
PURELY FUNCTIONAL DISTRIBUTED SYSTEMS PROGRAMMING

SEYED H. HAERI PETER VAN ROY

Abstract. Code written for distributed systems requires to handle communication between
nodes in the system. Handling that communication involves mutating the state of its medium
– or, at least that is the common impression. Hence, distributed systems programming is
construed as effectful (aka impure) ipso facto. This work refutes that construal. We show
that the above effectfulness (aka impurity) is accidental complexity.

Our λ(refut) is a pure functional model for distributed systems programming. λ(refut)
ships remote futures: a built-in facility for node communication. To use remote futures, the
λ(refut) programmer does not mutate variables. Hence, purity of the programming. The
payback is that λ(refut)’s term rewriting is impure. But, so is also the semantics of the
famous purely functional languages.

1. Introduction

Reasoning about distributed programs is difficult. That is a well-known fact. That difficulty
is partly because of the relatively little programming languages (PL) research on the topic.
But, it also is partly due to the unnecessary complexity conveyed by the traditional conception
of distributed systems (DSs).

Reasoning about sequential programs written for a single machine, in contrast, is the bread
and butter of the PL research. Many models of functional programming, for example, have
received considerable and successful attention from the PL community. The mathematically
rich nature of those models is the main motivation.

In particular, pure functional programming, i.e., programming with no side-effects, has been
a major source of attraction to the PL community. In that setting, many interesting properties
are exhibited elegantly, e.g., equational reasoning, referential transparency, and idempotence.
In short, equational reasoning is the process of interpreting code by substituting expressions
for their equivalents; referential transparency is correctness of replacing an expression by its
value (or any other expression having the same value); and, idempotence is when a function
is invariant with respect to multiple calls. Every single one of those nice properties can boost
code efficiency considerably.

The traditional conception about DSs programming, however, lacks those nice properties.
In that conception, side-effects are inherent in distributed programming. The argument is:
No sensible distributed program can run without communication between nodes; and, such
communications always alter the state of the communication medium; hence, the effectful-
ness.

In earlier work [3, 4], we raised the point that effectfulness can be relative. What a node
might find effectful is not necessarily effectful to other nodes too. In other words, side-effects
might not be observable to every node in the DS.

This work takes that relativism and observability one step further. Side-effects observable
to the PL’s compiler (or, interpreter, evaluator, etc.) need not to be observable to the nodes
in the DS. This idea, on its own, is not our invention. However, to the best of our knowledge,
we are the first to notice that one can leverage that idea for a pure functional model for DSs
programming.

In a simple two level world, a PL can have an object level as well as a meta-level. The object
level is the one at which the programmer codes. The meta-level is the one that processes the
object level. Let us set those PLs that supply metaprogramming aside for a moment. A pure

1

2 SEYED H. HAERI PETER VAN ROY

PL does not offer means for state manipulation at the object level. Nevertheless, it is perfectly
fine for a pure code to incur change of state at the meta-level, and, hence, be effectful to that
level.

Consider the common let-expressions of functional PLs (FPLs). In a pure PL, the pro-
grammer cannot rebind a variable. Memory allocation is, however, inevitable for the variable.
In addition, reductions might update the runtime environment’s bookkeeping of the variable.
The Haskell let-bindings, in particular, are that way [6, 1]. Despite that, Haskell is today’s
most famous pure FPL because that effectfulness to memory is only at the meta-level.

In λ(refut) too, for node communication, the programmer does not manipulate a communi-
cation medium at the object level. Instead, communication is by a node launching a remote
task at the other node, whilst having a single-assignment handle to it. That is similar to
dataflow futures of Niehren et al. [7], but, λ(refut) provides a let notation for that. Thus,
the set of remotely bound variables varies during runtime. Furthermore, a remote task may
reduce over time too – as if the variable bound to it is being reassigned. Nonetheless, λ(refut)
programming remains pure. Because, at λ(refut)’s object level, the set of remotely bound
variables is not observable. That set is only for λ(refut)’s meta-level bookkeeping. In other
words, the impurity of message passing does not disappear in λ(refut); it only is not observable
at the object level.
λ(refut) is an important improvement to the Distributed λ-Calculus [2] because, contrary to

λ(refut), the latter system cannot handle user input. In addition, λ(refut) is an improvement
over the classical model of Kahn networks [5] because it can handle non-deterministic ordering
of inputs from other nodes in the DS. (Cf. Examples 3.1 and 3.3, respectively.)

An important shortcoming of λ(refut) is that it cannot model distributed programs such
as client-server, in which the order of messages is significant. The server is expected to be
FIFO: earlier requests should be handled before the later ones. Of course, clients might have
different priorities. Yet, the FIFO property is expected of the server for clients of the same
priority.

