance property is described
in [34]; see also Section 5. The Riemannian metric (2) is also called the natural metric [31],
the trace metric [44], or the Rao–Fisher metric [63].
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given by
gX(ξX , ηX) = trace(ξXX

−1ηXX
−1). (2)

The length of a continuously differentiable curve γ : [0, 1] → M on a
Riemannian manifold is ∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

It is known that, for all X and Y on the Riemannian manifold Sn++ with
respect to the metric (2), there is a unique shortest curve such that γ(0) = X
and γ(1) = Y . This curve, given by

X
1
2 (X−

1
2Y X−

1
2 )tX

1
2 ,

is termed a geodesic. Its length, given by

δ(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F,

is termed the geodesic distance between X and Y ; see, e.g., [18, Proposi-
tion 3] or [58, §3.3].

3.1 Karcher Mean (L2 Riemannian mean)

The Karcher mean of {A1, . . . , AK}, also called the Fréchet mean, the Rie-
mannian barycenter, or the Riemannian center of mass, is defined as the
minimizer of the sum of squared distances

µ = arg min
X∈Sn++

F (X), with F : Sn++ → R, X 7→ 1

2K

K∑
i=1

δ2(X,Ai), (3)

where δ is the geodesic distance associated with metric (2). It is proved
in [18, 17] that F is strictly convex and therefore has a unique minimizer.
Hence, a point µ ∈ Sn++ is a Karcher mean if it is a stationary point of F , i.e.,
gradF (µ) = 0, where gradF denotes the Riemannian gradient of F with
respect to the metric (2). The Karcher mean in (3) satisfies all properties
in the ALM list [20, 43], and therefore is often used in practice. However,
a closed-form solution for problem (3) is not known in general, and for this
reason, the Karcher mean is usually computed by iterative methods.

Various methods have been used to compute the Karcher mean of SPD
matrices. Most of them resort to the framework of Riemannian optimization
(see, e.g., [2]). One exception in [77] resorts to a majorization minimization
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algorithm. This algorithm is easy to use in the sense that it is a parameter-
free algorithm. However, it is usually not as efficient as other Riemannian-
optimization-based methods [38]. Several stepsize selection rules have been
investigated for the Riemannian steepest descent (RSD) method. A constant
stepsize strategy is proposed in [62] and a convergence analysis is given. An
adaptive stepsize selection rule based on the explicit expression of the Rie-
mannian Hessian of the cost function F is studied in [61, Algorithm 2], and
is shown to be the optimal stepsize for strongly convex cost functions in
Euclidean space, see [52, Theorem 2.1.14]. That is, the stepsize is chosen as
αk = 2/(Mk + Lk), where Mk and Lk are the lower and upper bounds on
the eigenvalues of the Riemannian Hessian of F , respectively. A Riemannian
version of the Barzilai-Borwein stepsize (RBB) has been considered in [38].
A version of Newton’s method for the Karcher mean computation is also
provided in [61]. A Richardson-like iteration is derived and evaluated em-
pirically in [21], and is available in the Matrix Means Toolbox2. Yuan has
shown in [73] that the Richardson-like iteration is a steepest descent method
with stepsize αk = 1/Lk. In [48], a computationally cheap per iteration se-
quence is analyzed. The method is an incremental gradient algorithm for
the cost function (3) based on a shuffled inductive sequence. It is shown
that a few iterations gives a matrix that is the best initialization for the
state-of-the-art optimization algorithms when compared to commonly-used
initial guesses, such as arithmetic-harmonic mean.

A survey of several optimization algorithms for averaging SPD matri-
ces is presented in [39], including Riemannian versions of steepest descent,
conjugate gradient, BFGS, and trust-region Newton methods. The authors
conclude that the first order methods, steepest descent and conjugate gra-
dient, are the preferred choices for problem (3) in terms of computation
time. The benefit of fast convergence of Newton’s method and BFGS is
nullified by their high computational costs per iteration, especially as the
size of the matrices increases. It is also empirically observed in [39] that
the Riemannian metric yields much faster convergence for the tested al-
gorithms compared with the induced Euclidean metric, which is given by
gX(ηX , ξX) = trace(ξXηX).

