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a b s t r a c t

We consider a recursion formula for multi-dimensional powers of a finite set of matrices, which can be
interpreted as a natural generalization of the celebrated Cayley–Hamilton theorem, and we show how
it allows to solve an algebraic decision problem on a semigroup of matrices, which bears similarities
to the observability problem of a switched linear system. This problem appears in the computation
of the H2 norm of a stable system described by a class of linear time-invariant delay differential
equations (DDAEs) with multiple delays. The H2 norm of a DDAE may not be finite even if there
are seemingly no direct feedthrough terms. We show that necessary and sufficient conditions for a
finite H2 norm consist of an infinite number of linear equations to be satisfied, inducing the algebraic
decision problem, and that using the generalized Cayley–Hamilton theorem checking these conditions
can be turned into a check of a finite number of equations. We conclude with some comments on the
computation of the H2 norm whenever it is finite and by stating an open problem.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Finitely generated semigroups of matrices play an important
role in systems and control. These are (often infinite) sets of
matrices, which consist of all the arbitrary products of matrices
that are taken from a finite set of matrices of the same dimension.
Given such a finite set of matrices (the generators), many different
questions can be asked about the set that they generate. As a
natural example, let us consider a discrete-time switched system:
given a set M = {A1, . . . , Am} ⊂ Rn×n, the corresponding
switched system is described by the following equation:

x(k + 1) = Aσ (k)x(k), σ (k) ∈ {1, . . . ,m}.

That is, such a system has linear dynamics, but the matrix applied
to the system is not uniquely defined, and may take at every time
k an arbitrary value in the set M. A natural question for a control
theorist is whether such a system has bounded trajectories, what-
ever switching sequence occurs. The question can be translated
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into a property of the semigroup of matrices generated byM : are
all the products in the semigroup bounded by a constant K? This
question is algorithmically undecidable as proved by Blondel and
Tsitsiklis (2000). In fact, many simply-looking problems become
very hard to solve when asked on a semigroup of matrices. The
mortality problem is another striking example: given a finitely
generated semigroup (described by its generators), is the zero
matrix a member of the semigroup? Several other problems in
control theory reduce to a problem on semigroups of matrices.
Interestingly, continuous-time switched systems are also ruled by
properties of the semigroup generated by their matrices, while
the connection is less evident than for discrete time (see Agrachev
and Liberzon (2001) for a celebrated result connecting stability
properties of a continuous-time switched system with the Lie
Algebra generated by the corresponding set of matrices). Other
applications involving semigroups of matrices include consensus
problems (Jadbabaie, Lin & Morse, 2003) or variable delays in
wireless control networks (Jungers, D’Innocenzo & Di Benedetto,
2016). Even though many natural problems become very hard
when more than one matrix is involved in the dynamics, in some
situations an efficient algorithm can be found. This is famously
the case of deciding consensus for a system of multi-agents com-
municating on time-varying topologies (see Chevalier, Hendrickx
and Jungers (2015) and references therein for a survey of results
on this problem).
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In this paper, we consider a problem originating from delay
differential algebraic equations (DDAEs), and show how it leads
to an algorithmic decision problem on a semigroup of matrices,
which can be stated as follows. Consider a set of generators M =

{A1, . . . , Am} ⊂ Rn×n, and matrices B ∈ Rn×nb , C ∈ Rnc×n. Define
the matrix polynomial

Pk1,...,km (A1, . . . , Am) := A1Pk1−1,k2,...,km (A1, . . . , Am)
+ A2Pk1,k2−1,...,km (A1, . . . , Am) + · · ·+

+ AmPk1,k2,...,km−1(A1, . . . , Am)

for any kj ∈ Z+, j = 1, . . . ,m, P0,...,0(A1, . . . , Am) := I , and
Pk1,...,km (A1, . . . , Am) := 0 if any kj ∈ Z−−, j = 1, . . . ,m.
Here, Z+ and Z−− denote the set of nonnegative integers in-
cluding zero, and negative integers, respectively. We notice that
Pk1,...,km (A1, . . . , Am), kj ∈ Z+, is a matrix polynomial of degree
κ = k1 + · · · + km in m variables, which consist of the sum of
all monomials of order kj in Aj, j = 1, . . . ,m, and the number
of monomials for a given m-tuple (k1, . . . , km) is (k1+···+km)!

k1!···km!
. We

address the following problem:

Problem 1. Find a finite test for determining that the following
condition holds:

CPk1,...,km (A1, . . . , Am)B = 0, ∀kj ∈ Z+, j = 1, . . . ,m, (1)

where B ∈ Rn×nb and C ∈ Rnc×n are different from zero.

