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Abstract. A set of nonnegative matrices is called primitive if there
exists a product of these matrices that is entrywise positive. Motivated
by recent results relating synchronizing automata and primitive sets,
we study the length of the shortest product of a primitive set having
a column or a row with k positive entries (the k-RT). We prove that
this value is at most linear w.r.t. the matrix size n for small k, while
the problem is still open for synchronizing automata. We then report
numerical results comparing our upper bound on the k-RT with heuristic
approximation methods.
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1 Introduction

Primitive Sets of Matrices. The notion of primitive matrix1, introduced by
Perron and Frobenius at the beginning of the 20th century in the theory that
carries their names, can be extended to sets of matrices: a set of nonnegative
matrices M = {M1, . . . ,Mm} is called primitive if there exists some indices
i1, . . . , ir ∈ {1, . . . , m} such that the product Mi1 · · · Mir is entrywise positive.
A product of this kind is called a positive product and the length of the shortest
positive product of a primitive set M is called its exponent and it is denoted by
exp(M). The concept of primitive set was just recently formalized by Protasov
and Voynov [31], but has been appearing before in different fields as in stochastic
switching systems [20,30] and time-inhomogeneous Markov chains [19,34]. It has
lately gained more importance due to its applications in consensus of discrete-
time multi-agent systems [9], cryptography [12] and automata theory [4,6,15].
1 A nonnegative matrix M is primitive if there exists s ∈ N such that Ms > 0

entrywise.
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Deciding whether a set is primitive is a PSPACE-complete problem for sets
of two matrices [15], while it is an NP-hard problem for sets of at least three
matrices [4]. Computing the exponent of a primitive set is usually hard, namely
it is an FPNP[log]-complete problem [15]; for the complexity of other problems
related to primitivity and the computation of the exponent, we refer the reader
to [15]. For sets of matrices having at least one positive entry in every row
and every column (called NZ [15] or allowable matrices [18,20]), the primitivity
problem becomes decidable in polynomial-time [31], although computing the
exponent remains NP-hard [15]. Methods for approximating the exponent have
been proposed [7] as well as upper bounds that depend just on the matrix size;
in particular, if we denote with expNZ(n) the maximal exponent among all the
primitive sets of n × n NZ matrices, it is known that expNZ(n) ≤ (15617n3 +
7500n2 + 56250n − 78125)/46875 [4,36]. Better upper bounds have been found
for some classes of primitive sets (see e.g. [15] and [19], Theorem 4.1). The NZ
condition is often met in applications and in particular in the connection with
synchronizing automata.

Synchronizing Automata. A (complete deterministic finite state) automaton
is a 3-tuple A = 〈Q,Σ, δ〉 where Q = {q1, . . . , qn} is a finite set of states,
Σ = {a1, . . . , am} is a finite set of input symbols (the letters of the automaton)
and δ : Q × Σ → Q is the transition function. Let i1, i2, . . . , il ∈ {1, . . . , m}
be indices. Then w = ai1ai2 . . . ail is called a word and we define δ(q, w) =
δ(δ(q, ai1ai2 . . . ail−1), ail). An automaton is synchronizing if it admits a word w,
called a synchronizing or a reset word, and a state q such that δ(q′, w) = q for
any state q′ ∈ Q. In other words, the reset word w brings the automaton from
every state to the same fixed state.

Remark 1. The automaton A can be equivalently represented by the set of matri-
ces {A1, . . . , Am} where, for all i = 1, . . . ,m and l, k = 1, . . . , n, (Ai)lk = 1 if
δ(ql, ai) = qk, (Ai)lk = 0 otherwise. The action of a letter ai on a state qj is
represented by the product eT

j Ai, where ej is the j-th element of the canonical
basis. Notice that the matrices A1, . . . , Am are binary2 and row-stochastic, i.e.
each of them has exactly one entry equal to 1 in every row and zero everywhere
else. In this representation, the automaton A is synchronizing if and only if there
exists a product of its matrices with a column whose entries are all equal to 1
(also called an all-ones column).