Here is how this paper is organised: In § 2, we present the syntax and semantics of λ(refut).
In § 3, we provide three case-studies for λ(refut): Example 3.1, 3.3, and 3.6 describe a master-
slave architecture, a sensor network, and a replicated key-value store, respectively.

The study of how to extend λ(refut) to handle significance in the order of messages is future
work. Ports are our first candidate for that future work. Ports are a standard medium for
message passing in DSs. Each port has an associated queue to guarantee the FIFO property
required, say, for a client-server scenario.

2. Formalism

Definition 2.1. The λ(refut) syntax follows.

p ::= g where d programs g ::= t | x Z⇒ t | g || g configurations
e ::= x | c | λx.e | e1 e2 | f e t ::= ea tasks
| let {b} in e | e; e expressions b ::= x = e | x = t | b, b bindings

d ::= f(x) = {e} | d, d definitions �

A program p in λ(refut) is a configuration g of tasks, given some definitions d. A configu-
ration is a set of tasks (with or without a handle to) that run concurrently, denoted by “ || ”
in the syntax. A task ea is an expression e to run on a node a. Remote futures have handles
to a task as in x Z⇒ ea. What is new in a remote future x Z⇒ ea in comparison with dataflow
futures of Niehren et al [7] is e running remotely on the node a.

The syntax for expressions is routine: variables (x), constants (c), λ-abstractions (λx.e),
function applications (e1 e2), application of named functions on expressions (f e), let-expressions
(let {b} in e), and expression sequencing (e1; e2). Bindings of a let-expression can be of two
kind: local bindings (x = e) and remote bindings (x = ea). The latter kind gives the task of

PURELY FUNCTIONAL DISTRIBUTED SYSTEMS PROGRAMMING 3

evaluating e to the node a and keeps a handle x to it so e’s value can be used via x when ready,
if at all. When a in x = ea is the current node, the binding is local and the node annotation
will be disregarded. The notation f(x) = {e} is list comprehension for f(x1, . . . , xn) = {e},
for a given n. We may drop the curly braces around e in f(x1, . . . , xn) = {e} when no confu-
sion. So may we also do for the separator commas between definitions and between bindings
of a let-expression.

We assume a set of values ranged over by v, v′, . . . , v1, v2, Subscripts and priming do
not change the syntactic category. For example, x1, x2, . . . , x

′, x′′, . . . are all variables.
We take the order of functions introduced after the where clause to be irrelevant. Such we

also take the order of bindings in a let expression and that of the constituents of a configura-
tion. Moreover, we take let {b1, b2} in e to be a shorthand for let {b1} in (let {b2} in e). The
above dismissals of ordering is an informal account of our structural congruence below.

g where d1, d2 ≡ g where d2, d1 let {b1, b2} in e ≡ let {b2, b1} in e
g1 || g2 ≡ g2 || g1 let {b1, b2} in e ≡ let {b1} in let {b2} in e

Definition 2.2. Evaluation contexts C of λ(refut) are of three sorts E, G, P (corresponding
to e, g, and p of the λ(refut) syntax, respectively):

C ::= (E, δ) | (G, δ) | (P, δ)
E ::= � | E e | (λx.e) E | f E | E; e | let {b} in E | let {x = E} in e
G ::= Ea | x Z⇒ Ea | G || g
P ::= G where d

where δ is a mapping from variables to expressions. �

Given that λ(refut) programs contain where clauses, λ(refut) contexts carry δ around to
recall the functions defined in the where clause. The context E is standard call-by-value with
sequencing and let-expressions. Notice that E has no representative for remote futures. That
is because a remote future is to only reduce at its respective remote node.

We are now prepared for the λ(refut) semantics.

Definition 2.3. The reduction semantics of λ(refut) is of the form C[e] → C[e′], where we
will leave the δ out when invariant upon the reduction. The reduction rules follow:

(P, δ)[g where d1, . . . , dn] → (G, δ[fi 7→ λxi.ei]
n
i=1)[g] where di is fi(xi) = ei (Prg)

and fi /∈ domain(δ)
E[(λx.e) v] → E[e[v/x]] (Ap-E)

E[let {x = v} in e] → E[e[v/x]] (Lt-E)
E[v; e] → E[e] (Sq)
E[f] → E[λx.e] where δ(f) = λx.e (Ld-F)

G[let {x = t} in e] → G[e[ya/x]] || ya Z⇒ t where y fresh and node = a (Lt-T)
G[x] ||x Z⇒ va → G[v] ||x Z⇒ va (Df)