For instance, in the case m = 2, condition (1) takes the form

CP0,0B = CB = 0,
CP1,0B = CA1B = 0, CP0,1B = CA2B = 0,
CP2,0B = CA2

1B = 0, CP1,1B = C (A1A2 + A2A1) B = 0,
CP0,2B = CA2

2B = 0, CP3,0B = CA3
1B = 0,

CP2,1B = C(A2
1A2 + A1A2A1 + A2A2

1)B = 0, . . .

(2)

We note that problem can also be stated as follows: is there a
set of indices k1, . . . , km ∈ Z+, such that CPk1,...,kmB ̸= 0? While, to
the best of our understanding, nothing could indicate a priori that
the problem is efficiently tractable, we show that one can indeed
provide an efficient, polynomial time, algorithm.

The classic Cayley–Hamilton theorem (CH theorem from now
on) establishes that every square matrix A ∈ Rn×n satisfies its
own characteristic equation, i.e. p(A) = 0, where p(x) := det(xI −
A). An implication of this is that every power k ⩾ n of matrix A can
be expressed as a linear combination of Ak, k = 1, . . . , n− 1. The
classic CH theorem is useful if only one matrix A1 is considered
in Problem 1, i.e. m = 1. For this case, condition (1) reduces to

CAk1
1 B = 0, ∀k1 ∈ Z+, (3)

and by the CH theorem a finite test for determining that (3) holds
is that CAk1

1 B = 0 for k1 = 0, 1, . . . , n − 1.
Although condition (1) involves products of the form

CAk
j B = 0, j = 1, . . . ,m, (4)

for any k ∈ Z+, the reasoning for the case m = 1 cannot be
applied, as shown in the next example.

Example 1. Consider m = 2 and matrices

A1 =

(1 1 0
1 1 0
1 1 1

)
, A2 =

(1 0 0
1 1 1
1 1 1

)
,

BT
=
(
0 0 1

)
, C =

(
1 0 0

)
.

One can check by direct calculation that

CAk
1B = 0, and CAk

2B = 0,

for k = 0, 1, 2, therefore, by the CH theorem equation (4) holds
for j = 1, 2, for all k ∈ Z+. However,

C (A1A2 + A2A1) B ̸= 0.

The cornerstone of our solution to Problem 1 is the
m-dimensional CH theorem. Several ‘‘generalizations" of the clas-
sic CH theorem have been introduced in the last few decades,
most of them aiming at studying mD systems (Givone & Roesser,
1973; Theodorou, 1989; Smart & Barnett, 1989). See also Kac-
zorek (2005), Kaczorek (2018), Xing (2009), and the references
therein. The m-dimensional CH theorem that we present is a nat-
ural extension of the two-dimensional case introduced in Givone
and Roesser (1973) in the study of 2D systems, and of Theorem
2 in paper (Kaczorek, 2018), which is devoted to the analysis
of fractional systems. It is a generalization of the classic one
in the sense that it presents a recursion formula for m-tuple
powers of a block matrix. A similar generalization is presented
in Theodorou (1989), requiring the definition of input and output
of mD systems. Here, we avoid such definitions by using the
ideas introduced by Vilfan (1973). An appropriate construction
of a block matrix consisting of matrices Aj, j = 1 . . . ,m, allows
us to use the m-dimensional CH theorem to express any matrix
polynomial of the form Pk1...,km (A1, . . . , Am) of degree κ ⩾ mn
as a linear combination of matrix polynomials of the same class
of degree κ < mn. This fact enables us to solve Problem 1,
since we can test condition (1) by uniquely testing the products
corresponding to matrix polynomials of order κ < mn.

Problem 1 is motivated by determining the conditions under
which the transfer matrix of a difference equation with multiple
delays is zero, which is related with the H2 norm analysis of
DDAEs. The H2 norm is widely used as a performance index
in the field of automatic control (Zhou, Doyle & Glover, 1996),
and it has been object of study for time-delay systems in recent
years (see Jarlebring, Vanbiervliet and Michiels (2011) Gomez,
Egorov, Mondié and Michiels (2018), Sumacheva and Kharitonov
(2014) and the references therein). However, up to the best of the
author’s knowledge, there are no results addressing the analysis
of the H2 norm of differential algebraic equations with multiple
delays, despite its practical and theoretical relevance.

In contrast with the H2 norm of other classes of time-delay
systems, the H2 norm of DDAE might be infinite even if the sys-
tem has no seemingly feedthrough term or is stable (see Egorov
and Michiels (2017), Gomez and Michiels (2019), for the one
delay case). Solving Problem 1 allows us to provide a finite test for
determining the finiteness of theH2 norm of differential algebraic
equations with multiple delays.

The paper is organized as follows. In Section 2, we explain
the motivation and background of Problem 1, and in Section 3,
we introduce the m-dimensional CH theorem. The solution of
Problem 1 is presented in Section 4. Moreover, we provide a more
efficient algorithm in the case in which all the parameters are
nonnegative. In Section 5, we show the link between Problem 1
and the finiteness analysis of the H2 norm of DDAE, leading to a
tractable test for finiteness. We end the contribution with some
final comments.