It is known that a large condition number of the Hessian of the objective
function slows down the first order optimization methods. Therefore, a re-
cent paper [74] justifies the observations in [39] by analyzing the condition
number of the Hessian in (3). Specifically, it is proven therein that in double
precision arithmetic, the condition number of the Hessian of the objective

2http://bezout.dm.unipi.it/software/mmtoolbox/

http://bezout.dm.unipi.it/software/mmtoolbox/
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function in (3) under the affine-invariance metric (2) is bounded above by a
small positive number whereas the condition number of the Hessian under
the Euclidean metric is bounded below by a potential large positive number,
which linearly depends on the square of the condition number of the mini-
mizer matrix µ. In addition, a limited-memory Riemannian BFGS method
is proposed in [75] and empirically shown to be competitive with or superior
to other state-of-the-art methods.

3.2 Riemannian Median (L1 Riemannian mean)

In the Euclidean space, it is known that the median is preferred to the
mean in the presence of outliers due to the robustness of the former and the
sensitivity of the latter. This is illustrated in Figure 3, where the mean is
dragged towards the outliers lying at the top right corner, while the median
appears to be a better estimator of centrality. It is shown in [45] that half
of the points must be corrupted in order to corrupt the median.
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10

points
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mean
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Figure 3: The geometric mean and median in R2 space.

Given a set of points {a1, . . . , aK} ∈ Rn, with the usual Euclidean dis-
tance ‖ · ‖, the geometric median is defined as the point m ∈ Rn minimizing
the sum of distance

f(x) =

K∑
i=1

‖x− ai‖.

The geometric median is not available in closed form in general, even for
Euclidean points. The geometric median can be computed by an iterative
algorithm introduced by Weiszfeld [71], which is essentially an Euclidean
steepest descent. Later Ostresh [57] improved Weiszfeld’s algorithm and
proposed an update iteration with convergence result.
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This notion of the geometric median can be extended to the Sn++ mani-
fold. Given a set of SPD matrices {A1, . . . , AK}, their Riemannian median
is defined as the minimizer to the sum of distances

µ1 = arg min
X∈Sn++

K∑
i=1

δ(Ai, X), (4)

where δ(·, ·) is the geodesic distance. It was proven in [33] that the Rieman-
nian median defined by (4) exists and is unique in the case of a non-positively
curved manifold such as Sn++ when all the data points Ai do not lie on the
same geodesic. Note that the cost function in (4) is not differentiable at the
data matrices, i.e., X = Ai for i = 1, . . . ,K.

The computation of medians on Sn++ has not received as much atten-
tion as the mean [33, 23, 73]. Fletcher et al. [33] generalized the Weiszfeld-
Ostresh’s algorithm to the Riemannian median computation on an arbitrary
manifold, and proved that the algorithm converges to the unique solution
when it exists. Charfi et al. [23] considered the computation of multiple aver-
aging techniques, including the Riemannian median. An Euclidean steepest
descent method and a fixed point algorithm are proposed. However, for
the Euclidean steepest descent method, it is not guaranteed that each iter-
ate stays on Sn++. no stepsize selection rule is given for the steepest descent
method. In [73], Yuan explores Riemannian optimization techniques, in par-
ticular smooth and nonsmooth Riemannian quasi-Newton based methods,
to compute the Riemannian median, and empirically shows that the limited-
memory Riemannian BFGS method is more robust and more efficient than
the Riemannian Weiszfeld-Ostresh algorithm.

3.3 Riemannian Minimax Center (L∞ Riemannian mean)

Finding the unique smallest enclosing ball of a finite set of points in a Eu-
clidean space is a fundamental problem in computational geometry and has
been explored in e.g., [66, 72, 13, 14, 54]. This can be formulated as finding
the minimizer of the cost function f(x) = max1≤i≤K ‖x − ai‖. Many data
sets from machine learning, medical imaging, or computer vision consist of
points on a nonlinear manifold [59, 68]. Therefore, finding the smallest en-
closing ball of a collection of points on a manifold is of interest and has been
studied in [11]. The center of the smallest enclosing ball is defined to be the
L∞ Riemannian center of mass or the minimax center.

