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Abstract. We revisit and quantify in this work several aspects of Standard Model physics
at finite temperature that drive the theoretical value of the cosmological parameter, the
effective number of neutrinos Neff , away from 3 in the early universe. Our chief focus is finite-
temperature corrections to the equation of state of the QED plasma in the vicinity of neutrino
decoupling at T ∼ 1 MeV, where T is the photon temperature. Working in the instantaneous
decoupling approximation, we recover at O(e2), where e is the elementary electric charge, the
well-established correction of δN (2)

eff ' 0.010 across a range of plausible neutrino decoupling
temperatures, in contrast to an erroneous claim in the recent literature which found twice as
large an effect. AtO(e3) we find a new and significant correction of δN (3)

eff ' −0.001 that has so
far not been accounted for in any precision neutrino decoupling calculation of Neff , significant
because this correction is in fact larger than—or at least comparable to—the change in Neff

induced between including and excluding neutrino oscillations in the transport modelling. In
addition to the QED equation of state, we make a first pass at quantifying finite-temperature
QED corrections to the weak interaction rates that directly affect the neutrino decoupling
process, and find in this connection that the O(e2) thermal electron mass correction induces
a change of δNmth

eff . 10−4. A complete assessment of the various effects considered in this
work on the final value of Neff will necessitate an account of neutrino energy transport beyond
the instantaneous decoupling approximation. However, relative to Neff = 3.044 obtained in
the most recent such calculation, we expect the new effects found in this work to lower the
number to Neff = 3.043.
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1 Introduction

The concordance flat ΛCDM paradigm of cosmology has enjoyed remarkable success at ex-
plaining the structure of the universe on the largest scales. In this worldview, the universe’s
large-scale evolution history can be captured by six parameters: the cold dark matter den-
sity ωc, the baryon density ωb, the reduced Hubble parameter h, the amplitude and spectral
index of the primordial curvature power spectrum As and ns, and the optical depth to reion-
isation τ . With the advent of space-based cosmic microwave background (CMB) anisotropy
probes such as the WMAP [1] and Planck missions [2], these parameters have even been
determined to better than 1% precision; cosmology as a precision science has come of age.

Hidden beneath the spectacular precision of these results, however, is one crucial theoret-
ical input, namely, the universe’s energy density in Standard Model (SM) neutrinos relative
to photons in the post-e±-annihilation era (i.e., at temperatures T . 0.5 MeV). Conven-
tionally parameterised as the “effective number of neutrinos” Neff , this energy density ratio
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imprints on CMB observables in several ways degenerate with the phenomenology of the con-
cordance ΛCDM parameters [3, 4]. Such degeneracies immediately imply that how well Neff

is known theoretically must impact directly on the accuracy and precision with which we
can infer ΛCDM parameters from observations, with further ramifications for the search for
beyond-the-SM light relics (e.g., [5, 6]) and interactions (e.g., [7]).

Within the confines of the SM, the expected theoretical value of Neff is 3—corresponding
to three generations of left-handed neutrinos—plus percent-level corrections due to neu-
trino energy transport [8–13] and finite-temperature quantum electrodynamics (FTQED) [14–
17]. Historically, estimates of these corrections—both individually and in combination—have
yielded a range of values from δNeff = 0.011 to 0.052 (see table VI of [18] for a summary).
Improved numerical modelling of out-of-equilibrium energy transport at neutrino decoupling
in the past 15 years, however, has narrowed the range to δNeff = 0.044 → 0.052 [12, 18–21],
with the 2006 result of Neff = 3.046 [12]—which includes neutrino oscillations in the transport
modelling—being most commonly quoted in the literature, and which was revised in 2019 to
Neff = 3.044 to better than per-mille precision [21].

While presently too small to be of impact on parameter inference for the current gen-
eration of cosmological observations,1 theoretical corrections and uncertainties of these mag-
nitudes will begin to account for a sizeable fraction of the error budget—or even become
measurable—as the parameter sensitivities of the next generation of experiments approach
the sub-percent region. The CMB-S4 experiment, for example, is expected to improve the
1σ sensitivity to Neff to σ(Neff) ' 0.02 → 0.03 [22]. Planning has already begun in earnest
for the construction of CMB-S4 to begin in as early as 2021 [23]. The time is therefore ripe
for a closer scrutiny of the precision calculation of the theoretical Neff in the context of the
SM, and to beat down the theoretical/computational uncertainty of this crucial cosmological
parameter to beyond the fourth significant digit.

In this first instalment of a series of papers in which we revisit the Neff calculation, we
focus on FTQED corrections to the equation of state of the QED plasma in the vicinity of
neutrino decoupling (T ∼ 1 MeV). The computation of FTQED corrections in the context
of Neff has a long history, with the first investigation dating to 1982 [14]. The dominant
effect is a small departure of the QED equation of state from the ideal gas limit, which is
usually understood heuristically as a consequence of a self-energy-induced modification to the
dispersion relations of the electron/positron and the photon, i.e., through interactions, these
particles pick up “thermal masses" as they propagate in the QED plasma [15].

Currently, the most widely used computational procedure to accounts for these equation
of state effects in the context of Neff is that documented in [12, 17], which follows the same
heuristic thermal mass arguments of [15] to O(e2), where e is the elementary electric charge.
In the absence of transport corrections, the procedure yields at leading-order δNeff ' 0.01.
Interestingly, this result was recently challenged in [18], where it was found that the non-ideal
gas behaviour of the QED plasma contributes as much as δNeff ' 0.02. Indeed, this unusually
large FTQED correction appears to be the main driver behind their likewise irregular final
value of Neff = 3.052 [18] (which includes both transport and FTQED corrections) relative
to the canonical Neff = 3.044 [21].