We adopt the following notation. The symbol Z denotes the
set of integer numbers. The sets of real and positive real numbers
including the zero are denoted by R and R+, respectively. The
sum over all indexes (k1, . . . , km) such that k := (k1, . . . , km) ∈ Ω ,
for a given set Ω , is denoted by

∑
k∈Ω

. Multiple sums with the same

lower limit i and upper limit j of the form
j∑

k1=i

· · ·

j∑
km=i

are denoted

by
j∑

k1,...,km=i

for shortness.
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Fig. 1. Behavior of (8) on t ∈ [0, h1 + h2] considering two delays. The values of
Pk1,k2 (A1, A2) in the figure are as follows: P00 = I , P1,0 = A1 , P2,0 = A2

1 , P01 = A2
and P1,1 = A1A2 + A2A1 .

2. Background and motivation of the problem

Consider system

x(t) =

m∑
j=1

Ajx(t − hj) + Bu(t), t ⩾ 0,

y(t) =Cx(t),

(5)

where 0 < h1 < · · · < hm are the delays and matrices
A1, . . . , Am, B and C as previously given. The delays might be
rationally dependent or rationally independent. We say that hj,
j = 1, . . . ,m, are rationally dependent delays if there exists a
m-tuple (c1, . . . , cm) ∈ Zm

\ {0⃗} such that
m∑
j=1

cjhj = 0. (6)

If such m-tuple does not exist, then hj, j = 1, . . . ,m, are rationally
independent delays, i.e. the only solution of (6) is (c1, . . . , cm)

= 0⃗.
The impulse response in the frequency domain of system (5)

is given by the transfer matrix

Ga(s) := C

⎛⎝I −

m∑
j=1

Aje−shj

⎞⎠−1

B, s ∈ C. (7)

Determining whether Ga is zero is closely related with the anal-
ysis of the H2 norm of DDAE. More precisely, for given matrices
Aj, B and C , Ga(s) ≡ 0 is a necessary and sufficient condition for
the finiteness of the H2 norm of DDAE with multiple delays (this
is formally proved in Section 5). In what follows, we establish
a link between condition (1) and the condition under which
Ga(s) ≡ 0.

By considering the unit impulse in the input u(t) in system (5),
one obtains in the output

y(t) = C
∞∑

k1,...,km=0

Pk1,...,km (A1, . . . , Am) ·

·δ (t − k1h1 − · · · − kmhm) B, (8)

where kj ∈ Z+, j = 1, . . . ,m, and δ(t) is the Kronecker delta
function (see Fig. 1 for the sake of illustration). If the delays hj,
j = 1, . . . ,m, are rationally independent, then it is not possible
that for any m-tuples (k1, . . . , km) ∈ Zm

+
and (k∗

1, . . . , k
∗
m) ∈ Zm

+

such that (k1, . . . , km) ̸= (k⋆
1, . . . , k

⋆
m) the equality

k1h1 + · · · + kmhm = k∗

1h1 + · · · + k∗

mhm (9)

holds. Hence, it follows from (8) that the impulse response of
system (5) is determined by a sequence of products of the form

CPk1,...,km (A1, . . . , Am)B, kj ∈ Z+, j = 1, . . . ,m,

and condition (1) is necessary and sufficient for Ga(s) ≡ 0.
In the case of rationally dependent delays only the sufficiency

direction holds, i.e. condition (1) implies that Ga(s) = 0, but
not the necessity. Indeed, in this case there exist two m-tuples
(k1, . . . , km) ∈ Zm

+
and (k∗

1, . . . , k
∗
m) ∈ Zm

+
whose elements are not

all zero such that (k1, . . . , km) ̸= (k∗

1, . . . , k
∗
m) and (9) holds. From

(8), this implies that the output of system (5) at t = k1h1 + · · · +

kmhm contains at least terms of the form

CPk1,...,km (A1, . . . , Am)B + CPk∗1,...,k∗m (A1, . . . , Am)B,

whose zero sum does not imply in general that each term is zero.
Thus, from the previous arguments, we arrive at the next

proposition.

Proposition 1. The following statements hold:

(1) If the delays hj, j = 1, . . . ,m, are rationally dependent, then
condition (1) is sufficient for Ga(s) ≡ 0.

(2) If the delays hj, j = 1, . . . ,m, are rationally independent then
condition (1) is necessary and sufficient for Ga(s) ≡ 0.

The set of rationally independent delays is dense in Rm
+
, and

in applications, model parameters are always subject to pertur-
bations. If the delays correspond to independent parameters, it
is natural to take into account small perturbations and test the
most stringent criterion, corresponding to rationally independent
delays. Hence, this criterion is necessary and sufficient if small
delay perturbations are taken into account.