Specifically, given a set of SPD matrices {A1, . . . , AK}, the minimax
center is defined as the point minimizing the maximum geodesic distance δ
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to the point set
µ∞ = arg min

X∈Sn++

max
1≤i≤K

δ(Ai, X). (5)

In general, there is no known closed form of the solution. In Euclidean
space, a fast and simple iterative procedure for solving (5) has been proposed
in [13]. The procedure is extended to arbitrary Riemannian manifold in [11]
with a study of the convergence rate. The existence and uniqueness of the
minimax center defined in (5) have been studied in [3, 4, 11]. The SPD
minimax has been used in [9] to denoise tensor images.

The optimization problem in (5) is defined on the Riemannian manifold
Sn++. Therefore, Riemannian optimization techniques are natural options
for solving this problem. Unlike the cases of the Karcher mean and the
median, the solution of (5) usually lies at a non-differentiable point. There-
fore, one must utilize nonsmooth optimization techniques on Riemannian
manifolds. In [73], Yuan uses the modified Riemannian BFGS method [37]
and the subgradient-based Riemannian BFGS method [36] to solve the SPD
minimax center problem more efficiently than the state-of-the-art method
of Arnaudon and Nielsen [11].

4 Divergence-based Averaging Techniques

The averaging techniques based on the geodesic distance provide an at-
tractive approach to averaging a collection of SPD matrices since (i) the
approach yields nice geometric interpretations of the optimization problems
and (ii) its L2-based Riemannian mean (Karcher mean) satisfies all the de-
sired geometric properties in the ALM list [8].

A divergence is similar to a distance and provides a measure of dissimilar-
ity between two elements. However, in general, it need not satisfy symmetry
or the triangle inequality. In recent years, matrix divergences have been of
increasing interest due to their simplicity, efficiency and robustness to out-
liers, e.g., see [70, 10, 69, 23, 27, 55, 28, 7]. The idea of using divergences
to define the mean of a collection of SPD matrices has been studied in the
literature [50, 51, 26, 65, 64, 24].

4.1 Divergences

4.1.1 The α-divergence family

Let ϕ : Ω → R be a strictly convex and differentiable real-valued function
defined on a convex set Ω ⊂ Rm. The α divergence family [76] is defined to
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be

δ2ϕ,α(x, y) =
4

1− α2
[
1− α

2
ϕ(x) +

1 + α

2
ϕ(y)− ϕ(

1− α
2

x+
1 + α

2
y)], (6)

where α ∈ (−1, 1). The α-divergence possesses a dual symmetry with respect
to the change α→ −α, i.e., δϕ,α(x, y) = δϕ,−α(y, x).

For the values α = 1 and α = −1, the α-divergence is defined by taking
the limit as α→ 1 and α→ −1, i.e.,

δ2ϕ,1(x, y) = ϕ(x)− ϕ(y)− 〈Oϕ(y), x− y〉 and δ2ϕ,−1(x, y) = δ2ϕ,B(y, x). (7)

Note that (7) is actually the Bregman divergence defined in [22], denoted
by δ2ϕ,B(x, y).

Both the α-divergence (6) and the Bregman divergence (7) can be nat-
urally extended to Sn++, e.g., see [50, 24, 53]. Given a strictly convex
(in the classical Euclidean sense) and differentiable real-valued function
φ : Sn++ → R and X,Y ∈ Sn++, the α-divergence with −1 < α < 1 is
defined as

δ2φ,α(X,Y ) =
4

1− α2
[
1− α

2
φ(X)+

1 + α

2
φ(Y )−φ(

1− α
2

X+
1 + α

2
Y )]. (8)

The Bregman divergence, denoted by δ2φ,B, is defined as

δ2φ,B((X,Y ) = φ(X)− φ(Y )− 〈Oφ(Y ), X − Y 〉, (9)

where 〈X,Y 〉 = tr(XY ). Different choices of φ give different divergences.
Commonly used convex functions on Sn++ are [53]:

• quadratic entropy:
φ(X) = tr(XTX), (10)

• log-determinant (also called Burg) entropy:

φ(X) = − log detX, (11)

• von Neumann entropy:

φ(X) = tr(X logX −X). (12)
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4.1.2 Symmetrized divergence

A divergence is not symmetric in general. There are two common ways to
symmetrize a divergence [28]:

• Type 1:

δ2Sφ(X,Y ) =
1

2
(δ2φ(X,Y ) + δ2φ(Y,X)), (13)

• Type 2:

δ2Sφ(X,Y ) =
1

2
(δ2φ(X,

X + Y

2
) + δ2φ(Y,

X + Y

2
)). (14)

4.1.3 The LogDet α-divergence

When the associated function φ(X) in (8) is the log-determinant (LogDet)
function (11), we get the LogDet α-divergence [24]:

δ2LD,α(X,Y ) =
4

1− α2
log

det(1−α2 X + 1+α
2 Y )

[det(X)]
1−α
2 [det(Y )]

1+α
2

, for − 1 < α < 1. (15)

The most frequently mentioned advantage of the LogDet α-divergence (15)
compared to the geodesic distance δR is its computational efficiency. The
computation of (15) requires three Cholesky factorizations (for 1−α

2 X +
1+α
2 Y , X, and Y ), while computing the geodesic distance involves eigen-

value decomposition. In addition, the LogDet α-divergence enjoys several
desired invariance properties [24]:

1. Invariance under congruence transformations

δ2LD,α(SAST , SBST ) = δ2LD,α(A,B) for any invertible S. (16)

2. Dual-invariance under inversion

δ2LD,α(A−1, B−1) = δ2LD,−α(A,B). (17)

3. Dual symmetry

δ2LD,α(A,B) = δ2LD,−α(B,A). (18)
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The LogDet α-divergence (15) is asymmetric except for α = 0. But it can
be symmetrized using (13) and (14), and the corresponding two symmetric
forms of the LogDet α-divergence are

δ2S1LD,α(X,Y ) =
2

1− α2
log

det
[
(1−α2 X + 1+α

2 Y )(1−α2 Y + 1+α
2 X)

]
det(XY )

, (19)

and

δ2S2LD,α(X,Y ) =
2

1− α2
log

det
[
(3−α4 X + 1+α

4 Y )(3−α4 Y + 1+α
4 X)

]
[det(XY )]

1−α
2 [det(X+Y

2 )]1+α
. (20)

The divergence δ2LD,0 is also called the Stein divergence and is studied in [65,

64]. It is shown in [65] that δ2LD,0 is the square of a distance function (i.e.,
δLD,0 is a distance function in the sense that δLD,0 is symmetric, nonnegative,
definite, and satisfies the triangle inequality), and it shares several common
geometric properties with the geodesic distance δ2, such as P6 (congruence
invariance) and P8 (inversion invariance) in the ALM properties, see [65,
Table 4.1].

4.1.4 The LogDet Bregman divergence

The LogDet Bregman divergence is defined using φ(X) = − log detX, and
is given by

δ2LD,B(X,Y ) = tr(Y −1X − I)− log det(Y −1X). (21)

The LogDet Bregman divergence is also called the Kullback-Leibler diver-
gence in [51]. It is easy to verify that the LogDet Bregman divergence is
invariant under congruence transformations. In addition, the LogDet Breg-
man divergence is asymmetric. When it is symmetrized using (13) and (14),
we have

δ2S1LD,B(X,Y ) =
1

2
tr(Y −1X +X−1Y − 2I), (22)

and

δ2S2LD,B(X,Y ) = log det(
X + Y

2
)− 1

2
log det(XY ). (23)

Notice that (23) coincides with the LogDet α-divergence with α = 0. The
Type 1 symmetrized LogDet Bregman divergence (22) is also called the
Jeffrey divergence (or J-divergence) in [70, 35]. It is easily verified that
both (22) and (23) are invariant under congruence and inversion.
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4.1.5 The von Neumann α-divergence