The idea of synchronization is quite simple: we want to restore control over a
device whose current state is unknown. For this reason, synchronizing automata
are often used as models of error-resistant systems [8,11], but they also find
application in other fields such as in symbolic dynamics [25], in robotics [26] or
in resilience of data compression [33,37]. For a recent survey on synchronizing
automata we refer the reader to [42]. We are usually interested in the length of
the shortest reset word of a synchronizing automaton A, called its reset threshold
and denoted by rt(A). Despite the fact that determining whether an automa-
ton is synchronizing can be done in polynomial time (see e.g. [42]), computing
2 A binary matrix is a matrix having entries in {0, 1}.
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its reset threshold is an NP-hard problem [11]3. One of the most longstanding
open questions in automata theory concerns the maximal reset threshold of a
synchronizing automaton, presented by Černý in 1964 in his pioneering paper:

Conjecture 1. (The Černý conjecture [39]). Any synchronizing automaton on n
states has a synchronizing word of length at most (n − 1)2.

Černý also presented in [39] a family of automata having reset threshold
of exactly (n − 1)2, thus demonstrating that the bound in his conjecture (if
true) cannot be improved. Exhaustive search confirmed the Černý conjecture
for small values of n [2,5,24,38] and within certain classes of automata (see
e.g. [22,35,41]), but despite a great effort has been made to prove (or disprove)
it in the last decades, its validity still remains unclear. Indeed on the one hand,
the best upper bound known on the reset threshold of any synchronizing n-state
automaton is cubic in n [13,28,36], while on the other hand automata having
quadratic reset threshold, called extremal automata, are very difficult to find
and few of them are known (see e.g. [10,16,23,32]). Some of these families have
been found by Ananichev et al. [3] by coloring the digraph of primitive matrices
having large exponent; this has been probably the first time where primitivity
has been successfully used to shed light on synchronization.

Connecting Primitivity and Synchronization. The following definition and
theorem establish the connection between primitive sets of binary NZ matrices
and synchronizing automata. From here on, we will use the matrix representation
of deterministic finite automata as reported in Remark 1.

Definition 1. Let M be a set of binary NZ matrices. The automaton associated
to the set M is the automaton Aut(M) such that A ∈ Aut(M) if and only if
A is a binary and row-stochastic matrix and there exists M ∈ M such that
A ≤ M (entrywise). We denote with Aut(MT ) the automaton associated to the
set MT = {MT

1 , . . . ,MT
m}.

Theorem 1. ([4]Theorems 16–17, [15]Theorem2). LetM={M1, . . . ,Mm}
be a primitive set of binary NZmatrices. ThenAut(M) andAut(MT ) are synchro-
nizing and it holds that:

rt
(
Aut(M)

) ≤ exp(M) ≤ rt
(
Aut(M)

)
+ rt

(
Aut(MT )

)
+ n − 1. (1)

Notice that the requirement in Theorem 1 that the set M has to be made of
binary matrices is not restrictive, as the primitivity property does not depend
on the magnitude of the positive entries of the matrices of the set. We can thus
restrict ourselves to the set of binary matrices by using the Boolean product
between them4, that is setting for any A and B binary matrices, (AB)ij = 1 any
time that

∑
s AisBsj > 0. In this framework, primitivity can be also rephrased

3 Moreover, even approximating the reset threshold of an n-state synchronizing
automaton within a factor of n1−ε is known to be NP-hard for any ε > 0, see [14].

4 In other words, we work with matrices over the Boolean semiring.
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as a membership problem (see e.g. [27,29]), where we ask whether the all-ones
matrix belongs to the semigroup generated by the matrix set. The follow-
ing example reports a primitive set M of NZ matrices and the synchronizing
automata Aut(M) and Aut(MT ).

