

Hassan HAIDAR

Doctoral Thesis 01 | 2020

An Agile Feature-Driven Framework
for Managing Evolving Software
Product Lines
The AgiFPL Method

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

LOUVAIN RESEARCH INSTITUTE IN MANAGEMENT AND ORGANIZATION

An Agile Feature-Driven Framework for Managing
Evolving Software Product Lines

The AgiFPL Method

Hassan HAIDAR

A thesis submitted in fulfillment of the requirements for the degree of Doctor of
Philosophy in Economics and Management Sciences of the UCLouvain

Examination Committee:

Advisor: Prof. Manuel Kolp – UCLouvain
Advisor: Prof. Yves Wautelet – KU Leuven
Examiner: Prof. Pierre Semal – UCLouvain
Examiner: Prof. Jean Vanderdonckt – UCLouvain
Examiner: Dr. Sara Shafiee – Danmarks Tekniske Universitet (DTU)

February 2020

To my mother and father,

، لأ�ي ي
ي و�علاء شأيف ي أفنت روحها وجسدها من أجل ت��ييت اليت

ي �ي يؤمّن �ي الع�ش ال���م والتحص�ل لأيب
�
 وغ��ا

�
قا الذي جاب الأرض �ش

، ف العل�ي المم�ي

 ...أهدي هذا الجهد المتواضع أمام جهودكما الجبّارة

ي وأولادي ...وكذلك أهدي هذا ال�تاب لزوجيت

Acknowledgements

This research project would not have been possible without the help and support of many
persons and organizations. Therefore, I would like to thank all the people who, in several
different ways, have made this research work possible and turned it into a fabulous experience.

I would like to express my deep and sincere gratitude to my advisors: Prof. Manuel Kolp,
Chairman of the FNRS-accredited Doctoral School of Management at UCLouvain and head of
CEMIS - Center in Management Information Systems (LouRIM), and Prof. Yves Wautelet,
head of the Research Centre for Information Systems Engineering (LIRIS) at KU Leuven
campus Brussels. Manuel and Yves were always available for advice, guidance, help,
encouragement, fruitful stimulating discussions, and continuing interest in my work. This
dissertation was possible because Manuel gave me the opportunity to work for the LouRIM and
LSM at UCLouvain. I believe that our discussions have largely enhanced my scientific
experience and allowed me to introduce the research contributions presented in this thesis. In
addition, I would like to deeply thank them for their thorough and careful review of the different
parts of this thesis. I would also like to thank them for supporting, and encouraging me to
participate in several conferences worldwide. They gave me the opportunity to learn a lot about
research, how to tackle new problems, and how to develop technique to solve them. I thank
them for the friends that they have become and will continue to be. Thanks Manuel, thanks
Yves.

I would like to express my thanks to the members of my PhD committee: Prof. Jean
Vanderdonckt (UCLouvain), Prof. Pierre Semal (UCLouvain), and Dr. Sara Shafiee (Technical
University of Denmark – DTU) for accepting to participate in the jury, for carefully reviewing
my thesis and for their many useful suggestions and stimulating questions and feedback. Their
comments have improved the text and are greatly acknowledged.

In addition, I would like to thank all my friends and colleagues of Louvain School of
Management (LSM) and Louvain Research Institute in Management and Organization
(LouRIM) for their friendship, help, support and the nice work environment. Many sincere
thanks go to Prof. Marco Saerens, Kamila Moulaï, Sylvain Courtain, Iyad Khadam, Ghazaleh
Aghakhani, Pierre Leleux, Soreangsey Kiv, Mehdi Ousmer, Nicolas Burny, Vu Nguyen Huynh
Anh, Paul Chatelain, Samedi Heng, Nesrine Mezhoudi, and Manuel Herrera Rodriguez.
Moreover, warm regards go to Sylvie Baudine, Sandrine Delhaye, Heike Rämer, Prof. Valérie
Swaen (President of LouRIM) for their help and encouragement.

I am very thankful to my friends in Belgium, Lebanon, and around the world who have
encouraged me and have made my life joyful during all these years. Warm thanks go to Prof.
Anne-Marie Polomé, Dr. Saïf-Eddine El Bouhali, and Loay Moghnieh.

My deep gratitude and sincere thanks go to my mother Nassima and my father Mohamad for
their motivation and support throughout my studying years. Without their efforts, fine
education, support, and guidance, I would probably not have taken up the eagerness or
motivation to do this PhD. I would like to sincerely thank them for their encouragement and
love, which gave me so much joy. Thank you so much for the education you gave me. Dear and
Mom Dad, this thesis is dedicated to you in particular. I would also like to thank my sisters and
my brother for their support and encouragement.

Finally yet importantly, I would like to sincerely thank my wife Sahar for her love, support,
encouragement, and patience during the PhD period. I thank her for being there for me in times
when I needed her most which gave me the strength to perform this research project. I would
also like to thank my lovely and adorable kids: Jude, Zahraa, and Mohamad. Their warm and
lovely smiles were the source of my power.

It was not possible to mention all the people who contributed in one way or another to this PhD.
My apologies to the people I forgot and my warmest thanks for everything.

Hassan Haidar

i

Abstract

Agile Product Line Engineering is a paradigm that has emerged as a solution for responding to
the need for managing changes in requirements, reducing time-to-market, promoting product
quality, and decreasing development costs in software organizations. Agile Product Line (APL)
approaches are the results of combining agile methods with Software Product Lines (SPL). The
main goal of this thesis is to propose an efficient APL method. In general, software development
methodologies consist of two integral parts. The first one is dedicated for requirements
engineering and the second one is dedicated for the development process. In this thesis, we have
proposed a Feature-Oriented Agile Product Line method called “Agile Framework for
managing evolving Software Product Lines – AgiFPL method”. AgiFPL has been defined,
designed and implemented after studying and analyzing the existent APL methodologies with
the aim to take advantage of the strengths of the studied methodologies and to overcome their
weaknesses. AgiFPL was proposed to address the development process part. For the
requirement engineering part, we have proposed an Integrated Requirements Engineering
framework for Agile Software Product Lines, which is the part that provides the syntax and
semantics used for expressing the products of an APL method. The aim is to allow analysts and
developers to specify requirements that precisely capture the stakeholder’s needs and intentions
as well as to manage product line variabilities. Finally, this thesis proposes an assessment model
called AgiPL-AM (Assessment Model for Agile Product Lines) for the assessment of the
situation of agile adoption within agile product line approaches. In fact, assessing the current
situation, regarding the combination of agile practices and activities with Software Product
Lines, is an essential step towards a successful integration of agile methods into Software
Product Lines.

iii

Table of contents

Table of contents ... iii

List of figures .. xi

List of tables ... xv

List of abbreviations ... xix

Part I – Introduction ... 1

1 Introduction .. 3

1.1 Research Motivation and Context ... 4

1.2 Problem Statement .. 6

1.3 Research Design ... 8

1.3.1 Literature Review ... 8

1.3.2 Building-up the targeted APL method ... 10

1.3.3 Assessment and Validation .. 11

1.4 Overview of the proposed solution ... 11

1.5 Threats to validity and limitations ... 12

15.1 Threats to validity related to the literature review... 12

1.5.2 Threats to validity related to the proposed solutions ... 14

1.5.3 Limitations ... 14

1.6 Research Contributions .. 15

1.7 Reading Map .. 16

Part II – Literature Review .. 19

2 Software Product Lines .. 21

2.1 Introduction ... 21

2.2 What is a Software Product Line (SPL)? .. 22

2.3 Promises of Product Lines .. 23

iv

2.4 Key concepts of Software Product Lines ... 26

2.5 Product Line Architecture (PLA) .. 28

2.5.1 Component-Oriented Platform Architecting Method (COPA) 29

2.5.2 Family-Oriented Abstraction, Specification, and Translation process (FAST)............ 30

2.5.3 Component-Based Application Development (KobrA) ... 31

2.5.4 Feature-Oriented Reuse Method (FORM) .. 31

2.5.5 Quality-driven Architecture Design and quality Analysis (QADA) 33

2.5.6 Product Line UML-Based Software Engineering .. 34

2.5.7 Common Variability Language (CVL) ... 35

2.5.8 Product line engineering and management (ISO/IEK 26550:2017) 36

2.6 A Framework for Software Product Line Engineering ... 36

2.6.1 The framework ... 37

2.6.2 Domain Engineering (DE) ... 38

2.6.2.1 Sub-processes of Domain Engineering .. 39

2.6.2.2 Domain Engineering artifacts .. 39

2.6.3 Application Engineering (AE) ... 40

2.6.3.1 Sub-processes of Application Engineering .. 41

2.6.3.2 Application Engineering artifacts .. 41

2.7 Feature-Oriented Product line: a development process .. 42

2.7.1 A Process for Product-Line Development .. 43

2.7.2 4 clusters of tasks in product-line development ... 44

2.8 Factory-oriented approach for Product Line Engineering (PLE) .. 45

2.8.1 The Second Generation Product Line Engineering (2GPLE) approaches 46

2.8.1.1 PLE as a factory... 48

2.8.1.2 PLE contrasted with product-centric development.. 49

2.8.2 Ecosystem support for three dimensions of PLE ... 50

2.8.3 Establishing a PLE Factory approach .. 52

2.9 Adoption strategies of a Product-Line Approach ... 53

2.9.1 Proactive approach ... 53

2.9.2 Extractive approach ... 54

2.9.3 Reactive approach .. 54

2.10 Conclusion .. 55

3 Agile software development ... 57

3.1 The rise of Agile Methodologies ... 57

Table of contents

v

3.2 The “Agility” attribute .. 60

3.2.1 Adopting a definition for the term “Agile” .. 61

3.3 Iterative and Incremental ... 64

3.4 The “Agile Manifesto” .. 65

3.5 Agile Software Development in practice ... 67

3.6 Overview of main Agile Methods ... 69

3.6.1 Scrum ... 69

3.6.1.1 Scrum roles .. 70

3.6.1.2 Scrum artifacts... 71

3.6.1.3 Scrum practices ... 71

3.6.1.4 Scrum Process .. 72

3.6.1.5 Discussion ... 74

3.6.2 Scrumban .. 74

3.6.2.1 Scrumban roles .. 76

3.6.2.2 Scrumban artifacts .. 76

3.6.2.3 Scrumban practices ... 77

3.6.2.4 Scrumban process .. 80

3.6.2.5 Discussion ... 83

3.6.3 Comparison between Scrum and Scrumban.. 84

3.7 Conclusion .. 86

4 Agile Product Line Engineering .. 89

4.1 The emergence of “Agile Product Line Engineering (APLE)” paradigm 89

4.2 Systematic Literature Review (SLR) ... 91

4.2.1 Overview of main Agile Product Line Methods .. 91

4.2.1.1 Component-Driven Development (CDD) .. 91

4.2.1.2 Extended Framework of Agile Practices (E-FAP) .. 92

4.2.1.3 RiPLE-SC – An agile scoping process for SPL ... 94

4.2.1.4 A-Pro-PD – An Agile Process Model for Product Derivation 95

4.2.1.5 Tailored Scrum for APLE – The APLE Scrum development process.................... 96

4.2.1.6 Iterative Model for Agile Product Line Engineering ... 97

4.2.1.7 Extreme Product Line Engineering: Managing Variability and Traceability via
Executable Specifications .. 98

4.2.1.8 da Silva’s Agile Approach for Software Product Lines Scoping 99

4.2.1.9 APL proposed by Carbon et al. (2006) .. 100

vi

4.2.1.10 Collaborative PL planning approach .. 101

4.2.1.11 Reactive Variability Management in Agile Software Development 102

4.2.1.12 ScrumPL ... 103

4.2.2 Conducting the Systematic Literature Review .. 104

4.2.2.1 Planning the Review .. 105

4.2.2.1.1 Review objective and research questions (RQs) .. 105

4.2.2.1.2 Search strategy.. 105

4.2.2.1.3 Inclusion and Exclusion criteria .. 107

4.2.2.1.4 Quality assessment.. 107

4.2.2.1.5 Data extraction.. 108

4.2.2.2 Conducting the review .. 108

4.2.2.2.1 Search for studies ... 109

4.2.2.2.2 Study selection .. 109

4.2.2.3 Reporting the review ... 110

4.2.2.3.1 RQ1: What are the purposes of the combination of SPLE and ASD? What are
the expected benefits of the combination of SPLE and ASD? 111

4.2.2.3.2 RQ2: How are agile principles related to the SPL principles? 113

4.2.2.3.3 RQ3: How does the combination of SPLE and ASD respect the business
strategic goals? ... 115

4.2.2.3.4 RQ4: Which current APLE approaches are satisfying the Application
Engineering (AE) activities? RQ5: What are the challenges and gaps in current APLE
approaches, in relation to AE activities? ... 116

4.2.2.3.5 RQ6: Which current APLE approaches are satisfying the Domain
Engineering (DE) activities? RQ7: What are the challenges and gaps in current APLE
approaches that are related to DE activities? ... 117

4.2.2.3.6 RQ8: Which current APLE approaches are satisfying both DE and AE
activities through Agile principles? ... 118

4.2.2.3.7 RQ9: Do successful experiences, putting an APLE approach into practice,
exist? ... 119

4.2.2.4 Commenting on the findings of the review .. 119

4.2.2.4.1 Open research challenges ... 120

4.2.2.4.2 Implications for Practitioners and Researchers .. 123

4.3 Criteria-based Evaluation (CBE) ... 124

4.3.1 Adopted criteria, required for the targeted evaluation ... 124

4.3.1.1 General criteria for evaluating methodologies ... 125

4.3.1.2 Criteria related to the characteristics of agile methods ... 128

4.3.1.3 Criteria related to SPLE characteristics ... 130

4.3.1.4 Criteria related to the common goals of agile development and SPLE 130

Table of contents

vii

4.3.1.5 Criteria related to the combination of agile development and SPLE 131

4.3.2 Results of the evaluation .. 132

4.3.4 Discussion .. 140

4.4 Agile methodologies used within Software Product Lines ... 140

4.5 Key findings ... 143

4.6 Conclusion .. 144

5 Requirements Engineering for Agile methods and Software Product Lines 145

5.1 A brief outset .. 145

5.2 Requirements Engineering disciplines .. 147

5.2.1 Requirements Elicitation ... 148

5.2.2 Requirements Analysis ... 148

5.2.3 Requirements Specification ... 148

5.2.4 Requirements Validation ... 149

5.2.5 Requirements Management ... 149

5.3 Requirements Categories .. 149

5.3.1 Functional Requirements ... 149

5.3.2 Nonfunctional Requirements ... 150

5.3.3 Quality Requirements .. 150

5.4 Requirements engineering for Software Product Lines ... 150

5.4 Agile Requirements Engineering ... 153

5.5 Goal Models (GM) and Feature Models (FM) .. 155

5.5.1 Variabilities ... 156

5.5.2 Mapping between intentional elements and features .. 157

5.6 Chapter Summary ... 158

Part III – An Agile Product Line Method ... 159

6 Toward an Agile Framework for managing Software Product Lines 161

6.1 Introduction ... 161

6.2 Research Method ... 162

6.3 A definition for “Agile Software Product Line Engineering (APLE)” 163

6.4 Designing an Agile Software Product Line method ... 164

6.4.1 Basis of the APL process and its type of architecture ... 164

6.4.2 Agile methods to be tailored for the APL process ... 165

viii

6.4.2.1 Why a Scrumban-inspired process for Domain Engineering? 165

6.4.2.2 Why a Scrum-inspired process for Application Engineering? 166

6.5 Agile Framework for managing evolving Software Product Lines: The AgiFPL method 166

6.5.1 AgiFPL Description .. 167

6.5.1.1 AgiFPL Roles ... 169

6.5.1.1.1 Domain Engineering Roles according to AgiFPL .. 169

6.5.1.1.2 Application Engineering Roles according to AgiFPL 173

6.5.1.2 AgiFPL’s Units of work .. 175

6.5.1.2.1 Meetings in the Scrumban-inspired Process for Domain Engineering 175

6.5.1.2.2 Meetings in the Scrum-inspired Process for Application Engineering 176

6.5.1.3 Work-products of AgiFPL .. 177

6.5.1.3.1 Work-products of Domain Engineering Process according to AgiFPL......... 177

6.5.1.3.2 Work-product of the Application Engineering Process according to AgiFPL
 ... 178

6.5.2 AgiFPL Framework ... 179

6.5.2.1 AgiFPL’s Domain Engineering (DE) sub-process .. 179

6.5.2.2 AgiFPL’s Application Engineering (AE) sub-process .. 183

6.5.3 AgiFPL critical processes: The Big Picture ... 186

6.5.4 Some adopted Metrics for AgiFPL method ... 188

6.5.4.1 Metrics for AgiFPL’s Domain Engineering .. 189

6.5.4.2 Metrics for AgiFPL’s Application Engineering .. 190

6.5.5 How to implement AgiFPL .. 191

6.6 Discussion ... 193

6.7 Conclusion .. 193

7 Assessing the adoption level of agile development within Software Product Lines: the AgiPL-

AM model ... 195

7.1 Introduction ... 195

7.2 Assessment models for software reuse strategies.. 196

7.3 Assessment models for agile development ... 197

7.4 Research approach .. 198

7.5 Assessment Model for Agile Product Lines: AgiPL-AM ... 199

7.5.1 Development of AgiPL-AM ... 200

7.5.2 The AgiPL-AM ... 213

7.6 Conclusion .. 215

Table of contents

ix

8 An Integrated Requirements Engineering Framework for Agile Software Product Lines 217

8.1 Introduction ... 217

8.2 Related work .. 219

8.3 Research approach .. 222

8.4 A Metamodel for Agile Product Lines ... 224

8.4.1 Organizational Sub-Model .. 224

8.4.1.1 Actor ... 224

8.4.1.2 Role ... 226

8.4.1.3 Capability ... 227

8.4.1.4 Dependum .. 228

8.4.2 Goal Sub-Model .. 229

8.4.3 Feature sub-model .. 230

8.4.4 User Story concept .. 233

8.5 Applying the proposed RE approach to AgiFPL .. 235

8.6 Applying the proposed metamodel – A concrete real-life example 237

8.7 Conclusion .. 240

Part IV – Assessment and Validation .. 243

9 Application of AgiFPL: The case of TranslogiTIC project .. 245

9.1 Introduction ... 245

9.2 Transportation and Logistics Agile Software Product Line .. 246

9.3 TransLogisTIC project ... 248

9.4 Applying the AgiFPL method... 249

9.4.1 “Transport and Logistics” Domain Engineering according to AgiFPL method 249

9.4.1.1 Domain Requirements Engineering (DRE) ... 249

9.4.1.2 Domain Design (DD).. 252

9.4.1.3 Feature Backlog (FB) .. 257

9.4.1.4 Planning 1 and Planning 2 .. 258

9.4.2 “Transport and Logistics” – Application Engineering according to AgiFPL 259

9.5 Chapter Summary ... 261

10 Assessment of AgiFPL .. 263

10.1 Introduction ... 263

x

10.2 A Criteria-Based Evaluation of AgiFPL ... 264

10.2.1 Evaluation of the methodology .. 264

10.2.2 Evaluating the agile characteristics .. 266

10.2.3 Evaluating the SPLE characteristics .. 266

10.2.4 Evaluating the respect of common goals of agile and SPLE 267

10.2.5 Evaluating the combination of the two approaches within AgiFPL 267

10.2.6 First discussion ... 268

10.3 Assessing AgiFPL with the assessment model AgiPL-AM .. 268

10.3.1 Results related to the Level 1 – Collaborative ... 269

10.3.2 Results related to the Level 2 – Evolutionary .. 270

10.3.3 Results related to the Level 3 – Effectiveness ... 271

10.3.4 Results related to the Level 4 – Adaptive ... 272

10.3.5 Results related to the Level 5 – Encompassing .. 273

10.3.6 Second discussion ... 274

10.4 Conclusion .. 275

Part V – Conclusion .. 277

11 Conclusion ... 279

11.1 Conclusions .. 279

11.2 Main Contributions ... 281

11.3 Future Work .. 282

References .. 283

Appendix A .. 317

AgiFPL: Roles, Meetings, and Artifacts .. 317

xi

List of figures
Fig. 1.1 Chapters that address the research questions of the dissertation. ... 8

Fig. 1.2 Matching between published papers and chapters of this dissertation. .. 15

Fig. 1.3 Structure of the thesis - This figure presents the organization of the thesis, its parts and their respective

chapters. .. 17

Fig. 2.1 SPL definitions timeline .. 22

Fig. 2.2 Effort/costs of crafting products individually versus product-line development [Pohl et al., 2005]. 25

Fig. 2.3 Time to market with and without product line engineering [Pohl et al., 2005]. 25

Fig. 2.4 FORM Engineering Processes [Kang et al., 1998]. ... 32

Fig. 2.5 QADA method main phases [Matinlassi et al., 2002]. .. 33

Fig. 2.6 Evolutionary software process model for software product lines according to PLUS method [Gomaa,

2011]. .. 35

Fig. 2.7 Pohl et al. Framework for Software Product Line Engineering (SPLE / PLE) [Pohl et al., 2005]. 38

Fig. 2.8 A feature-oriented engineering process for software product lines [Apel et al., 2013]. 43

Fig. 2.9 The Second Generation Product Line Engineering (2GPLE) factory paradigm [Clements et al., 2014]. 46

Fig. 2.10 The Product Line Engineering envisioned as a factory [Clements et al., 2014]. 49

Fig. 2.11 Product-centric development yields O(N2) complexity [Bolander, et al., 2016]. 50

Fig. 2.12 Three dimensions of Product Line Engineering [Bolander, et al., 2016]. .. 51

Fig. 2.13 Three tiered approach for adopting a PLE Factory [Productlineengineering.com, 2016]. 52

Fig. 3.1 Historical Development of Agile Methods. Adapted from [Abrahamsson et al., 2003] and [Moran,

2015]. .. 58

Fig. 3.2 Values of the Agile Manifesto [ManifestoAgile, 2001]. ... 65

Fig. 3.3 Agile Chart for a Generic Agile Process. Adapted from [Moran, 2015]. .. 67

Fig. 3.4 Common agile methodologies used in respondents' organizations [CollabNet VersionOne, 2019]. 69

Fig. 3.5 Scrum's lifecycle. Adapted from [Abrahamsson et al., 2002]. .. 73

Fig. 3.6 Example of Scrumban Board that gives an overview of a process workflow. ... 78

xii

Fig. 3.7 Bucket size planning. The backlog icon is adapted from [Kenneth, 2013].. 79

Fig. 3.8 An illustration of Lead, Cycle time and Cumulative Flow Diagram (CFD) .. 80

Fig. 3.9 Scrumban process [mm1, 2015]. ... 81

Fig. 3.10 Dimensional Comparison of Scrum and Scrumban. .. 85

Fig. 4.1 Component-Driven Development (CDD) process. .. 92

Fig. 4.2 DE sub-process (left) and AE sub-process (right) of de Siuza & Vilain APL method. 93

Fig. 4.3 Process of RiPLE-SC. .. 94

Fig. 4.4 A-Pro-PD process. ... 95

Fig. 4.5 APLE Scrum development process. Adapted from [Diaz et al., 2011] ... 96

Fig. 4.6 Process of the Iterative Model for APLE. .. 97

Fig. 4.7 Process of Extreme Product Line Engineering. ... 98

Fig. 4.8 da Silva’s Agile Process for Software Product Lines Scoping. ... 99

Fig. 4.9 APL process proposed by Carbon et al. 2006. ... 100

Fig. 4.10 Collaborative PL planning approach [Noor et al., 2008]. .. 101

Fig. 4.11 Process proposed by Ghanam et al. 2010. ... 102

Fig. 4.12 ScrumPL process [dos Santos and Lucena, 2010]. .. 103

Fig. 4.13 String search used in the current SLR. .. 107

Fig. 4.14 Steps of the "Conducting the Review" phase... 109

Fig. 4.15 Search process and filtering steps adopted from the PRISMA statement [Moher et al., 2009]. 110

Fig. 4.16 Agile methods used within SPL and number of studies that cite each identified method. 141

Fig. 5.1 Requirements Engineering (RE) areas - adapted from [Wiegers, 2005]. ... 147

Fig. 5.2 Approach of mapping between intentional elements and features - Adapted from [Asadi et al., 2016]. 157

Fig. 6.1 Followed research process ... 162

Fig. 6.2 Venn diagram that represents the characteristics of SPLE and ASD. .. 163

Fig. 6.3 Overview of the engineering process for AgiFPL. Revised and adapted from [Apel et al., 2013]. 167

Fig. 6.4 Abstract relationship between the elements of AgiFPL processes. ... 168

Fig. 6.5 Role of Business expert ... 170

List of figures

xiii

Fig. 6.6 Role of Domain Expert. ... 171

Fig. 6.7 Role of Domain Sensei. ... 172

Fig. 6.8 Role of Domain Development Team. .. 172

Fig. 6.9 Role of App i Owner. .. 173

Fig. 6.10 10 Role of the Line i Scrum Master. .. 174

Fig. 6.11 Line i Development Team. .. 174

Fig. 6.12 Domain Engineering (DE) tier of AgiFPL. A Scrumban-inspired process. ... 180

Fig. 6.13 Application Engineering (AE) tier of AgiFPL. A Scrum-inspired process. .. 184

Fig. 6.14 AgiFPL method uses principles of iterative and incremental development. .. 187

Fig. 6.15 AgiFPL process Model. ... 187

Fig. 6.16 A template of Kanban Board - Adopted from [Anderson and Carmichael, 2016]. 189

Fig. 6.17 Three-phases approach to incorporate AgiFPL. Adapted from [Gregg et al., 2016]. 191

Fig. 7.1 Research procedure. ... 198

Fig. 8.1 Research process. ... 223

Fig. 8.2 Requirements-oriented Meta-model for Agile Product Lines. ... 223

Fig. 8.3 Problem space of Domain Engineering in AgiFPL. .. 236

Fig. 8.4 Problem space of Application Engineering in AgiFPL - Product Line (i). .. 237

Fig. 8.5 A FGM for “Order Processes”, modeled from the e-commerce case study. ... 238

Fig. 8.6 Based on the FGM in Figure 8.5, the Correspondent Feature Model of “Order Process”. 239

Fig. 9.1 The Value Chain. Adapted from [Porter, 1985]. ... 246

Fig. 9.2 Logistics management process [Christopher, 2011]. ... 247

Fig. 9.3 Material flows in the outbound logistics chain [Wautelet et al., 2018]. .. 250

Fig. 9.4 Goal Diagram for Outbound Logistics. ... 251

Fig. 9.5 Feature Model of the main features that construct the architecture of OL Collaborative Platform. 253

Fig. 9.6 Family Goal Model (FGM) of the parent-feature "Fleet Management System".................................... 256

Fig. 9.7 Generated Feature Model of the targeted FMS of the OL Collaborative Platform. 257

Fig. 9.8 Example of Feature Backlog of "Fleet Management System". .. 258

Fig. 9.9 Example of the Story Backlog of the “Fleet Management System”. ... 258

xiv

Fig. 9.10 Family Goal Model of the desired FMS by the "App i Owner". ... 260

Fig. 9.11 Backlog of "Sprint 1". .. 261

Fig. 9.12 Burndown chart of the work progress for deriving the final version of the targeted FMS. 261

xv

List of tables
Table 3.1 Definitions of the term "Agile". Adapted from [Laanti et al., 2013]. ... 62

Table 3.2 Principles of Agile Manifesto [ManifestoAgile, 2001]. ... 66

Table 3.3 Dependencies of agile manifesto values and principles [Heng, 2017]. .. 66

Table 3.4 Agile Vs. Waterfall. Adapted from 2015 CHAOS Report [Hastie and Wojewoda, 2015]. 68

Table 3.5 Definitions of methodological dimensions [Moran, 2015] ... 84

Table 3.6 Scrum and Scrumban Methodological Dimensions [Banijamali et al., 2017] [Reddy, 2016]. 85

Table 3.7 Differences between Scrum and Scrumban, adapted from [Gambill, 2013], [Mahnic, 2014],

[Misevičiūtė, 2016], [Reddy, 2016]. ... 86

Table 4.1 Search resources of the present SLR. ... 106

Table 4.2 Quality criteria of the SLR. Adopted from [Dybå and Dingsøyr, 2008]. ... 108

Table 4.3 Results of the systematic search. .. 109

Table 4.4 Selected papers - references in chronological order. .. 111

Table 4. 5 Mapping between Agile Principles and SPLE Principles. Adapted from [Hanssen and Fægri, 2008].