The von Neumann function φ(X) = tr(X logX − X) arises in quantum
mechanics [56]. Its domain is the set of positive semidefinite matrices by
using the convention that 0 log 0 = 0. The von Neumann α-divergence is
defined as

δ2VN,α(X,Y ) =
4

1− α2
tr

{
1− α

2
X logX +

1 + α

2
Y log Y

−(
1− α

2
X +

1 + α

2
Y ) log(

1− α
2

X +
1 + α

2
Y )

}
. (24)

From (24), we can verify that the von Neumann α-divergence satisfies the
following invariance properties:

1. Invariance under rotations

δ2VN,α(OXOT , OY OT ) = δ2VN,α(X,Y ) for any O ∈ SO(n). (25)

2. Dual symmetry

δ2VN,α(X,Y ) = δ2VN,−α(Y,X). (26)

It is clear from the dual symmetry that the von Neumann divergence is
asymmetric except for α = 0, which is given by

δ2VN,0(X,Y ) = 4 tr{1

2
X logX +

1

2
Y log Y − (

X + Y

2
) log(

X + Y

2
)}. (27)

We note that the computation of the von Neumann α-divergence (24)
requires three eigenvalue decompositions, which makes it more expensive
than the computation of the geodesic distance δR, the LogDet α-divergence
δ2LD,α, and the LogDet Bregman divergence δ2LD,B. Therefore, we neglect the
sided means based on this divergence in Section 4.2.

4.1.6 The von Neumann Bregman divergence

The von Neumann Bregman divergence [53], denoted by δ2VN,B, is defined
using φ(X) = tr(X logX −X) for the Bregman divergence (9) and is given
by

δ2VN,B(X,Y ) = tr(X(logX − log Y )−X + Y ). (28)

Note that (28) is referred to as the von Neumann divergence in [40, 29, 53]
and the quantum relative entropy in [56]. The von Neumann Bregman
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divergence (28) is invariant under rotations, and its computation requires
two eigenvalue decompositions. It is shown in [29] that (28) is finite if and
only if the range of Y contains the range of X, i.e., range(X) ⊆ range(Y ).
For this reason, the von Neumann Bregman divergence is often used in low-
rank matrix nearness problems, e.g., see [40, 29, 41].

The von Neumann Bregman divergence is not symmetric, and its sym-
metrized versions are given by

δ2S1VN,B(X,Y ) =
1

2
tr(X(logX − log Y ) + Y (log Y − logX)), (29)

and

δ2S2VN,B(X,Y ) = tr(
1

2
X logX +

1

2
Y log Y − (

X + Y

2
) log(

X + Y

2
)). (30)

Note that (29) is finite if and only if range(X) = range(Y ). That is, the
Type 1 symmetrized von Neumann Bregman divergence δ2S1VN,B(X,Y ) en-
joys a range-space preserving property, which is important for the analysis
of rank deficient matrices [40]. In addition, we note that the symmetrized
von Neumann Bregman divergence (30) coincides with the von Neumann
α-divergence with α = 0, i.e., equation (27).

4.2 Left, Right, and Symmetrized Means Using Divergences

Given a divergence function on Sn++, one can define the mean of a collection
of SPD matrices {A1, . . . , AK} in a way similar to that used for the Karcher
mean. Due to the asymmetry of divergence functions, the notion of right
mean and left mean are used and coincide if the divergence is symmetric.