Sometimes delays might be rationally dependent as a re-
sult of mathematical modeling, e.g. when they depend on a
smaller number of independent physical parameters, as in the
case (h1, h2, h3) = (r1, r2, r1 + r2) with r1 and r2 the physical
parameters. In such a case, it might not be possible to obtain
rationally independent delays by perturbing the physical parame-
ters. In general, if the delays h1, . . . , hm are rationally dependent,
there always exist a smaller number p of rationally independent
numbers (r1, . . . , rp) and a matrix R ∈ Zm×p

+ of full column rank
such that (Michiels, Vyhlídal, Zítek, Nijmeijer & Henrion, 2009)⎛⎜⎝h1

...

hm

⎞⎟⎠ = R

⎛⎜⎝r1
...

rp

⎞⎟⎠ .

With the following example we show how a delay-difference
equation with rationally dependent delays can always be trans-
formed into a delay-difference equation with rationally indepen-
dent delay.

Example 2. Consider system (5) with delays (h1, h2, h3) = (r1, r2,
r1 + r2). We have that

Bu(s) =
(
I − A1e−sr1 − A2e−sr2 − A3e−s(r1+r2)

)
x(s),

y(s) = Cx(s).
(10)

By using the change of variables

x1(s) = x(s), x2(s) = e−sr2x(s),

we rewrite (10) as(
B
0

)
u(s) =

=

(
x1(s)
x2(s)

)
−

(
A1e−sr1 + A2e−sr2 A3e−sr1

e−sr2 I 0

)(
x1(s)
x2(s)

)
,

y(s) =
(
C 0

) (x1(s)
x2(s)

)
.

(11)
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From (11), we obtain a transfer matrix of the form (7) which
corresponds to the delay-difference equation

xl(t) =

(
A1 A3
0 0

)
xl(t − h1)

+

(
A2 0
I 0

)
xl(t − h2) +

(
B
0

)
u(t),

y(t) =
(
C 0

)
xl(t).

3. The m-dimensional CH theorem

In this section, we introduce the m-dimensional CH theorem.
In order to do so, we consider the block matrix

D =

⎛⎜⎝D11 . . . D1m
...

...

Dm1 . . . Dmm

⎞⎟⎠ ∈ Rmn×mn, (12)

where Dij ∈ Rn×n, and inspired by Givone and Roesser (1973),
Kaczorek (2018), we introduce the next definition.

Definition 2. Consider matrices

D[1,0,...,0]
:=

(D11 . . . D1m
0
0

)
, . . . ,

D[0,0,...,1]
:=

( 0
0

Dm1 . . . Dmm

)
.

The m-tuple power of D, denoted by D[k1,...,km], is defined as

D[k1,...,km]
:=D[1,...,0]D[k1−1,...,km]

+

+ . . . + D[0,...,1]D[k1,...,km−1],
(13)

where kj ∈ Z+, j = 1, . . . ,m, D[0,...,0]
:= I , and D[k1,...,km]

:= 0 if
any kj ∈ Z−−.

The following lemma, which relates a power of the block
matrix D with a power in the sense of the previous definition,
is key in the deduction of the main theorem of this section.

Lemma 3. The equality

Dj
=

∑
k∈Ωj

D[k1,...,km] (14)

holds for any j ∈ Z+, where k := (k1, . . . , km) and Ωj :={
k ∈ Zm

:
∑m

i=1 ki = j
}
.

Proof. From (13), we have that for any q ∈ Z+∑
k∈Ωq

D[k1,...,km]
= D[1,0,...,0]

∑
k∈Ωq

D[k1−1,...,km]

+D[0,1,...,0]
∑
k∈Ωq

D[k1,k2−1...,km]
+ . . . +

+D[0,0,...,1]
∑
k∈Ωq

D[k1,...,km−1].

Notice that the function mapping (k1, . . . , km) into (k1−1, . . . , km)
is a bijection from Zm to Zm, and (k1, . . . , km) ∈ Ωq if and only
if (k1 − 1, k2, . . . , km) ∈ Ωq−1. The same holds for (k1, k2 −

1, . . . , km) ∈ Ωq−1, and so on. Then, by considering the change
of variable (l1, . . . , lm) = (k1 − 1, k2, . . . , km) in the first sum,
(l1, . . . , lm) = (k1, k2 − 2, . . . , km) in the second one, and so

on, and since D[l1,...,lm]
= 0 if any li is negative, the previous

expression can be written as∑
k∈Ωq

D[k1,...,km]
= D[1,0,...,0]

∑
l∈Ωq−1

D[l1,...,lm]
+

+D[0,1,...,0]
∑

l∈Ωq−1

D[l1,l2...,lm]
+ . . . +

+D[0,0,...,1]
∑

l∈Ωq−1

D[l1,...,lm]
=

=
(
D[1,0,...,0]

+ . . . + D[0,0,...,1]) ∑
l∈Ωq−1

D[l1,...,lm]
=

= D
∑

l∈Ωq−1

D[l1,...,lm],

and the result directly follows by induction.