Our first and most urgent goal in this work, therefore, is to pinpoint the exact sources
of discrepancy in the computational procedure of the QED equation of state that have led
to these divergent results. Along the way we also quantify the impact of a number of sub-

1The current best observational constraint on Neff is Neff = 2.99+0.34
−0.33 (95% C.I.) [2], derived from the

Planck TT+TE+EE+lowE+lensing+BAO data combination for a 7-parameter vanilla ΛCDM+Neff model.
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dominant O(e2) to O(e4) contributions on Neff that have not yet been seriously considered
in previous calculations. In particular, we shall show that the O(e3) contribution produces a
subleading deviation in Neff that is larger than—or, at least, comparable to—the difference
induced between including and excluding neutrino oscillations in the modelling of out-of-
equilibrium energy transport at neutrino decoupling [12], and is hence a necessary input if
the SM Neff is to be computed to four-digit significance.

The paper is organised as follows. We begin in section 2 with a description of the
relevant physical system and the standard approximations, and outline the estimation of Neff

from entropy conservation arguments as well as from solution of the continuity equation.
Section 3 discusses the main correction to Neff , which results from dropping what we shall
call the “neutrino-never-coupled approximation”. We introduce finite-temperature effects to
the QED equation of state in section 4, from which we compute corrections to Neff to O(e4),
and pinpoint the error that had led to the discrepant result of [18]. In section 5 we use real-
time finite-temperature field theory to compute the neutrino damping rate, which we use in
conjunction with the Hubble expansion rate to estimate the neutrino decoupling temperature.
We conclude in section 6. Two appendices detail, respectively, the correspondence of the
damping rate from finite-temperature field theory to the Boltzmann collision integral from
kinetic theory, and the computation of the neutrino damping rate at leading order.

2 The physical system

Consider an epoch in the early universe when the photon bath attains a temperature of
T ∼ 10 MeV.2 Within the standard hot big bang model coupled with the SM of particle
physics, the universe’s energy density at this time is expected to be dominated by an ultra-
relativistic QED plasma of photons and electrons/positrons, plus three generations of SM
neutrinos and their antiparticles, all kept in thermal equilibrium and hence at the same
temperature by the particles’ weak and/or electromagnetic interactions with one another.
See, e.g., [24] for a review. For our purposes, the system can be taken to be (i) homogeneous
and isotropic, and (ii) CP -symmetric with a vanishing chemical potential µ.

With the expansion of space come the dilution and adiabatic cooling of this primordial
plasma and hence a decline in the particle interaction rates. For the system at hand, two
major events ensue:

• Neutrino decoupling: At T ∼ 1 MeV, the interaction rate between the weakly-
interacting neutrino sector and the electron/positron fluid drops below the Hubble ex-
pansion rate H. Hereafter, the neutrinos and the QED plasma lose thermal contact
with one another, meaning that the temperatures of the two sectors, Tν and T , are no
longer bound to be the same.

• e± annihilation: At T ∼ 0.5 MeV, the QED plasma cools to temperatures below
the electron rest mass me = 0.511 MeV. Here, kinematics favour the annihilation of
electron/positron pairs into photons, leading to a net transfer of entropy from the
electron/positron population to the photon sector.

2Unless explicitly labelled with subscripts ν, e, or γ, all thermodynamic quantities (e.g., T, ρ, P, s, etc.)
pertain to the combined system of the photon bath and the electron/positron population that is, in the
timeframe of interest, always in thermal equilibrium with it.
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For our problem at hand, the main consequence of these two events is that the neutrinos
emerge from them at the low temperature end (T/me → 0) a little cooler than the photons.
In an idealised scenario wherein

1. All particle species behave as ideal gases (ideal gas approximation),
2. The neutrino decoupling process is localised at T = Tν = Td (instantaneous de-

coupling approximation), i.e., the neutrino and QED sectors transit from a state of
tight thermal contact to a state of zero thermal contact at the instant Td, where Td is
a nominal neutrino decoupling temperature, and

3. The electron/positron sector is fully ultra-relativistic at the time of neutrino decoupling,
i.e., Td/me →∞ (neutrino-never-coupled approximation),

the relative coolness of the neutrinos to the photons can be quantified by a simple temperature
relation, Tν = (4/11)1/3T , based upon entropy conservation arguments (e.g., [24]). It then
follows that, post-e±-annihilation, the energy density carried in the neutrino sector ρν |T/me→0

can be related to the photon energy density ργ |T/me→0 via,

ρν |T/me→0 =
7

8

( 4

11

)4/3
Neff ργ |T/me→0 , (2.1)

where, in the idealised scenario, the Neff parameter value is by definition 3, corresponding to
three generations of SM neutrinos.

Clearly, relaxing any one of the above three approximations will induce a departure
from the idealised Neff = 3. We shall investigate in sections 3 and 4 respectively the effects
of relaxing the neutrino-never-coupled and the ideal gas approximations, both of which are
analytically tractable using the methods outlined below in sections 2.1 and 2.2, provided the
assumption of instantaneous decoupling is maintained. Relaxing the instantaneous decou-
pling approximation as well generally necessitates that we solve a system of quantum kinetic
equations [25, 26] numerically; this calculation will be presented in a subsequent publication.

2.1 Estimating Neff from entropy conservation arguments

Consider a time after neutrino decoupling at which the scale factor is a. Here, frequent colli-
sions within the QED plasma are able to keep it in a state of quasi-static thermal equilibrium
over the entire timeframe of interest. Likewise, the SM neutrino sector, though now techni-
cally composed of non-colliding particles, also continues to maintain its ideal-gas equilibrium
phase space distribution to a good approximation, if the decoupling had been instantaneous.
Thus, the entropies in a comoving volume residing in the two sectors can be taken to be
separately conserved (e.g., [24]), i.e.,

s(a1)a3
1 = s(a2)a3

2, (2.2)

sν(a1)a3
1 = sν(a2)a3

2, (2.3)

where s ≡ sγ + se and sν denote, respectively, the entropy density of the QED plasma and of
the neutrino sector.