 .. 114

Table 4.6 Activity and practices that are related to Application Engineering (AE). .. 120

Table 4.7 Activity and practices that are related to Domain Engineering (DE). .. 121

Table 4.8 General criteria for evaluating methodologies – Modeling language group [Farahani and Ramsin,

2014]. .. 125

Table 4.9 General criteria for evaluating methodologies – Process group [Farahani and Ramsin, 2014]. 126

Table 4.10 General criteria for evaluating methodologies – Process group (Cont. – 1) [Farahani and Ramsin,

2014]. .. 127

Table 4.11 General criteria for evaluating methodologies – Process group (Cont. – 2) [Farahani and Ramsin,

2014]. .. 128

Table 4.12 Criteria related to agility characteristics [Farahani and Ramsin, 2014]. ... 129

Table 4.13 Criteria related to PLE characteristics [Farahani and Ramsin, 2014]. .. 130

xvi

Table 4.14 Criteria related to the common goals of agile development and SPLE [Farahani and Ramsin, 2014].

 .. 131

Table 4.15 Criteria related to the issues arising when combining agile development and SPLE [Farahani and

Ramsin, 2014]. .. 131

Table 4.16 Selected papers for the "Criteria-Based Evaluation". ... 132

Table 4.17 Results for general evaluation criteria – Modeling language group. .. 133

Table 4.18 Results for general evaluation criteria – Process group (Part – 1). ... 134

Table 4.19 Results for general evaluation criteria – Process group (Part – 2). ... 135

Table 4.20 Results for general evaluation criteria – Process group (Part – 3). ... 136

Table 4.21 Results of evaluation based on criteria related to agile characteristics. .. 137

Table 4.22 Results of evaluating APL methods based on criteria related to SPLE characteristics. 138

Table 4.23 Evaluation results for criteria related to the common goals of ASD and SPLE. 139

Table 4.24 Evaluation results for criteria related to the issues arising when combining ASD and SPLE. 139

Table 4.25 Studies that explicitly cited agile method used to combine ASD with the SPL. 140

Table 4.26 Identified studies versus agile methods, adapted from [da Silva et al., 2011]. 141

Table 5.1 Requirement Engineering practices - Modeling languages for Software Product Lines. 152

Table 5.2 Artifacts used in Agile Requirements Engineering. ... 154

Table 5.3 Requirements engineering implementation in Scrum - adapted from [Lucia and Qusef, 2010]. 155

Table 5.4 Comparison of Goal model (GM) and Feature model. ... 156

Table 7.1 AgiPL-AM: Levels, Principles, and Practices. ... 201

Table 7.2 AgiPL-Assessment Model: Levels, Principles, and ID of Practices ... 214

Table 8.1 Agile Methods versus Product Line Approaches ... 219

Table 8.2 RE Tools/approach and activities, identified in studied agile product line approaches. 222

Table 8.3 Abstract and technical definitions of "feature" concept. .. 231

Table 10.1 Results of evaluating the RE activities of AgiFPL. .. 264

Table 10.2 Results of evaluating the processes of AgiFPL - Part 1. .. 265

Table 10.3 Results of evaluating the processes of AgiFPL - Part 2. .. 265

List of tables

xvii

Table 10.4 Evaluating the agile characteristics of AgiFPL. ... 266

Table 10.5 Evaluating the SPLE characteristics of AgiFPL. .. 266

Table 10.6 Evaluating if AgiFPL respect or not the common goals of agile and SPLE. 267

Table 10.7 Results of evaluating the combination of the two approaches within AgiFPL. 267

Table 10.8 Assessment results of assessing the "Collaboration Level" of AgiFPL method. 269

Table 10.9 Assessment results of assessing the "Evolutionary Level" of AgiFPL method. 270

Table 10.10 Assessment results of assessing the "Effectiveness Level" of AgiFPL method. 271

Table 10.11 Assessment results of assessing the "Adaptiveness Level" of AgiFPL method. 272

Table 10.12 Assessment results of assessing the "Encompassing Level" of AgiFPL method. 273

Table 10.13 Percentages of achievement of the practices related to each agile level. .. 274

Table 10.14 An encompassing overview of the results of assessing AgiFPL method with AgiPL-AM. 275

xix

List of abbreviations
2GPLE Second Generation Product Line Engineering
AD Application Design
AE Application Engineering
AgiFPL Agile Framework for managing evolving Software Product Lines
AgiPL-AM Assessment Model for Agile Product Lines
APL Agile Product Line
APLE Agile Product Line Engineering
AR Application Realization
ARE Application Requirements Engineering
ASD Agile Software Development
AT Application Testing
BAPO Business-Architecture-Process Organization
BUD Big Upfront Design
CBE Criteria-Based Evaluation
CDD Component-Driven Development
COPA Component-Oriented Platform Architecting Method
CVL Common Variability Language
D Descriptive Form
DD Domain Design
DE Domain Engineering
DOD Definition of Done
DR Domain Realization
DRE Domain Requirements Engineering
DSL Domain Specific Language
DT Domain Testing
FAST Family-Oriented Abstraction, Specification, and Translation process
FODA Feature-Oriented Domain Analysis
FORM Feature-Oriented Reuse Method
FOSD Feature-Oriented Software Development

KobrA Component-Based Application Development
Komponentenbasierte Anwendungsentwicklung

MDA Model Driven Architecture
ML Modeling Language
N/A Not relevant to the context or properties of the methodology
N/D Not defined in the methodology
PL Product Line
PLA Product Line Architecture
PLE Product Line Engineering
PLUS Product Line UML-Based Software Engineering
ProM Product Management

List of abbreviations

xx

QADA Quality-driven Architecture Design and quality Analysis
RE Requirements Engineering
RQ Research Question
SC Scale Form
SDLC Software Development Life-Cycle
SE Software Engineering
SIP Stories in Progress
SLR Systematic Literature Review
SM Simple Form
SPL Software Product Line
SPLE Software Product Line Engineering
WIP Work In Progress

1

Part I – Introduction

3

1 Introduction

Software Product line engineering (SPLE or PLE) is a well-established software engineering
discipline that provides an efficient way to build and maintain “portfolios of systems”, which
share common “features” and “capabilities” [Pohl et al., 2005] [van der Linden et al., 2007].
Systems built with SPLE have, for decades now, demonstrated improvements in “development
time”, “cost”, “quality”, and “engineering productivity”. Significant advantages in family-
based software development have been proven by SPLE, such as “faster time-to-market, better
quality, and lower costs by means of systematic reuse and mass-customization” [Clements and
Northrop, 2001]. Fundamentally, implementing a SPLE method requires considerable upfront
planning and design (i.e. Big Upfront Design – BUD) with a heavyweight software process to
achieve organization business goals. When the anticipated changes in “core-assets” have been
predicted with certain accuracy, SPLE has provided significant improvements. However, when
large or complex software product-line projects have to deal with “changing market
conditions”, alternatives to supplement SPLE are required [Díaz et al., 2011].

The difficulty of predicting the level of “demand uncertainties” of software products
and the “rapid changes” in the current software business environment have made alteration to
software products development inevitable. The change is required in order to stay competitive
in the market [Beck and Andres, 2004]. Agile Software Development (ASD) methods are
considered able to “both create and respond to change in order to profit in a turbulent business
environment” [Highsmith, 2002]. Basically, agile methods ensure “rapid and flexible
construction of working products in an iterative and incremental way through continuous
delivery of valuable software by short time-framed iterations, as well as welcoming changing
requirements even late in development” [Highsmith, 2009] [Cockburn, 2007]. Unlike SPLE
approaches, Agile Software Development (ASD) approaches achieve the organization
strategies (i.e. business goals) through the practices, principles, and values focused on “people
and interactions”, “working software”, “customer collaboration”, “responding to change”,
and “continuous improvement” [Manifesto Agile, 2001]. Contrary to SPLE, ASD targets a
“lightweight process and low upfront planning and design” [Larman and Vodde, 2008].

Software Product Line Engineering (SPLE) processes and Agile Software Development
(ASD) processes advocate identical “business goals”, such as “reducing time-to-market”,
“increasing productivity”, and “gaining cost effectiveness and efficiency of software
development efforts” [Tian and Cooper, 2006]. Since both processes share common goals, there
has been growing interest in whether the integration of “Agile” and “Software Product Lines”
could provide further benefits and solve many of the remaining issues surrounding software
development [de Souza and Vilain, 2013].

1 Introduction

4

1.1 Research Motivation and Context

The idea of combining “Agile” and “Software Product Lines” has become a trending research
field, shifting focus and taking the attention of many researchers and practitioners within the
software industry. The main interest lies in discovering how to combine reusability and
customization, as practiced in Software Product Lines, with concepts such as iterative
development and embracement to change as encouraged in agile methods [Ghanam et al.,
2011]. To deal with the growing complexity of information systems and to handle the
competitive and changing needs of the IT production industry, practitioners and researchers
have proposed several approaches with the intention of combining agile and product lines
techniques [da Silva et al., 2011]. The goal was to make Software Product-Line methodologies
evolving from predictive to iterative and incremental, and to agile approaches.

Agile Product Line Engineering (APLE) is a new paradigm that promotes the integration
of “agile” principles and “Software Product Lines” with the target of reducing the big upfront
design (BUFD) associated with the product-line platform, while making the development
within the Software Product Lines more flexible and adaptable to change [Cooper and Franch,
2006] [Díaz, 2012]. APLE is presented as “promising”, however, there are several challenges
when putting APLE into practice. In [Hohl et al., 2017a] and [Hohl et al., 2017b], Hohl et al.
have identified some challenges that could relate to activities, practices, or even the
organization itself. The main challenges listed by Hohl et al. are the following:

• Organizational challenge: The exact coordination is still a challenge for introducing
agile elements to the existing SPL. When introducing agile practices into the existing
SPL processes, it is recognized that the “coordination of the software development”
impedes a faster flow of activities [Hohl et al., 2017a];

• Challenge related to worldwide-distributed development team: a major challenge is the
collaboration with suppliers and a worldwide distribution of the development team.
Different cultures and different mindset are likely to impede an agile development [Hohl
et al., 2017a];

• Challenges related to management: some cases exist where the management does not
want to give up any responsibility. With less responsibility on the managerial level,
scheduling of the development and reporting will be challenging, it is unclear for the
managers how the agile software product line could be planned and features are scoped
[Hohl et al., 2017b];

• Challenges related to dependencies and synchronization: a dynamic coordination is
deemed to a necessity to introduce agile development practices into SPL development
process. The development process across several domains must therefore be
synchronized [Hohl et al., 2017a];

• Challenges related to validation and release: with an APLE approach, it is a challenge
to scale the test framework to test all variants within the SPL. It is unclear how far the
automation of tests could help in the process. Testing strategies must be context specific
and scalable [Hohl et al., 2017a];

1.1 Research Motivation and Context

5

• Challenges related to Software Development: One of the major challenges that face an
APLE approach is the software development itself. The identified challenges in the
software development are clustered as technical challenges, challenges related to costs,
requirements management challenges, challenges related to software architecture,
challenges related to software quality, and challenges related to the use of SPL and
variants [Hohl et al., 2017a].

In addition to these challenges, it was recognized that several foundations of SPLE and
ASD are highly contrasting, or sometimes even opposite [Hanssen, 2011]. It is therefore
necessary to deal with these challenges and differences when integrating agile practices with
SPLs, or even when adopting an existent APL method. In other words, APLE’s actual context
implies that organizations have to face several barriers to achieve its adoption effectively. The
significant advantage in combining the “agile” attribute and SPLE approaches is the
“synergy”. This synergy means that each approach has the capacity to address the weaknesses
of the other. As mentioned, although there are many advantages in combining the two
approaches, some difficulties do still exist. These difficulties are mainly due to the “inherent
differences” of the approaches [Farahani and Ramsin, 2014]. The core differences all lie in the
following [Hanssen and Fægri, 2008]:

− The strategies for handling changing requirements;
− The degree of focus on documentation;
− The level of user involvement required;
− The development roles involved.

Despite the emphasized difficulties, large companies make great efforts to achieve a
successful combination of both methods. Agile Software Product Line Engineering is driven
by the assumed improvements for the customers and the software developers (companies). In
fact, companies assume that the development could benefit from both a working “reuse
strategy” and an “increased flexibility” with an agile Software Product Line. This “flexibility”
is very important in order to react appropriately to “customer needs” and “changing
requirements” during the development process [Hohl et al., 2016]. Accordingly, Hohl et al.
[Hohl et al., 2017] have argued that combining SPLs and agile development methods is not
trivial. To face the new market trends of the software industry, companies are willing to take
the risk and spend all the needed efforts in order to overcome the obstacles of combination.
Their aim is to adopt an Agile Product Line approach that ensures the achievement of “shorter
time-to-market”, “shorter release cycles”, as well as the introduction of development practices
such as “continuous integration” and “continuous delivery”.

 Several methods have been proposed to provide a practical process for applying APLE
in organizations, but none of the identified methods covers all the required APLE features. The
survey of Farahani and Ramsin [Farahani and Ramsin, 2014] has shown that any new APL
method has to cover the following features:

 Full coverage of the generic Software Development Life-Cycle (SDLC);
 Comprehensive and precise definition of the methodology;
 Sufficient attention to the non-SDLC activities;

1 Introduction

6

 Prescription of a specific modeling framework of requirements (Requirements
Engineering approach);

 Provision of model examples;
 Attention to active user involvement;
 Management of expected and unexpected changes.

This thesis aims to propose a new Agile Product Line method. The intention behind the
definition of a new APL method is to address the deficiencies identified in the current methods,
while making use of their advantages. An important and first step when combining “Agile” and
“Software Product Lines” is to identify the basis of the process of the designed “APL method”;
whether it is SPLE or ASD. In the literature, two main scenario of combining of agile methods
with Software Product Lines (SPLs) were presented. In the first scenario, researchers and
practitioners propose APL approaches by starting with a SPL process as the main process, and
then adding the agile practices. In the second scenario, researchers have proposed APL
approaches, in which the agile method is considered as the main development process, where
the integration starts from the agile method, and the SPL practices are then added.

Defining a new APL method is actually defining a new software development
methodology. Chen and Babar [Chen and Babar, 2011] argued that a software development
methodology mainly consists of two integral parts:

1. Modeling Language, which provides the syntax and semantics used to express the
products. This part, in fact, represents some practices and activities of the requirements
engineering;

2. Process, which prescribes the flow of required activities and explains how the products
should be produced, enhanced and exchanged along this flow. Thus, this part essentially
represents the software development process.

To reach the target, a development process should be designed and aptly provide modeling
modules and rules.

1.2 Problem Statement

After an in-depth review of the available literature on Agile Product Line Engineering and
existing APL methods, two main findings could be deduced, namely:

1. Practitioners could conclude that there are sufficient reasons to move towards a
combination of Agile Software Development with Software Product Line Engineering
[Díaz et al., 2014].

2. Researchers could conclude that there are still some important challenges in the area
of APLE, and therefore, more research work is needed to completely put Agile Product
Line Engineering into practice [da Silva et al., 2015].

1.2 Problem Statement

7

Regarding the first finding, it was acknowledged that APL methods would be applicable
to business cases where a clear convenience of going towards a Software Product Line existed.
However, it should be considered that the current market situation is not stable enough for
different reasons; including but not limited to technological factors. It does, however, remain
advantageous to deploy APLE into practice in many situations:

a. When developers do not have sufficient knowledge to completely perform the Domain
Engineering (DE), ASD may facilitate the elicitation of further requirements,
specifications, and knowledge [Tian & Cooper, 2006];

b. Trade-offs between ASD and SPL provide the opportunity to apply the APL method to
a wider variety of projects than those served by only applying a single of these two
methods [Tian & Cooper, 2006];

c. When anticipated changes cannot be predicted and the product lifecycle is unknown, it
would be advantageous to use an incremental method, such as an APL method [Carbon
et al., 2006];

d. Agile processes may facilitate fast feedback cycles between requirements engineering
(RE), software development, and field trial in innovative business [Kircher et al., 2006].

Regarding the second finding, the review of the literature on APL methods has reported
the following main ascertainments:

i. The integration of agile methods to Domain Engineering (DE) requires more effort than
its integration to the Application Engineering (AE). In fact, it is difficult to reduce the
upfront design with the aim of getting closer to agile principles and values, while
achieving the typical goals of DE, such as reuse [Ghanam et al., 2009b]. However, the
integration of ASD to AE seems feasible. This feasibility was confirmed in several
works, such as [O’Leary et al., 2009b] [Ghanam et al., 2010] [da Silva et al., 2015]
[Farahani and Ramsin, 2017] [Hohl et al., 2017b];

ii. Synchronization between platform and product teams is vital in APLE, as DE and AE
should not be separated. The platform should be synchronized with the application needs
to avoid the platform becoming obsolete [O'Leary et al., 2008]. According to [Ghanam
et al., 2009b] the synchronization between DE and AE teams still remains a challenge
for APLE practitioners;

iii. Business goals have to be considered in order to identify the extent of flexibility
required. Which should prove to be useful in determining the combination of SPLE and
ASD, i.e. either SPLE and ASD at the strategic level, or SPLE at the strategic level and
ASD at the tactical level [Tian & Cooper, 2006] [Hanssen & Fægri, 2008] [Mohan et
al., 2010] [Hohl et al., 2017a] [Farahani and Ramsin, 2017].

Consequently, the main problematic issue that has been tackled by this thesis is to
propose a new APL method that:

̶ Combines agile practices with Software Product Lines effectively ;

̶ Limits at the maximum “Big Upfront Design” ;

1 Introduction

8

̶ Ensures rapid and flexible construction of working products in an iterative and
incremental way through continuous delivery of valuable software by short time-framed
iterations, as well as welcoming changing requirements even late in development ;

̶ Presents practical ways to integrate agile practices to Domain Engineering lifecycle,
while preserving the core architectures and main principles of Software Product Lines;

̶ Ensures practical and effective synchronization between DE and AE teams is highly
ensured.

1.3 Research Design

The research activities in Software Engineering (SE) lead to the introduction of new models,
methodologies and tools that intend to aid software engineers and developers to understand the
project contexts, complex problems, and to improve effectiveness and efficiency [Shaw, 2002].
Like any other research discipline, research in software engineering requires guidance on the
research process in order to ensure good research. This thesis relies on different research
methods, such as “Design Science” principles [Hevner et al., 2004], and specific research
techniques, such as “Systematic Literature Review (SLR)”.

This thesis is built up from three main parts; each part has been based on a different
research method and approach. Figure 1.1 shows the chapters that address the different research
questions defined in this dissertation. The research process designed to reach the target of this
thesis could be presented as the following:

I. Part 2 involves a literature study of the relevant approaches and techniques;

II. Part 3 focuses first on defining the key elements and the software architecture required
for building the required methodology. Then, it focuses on building the methodology
up upon the defined concepts, artifacts and architecture for the full lifecycle coverage;

III. Part 4 focuses on the evaluation and the validation of the designed methodology.

1.3.1 Literature Review

To successfully achieve this part of the thesis, a review the scientific sources related to the main
topics of interest was conducted. The literature review part focused on research works related
to Software Product Line (SPLE) methodologies, Agile (ASD) methodologies, Agile Product

Addresses
RQ1 to

RQ9
CH4 addresses

RQ10CH6 addresses
RQ12CH7 addresses

RQ11CH8

Fig. 1.1 Chapters that address the research questions of the dissertation.

1.3 Research Design

9

Line (APL) methodologies, as well as some related Requirements Engineering (RE)
frameworks.

Part 2 of this thesis was built in three steps. During the first step, the main SPLE and
ASD methodologies related to this research project were reviewed. By this step, the state of the
art related to SPLE and ASD methodologies were explored. The intention is to cover the
vertical and the horizontal dimensions of the well-known methodologies in the SPLE and ASD
fields. In the second step, the relevant APL methodologies, or more precisely their phases,
workflows and the global processes, were presented. After presenting the selected APL
methods, a “Systematic Literature Review (SLR)” was conducted, in order to respond to the
following Research Questions (RQs):

 RQ1: What are the purposes of the combination of SPLE and ASD? What are the
expected benefits of the combination of ASD and SPLE?

 RQ2: How the Agile principles are related to the SPL principles?

 RQ3: How the combination of SPLE and ASD respects the business strategic goals?

 RQ4: Which current APL approaches satisfy the Application Engineering (AE)
activities?

 RQ5: What are the challenges and gaps in current APL approaches that relate to AE
activities?

 RQ6: Which current APL approaches satisfy the Domain Engineering (DE) activities?

 RQ7: What are the challenges and gaps in current APL approaches that relate to DE
activities?

 RQ8: Which current APL approaches satisfy both DE and AE activities through agile
principles?

 RQ9: Do successful experiences putting an APL approach into practice exist?

The conducted systematic literature review (SLR) has given a macro-view of the
different approaches that combine ASD with SPLE, and thus, a macro-view about the current
APL approaches. This SLR has presented a sufficient macro-view about the activities,
practices, and experiences with APLE. However, to achieve the ultimate objective of this thesis,
which is to propose a strong APL method, a more detailed micro-view about the reviewed
studies on APLE was needed. Accordingly, a “Criteria-Based Evaluation (CBE)” was
performed to evaluate a set of relevant APL method. By means of the CBE, it was intended to
evaluate:

̶ The global processes of the methodologies;

̶ The characteristics related to the agile principles and values;

̶ The characteristics related to the SPLE principles;

̶ How these characteristics fit the common goals of agile and SPLE;

̶ The characteristics related to the combination of the two approaches.

1 Introduction

10

At the end of the Part 2, an attempt was made to successfully identify how Software
Product Lines deal with the Requirements Engineering (RE) issues, as well as how agile
methods do. In addition, it was intended to identify the main RE practices and techniques that
could help to propose a RE framework for Agile Software Product Lines.

1.3.2 Building-up the targeted APL method

Part 3 addresses the core objective of this thesis directly, which is “Proposing an Agile Product
Line method”. The main research questions that have been tackled are the following:

 RQ10: How to combine agile practices with Software Product Lines and therefore build
an APL method that takes the strengths of the previous APL methods and overcomes
their weaknesses?

 RQ11: What are the Requirements Engineering activities and practices that fit the Agile
Software Product Lines principles? How could they be integrated to the proposed APL
method?

 RQ12: How to assess the agility attribute of an agile product line method?

Defining a new APL method (i.e. responding to RQ10) is essentially defining a new software
development methodology that has two main integral parts: Modeling Framework and
Development Process.

 To design the development process of the targeted APL method, first the results of the
Part 2 are taken as a basis to build-up the targeted APL method. Second, the design of the
targeted process is initiated by selecting the SPL approach that would be the basis of the
targeted APL, and then the agile method(s) that will be integrated to the chosen SPL is selected.
After that, the APL process was designed. Third, the designed process has been reviewed in
order to optimize it. To do this, two academics and one software engineering expert were
chosen. Each person has reviewed the designed process separately.