Example 1. Here we present a primitive set and its associated automata:
M=

{(
0 1 0
0 0 1
1 0 0

)
,
(

0 1 0
1 0 1
0 0 1

)}
, Aut(M)=

{
a =

(
0 1 0
0 0 1
1 0 0

)
, b1 =

(
0 1 0
1 0 0
0 0 1

)
, b2 =

(
0 1 0
0 0 1
0 0 1

)}
,

Aut(MT )=
{
a′ =

(
0 0 1
1 0 0
0 1 0

)
, b1 =

(
0 1 0
1 0 0
0 0 1

)
, b′

2 =
(

0 1 0
1 0 0
0 1 0

)}

.It holds that exp(M)=7, rt
(
Aut(M)

)
=2 and rt

(
Aut(MT )

)
=3. See also Fig. 1.
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2 a′

Fig. 1. The automata Aut(M) (left) and Aut(MT ) (right) of Example 1.

Equation (1) shows that the behavior of the exponent of a primitive set of
NZ matrices is tightly connected to the behavior of the reset threshold of its
associated automaton. A primitive set M with quadratic exponent implies that
one of the automata Aut(M) or Aut(MT ) has quadratic reset threshold; in
particular, a primitive set with exponent greater than 2(n − 1)2 + n − 1 would
disprove the Černý conjecture. This property has been used by the authors
in [6] to construct a randomized procedure for finding extremal synchronizing
automata.

The synchronization problem for automata is about finding the length of
the shortest word mapping the whole set of states onto one single state. We can
weaken this request by asking what is the length of the shortest word w such that
there exists a set of k ≥ 2 states mapped by w onto one single state. In the matrix
framework, we are asking what is the length of the shortest product having a
column with k positive entries. The case k = 2 is trivial, as any synchronizing
automaton has a letter mapping two states onto one; for k = 3 Gonze and
Jungers [17] presented a quadratic upper bound in the number of the states of
the automaton while, to the best of our knowledge, the cases k ≥ 4 are still
open. Clearly, the case k = n is the problem of computing the reset threshold.

In view of the connection between synchronizing automata and primitive
sets, we extend the above described problem to primitive sets by introducing
the k-rendezvous time (k-RT): the k-RT of a primitive set M is the length of the
shortest product having a row or a column with k positive entries. The following
proposition shows how the k-RT of a primitive set M of NZ matrices (denoted
by rtk(M)) is linked to the length of the shortest word for which it exists a
set of k states mapped by it onto a single state in the automata Aut(M) and
Aut(MT ) (lengths denoted respectively by rtk(Aut(M)) and rtk(Aut(MT ))).
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Proposition 1. Let M be a primitive set of n × n binary NZ matrices and let
Aut(M) and Aut(MT ) be the automata defined in Definition 1. Then for every
2 ≤ k ≤ n, it holds that rtk(M) = min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT )

)}
.

Proof. Omitted due to length restrictions.

Our Contribution. In this paper we prove that for any primitive set M of
n × n NZ matrices, the k-rendezvous time rtk(M) is upper bounded by a linear
function in n for any fixed k ≤ √

n, problem that is still open for synchronizing
automata. Our result also implies that min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT )

)}
is

upper bounded by a linear function in n for any fixed k ≤ √
n, in view of Propo-

sition 1. We then show that our technique for upper bounding rtk(M) cannot
be much improved as it is, and so new strategies have to be implemented in
order to possibly achieve better upper bounds. Finally, we report some numer-
ical experiments comparing our theoretical upper bound on the k-RT with the
real k-RT (or an approximation of it when it becomes too hard to compute it)
for some examples of primitive sets.

2 Notation and Preliminaries

The set {1, . . . , n} is represented by [n]. The support of a nonnegative vector v
is the set supp(v) = {i : vi > 0} and the weight of a nonnegative vector v is the
cardinality of its support.

Given a matrix A, we denote by A∗j its j-th column and by Ai∗ its i-th row. A
permutation matrix is a binary matrix having exactly one positive entry in every
row and every column. We remind that an n × n matrix A is called irreducible
if for any i, j ∈ [n], there exists a natural number k such that Ak

ij > 0. A matrix
A is called reducible if it is not irreducible.

Given M a set of matrices, we denote with Md the set of all the products of
at most d matrices from M. A set of matrices M = {M1, . . . ,Mm} is reducible if
the matrix

∑
i Mi is reducible, otherwise it is called irreducible. Irreducibility is

a necessary but not sufficient condition for a matrix set to be primitive (see [31],
Sect. 1). Given a directed graph D = (V,E), we denote by v → w the directed
edge leaving v and entering in w and with v → w ∈ E the fact that the edge
v → w belongs to the digraph D.