We are now in position to introduce the m-dimensional CH
theorem. It is a generalization of the standard CH theorem in the
sense that any m-tuple power of the matrix D as in Definition 2
such that k1 + · · · + km ⩾ mn can be expressed as a linear
combination of m-tuple powers satisfying k1 + · · · + km < mn
via a recursion formula (see Givone and Roesser (1973) for the
case m = 2). For the case where k1 = k2 = · · · = km =

n the recursion formula reduces to the formula in Theorem 2
of Kaczorek (2018). The presented proof is inspired by Vilfan
(1973), and unlike the approach used in Theodorou (1989), the
proof presented here does not require the concept of input nor
output of any m-dimensional system.

Theorem 4. Given a block matrix D ∈ Rmn×mn, partitioned as in
(12), there exist ak1,...,km ∈ R such that

D[n+p1,...,n+pm]
= −

n∑
k1,...,km=0
k̸=(n,...,n)

ak1,...,kmD
[k1+p1,...,km+pm]

holds for any (p1, . . . , pm) ∈ Zm satisfying
m∑
i=1

pi ⩾ 0.

Proof. We consider the function

f (x1, . . . , xm) := det

⎛⎜⎝
⎛⎜⎝x1I . . . 0

. . .

0 . . . xmI

⎞⎟⎠− D

⎞⎟⎠ .

We have

f (x1, . . . , xm) =

n∑
l1,...,lm=0

al1,...,lmx
l1
1 . . . xlmm ,

where an,...,n = 1, and

g(x) = det (xI − D) =

mn∑
j=0

ajxj.

One observes that

f (x, . . . , x) = g(x),

which implies that

aj =

∑
l∈Ωj

al1,...,lm , j = 1 . . . ,mn, (15)
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where al1,...,lm = 0 whenever any li > n, or any li < 0, i =

1, . . . ,m. By the classic CH theorem, we have that
mn∑
j=0

ajDj
= 0.

Then, by substituting (15) in the previous expression and using
(14), we obtain
mn∑
j=0

∑
l∈Ωj

∑
k∈Ωj

al1,...,lmD
[k1,...,km]

= 0, (16)

where k = (k1, . . . , km) and l = (l1, . . . , lm). Notice that the coef-
ficients al1,...,lm are of degree n−li, i = 1, . . . ,m, in elements of the
ith block row of D, i.e. in elements of D[1,...,0], D[0,1...,0], . . ., D[0,...,1].
Similarly, observe that D[k1,...,km] are homogeneous polynomials of
degree ki in elements of the ith block row of D. Hence, the left
hand side of (16) is a sum of monomials of degree n − li + ki,
i = 1, . . . ,m, in elements of the ith block row of D. Restricting
(16) to the terms of order n, i.e. ki = li, i = 1, . . . ,m, with k ∈ Ωj,
we obtain
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1,...,km]

= 0. (17)

A slightly different proof of (17) can be found in Kaczorek (2018).
The above argument is however instrumental for the case where
(p1, . . . , p0) ̸= (0, . . . , 0), addressed in what follows.

Take now any (p1, . . . , pm) ∈ Zm satisfying the restriction
m∑
i=1

pi = 0. Restricting (16) to the terms of degree n + pi in the

ith block row of D, i = 1, . . . ,m, we have that ki = li + pi,
i = 1, . . . ,m, with k ∈ Ωj, and get
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1,...,km+pm]

= 0. (18)

Thus, since an,...,n = 1, by (17) and (18), we have that

D[n+p1,...,n+pm]
= −

n∑
k1,...,km=0
k̸=(n,...,n)

ak1,...,kmD
[k1+p1,...,km+pm] (19)

holds for all (p1, . . . , pm) ∈ Ω0. Then, by using the fact that
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1,...,km+pm]

=

= D[1,...,0]
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1−1,...,km+pm]

+

+ · · · + D[0,...,1]
mn∑
j=0

∑
k∈Ωj

ak1,...,kmD
[k1+p1,...,km+pm−1],

we obtain by induction that (19) holds for any (p1, . . . , pm) ∈ Zm

such that
m∑
i=1

pi ⩾ 0.

4. Solution of Problem 1

Let us consider the block matrix

A =

⎛⎜⎜⎝
A1 . . . A1
A2 . . . A2
...

...

Am . . . Am

⎞⎟⎟⎠ ∈ Rmn×mn,

which contains m matrices Aj in the jth block row. The solution to
Problem 1, provided in the next theorem, follows from Theorem 4
and a relation between the powers of matrix A in the sense of
Definition 2, and polynomials of the form Pk1,...,km (A1, . . . , Am).