To answer research question (RQ11), a research procedure (proposed by Engels and
Sauer [Engels and Sauer, 2010]), that has the following steps, was used:

• Define domain and disciplines;

• Produce domain model of software engineering concepts;

• Select notations;

• Define artifacts types;

• Define the software engineering process models;

• Select tools, techniques and utilities.

To respond to research question RQ12 an assessment model to assess the agility
attribute of an agile product line method was proposed. In order to reach the target here, a

1.4 Overview of the proposed solution

11

research procedure of three phases was followed. The first phase starts by a review of literature
on maturity models that concern Software Product Line Engineering, Agile Product Lines, and
Agile Software Development. The second phase involves the construction of the proposed
“agile assessment model”. After defining the main objectives of the required assessment model,
the assessment model have been designed and developed in an iterative way. In the third phase,
the model was applied and evaluated. At this stage, the model has been reviewed and refined in
order to optimize and finalize the proposed assessment model.

1.3.3 Assessment and Validation

In this part, a research procedure of two phases was followed. First, the APL method is validated
utilizing case study techniques. Second, the proposed method is evaluated through a specific
evaluation strategy.

The case study methodology has been used in this thesis, as it is a commonly used
research strategy in Software Engineering. It is a demonstration case that exhibits the
implementation of some software technology or programming concept. In fact, it involves an
interpretive, naturalistic approach to the world, investigating things in their natural settings (i.e.
real industrial case), attempting to make sense of, or interpret, phenomena in terms of the
meaning people bring to them. To demonstrate the real world feasibility and benefits of our
proposed APL method, a case study has been performed by focusing on a specific project called
TransLogisTIC [Wautelet, 2011].

The evaluation of the proposed APL method and the validation of its applicability in
practice as well as the identification of its strengths and weaknesses were ensured in two steps.
First, we evaluate it by performing a Criteria-Based Evaluation (CBE). Second, we assess its
level of agility by using the Assessment Model developed in Part 2.

1.4 Overview of the proposed solution

This thesis proposes three complementary solutions. First, it proposes an Agile Product Line
method called AgiFPL (Agile Framework for managing evolving Product Lines). Second, it
proposes an Integrated Requirements Engineering framework for Agile Software Product
Lines, which provides the syntax and semantics used for expressing the products of an APL
method. Third, it proposes an assessment model called AgiPL-AM (Assessment Model for
Agile Product Lines) for the assessment of the situation of agile adoption within agile product
line approaches.

AgiFPL has been defined, designed and implemented after studying and analyzing the
existent APL methodologies with the aim of taking advantage of the strengths of the studied
methodologies and to overcome their weaknesses. In this thesis, AgiFPL was proposed to
address the development process. In fact, the proposed process consist of a set of units of work
(activities, tasks, steps), guidelines, roles, and work-products that allow the people (Experts,

1 Introduction

12

Owners, Developers, stakeholders, etc.) involved with the Software Product Line (SPL) to
perform the development processes of Domain Engineering (DE) and Application Engineering
(AE) aligned with Scrumban and Scrum practices. AgiFPL has indeed presented a Scrumban-
inspired process for the DE tier and a Scrum-inspired process for the AE tier. Scrum was
adopted, as it is considered the mainstream method within development teams and its practices
fit the AE process by handling feedback, iterativeness, incrementally, and adaptability in a
systematic way. Scrumban was adopted, as it ascribes more importance to the requirements
engineering part than the other agile methodologies; it establishes a structure of limited number
of “Production Lines” within its development process. It is furthermore commonly used for
maintenance projects, where it helps to deal with the traceability issue in the DE tier. Moreover,
a 3-phases approach to implement AgiFPL in practice was proposed.

The “Integrated Requirements Engineering framework for Agile Software Product
Lines” represents some practices and activities of the requirements engineering. In fact,
Requirements engineering (RE) techniques play a determinant role within Agile Product Lines
development methods; as they notably establish the relevance fueling the decision to adopt the
product line approach for software-intensive systems production. This framework proposes an
integrated goal and feature-based metamodel for agile software product lines development. The
aim is to allow analysts and developers to specify requirements that precisely capture the
stakeholder’s needs and intentions, as well as to manage product line variabilities. Adopting
practices from requirements engineering, especially goal and feature models, helps designing
the domain and application engineering tiers of an agile product line. Such an approach allows
for a holistic perspective integrating human, organizational and agile aspects to understand
product-lines dynamic business environments. It aids to bridge the gap between product-lines
structures and requirements models, and proposes an integrated framework to all actors
involved in the product-line architecture.

The AgiPL-AM model is an assessment model to evaluate the situation of agile adoption
within agile product line approaches. In fact, assessing the current situation, regarding the
combination of agile practices and activities with Software Product Lines, is an essential step
towards a successful integration of agile methods into Software Product Lines. Following a
specific research approach AgiPL-AM was built, which allows for self-evaluations within the
team in order to determine the current state of agile software development in combination with
Software Product Lines. AgiPL-AM is comprised of six categories (five are related to agile
principles and one to product-line architecture) and five levels of maturity. Furthermore,
AgiPL-AM has the ability to reveal and pinpoint agile product-line approach strengths and
weaknesses.

1.5 Threats to validity and limitations

15.1 Threats to validity related to the literature review

The outcome of the presented literature study is biased by different factors. In fact, there are
several threats to the validity of the conducted studies. This section presents the threats to

1.5 Threats to validity and limitations

13

validity according to the different steps of the literature review. These threats are categorized
according to Wohlin et al. [Wohlin et al., 2003] as internal, external, and construct validity.

− The “Construct Validity” threats concern mainly the relationships between theory and
observation. These threats are essentially due to the method used to assess the outcomes
of the conducted literature review. This kind of threats were mitigated through the
multiple sources of evidence that allow establishing chains of evidence (e.g. field
observations, analysis of documents, etc.).The main construct validity threats are the
following:

• Concerning the defined Research Questions (RQs): the defined research
questions might not provide complete coverage of the Agile Software Product
Line (APL) area. This issue was considered as a feasible threat. Thus, several
discussion meetings with the research team were held in order to calibrate the
adopted research questions;

• Concerning the selection of databases: several databases publish studies and
papers related to the area of Software Engineering (SE). It is high probably that
some publications are listed in more than database while others are not. The
research team has mitigated this threat of missing studies by using seven
databases that commonly publish related work.

− The “Internal Validity” threats are concerned with factors that might affect the
dependent variables without the researcher’s knowledge. The internal validity was
mitigated mainly through the defined steps to analyze the collected data. The main
internal validity threats are the following:

• A subjectivity in the study selection (Publication bias): it not possible to
guarantee that all relevant primary studies were selected. In fact, it is possible
that some relevant papers were not chosen. In order to mitigate this threat, an
automatic search was performed, and it was complemented by performing
manual search to try to collect all primary studies in this field. More precisely,
the references in the primary studies were followed;

• A subjectivity in the data extraction: during the data extraction process, the
primary studies were classified based on the judgement of one researcher (i.e.
the author of this thesis) of the research team, which may increases the amount
of research bias. In order to reduce biases due to subjective decisions, specific
criteria for inclusion and exclusion of a paper were formulated. In fact, the
inclusion and exclusion criteria can retain a certain objectivity of the results. In
case of doubts, all the concerned researchers (i.e. 3 researchers) have decided
about the inclusion or exclusion of the study. A second researcher reviewed the
whole process. Despite the double-checking, it is possible that some studies have
been classified incorrectly.

1 Introduction

14

− The “External Validity” is related to the ability to generalize the results of the
conducted study. The main external validity threats are the following:

• Concerning the results: because of the construction of the study, the research
team cannot ensure that they have found all the publications that are relevant for
the topic of Agile Software Product Line approaches.

• Concerning the repeatability of the systematic process: to deal with the risk that
involves the ability to replicate or extend the conducted studies, a detailed
description of the systematic processes used in this dissertation were described
(e.g. SLR protocol, etc.).

1.5.2 Threats to validity related to the proposed solutions

The APL method as presented in this dissertation and pointed out as its principal contribution
is tailored to feature-driven Software Product Lines (SPLs). As such, its use with different SPLs
may require recalibrating the proposed processes, which leads to the need for several test cases.
In addition, the proposed ALP method has presented a way to combine agile techniques with
SPLs, not to integrate to an agile development process a set of SPL practices.

 Another threat to validity of the research is that the generalizability of the findings of
this research project is limited only to the contexts of the cases used within this thesis. However,
the analysis and integration of other similar cases could extend the obtained results of this thesis,
with context similar to any of the case companies may find the findings of this thesis applicable.

 Finally, a few examples and one case study were presented in this dissertation. Thus,
there are threats to validity that limit the generalization of the case study results. To ensure the
credibility of the obtained results, several future research projects, which adopt a large enough
set of case studies developed in a real software industrial environment and that involve more
professionals in the research team will be launched.

1.5.3 Limitations

The proposed solutions as presented in this thesis bear potential for improving the Agile Product
Line Engineering area, however, still carries several limitations. This section discusses the
boundaries and limitations of the work presented in this thesis. The most important ones are the
following:

− The absence of a complete and implemented tool that support the different presented
approaches may influence the quality and the usability of the presented solutions. Thus,
there still a small limitation to the approach’s real world applicability.

1.6 Research Contributions

15

− A more comprehensive empirical validation of the proposed approach and solutions
would be required. Some parts of the validation presented in “Part IV” are still rather
preliminary and some others are limited to some extent. Therefore, a well-established
tool support and further case studies could provide a significantly strong empirical
validation in the future.

1.6 Research Contributions

This thesis was partially shared with the scientific community as it is shown in Figure 1.2. The
main results and key publications that result from this dissertation are based on the following
contributions:

 (C1): Haidar, H., Kolp, M. and Wautelet, Y. (2017). Agile Product Line Engineering:
The AgiFPL Method. In Proceedings of the 12th International Conference on Software
Technologies - Volume 1: ICSOFT, Madrid, Spain, pp. 275-285. DOI:
10.5220/0006423902750285

 (C2): Haidar, H., Kolp, M. and Wautelet, Y. (2018). Formalizing Agile Software
Product Lines with a RE Metamodel. In Proceedings of the 13th International
Conference on Software Technologies - Volume 1: ICSOFT, Porto, Portugal, pp. 90-
101. DOI: 10.5220/0006849001240135

Fig. 1.2 Matching between published papers and chapters of this dissertation.

1 Introduction

16

 (C3): Haidar, H., Kolp, M., and Wautelet, Y. (2019). An Integrated Requirements
Engineering Framework for Agile Software Product Lines. In van Sinderen M.,
Maciaszek L. (eds) Software Technologies. Communications in Computer and
Information Science, vol 1077. Springer, Cham, pp. 124-149. DOI:
https://doi.org/10.1007/978-3-030-29157-0_6

 (C4): Haidar, H., Kolp, M., and Wautelet, Y. (2019). Assessing the adoption level of
agile development within Software Product Lines: the AgiPL-AM model. In Guédria
W., Gordijn J., and Proper H. A. (eds) The Practice of Enterprise Modeling. PoEM
2019. Lecture Notes in Business Information Processing, vol 369. Springer International
Publishing, pp. 134-148. DOI: 10.1007/978-3-030-35151-9

1.7 Reading Map

This dissertation consists of four parts and eleven chapters. Figure 1.3 provides the structure
and the roadmap of the thesis. The remainder of this thesis is structured as outlined below:

 Chapter 2 and Chapter 3 give an overview of Software Product Line Engineering
(SPLE) and Agile Software Development (ASD) states of the art. Chapter 2 introduces
Software Product Line methodologies. It comprehensively presents the key concepts
and the motivation behind product-line development, the promises of product line
engineering, and how the product lines are characterized in the context of handcrafting
and mass production. In addition, it presents some frameworks and development
processes of software product lines and their specific characteristics. Chapter 3
considers “Agility” from a management perspective by introducing a considerable
overview of agile software development and by focusing on implementation,
organization and people of two main methods, namely, Scrum and Scrumban.

 Chapter 4 reviews the context related to APLE. This chapter appraises significant APL
approaches, presents a systematic literature review, and uses a criteria-based evaluation
to compare relevant APL approaches in order to increase the understanding of agile
SPL.

 Chapter 5 gives an overview of the different aspects of the Requirements Engineering
(RE) discipline. In addition, it reviews how Software Product Lines (SPL) deal with the
RE issues, as well as how agile methods do. Further, it presents the main RE practices
and techniques that have been used to propose the RE framework for Agile Product
Lines presented in Chapter 8.

 Chapter 6 presents the detailed description of the processes of the proposed APL
method (i.e AgiFPL). This description introduces the roles, work products, activities,
tasks, steps, and workflow of the processes of Domain Engineering (DE) and
Application Engineering (AE), according to AgiFPL. In addition, this chapter has
introduced an approach to implement AgiFPL in practice, which is a 3-phases approach.

1.7 Reading Map

17

 Chapter 7 presents the AgiPL-AM model, which is an assessment model to evaluate the
situation of agile adoption within agile product line approaches.

 Chapter 8 proposes an integrated goal and feature-based metamodel for agile software
product lines development. The proposed approach allows analysts and developers to
specify requirements that precisely capture the stakeholder’s needs and intentions as
well as to manage product line variabilities.

 Chapters 9 and 10 introduce a case study, as well as specific evaluations in order to
validate the results of this dissertation.

 Chapter 11 concludes this thesis, summarizes the work achieved, highlights the main
contributions of the thesis and points out possible efforts in future work.

Part I
Introduction

CH 1
Introduction

Part II
Literature

Review

CH 2
Software
Product

Lines

CH 3
Agile

Software
Development

CH 4
Agile

Product Line
Engineering

CH 5
RE for Agile
methods and

SPLs

Part III
An Agile

Product Line
Method

CH 6
Toward an Agile
Framework for

managing
Software

Product Lines

CH 7
Assessing the

adoption level of
agile

development
within Software
Product Lines:
the AgiPL-AM

model

CH 8
An Integrated

RE Framework
for Agile
Software

Product Lines

Part IV
Assessment

and
Validation

CH 9
Application
of AgiFPL:
The case of
TranslogiTIC

project

CH 10
Assessment
of AgiFPL

Part V
Conclusion

CH 11
Conclusion

Fig. 1.3 Structure of the thesis - This figure presents the organization of the thesis, its parts and their respective
chapters.

19

Part II – Literature Review

21

2 Software Product Lines

Abstract. Software product lines aim to empower software vendors to tailor products to the
individual requirements of their customers. Their goal is to maximize the reusability of any
previously developed software artifacts for the further development (derivation) of a multitude
of other software products. The adoption of a Software Product Line approach is highly feasible
when existing and/or planned software products exhibit a significant amount of commonality;
and therefore have differences that can be considered as mere variability. This chapter provides
a concise introduction to Software Product Lines. It comprehensively presents the key concepts
and the motivation behind product-line development, the promises of product line engineering,
and how the product lines are characterized in the context of handcrafting and mass production.
In addition, it presents some frameworks and development processes of software product lines
and their specific characteristics.

2.1 Introduction

There are differences between the software industry and classic mass production industries,
such as automobile manufacturing, where product line engineering originally became the norm.
Fundamentally, software is immaterial and could be duplicated with minimal material effort.
Therefore, the main issue with software is the development, not production. However, the
principles of “reusing” common parts for various products, and the further systematic
management of their variability, could realistically be applied to software development [KäKölä
& Dueñas, 2006].

 Historically, work on software product lines (SPL) dates back to the 1970s, with the
introduction of the “program families approach” introduced by Dijkstra [Dijkstra, 1972] and
Parnas [Parnas, 1976]. Thereafter, in the early 1980s, Neighbors [Neighbors, 1980] developed
the approach of “Domain Engineering”. Two main works followed these pioneering efforts.
The first, presented by Kang et al., consist of systematic approaches of “feature-oriented
domain analysis (FODA)” [Kang et al., 1990]. The second, developed by the “Software
Productivity Consortium Services Corporation”, constituted a synthesis method called “Reuse-
driven software processes” [Software Productivity Consortium Services Corporation, 1993].
The first systematic approaches to software product line engineering started emerging in the

2 Software Product Lines

22

late 1990s and early 2000s [Brownsword and Clements, 1996], [Weiss and Lai, 1999],
[Clements and Northrop, 2001], [Atkinson, 2002], [Gomaa, 2005], or [Linden et al., 2007].

 In the late 1990s, the need for increased productivity and reduction of the time-to-market
were amid the essential factors that lead to the rise of new software development paradigms.
Among these, the (Software) Product Line Engineering (SPLE or PLE) paradigm has gained
significant momentum within the software industry [Apel et al., 2013]. The main principle is
based on the construction of software systems from reusable parts, rather than developing them
from scratch. Therewith offering the ability to tailor to stakeholders’ individual requirements,
by granting the opportunity to select from a large variety of configuration options [Clements &
Northrop, 2001]. In fact, all systematic approaches to SPLE aim to reuse the commonality of
software products and systematically handle the variability.

 According to van der Linden, the strategic importance of PLE has been recognized by
the software industry, especially companies developing within the same family of products or
domain; such as smart phone manufacturers, car electronics companies, and financial services
enterprises [van der Linden, 2002].

2.2 What is a Software Product Line (SPL)?

By reviewing the literature, several definitions for “Software Product Line” can be identified.
The definition of SPL has evolved over time, as can be seen below on the schematic timeline
in Figure 2.1; other (less common) definitions exist in the literature.

1976
•Program
Families

• By
Parnas, D.
L.

1990
•Feature-
Oriented
Domain
Analysis

•By Kang, K., et
al.

2002
•Software
Product
Lines

•By Clements,
P. &
Northrop, L.

2005
•Software
Product Line
Engineering

•By Pohl, K.,
Böckle, G., &
van der
Linden, F.

2012
•Software
Product
Line

•By
Stoiber, R.

Fig. 2.1 SPL definitions timeline

2.3 Promises of Product Lines

23

In the 1970s, Dijkstra [Dijkstra, 1972] and Parnas [Parnas, 1976] have introduced in
their publications the concept of “Program Families”. Parnas defines “Program Families” as
“sets of programs whose common properties are so extensive that it is advantageous to study
the common properties to programs before analyzing individual members” [Parnas, 1976].

 Kang et al. [Kang et al., 1990] have advanced the field of SPL by introducing the
concept of “Feature-Oriented Domain Analysis (FODA)”. They consider that the primary focus
of the method is the identification of prominent or distinctive features of software systems in a
domain. These features are user-visible aspects or characteristics of the domain. They lead to
the creation of a set of products that define the domain and also give the method its name:
Feature-Oriented Domain Analysis (FODA). The features define both common aspects of the
domain as well as differences between related systems in the domain.

In 2002, Clements and Northrop [Clements & Northrop, 2001] have defined a software
product line as a set of software-intensive systems sharing a common, managed set of features
that satisfy the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way.

Pohl et al. [Pohl et al., 2005] have presented the “Software Product Line Engineering
(SPLE)”. They defined SPLE as paradigm to develop software applications (software-intensive
systems and software products) using platforms and mass customization. Where they consider
a platform as any base of technologies on which other technologies or processes are built. The
mass customization as the large-scale production of goods tailored to individual customers’
needs. Domain engineering as the process of software product line engineering in which the
commonality and the variability of the product line are defined and realized.

In his new approach to Product Line Engineering (PLE), Stoiber [Stoiber, 2012] define
the software product line (SPL) as a set of software products that all share a significant
amount of commonality and differ in their specific configuration of variability.

All the presented definitions contain two essential words explicitly or implicitly, namely
“commonality” and “variability”. Identifying, documenting, and managing the communalities
and variabilities are the key properties characterizing software product lines. Clements and
Northrop [Clements & Northrop, 2001] focus their work less on variability modeling (e.g.,
feature modeling [Kang et al., 1990]), but rather on the managerial, social, and organizational
aspects; which are decisive in the successful introduction of software product lines within
companies. Contrastingly, Pohl et al. [Pohl et al., 2005] and Stoiber [Stoiber, 2012] have
presented comprehensive approaches to PLE, in which they have introduce and emphasize key
concepts for variability management (i.e. variability modeling, etc.). Therefore, PLE allows
maximal reuse of both commonality and variability. Maximizing the reuse of commonality by
developing all products on a common product platform. Maximizing the variability by utilizing
a more modular development of variable functionalities, which can be added or removed at
will.

2.3 Promises of Product Lines

The rise in Product Line Engineering (PLE) research was mainly driven by the potential of
significant advancement in developmental efficiency. PLE promises better quality, lower cost,

2 Software Product Lines

24

and faster time-to-market [van der Linden et al, 2007] by systematic reuse of software assets
and mass customization. The PLE paradigm takes advantage of the commonality found in sets
of products by investing in the upfront design of the product-line platform [Pohl et al., 2005].
The upfront design is mainly composed of the common set of reusable core-assets, their
variability, and the Product Line Architecture (PLA). Hence, the developed assets are
assembled into customer-specific products by deriving the existing variability [Northrop &
Jones, 2012]. The most important benefits are presented below [Apel et al., 2013] [Clements &
Northrop, 2001]:

 Tailor-made products: adopting a product line approach to software production
facilitates tailoring products to individual customers (stakeholders). A software vendor
could produce a whole set of customized products rather than providing a standardized
product, or alternatively a smaller set of preconfigured products, such as Community,
Professional, and Enterprise editions of the same software product;

 Increased software quality: Industrial mass production has improved quality due to
the use of systematically controlled standardized parts. In fact, by adopting a PLE
approach, the extensive quality assurance implies a significantly higher efficacy of error
detection and regulation, thereby increasing the quality of all further derived products.
In contrast to handcrafting, commonly used parts lead to more stable, lean, and reliable
products;

 Significant reduction of development costs: While providing each customer their
desired software solution, product-line vendors do not need to pay the cost of designing
and developing each product from scratch. Instead, they develop reusable parts
(artifacts) that can be combined in different ways. Figure 2.2 illustrates the economic
promise of software product lines. This figure shows the cost/effort needed to develop
n different products. The blue line sketches the costs/effort required for developing the
product from scratch, while the green line sketches the costs/effort for product-line
engineering. The development cost per product per customer can be reduced by
selecting which parts to combine (potentially add missing ones) and by testing the
resulting product. While the upfront investment required for such an approach is
certainly larger than developing a single software product (i.e. the need to design
reusable parts and implement variations that might not be required for the first product),
the approach pays off in the long term; when multiple tailored products are requested.
The location at which both curves intersect marks the break-even point. At this point,
the costs are the same for developing the systems separately as for developing them by
product line engineering. The precise location of the break-even point depends on
various characteristics of the organization and the market it has envisaged, such as the
customer base, the expertise, and the range and kinds of products. The strategy that is
used to initiate a product line also influences the break-even point significantly
[McGregor et al., 2002];

2.3 Promises of Product Lines

25

 Faster product development cycles and time-to-market: While standard software is
readily available, handcrafted software products entail significantly higher costs and,
more importantly, longer development time, before they can be released. If a customer

Fig. 2.2 Effort/costs of crafting products individually versus product-line development [Pohl
et al., 2005].

Fig. 2.3 Time to market with and without product line engineering [Pohl et al., 2005].

2 Software Product Lines

26

selects only from predefined configuration options (that map to existing parts), a
software vendor can quickly produce the corresponding software product by assembling
the existing, corresponding parts. Even if a customer requests functionality that has not
been prepared, building a new product on top of existing well-designed, reusable parts
is much faster than developing it entirely from scratch. A well-designed platform that
can be extended for new products promises the possibility to quickly react to market
changes, more so than standardized software or individual development ever could
[Apel et al., 2013]. In Figure 2.3, the time-to-market for single-product development is
assumed to be roughly constant1. Figure 2.3 shows that for PLE, the time-to-market is
initially higher; as the common artifacts have to be built first. Yet, after having passed
this hurdle, the time to market is considerably shortened as many artifacts can be reused
for each new product [Pohl et al., 2005].

In addition to that, Clements and Northrop [Clements & Northrop, 2001] list even more
benefits such as “productivity gains in general”, “increased market presence”,
“unprecedented growth”, “improved customer satisfaction”, “higher reuse goals”, “mass
customization”, and “compensation for an inability to hire software engineers”.

2.4 Key concepts of Software Product Lines

In general, the PLE community agrees that the structural entities of a product-line are the
reusable core assets or artifacts, which support different degrees of customization through
defining variability points. The main concepts of PLE are defined as follows:

• Core asset base [Clements & Northrop, 2001] or Platform [Pohl et al., 2005]: set of
assets that form the basis (i.e. a common structure) from which a set of products of the
same family can be efficiently developed. That core asset base may include
requirements statements, documentation and specifications, domain models,
architecture descriptions, reusable software components, test cases, work plans, process
descriptions, etc. Therefore, a “core asset base” or “platform” is any “base of
technologies on which other technologies or processes are built” [Pohl et al., 2005];

• Asset: package of relevant artifacts which provides a solution to a given problem. Assets
can be of different granularity, may allow different degrees of customization
(variability), can be applied to different phases of software development, and can be
reused in different phases [Bachmann et al., 2004];

• Artifact: a piece of information (requirements specification, architecture, code, tests,
etc.) that is produced, modified, or used by a process and may take various shapes [Thiel
and Hein, 2002]. Pohl et al. [Pohl et al., 2005] define “Development Artifact” as the
output of a sub-process of domain or application engineering that encompass

1 In practice, the time-to-market for single-system varies, but to exhibit the effect of single-system vs. product line
engineering this assumption is sufficiently accurate [Pohl et al., 2005].