Technically, the following rule is not required. Yet, we adopt it as a shorthand for an appli-
cation of (Ld-F) followed by a long-enough sequence of (Ap-E)s. Suppose that δ(f) = λx.e.
Then,

E[f v]→ E[e[v/x]]. (Ap-F)�

(Prg) simply dumps the functions defined at the where clause into δ. The function ap-
plication rule (Ap-E) is routine call-by-value. The named function application rule (Ap-F)
is not much more complicated. The main difference lies in the comprehension notation: f v
abbreviates f v1 . . . vn, for some given n; and, e′[v/x] abbreviates e′[v1/x1, . . . , vn/xn], again,
for some given n. According to (Lt-E), a let-bound variable can only be substituted when it

4 SEYED H. HAERI PETER VAN ROY

is bound to a value (possibly after reduction). (Sq) is routine for sequencing. (Ld-F) uses δ
to substitute the body of a named function for its name.

(Lt-T) is less trivial. λ(refut) maintains a metavariable node to represent the node in which
the reduction is taking place. The notation node = a in (Lt-T) is for “let us assume that the
node at which this let-expression is running is a.” In such a case, we launch a new concurrent
task t at the right node and give it a fresh handle. (That is at a node b when t = e′b.) The
subscript a in ya is to prevent variable shadowing whilst evaluating the same let-expression at
different nodes. Furthermore, we choose y to be fresh to prevent shadowing upon subsequent
evaluations of the let-expression. Example 3.3 makes use of both above freshness tricks. Of
course, due to the refreshing of x to ya, occurrences of the latter need to be renamed in e
accordingly.

(Df) describes the situation when a dataflow variable x has a handle to a value (possibly
the result of a formerly more complicated expression). In such a situation, according to (Df),
the value x is bound to can be substituted for its occurrences.

Here is an important note in relation to (Df) and (Lt-T). One might have come to ask
whether λ(refut) advises for too much concurrency. After all, according to (Lt-T), every
remote let-binding spawns a new concurrent evaluation. We find that alright because if one
modifies (Df) to

G[x] ||x Z⇒ va → G[v] ||x Z⇒ va when node = b and a 6= b

one can help the scheduler with putting threads of b that have references to x to sleep until the
above rule is applied to them. Furthermore, the scheduler can always perform garbage collec-
tion on a handled task x Z⇒ va when there no longer is a reference to x in the configuration.
We drop those in Definition 2.3 for simplicity.

3. Using λ(refut)

Example 3.1. Consider a master-slave scenario with a master node m and a sufficiently large
set of slave nodes S = {s1, s2, . . . }. Let us assume the availability of an input function that
inputs a single item from the user. Let us also assume the any metafunction defined below

xi Z⇒ vaj for i, j ∈ {1, . . . , n}
.

any(x1, x2, . . . , xn)→ v

The following λ(refut) code gives the task of computing a function f to as many slaves as
requested fromm. The code is done as soon as any of those slaves is done with the computation
of f , if ever.

1 (let {k = input} in distribute f k)m

2 where
3 distribute(g, n) = let
4 {xi = (g ())si}n

i=1

5 in
6 any(x1, ..., xn)

7 f() = {...}

Let us call the above λ(refut) program p. Let us assume that the user enters k0 for k. Then,
dropping the where clauses in the presentation
p →∗ (Prg),(Ap-E)
(let { k = k0 } in distribute f k)m → (Lt-E)
(distribute f k0)m → (Ap-F)

(let {xi = (f ())si}k0i=1 in any(x1, ..., xk0))
m →∗ (Lt-T)

(any(x1, ..., xk0))
m|| x1 |=> (f ())s1|| ... || xk0 |=> (f ())sk0 �

Example 3.1 demonstrates an important step forward after the Distributed λ-Calculus [2]:
λ(refut) can also handle user input.

PURELY FUNCTIONAL DISTRIBUTED SYSTEMS PROGRAMMING 5

Remark 3.2. One may argue that input is not pure and so is not p in Example 3.1. We would
like to draw the reader’s attention to the common monadic treatments of I/O, for example,
in order to give that a pure interface on a single node. This paper takes such (or similar)
treatments for granted to focus on purity of distribution. �

Example 3.3. Consider a control unit c receiving updates from sensors s1, . . . , sn. Initially,
the sensors are configured to take samples every 1 second. Based on their updates, the
duration between two sampling may change, as instructed by the control unit in response to
the update. The order in which the sensors send their update is unknown. So is also the
order in which they are handled. The λ(refut) code below describes that scenario.