We take the scale factor a1 to correspond to the epoch of neutrino decoupling such that
Tν(a1) = T (a1) = Td. The entropy densities are then given by

s(a1) = s(0)
∣∣∣
Td/me→∞

+ δs, (2.4)

sν(a1) = 3× 7

8

2π2

45
gνT

3
ν (a1), (2.5)
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where

s(0)
∣∣∣
Td/me→∞

=
2π2

45

(
gγ +

7

8
ge

)
T 3
d (2.6)

is the QED entropy density under the dual approximations of an ideal gas (represented by
superscript “(0)”) and Td/me → ∞, δs is the change in the entropy density when either or
both of these assumptions are relaxed, and gγ = gν = 2 and ge = 4 denote the numbers of
internal degrees of freedom of the various particle species.

We take a2 to denote a time well after the nominal e± annihilation epoch, i.e., where
T/me → 0, when the electron/positron population is fully non-relativistic and significantly
depleted relative to the photon population. In this limit, the ideal gas approximation holds
for both the QED and neutrino sectors, and

s(a2) =
2π2

45
gγT

3(a2), (2.7)

sν(a2) = 3× 7

8

2π2

45
gνT

3
ν (a2) (2.8)

are the relevant entropy densities.
Equating (2.5) and (2.8) via equation (2.3) immediately leads to the relation Tν(a2) =

(a1/a2)Tν(a1). It then follows that equating (2.4) and (2.7) via equation (2.2) yields a Tν/T
temperature relation at a = a2 that reads

Tν(a2)

T (a2)
=

(
4

11

)1/3
(

1 +
δs

s(0)
∣∣
Td/me→∞

)−1/3

, (2.9)

which translates into a corrected energy ratio relation

ρν |T/me→0 = 3× 7

8

(
4

11

)4/3
(

1 +
δs

s(0)
∣∣
Td/me→∞

)−4/3

ργ |T/me→0 . (2.10)

Then, defining Neff ≡ 3 + δNeff , we find

δNeff = 3



(

1 +
δs

s(0)
∣∣
Td/me→∞

)−4/3

− 1


 (2.11)

as the corresponding change in Neff .

2.2 Estimating Neff from the continuity equation

The estimation of Neff via entropy conservation arguments becomes poorly defined if the
instantaneous decoupling approximation were relaxed as well, since a drawn-out decoupling
process is generally accompanied by out-of-equilibrium energy transfer, which distorts the
neutrino phase space distributions and generates entropy. While the investigation of these
effects is outside of the scope of this work, we nonetheless present the relevant equations
here, as well as their modifications in the presence of non-ideal gas behaviours in section 4,
in preparation for a future publication.
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To compute Neff in the presence of entropy production necessitates that we solve the
continuity equation for the total energy density of all particle species in the system. Following
the notation of [12, 17], the continuity equation is

d

dx
ρ̄t(x, z(x)) =

1

x

[
ρ̄t(x, z(x))− 3P̄t(x, z(x))

]
. (2.12)

Here, the dimensionless time variable is x ≡ meR(t), where R(t) ≡ a(t)/[a(td)Tν(td)] is an
inverse temperature parameter normalised to the nominal neutrino decoupling temperature
Tν(td) ≡ Td at t = td;3 ρ̄t ≡ ρt × (x/me)

4 and P̄t ≡ Pt × (x/me)
4 are the dimensionless

comoving total energy density and total pressure, where

ρt ≡ ργ + ρe + ρν ≡ ρ+ ρν ,

Pt ≡ Pγ + Pe + Pν ≡ P + Pν
(2.13)

sum over all relevant quantities in the neutrino and QED sectors. Two more associated
quantities can be defined: the comoving momentum y ≡ pR(t), and the rescaled photon
temperature z ≡ T (t)R(t).

We are interested in the asymptotic energy density ratio ρν/ργ as T/me → 0 (i.e.,
x → ∞), which, under the assumptions of equilibrium within the QED sector and mini-
mal distortions to the neutrino phase space distribution, is completely characterised by the
temperature ratio Tν/T . In the instantaneous decoupling limit, this is exactly equivalent
to solving the continuity equation (2.12) for the asymptotic zfin ≡ z(x = xfin → ∞) using
the initial conditions zini ≡ z(x = xini ≡ me/Td) = 1. It is therefore convenient to rewrite
equation (2.12) as an equation of motion for z; noting that d/dx = ∂/∂x+(dz/dx)∂/∂z, this
exercise yields

dz

dx
=

1
2z3

[
1
x(ρ̄(0) − 3P̄ (0))− ∂ρ̄(0)

∂x − d
dx ρ̄ν + 1

x(δρ̄− 3δP̄ )− ∂δρ̄
∂x

]

1
2z3

(
∂ρ̄(0)

∂z + ∂δρ̄
∂z

) , (2.14)

where we have split the QED energy density and pressure into an ideal gas component, ρ̄(0)

and P̄ (0), plus non-ideal gas corrections δρ̄ and δP̄ . Evaluating the ideal gas terms explicitly
yields

dz

dx
=

(
x
z

)
J(x/z) − d

dx ρ̄ν +G1(x, z)(
x2

z2

)
J(x/z) + Y (x/z) + 2π2

15 +G2(x, z)
, (2.15)

with

J(τ) ≡ 1

π2

∫ ∞

0
dω ω2 exp(

√
ω2 + τ2)