Lemma 1. Let M be an irreducible set of n×n NZ matrices, A ∈ M and i, j ∈
[n]. Then there exists a matrix B ∈ Mn−1 such that supp(A∗i) ⊆ supp((AB)∗j).

Proof. We consider the labeled directed graph DM = (V,E) where V = [n] and
i → j ∈ E iff there exists a matrix A ∈ M such that Aij > 0. We label the
edge i → j ∈ E by all the matrices A ∈ M such that Aij > 0. We remind
that a directed graph is strongly connected if there exists a directed path from
any vertex to any other vertex. Notice that a path in DM from vertex k to
vertex l having the edges sequentially labeled by the matrices As1 , . . . , Asr

from
M means that (As1 · · · Asr

)kl > 0. Since M is irreducible, it follows that DM
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is strongly connected and so, since V has cardinality n, any pair of vertices in
DM are connected by a path of length at most n − 1. Consider a path connect-
ing vertex i to vertex j whose edges are sequentially labeled by the matrices
As1 , . . . , Ast

from M and let B = As1 · · · Ast
. Clearly B ∈ Mn−1; furthermore

it holds that Bij > 0 and so supp(A∗i) ⊆ supp
(
(AB)∗j

)
. 
�

Definition 2. Let M be a finite set of n × n NZ matrices. We define the pair
digraph of the set M as the labeled directed graph PD(M) = (V, E) where V =
{(i, j) : 1 ≤ i ≤ j ≤ n} is the vertex set and (i, j) → (i′, j′) ∈ E if and only if
there exists A ∈ M such that

Aii′ > 0 and Ajj′ > 0, or Aij′ > 0 and Aji′ > 0. (2)

An edge (i, j) → (i′, j′) ∈ E is labeled by any matrix A ∈ M for which Eq. (2)
holds. A vertex of the form (s, s) is called a singleton.

Lemma 2. Let M be a finite set of n×n NZ matrices and let PD(M) = (V, E)
be its pair digraph. Let i, j, k ∈ [n] and suppose that there exists a path in
PD(M) from the vertex (i, j) to the singleton (k, k) having the edges sequen-
tially labeled by the matrices As1 , . . . , Asl

from M. Then it holds that for every
A ∈ M, supp(A∗i) ∪ supp(A∗j) ⊆ supp((AAs1 · · · Asl

)∗k). Furthermore if M is
irreducible, then M is primitive if and only if for any (i, j) ∈ V there exists a
path in PD(M) from (i, j) to some singleton.

Proof. By the definition of the pair digraph PD(M) (Definition 2), the exis-
tence of a path in PD(M) from vertex (i, j) to vertex (k, k) labeled by the
matrices As1 , . . . , Asl

implies that (As1 · · · Asl
)ik > 0 and (As1 · · · Asl

)jk > 0.
By Lemma 1, it follows that supp(A∗i) ∪ supp(A∗j) ⊆ supp

(
(AAs1 · · · Asl

)∗k

)
.

Suppose now that M is irreducible. If M is primitive, then there exists a
product M of matrices from M such that for all i, j, Mij > 0. By the definition of
PD(M), this implies that any vertex in PD(M) is connected to any other vertex.
On the other hand, if every vertex in PD(M) is connected to some singleton,
then for every i, j, k ∈ [n] there exists a product As1 · · · Asl

of matrices from M
such that (As1 · · · Asl

)ik > 0 and (As1 · · · Asl
)jk > 0. This suffices to establish

the primitivity of M by Theorem 1 in [1]5. 
�

3 The K-Rendezvous Time and a Recurrence Relation
for Its Upper Bound

In this section, we define the k-rendezvous time of a primitive set of n × n NZ
matrices and we prove a recurrence relation for a function Bk(n) that upper
bounds it.