1 (sensor 1)s1 || ... || (sensor 1)sn

2 where
3 sensor(k) = let
4 s = sample k

5 u = (update s)c

6 in
7 sensor u

8 update(s) = {...}, sample(k) = {...}

To demonstrate a sample run, we take n = 2 and call the above code p. Again, in the
demonstration, we will drop the where clause.
p →∗ (Prg), (Ap-F)
(let s = sample 1 , u = (update s)c in sensor u)s1|| (sensor 1)s2 →∗ (Ap-F), (Lt-E)

(let u = (update k1
1)

c in sensor u)s1|| (sensor 1)s2 → (Lt-T)

(sensor u1
1)

s1|| (sensor 1)s2|| u1
1 |=> (update k1

1)c → (Ap-F)

(sensor u1
1)

s1|| (sensor 1)s2|| u1
1 |=> (v1

1)c → (Df)
(sensor v1

1)
s1|| (sensor 1)s2|| u1

1 |=> (v1
1)

c → (Ap-F)
(sensor v1

1)
s1|| (let s = sample 1, u = (update s)c in sensor u)s2

|| u1
1 |=> (v1

1)
c →∗ (Ap-F), (Lt-E), (Lt-T), (Ap-F), (Df)

(sensor v1
1)

s1|| (sensor v2
1)

s2|| u1
1 |=> (v1

1)
c|| u2

1 |=> (v2
1)

c → . . .
Of course, the scheduler might choose a very different interleaving. �

Remark 3.4. In Example 3.3, according to the wiring of the (Lt-T) rule, each call to sensor

will place a new task in the configuration. The handle to that task is different from those
of the previous calls and those of the other nodes. (In the sample run, we write ui

j for the
jth handle of si.) Note also that the application sensor u in line 7 needs not to be (sensor

u)si , where node = si. Thanks to G in (Lt-T), the node information is invariant upon the
reduction. (In fact, according to Definition 2.1, replacing sensor u by (sensor u)si would be
ungrammatical.) �

Remark 3.5. Notice how, in Example 3.3, each message sent from a sensor to the control
unit places a new remote task on the configuration. That is, however, not really a problem
since each such task can be garbage-collected as soon as the respective (Df) is instantiated.
It is easy to get the scheduler trigger that garbage collection. �

Example 3.3 is important because it shows how λ(refut) relaxes a stringent restriction of
the Kahn networks [5], whilst still remaining pure. Putting Kahn networks into the context
of distribute systems, the restriction would be that each node knows which node will provide
its next input. That knowledge is not provided to the node c in Example 3.3, for instance.

Example 3.3 also develops over Example 3.1 by showing how, in λ(refut) nodes can pass
messages back and forth. Each sensor sends its s to the control unit and receives u back as
the updated k. All that message passing is purely functional.

6 SEYED H. HAERI PETER VAN ROY

Example 3.6. Consider a CRDT1 key-value store with replicas r1, . . . , rn and a front-end
node f . Assume that the value type here is a semilattice. The λ(refut) code below provides
a possible run of such a system along with the functions required.

1 (write k1 v1; write k1 v2; write k2 v2; write k1 v3; read k1)
f

2 where
3 write(k, v) = let
4 i = replica-no ()

5 ret = (local-write k v)ri

6 in
7 ret

8

9 read(k) = let
10 {rvi = (local-read k)ri}n

i=1

11 in
12 rv1 u · · · u rvn

13

14 local-write(k, v) = {...}, local-read(k) = {...}, replica-no() = {...}

Given that the value type is a semilattice, it suffices for correctness to only write to one of
the replicas (local-write). The function write above does that after choosing the replica, say
based on the proximity to the user or traffic load. (We assume that local-write returns a
Boolean flagging its success.) A crucial factor in the correctness of this implementation is a
propagation policy enforcing eventual consistency. It is only under that condition that the
ordering of writes does not matter. Reading is different: It requires reading all the replicas
first (local-read) and then performing a join operation (u) on the results.

For a sample run, we again take n = 2 and call the λ(refut) code above p. Furthermore,
let e1 = write k1 v1, e2 = write k1 v2, e3 = write k2 v2, e4 = write k1 v3, and
e5 = read k1. Let also v2 < v3 < v1. Dropping the where clauses like the two previous
examples, one gets
p →∗ (Prg),(Ap-F)
((let i = replica-no () , ret = (...)ri in ret);e2; ...; e5)

f → (Ap-F)

((let i = 2 , ret = (...)ri in ret); e2; ...; e5)
f → (Lt-E)

(let ret = (local-write k1 v1)
r2); e2; ...; e5)

f → (Lt-T)
(ret2

1; e2; ...; e5)
f || ret2

1 |=> (local-write k1 v1)r2 → (Ap-F)
(ret2

1; e2; ...; e5)
f || ret2

1 |=> (false)r2 → (Df)
(false ; e2...; e5)

f || ret2
1 |=> (false)r2 → (Sq)

(write k1 v2 ; ...; e5)
f || ret2

1 |=> (false)r2 →∗ (. . .)
(ret2

2; ...; e5)
f || ret2

1 |=> (false)r2|| ret2
2 |=> (true)r2 →∗ (. . .)