[exp(
√
ω2 + τ2) + 1]2

,

Y (τ) ≡ 1

π2

∫ ∞

0
dω ω4 exp(

√
ω2 + τ2)

[exp(
√
ω2 + τ2) + 1]2

,

(2.16)

and the functions
2z3G1(x, z) ≡ 1

x
(δρ̄− 3δP̄ )− ∂δρ̄

∂x
,

2z3G2(x, z) ≡ ∂δρ̄

∂z

(2.17)

3This normalisation is somewhat different from that used in, e.g., [21], where R(t) had been normalised such
that R(t) → 1/T at times well before neutrino decoupling. In the instantaneous decoupling approximation,
our definition leads to R(t) = 1/Tν(t) at all times after neutrino decoupling.
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represent the yet-to-be-specified non-ideal gas corrections.
Note in equation (2.15) that the term dρ̄ν/dx is the only total derivative remaining in the

equation. Under general circumstances, this term is proportional to the Boltzmann collision
integral that dictates the weak scattering of the neutrino population. It vanishes only in the
limits of (i) thermodynamic equilibrium, and (ii) negligible interaction. The instantaneous
decoupling approximation therefore corresponds to assuming that the neutrino population
transits between limits in an instant, so that dρ̄ν/dx = 0 at all times. In a realistic situation,
however, we expect a nonzero dρ̄ν/dx in the intermediate, transition regime.

Solving equation (2.15) for G1 = G2 = 0 (ideal gas approximation) and dρ̄ν/dx = 0
(instantaneous decoupling approximation) with the initial condition zini = 1 set at xini =
limTd/me→∞(me/Td) = 0 (neutrino-never-coupled approximation) yields the standard expec-
tation

zfin =

(
11

4

)1/3

≡ z
(0)
fin

∣∣∣
xini=0

, (2.18)

corresponding to Neff = 3. It then follows that the correction to Neff induced by dropping
some or all of the aforementioned assumptions is given by

δNeff = 3



(
z

(0)
fin

∣∣∣
xini=0

zfin

)4

− 1


 , (2.19)

where δzfin ≡ zfin − zfin|xini=0 denotes the deviation in the asymptotic zfin value from the
canonical value (2.18). In the limit dρ̄ν/dx = 0, equation (2.19) must yield the same result
as the entropy conservation estimate (2.11) under the same set of assumptions.

3 Equilibrium energy transport and the neutrino-never-coupled (NNC)
approximation

As we have seen in section 2, the canonical calculation of the neutrino-to-photon tempera-
ture ratio Tν/T supposes that the electron/positron population is fully ultra-relativistic at
the instant of neutrino decoupling. Formally, this approximation requires that we push the
neutrino decoupling temperature to Td/me →∞ relative to the electron mass: therefore the
name of the approximation scheme, “neutrino-never-coupled”. However, because we generally
expect neutrino decoupling to occur at Td ∼ 1 MeV, the condition Td/me →∞ is not in fact
well satisfied in reality. Consequently, the breakdown of this approximation also constitutes
the largest correction to Neff = 3, as we shall show.

To reinstate the role of a finite Td/me in the estimate of Neff , we note that dropping the
neutrino-never-coupled approximation changes in the entropy density of the QED plasma at
the time of neutrino decoupling by an amount

δs /NNC =
ge

2π2Td

∫ ∞

0
dp p2

(
Ee +

p2

3Ee

)
fD(Ee)

∣∣∣∣
Td/me

Td/me→∞
, (3.1)

where fD(E) = [exp(E/T ) + 1]−1 is the Fermi–Dirac distribution, E2
e = p2 + m2

e is the
electron energy, and we remind the reader that the physical momentum p scales as p ∝ a−1.
Equation (3.1) can be easily evaluated numerically for any choice of neutrino decoupling
temperature Td. Taking our estimate Td = 1.3453 MeV from section 5 and an electron mass
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Figure 1. Corrections to Neff = 3 due to relaxing various assumptions, as a function of the neutrino
decoupling temperature Td. The gold/dot-dash line denotes dropping the neutrino-never-coupled
approximation (x = /NNC), the red/solid line includes in addition the log-independent O(e2) FTQED
correction to the QED equation of state (x = /NNC + (2) /ln), the blue/dashed line includes the full
O(e2) FTQED correction (x = /NNC+(2)), and the green/dotted line contains FTQED corrections up
to and including O(e3) (x = /NNC+(2)+(3)). The vertical grey/dotted line marks Td = 1.3453 MeV,
and we assume the decoupling between the neutrino and QED sectors to occur instantaneously.

of me = 0.511 MeV, we find δs /NNC/ s(0)
∣∣
Td/me→∞

' −0.009859. It then follows simply from
equation (2.11) that the correction to Neff is

δN
/NNC

eff ' 0.039895 (3.2)

from dropping the neutrino-never-coupled approximation alone. Figure 1 shows δN /NNC
eff as a

function of the neutrino decoupling temperature Td.
In terms of the continuity equation (2.14), dropping the neutrino-never-coupled approx-

imation corresponds to relaxing the assumption that xini ≡ me/Td = 0 (but still keeping
G1 = G2 = 0 and dρ̄ν/dx = 0). Physically, a nonzero δNeff arising from relaxing the
me/Td = 0 assumption is simply a statement that e± annihilation is not a temporally localised
event at T ∼ 0.5 MeV. Rather, net annihilation extends into the era before the neutrino sec-
tor even decouples from the QED plasma, which in turn enables the transfer of some of the
energy originally residing with the electrons/positrons to the neutrino sector under equilib-
rium conditions. Note that this phenomenon is distinct from that arising from dropping the
instantaneous decoupling approximation—the two are often conflated in the literature, even
though only non-instantaneous decoupling distorts the equilibrium distributions. The magni-
tude of the correction (3.2) relative to established results (e.g., Neff = 3.044 [21]) also tells us
that corrections to Neff from genuine out-of-equilibrium energy transport effects are in fact
subdominant.
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4 Non-ideal gas: Finite-temperature corrections to the QED equation of
state

At finite temperatures and densities, interacting quantum fields are known to present features
not encountered at zero temperature: particles are dressed into “quasiparticles” and novel
collective excitations appear for fermions [27–30], gauge fields [31–34], and scalars [35], i.e.,
plasmons, holes, etc. The presence of the plasma does not only modify the spectrum of
resonances, but also their effective widths, which can be interpreted in terms of elementary
processes in the plasma that limit the quasiparticle’s mean free path [36].