5 The theorem states that the following condition is sufficient for an irreducible matrix
set M to be primitive: for all indices i, j, there exists an index k and a product M
of matrices from M such that Mik > 0 and Mjk > 0.
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Definition 3. Let M be a primitive set of n×n NZ matrices and 2 ≤ k ≤ n. We
define the k-rendezvous time (k-RT) to be the length of the shortest product of
matrices from M having a column or a row with k positive entries and we denote
it by rtk(M). We indicate with rtk(n) the maximal value of rtk(M) among all
the primitive sets M of n × n NZ matrices.

Our goal is to find, for any n ≥ 2 and 2 ≤ k ≤ n, a function Bk(n) such that
rtk(n) ≤ Bk(n).

Definition 4. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1. We denote
by Sn

k the set of all the n×n NZ matrices having every row and column of weight
at most k and at least one column of weight exactly k. For any A ∈ Sk

n, let CA

be the set of the indices of the columns of A having weight equal to k. We define
an

k (A) = minc∈CA
|{i : supp(A∗i) � supp(A∗c)}| and an

k = minA∈Sk
n

an
k (A).

In other words, an
k (A) is the minimum over all the indices c ∈ CA of the number

of columns of A whose support is not contained in the support of the c-th
column of A. Since the matrices are NZ, it clearly holds that for any A ∈ Sk

n,
1 ≤ an

k ≤ an
k (A). The following theorem shows that for every n ≥ 2, we can

recursively define a function Bk(n) ≥ rtk(n) on k by using the term an
k .

Theorem 2. Let n ≥ 2 integer. The following recursive function Bk(n) is such
that for all 2 ≤ k ≤ n, rtk(n) ≤ Bk(n).

{
B2(n) = 1
Bk+1(n) = Bk(n) + n(1 + n − an

k )/2 for 2 ≤ k ≤ n − 1.
(3)

Proof. We prove the theorem by induction.
Let k = 2. Any primitive set of NZ matrices must have a matrix with a row

or a column with two positive entries, as otherwise it would be made of just
permutation matrices and hence it would not be primitive. This trivially implies
that rt2(n) = 1 ≤ B2(n).

Suppose now that rtk(n) ≤ Bk(n), we show that rtk+1(n) ≤ Bk+1(n). We
remind that we denote with Md the set of all the products of matrices from
M having length smaller than or equal to d. If in Mrtk(M)+n−1 there exists a
product having a column or a row with k + 1 positive entries then rtk+1(M) ≤
rtk(M) + n − 1 ≤ Bk+1(n). Suppose now that this is not the case. This means
that in Mrtk(M)+n−1 every matrix has all the rows and columns of weight at
most k. Let A ∈ Mrtk(M) be a matrix having a row or a column of weight k,
and suppose it is a column. The case when A has a row of weight k will be
studied later. By Lemma 1 applied on the matrix A, for every i ∈ [n] there exists
a matrix Wi ∈ Mrtk(M)+n−1 having the i-th column of weight k (and all the
other columns and rows of weight ≤k). Every Wi has at least an

k (see Definition 4)
columns whose support is not contained in the support of the i-th column of Wi:
let c1i , c

2
i , . . . , c

an
k

i be the indices of these columns. Notice that any product B of
matrices from M of length l such that Bis > 0 and Bcjis > 0 for some s ∈ [n]
and j ∈ [an

k ] would imply that WiB has the s-th column of weight at least k + 1
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and so rtk+1(M) ≤ rtk(M) + n − 1 + l. We now want to minimize this length
l over all i, s ∈ [n] and j ∈ [an

k ]: we will prove that there exists i, s ∈ [n] and
j ∈ [an

k ] such that l ≤ n(n − 1 − an
k )/2 + 1. To do this, we consider the pair

digraph PD(M) = (V, E) (see Definition 2) and the vertices

(1, c11), (1, c21), . . . , (1, c
an
k

1 ), (2, c12), . . . , (2, c
an
k

2 ), . . . , (n, c1n), . . . , (n, c
an
k

n ). (4)