2.4 Key concepts of Software Product Lines

27

requirements, architecture, components, and tests. In addition, they name “Domain
Artifacts” the reusable “artifacts created in the sub-processes of domain engineering”;

• Feature: a feature2 is a characteristic or end-user-visible behavior of a software system.
Features are used in product-line engineering to specify and communicate
commonalities and differences of the products between stakeholders, and to guide
structure, reuse, and variation across all the phases of the software’s life cycle [Apel et
al., 2013]. This term started to be extensively used when the Feature-Oriented Domain
Analysis (FODA) method [Kang et al., 1990] introduces the feature modeling technique
for capturing commonality and variability of product lines;

• Variability: variability is the ability to derive different products from a common set of
artifacts [Clements et al., 2010], also known as anticipated change, i.e. change that is
mostly foreseen [Bachmann and Bass, 2001]. Variability is the basis for mass
customization i.e. the ability to specify flexibility and therewith enable the development
of customized applications from a product-line (PL) [Pohl et al., 2005]. According to
[Kang et al., 1990], [Pohl et al., 2005], and [Apel et al., 2013] variability is achieved by
intentionally defining the variation type (i.e. optional, mandatory, alternative, and
multiple), the time in which variation occurs (i.e. at design, compilation, or runtime),
the places where products can differ, and rationale (i.e. intent and motivation to define
that variability). Variability is specified in terms of variability points (or variation point)
and variants;

• Variability Point: Also known as, (variation point) is an explicit engineering decision,
which permits several optional, mandatory, alternative, or multiple variants in regard to
selected assets of system development [Bachmann et al., 2004]. Pohl et al. [Pohl et al.,
2005] consider that a variation point is a representation of a variability subject within
domain artifacts enriched by contextual information. According to [Clements et al.,
2010], variability points are the exact places in the core assets where a specific kind of
flexibility has been built-in (i.e. the locations at which variations occur). A variability
point could represent the choice among a number of functional features available to the
stakeholders, different structures and interaction patterns in the product-line
architecture, or alternative software components in product implementation;

• Variant: option for a specific decision that has been left open [Clements et al., 2010].
A variant is a representation of a variability within domain artifacts [Pohl et al., 2005];

• Product: a product, of a product line, is specified by a valid feature selection (a subset
of the features of the product line), where a feature selection is valid if, and only if, it
fulfills all feature dependencies [Apel et al., 2013];

2 Features are a fundamental notion in modern software engineering. The notion of a feature has many definitions
presented in Chapter 5. In addition, in Chapter 5 a further explaination will be give regarding the choice of this
particular definition for the presentwork.

2 Software Product Lines

28

• Domain: a domain is an area of knowledge that is scoped to maximize the satisfaction
of the requirements of its stakeholders. It includes a set of concepts and terminology
understood by practitioners in that area, and includes the knowledge of how to build
software systems (or parts of software systems) within that area [Czarnecki and
Eisenecker 2000] [Apel et al., 2013];

• Development: the generic term used to describe how core assets (or products) are
realized. The term development, used within this thesis, may actually involve building,
acquisition, purchase, retrofitting earlier work, or any combination of these options.
Throughout the work, these options are recognized and addressed, but the term
development is mostly used to refer to the broader meaning.

The literature review shows that some practitioners use different sets of terms to convey
essentially the same meaning. For a few, a product line is a profit and loss center solely
concerned with turning out a set of products; it refers more to a business unit, than a set of
products. The product family is the set of products, which is called the product line. The
software assets in the core asset base are sometimes called a platform. What was identified as
core asset development is sometimes referred to as domain engineering (DE), and what was
identified as product development is sometimes referred to as application engineering (AE).

2.5 Product Line Architecture (PLA)

According to Nakagawa et al. [Nakagawa et al., 2011], “the Product Line Architecture (PLA)
refers to a structure that encompasses the behavior from which software products are
developed”. Moreover, Pohl et al. [Pohl et al., 2005] defined PLA as the “core” architecture
that represents the product-line high-level design; considering variation points and variants
documented in the variability model. The Product Line Architecture (PLA) is a fundamental
artifact of the product line engineering, and contains all commonalities and variabilities of the
product-line (PL), and thus, it represents an abstraction of the products that can be generated
[van der Linden et al., 2007]. The PLA plays a central role to successfully generate specific
products taking into account the development and evolution of a PL. It abstractly represents the
architecture of all potential products from a specific domain. The quality attributes of a PLA
have impacts on the PL performance. For example, establishing the adequate PLA will (1)
increase the productivity of the product line process and the quality of the products; (2) provide
a means to understand the potential behavior of the products and, consequently, (3) decrease
their time-to-market; and, (4) improve the handling of the product line variability.

The PLA addresses the product-line design decisions by means of their commonalities,
as well as variabilities [Taylor et al., 2009]. The PLA design can benefit from the use of PL
characteristics such as feature modularization. In addition, the adoption of architectural styles
benefits the PLA design and provides flexibility, maintainability and understandability [Gomaa,
2004]. In addition, an architectural style determines ways to select and show parts of an
architecture, providing a specific organization of the elements, in order, to improve the
architecture understandability. To do this, an architectural style defines specific components,
connectors and a set of rules of how these can be combined [Colanzi et al., 2014]. The adoption

2.5 Product Line Architecture (PLA)

29

of a style makes the system easier to maintain, and can reduce fault propagations due to changes
[Mariani et al., 2016].

There are two common styles that are usually adopted in the SPL context, namely,
layered Style and Client/Server Style. The layered architectural style eases extension and
contraction. In the PL context, software contraction regards to the design of mandatory
elements, and software extension regards to the design of variables elements. The use of the
client/server style also eases PLA evolution, since servers can be easily added or removed
[Gomaa, Hussein, 2004].

Several methods were proposed in order to answer the needs of product lines from the
software architectural point of view. Mentioned hereafter are some of the most common product
line approaches:

i. COPA [America et al., 2000];

ii. FAST [Weiss et al., 1999] [Harsu, 2002];

iii. KobrA [Atkinson and Muthig, 2002];

iv. FORM [Kang et al., 2002];

v. QADA [Matinlassi et al., 2002];

vi. PLUS [Gomaa, 2005];

vii. CVL [Haugen et al., 2013];

viii. Product line engineering and management [ISO/IEK 26550:2017].

2.5.1 Component-Oriented Platform Architecting Method (COPA)

A Component-Oriented Platform Architecting Method for Families of Software Intensive
Electronic Products (COPA) [America et al., 2000] is currently under development at the
Philips Research Labs. The COPA method is one of the results of the Gaudi project [Philips et
al., 1999]. The ambition behind the Gaudí project is “to make the art and emerging methodology
of System architecture more accessible and to transfer this know-how and skills to a new
generation of system architects” [Matinlassi, 2004].

The COPA method is a component-based product line methodology that provides a set
of component-based subsystems and interfaces (with their associated processes, documentation
and tools) from which a stream of derivative and composite products can be developed and
produced, according to a domain specific architecture or product family architecture [America
et al., 2000]. The main goal of the COPA method is to harmonize business, architecture, process
and organization [Matinlassi, 2004]. COPA uses the Business-Architecture-Process
Organization (BAPO) model [van Ommering, 2002] to cover multiple aspects of the product
line life cycle like the business drivers, architecture, processes and organizational concerns.
BAPO starts by identifying the business needs for the product line; which might be an
improvement of an existing product line, or the need for a new one. After, BAPO defines the

2 Software Product Lines

30

PLA, in which, the domain of the product line is defined. In fact, at this step, the systems and
components are defined and structured to fit the PLA. The process phase of BAPO creates the
architecture previously defined, while identifying component dependency, commonality and
variability. The organization aspect of BAPO covers organizational support for the product-
line. It ensures that the product-line matches the organization’s business needs and it provides
management support. In addition, it defines processes for product-line maintainability and
evolution [van Ommering, 2002] [Tzeremes, 2016].

COPA is an extensive method targeted to all interest groups of a software company.
Especially, the architecture stakeholders of the COPA method are the customers, suppliers,
business managers and engineers. The incentive to use COPA is a promise to efficiently manage
size and complexity, obtain high quality, manage diversity and a significant reduction in lead-
time [Muller, 2004].

2.5.2 Family-Oriented Abstraction, Specification, and Translation process
(FAST)

Weiss et al. [Weiss et al., 1999] have introduced a practical, family-oriented software
production process known as the Family-Oriented Abstraction, Specification, and Translation
process. The FAST [Weiss et al., 1999] process is an alternative to the traditional software
development process. It is highly applicable when creating multiple versions of a product
sharing significant common attributes, such as common behavior, interfaces, or codes. The
objective of FAST is to make the software engineering process more efficient by reducing
multiple tasks, decreasing production costs, and shortening the marketing time [Harsu, 2002].
According to [Weiss et al., 1999], the FAST method considers the product line aspects and
defines a full product line engineering process complete with activities and artifacts. The FAST
process can be divided into three sub processes of the product line:

1. Domain Qualification;
2. Domain Engineering;
3. Application Engineering.

During domain qualification, product families are identified and a justification is made
for their creation. Domain engineering covers the analysis and implementation of the domain.
During domain analysis, product line functionality is abstracted and a common platform for
product line family creation is designed. Domain implementation creates and implements the
common platform. Application engineering uses the platform, created in domain engineering,
to create product line family members.

The FAST method originated from the industrial world and has a highly practical
background. Therefore, FAST seems to be aimed at software engineers and designers currently
working in the industry. The use of the FAST method can alleviate the problems, which make
the software developers’ task such a lengthy and costly one.

2.5 Product Line Architecture (PLA)

31

2.5.3 Component-Based Application Development (KobrA)

The KobrA method was developed at Fraunhofer-IESE [Fraunhofer-IESE, 2001] as a
methodology for modeling architectures. The KobrA method [Atkinson et al., 2002] stands for
Komponentenbasierte Anwendungsentwicklung, which translated from German, means
“Component-Based Application Development”.

According to [Atkinson et al., 2000] [Atkinson and Muthig, 2002] [Atkinson et al.,
2002], KobrA is a component-based incremental product line development approach or a
methodology for modeling architectures. It is also designed to be suitable for both single system
and family based approaches in software development. In addition, the approach can be viewed
as a method that supports a Model Driven Architecture (MDA) [Frankel, 2003] approach to
software development; in which the essence of a system’s architecture is described as
independent from platform idiosyncrasies. Another important goal of this method is to be as
concrete and prescriptive as possible and make a clear distinction between the products (i.e.
artifacts) and processes [Matinlassi, 2004].

Based on KobrA, software elements are created individually and are synthesized in
different ways to create different members of the product line. KobrA has two main phases:

1. Framework Engineering;
2. Application Engineering.

Framework engineering analyses the commonality and variability of the product line
and creates generic framework that represents all variations of the product line, whilst also
including information about the common and variant features. Application engineering is
responsible for instantiating the generic framework and create different product variants based
on customer specifications.

KobrA is stated as a simple, systematic, scalable and practical method [Atkinson et al.,
2002]. By simple, the authors mean that the method is as highly economically efficient with its
concepts, and that the features in a method should be as orthogonal as possible. The term
systematic refers to the fact that the concepts and guidelines defined in the method should be
precise and unambiguous. A scalable method provides two aspects of scalability; namely
granularity scalability and complexity scalability. The first one means that a method should be
able to accommodate large-scale and small-scale problems in the same manner using the same
basic set of concepts, whereas fulfillment of the latter refers to incremental application of the
method concepts. Practicality requires a method to be compatible with as many commonly used
implementation and middleware technologies as possible.

2.5.4 Feature-Oriented Reuse Method (FORM)

Kang et al. [Kang et al., 1998] have proposed a feature-oriented method called “Feature-
Oriented Reuse Method”. The FORM method extends FODA method [Kang et al., 1990] for

2 Software Product Lines

32

the software design and implementation phases and prescribes how the feature model is used to
develop domain architectures and components for reuse.

According to [Kang et al., 2002], when examining a class/family of related systems
and the commonality underlying those systems, it is possible to obtain a set of reference models,
i.e., software architectures and components needed for implementing applications in the
class. FORM (Feature-Oriented Reuse Method) supports development of such reusable
architectures and components (through a process called the Domain Engineering) and
development of applications (through a process called the Application Engineering) using the
domain artifacts produced from the domain engineering.

FORM has a specialized manner of applying domain analysis results (i.e. commonality
and variability) to the engineering of reusable and adaptable domain components with specific
guidelines. It starts with feature modeling to discover, understand, and capture commonalities
and variabilities of a product line. Domain engineering starts from the beginning of the software
development (i.e. context analysis). The primary input is the information of the systems that
share a common set of capabilities and data.

Figure 2.4 shows the engineering processes of FORM. Domain engineering creates the
feature model, reference architecture, and reusable components as an output. Application
engineering creates the application software after; features selection from the feature model,
application architecture selection from reference architecture and reusable components have
been selected from reusable components. FORM caters to the wide spectrum of domain and

Fig. 2.4 FORM Engineering Processes [Kang et al., 1998].

2.5 Product Line Architecture (PLA)

33

application engineering, including the development of reusable architectures and code
components. It is applied during software engineering in many industrial processes.

2.5.5 Quality-driven Architecture Design and quality Analysis (QADA)

Quality-driven Architecture Design and quality Analysis (QADA) is a methodology that
provides a set of methods and techniques to develop high-quality software architectures for
single systems and system families.

The methodology is mostly intended for the development of service architectures,
applied in pervasive computing environments and other networked systems [Ovaska, 2008].
[Matinlassi et al., 2002] have developed the QADA method at VTT (Technical Research Centre
of Finland). According to the QADA method, the quality requirements are the driving force
when selecting software structures and each viewpoint concerns certain quality attributes
[Matinlassi, and Niemelä, 2002]. Architecture design is combined with quality analysis, which
determines whether the designed architecture meets the quality requirements set from the very
beginning.

 The QADA method describes the architectural design part of the software development
process, including steps and artifacts produced in each step. It also covers the description
language used in the artifacts. It does, however, not cover any organizational or business
aspects. The method starts with the Requirements Engineering (RE) phase. The aim is to collect
the “driving ideas of the system and the technical properties on which the system is to be
designed” [Matinlassi et al., 2002]. In addition to functional properties, the quality requirements
and constraints of the system are captured as input.

Fig. 2.5 QADA method main phases [Matinlassi et al., 2002].

2 Software Product Lines

34

Figure 2.5 presents the main phases of the QADA method. In fact, the output of the
QADA method is twofold: design and analysis.

− Design covers software architecture at two abstraction levels: conceptual and
concrete.

o Conceptual architecture covers the conceptual components,
relationships and responsibilities, which are intended to be used by
certain high level stakeholders related to product line, e.g. product line
architects or management.

o Concrete architecture is closer to the so-called ‘traditional’ architecture
description aimed for software engineers and designers.

− Analysis provides precious information concerning the quality of the design.
Analysis results in feedback on whether the design meets the quality
requirements defined for the system.

The QADA method does not produce final implementation artifacts. The method users
are mainly product line architects, software architects or an architecting team. However, the
group of stakeholders that use the method output is much wider. At the conceptual level, the
stakeholders include system architects, service developers, product architects and developers,
maintainers, component designers, service users, project manager and component acquisition.
The concrete level, on the other hand, has the architectural descriptions, which are aimed at
component designers, service developers, product developers, testing engineers, integrators,
maintainers and assets managers. These groups continue to implement, test or maintain the
deigned architecture. As almost all methods do, QADA claims to be a systematic method,
simple to learn and conforming to the IEEE standard for architectural description [IEEE, 2007].

2.5.6 Product Line UML-Based Software Engineering

Product Line UML-Based Software Engineering (PLUS) is defined as a design method for
software product lines that describes how to conduct requirements, analysis, and design
modeling for software product lines in UML [Gomaa, 2005]. PLUS builds on the COMET
method by considering the added dimension of variability in each of the modeling views.

Figure 2.6 shows the evolutionary software process model for the software product lines
according to PLUS method [Gomaa, 2011]. According to [Gomaa, 2011] [Gomaa, 2005]
[Tzeremes, 2016], the PLUS requirements phase detects the product-line Use Cases and tags
them as optional and/or variant. Feature analysis identifies the product line features and maps
them to the use cases. During the analysis phase, PLUS examines the problem domain and
develops the system context diagram, collaboration, or sequence diagrams, and state diagrams.
The analysis phase concludes with feature or class dependency diagrams and tables that show
the classes that implement features. In the design phase, PLUS examines the solution domain,
develops the product-line architecture, and structures the system into subsystems and
components. The design phase ends with defining the communication interface of each
component. In the component implementation phase, software engineers select a subset of the
designed functionality for development. The product-line testing phase performs integration
testing among the components developed on the increment with the existing components of the

2.5 Product Line Architecture (PLA)

35

product line and functional testing assessing the functionality of the increment. All artifacts
generated by PLUS are stored in the software product line repository.

2.5.7 Common Variability Language (CVL)

According to [Haugen et al., 2013], the Common Variability Language (CVL) is a domain-
independent language for specifying and resolving variability. It facilitates the specification and
resolution of variability over any instance of any language defined using a Meta Object Facility
(MOF)-based meta-model.

The Common Variability Language (CVL) is used to add variability to Model Driven
Architecture (MDA) models. In particular, CVL is a Domain Specific Language (DSL) for
modeling variability in models based on MOF standard defined by the Object Management
Group (OMG) [Reinhartz-Berger et al., 2014]. CVL operates on three models:

1. The base model is a domain model for a particular system;
2. The variability model describes variations of the system;
3. The resolution model captures a set of options on the variability model.

To create a new system, CVL takes as input the aforementioned three models and
generates new resolved models. Existing DSL tools can operate on the resolved models and
transform them to working software.

The CVL approach is, by nature, an orthogonal composition-based approach, as
elements of the base model can, through the CVL variation points, be composed, removed,
substituted, etc. Variation points specify how the elements of the base models are modified by
defining specific modifications to be applied [Horcas et al., 2018].

Fig. 2.6 Evolutionary software process model for software product lines according to PLUS method [Gomaa,
2011].

2 Software Product Lines

36

2.5.8 Product line engineering and management (ISO/IEK 26550:2017)

The international standard for software and systems engineering, being the “Reference model
for product line engineering and management” [ISO/IEC 26550:2017, 2017], aims to create a
common vocabulary and standardized process for product line creation. The standard covers
the domain and application engineering aspects for creating a product line.

Domain engineering covers: product line scoping, domain requirements engineering,
domain design, domain realization and domain validation and verification. During domain
engineering, the organizational management works with the technical management to perform
the initial product line scoping. Product line scoping involves the identification of market
groups, product categories, common and variable features, functional domains for envisioned
features (with sufficient possibility of reuse), reusable assets for creating products, and a cost
benefit analysis for each domain asset. After the product line is scoped domain requirements
engineering is performed, which identifies the product line stakeholders and captures detailed
requirements.

Domain design is used to perform commonality and variability analyses, feature
modeling and finally to define the domain architecture. Domain realization is responsible for
component design and implementation. Domain validation and verification assure the quality
of the product line. All domain assets defined during domain engineering are stored on the
domain asset repository.

Application engineering process in the ISO involves application requirements
engineering, application design, application realization and application verification and
validation. Application requirements engineering develops application-specific requirements
reusing common and variable requirements defined during domain requirements engineering.
Application design derives the application architecture from the domain architecture in order to
meet application requirements. Application realization implements product line members by
drawing upon the application requirements and architecture; reusing and configuring domain
components and interfaces. Application verification and validation ensures that the right
member product and the right application assets have been modeled, specified, designed, built,
verified, and validated. All artifacts created by the application engineering process are stored
in the application asset repository.

2.6 A Framework for Software Product Line Engineering

In 2005, Pohl et al. [Pohl et al., 2005] have proposed a reference framework for software
product-line engineering that incorporates the central concepts of traditional product line
engineering, namely the use of platforms and the ability to provide mass customization.

 In their proposed framework, they consider a layered architectural style for the product
line. Idem as [Weiss and Lai, 1999] [Boeckle et al., 2004] [Pohl et al., 2001], [Pohl et al., 2005]
consider that the SPLE paradigm separates two processes:

2.6 A Framework for Software Product Line Engineering

37

1. Domain engineering (DE): This process is responsible for establishing the reusable
platform and thus for defining the commonality and the variability of the product line.
The platform consists of all types of software artifacts (requirements, design,
realization, tests, etc.). Traceability links between these artifacts facilitate systematic
and consistent reuse;

2. Application engineering (AE): This process is responsible for deriving product line
applications from the platform established in domain engineering. It exploits the
variability of the product line and ensures the correct binding of the variability
according to the applications’ specific needs.

The advantage of this division is that there is a separation of the two concerns of building
a robust platform and creating customer-specific applications in a short time. To be effective,
the two processes must interact in a manner that is beneficial to both. For example, the platform
must be designed in such a way that it is of use for application development, and application
development must be aided in using the platform.

The separation into two processes also indicates a partition of concerns with respect to
variability. Domain engineering is responsible for ensuring that the available variability is
appropriate for producing the applications. This involves common mechanisms for deriving a
specific application. The platform is defined with the right amount of flexibility in many
reusable artifacts. A large part of application engineering consists of reusing the platform and
binding the variability as required by the different applications.

2.6.1 The framework

The PLE framework of Pohl et al. [Pohl et al., 2005] is based on the approach of [Weiss and
Lai, 1999], which makes the differentiation between the domain and application engineering
processes. Moreover, the proposed framework has its roots in several projects, namely the
ITEA3, ESAPS4, CAFÉ5, and FAMILIES6 projects.

Figure 2.7 presents the framework of Pohl et al. proposed as a software product line
engineering approach for product lines. The upper part of the figure depicts the Domain
Engineering (DE) Process. The DE process is composed of five key sub-processes: product
management, domain requirements engineering, domain design, domain realization, and
domain testing. The domain engineering process produces the platform, including the
commonality of the applications and the variability to support mass customization.

3 Information Technology for European Advancement
4 Engineering Software Architectures, Processes and Platforms for System-Families
5 Concepts to Application in System-Family Engineering
6 FAct-based Maturity through Institutionalization Lessons-learned and Involved Exploration of System-family
engineering

2 Software Product Lines

38

The lower part of Figure 2.7 depicts the Application Engineering (AE) Process, which
is composed of the sub-processes application requirements engineering, application design,
application realization, and application testing.

The framework differentiates between different kinds of development artifacts. In their
book [Pohl et al., 2005], they define development artifact as the output of a sub-process of
domain or application engineering. In fact, development artifacts encompass requirements,
architecture, components, and tests. The development artifacts are:

1. Domain artifacts, which are reusable development artifacts created in the sub-
processes of domain engineering;

2. Application artifacts, which are the development artifacts of specific product line
applications.

2.6.2 Domain Engineering (DE)

The domain engineering process has two main goals:

1. Define the commonality and the variability of the software product line;
2. Define the set of applications the software product line is planned for, i.e. define the

scope of the software product line.

Fig. 2.7 Pohl et al. Framework for Software Product Line Engineering (SPLE / PLE) [Pohl et al., 2005].

2.6 A Framework for Software Product Line Engineering

39

The sub-processes of the domain engineering stated above accomplish these goals. Each
one of these sub-processes has to:

− Detail and refine the variability determined by the preceding sub-process;
− Provide feedback about the feasibility of realizing the required variability to the

preceding sub-process.

2.6.2.1 Sub-processes of Domain Engineering

Each sub-process of the domain engineering sub-processes has a specific mission and
description. The domain engineering sub-processes are the following:

1. Product Management (ProM): ProM deals with the economic aspects of the
software product line, in particular the market strategy. Its main concern is the
management of the product portfolio of the company or business unit. In product
line engineering, product management employs scoping techniques to define what
is within and outside of the scope of the product line;

2. Domain Requirements Engineering (DRE): the DRE sub-process encompasses all
activities for eliciting and documenting the common and variable requirements of
the product line;

3. Domain Design (DD): The DD sub-process encompasses all activities for defining
the reference architecture of the product line. The reference architecture provides a
common, high-level structure for all product line applications;

4. Domain Realization (DR): The DR sub-process deals with the detailed design and
the implementation of reusable software components;

5. Domain Testing (DT): DT is responsible for the validation and verification of
reusable components. Domain testing assesses the components on their
specification, i.e. requirements, architecture, and design artifacts. In addition,
domain testing develops reusable test artifacts to reduce the effort for application
testing.

2.6.2.2 Domain Engineering artifacts

Domain artifacts (or domain assets), produced by the aforementioned sub-processes, compose
the platform of the software product line and are stored in a common repository. The artifacts
are interrelated by traceability links to ensure the consistent definition of the commonality and
the variability of the software product-line throughout all artifacts. In the following list, each
kind of artifact, including the variability model, is briefly characterized. Domain artifacts are
the following:

2 Software Product Lines

40

1. Product Roadmap: The product roadmap describes the features of all applications
of the software product line and categorizes these into common features, which are
part of each application, and variable features, that are only part of some
applications. In addition, the roadmap defines a schedule for market introduction;

2. Domain Variability Model: The domain variability model defines the variability of
the software product line. It defines what can vary, i.e. it introduces variation points
for the product line. It also defines the types of variation offered for a particular
variation point, i.e. it defines the variants offered by the product line. Moreover, the
domain variability model defines variability dependencies and variability
constraints, which have to be considered when deriving product line applications;

3. Domain Requirements: Domain requirements encompass requirements that are
common to all applications of the software product line, as well as variable
requirements; which enable the derivation of customized requirements for different
applications;

4. Domain Architecture: The domain architecture or reference architecture determines
the structure and the texture of the applications in the software product line. The
structure determines the static and dynamic decomposition that is valid for all
applications of the product line. The texture is the collection of common rules
guiding the design and realization of the parts, and how they are combined to form
applications;

5. Domain Realization Artifacts: Domain realization artifacts comprise the design and
implementation artifacts of reusable software components and interfaces. The
design artifacts encompass different kinds of models that capture the static and the
dynamic structure of each component. The implementation artifacts include source
code files, configuration files, and make files;

6. Domain Test Artifacts: Domain test artifacts include the domain test plan, the
domain test cases, and the domain test case scenarios. The domain test plan defines
the test strategy for domain testing, the test artifacts to be created, and the test cases
to be executed.