Definition 4.1 The right mean of a collection of SPD matrices {A1, . . . , AK}
associated with divergence function δ2φ(x, y) is defined as the minimizer of
the sum of divergences

µr = arg min
X∈Sn++

f(X), with f : Sn++ → R, X 7→
K∑
i=1

δ2φ(Ai, X). (31)

Definition 4.2 The left mean of a collection of SPD matrices {A1, . . . , AK}
associated with divergence function δ2φ(x, y) is defined as the minimizer of
the sum of divergences

µl = arg min
X∈Sn++

f(X), with f : Sn++ → R, X 7→
K∑
i=1

δ2φ(X,Ai). (32)
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Definition 4.3 The symmetrized mean of a collection of SPD matrices
{A1, . . . , AK} associated with divergence function δ2φ(x, y) is defined as the
minimizer of the sum of divergences

µs = arg min
X∈Sn++

f(X), with f : Sn++ → R, X 7→
K∑
i=1

δ2Sφ(X,Ai). (33)

where δ2Sφ is defined as (13) or (14).

4.2.1 The LogDet α-divergence

When δ2φ is the LogDet α-divergence δ2LD,α, the optimization problems in
Definitions 4.1, 4.2 and 4.3 have been studied in [24], where it is proved that
the optimization problems have unique minimizers. Sra [65] analyzes the
optimization problem for α = 0, and proves that δ2LD,0 is jointly geodesically

convex under the affine-invariant metric gX(ξ, η) = tr(ξX−1ηX−1) where
ξ, η ∈ TX Sn++. In [73], Yuan extends the result and showed that δ2LD,α is
jointly geodesically convex for any −1 < α < 1. Hence, any local minimum
point is also a global minimum point.

A closed-form solution is unknown, except for K = 2. Unlike the Karcher
mean computation that is extensively tackled by Riemannian optimization
methods, the LogDet α-divergence based mean is often computed by fixed
point algorithms, see [24, 53]. A Euclidean Newton’s method is considered
in [24] which, however, fails to converge in some numerical experiments. The
special case of α = 0 is studied in [24] and a fixed point algorithm to com-
pute the divergence-based mean is given and its convergence investigated.
This fixed point algorithm is applied to computing the divergence-based
mean in [26, 65, 64, 27]. Yuan [73] studies solving the sided mean problem
using Riemannian optimization algorithms and explains the fixed point al-
gorithm in [24] in a Riemannian optimization framework. The Riemannian
approaches, in particular the limited-memory Riemannian BFGS method,
are shown to outperform other state-of-the-art methods for a wide range of
problems.

4.2.2 The LogDet Bregman Divergence

Means based on the LogDet Bregman divergence have the following closed
forms [51, Lemma 17.4.3]:

Lemma 4.1 ([51, Lemma 17.4.3]) Let {A1, . . . , AK} be a collection of

SPD matrices, let A(A1, . . . , AK) = 1
K

K∑
i=1

Ai be their arithmetic mean, let
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H(A1, . . . , AK) = K(
K∑
i=1

A−1i )−1 be their harmonic mean, and let G(A,B)

denote the geometric mean of A and B (1).

1. The right mean based on δ2LD,B (21) is given by the arithmetic mean,
i.e.,

A(A1, . . . , AK) = arg min
X∈Sn++

K∑
i=1

δ2LD,B(Ai, X). (34)

2. The left mean based on δ2LD,B (21) is given by the harmonic mean, i.e.,

H(A1, . . . , AK) = arg min
X∈Sn++

K∑
i=1

δ2LD,B(X,Ai). (35)

3. The symmetric mean based on δ2S1LD,B (22) is given by the geometric
mean of the arithmetic mean and the harmonic mean, i.e.,

G(A(A1, . . . , AK),H(A1, . . . , AK)) = arg min
X∈Sn++

K∑
i=1

δ2S1LD,B(Ai, X).

(36)

4.2.3 The von Neumann Bregman divergence

Given a collection of SPD matrices {A1, . . . , AK} ∈ Sn++, the right mean µr

and left mean µl associated with the von Neumann Bregman divergence are
given by, respectively,

µr = arg min
X∈Sn++

δ2VN,B(Ai, X) = arg min
X∈Sn++

K∑
i=1

tr(Ai logAi −Ai logX −Ai +X)

(37)
and

µl = arg min
X∈Sn++

δ2VN,B(X,Ai) = arg min
X∈Sn++

K∑
i=1

tr(X logX −X logAi −X +Ai).