By Lemma 2, for each vertex in Eq. (4) there exists a path in PD(M) connecting
it to a singleton. By the same lemma, a path of length l from (i, cj

i ) to a singleton
(s, s) would result in a product Bj of matrices from M of length l such that
WiBj has the s-th column of weight at least k + 1. We hence want to estimate
the minimal length among the paths connecting the vertices in Eq. (4) to a
singleton. Notice that Eq. (4) contains at least nan

k/2� different elements, since
each element occurs at most twice. It is clear that the shortest path from a vertex
in the list (4) to a singleton does not contain any other element from that list. The
vertex set V of PD(M) has cardinality n(n + 1)/2 and it contains n vertices of
type (s, s). It follows that the length of the shortest path connecting some vertex
from the list (4) to some singleton is at most of n(n + 1)/2 − n − nan

k/2� + 1 ≤
n(n − 1 − an

k )/2 + 1. In view of what said before, we have that there exists a
product B of matrices from M of length ≤ n(n − 1 − an

k )/2 + 1 and i ∈ [n]
such that WiBj has a column of weight at least k + 1. Since WiBj belongs to
Mrtk(M)+n−1+n(n−1−an

k )/2+1, it follows that rtk+1(M) ≤ rtk(M) + n(n + 1 −
an

k )/2 ≤ Bk+1(n).
Suppose now A ∈ Mrtk(M) has a row of weight k. We can use the same

argument as above on the matrix set MT made of the transpose of all the
matrices in M. 
�
Notice that the above argument stays true if we replace an

k by a function b(n, k)
such that for all n ≥ 2 and 2 ≤ k ≤ n − 1, 1 ≤ b(n, k) ≤ an

k . It follows that
Eq. (3) still holds true if we replace an

k by b(n, k).

4 Solving the Recurrence

We now find an analytic expression for a lower bound on an
k and we then solve

the recurrence (3) in Theorem 2 by using this lower bound. We then show that
this is the best estimate on an

k we can hope for.

Lemma 3. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1, and let an
k as

in Definition 4. It holds that an
k ≥ max{n − k(k − 1) − 1, (n − k)/k�, 1}.

Proof. We have that an
k ≥ 1 since k ≤ n − 1 and the matrices are NZ.

Let now A ∈ Sk
n (see Definition 4) and let a be one of its columns of weight

k. Let S = supp(a); by assumption, the rows of A have at most k positive
entries, so there can be at most (k − 1)k columns of A different from a whose
support is contained in S. Therefore, since A is NZ, there must exist at least
n − k(k − 1) − 1 columns of A whose support is not contained in supp(a) and so
an

k ≥ n − k(k − 1) − 1.
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Let again A ∈ Sk
n and let a be one of its columns of weight k. Let S =

[n]\supp(a); S has cardinality n − k and since A is NZ, for every s ∈ S there
exists s′ ∈ [n] such that Ass′ > 0. By assumption each column of A has weight
of at most k, so there must exist at least (n−k)/k� columns of A different from
a whose support is not contained in supp(a). It follows that an

k ≥ (n−k)/k�. 
�
Since (n − k)/k� ≥ (n − k)/k, n − k(k − 1) − 1 ≥ (n − k)/k for k ≤

�√n� and (n − k)/k ≥ 1 for k ≤ �n/2�, the recursion (3) with an
k replaced by

max{n − k(k − 1) − 1, (n − k)/k, 1} now reads as:

B̃k+1(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if k = 1
B̃k(n) + n(1 + k(k − 1)/2) if 2 ≤ k ≤ �√n�
B̃k(n) + n(1 + n(k − 1)/2k) if �√n� + 1 ≤ k ≤ �n/2�
B̃k(n) + n2/2 if �n/2� + 1 ≤ k ≤ n − 1

. (5)

The following proposition shows the solution of the recursion (5):

Proposition 2. Equation (5) is fulfilled by the following function:

B̃k(n)=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n(k3 − 3k2 + 8k − 12)

6
+ 1 if 2 ≤ k ≤ �√n�

B̃�√
n�(n) +

n(n+ 2)(k − �√n�)
2

− n2

2

k−1∑
i=�√

n�

1

i
if �√n� + 1 ≤ k ≤ � n

2
�

B̃� n
2 �(n) +

(k − � n
2

�)n2

2
if � n

2
� + 1 ≤ k ≤ n

. (6)

Therefore, for any constant k such that k ≤ √
n, the k-rendezvous time rtk(n)

is at most linear in n.