Theorem 5. Condition (1), i.e. CPk1,...,km (A1, . . . , Am)B = 0 for all
(k1, . . . , km) ∈ Zm

+
, is satisfied if and only if

CPk1,...,km (A1, . . . , Am)B = 0, (20)

for all (k1, . . . , km) ∈ Zm such that
∑m

j=1 kj < mn.

Proof. The necessity is obvious. Let us prove the sufficiency. It
follows by induction that the equality

Pk1,...,km (A1, . . . , Am) =
1
m

ImA[k1,...,km]ITm, (21)

is satisfied for any (k1, . . . , km) ∈ Zm, where matrix Im ∈ Rn×mn

denotes a block matrix whose columns are m identity matrices of
dimension n, i.e. Im :=

(
I . . . I

)
. By Theorem 4, we have that

the block matrix A satisfies
1
m

CImA[l1,...,lm]ITmB =

= −
1
m

CIm
n∑

k1,...,km=0
k̸=(n,...,n)

ak1,...,kmA
[k1+l1−n,...,km+lm−n]ITmB

for any l := (l1, . . . , lm) ∈ Zm such that l1+· · ·+lm ⩾ mn. Consider
l ∈ Ωmn, and notice that k1 +· · ·+ km < mn implies that the sum
of the indexes of the m-tuple power of matrix A on the right hand
side of the previous expression is less than mn, i.e.
m∑
j=1

(
kj + lj − n

)
< mn.

Hence, by condition (20) and Eq. (21), we get

CPl1,...,lm (A1, . . . , Am)B =

=
1
m

CImA[l1,...,lm]ITmB = 0, ∀l ∈ Ωmn.

Consider now l ∈ Ωmn+1, then by the same arguments and using
previous equation, we obtain that

CPl1,...,lm (A1, . . . , Am)B =

=
1
m

CImA[l1,...,lm]ITmB = 0, ∀l ∈ Ωmn+1.

Thus, it follows by induction that

CPl1,...,lm (A1, . . . , Am)B = 0 ∀lj ∈ Z+, j = 1, . . . ,m.

The number of products of the form (20) that one has to test
in Theorem 5 is

1 +

mn−1∑
j=1

(j + m − 1)!
(m − 1)!j!

. (22)

One observes that it increases as the number m does. The nu-
merical complexity in the test can be considerably reduced for
the particular case in which all the elements of the matrices are
nonnegative. This is shown in the next theorem.

Theorem 6. Consider matrices A1, . . . , Am ∈ Rn×n
+ , B ∈ Rn×nb

+ and
C ∈ Rnc×n

+ . The following statements are equivalent:

(1) There exists kj ∈ Z+, j = 1, . . . ,m, such that

CPk1,...,km (A1, . . . , Am)B ̸= 0. (23)
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(2) There exists k̂ ∈ Z+ such that

C(A1 + · · · + Am)k̂B ̸= 0. (24)

Moreover, the latter condition can be checked in O(n2) oper-
ations, and if it holds, we have k̂ = k1 + · · · + km ⩽ n.

Proof. Item 1 ⇒ Item 2. Suppose that (23) holds. This implies
that one of the terms of

CPk1,...,km (A1, . . . , Am)B,

denoted by CMk1,...,km (A1, . . . , Am)B, must be different from zero.
Now, by using the fact that

(A1 + · · · + Am)q =

∑
l∈Ωq

Pl1,...,lm (A1, . . . , Am)

for any q ∈ Z+, and that all the elements in the sum are
nonnegative,

C (A1 + · · · + Am)k1+···+km B =

= C
∑

l∈Ωk1+···+km

Pl1,...,lm (A1, . . . , Am)B

⩾ CMk1,...,km (A1, . . . , Am)B, (25)

where A ⩾ B denotes the entry-wise inequality. This concludes
the first part of the proof.

Item 2 ⇒ Item 1. For the reverse implication, observe that
the sum in Eq. (25) is made of nonnegative terms, and thus it is
nonzero if and only if one of the terms is nonzero. Let this term
be CMk∗1,...,k∗m (A1, . . . , Am)B, of order k∗

j ∈ Z+ in Aj. We have that
(23) holds with these values of k∗

j , j = 1, . . . ,m, which concludes
the reverse direction.