2.6.3 Application Engineering (AE)

Application engineering process has several operational goals. The key goals of the application
engineering process are the following:

− Achieve an as high as possible reuse of the domain assets when defining and developing
a product line application;

2.6 A Framework for Software Product Line Engineering

41

− Exploit the commonality and the variability of the software product line during the
development of a product line application;

− Document the application artifacts, i.e. application requirements, architecture,
components, and tests, and relate them to the domain artifacts;

− Bind the variability according to the application needs from requirements over
architecture, to components, and test cases;

− Estimate the impacts of the differences between application and domain requirements
on architecture, components, and tests.

2.6.3.1 Sub-processes of Application Engineering

The proposed SPLE framework introduces four Application Engineering sub-processes:

1. Application Requirements Engineering (ARE): The ARE sub-process encompasses
all activities for developing the application requirements specification. The
achievable amount of domain artifact reuse depends heavily on the application
requirements. Hence, a major concern of application requirements engineering is the
detection of deltas between application requirements and the available capabilities
of the platform;

2. Application Design (AD): The application design sub-process encompasses the
activities for producing the application architecture. Application design uses the
reference architecture to instantiate the application architecture. It selects and
configures the required parts of the reference architecture and incorporates
application specific adaptations;

3. Application Realization (AR): The application realization sub-process creates the
considered application. The main concerns are the selection and configuration of
reusable software components as well as the realization of application-specific
assets. Reusable and application-specific assets are assembled to form the
application;

4. Application Testing (AT): The application testing sub-process comprises the
activities necessary to validate and verify an application as well as its specification.

2.6.3.2 Application Engineering artifacts

Application artifacts (or application assets) comprise all development artifacts of a specific
application including the configured and tested application itself. The sub-processes already

2 Software Product Lines

42

described produce them. The application artifacts are interrelated by traceability links. These
artifacts are:

1. Application Variability Model (AVM): The application variability model documents,
for a particular application, the binding of the variability, together with the rationales
for selecting those bindings. It is restricted by the variability dependencies and
constraints defined in the domain variability model. Moreover, the application
variability model documents extensions to the domain variability model that have
been made for the application;

2. Application Requirements (AR): Application requirements constitute the complete
requirements specification of a particular application. They comprise reused
requirements as well as application-specific requirements;

3. Application Architecture (AA): The application architecture determines the overall
structure of the considered application. It is a specific instance of the reference
architecture. To ensure the success of a product line, it is essential to reuse the
reference architecture for all applications. Its built-in variability and flexibility
should support the entire range of application architectures;

4. Application Realization Artifacts (ARA): ARA encompass the component and
interface designs of a specific application, as well as the configured, executable
application itself. The required values for configuration parameters can be provided,
for example, via configuration files. “Make files” or the “run-time system” evaluates
these parameter values, for example. The values can be derived from the application
variability model;

5. Application Test Artifacts (ATA): ATAs comprise the test documentation for a
specific application. This documentation makes application testing traceable and
repeatable. Many application test artifacts can be created by binding the variability
of domain test artifacts, which is captured in the orthogonal variability model.

2.7 Feature-Oriented Product line: a development process

Nineteen years after the introduction of the FODA method by Kang et al. [Kang et al., 1990],
Apel and Kästner [Apel and Kästner, 2009] have proposed a feature-oriented approach named
feature-oriented software development (FOSD). This approach was proposed in order to
highlight another research area that focuses on the development of product features. In the
proposed approach, they consider a feature as a “unit of functionality of a software system that
satisfies a requirement, represents a design decision, and provides a potential configuration
option”.

 The basic idea of FOSD is to decompose a software system in terms of the features this
system provides. Furthermore, they call the set of software systems (products) generated

2.7 Feature-Oriented Product line: a development process

43

(derived) from a set of features a “software product-line”. Apel and Kästner have demonstrated
that the key principle for FOSD is the use of feature as first-class entities to analyze, design,
implement, customize, debug, or evolve a software system [Apel and Kästner, 2009].

 In 2013, Apel et al. [Apel et al., 2013] have proposed a Feature-Oriented approach for
software product lines. In this approach, they detail the related processes, concepts and
implementation.

2.7.1 A Process for Product-Line Development

A feature-oriented development process for software product lines has to take into account two
main issues that play a crucial role on defining the structure of the process:

1. The explicit handling of variability;
2. The systematic reuse of implementation artifacts.

In fact, for both issues, it is imperative to have appropriate structuring of process and software
artifacts.

 The proposed framework distinguishes between Domain Engineering (DE) and
Application Engineering (AE) and between Problem Space (PS) and Solution Space (SS).
Figure 2.8 illustrates a two-dimensional structure with four clusters of tasks in product-line
development and mapping between them.

Fig. 2.8 A feature-oriented engineering process for software product lines [Apel et al., 2013].

2 Software Product Lines

44

 The top half of Figure 2.8 is depicted for the domain engineering, which is the process
of analyzing the domain of product line and developing reusable artifacts. Domain engineering
does not result in a specific software product, but prepares artifacts to be used in multiple, if
not all, products of a product-line. Domain engineering targets development for reuse. The
bottom half of Figure 2.8 depicts the application engineering, which has the goal of developing
a specific product for the needs of a particular customer (or stakeholder). It corresponds with
the process of single application development in traditional software engineering, but reuses
artifacts from domain engineering where possible. It targets development with reuse.
Application engineering is repeated for every product of the product line that is to be derived.

The distinction between the problem space and solution space highlights two different
perspectives. The left half of Figure 2.8 depicts the problem space, which takes the perspective
of stakeholders and their problems, requirements, and views of the entire domain and individual
products. Features are, in fact, domain abstractions that characterize the problem space. The
right half of Figure 2.8 depicts the solution space. This space represents the developer’s and
vendor’s perspectives. It is characterized by the terminology of the developer, which includes
names of functions, classes, and program parameters. The solution space covers the design,
implementation, and validation and verification of features and their combinations in suitable
ways to facilitate systematic reuse.

2.7.2 4 clusters of tasks in product-line development

Apel et al. [Apel et al., 2013] have adopted an orthogonal distinction between domain and
application engineering as well as the problem and solution space. This distinction gives rise to
four clusters of tasks in product-line development:

1. Domain analysis is a form of requirements engineering for an entire product line. In
this cluster, the scope of the domain is to be determined. Therewith deciding which
products should be covered by the product line and, consequently, which features are
relevant and should be implemented as reusable artifacts. The results of domain analysis
are usually documented in a feature model;

2. Requirements analysis investigates the needs of a specific customer as part of
application engineering. In the simplest case, a customer’s requirements are mapped to
a feature selection, based on the features identified during domain analysis. If new
requirements are discovered, they can be fed back into domain analysis, which may
result in a modification of the feature model (and the reusable domain artifacts);

3. Domain implementation is the process of developing reusable artifacts that correspond
to the features identified in domain analysis. There are many kinds of artifacts relevant
in software product lines such as design, test, and documentation artifacts, and
implementation artifacts (i.e. source code). Moreover, the basic ideas and techniques
apply also to non-code artifacts. Depending on how variability is implemented,
developers might produce very different artifacts in this step, from run-time parameters
and preprocessor directives to plug-ins and components, and many more;

2.8 Factory-oriented approach for Product Line Engineering (PLE)

45

4. Product derivation is the production step of application engineering, where reusable
artifacts are combined according to the results of requirement analysis. Depending on
the implementation approach, this process can be more or less automated, possibly,
involving several development and customization tasks.

According to [Apel at al., 2013], a goal of product-line development, is to move
development efforts from application engineering to domain engineering as much as possible.
Further, the more application engineering is evolved into a series of generation tasks, the lower
the costs per product will be. A major goal of feature-oriented product lines is to fully automate
product derivation.

2.8 Factory-oriented approach for Product Line Engineering (PLE)

BigLevers and others [Clements & Northrop, 2001] [Clements, and BigLever, 2015] [Krueger,
and Clements, 2017] [Young, and Clements, 2017] [Bolander, et al., 2016] have proposed a
definition for what they call “Product Line Engineering”. The consider that “Systems and
Software Product Line Engineering, abbreviated as Product Line Engineering (or PLE for
short), is defined as the engineering of a portfolio of related products using a shared set of
engineering assets and an efficient means of production” [Productlineengineering.com, 2016].

In this definition, there are three remarkable concepts, namely “Products”, “Assets”, and
“Means of production”. They have defined these concepts as following:

 The products in a Product Line Engineering (PLE) portfolio are described by the
properties they have in common and the variations that set them apart. The descriptions
are in terms of the products' features. Products can comprise any combination of
Software, Systems in which software runs, or Non-software systems that have software-
representable artifacts (such as engineering models or development plans) associated
with them;

 Assets are the "soft" artifacts associated with engineering lifecycle of the products; the
building blocks of the products in the product line. Assets can be whatever artifacts that
are representable with software or either artifacts that compose a product or support the
engineering process to create a product. These can include, but are not limited to
“Requirements, Design specifications, Design models, Source code, Build files, Test
plans and test cases, User documentation, Repair manuals and installation guides,
Project budgets, Schedules and work plans, Product calibration and configuration files,
Data models and parts lists, etc.”;

 The means of production is the mechanism that exercises the assets’ variation points
(VP) to produce configured versions that, together, constitute the artifact set for one of
the products in the product line. Configuring the shared assets for each product in turn
produces the entire set of products.

According to [Young, and Clements, 2017] and [Bolander, et al., 2016], early
approaches to Product Line Engineering (PLE) (e.g. Program Families [Parnas, 1976], FODA

2 Software Product Lines

46

[Kang et al., 1990], SATRS [Foreman, 1996], FAST [Weiss and Lai, 1999]) employed many
means for producing the products from shared assets. The assets could be manually configured,
or (more likely) an ad hoc collection of techniques was employed to configure the various assets
separately. These approaches have yielded a rich legacy of successful product-line solutions
[Clements et al., 2014] [van der Linden et al, 2007] [Northrop et al., 2012]. However, according
to [Northrop et al., 2012], no approach in these early years reached the level of becoming a
repeatable, prescriptive, methodological engineering discipline They considered the scheme
scales poorly, and may not trace well across different kinds of artifacts.

The Second Generation Product Line Engineering (2GPLE) approaches use the same
kind of variation across all assets. Second Generation PLE is centered on the creation of a PLE
Factory [Clements et al., 2014] [Krueger, and Clements, 2014]. The advent of the 2GPLE –
which is an alignment of PLE approaches that are centered on the factory approach – has
resolved many of the weaknesses of the early approaches [Clements and BigLever, 2015].

2.8.1 The Second Generation Product Line Engineering (2GPLE) approaches

The second generation PLE (2GPLE) was built on the first-generation efforts of PLE. 2GPLE
has embodied a more well-defined and repeatable process, centered on a strong factory
paradigm [Clements et al., 2014]. As the modern product lines are more and more complex, the
intricacies of these product lines require industrial-strength automation. The 2GPLE approaches
provide the required commercial industrial-strength automation tools. The automation is called
“Configurator”, which takes a feature-based description of a product and configures all of the
assets (using their variation points) to produce instances for that product [Bolander, et al., 2016].

Fig. 2.9 The Second Generation Product Line Engineering (2GPLE) factory paradigm [Clements et al., 2014].

2.8 Factory-oriented approach for Product Line Engineering (PLE)

47

Figure 2.9 exhibits the essence of 2GPLE with Gears. These gears are considered as
configurators. At the left of Figure 2.9, the factory’s supply chain is illustrated in the form of
shared configurable assets. The assets are configurable because they include variation points
(VP) (i.e. places where the artifact needs to be different depending on what feature set it is asked
to support), shown by the gear symbols in the figure. In fact, variation points are expressed in
terms of the available features in each products. A feature-based product specification, as seen
at the top of Figure 2.9, instructs the configurator on how to configure the assets coming in
from the left. The resulting products, assembled from the configured assets, emerge on the right
part of the figure. This enables the rapid production of several variants of the assets for any of
the products in the portfolio. Once the production line capability is established, products are
instantiated (i.e. derived from the shared assets by the configurator) rather than manually
created.

The second-generation product line engineering (2GPLE) has several distinguished
characteristics. Among these characteristics, the following important characteristics distinguish
the approach:

− Features express product variation: In the factory paradigm, a production protocol
is required, so the shared assets (requirements, designs, code, test cases, user manuals,
etc.) can be configured appropriately. Rather than adopting a different “language” and
mechanism for each type of artifact (e.g. compiler directives for code, attributes for
requirements, text variables for documents, etc.), 2GPLE uses a small and consistent set
of variation mechanisms [Bachmann and Clements, 2005] for all of the artifacts. Each
product is described by giving a list of its features. Here, features are used to express
product differences in all lifecycle phase artifacts. This streamlines the development
process and lets all stakeholders speak the same language.

− Shared assets come from all lifecycle phases, not just the software: In large-scale
product lines, automated production of complete and consistent sets of lifecycle artifacts
is essential. Managing these artifacts means imbuing them with variation points
[Bachmann and Clements, 2005]. In 2GPLE, assets are designed with built-in variation
points, which are places within the asset that can change depending on the product in
which they are used. When a product is built, the configurator uses the product’s feature-
based description to “exercise” these variation points (that is, cause the change in the
asset to occur as to meet the product needs) [Clements et al., 2014]. Variation point
mechanisms comprise [Clements, and BigLever, 2015]:

o Including or omitted the artifact;
o Choosing one variant of the artifact (from an available set) to use in the product;
o Making fine-grained choices within an artifact, such as including or omitting a

section, model element, or block of code.

− Industrial-strength automation is employed in the form of a configurator, which is a
tool that takes a feature-based description of a product and exercises the variation points
in the shared assets to produce an artifact set that supports the named features. Product

2 Software Product Lines

48

development thereby becomes automated, so that application engineering (so important
in first-generation approaches) becomes negligible [Clements et al., 2014].

− Configuration management (CM) that maintains assets, not products or asset
instantiations: Under the 2GPLE discipline, the full superset of available PLE assets
(and not the individual products or systems) are managed under configuration
management (CM). A new version of a product is not derived from a previous version
of the same product, but rather from the shared superset of PLE assets themselves.

− Supporting product lines across organizational boundaries: This characteristic of
2GPLE involves feature languages that facilitate modular and hierarchical product lines
developed across organizational boundaries [Flores et al., 2012]. This allows a system-
of-systems to become product-line-of-product-lines [Clements, and BigLever, 2015].

From several real world case study, such as the cases of General Motors [Flores et al.,
2012] and the US Army [Rivera et al., 2008], 2GPLE has proved its benefits and has represented
a more clearly formulated methodology that organizations can use directly. It simultaneously
generalizes and simplifies the concepts and deployments ways from its first-generation roots
[Clements et al., 2014]. Employing 2GPLE has shown substantial benefits in reliability,
sustainability, and responsiveness in organizations [Lanman et al., 2009] [Clements et al.,
2014].

2.8.1.1 PLE as a factory

An analogy with factory-based manufacturing serves well to properly illuminate the
important concepts. Manufacturers have long used engineering techniques to create a
product line of similar products using a common factory, that assembles and configures parts
to produce the varying products in the line. According to the principles of the 2GPLE, the
“configurator” is the factory’s automation component. The “parts” are the assets in the
factory’s supply chain. A statement of the properties desired in the product tells the configurator
how to configure the assets.

Figure 2.10 illustrates how a product line could be structured as a “factory”. At the left
of Figure 2.10, the factory’s supply chain is depicted. The presented supply chain is expressed
in the form of shared assets that are configurable, as they include variation points that are
expressed in terms of the features available in each of the products. A product specification at
the top of figure 2.10 tells the configurator how to configure the assets coming in from the left.
The resulting products, assembled from the configured assets, emerge on the right of Figure
2.10. This enables the rapid production of several variant of any assets for any of the products
in the portfolio. Once this production line capability is established, products are instantiated –
derived from the shared assets – rather than manually created.

In this context, the term product means not only the primary entity being built and
delivered, but also all of the artifacts that are produced along with it. Some of these
support the engineering process (e.g. Requirements, Project Plans, Design Modes, and Test

2.8 Factory-oriented approach for Product Line Engineering (PLE)

49

Cases), while others are necessary byproducts, such as User Manuals, Shipping Labels, and
Parts Lists. These artifacts are the product-line’s assets.

Assets can be whatever artifacts are representable digitally and either constitute
part of a product or support the engineering process to create a product. Four kinds of
shared assets are shown in Figure 2.10, but those are just examples. Shared assets can
include, and are not limited to, Requirements, Design Specifications, Design Models,
Source Code, Build Files, Test Plans and Test Cases, User Documentation, Repair
Manuals and Installation Guides, Project Budgets, Schedules, and Work Plans, Product
Calibration and Configuration Files, Data Models, Parts Lists, and more. Assets in PLE are
engineered to be shared throughout the product-line.

2.8.1.2 PLE contrasted with product-centric development

According to BigLever’s white-paper [Productlineengineering.com, 2016], “PLE contrasts
highly with traditional product-centric development; in which each individual product is
developed and evolves independently from other products, or (at best) starts out as a cloned
copy of a similar product that is then changed to suit the new product’s specific needs. This
product-centric development takes very little advantage of the commonalities among products
in a portfolio after the initial clone operation. In particular, it derives very little benefit from

Fig. 2.10 The Product Line Engineering envisioned as a factory [Clements et al., 2014].

2 Software Product Lines

50

commonality in a product’s sustainment or maintenance phase, where, data shows, most
products consume up to 90% of their project’s resources” [Clements, and BigLever, 2015].

Figure 2.11 shows a production shop in which N products are developed and maintained.
In this stylized view, each product encompasses requirements, design models, source code, and
test cases. Each engineer in this shop primarily works on a single product. When a new product
is launched, the most similar assets are copied, and the project then starts by adapting them to
meet the new product’s needs.

Coordination among projects, if present, is ad hoc and de-centralized, meaning that,
each of the N product teams should really confer with each of the other N-1 product teams.
These communication paths are shown in red in Figure 2.11. This communication obligation
imposes an overhead that grows as the square of the number of products. This complexity
will quickly overwhelm any engineering staff; in order to get their products out the door on
time and on budget, each product team will focus more on their product silo and less on taking
advantage of the commonalities and interdependencies among the other products. The result is
divergent product silos, low degrees of sharing, and high duplication of effort across the product
silos to fix the same defect multiple times in multiple products, or to independently implement
the same enhancements in different ways in different products [Clements, and BigLever, 2015].

Under the PLE approach, all development takes place in the factory and not in project
silos. This assures the maximum amount of cross-project sharing on an ongoing basis.
Coordination happens between products and the factory, which for a portfolio of N products is
an O (N), as opposed to an O (N2), proposition [Clements, and BigLever, 2015].

2.8.2 Ecosystem support for three dimensions of PLE

By definition an ecosystem is considered as “a system, or a group of interconnected elements,
formed by the interaction of a community of organisms with their environment” or, perhaps

Fig. 2.11 Product-centric development yields O(N2) complexity [Bolander, et al., 2016].

2.8 Factory-oriented approach for Product Line Engineering (PLE)

51

more helpfully to the context of the thesis, “any system or network of interconnecting and
interacting parts, as in a business” [John et al., 2012]. John et al. have pointed out that
ecosystems are believed to contain the necessary elements to sustain life of the ecosystem’s
elements. Therefore, if the elements have value to us, then the ecosystem also has value to us,
and is therefore worth studying to understand how it sustains that life and) what can be done to
enhance that sustainment [Bolander, et al., 2016]. In the context of PLE, the term ecosystem in
reference to Tools, Technologies, Products, and Suppliers of all of those that, together, provide
an industrial-strength PLE technology solution [Productlineengineering.com, 2016].

Figure 2.12 illustrates these three concerns. Organizations have to, first, manage the
popularity of products (i.e. illustrated by the outward-pointing axis of Figure 2.12). The 2GPLE
paradigm, discussed above, and the automation-centric PLE approach for which 2GPLE is a
specific instance, is aimed largely at this dimension. This is the realm of mainstream PLE tools,
such as one highlighted earlier [Bolander, et al., 2016]. Second, they have to evolve the portfolio
over time (i.e. illustrated by the horizontal axis of Figure 2.12). The horizontal axis of Figure
2.12 represents the ‘multi-baseline’, which deals with the usual temporal concerns of product
engineering, such as version, configuration and change management. Configuration
management (CM) systems track the evolution of shared assets over time. Just as no PLE tool
is going to incorporate all requirements engineering or testing tools, no PLE tool is going
incorporate all CM system capabilities. At best, they will be compatible with general CM
systems, or even be agnostic to the CM systems in use by simply working on files checked out
into workspaces. However, to handle the critical need to manage evolution, CM systems are
now added to the PLE ecosystem [Clements, and BigLever, 2015]. Third, they have to manage
the shared assets and the products to which they contribute across lifecycle phases or disciplines
(i.e. vertical axis of Figure 2.12). The ecosystem, discussed in the previous section is aimed

Fig. 2.12 Three dimensions of Product Line Engineering [Bolander, et al., 2016].

2 Software Product Lines

52

largely at this dimension. However, in a true systems engineering environment, traceability
across the lifecycle artifacts (e.g., from requirements to code to tests, or from design models to
parts list) plays a critical role. That traceability must be maintained as the product-line and its
shared assets evolve over time, and must persist when shared assets’ variation points are
exercised to derive products [Bolander, et al., 2016].

2.8.3 Establishing a PLE Factory approach

Organizations may move to establish a PLE Factory for competitive advantage or to increase
their bottom-line. According to [Productlineengineering.com, 2016] and [Young, and
Clements, 2017], the successful organizational adoption of a PLE Factory approach often
involves three stages or tiers.

Figure 2.13 illustrates the adoption approach for establishing product lines following
the principles of 2GPLE. The tiers of the proposed approach are the following:

− Tier 1: this tier focuses on incorporating the PLE Factory configurator into the
organization, and using it to define feature models and a shared asset superset for the
product line;

− Tier 2: this tier starts by re-engineering the products' assets into a collection of shared
assets with variation points. In this tier, new roles specific to PLE are defined and filled;
roles that move the engineers away from product-specific responsibilities and towards
asset-specific, product-independent roles;

Fig. 2.13 Three tiered approach for adopting a PLE Factory [Productlineengineering.com, 2016].

2.9 Adoption strategies of a Product-Line Approach

53

− Tier 3: this tier concerns the organization's management and allows it to steer the
portfolio in strategic directions by defining products with new features or new feature
combinations to, for example, enter a new market where the organization's ability to
produce new products quickly and efficiently will provide competitive advantage.

Organizations can begin building capabilities in each tier together. Further, adoption can
be incremental, and need not happen all at once. Under a principle known as “incremental
return on incremental investment” each step towards complete adoption brings commensurate
benefit [Productlineengineering.com, 2016] [Clements, and BigLever, 2015].

2.9 Adoption strategies of a Product-Line Approach

The adoption of a Software Product Line (PLE) approach within an organization represents a
big concern for the PLE community. Many adoption strategies have been presented in literature.
According to Krueger [Krueger, 2002], there are three different adoption paths following:

i. Proactive approach;
ii. Extractive approach;

iii. Reactive approach.
The adoption strategy may have a significant effect on the selection of implementation methods.

2.9.1 Proactive approach

The proactive approach develops a product-line from scratch by carefully using analysis and
design methods. Following this approach, in a design process, the developers model the domain
and implement all relevant features before the first product is generated. Proactive approach
gathers key tasks, which are the following:

 Domain analysis and scoping;

 Determination of the product-line implementation approach;

 Implementing the entire product-line.

Using the proactive approach, developers can plan the product-line’s variability perfectly for
the desired variability. Consequently, one can reach a high-level of code quality and
maintainability. However, the drawback of this approach is a high upfront investment and the
corresponding risks before the first product arrives on the market. Moreover, with existing
products, a company has to essentially stop production for a substantial period-of-time to
restructure or even rewriting the code.

Several success stories from companies that adopted product-line with a proactive
approach were presented in literature. For example, Clements and Kruger [Clements and
Kruger, 2002] have presented a successful case with a full production stop. However, it is
debatable how applicable this process is in general. Often, some products are already in
productive use and a long delay to transit to product-line technology is not acceptable. The

2 Software Product Lines

54

proactive approach is often seen as idealistic and academic, which, in practice, has to be
combined partly with ideas from the other two adoption strategies (i.e. Extractive and Reactive
approaches) [Apel el al., 2013].

2.9.2 Extractive approach

The extractive approach starts with a collection of existing products and incrementally
refactors them to form a product-line. This approach is useful when a company already has a
portfolio of related products that target a common domain, but those projects are not engineered
in a systematic way yet. The main target of the extractive approach is to make a transition from
one or multiple legacy products to a more structured product line. The main tasks of the
extractive approach are the following:

 Identification of commonalities and differences of existing products, based on domain
knowledge and stakeholder requirements;

 Extraction or implementation of the core functionality in the form of common reusable
domain artifacts;

 Extraction and realization of the variation using appropriate implementation techniques.

According to Apel et al. [Apel el al., 2013], the extractive approach advocates an
incremental adoption of product-line technology. Common parts are extracted, and some
cloning is eliminated step by step. Due to its incremental nature, risks and upfront investment
are much lower compared to the proactive approach. Note that the quality of the extracted
product line relies on the quality of the tools supporting the extraction.