Proof. If 2 ≤ k ≤ �√n�, let Ck(n) = B̃k(n)/n. By Eq. (5), it holds that
Ck+1(n)−Ck(n) = 1+k(k−1)/2. By setting Ck(n) = αk3+βk2+γk+δ, it follows
that 3αk2 +(3α+2β)k +α+β +γ = k2/2−k/2+1. Since this must be true for
all k, by equating the coefficients we have that Ck(n) = k3/6 − k2/2 + 4k/3 + δ.
Imposing the initial condition B̃2(n) = 1 gives finally the desired result B̃k(n) =
n(k3 − 3k2 + 8k − 12)/6 + 1.

If �√n� + 1 ≤ k ≤ �n/2�, let again Ck(n) = B̃k(n)/n. By Eq. (5), it holds
that Ck+1(n) − Ck(n) = 1 + n(k − 1)/2k and so Ck(n) = C�√

n�(n) + (k −
2)(1 + n/2) − (n/2)

∑k−1
i=�√

n� i−1. Since C�√
n�(n) = B̃�√

n�(n)/n, it follows that

B̃k(n) = B̃�√
n�(n) + (k − �√n�)n(n + 2)/2 − (n2/2)

∑k−1
i=�√

n� i−1.
If �n/2�+1 ≤ k ≤ n−1, by Eq. (5) it is easy to see that B̃k(n) = B̃�n/2�(n)+

(k − �n/2�)n2/2, which concludes the proof. 
�
We now show that an

k =max{n − k(k − 1) − 1, (n − k)/k�, 1}, and so we cannot
improve the upper bound B̃k(n) on rtk(n) by improving our estimate of an

k .
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Lemma 4. Let n, k integers such that n ≥ 2 and 2 ≤ k ≤ n − 1. It holds that:

1 ≤ an
k ≤ u(n, k) :=

{
n − k(k − 1) − 1 if n − k(k − 1) − 1 ≥ (n − k)/k�
(n − k)/k� otherwise

.

Proof. We need to show that for every n ≥ 2 and 2 ≤ k ≤ n − 1, there exists a
matrix A ∈ Sk

n such that an
k (A) = u(n, k) (see Definition 4). We define the matrix

Cm1×m2
i as the m1 × m2 matrix having all the entries of the i-th column equal

to 1 and all the other entries equal to 0, and the matrix Rm1×m2
i as the m1 ×m2

matrix having all the entries of the i-th row equal to 1 and all the other entries
equal to 0. We indicate with 0m1×m2 the m1 × m2 matrix having all its entries
equal to zero and with Im×m the m×m identity matrix. Let vn

k = (n−k)/k�+1
and q = n mod k.
Suppose that n−k(k−1)−1 ≥ (n−k)/k� and set α = n−k(k−1)−1−(n−k)/k�.
Then the following matrix Â is such that an

k (Â) = n − k(k − 1) − 1 = u(n, k):

Â =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
k×vn

k
1 R

k×(k−1)
1 R

k×(k−1)
2 · · · R

k×(k−1)
k

C
k×vn

k
2
... 0(n−k)×[k(k−1)] D

C
k×vn

k
vn
k −1

C
q×vn

k
vn
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,D =

⎡

⎣
0k×α

Iα×α

0(n−k−α)×α

⎤

⎦ .

Indeed by construction, the first column of Â has exactly k positive entries. The
columns of Â whose support is not contained in Â∗1 are the columns Â∗i for
i = 2, . . . , vn

k and all the columns of D. In total we have (n − k)/k� + α =
n − k(k − 1) − 1 columns, so it holds that an

k (Â) = n − k(k − 1) − 1.
Suppose that n − k(k − 1) − 1 ≤ (n − k)/k�. Then the following matrix Ã

is such that an
k (Ã) = (n − k)/k� = u(n, k):

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
k×vn

k
1 R

k×(k−1)
1 R

k×(k−1)
2 · · · R

k×(k−1)
k−1 R

k×(n−vn
k −(k−1)2)

k

C
k×vn

k
2
...