Condition (24) can be efficiently checked as follows: First,
construct the directed graph on n vertices corresponding to the
matrix A1+A2+· · ·+Am. It is easy to see that condition (24) holds
if and only if this graph admits a path from a vertex vi to a vertex
vj such that Cei and BT ej are both different from zero. This can be
easily verified by performing a breadth-first search in the graph.
The length of such a path would be smaller than n (since there
are n vertices in the graph) and would provide constructively a
corresponding product such that CAσ1 . . . Aσ(k∗1+···+k∗m)

B ̸= 0. The
indices σ1, . . . , σ(k∗1+···+k∗m) of this product can be obtained by
labeling the edges of the graph depending on which matrix has
the corresponding entry different from zero (i.e., give label k to
the edge from node i to node j if the matrix Ak has a nonzero
(i, j)-entry), and defining σ as the sequence of labels in the
obtained path.

5. Analysis of the finiteness of H2 norm of DDAE

We consider system

E
d
dt

x̃(t) =

m∑
j=0

Ãjx̃(t − hj) + B̃u(t), t ⩾ 0,

y(t) = C̃ x̃(t),

(26)

where h0 = 0, x̃(t) ∈ Rñ, matrix E ∈ Rñ×ñ is possibly singular
with rank E = r , Ãj ∈ Rñ×ñ, j = 0, . . . ,m, B̃ ∈ Rñ×nb , and
C̃ ∈ Rnc×ñ. Systems of the form (26) are amenable for modeling
interconnected systems, which allows one to describe linear time
invariant retarded and neutral systems with delays in states, in-
puts and outputs, and systems with a nontrivial feedthrough (see
Gumussoy and Michiels (2011), Michiels and Niculescu (2014)).

A problem that arises in the study of the H2 norm of system
(26) is that it might be infinite even if the system is stable
(see Egorov and Michiels (2017) and Gomez and Michiels (2019)
for the one delay case). This can be seen from the fact that
this class of systems might hide nontrivial feedthrough terms, as
shown in the next example.

Example 3. Consider matrices

E =

(
I 0
0 0

)
, Ã0 =

(
H0 0
0 −I

)
, Ã1 =

(
H1 0
0 0

)
,

B̃ =

(
B
I

)
, C̃ =

(
C1 D

)
,

where matrices H0,H1, B, C1 and D are of appropriate dimensions.
For these matrices, considering x̃ =

(
xT1 xT2

)T , system (26) can
be written as
ẋ1(t) =H0x1(t) + H1x1(t − h) + Bu(t), t ⩾ 0
y(t) =C1x1(t) + Du(t),

where one can observe that there is a feedthrough term from u
to y.

In this section, we provide conditions for the finiteness of
the H2 norm based on the results presented in Section 4. We
first provide some basic facts concerning system (26), and then
address the finiteness analysis of the H2 norm.

5.1. Basic facts

Consider matrices
(
U1 U2

)
and

(
V1 V2

)
, which are the left

and right factor of the Singular Value Decomposition of matrix
E, respectively, where U1 ∈ Rn×r , U2 ∈ Rn×n−r , V1 ∈ Rn×r , and
V2 ∈ Rn×n−r . We consider the following assumption.

Assumption 7. Matrix UT
2 Ã0V2 is nonsingular.

This assumption implies that the differentiation index is one
(semi-explicit DDAE), and guarantees well posedness of the equa-
tion (Fridman, 2002; Michiels, 2011). The change of coordinates

x̃(t) =
(
V1 V2

) (x1(t)
x(t)

)
, x1(t) ∈ Rr , x(t) ∈ Rñ−r ,

and premultiplication of (26) by
(
U1 U2

)T allows us to rewrite
system (26) as coupled delay differential equations and delay
difference equation:

Ẽ
d
dt

x1(t) =

m∑
j=0

A(11)
j x1(t − hi)

+

m∑
j=0

A(12)
j x(t − hj) + B1u(t)

x(t) =

m∑
j=0

A(21)
j x1(t − hj)

+

m∑
j=1

Ajx(t − hj) + Bu(t)

y(t) =C1x1(t) + Cx(t),

(27)

where we have assumed without loss of generality that UT
2 Ã0V2 =

−I (otherwise it can be achieved by another transformation),
Ẽ = UT

1 EV1,

A(11)
j =UT

1 ÃjV1, A(12)
j = UT

1 ÃjV2,

A(21)
j =UT

2 ÃjV1, Aj = UT
2 ÃjV2,
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j = 0, . . . ,m, and

B1 = UT
1 B̃, B = UT

2 B̃, C1 = C̃V1, C = C̃V2.

Existence and uniqueness of solutions, and stability properties of
system (27) are discussed in Fridman (2002) and Michiels (2011).

5.2. Finiteness of the H2 norm

The H2 norm of an exponentially stable system (27) is defined
by

∥G∥H2 :=

√
1
2π

∫
∞

−∞

Tr(G∗(iω)G(iω))dω, (28)

where G is the transfer matrix of system (27), given by

G(s) :=
(
C1 C

)
·

·

(
s̃E −

∑m
j=0 A

(11)
j e−shj −

∑m
j=0 A

(12)
j e−shj

−
∑m

j=0 A
(21)
j e−shj I −

∑m
j=1 Aje−shj

)−1 (
B1
B

)
.