(38)
In [73], it is pointed out that the left mean based on the von Neu-

mann Bregman divergence has a closed form, which coincides with the Log-
Euclidean Fréchet mean in [12]. A closed form of the right mean based on
von Neumann Bregman divergence is not known. In addition, no efficient
algorithm for computing the right mean currently exists since the closed
form of the gradient of tr(Ai logX) is not known.
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4.3 Divergence-based Median and Minimax Center

Similar to the geodesice-distance-based median and minimax center, one can
define median and minimax center based on various types of divergences,

right median: arg min
X∈Sn++

K∑
i=1

δφ,α(Ai, X), (39)

right minimax center: arg min
X∈Sn++

max δφ,α(Ai, X), (40)

where δφ,α can be any of the divergences in Section 4.1. The left mean and
left minimax center can be defined in a similar way.

In [23], Charfi et al. considered the computation of medians based not
only on the geodesic distance, but also on Log-Euclidean distance and the
Stein divergence. The Stein divergence median is also studied in [65], and
a convergence proof of the fixed point iteration in [23] is given. A me-
dian based on the total Kullback-Leibler divergence is proposed in [69],
which has a closed form expression. Yuan [73] reviews various types of the
divergence-based medians and minimax centers and uses Riemannian opti-
mization techniques to compute those based on the LogDet α-divergences.
It is shown empirically that Riemannian optimization methods are usually
more efficient than other state-of-the-art methods.

5 Alternative Metrics on SPD Matrices

Besides the geodesic distance and divergences, there exist other metrics to
measure the similarity between two SPD matrices.

Log-Euclidean metric: The Log-Euclidean metric proposed in [12] uti-
lizes the observation that the matrix logarithm log : Sn++ → Rn×n is a
one-to-one mapping. Therefore, the distance between two SPD matrices
X,Y can be defined by

δLogEuc(X,Y ) = ‖ log(X)− log(Y )‖F .

The Karcher mean defined by this distance has a closed form and coin-
cides with the left mean based on the von Neumann Bregman divergence in
Section 4.2.3.
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Wasserstein metric: The Wasserstein metric defines a general distance
between arbitrary probability distributions on a general metric space. Note
that the centered multivariate normal distribution N (0, X), X ∈ Sn++ is
uniquely characterized by X ∈ Sn++. Therefore, when the Wasserstein met-
ric is used to measure the distance between the multivariate normal distri-
butions with zero mean, it defines a distance metric on Sn++, given by [46]

δWass(X,Y ) =
[
tr(X) + tr(Y )− 2 tr[(X

1
2Y X

1
2 )

1
2 ]
] 1

2
.

The Karcher mean (also called the barycenter) in the Wasserstein space is
introduced in [5] and has been used to define the mean on the manifold of
Sn++. A fixed point algorithm for computing the Karcher mean of a finite
set of probabilities was proposed in [6], and used to find the Karcher mean
of SPD matrices. The Wassertein distance can also be interpreted as the
geodesic distance in the quotient geometry studied in [19, §4] and [47].

Affine invariant metric family: The affine invariance metric family in
Sn++ has been studied in [34] and the corresponding geodesic distance is
given by

δAIF(X,Y ) =

[
α

4
tr((log(X−1/2Y X−1/2))2) +

β

4
(tr(log(X−1/2Y X−1/2)))2

] 1
2

,

where α > 0 and β > −α/n. The metric in (2) corresponds to α = 4 and
β = 0. In general, the relationship between the Karcher mean based on
δAIF , the choice of parameters of α and β, and the ALM properties, is not
fully understood.

Other metrics: Other possibilities include the Bogoliubov-Kubo-Mori [49],
the polar affine metric [78] and the broader class of the power Euclidean
metrics [30], and the families of balanced metrics introduced in [67].

6 Conclusion

In this paper, we have briefly summarized the optimization problems of
geodesic-distance-based and divergence-based mean, median and minimax
center, and the existing optimization techniques. We have pointed out that
the optimization problems in this paper can be nicely solved by Riemannian
optimization techniques since the domain Sn++ is a well-studied smooth man-
ifold.
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