C
k×vn

k
vn
k −1 0(n−k)×(n−vn

k )

C
q×vn

k
vn
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Indeed by construction, the first column of Ã has exactly k positive entries and
the columns of Ã whose support is not contained in Ã∗1 are the columns Ã∗i for
i = 2, . . . , vn

k . Therefore it holds that an
k (Ã) = vn

k − 1 = (n − k)/k�. 
�

5 Numerical Results

We report here some numerical results that compare the theoretical bound B̃k(n)
on rtk(n) of Eq. (6) with either the exact k-RT or with an heuristic approxima-
tion of the k-RT when the computation of the exact value is not computationally
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feasible. In Fig. 2 we compare our bound with the real k-RT of the primitive sets
MCPR and MK reported here below:

MCPR =

⎧
⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 1 0
1 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭

, MK =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The sets MK and MCPR are primitive sets of matrices that are based on the
Kari automaton [21] and the Černý-Piricka-Rozenaurova automaton [40] respec-
tively. We can see that for small values of k, the upper bound is fairly close to
the actual value of rtk(M).

Fig. 2. Comparison between the bound B̃k(n), valid for all primitive NZ sets, and
rtk(M) for M = MCPR (left) and M = MK (right).

When n is large, computing the k-RT for every 2 ≤ k ≤ n becomes hard,
so we compare our upper bound on the k-RT with a method for approximating
it. The Eppstein heuristic is a greedy algorithm developed by Eppstein in [11]
for approximating the reset threshold of a synchronizing automaton. Given a
primitive set M of binary NZ matrices, we can apply a slightly modified Eppstein
heuristic to obtain, for any k, an upper bound on rtk(M). The description of
this modified heuristic is not reported here due to length restrictions.

In Fig. 3 we compare our upper bound with the results of the Eppstein heuris-
tic on the k-RT of the primitive sets with quadratic exponent presented by Cata-
lano and Jungers in [6], Sect. 4; here we denote these sets by MCn

where n is
the matrix dimension. Finally, Fig. 4 compares the evolution of our bound with
the results of the Eppstein heuristic on the k-RT of the family MCn

for fixed
k = 4 and as n varies. It can be noticed that the bound B̃k(n) does not increase
very rapidly as compared to the Eppstein approximation.
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(a) n = 10, M = MC10
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Fig. 3. Comparison between B̃k(n) and the Eppstein approx. of rtk(M), for M =
MC10 (left) and M = MC25 (right). We recall that B̃k(n) is a generic bound valid for
all primitive NZ sets, while the Eppstein bound is computed on each particular set.
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Fig. 4. Comparison between B̃k(n) and the Eppstein approx. of rtk(MCn) for k = 4.
We recall that B̃k(n) is a generic bound valid for all primitive NZ sets, while the
Eppstein bound is computed on each particular set.

6 Conclusions

In this paper we have shown that we can upper bound the length of the shortest
product of a primitive NZ set M having a column or a row with k positive entries
by a linear function of the matrix size n, for any constant k ≤ √

n. We have
called this length the k-rendezvous time (k-RT) of the set M, and we have shown
that the same linear upper bound holds for min

{
rtk

(
Aut(M)

)
, rtk

(
Aut(MT )

)}
,

where Aut(M) and Aut(MT ) are the synchronizing automata defined in Defini-
tion 1. We have also showed that our technique cannot be improved as it already
takes into account the worst cases, so new strategies have to be implemented in
order to possibly obtain a better upper bound on rtk(n). The notion of k-RT
for primitive sets comes as an extension to primitive sets of the one introduced
for synchronizing automata. For automata, the problem whether there exists a
linear upper bound on the k-RT for small k is still open, as the only nontrivial
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result on the k-RT that appears in the literature, to the best of our knowledge,
proves a quadratic upper bound on the 3-RT [17]. We believe that our result
could help in shedding light to this problem and possibly to the Černý conjec-
ture, in view of the connection between synchronizing automata and primitive
NZ sets established by Theorem 1.
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