In the context ofNeff , while there are several entry points where finite-temperature effects
can play a role, the dominant contribution is expected to come from FTQED corrections
to the equation of state of the QED plasma. These corrections have been considered in
a number of previous works (e.g., [15–18]), wherein the departure of the plasma from an
ideal gas due to interactions had been invariably formulated in terms of the acquisition of
temperature-dependent masses by the interacting particles. While at some level this view is
correct, it is also easily prone to misinterpretation, particularly in the computation of bulk
thermodynamics quantities, as we shall show in section 4.4.

A more fool-proof calculation should begin with the grand canonical partition function Z
of the QED plasma at finite temperatures, for which a systematic expansion of the Helmholtz
free energy F ≡ −T lnZ in powers of the QED coupling constant e (i.e., the elementary
electric charge),

lnZ = lnZ(0) + lnZ(2) + lnZ(3) + · · · (4.1)

where lnZ(n) ∝ en, is known to n = 3 for arbitrary me and µ [37] and to n = 5 in the
me = µ = 0 limit [38, 39].4 Then, at each order n, standard thermodynamics relations can be
used to deduce from lnZ(n) the corresponding pressure P (n), energy density ρ(n), and entropy
density s(n):

P (n) =
T

V
lnZ(n), (4.2)

ρ(n) =
T 2

V

∂ lnZ(n)

∂T
= −P (n) + T

∂P (n)

∂T
, (4.3)

s(n) =
1

V

∂
[
T lnZ(n)

]

∂T
=
ρ(n) + P (n)

T
, (4.4)

where T and V are the temperature and volume of the system respectively. At zeroth order
the pressure and energy density are

P (0) =
T

π2

∫ ∞

0
dp p2 ln

[
(1 + e−Ee/T )2

(1− e−Eγ/T )

]
, (4.5)

ρ(0) =
1

π2

∫ ∞

0
dp p2

[
2Ee

eEe/T + 1
+

Eγ

eEγ/T − 1

]
, (4.6)

which are simply what we should expect of an ideal gas of photons and electrons/positrons,
with Eγ = p and E2

e = p2 +m2
e.
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lnZ(2) = − 1
2

Figure 2. Diagrammatic expression for the O(e2) correction to the FTQED partition function.

4.1 O(e2) FTQED

Corrections at O(e2) to the QED partition function are represented diagrammatically by the
two-loop diagram shown in figure 2. This diagram has been evaluated by many, and the
general result for lnZ(2) can be found in, e.g., equation (5.58) of [37]. For an isotropic and
CP -symmetric medium such as that under consideration, the expression simplifies to

P (2) =
T

V
lnZ(2) =− e2T 2

12π2

∫ ∞

0
dp

p2

Ep
nD −

e2

8π4

(∫ ∞

0
dp

p2

Ep
nD

)2

+
e2m2

e

16π4

∫∫ ∞

0
dp dp̃

pp̃

EpEp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nDñD,
(4.7)

where we have defined E2
p = p2 + m2

e, nD ≡ 2fD(Ep) = 2[exp(Ep/T ) + 1]−1, and ñD ≡
2fD(Ep̃). In the limit T/me →∞, equation (4.7) evaluates to P (2) = −5e2T 4/288.

As we shall discuss in detail in section 4.4, with the exception of [18], FTQED corrections
applied to precision Neff calculations to date are essentially equivalent to using only the first
two, “log-independent” terms of equation (4.7), following the recipe laid down in [17], itself
based on [15]. The third, “log-dependent” term is usually deemed too small to warrant detailed
investigation on its impact on Neff [16, 17]. We examine both contributions in the following.

4.1.1 Log-independent contribution ( /ln)

Using only the first two terms of equation (4.7), we find the energy and entropy density
corrections

ρ(2) /ln =− e2T 2

12π2

∫ ∞

0
dp
p2

Ep
(nD + T∂TnD) +

e2

8π4

(∫ ∞

0
dp
p2

Ep
nD

)2

− e2

4π4

(∫ ∞

0
dp
p2

Ep
nD

)(∫ ∞

0
dp
p2

Ep
T∂TnD

)
, (4.8)

s(2) /ln =− e2T

12π2

∫ ∞

0
dp
p2

Ep
(2nD + T∂TnD)− e2

4π4

(∫ ∞

0
dp
p2

Ep
nD

)(∫ ∞

0
dp
p2

Ep
∂TnD

)
,

(4.9)

which, in the limit T/me →∞, give ρ(2) /ln = −5e2T 4/96 and s(2) /ln = −5e2T 3/72, respectively.
In the general case, however, the phase space integrals need to be evaluated numerically.