(write k2 v2 ; ...; e5)
f || ret2

1 |=> (false)r2|| ret2
2 |=> (true)r2 →∗ (. . .)

(read k1)f || ret2
1 |=> (false)r2|| ret2

2 |=> (true)r2 .
|| ret1

1 |=> (true)r2|| ret2
3 |=> (true)r2 → (Ap-F)

(let {rvi = (local-read k1)
ri}2i=1 in rv1 u rv2)

f || ret2
1 |=> (false)r2|| ret2

2 |=> (true)r2

|| ret1
1 |=> (true)r2|| ret1

2 |=> (true)r2 →∗ (Lt-T)
(rv1 urv2)

f || rv1 |=> (local-read k1)
r1|| rv2 |=> (local-read k1)r2|| ret2

1 |=> (false)r2

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 → (Ap-F)

(rv1 urv2)
f || rv1 |=> (local-read k1)

r1|| rv2 |=> (v3)r2|| ret2
1 |=> (false)r2 .

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 → (Df)

(rv1 uv3)
f || rv1 |=> (local-read k1)r1|| rv2 |=> (v3)

r2|| ret2
1 |=> (false)r2 .

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 → (Ap-F)

(rv1 uv3)
f || rv1 |=> (v2)r1|| rv2 |=> (v3)

r2|| ret2
1 |=> (false)r2 .

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 → (Df)

(v2 uv3)f || rv1 |=> (v2)
r1|| rv2 |=> (v3)

r2|| ret2
1 |=> (false)r2 .

1Conflict-free Replicated Datatype [8]

PURELY FUNCTIONAL DISTRIBUTED SYSTEMS PROGRAMMING 7

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 → (Ap-F)

(v3)
f || rv1 |=> (v2)

r1|| rv2 |=> (v3)
r2|| ret2

1 |=> (false)r2

|| ret2
2 |=> (true)r2|| ret1

1 |=> (true)r2|| ret1
2 |=> (true)r2 �

Remark 3.7. Pure functional programming of a single node database is not the focus of this
article. Example 3.6 assumed that writing to a database is done in a pure fashion, namely,
local-write is pure. For more on that, see the recent developments of Rob Norris2. Our focus
in Example 3.6 is on showing pure message passing between nodes of a replicated key-value
store. �

References

[1] S. H. Haeri. Observational Equivalence and a New Operational Semantics for Lazy Evaluation with Selec-
tive Strictness. In Z. Majkic, S.-Y. Hsieh, J. Ma, I. M. M. El Emary, and K. S. Husain, editors, TMFCS,
pages 143–150. ISRST, July 2010.

[2] S. H. Haeri and P. Van Roy. Distributed λ-Calculus. Technical report, ICTEAM, UCLouvain, Belgium,
October 2019. Available online at: http://hdl.handle.net/2078.1/228131.

[3] S. H. Haeri and P. Van Roy. A Family of λ-Calculi with Ports. In 21st TFP. LNCS, February 2020.
Accepted, Available online at: http://hdl.handle.net/2078.1/228133.

[4] S. H. Haeri and P. Van Roy. Piecewise Relative Observational Purity. In 4th ProWeb. ACM, March 2020.
Accepted.

[5] G. Khan. The Semantics of a Simple Language for Parallel Programming. Inf. Proc., 74:471–475, 1974.
[6] J. Launchbury. A Natural Semantics for Lazy Evaluation. In 20th POPL, pages 144–154. ACM, 1993.
[7] J. Niehren, J. Schwinghammer, and G. Smolka. A Concurrent Lambda Calculus with Futures. TCS,

364(3):338–356, 2006.
[8] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-Free Replicated Data Types. In

X. Défago, F. Petit, and V. Villain, editors, 13th SSS, volume 6976 of LNCS, pages 386–400. Springer,
October 2011.

2https://www.youtube.com/watch?v=NJrgj1vQeAI

http://hdl.handle.net/2078.1/228131
http://hdl.handle.net/2078.1/228133
https://www.youtube.com/watch?v=NJrgj1vQeAI