2.9.3 Reactive approach

The reactive approach begins with a small, easy to handle product line (possibly consisting
only of a single product) and is extended incrementally with new features and implementation
artifacts, thus extending the scope of the product-line.

 This approach was presented as an instance of Boehm’s “Spiral Model” [Boehm, 1988].
In fact, this approach is considered as an agile method to adopt a product-line approach.
According to this approach, developers start with a software product line SPL0, which realizes
an initial version of the envisioned software product line. In incremental steps from SPLi to
SPLi+1, the product line progressively grows toward its ideal version; covering the full variation
spectrum, as defined during Domain Analysis, which can also be incremental. The main tasks
in the reactive approach are the following [Apel et al., 2013]:

 Exploration and characterization of the requirements leading to a new product currently
not covered by the product line;

 Describing the delta leading to the improved product;

 Implementing the delta in a suitable way.

2.10 Conclusion

55

In addition to be an adoption path, the reactive approach also describes a typical pattern
for maintaining and evolving a product line during its lifetime. Reactive strategy is positioned
between the proactive and the extractive approach. It requires less upfront planning than the
proactive approach, but may require more invasive and expensive changes to the product-line.
At the same time, the reactive approach is typically considered to be more structured than the
extractive approach, because each iteration follows clear planning steps. Overall, the reactive
process aligns well with agile methods of software construction [Apel el al., 2013].

2.10 Conclusion

Software Product Lines approaches are well presented in literature. Researchers and
practitioners have proposed a number of approaches, techniques, tools, and practices tailored
specifically to software product lines. This chapter has revisited what are considered as core
approaches of Software Product Lines. Reviewing these approaches and their related principles
and conceptual foundations has fortified the required knowledge that was essential to attempt
the main target of this thesis.

 Software Product Line approaches aim at the development of similar software products
in an efficient and coordinated manner. They allow maximizing the reuse of commonality and
of variability. The reuse of commonality is maximized by developing all products on a common
product platform. The variability is fully exploited by using a modular development of variable
functionality, which can be added to or removed from the product more easily.

 Each approach has its advantages and disadvantages. Therefore, the adoption of an
approach depends on the business model of the software vendor and its context, the targeted
domain, stakeholder’s requirements, and other issues. This chapter has introduced different
definitions of the Software Product Line Paradigm, its promises, the different product line
architecture, some famous Product Line Engineering approaches, and the different adoption
strategies.

57

3 Agile software development

Abstract. Agile software development refers to a group of software development methods, in
which requirements and solutions evolve through collaboration between self-organizing, cross-
functional teams. It promotes adaptive planning, evolutionary development, early delivery,
continuous improvement, and further encourages rapid and flexible response to change. Its
adherents promote the fast delivery of higher quality systems, which match customer needs and
expectations much better. This chapter considers “Agile” from a management perspective by
introducing a considerable overview of agile software development and by focusing on
implementation, organization and concerned people of two main methods, namely, Scrum and
Scrumban.

3.1 The rise of Agile Methodologies

The concept of Agile emerged in the late 1990s, in the effort to address perceived difficulties
with existing solution development processes that were rooted in, and owed their rigidity to
Plan-Driven practices [Moran, 2015]. The roots of Agile date back to the 1980s, prompted by
the rise of new technology and the increasing volatility of the business environment, the
shortcomings of traditional methods were becoming more evident [Cockburn, 2005].

Agile takes its origins in part from the Japanese manufacturing and industrial sectors to
which many of its concepts owe their heritage [Boehm and Turner, 2003]. These include the
visual control concept found in the Toyota Production System [Monden, 1993], that later
anticipated agile information radiators, the Kanban [Anderson, 2010] charts, used in agile task
assignment and tracking, and the continual influence of lean thinking on Agile today. The
synthesis of Eastern and Western thinking so persuasively laid out by the authors that
introduced the term “scrum” [Cohn, 2013], reflects the spirit in which the Agile Manifesto
[ManifestoAgile, 2001] itself was conceived and points to a genesis founded in organizational
learning and team empowerment [Takeuchi et al., 1995].

Figure 3.1 illustrates the timeline of the main agile methods since the early 1990s. The
first agile development method is called Dynamic Systems Development Method (DSDM)
[Stapleton, 1997]. The DSDM has emerged from Rapid Application Development (RAD)

3 Agile software development

58

methodology [Martin, 1991], which is an independent framework that has evolved over time to
encompass a wider scope than one would traditionally associate with agile projects (e.g.,
inclusion of explicit governance, quality and risk). By 2007, DSDM had become an open
methodology that had assumed the mantle of a generic agile project management and solution
delivery framework. At that moment, DSDM was briefly introduced under the marketing name
“Atern”. Today, the DSDM culminates in agile project management an Agile Project
Framework (AgilePF) [DSDM Consortium, 2014], the DSDM Agile Project Management
(AgilePM) [Agile Business Consortium, 2014], and the DSDM Program Management
Frameworks (AgilePgM) [Messeger et al., 2014].

In 2003, RAD gave rise indirectly to Adaptive Software Development (ASD), which
actively sought to embrace change in speculate-collaborate-learn cyclical patterns of work
[Highsmith, 2013]. The method Scrum [Cohn, 2013] [Cohn, 2004] was conceived as a
manufacturing development methodology that brought about “innovation continuously,
incrementally, and spirally”. The roots of Scrum can be traced back to its industrial heritage in
1986. Moreover, Scrum took shape from ideas stemming from organizational learning and went
on to exert considerable influence within the agile world and, thus, affecting almost all other
methodologies [Takeuchi and Nonaka, 1995].

The ‘eXtreme Programming’ (XP)method [Auer and Miller, 2001] is a software
engineering method focused on a set of principles and practices that grew of the development

Fig. 3.1 Historical Development of Agile Methods. Adapted from [Abrahamsson et al., 2003] and [Moran,
2015].

3.1 The rise of Agile Methodologies

59

of the Chrysler Comprehensive Compensation System payroll system. According to [Beck and
Andres, 2004], XP has enjoyed a period of “cross-fertilization” with Scrum, setting the terms
of reference for many agile practices today. In the 1990s, XP became hugely influential and
nowadays, its practices constitute the essential tool set of every IT project that employs an agile
approach.

In February 2001, the “Agile Manifesto” [ManifestoAgile, 2001] was born. Seventeen
software developers formulated it in order to establish a common ground for their perceptions
of the software development process. Around the time of the formulation of the Agile
Manifesto, several other methodologies were to be found, such as:

− The design and build focused Feature Driven Development (FDD) [Palmer and
Felsing, 2002];

− The Internet-speed Development (ISD) [Baskerville et al., 2001], which
practiced fast release and delivery;

− The practical toolkit that constituted Pragmatic Programming (PP) [Hunt and
Thomas, 2000];

− The flexible Crystal family of methodologies [Cockburn, 2006].

Furthermore, many efforts were deployed in order to make the Rational Unified Process
(RUP) [Gibbs, 2009] Agile. These efforts are manifested in the Agile Unified Process (AUP)
[Ambler, 2006a], which together with Agile Modelling (AM) [Ambler, 2002], focused on
modeling practices and cultural principles, and, therefore, became the predecessors for
Disciplined Agile Delivery (DAD) [Ambler and Lines, 2012]. Beside the mentioned
developments, other influential approaches were introduced, including Lean Software
Development (LSD) [Poppendieck and Poppendieck, 2003], which applied lean principles to
Agile and the attempt to architecturally scale agile product development using the Scaled Agile
Framework (SAFe) [Leffingwell, 2018].

Back in 2004, David Anderson designed a pull system, which later evolved into the
Kanban method [Anderson, 2010]. This pull system was designed for Microsoft IT teams. Just
a few months later, the team achieved its highest productivity per person, shortest lead-time and
highest customer satisfaction. Moreover, by the introduction of Scrumban [Ladas, 2009],
organizations have layered the Kanban Method alongside Scrum to help them achieve several
different kinds of outcomes.

Reviewing the historical development of Agile reveals a rich texture of humanist,
organizational, and technological traditions, for which a mature body of literature concerning
both its culture and its practices already exists [Cohn, 2005] [Moran, 2015]. In addition,
numerous comparative surveys of agile methodologies have been found in literature, where
these studies highlight both the commonality rooted in the manifesto and its principles together
with the uniqueness of focus and purpose of each approach [Moran, 2014].

3 Agile software development

60

3.2 The “Agility” attribute

Supporters of agile have promoted the notion that project uncertainties should be taken into
account in order to balance planning and control with execution and feedback [Moran, 2014].
Agile projects exhibit features of “open communication amongst heterogeneous stakeholders”,
“emergent behavior within self-organizing teams” and a “culture of openness and learning”
[Book et al., 2016].

Agile Software Development (ASD) has two central notions, namely “iterative” and
“incremental”. The notions of iterative development and incremental delivery are based on
shared values stipulated in the “agile manifesto” [ManifestoAgile, 2001] which expresses
preferences towards ‘individual interactions and customer collaboration’, ‘working solutions
over comprehensive documentation’, and ‘responsiveness to change’. Thus, the agile manifesto
articulates the convictions that interactions among “project team members” and their
“customers” (i.e. product owner) should support efforts to create “working solutions” in a
flexible manner [Cockburn, 2005].

According to [Moran, 2014], being agile starts by defining what “agile” means for the
organization. In fact, defining agile is harder than it seems, as much of what practitioners
understand to be the essence of agile arises from principles and practices experienced as
emergent characteristics. Thus, it could be hard to attribute agility to specific individual
techniques or rituals, as it is widely accepted that many of these techniques existed prior to the
agile community. Nor can agile be characterized purely by reference to the agile manifesto and
its principles alone, as some principles are likely to prove troublesome if used as the basis of a
definition.

Consequently, agile can be understood, as a structured solution development paradigm
that embodies the following core elements, surrounded by a regular iterative development and
incremental delivery driven by business needs [Cohn, 2005] [Moran, 2015]:

• Adaptive: it is widely admitted that change is inevitable and that the pursuit of reward
entails risk. Agile promises adaptive planning and effective feedback loops. On the one
hand, with agile, the high-level plans are revised later into detailed plans once the
necessary information becomes available. On the other hand, reviews and retrospectives
guide and direct the solution development and the process behind it. Therefore, dealing
with the inevitable change requires a decentralized and iterative approach to solution
development, which is responsive to the changing needs of business;

• Value-Driven: in order to focus on individual business needs and requirements, agile
advocates direct assessments of progress (e.g., working solutions rather than status
reports) and draws on the direct experience and input of those who need the solution.
Thus, to meet this target, this requires tighter integration of stakeholders, leaner
production practices and incremental delivery of working solutions;

3.2 The “Agility” attribute

61

• Collaborative: Agile avoids specialists working to specifications, preferring instead to
employ multi-disciplinary and highly communicative teams. Teams that share their
experiences and tacit knowledge in order to gain consensus regarding the solution,
which may entail engagement of stakeholders outside of the team;

• Empowered: adopting an agile approach needs integrated teams. Establishing integrated
teams requires humanistic values of trust, respect and courage supported by an
environment of empowerment and self-organization wherein the traditional role of
management is replaced by one of servant-leadership.

All these core elements are found to work well in practice. Therefore, “Agile” is as
much of a cultural stance on the process of solution development, as well as it is a set of
practices and values. Furthermore, Schwaber [Schwaber, 2006], one of leading supporters of
agile, has described agility as “hard and disruptive”. However, there are several ideas that
regarded ambiguity during the development process as a strength, provoking new perspectives
and challenging established ideas, rather than a weakness that must be managed through precise
planning [Moran, 2015].

3.2.1 Adopting a definition for the term “Agile”

Nowadays, more and more people use the term “Agile” when talking about the project
management field, mainly in software development. The word “agile” is one of those trending
words that is almost used without understanding the true essence of it. What does the term
“agile” actually mean? Several definitions of “agile” are presented in literature. The intention
of this section is to adopt a definition of the “agile” term that fit the context of the present
research in order to use it in this thesis and to use it in developing a definition of the “APLE”
concept.

 The term “agile” is defined in Oxford Dictionary of English [Oxford University Press,
n.d.] as “Able to move quickly and easily” or “Relating to or denoting a method of project
management, used especially for software development, that is characterized by the division of
tasks into short phases of work and frequent reassessment and adaptation of plans”. Goldman
has defined “agility” as “A comprehensive response to the business challenges of profiting from
rapidly changing, continually fragmenting, global markets for high-quality, high-performance,
customer-configured goods and services. It is dynamic, context-specific, aggressively change-
embracing, and growth-oriented. It is not about improving efficiency, cutting costs, or battening
down the business hatches to ride out fearsome competitive “storms”, it is about succeeding
and about winning: about succeeding in emerging competitive arenas, and about winning
profits, market share, and customers in the very center of the competitive storms many
companies now fear.” [Goldman et al., 1995]. In addition, Table 3.1 gathers some definitions
of “Agile” found in literature.

3 Agile software development

62

Table 3.1 Definitions of the term "Agile". Adapted from [Laanti et al., 2013].

 References Definitions Emphasis of the corresponding
definition

1 [Cockburn, 2002]

Being effective and maneuverable. Use of
light-but-sufficient rules of project behavior
and the use of human and communication-
oriented rules.

Effective, Steerable, Rule-based,
People, Communication

2 [Anderson, 2003] Ability to expedite Speed
3 [Larman, 2003] Rapid and flexible response to change. Speed, flexibility, responsiveness

4 [Schuh, 2004]

Building software by empowering and
trusting people. Acknowledging change as a
norm, and promoting constant feedback.
Producing more valuable functionality faster.

People, empowerment, change,
feedback, value, speed

5 [Lyytinen, 2006]

Discovery and adoption of multiple types of
Information Systems Development
innovations through garnering and utilizing
agile sensing and response capabilities.

Delivery, innovations,
responsiveness

6 [Subramaniam,
2005]

Uses feedback to make constant adjustments
in a highly collaborative environment.

Feedback, adaptability,
collaboration

7 [Ambler, 2007]

Iterative and incremental (evolutionary)
approach to software development, which is
performed in a highly collaborative manner
by self-organizing teams with “just enough”
ceremony that produces high-quality software
in a cost-effective and timely manner which
meets the changing needs of its stakeholders.

Iterative, incremental, self-
organizing, less process-driven,
collaborative, cost-conscious,
speed, customer-driven

8
[Nerur and
Balijepally,
2007]

Define “Agile” via strategic thinking (of
uncertainty), holographic organization theory,
“emergent metaphor of design” and Agile
Methods as people-centric, competent people
and their relationships, high customer
satisfaction through quick delivery of quality
software, active participation of concerned
stakeholders; creating and leveraging change.
Evolutionary delivery through short iterative
cycles, intense collaboration, self-organizing
teams and high degree of developer
discretion. Learning, teamwork, self-
organization and personal empowerment.
Responsiveness and flexibility.
Interchangeability of roles and jobs based on
autonomy.

Strategic thinking, uncertainty,
chaos theories, holographic
organization, non-traditional,
emergent design, people-centric,
competent people and their
relationships, high customer
satisfaction, quick delivery, active
participation, creating and
leveraging change, short iterative
cycles, intense collaboration, self-
organizing teams, developer
discretion, learning, teamwork,
self-organization, personal
empowerment, responsiveness,
flexibility, hierarchy, role
interchangeability and autonomy.

9 [IEEE, 2007]

Capability to accommodate uncertain or
changing needs up to a late stage of the
development (until the start of the last
iterative development cycle of the release).

Iterative, responsive

10 [Conboy, 2008]

Continual readiness of an entity to rapidly
or inherently create change, proactively or
reactively embrace change, and learn from
change while maximizing value, through
its collective components and its
relationships with its environment

Speed, flexibility, responsiveness
to change

11

[Association for
Project
Management,
2019]

An umbrella term refers to a project
management approach based on delivering
requirements iteratively and incrementally
throughout the life cycle.

Umbrella term, project
management, Iterative,
incremental

3.2 The “Agility” attribute

63

The definitions mentioned above partially cover the same points of emphasis as the
“Agile Principle (see Table 3.1)”. However, these definitions use slightly different terms or
viewpoints on “Agility” [Laanti et al., 2013]. For example, Cockburn [Cockburn, 2002]
considers that agile is about “communication”, and Ambler [Ambler, 2007] considers that agile
it is about “collaboration”. According to Laanti et al. [Laanti et al., 2013], these kinds of
nuances might seem irrelevant, but they can cause confusion in a large organization when Agile
Methods are being used.

 Researchers seem to avoid defining agile/agility, or define it via reference to a few
existing sources, or define agility via the methods researched. Today, when searching the agile
definition, it can be found that the newest definitions of “Agile” have ceased to mention
effectiveness. Nevertheless, “Agile” is described as a “set of practices that they can be used
when doing systems improvements” [Laanti et al., 2013]. It was concluded that these agile
activities and practices are organized in ways that prescribe the workflows, that should be
performed, and explain how the products should be produced and handled, along these flows.
The flow of activities respects agile principles. Therefore, in this thesis, research works, and
related projects, it is consider that the agility attribute of Agile Product Lines methodologies
concern the software development process and not the developed product. From this
perspective, the following definition of “agile or agility” are considered:

Definition 3.1:

Agile or agility term refers to an umbrella term used for a group of related approaches to
software development [process] based on iterative and incremental development. [Kenneth,
2013]

 In this definition, the emphasis lies on “a group of related approaches”, “iterative”,
and “incremental”. Incremental development is a staging and scheduling strategy, in which
various parts of the system are developed at different times or rates and integrated as they are
completed. Iterative development is a rework scheduling strategy in which time is set aside to
revise and improve parts of the system.

Accordingly, Agile Software Development (ASD) is a way of managing and organizing
the development process, emphasizing direct and frequent communication, delivering
frequently of working-software increments, having short iterations, involving active customer
engagement throughout the whole development life cycle, and being change responsive rather
than change avoidance. This is in contrast to waterfall-like models, which emphasize thorough
and detailed planning and upfront design, and conformance to consecutive stages of the plan
[Hanssen et al., 2018].

3 Agile software development

64

3.3 Iterative and Incremental

Generally, Agile is understood as more of an evolution rather than a revolution. The school of
iterative development and incremental delivery, which was well established by the 1980s,
heavily influences agile methods. In fact, all existent agile processes are iterative and
incremental approaches to software development. The terms iterative and incremental, each
have a unique meaning and are often used together [Cohn, 2013] [Larman, and Basili, 2003].

 Incremental development (or delivery) involves building a system (or product) piece by
piece. At the beginning, the first part of the product is developed, and then a next part is added
to the first part, and so on. Alistair Cockburn [Cockburn, 2008] describes the incremental
development as a “staging and scheduling strategy, in which various parts of the system are
developed at different times, or rates and integrated as they are completed”. An alternative
strategy is to develop the entire system with a big-bang integration at the end.

 Iterative development is referred to as a “rework scheduling strategy, in which time is
set aside to revise and improve parts of the system” [Cockburn, 2008]. Therefore, this approach
– in whatever method – prefers to browse the entire solution development lifecycle (i.e.,
analysis, implementation and testing, deployment) with the aim of producing a self-contained,
tested and partially functional product within a fixed timeframe [Moran, 2015]. During
successive iterations, the product is further refined thereby enabling lessons learned from earlier
iterations to be fed back into the process. However, the iterative development process
acknowledges the impossibility (or at least improbability) of getting a feature right the first time
[Cohn, 2013]. The alternative strategy to iterative development is to plan to get everything right
the first time [Cockburn, 2008].

Briefly, in an incremental process, a development team fully develops one feature and
then moves onto the next feature. By contrast, in an iterative process, they build the entire
system, but with some imperfectly at first, and then they use subsequent passes across the entire
system to improve the built system.

Several agile methodologies have merged these two approaches into one in order to refer
to the process of “iterative and incremental development” (e.g. Scrum). According to Jeff
Sutherland [Sutherland, 2010], one of the leading advocates of Scrum, the Scrum method
describes iteration as the act of traversal of the entire process during each pass of which the
product gradually developed. In addition, he considers that increments are concerned with the
concept of “incremental development”, which is iterating overall the Sprint and that each
iteration should conclude with “minimal usable feature set that is potentially shippable”
[Sutherland, 2010]. In practice, there is a little consensus in the agile community concerning
the precise definition of an increment. Furthermore, there is no precise definition about where
effectively the boundaries of agility lie [Moran, 2015].

3.4 The “Agile Manifesto”

65

3.4 The “Agile Manifesto”

In 2001, in Utah, seventeen software practitioners were gathered; they had written the Agile
Manifesto [ManifestoAgile, 2001] for agile software development. These practitioners were the
representatives from “eXtreme Programming”, “Scrum”, “Dynamic Systems Development
Method (DSDM)”, “Adaptive Software Development (ASD)”, “Crystal”, “Feature-Driven
Development (FDD)”, “Pragmatic Programming”, and others. The main objective of that
meeting was to discuss the practices of each methodology that were successful in software
development in the late 1990s and to try to understand the common ground of each
methodology [Heng, 2017]. While the participants did not agree about much, they found
consensus around four main values [Agile Alliance, 2018]. In fact, participants did not agree
upon many issues. However, they have agreed a few things that become the Manifesto for Agile
Software Development. The two main achievements of the Agile Manifesto were to provide a
set of value statements that form the foundation for Agile software development and to coin the
term Agile software development itself [Agile Alliance, 2018].

In his book, Sommerville [Sommerville, 2010] has stated that the Agile Manifesto is a
“set of principles encapsulating the ideas underlying agile methods of software development”.
Actually, the manifesto for agile software development gather four values and twelve
principles.

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

1 2 3 4

Individuals and
interactions

over processes and
tools

Working software
over comprehensive

documentation

Customer
collaboration
over contract
negotiation

Responding to
change

over following a
plan

That is, while there is value in the items on

the right, we value the items on the left more”.

Fig. 3.2 Values of the Agile Manifesto [ManifestoAgile, 2001].

Figure 3.2 highlights the values of the agile manifesto. It is clear that the manifesto was
written in a structured sentence with the word “over” in the middle. As the values are partially
written in bold, this means that the agile manifesto emphasizes these parts of the values more
[Ambler, 2002]. In addition, based on Figure 3.2, agile methods focus on individuals and
interactions more than on process and tools. According to Hunt, the project success relies
mostly on the people involved and the way in which they communicate more than on the
processes, methodologies and tools that are used [Hunt, 2006] [Hazzan, and Dubinsky, 2008].

3 Agile software development

66

A set of 12 principles have been identified from these value statements. These principles
have two main objectives:

i. They are intended to help people gain a better understanding of what agile software
development is all about;

ii. They can be used to help to determine whether the developer is following an agile
methodology or not.

Moreover, these principles do not stipulate a specific method. Instead, they define a set
of guiding statements, where any method has to be conform to these statements in order to
belong the banner “Agile”. Therefore, agile methodologies should be conform to these
principles. Table 3.2 presents the twelve principles that are based on the Agile Manifesto.

Table 3.2 Principles of Agile Manifesto [ManifestoAgile, 2001].

P1
Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

P7 Working software is the primary
measure of progress.

P2

Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

P8

Agile processes promote sustainable
development. The sponsors,
developers, and users should be able to
maintain a constant pace indefinitely.

P3

Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the
shorter timescale.

P9
Continuous attention to technical
excellence and good design enhances
agility.

P4
Business people and developers must
work together daily throughout the
project.

P10 Simplicity ̶ the art of maximizing the
amount of work not done ̶ is essential.

P5

Build projects around motivated
individuals. Give them the environment
and support they need, and trust them
to get the job done.

P11
The best architectures, requirements,
and designs emerge from self-
organizing teams.

P6

The most efficient and effective method
of conveying information to and within
a development team is face-to-face
conversation.

P12

At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior
accordingly.

Table 3.3 shows the dependencies of the agile manifesto values and its principles. This
table was adapted from [Heng, 2017] and the dependency relationship is represented by “X”.

Table 3.3 Dependencies of agile manifesto values and principles [Heng, 2017].

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Value (1) X X X X X X
Value (2) X X X X X X
Value (3) X X X X
Value (4) X X X X (X)

3.5 Agile Software Development in practice

67

In a nutshell, “Agile” is a mindset informed by the values contained in the Agile
Manifesto and the 12 Principles behind this manifesto. Those values and principles provide
guidance on how to create and respond to change and how to deal with uncertainty [Agile
Alliance, 2018].

3.5 Agile Software Development in practice

In general, an agile team has to balance the “need for adaptation (i.e. innovation)” against the
potential “pressure to standardization”. To do this, it was suggested that “lightweight”
methods (e.g. Scrum and XP) maintain high adaptation and low optimization environments,
whereas, “heavier” methods (e.g. DSDM and SAFe) are to be found in low adaptation and high
optimization contexts [Cockburn, 2006] [Moran, 2015]. It was argued that an organization
typically requires both.

Figure 3.3 sketches the agile chart for a generic agile process. The small circle represents
the day of an agile team. In practice, a typical agile day starts with a stand-up meeting of the
project team members. Then, during the day, the code could be developed, tested and integrated
into a shared repository by using continuous integration practices and by that means, ensuring
a tight feedback loop. At the end of each day, a complete build and deployment may be
performed to assess the stability and readiness of the code, as well as demonstrating the working
software. Furthermore, technical practices performed on a daily basis tend to be highly
automated. The middle circle represents the iteration of an agile process. Continuing with this
next cycle, each iteration begins with a planning session in which estimates and priorities are
set (i.e. definition of user stories, etc.). In every part of the iteration, the communal information
radiator has to be updated with relevant information, user acceptance testing could be performed

Fig. 3.3 Agile Chart for a Generic Agile Process. Adapted from [Moran, 2015].