To compute the corresponding change in Neff via entropy conservation arguments, we
first identify δs of equation (2.11) with

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

, (4.10)

4We note in passing that FTQED corrections do not always appear as integer powers of e, because resum-
mation effects can generate logarithmic corrections as well (see, e.g., [37]).
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Figure 3. Effective corrections to Neff = 3 due to FTQED effects on the QED equation of state alone
(i.e., with the /NNC contribution subtracted), as a function of the neutrino decoupling temperature Td.
The red/solid line denotes the log-independent O(e2) contribution (x = /NNC+(2) /ln), the blue/dashed
line the full O(e2) correction (x = /NNC + (2)), and the green/dotted line includes corrections up to
and including O(e3) (x = /NNC + (2) + (3)). The vertical grey/dotted line marks Td = 1.3453 MeV,
and we assume the decoupling between the neutrino and QED sectors to occur instantaneously.

where δs /NNC is the change in the QED entropy density at T = Td from dropping the neutrino-
never-coupled approximation given in equation (3.1). Evaluating δs at Td = 1.3453 MeV, we
find δs/ s(0)

∣∣
Td/me→∞

' −0.012324, and hence a correction of

δN
/NNC+(2) /ln

eff ' 0.050015, (4.11)

where we have used a fine structure constant value α ≡ e2/4π = 1/137. Subtracting
from (4.11) the correction (3.2) due to dropping the neutrino-never-coupled approximation,
we find a net O(e2) log-independent FTQED correction of

δN
(2) /ln
eff = δN

/NNC+(2) /ln
eff − δN /NNC

eff ' 0.010121 (4.12)

for Td = 1.3453 MeV, which should be compared with the oft-quoted δN (2) /ln
eff ' 0.010594 [16]

computed from the same FTQED correction but in the limit Td/me → ∞. Figure 1 shows
δN

/NNC+(2) /ln
eff for a range of neutrino decoupling temperatures Td; figure 3 shows the correction

δN
(2) /ln
eff alone (i.e., with the /NNC contribution subtracted from δN

/NNC+(2) /ln
eff ).

Identifying δρ̄ = ρ(2) /ln×(x/me)
4 and δP̄ = P (2) /ln×(x/me)

4, equation (2.17) allows us to
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evaluate the corresponding G1(x/z) and G2(x/z) functions for the continuity equation (2.14):

G
(2) /ln
1 (τ) =

e2

2

[
1

τ

(
K(τ)

3
+ 2K(τ)2 − J(τ)

6
− J(τ)K(τ)

)

+
K ′(τ)

6
−K(τ)K ′(τ) +

J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

]
, (4.13)

G
(2) /ln
2 (τ) =

e2

2

[
2J(τ)K(τ) +

(
τJ ′(τ) +

1

τ
Y ′(τ)

)(
K(τ) +

1

6

)
− J(τ)2 − (K(τ) + J(τ))

3

]
,

(4.14)

where (· · · )′ ≡ ∂τ (· · · ), the new function K(τ) is defined as

K(τ) ≡ 1

π2

∫ ∞

0
dω

ω2

√
ω2 + τ2

1

exp (
√
ω2 + τ2) + 1

, (4.15)

while J(τ) and Y (τ) are given in equation (2.16).
Observe that the expression (4.13) is identical to equation (18) of [17]. Our expression

for G(2) /ln
2 , on the other hand, is formally different from the result reported in equation (19)

of [17]. However, we have checked that, numerically, equation (4.14) and the corresponding
expression in [17] are identical to within machine precision for a range of τ values. We
therefore do not dwell further on reproducing the formal result of [17] exactly, but only note
that, with the exception of [18], all recent precision calculations of Neff [12, 19–21] account
for FTQED effects on the QED equation of state by solving the continuity equation (2.14)
modified with the corrections (4.13) and (4.14) (or their equivalent presented in [17]).5 We
defer the discussion of the “alternative” FTQED implementation of [18] to section 4.4.

4.1.2 Logarithmic contribution (ln)

The energy and entropy density corrections corresponding to the third, logarithmic term of
equation (4.7) are, respectively,

ρ(2) ln =
e2m2

e

16π4

∫∫ ∞

0
dp dp̃

pp̃

EpEp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nD (2T∂T ñD − ñD) , (4.16)

s(2),ln =
e2m2

e

8π4

∫∫ ∞

0
dp dp̃

pp̃

EpEp̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ nD∂T ñD, (4.17)

both of which are vanishing in the T/me →∞ limit. It is usually argued that even at a finite
T/me, the magnitude of this logarithmic contribution is less than 10% of the log-independent
term of the previous section [17], and as such is negligible.

To assess this claim and to estimate the corresponding correction to Neff , we identify
the entropy deviation at neutrino decoupling with

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

+ s(2) ln
∣∣∣
T=Td

. (4.18)

5The oft-quoted δN (2) /ln
eff ' 0.010594 corresponds to zfin ' 1.39979 via equation (2.19), and can be obtained

from a numerical solution of the continuity equation (2.14) with the initial conditions set at xini = 0 as per
definition. The number quoted in [17, 19], zfin = 1.39975, corresponds to setting the initial conditions at
xini = 0.0341, or, equivalently, Td = 15 MeV.

– 12 –



Then, for a decoupling temperature Td = 1.3453 MeV, we find δs/ s(0)
∣∣
Td/me→∞

' −0.012312,
leading to a correction to Neff of

δN
/NNC+(2)

eff ' 0.049965, (4.19)

or, equivalently, a net O(e2) FTQED contribution of

δN
(2)
eff = δN

/NNC+(2)
eff − δN /NNC

eff ' 0.010070, (4.20)

of which
δN

(2) ln
eff = δN

(2)
eff − δN

(2) /ln
eff ' −0.000050, (4.21)

or about 0.5% of δN (2)
eff , comes from the O(e2) logarithmic term alone. Thus, the logarithmic

contribution appears to be even less significant than previously envisaged.
Nonetheless, for completeness we report here the associated G1 and G2 functions in the

continuity equation:

G
(2) ln
1 (τ) =

e2x

16π4z3

∫∫ ∞

0
dy dỹ

y√
y2 + x2

ỹ√
ỹ2 + x2

ln

∣∣∣∣
y + ỹ

y − ỹ

∣∣∣∣
{
− nDñD − znD∂zñD

− x [z (∂xnD∂zñD + nD∂x∂zñD)− nD∂xñD] (4.22)

+
x2(y2 + x2 + ỹ2 + x2)

2(y2 + x2)(ỹ2 + x2)
(2znD∂zñD − nDñD)

}
,

G
(2) ln
2 (τ) =

e2x2

16π4z2

∫∫ ∞

0
dy dỹ

y√
y2 + x2

ỹ√
ỹ2 + x2

ln

∣∣∣∣
y + ỹ

y − ỹ

∣∣∣∣ ∂z (nD∂zñD) . (4.23)

Solution of the continuity equation including these corrections for a range of neutrino de-
coupling temperatures, shown in figures 1 and 3, again confirms the insignificance of the
O(e2) logarithmic term relative to both the total O(e2) FTQED contribution, as well as to
our four-significant-digit accuracy goal. We therefore conclude that the O(e2) logarithmic
contribution can indeed be considered optional.

4.2 O(e3) FTQED

Unlike what standard perturbation theory would lead us to expect, the next correction to the
partition function lnZ is not O(α2) = O(e4), but rather O(e3), which stems from the resum-
mation of ring diagrams to all orders as shown in figure 4. The resummation of self-energy
insertions in the photon lines in figure 4 shifts the pole of the propagator in a temperature-
dependent manner. This shift gives the photon a temperature-dependent effective mass that
can be understood as the result of screening in the plasma. This effective mass regularises the
infrared divergence of the Bose–Einstein distribution for massless particles, bringing a power
of e into the denominator loop integrals, which explains the odd power of e.

The pressure correction at this order reads [37]

P (3) =
T

V
lnZ(3) =

e3T

12π4
I3/2(T ), (4.24)

where

I(T ) =

∫ ∞

0
dp

(
p2 + E2

p

Ep

)
nD, (4.25)
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]

Figure 4. Diagrammatic expression for the O(e3) correction to the FTQED partition function. The
infinite series of ring/plasmon diagrams, in which the filled black circles denote the photon self-energy
at finite temperature, represents resummation to all orders.

and we note in passing that in the nonrelativistic limit and using Maxwell–Boltzmann statis-
tics, P (3) is identically the Debye–Hückel pressure correction due to the screening of the static
Coulomb potential [15, 37]. The corresponding energy and entropy density corrections are

ρ(3) =
e3T 2

8π4
I1/2∂T I, (4.26)

s(3) =
e3

24π4

(
2I3/2 + 3I1/2T∂T I

)
. (4.27)

In the limit T/me →∞, these expressions yield P (3) = e3T 4/(36
√

3π), ρ(3) = e3T 4/(12
√

3π),
and s(3) = e3T 3/(9

√
3π).

Following the same procedure as before and writing

δs = δs /NNC + s(2) /ln
∣∣∣
T=Td

+ s(2) ln
∣∣∣
T=Td

+ s(3)
∣∣∣
T=Td

, (4.28)

we find immediately δs/ s(0)
∣∣
Td/me→∞

' −0.012081 for Td = 1.3453 MeV. Then, equa-
tion (2.11) yields a correction

δN
/NNC+(2)+(3)

eff ' 0.049013, (4.29)

or, equivalently, a net O(e2) +O(e3) FTQED contribution of

δN
(2)+(3)
eff = δN

/NNC+(2)+(3)
eff − δN /NNC

eff ' 0.009119, (4.30)

of which
δN

(3)
eff = δN

/NNC+(2)+(3)
eff − δN /NNC+(2)

eff ' −0.000952 (4.31)

stems from the O(e3) correction of this section. The associated G1 and G2 functions are

G
(3)
1 (τ) =

e3

4π

(
K +

τ2

2
k

)1/2

×
[

1

τ

(
2J − 4K

)
− 2J ′ − τ2j′ − τ

(
2k + j

)
−
(
2J + τ2j

)(
τ
(
k − j

)
+K ′

)

2
(
2K + τ2k

)
]
,

G
(3)
2 (τ) =

e3

4π

(
K +

τ2

2
k

)1/2[ (
2J + τ2j

)2

2
(
2K + τ2k

) − 2

τ
Y ′ − τ

(
3J ′ + τ2j′

)]
,

(4.32)
with special functions

k(τ) ≡ 1

π2

∫ ∞

0
dω

1√
ω2 + τ2

1

exp (
√
ω2 + τ2) + 1

,

j(τ) ≡ 1

π2

∫ ∞

0
dω

exp(
√
ω2 + τ2)

(exp(
√
ω2 + τ2) + 1)2

,

(4.33)
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and J(τ), Y (τ), and K(τ) given in equations (2.16) and (4.15). Figures 1 and 3 show the
correction to Neff as a function of the neutrino decoupling temperature Td.

There are two immediately notable points about the result (4.31) and figure 3. Firstly,
the correction to Neff from O(e3) FTQED is negative, i.e., it has the effect of cancelling to a
small extent the O(e2) FTQED correction discussed in section 4.1.1 that has been used in all
precision Neff calculations thus far. While it is well known that the O(e3) term in the equation
of state is related to Debye screening, it is not obvious on the microphysics level why this
term should shift Neff in the direction it does. However, the dependence on e clearly suggests
that it comes from contributions to the pressure and energy density from infrared-sensitive
loop corrections that have been regularised by the effective photon mass.