We notice that the transfer matrix G is the same as the transfer
matrix C̃

(
sE −

∑m
j=0 Ãje−shj

)−1
B̃ of system (26). Hence, when we

refer to the H2 norm of system (27), we equivalently refer to the
H2 norm of system (26).

For x1(t) ≡ 0, one observes that (27) reduces to (5) with
transfer matrix Ga in (7). We have the following result.

Theorem 8. Let system (27) be exponentially stable. The H2 norm
of system (27) is finite if and only if Ga(s) ≡ 0.

Proof. Let us introduce the matrix

Gb(s) :=
(
C1 C

) (F−1(s) G12
b (s)

G21
b (s) G22

b (s)

)(
B1
B

)
,

where

F (s) :=s̃E − A11(s) + A12(s)A−1
22 (s)A21(s),

G12
b (s) := − F−1(s)A12(s)A22(s),

G21
b (s) := − A−1

22 (s)A21(s)F−1(s),

G22
b (s) :=A−1

22 (s)A21(s)F−1(s)A12(s)A−1
22 (s),

with

A11(s) :=

m∑
j=0

A(11)
j e−shj , A12(s) :=

m∑
j=0

A(12)
k e−shj ,

A21(s) :=

m∑
j=0

A(11)
j e−shj , A22(s) := −I +

m∑
j=1

Aje−shj .

By applying the formula of block matrix inversion, we have that

G(iω) = Gb(iω) − Ga(iω), ω ∈ R.

As the transfer matrix Gb is strictly proper and ∥Ga∥H2 is either
zero or infinite, it follows from the previous expression that
∥G∥H2 is finite if and only if Ga(s) ≡ 0.

Now, a test for determining the finiteness of (28) can be di-
rectly deduced from the results previously presented in Sections 2
and 4. More precisely, combining Proposition 1 with Theorem 5
leads to the following result.

Corollary 9. Let system (27) be exponentially stable. The following
statements hold:

(1) If the delays hj, j = 1, . . . ,m, are rationally dependent, then
∥G∥H2 is finite if (20) is satisfied.

(2) If the delays hj, j = 1, . . . ,m, are rationally independent, then
∥G∥H2 is finite if and only if (20) is satisfied.

Remark 1. In the context of the finiteness check of the H2
norm of DDAE (26), Eq. (5) corresponds to the (delay) difference
part, which boils down to the algebraic constraints in the delay-
free case. (D)DAEs are mainly applied in modeling interconnected
systems, where the algebraic equations describe the interconnec-
tions (e.g. u1 = y1, u2 = −y2 for a feedback interconnection
of two subsystems with inputs u1, u2 and outputs y1, y2). For
such systems the dimensions of matrices Ai, i = 1, . . . ,m,
are determined by the number of inputs and outputs. For high-
dimensional control systems, the number of state variables is
typically large, while the number of inputs and outputs is still
limited. In addition, not all delays in (26) might be effectively
present in (5), i.e. some of the matrices Ai might be equal to zero,
because only delayed terms related to direct paths from inputs to
outputs, that form cycles (e.g. a control loop) are present. Hence,
for the application to H2 norm analysis, both the dimensions of
matrices Ai and the number of delays in (5) are expected to be
very small, even for high-dimensional systems.

6. Closing remarks

We solved Problem 1 by using them-dimensional CH theorem,
which is a generalization of the classic one in the sense of a
recursion formula form-tuple powers of a block matrix. It enabled
us to present a finite test to determine whether the H2 norm of
differential algebraic equations with multiple delays is finite.

A direction of future research consists of improving the per-
formance of our algorithm. Indeed, checking conditions in
Theorem 5 by brute force requires checking a number of equal-
ities equal to (22). See also Remark 1 about the computational
feasibility of the test.

Another direction includes the computation of the H2 norm of
system (27) whenever it is finite. We note that if condition (20)
is strengthened to CMB = 0 for any monomial M in (A1, . . . , Am),
then there exists a similarity transformation such that(
{Aj}

m
j=1, B, C

)
→({(

Aj1 0
Aj2 Aj3

)}m

j=1
,

(
0
Bc

)
,
(
Cu 0

))
,

which allows us to transform system (27) to a neutral type system
and use standard tools forH2 norm computation. Hence, the focus
point of research is the gap between (20) and the strengthened
condition.

Finally, although Problem 1 is motivated by the H2 norm
analysis of DDAEs, we believe that the presented results might
be of interest in addressing a wider class of problems. For in-
stance, the class of products in matrix polynomials of the form
Pk1,...,km (A1, . . . , Am) also appears in the Rn-controllability and Rn-
observability analysis of retarded type systems (see, for instance,
Chapter 2 in Fridman (2014)).
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