3 Agile software development

68

and the progress is tracked by using some form of burndown charts that exhibit a high degree
of transparency. With regard to the end of the iteration, the project team meets stakeholders in
order to demonstrate the work completed during the iteration. To conclude an iteration, the team
reflects on its experiences and lessons learned (i.e. retrospective) and considers what might be
done to improve the process [Derby, and Larsen, 2006]. Generally, an iteration length typically
varies between two to four weeks. The bigger circle represents the increment of an agile
process. In fact, an increment needs affirmations of the business case and high-level delivery
planning. Which often results in a feature list (i.e. backlog) that describes the requirements in
the language of the customer at a level of detail commensurate with the information available.
Acceptance testing of the evolving product usually occurs on all levels. However, it is a
definitive character at the increment level and is expected to complement the integration testing
that occurs during the iteration and the unit testing in the daily cycle. At the end of the
increment, a final deployment of a part (or complete) solution provides the welcome
opportunity to celebrate delivery of business value [Derby and Larsen, 2006] [Moran, 2014].

 According to [Dingsøyr et al., 2010], agile methods are seen as a reaction to plan-based
or traditional methods that emphasize a rationalized and engineering-based approach. In fact,
since the creation of the Agile Manifesto, in 2001, agile methods have gained a lot of popularity
in the software industry due to its numerous success stories. The popularity of agile methods
has been verified in several ways. For example, in the CHAOS report [Hastie and Wojewoda,
2015] it was demonstrated empirically that (in practice) agile methods are more successful and
less likely to fail comparing to waterfall-based methods.

Table 3.4 Agile Vs. Waterfall. Adapted from 2015 CHAOS Report [Hastie and Wojewoda, 2015].

SIZE METHOD SUCCESFUL CHALLENGED FAILED
Small size
projects

Agile 58 % 38 % 4 %
Waterfall 44 % 45 % 11 %

Medium size
projects

Agile 27 % 62 % 11 %
Waterfall 7 % 68 % 25 %

Large size
projects

Agile 18 % 59 % 23 %
Waterfall 3 % 55 % 42 %

All sizes
Agile 39 % 52 % 9 %

Waterfall 11 % 60 % 29 %

Table 3.4 shows the importance of agile methods for practitioners. In fact, it highlights
the results of the CHAOS report related to success and failure of using agile and waterfall
methods in surveyed software projects.

Every year, CollabNet-VersionOne introduces the annual State of Agile Report. Figure
3.4 shows the percentages of common agile methodologies used within organizations.
According to the 13th annual report, issued in 2019, Scrum still is the most popular agile
methodology with being used in 54% of all agile projects. The use of Scrumban method has
increased by 1% since 2017. XP has become unpopular with a use of only 1%. However, a lot

3.6 Overview of main Agile Methods

69

of XP’s relevant engineering techniques (e.g., User stories, Pair Programming, Planning game,
etc.) are still very popular and used in many agile methods.

3.6 Overview of main Agile Methods

This section provides an overview on two agile methods, namely Scrum and Scrumban. Section
3.6.1 reviews the Scrum methodology and Section 3.6.2 presents the Scrumban methodology.
Scrum has been chosen because it is widely used within organizations and integrates project
management in the same family of methods. The Scrumban has been selected because it
integrates relevant engineering practices that fit Software Product Lines and integrates project
management techniques as well.

3.6.1 Scrum

In the early 1990s, Jeff Sutherland introduced the Scrum methodology for software
development [Sutherland and Schwaber, 2011]. This methodology was inspired by a paper of
Takeuchi and Nonaka [Takeuchi and Nonaka, 1986]. Scrum is an exceptionally elegant,
effective, and popular software development framework. Scrum’s value increases as teams and
organizations advance their understanding and application of its core principles and practices
[Kenneth, 2013].

 According to Craddock [Craddock, 2013], Scrum could be described as a product
development methodology with mild project management aspirations (e.g., lightweight
tracking and reporting),; its emphasis lies mainly on the management of software requirements
and development. As Scrum focuses on the project management aspects for software
development, the scope of Scrum does not reach other activities, such as business change

Fig. 3.4 Common agile methodologies used in respondents' organizations
[CollabNet VersionOne, 2019].

3 Agile software development

70

management, systems development or data migration, and it therefore defers to existing
practices within an organization to cover project initiation, risk management, release and
deployment and change management processes [Abrahamsson, 2003]. Indeed practitioners of
agile methodologies, which have a wider scope, have argued that Scrum can be successfully
embedded within their frameworks [Schwaber and Sutherland, 2016].

 Scrum has three main concepts: transparency, inspection, and adaption [Tsui et al.,
2013]. In addition, it has a common definition of what can be defined as a completed item. In
practice Scrum is an iterative and incremental methodology based on short time-box iterations
of maximum 30 days, which are known as “sprint”; each sprint produces a piece of workable
software [Cohn, 2013]. It is important to mention that at the beginning Scrum consisted only of
a few practices. Later, the authors were inspired by the values of “Agile Manifesto” and thus,
they came out with five principles, namely commitment, focus, openness, respect, and courage
[Schwaber and Beedle, 2001]. In few words, Scrum is a refreshingly simple, people-centric
framework based on the values of honesty, openness, courage, respect, focus, trust,
empowerment, and collaboration [Kenneth, 2013]. The Scrum practices are embodied in
specific roles, activities, artifacts, and their associated rules.

3.6.1.1 Scrum roles

According to [Cohn, 2004], [Cohn, 2013], and [Kenneth, 2013], Scrum presents the three
following core roles:

 Scrum Master: the Scrum Master is responsible for making sure that the team is as
productive as possible. He/she does this by helping the team use the Scrum process, by
removing impediments to progress, by protecting the team from outside, and so on.
Notice that the Scrum Master is not acting in a managing role, but rather as a coach of
the team, as a true part of the development team. He/she interacts with the development
team, customers and the management during the project;

 Product Owner: the product owner is the project’s key stakeholder and represents the
users, customers and others in the process. The product owner is often someone from
product management or marketing, a key stakeholder or a key user. The product owner
is responsible for creating and prioritizing the Product Backlog, setting the scope of the
sprint, and reviewing and accepting the software at the end of each sprint;

 Scrum Team (Development Team): A typical Scrum team counts between five and nine
members, but Scrum projects can easily scale into the hundreds. However, Scrum can
also easily be used by one-person teams and often is. This team does not include any of
the traditional software engineering roles such as a programmer, designer, tester or
architect. Everyone on the project works together to complete the work they have
collectively committed to complete within a sprint. Scrum teams develop a deep form
of camaraderie and a feeling that “they’re all in it together”. In other words, a Scrum
team is a self-organizing team that is involved in estimating, creating the Product

3.6 Overview of main Agile Methods

71

Backlog (described in the next section), decomposing task for implementation of each
Product Backlog item, and reviewing Product Backlog, etc.

3.6.1.2 Scrum artifacts

According to [Cohn, 2014] and [Kenneth, 2013], Scrum methodology proposes three main
artifacts that ensure the control of the project. These artifacts are openly accessible for any
member of the team. These artifacts are the following:

 Product Backlog: The product backlog is a prioritized feature list containing every
desired feature or change to the product. The term “backlog” can get confusing, because
it is used for two different things. To clarify, the product backlog is a list that stores the
current requirements of the product. It does not constitute the complete requirements set
of the software, because the items that have already been implemented are discarded
from the Product Backlog and other items can be added afterwards. An item of the
Product Backlog normally consists of a feature, a functionality of the system and its
priority. Sometimes, a user story card expresses the feature;

 Sprint Backlog: It is similar to the Product Backlog, but it is for a specific sprint. It is
the subset of the Product Backlog. The Product Owner decides and selects which
Product Backlog item should go into the current Sprint Backlog for the implementation.
This selection will produce a workable software at the end of the sprint. Every item in
the Sprint Backlog is further decomposed in a set of small task and each task is assigned
to a specific developer;

 Burndown Chart: this chart displays the remaining efforts of the project. It is a tool for
measuring the progress in software development. The Scrum Master updates it at the
end of each sprint.

3.6.1.3 Scrum practices

According to [Tsui et al., 2013], [Cohn, 2014] and [Kenneth, 2013], Scrum integrates several
practices, sometimes called “Scrum Events”. The four core practices of Scrum methodology
are the following:

 Sprint planning meeting: At the start of each sprint, a planning meeting is held, during
which the product owner presents the top items on the Product Backlog to the team. The
Scrum team selects the work they can complete during the coming sprint. That work is
then moved from the product backlog to a sprint backlog, which is the list of tasks
needed to complete the product backlog items the team has committed to complete in
the sprint.

3 Agile software development

72

 Daily Scrum: It is a short meeting (maximum 15 minutes) that occurs every day during
the sprint. The main target of this meeting is to ensure that the team members are on the
track. It is a session of asking the three (in)famous questions:

o What have you done since the last Scrum?
o What will you do between now and the next Scrum?
o What got in your way of doing work?

If a member encounters a problem, she/he can ask for help from the others. The Scrum
Master normally organizes this meeting. This meeting helps set the context for each
day’s work and helps the team to stay on track. All team members are required to attend
the daily scrum.

 Sprint review meeting: At the end of each sprint, the team demonstrates the completed
functionality at a sprint review meeting, during which, the team shows what they
accomplished during the sprint. Typically, this takes the form of a demonstration of the
new features, but in an informal way; for example, PowerPoint® slides are not allowed.
The meeting must not become a task in itself, nor a distraction from the process.

 Sprint retrospective: Besides this, at the end of each sprint, the team conducts a sprint
retrospective: a meeting during which the team (including its Scrum Master and product
owner) reflects on how well Scrum is working and what changes could be made for it
to work even better. The team considers three things:

o What went well?
o What didn’t?
o What improvements could be made for the next sprint?

It is essential for the team to have this meeting as a self-evaluation and to strive for self-
improvement.

3.6.1.4 Scrum Process

Abrahamsson et al. [Abrahamsson et al., 2002] have divided the Scrum process in three phases.
(Figure 3.5)7 introduces a graphical representation for the following phases of Scrum process:

1. PreGame Phase: The Scrum process starts with the requirements gathering by creating
the Product Backlog. It is not required to be complete from the beginning and it can be
updated after each sprint. This phase is separated into two sequential steps:

− Planning: During the planning, each item in the Product Backlog is
estimated with priority and efforts for its implementation, and the scope of
the sprint is set—i.e., moving the selected items from Product Backlog to
Sprint Backlog, with schedule and cost.

7 Used icons are royalty-free.

3.6 Overview of main Agile Methods

73

− Architecture: The architecture defines how the items in the Sprint Backlog
are implemented. It involves the system architecture modification and high
level-design.

2. Development Phase (also called the Game Phase): the development phase is considered
as the agile part of the Scrum approach. It is treated as a “black box”, where
unpredictability is to be expected. The various and ever-changing environmental and
technical variables (such as timeframe, quality, requirements, resources,
implementation technologies and tools, and even development methods), identified in
Scrum, are observed and controlled through various Scrum practices during the Sprints
of the development phase. Rather than considering these matters only at the beginning
of the software development project, Scrum aims at controlling them continuously in
order to be able to flexibly adapt to the changes. In addition, any changes to aspects
such as requirements, priority, efforts, etc. are prohibited.

3. PostGame Phase: This phase contains the closure of the release. This phase is entered
when an agreement has been made on whether the environmental variables, such as the
requirements, have been completed. In this case, no additional items and issues can be
found nor can any new ones be invented. The system is now ready for release and the
final preparations for this are performed during the PostGame Phase, including the tasks
such as the integration, system testing and documentation.

Fig. 3.5 Scrum's lifecycle. Adapted from [Abrahamsson et al., 2002].

3 Agile software development

74

3.6.1.5 Discussion

As stated above, Scrum is not a standardized process where a series of sequential steps are
methodically followed, which are guaranteed to produce a high-quality product that delights
customers, both on time and on budget. Scrum is presented as a project management framework
that is applicable to any project with aggressive deadlines, complex requirements and a degree
of uniqueness. Kenneth [Kenneth, 2013], Craddock [Craddock, 2013] and Cohn [Cohn, 2014]
argue that organizations that apply Scrum diligently experience various benefits, such as:
delighted customers, improved return of investment, reduced costs, fast results, confidence to
succeed in a complex world, etc. It is demonstrated that with Scrum, not only customers are
delighted, but also the people doing the work actually enjoy it. They enjoy frequent and
meaningful collaboration, leading to improved interpersonal relationships and greater mutual
trust among team members.

 According to Ken Schwaber [Schwaber, and Sutherland, 2016], co-creator of Scrum,
“75% of those organizations using Scrum will not succeed in getting the benefits that they hope
for from it…”. Thus, Scrum also presents some disadvantages. For Cline [Cline, 2015], usually,
the Scrum methodology is applied for small 5-8 people teams. Team members must be
committed to the project, as this framework requires an experienced team. If a team consists of
novices in this area, there might be a risk of not completing the project on time. Moreover, strict
control over the team might put a lot of pressure on them, which on its own may also lead to
failure. In addition, Cockburn [Cockburn, 2007] and Misevičiūtė, [Misevičiūtė, 2016] have
highlighted that the “Scrum method may consume a lot of time if a longer sprint is planned.
Unexpected issues may also hinder the process of completing a sprint on time, thus more time
will be needed to remove those issues. Moreover, the scrum estimation is one of the most
strenuous parts, as tasks must be well defined, otherwise estimated project costs and time will
not be precise”.

Briefly, Scrum is a constrained process, where tasks are assigned to each team member
(i.e. all tasks might be bounded by deadlines). According to Abrahamsson et al. [Abrahamsson
et al., 2002], and Sutherland and Schwaber, [Sutherland, and Schwaber, 2011] Scrum works
well for large projects, because work is organized in sprints, which in part are planned by all
scrum team members. After one sprint ends, a new sprint is planned, therefore the board is reset
for each sprint. Scrum has predefined roles like Scrum Master, Product Owner and
Development Team. Scrum teams are cross-functional, track their workflow using Burndown
Charts, and have daily meetings where each member elaborates on the current situation of
his/her work. Larger enterprises, with larger projects usually use scrum to achieve high efficacy
within a working process.

3.6.2 Scrumban

Scrumban is a relative newcomer to the world of agile software development. Ladas [Ladas,
2009] has defined Scrumban as “a transition method for moving software development teams
from Scrum to a more evolved development framework”. More precisely, Scrumban is “a
composite of Scrum and Kanban methods, as it contains basic properties of Scrum and

3.6 Overview of main Agile Methods

75

flexibility of Kanban” [Brezočnik, and Majer, 2016]. Organizations have placed the Kanban
Method alongside Scrum to help them achieve varying kinds of outcomes. In other words,
Scrumban is a management framework that emerges when teams employ Scrum as their chosen
way of working and use the Kanban Method as a lens through which to view, understand and
continuously improve how they work [Reddy, 2015].

 According to [Nikitina et al., 2012], complementing the principles of Scrum with
practices of Kanban can yield a more sophisticated development methodology (i.e. Scrumban)
and thus, it can guarantee the highest product quality. In fact, Scrumban combines the benefits
of both Scrum and Kanban. Scrum can effectively facilitate the management of projects by
providing principles that urge cooperation among the development team members. This all in
order to accomplish the required work, which has been divided in several sprints with fixed
length, and provide aid where the scrum team should be more “a cross-functional”. Kanban
limits the work in progress, measures the lifetime of project, and monitors and manages the
workflow by applying Kanban board.

 Experiences demonstrate that Scrumban has evolved to become a family of principles
and practices that create complementary tools and capabilities. Over the years, Scrumban has
been used to help teams and organizations accelerate their transitions from Scrum to other
development methodologies. It has been used to help teams and organizations overcome a
variety of common challenges that Scrum is designed to force them to confront. When the
context requires, it has been used to help organizations evolve new Scrum-like processes and
practices that work best for them— not simply as a means to accommodate inadequacies and
dysfunctions Scrum exposed, but rather as a strategy to resolve those problems in a manner,
that is most effective for that environment [Reddy, 2016].

 Following Reddy [Reddy, 2015], Scrumban can be distinguished from Scrum in the way
that it emphasizes certain principles and practices that are substantially different from Scrum's
traditional foundation. These include the following:

− Recognizing the important role of organizational management (self-organization
remains an objective, but within the context of specific boundaries);

− Allowing for specialized teams and functions;
− Applying explicit work policies ;
− Applying the laws of flow and queuing theory;
− Deliberate economic prioritization.

On the other part, Scrumban is distinct from the Kanban Method in the following principles
and/or practices [Reddy, 2015]:

− It prescribes an underlying software development process framework (Scrum) as its
core;

− It is organized around teams;
− It recognizes the value of time-boxed iterations when appropriate;
− It formalizes continuous improvement techniques within specific ceremonies.

3 Agile software development

76

From practice, it was learnt that the principles and practices of Scrumban are not unique to the
software development process. These principles and practices can be easily applied in many
different contexts, providing a common language and shared experience across interrelated
business functions. Consequently, this enhances the kind of organizational alignment that is an
essential characteristic of success [Reddy, 2015] [Misevičiūtė, 2016] [Johnson, 2016].

3.6.2.1 Scrumban roles

Like Scrum and Kanban, Scrumban has several roles. According to mm1 Technology GmbH
[mm1, 2016] and Reddy [Reddy, 2016] these roles are the following:

1. Product owner: the person responsible for maintaining the product backlog by
representing the interests of the stakeholders, hereby ensuring the value of the work the
development team performs.

2. Scrumban sensei: the person responsible for correct use of the Scrumban process.
Although the designation of a Scrumban sensei, and his/her presence in (Scrumban)
meetings, is generally advisable, teams with a lot of Scrumban experience may also
work without this role.

3. Development team: a cross-functional group of people responsible for delivering
potentially shippable increments of the product (at the end of every production cycle).

4. Stakeholders: the people enabling the project. They are only directly involved in the
process during the reviews. Aside from that, they may solely influence the team by
discussing their needs with the product owner. Typically, the main stakeholders are
managers, customers and users.

3.6.2.2 Scrumban artifacts

According to mm1 Technology GmbH [mm1, 2015], Reddy [Reddy, 2016] and Nikitina
[Nikitina et al., 2012], Scrumban framework proposes ten main artifacts. Namely, the
following:

1. Product backlog: an ordered list of requirements that the team maintains for a product.
In Scrumban, one should document requirements in “User Story” format. Anyone can
edit the backlog, but the product owner is ultimately responsible for ordering the user
stories. Stories in the product backlog contain rough estimates of both business value
and development effort.

2. Selected backlog: a list of work the development team must address next. It has a
defined capacity limit. As soon as capacity is available, it is filled up with user
stories/features from the top of the product backlog.

3.6 Overview of main Agile Methods

77

3. Story in Progress (SIP) Backlog: a list of user stories, which the development team
currently addresses. Team members pull user stories from the selected backlog when
there are no more remaining tasks in the task backlog.

4. Task backlog: a table structured along the phases that are necessary for completing the
project, e.g. design, development, and test. The development team breaks the user
stories/features from the SIP backlog down into single tasks. Once a task has finished
one phase, a team member from the consecutive phase eventually pulls the task to
process it further.

5. User Story: a description of a certain product feature or behavior, written strictly from
the user’s point of view. Usually, the product owner writes the user stories.

6. Task: a unit of work, which should be achievable within one working day or less. To
implement a user story, you must accomplish all associated tasks.

7. Work in Progress (WIP) Limit: Limits the number of stories and tasks in each productive
steps of the production flow and thus prevents work overload.

8. Parking lot: a space for tasks, which the team could not finish, due to external
dependencies. For example, another team has to review a document. Placing a task in
the parking lot prevents the team from encountering deadlocks, where unfinished tasks
block production lines.

9. Cumulative flow diagram (CFD): a publicly displayed chart showing a detailed view of
the teams’ past and present performance. The CFD allows the identification of
bottlenecks within the production flow. It also enables the product owner to predict the
time a new requirement will most probable need to complete.

10. Impediment backlog: a list maintained by the sensei, including all current impediments.

3.6.2.3 Scrumban practices

Since Scrumban combines Scrum and Kanban and contains the best rules and practices of both
methods. The Scrumban method integrates many practices from both. On one hand, it uses the
practices that reflect the sanctioned nature of Scrum to be “agile”. On the other hand, it
encourages teams to constantly improve their processes along with Kanban's aim of continuous
improvement (i.e. Kaizen) [Pahuja, 2018]. According to [mm1, 2015], [Reddy, 2016] and
[Ladas, 2009] the main practices of Scrumban method are the following:

1. Planning 1: (The “what”: Whenever the product owner pulls new user stories into the
selected backlog.) The product owner holds the decision of “what?” in order to select
the next user stories to work on, explaining the user stories of the product backlog and
answering open questions. After this analysis, the development team should understand

3 Agile software development

78

the requirements. Therewith, the team is able to estimate the complexity of each user
story.

2. Planning 2: (The “how”: Whenever team members pull new user stories into the
production flow.) Here, the team discusses solutions for new user stories in the SIP
backlog and accordingly creates tasks for each user story.

3. Daily: (15 min max.) A short, time-boxed meeting, taking place every day at the same
time. Every team member answers three questions:

a. What have I done since yesterday?
b. What am I planning to do today?
c. What are my impediments?

4. Review: (Whenever the team ships an increment.) The team uses this meeting to present
and review the work it has completed since the last delivery. Usually, it also includes a
demonstration of the features created in the last product increment.

5. Retrospective: (After any review.) The Scrumban sensei holds the retrospective to
reflect on the past production cycle in order to ensure continuous process improvements.
The sensei always asks two questions in the retrospective:

a. What went well during the last cycle?
b. What should improve in the next cycle?

6. Andon: (Whenever a problem occurs.) The Scrumban sensei organizes an Andon
meeting whenever problems in the production flow occur. For example, a story goes
over the expected cycle time, or a task is frequently re-assigned and not yet solved. Both
the development Team and the product owner take part in this meeting and work on a
solution to solve the pending issue.

Fig. 3.6 Example of Scrumban Board that gives an overview of a process
workflow.

3.6 Overview of main Agile Methods

79

7. Extend Board: the workflow is visualized so that the team can follow how the tasks
move from the initial request to completion. This provides both a sense of project scope
and understanding of the end goal. It consists of columns, headed with “To do”, “Work
in progress (WIP)” and “Done”. Column “Work in progress” can be divided into more
sections, then new columns indicate the particular stages a task goes through, therefore
everybody knows the current situation and tasks that are to be completed as soon as
possible (See Figure 3.6).

8. Limit the WIP (Backlog limit): Each team member should be working on no more than
one task at a time. To reinforce this rule WIP limits from Kanban are used, limiting the
number of tasks in the progress columns. This reinforces team collaboration and ensures
any bottlenecks are resolved quickly.

9. Plan on demand: to save time and minimize waste, the planning is done only when
necessary. The amount of tasks to be planned for an iteration is controlled, by putting a
limit on the backlog column. The task limit is based on team capacity and prior
iterations.

10. Bucket size planning: this approach is used for long term planning within the Scrumban
framework. It is based on three different phases of planning – 1 year for the long-term
perspective, 6 months for committing to specific goals and 3 months for setting up clear
requirements. This assists Scrumban teams in having a roadmap of actions for the long-
term perspective (See Figure 3.7).

11. Lead and cycle time (Metrics performance): Lead and cycle time are terms taken from
Kanban, it defines the required time from the initial request to task completion, or the
time from starting the task to its completion (See Figure 3.8). It is used in Scrumban to
estimate how long the iteration will last and what should the backlog limit be for the
team. Scrumban uses average lead and cycle time as its key metrics for performance. If
lead and cycle time is under control, then one can understand how long does it takes for
a task to reach the end consumer, how long it takes to develop and how long does it take
to manage the change (i.e. change management). With these metrics, one can predict

Fig. 3.7 Bucket size planning. The backlog icon is adapted from [Kenneth, 2013].

3 Agile software development

80

how long it will take to provide a certain amount of value (i.e. product value) or earn
some amount of money. In addition, to measure performance, Cumulative Flow
Diagram (CFD) could be useful. CFD is a chart showing the cumulative number of
arrivals and departures from a process, or parts of a process, over a period-of-time (See
Figure 3.8).

Concisely, Scrumban uses mixed techniques. In fact, it combines the basic features of
Scrum and the flexibility of Kanban. Scrumban has a slightly constrained process, where
prioritization is optional, but it is recommended during each planning, and planning is done by
Kaizen events. Scrumban uses the “planning on demand principle” to fill the backlog and tasks
are assigned exclusively using the pull system, like in Kanban. In addition, just like in Kanban,
the board stays constant, while only the tasks and their priorities change. In Scrumban the work
is usually focused more on planning than releasing; while in Scrum planning is done after each
sprint, Scrumban planning is only done on demand. This method is mostly used for fast-paced
process like startups or projects which require continuous product manufacturing, where the
environment is dynamic [Mahnic, 2014], [Misevičiūtė, 2016], and [Shore Labs, 2017].

3.6.2.4 Scrumban process

In 2008, Ladas [Ladas, 2009] has introduced the term Scrumban in his white-paper on
“Scrumban-Essays on Kanban Systems for Lean Software Development”. As stated above, on
the one hand, Scrumban uses the perspective nature of Scrum in order to be agile. On the other
hand, it encourages the process improvement of Kanban to allow teams to continually improve
their process [Pahuja, 2018]. Many research works related to Scrumban are available in
literature and there are two main schools of thoughts:

− Some apply Scrum to Kanban, where the process is more inclined towards Kanban;
− Other apply Kanban to Scrum, where the process is more inclined towards Scrum;

Both ways seem to take certain principles from Scrum and Kanban and accordingly adjust them
to their organization or team needs and requirements [Stoica et al., 2016].

Fig. 3.8 An illustration of Lead, Cycle time and Cumulative Flow Diagram (CFD)

3.6 Overview of main Agile Methods

81

According to many practitioners such as [Suresh, 2018], the core difference between
Scrum and Scrumban is in the board itself. Actually, Scrumban has changed the pull order of
items. In fact, with Scrum, the order of the sprint planning process and all tasks are pre-set prior
to working. This can cause a level of rigidity that can result in skipping problems that arise
during the process, and which may never be addressed prior to release. Moreover, one of the
biggest advantages of Kanban brought to Scrumban is that problems are identified throughout
the process and can be acknowledged before the end-point is reached. The quality of the final
output is generally better. However, as Kanban can give too much liberty to team members to
choose their own workflow, this can result in pieces not being completed in a timely fashion,
particularly if one task is awaiting the completion of another.

The main trick with Scrumban is to increase the pool by adding a new area into the
existing Scrum workflow. In addition, it does allow a smoother transition to a final goal without
being bogged down in individual sprints.

Fig. 3.9 Scrumban process [mm1, 2015].

3 Agile software development

82

Ladas [Ladas, 2009], Reddy [Reddy, 2016] and other researchers have divided the
Scrumban process in two major phases. Figure 3.9 presents a graphical representation of the
following phases of Scrumban process:

1. Specification Phase: In this phase, the first step is to run a “Kickstart Event”, which is
a meeting in which the team will nail down the foundational elements of Scrumban, so
they can start using it to manage their work. Thus, the phase of specification starts by
gathering the requirements from the product owner in order to create the Product
Backlog. This phase is separated into three sequential steps:

a. Step 1.1 – Building of the “Product Backlog” and defining the “Selected
Backlog”: On the one hand, to build the Product Backlog, the Product Owner
with the Development Team lists the requirements and documents them in “User
Story” format. Anyone can edit the backlog, but the product owner is ultimately
responsible for ordering the user stories. Stories in the product backlog contain
rough estimates of both business value and development effort. On the other
hand, the Development Team defines the Selected Backlog, which is a list of
work the development team must address next. It has a defined capacity limit.
As soon as capacity is available, it is filled up with user stories/features from the
top of the product backlog.

b. Step 1.2 – Holding of the meeting “Planning 1”: in this meeting people define
the “WHAT?”. In fact, the product owner holds this meeting prior to pulling new
user stories into the selected backlog, to select the next user stories to work on.
The product owner explains the user stories of the product backlog and answers
open questions during this gathering. After this analysis, the development team
should understand the requirements. Therefore, the team is able to estimate the
complexity of each user story.

c. Step 1.3 – Construct the “Stories in Progress” Backlog with a defined capacity
(k): at this stage, the Development Team lists the user stories, which they
currently address. Team members pull user stories from the selected backlog
when there are no more remaining tasks in the Task Backlog.

2. Production Phase: this phase starts with a planning meeting held to plan the production
flow. This phase is separated into three sequential steps:

a. Step 2.1 – Holding the “Planning 2”: at this step the Development Team
addresses the “HOW?”. Team members pull new user stories into the production
flow. In this meeting, they discuss solutions for new user stories in the Stories
In Progress backlog and create tasks for each user story accordingly.

b. Step 2.2 – Production Flow – Defining the Scrumban Board (adapted from
Kanban principles): here the production flow is organized in a “Kanban Board”,
which contains several columns. Among these columns, the following columns

3.6 Overview of main Agile Methods

83

are mandatory: “Task Backlog”, “Tasks in Progress”, “Tasks Done”, “Story
Testing”, and “Stories Done”.

c. Step 2.3 – End of Increment/Product derivation: at the end of each increment,
the Development Team presents and reviews the work it has completed since
the last delivery. Usually, the “Review” meeting includes a demonstration of the
features created in the last product increment. After any review, the Scrumban
sensei, and the development team hold the “Retrospective” meeting to reflect on
the past production cycle in order to ensure continuous process improvements.
Once the Product Owner’s vision is accomplished and the Product is in fact
ready; the final product can be delivered.

As a combination of the Kanban Method and Scrum, Scrumban has evolved to become
much more than just the “best elements of both.” It encourages the search for improved
understandings from all sources, and facilitates the integration other models and frameworks.

3.6.2.5 Discussion

One of the main intentions behind combining Lean and Agile methodologies is to allow project
members to receive fast and iterative feedback, while they have the ability to implement the
necessary changes and respond to the feedback [Banijamali et al., 2017]. According to
Auerbach and McCarthy [Auerbach and McCarthy, 2014], by combining Agile and Lean in co-
located projects the coordination between team members is enhanced, the team morale is
increased, and therefore, better results are produced. While Scrum helps to make the process
flexible, Kanban increases the scale of the development process and makes it more efficient.
Ladas [Ladas, 2009] has argued that Scrumban incorporates the iterative planning of Scrum,
but is more responsive and adaptive to changes in stakeholders’ requirements. With Scrumban,
researchers and practitioners hope to ensure more flexibility in projects as well as the iterative
and incremental development.

 According to Pahuja [Pahuja, 2018], the adoption of Scrumban method may ensure
several advantages, such as the following:

 Increased quality;
 Ensuring the “Just-in-Time” principles (i.e. decisions and facts just when they are

required);
 Ensuring short lead time
 Ensuring continuous improvement (i.e. Kaizen);
 Minimizing waste (i.e. everything that is not an added value for the customer);
 Ensuring process improvements by adding some values of Scrum as and when needed;
 Etc.

However, the implementation of Scrumban presents several challenges as well. According to
Karvonen et al. [Karvonen et al., 2012], the flexibility regarding production changes may
generate new challenges (e.g., challenges in assigning resources and project timetables). Due
to the lean nature of Scrumban that calls for considering the entire organization during the
implementation. In addition, the combination of Kanban and Scrumban may increase the

3 Agile software development

84

complexities of planning of activities across the whole organization. Furthermore, Rodriguez
et al. [Rodriguez et al., 2014] have argued that it is not always possible to include business
personnel or management executives to develop product backlogs or receive regular feedback.

In his book, Reddy [Reddy, 2016] presents why Scrumban is interesting from a business
perspective. According to him, there is many interesting and important things taking place in
the upstream process. As a framework, Scrumban provides views and capabilities that enable a
business to evaluate and manage these work processes more effectively [Reddy, 2016]. It
emphasizes measuring real experience to:

− evaluate past outcomes in order to make better decisions about present actions
− compare against common benchmarks; as an indicator of relative health
− provide data upon which to base a forecast of future results
− influence the behavior of individuals

Concisely, Scrumban can give teams the power to adapt and change to stakeholder and
production needs, without feeling overburdened by their project methodology. It is designed to
remove metrics that encourage undesired outcomes. It can restore working time to the team,
and avoids unnecessary meetings. Most importantly, it can limit the team’s “work in progress
(WIP)”, so that they can finish what they start to a high standard. Scrumban can remove
overhead stress for the development team, increase efficiency, and increase the overall
satisfaction for the customer [Gambill, 2013].

3.6.3 Comparison between Scrum and Scrumban

As stated earlier in this chapter, agile methodologies range from lightweight approaches, which
have a strong product development focus, to heavier methodologies that emphasize architecture
orientation or project management. Both Scrum and Scrumban are considered as lightweight
approaches. However, Scrumban contains richer elements of project management than Scrum.

Table 3.5 Definitions of methodological dimensions [Moran, 2015]

Dimension Description

Principles The core values that characterize the methodology and imbue it with meaning in the
eyes of its practitioners

Roles Distinct roles cited by the methodology. Note that several roles may be assigned to an
individual and thus no conclusions should therefore be drawn regarding team size

Artifacts
The intermediate products generated and consumed by the process (omitting final
project deliverables). The necessity to create indirect artifacts is a reliable indicator of
the weight of a methodology

Practices The techniques explicitly cited by the methodology as being core to the effective and
efficient operation of the process

Phases The distinct phases of the model underpinning the methodology through which the
process must traverse

It was shown that each method has its own culture, practices and language. Accordingly,
to distinguish between each method and to identify their appreciation of focus and sphere of
application, a brief survey has been highlighted in this section. The survey takes into account

3.6 Overview of main Agile Methods

85

how these methods represent software engineering, product development, project management,
and portfolio architectural perspectives on Agile [Moran, 2015]. In other words, Scrum and
Scrumban are compared based on the five methodological dimensions of principles, roles,
artifacts, practices, and phases. Moran [Moran, 2015] has presented a definition for each
dimension. Table 3.5 gathers the definitions of these methodological dimensions. It is clear that
each methodology elaborates its own practices and components at different degrees of detail
and therefore a certain amount of interpretation is required in order to make reasonable
comparisons. This chapter has taken some caution when making the targeted comparison based
on the primary sources of Scrum and Scrumban methodologies. In addition, this chapter has
adopted the definitions of dimensions of Moran [Moran, 2015] and has followed Moran’s
analysis, which uses multiple sources about Scrum and Scrumban.

Table 3.6 Scrum and Scrumban Methodological Dimensions [Banijamali et al., 2017] [Reddy, 2016].

Dimension Scrum Scrumban

Principles Focus, Courage, Openness,
Commitment, Respect

Transparency, Balance, Understanding, Flow,
Customer Focus, Agreement, Respect, Leadership,
Collaboration

Roles Product Owner, Scrum Master,
Development Team

Product Owner, Scrumban sensei, Development
Team, Stakeholders

Artifacts Product Backlog, Sprint Backlog,
Iteration

Product Backlog, Selected Backlog, Story in
Progress (SIP) Backlog, Task Backlog, User Story,
Task, Work in Progress (WIP) Limit, Parking Lot,
Cumulative Flow Diagram (CFD), Impediment
Backlog

Practices
Sprint, Sprint Planning, Daily Scrum,
Sprint Review, Sprint
Retrospective

Planning 1, Planning 2, Daily, Review,
Retrospective, Andon, Pull work, Backlog Limit,
Plan On Demand, Visualization of the workflow
(Extend Board), Bucket size planning, Metrics
performance

Phases PreGame, Development, PostGame Specification, Production

Fig. 3.10 Dimensional Comparison of Scrum and Scrumban.

3 Agile software development

86

Figure 3.10 illustrates the compared methodologies on the basis of the adopted five
methodological dimensions. Figure 3.10 and Table 3.6 indicate that there are simultaneously
substantial similarities and differences in term of the methodological dimensions. In addition,
this figure and table highlight that Scrumban has more principles and artifacts than Scrum. This
could be explained by the fact that Scrumban combines the best features of both Scrum and
Kanban. Moreover, [Gambill, 2013], [Mahnic, 2014], [Misevičiūtė, 2016], and [Reddy, 2016]
have performed deep analysis of the nature of Scrum and Scrumban. The main differences that
characterize Scrum and Scrumban are presented in the Table 3.7.

Table 3.7 Differences between Scrum and Scrumban, adapted from [Gambill, 2013], [Mahnic, 2014],
[Misevičiūtė, 2016], [Reddy, 2016].

Criteria Scrum Scrumban

1 Iterations 1-4 week sprints Continuous work with short cycles for
planning and longer cycles for release

2 Work routines
Push and pull principle mixed
with early binding to team
members

Pull principle with late binding to team
members

3 Scope limits Sprint limits total work amount Work in progress limits current work amount
4 Planning routines Sprint planning Planning on demand for new tasks

5 Estimation Must be done before start of
sprint Optional

6 Performance
metrics Burndown

Velocity is optional, use lead time and cycle
time as default metrics for planning and
process improvement, Cumulative Flow
Diagram is optional

7 Continuous
improvement Sprint retrospective Short Kaizen event as an option

8 Meetings Sprint planning, daily scrum,
retrospective

Planning1, planning2, daily, review,
retrospective, Andon – (Short Kaizen event)

9 Roles Product owner, Scrum master,
team

Product owner, Scrumban sensei,
development team, stakeholders

10 Team members Cross-functional team members Specialization or preference to tasks

11 Task size The size that can be completed
in sprint Any size

12 New items in
iteration Forbidden Allowed whenever queue allows it

13 Ownership Owned by a team Supports multiple teams ownership
14 Board Defined/reset each sprint Persistent
15 Prioritization Through backlog Recommended on each planning
16 Rules Constrained process Slightly constrained process

17 Fit for

Enterprise maturity for teams
working on product or especially
project which is longer than a
year

Startups, fast-pace projects, continuous
product manufacturing

3.7 Conclusion

Current software companies tend to establish their production entities in different agile ways in
order to be flexible and optimize skilled workforces to produce higher quality products and

3.7 Conclusion

87

lower cost. This chapter has introduced state of the art agile methods that concern the scope and
aims of the current thesis, namely Scrum and Scrumban.

 Agile thinking is a people-centric view to software development. Agile methods are a
set of methodologies that follow the four values and twelve principles of the agile manifesto.
Rather than just being a methodology on its own, the agile manifesto guides the agile methods.
It has been shown that agile methods are generally characterized as iterative, incremental, less
documented and people-oriented.

 The Scrum method is introduced as a project management framework applicable to any
project with aggressive deadlines, complex requirements and a degree of uniqueness. Scrumban
can give teams the power to adapt and change to stakeholder and production needs, without
feeling overburdened by their project methodology. However, the use of Scrum and/or
Scrumban in software development presents challenges to the organizations that adopt agile
methods. It is challenging to select one method over the other. When selecting Scrum,
Scrumban, or the both methods, a range of criteria has to be considered. Thus, an in-depth
analysis should be conducted in order to make the right decision when forming a Scrum and/or
Scrumban method.

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Part I – Introduction
	1 Introduction
	1.1 Research Motivation and Context
	1.2 Problem Statement
	1.3 Research Design
	1.3.1 Literature Review
	1.3.2 Building-up the targeted APL method
	1.3.3 Assessment and Validation

	1.4 Overview of the proposed solution
	1.5 Threats to validity and limitations
	15.1 Threats to validity related to the literature review
	1.5.2 Threats to validity related to the proposed solutions
	1.5.3 Limitations

	1.6 Research Contributions
	1.7 Reading Map

	Part II – Literature Review
	2 Software Product Lines
	2.1 Introduction
	2.2 What is a Software Product Line (SPL)?
	2.3 Promises of Product Lines
	2.4 Key concepts of Software Product Lines
	2.5 Product Line Architecture (PLA)
	2.5.1 Component-Oriented Platform Architecting Method (COPA)
	2.5.2 Family-Oriented Abstraction, Specification, and Translation process (FAST)
	2.5.3 Component-Based Application Development (KobrA)
	2.5.4 Feature-Oriented Reuse Method (FORM)
	2.5.5 Quality-driven Architecture Design and quality Analysis (QADA)
	2.5.6 Product Line UML-Based Software Engineering
	2.5.7 Common Variability Language (CVL)
	2.5.8 Product line engineering and management (ISO/IEK 26550:2017)

	2.6 A Framework for Software Product Line Engineering
	2.6.1 The framework
	2.6.2 Domain Engineering (DE)
	2.6.2.1 Sub-processes of Domain Engineering
	2.6.2.2 Domain Engineering artifacts

	2.6.3 Application Engineering (AE)
	2.6.3.1 Sub-processes of Application Engineering
	2.6.3.2 Application Engineering artifacts

	2.7 Feature-Oriented Product line: a development process
	2.7.1 A Process for Product-Line Development
	2.7.2 4 clusters of tasks in product-line development

	2.8 Factory-oriented approach for Product Line Engineering (PLE)
	2.8.1 The Second Generation Product Line Engineering (2GPLE) approaches
	2.8.1.1 PLE as a factory
	2.8.1.2 PLE contrasted with product-centric development

	2.8.2 Ecosystem support for three dimensions of PLE
	2.8.3 Establishing a PLE Factory approach

	2.9 Adoption strategies of a Product-Line Approach
	2.9.1 Proactive approach
	2.9.2 Extractive approach
	2.9.3 Reactive approach

	2.10 Conclusion

	3 Agile software development
	3.1 The rise of Agile Methodologies
	3.2 The “Agility” attribute
	3.2.1 Adopting a definition for the term “Agile”

	3.3 Iterative and Incremental
	3.4 The “Agile Manifesto”
	3.5 Agile Software Development in practice
	3.6 Overview of main Agile Methods
	3.6.1 Scrum
	3.6.1.1 Scrum roles
	3.6.1.2 Scrum artifacts
	3.6.1.3 Scrum practices
	3.6.1.4 Scrum Process
	3.6.1.5 Discussion

	3.6.2 Scrumban
	3.6.2.1 Scrumban roles
	3.6.2.2 Scrumban artifacts
	3.6.2.3 Scrumban practices
	3.6.2.4 Scrumban process
	3.6.2.5 Discussion

	3.6.3 Comparison between Scrum and Scrumban

	3.7 Conclusion

	4 Agile Product Line Engineering
	4.1 The emergence of “Agile Product Line Engineering (APLE)” paradigm
	4.2 Systematic Literature Review (SLR)
	4.2.1 Overview of main Agile Product Line Methods
	4.2.1.1 Component-Driven Development (CDD)
	4.2.1.2 Extended Framework of Agile Practices (E-FAP)
	4.2.1.3 RiPLE-SC – An agile scoping process for SPL
	4.2.1.4 A-Pro-PD – An Agile Process Model for Product Derivation
	4.2.1.5 Tailored Scrum for APLE – The APLE Scrum development process
	4.2.1.6 Iterative Model for Agile Product Line Engineering
	4.2.1.7 Extreme Product Line Engineering: Managing Variability and Traceability via Executable Specifications
	4.2.1.8 da Silva’s Agile Approach for Software Product Lines Scoping
	4.2.1.9 APL proposed by Carbon et al. (2006)
	4.2.1.10 Collaborative PL planning approach
	4.2.1.11 Reactive Variability Management in Agile Software Development
	4.2.1.12 ScrumPL

	4.2.2 Conducting the Systematic Literature Review
	4.2.2.1 Planning the Review
	4.2.2.1.1 Review objective and research questions (RQs)
	4.2.2.1.2 Search strategy
	4.2.2.1.3 Inclusion and Exclusion criteria
	4.2.2.1.4 Quality assessment
	4.2.2.1.5 Data extraction

	4.2.2.2 Conducting the review
	4.2.2.2.1 Search for studies
	4.2.2.2.2 Study selection

	4.2.2.3 Reporting the review
	4.2.2.3.1 RQ1: What are the purposes of the combination of SPLE and ASD? What are the expected benefits of the combination of SPLE and ASD?
	4.2.2.3.2 RQ2: How are agile principles related to the SPL principles?
	4.2.2.3.3 RQ3: How does the combination of SPLE and ASD respect the business strategic goals?
	4.2.2.3.4 RQ4: Which current APLE approaches are satisfying the Application Engineering (AE) activities? RQ5: What are the challenges and gaps in current APLE approaches, in relation to AE activities?
	4.2.2.3.5 RQ6: Which current APLE approaches are satisfying the Domain Engineering (DE) activities? RQ7: What are the challenges and gaps in current APLE approaches that are related to DE activities?
	4.2.2.3.6 RQ8: Which current APLE approaches are satisfying both DE and AE activities through Agile principles?
	4.2.2.3.7 RQ9: Do successful experiences, putting an APLE approach into practice, exist?

	4.2.2.4 Commenting on the findings of the review
	4.2.2.4.1 Open research challenges
	4.2.2.4.2 Implications for Practitioners and Researchers

	4.3 Criteria-based Evaluation (CBE)
	4.3.1 Adopted criteria, required for the targeted evaluation
	4.3.1.1 General criteria for evaluating methodologies
	4.3.1.2 Criteria related to the characteristics of agile methods
	4.3.1.3 Criteria related to SPLE characteristics
	4.3.1.4 Criteria related to the common goals of agile development and SPLE
	4.3.1.5 Criteria related to the combination of agile development and SPLE

	4.3.2 Results of the evaluation
	4.3.4 Discussion

	4.4 Agile methodologies used within Software Product Lines
	4.5 Key findings
	4.6 Conclusion

	5 Requirements Engineering for Agile methods and Software Product Lines
	5.1 A brief outset
	5.2 Requirements Engineering disciplines
	5.2.1 Requirements Elicitation
	5.2.2 Requirements Analysis
	5.2.3 Requirements Specification
	5.2.4 Requirements Validation
	5.2.5 Requirements Management

	5.3 Requirements Categories
	5.3.1 Functional Requirements
	5.3.2 Nonfunctional Requirements
	5.3.3 Quality Requirements

	5.4 Requirements engineering for Software Product Lines
	5.4 Agile Requirements Engineering
	5.5 Goal Models (GM) and Feature Models (FM)
	5.5.1 Variabilities
	5.5.2 Mapping between intentional elements and features

	5.6 Chapter Summary

	Part III – An Agile Product Line Method
	6 Toward an Agile Framework for managing Software Product Lines
	6.1 Introduction
	6.2 Research Method
	6.3 A definition for “Agile Software Product Line Engineering (APLE)”
	6.4 Designing an Agile Software Product Line method
	6.4.1 Basis of the APL process and its type of architecture
	6.4.2 Agile methods to be tailored for the APL process
	6.4.2.1 Why a Scrumban-inspired process for Domain Engineering?
	6.4.2.2 Why a Scrum-inspired process for Application Engineering?

	6.5 Agile Framework for managing evolving Software Product Lines: The AgiFPL method
	6.5.1 AgiFPL Description
	6.5.1.1 AgiFPL Roles
	6.5.1.1.1 Domain Engineering Roles according to AgiFPL
	Business Expert
	Domain Expert
	Domain Sensei
	Domain Development Team(s)
	Domain Stakeholders

	6.5.1.1.2 Application Engineering Roles according to AgiFPL
	App i Owner
	Line i Scrum Master
	Line i Development Team
	App i Stakeholders

	6.5.1.2 AgiFPL’s Units of work
	6.5.1.2.1 Meetings in the Scrumban-inspired Process for Domain Engineering
	6.5.1.2.2 Meetings in the Scrum-inspired Process for Application Engineering

	6.5.1.3 Work-products of AgiFPL
	6.5.1.3.1 Work-products of Domain Engineering Process according to AgiFPL
	6.5.1.3.2 Work-product of the Application Engineering Process according to AgiFPL

	6.5.2 AgiFPL Framework
	6.5.2.1 AgiFPL’s Domain Engineering (DE) sub-process
	6.5.2.2 AgiFPL’s Application Engineering (AE) sub-process

	6.5.3 AgiFPL critical processes: The Big Picture
	6.5.4 Some adopted Metrics for AgiFPL method
	6.5.4.1 Metrics for AgiFPL’s Domain Engineering
	6.5.4.2 Metrics for AgiFPL’s Application Engineering

	6.5.5 How to implement AgiFPL

	6.6 Discussion
	6.7 Conclusion

	7 Assessing the adoption level of agile development within Software Product Lines: the AgiPL-AM model
	7.1 Introduction
	7.2 Assessment models for software reuse strategies
	7.3 Assessment models for agile development
	7.4 Research approach
	7.5 Assessment Model for Agile Product Lines: AgiPL-AM
	7.5.1 Development of AgiPL-AM
	7.5.2 The AgiPL-AM

	7.6 Conclusion

	8 An Integrated Requirements Engineering Framework for Agile Software Product Lines
	8.1 Introduction
	8.2 Related work
	8.3 Research approach
	8.4 A Metamodel for Agile Product Lines
	8.4.1 Organizational Sub-Model
	8.4.1.1 Actor
	8.4.1.2 Role
	8.4.1.3 Capability
	8.4.1.4 Dependum

	8.4.2 Goal Sub-Model
	8.4.3 Feature sub-model
	8.4.4 User Story concept

	8.5 Applying the proposed RE approach to AgiFPL
	8.6 Applying the proposed metamodel – A concrete real-life example
	8.7 Conclusion

	Part IV – Assessment and Validation
	9 Application of AgiFPL: The case of TranslogiTIC project
	9.1 Introduction
	9.2 Transportation and Logistics Agile Software Product Line
	9.3 TransLogisTIC project
	9.4 Applying the AgiFPL method
	9.4.1 “Transport and Logistics” Domain Engineering according to AgiFPL method
	9.4.1.1 Domain Requirements Engineering (DRE)
	9.4.1.2 Domain Design (DD)
	9.4.1.3 Feature Backlog (FB)
	9.4.1.4 Planning 1 and Planning 2

	9.4.2 “Transport and Logistics” – Application Engineering according to AgiFPL

	9.5 Chapter Summary

	10 Assessment of AgiFPL
	10.1 Introduction
	10.2 A Criteria-Based Evaluation of AgiFPL
	10.2.1 Evaluation of the methodology
	10.2.2 Evaluating the agile characteristics
	10.2.3 Evaluating the SPLE characteristics
	10.2.4 Evaluating the respect of common goals of agile and SPLE
	10.2.5 Evaluating the combination of the two approaches within AgiFPL
	10.2.6 First discussion

	10.3 Assessing AgiFPL with the assessment model AgiPL-AM
	10.3.1 Results related to the Level 1 – Collaborative
	10.3.2 Results related to the Level 2 – Evolutionary
	10.3.3 Results related to the Level 3 – Effectiveness
	10.3.4 Results related to the Level 4 – Adaptive
	10.3.5 Results related to the Level 5 – Encompassing
	10.3.6 Second discussion

	10.4 Conclusion

	Part V – Conclusion
	11 Conclusion
	11.1 Conclusions
	11.2 Main Contributions
	11.3 Future Work

	References
	Appendix A
	AgiFPL: Roles, Meetings, and Artifacts

	Page vierge