Secondly, the O(e3) FTQED correction is, across a broad range of plausible Td, not only
sizeable relative to our four-significant-digit accuracy goal, but importantly, also larger than—
or, at least, comparable to—the change induced in Neff between including and excluding
neutrino oscillations in the full neutrino energy transport calculation: reference [12] reports,
for example, a deviation of up to δNosc

eff ' −0.0004 when oscillations are included, while [19]
finds that oscillations incur a shift in the fifth significant digit. Neutrino oscillations have
long been considered standard ingredient in the canon of precision Neff calculations [19, 21];
in light of its relative importance, it is only consistent that the said O(e3) FTQED correction
also be incorporated in future calculations as a standard input.

4.3 O(e4) FTQED

For completeness and to provide a measure of the theoretical uncertainty, we estimate also
the O(e4) FTQED correction in the T/me → ∞ limit from the corresponding pressure cor-
rection [38]:

P (4)
∣∣∣
T/me→∞

=
T

V
lnZ(4)

∣∣∣
T/me→∞

' −0.0611
e4

π6
T 4, (4.34)

where, for simplicity, we have ignored a 5% uncertainty in the numerical prefactor and set
the renormalisation scale to be equal to the temperature. In the same limit, thermodynamics
relations yield ρ(4) ' −0.1833 e4T 4/π6 and s(4) ' −0.2444 e4T 3/π6, from which we can
immediately estimate via entropy conservation (2.11) a corresponding correction of

δN
(4)
eff ' 3.5× 10−6. (4.35)

Barring the realisation of Hubble-volume surveys, which, under idealised situations, may have
the capacity to probe Neff at the 10−6 level [7], cosmological surveys of the near-future are
unlikely to reach a level of sensitivity for which corrections of this magnitude would play a
role. We therefore conclude that the O(e4) FTQED correction to the QED equation of state
is, for the time-being, unnecessary.

4.4 Avoiding mistakes

One of the motivations behind this work was the recent result of [18], whose reported value
of Neff = 3.052 has apparently as much as δNeff ' 0.02 attributed to FTQED effects on
the QED equation of state. Clearly, this result is twice as large as our findings using well-
established FTQED corrections to the QED partition function and standard thermodynamic
relations. It is also similarly discrepant with previous calculations by others that followed a
more heuristic description in terms of thermal mass corrections. As this is a large change
from the consensus, it warrants some detailed exploration.
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4.4.1 Thermal mass interpretation of the O(e2) FTQED effects

In order to pinpoint what might have gone wrong in the calculation of [18], let us first review
the “thermal mass” narrative, due to [15] largely as a side remark, that has become common-
place and, unfortunately, over- or even misinterpreted as a definition of finite-temperature
effects in the past two decades of discussions of FTQED corrections to Neff .

Consider the expression (4.5) for the zeroth-order (i.e., ideal gas) pressure P (0). To
compute finite-temperature corrections, section V of reference [15] instructs us to replace in
P (0) the vacuum photon and electron/positron dispersion relations with the temperature-
dependent in-medium ones, i.e.,

E2
γ(p)→ E2

γ(p, T ) = p2 + δm2
γ(T ),

E2
e (p)→ E2

e (p, T ) = p2 +m2
e + δm2

e(p, T ),
(4.36)

where [34, 40, 41]

δm2
γ(T ) =

e2

π2

∫ ∞

0
dp

p2

Ep
nD, (4.37)

δm2
e(p, T ) =

e2T 2

6
+

e2

2π2

∫ ∞

0
dp̃

p̃2

Ep̃
ñD −

m2
ee

2

4π2p

∫ ∞

0
dp̃

p̃

Ep̃
ln

∣∣∣∣
p+ p̃

p− p̃

∣∣∣∣ ñD (4.38)

are the O(e2) photon and electron/positron thermal mass corrections, respectively, acquired
in a QED plasma at finite temperature. Note that these “masses” are momentum-dependent,
which simply reflects the fact that the dispersion relations for quasiparticles in a medium are
in general complicated functions of the momentum. We refer to this step as the “quasiparticle
picture” assumption, and denote the pressure thus obtained P qp.

The next step is to Taylor-expand P qp in powers of e, which, for the thermal mass
corrections (4.37) and (4.38), yields a series

P qp = P (0) + P qp
e2

+ P qp
e4

+ · · · , (4.39)

where P q
e2

is the O(e2) term of interest. Multiplying P qp
e2

by 1/2, it is straightforward to show
that (1/2)P qp

e2
= P (2), where P (2) is identically the O(e2) pressure correction (4.7).6

While this procedure works at O(e2) and does provide some level of physical insight
into how thermodynamic quantities depart from their ideal gas limits in the presence of
interactions, this quasiparticle picture is however incomplete and certainly highly prone to
misinterpretation as a recipe for the computation of higher-order FTQED corrections to bulk
thermodynamics quantities.

Firstly, the procedure requires an ad hoc insertion of a factor 1/2 in order to produce a
O(e2) pressure correction that matches P (2). In the field theoretical description this factor
has a well-posed diagrammatic origin—it corresponds to symmetry factors arising from the
number of different ways in which the electron lines can be cut to reduce the two-loop lnZ(2)

to the one-loop self-energy that gives the quasiparticles their thermal masses and widths [15].
Classically, this factor can be understood by noticing that the deviation from the ideal gas
behaviour comes from the interactions between the particles in the plasma: The screening
that a single particle experiences from the interaction with its neighbours can effectively be

6We emphasise that while the Taylor expansion is a necessary step in the procedure of [15] in order to
recover P (2), it is in general not necessary for the self-consistency of the quasiparticle picture per se.
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described in the quasiparticle picture. However, assigning a thermal mass to every particle in
the plasma double-counts the interaction energy between each pair of particles. This classical
interpretation immediately suggests that the factor should take values different from 1/2 for
higher-order terms. Indeed, as emphasised in [15], the prefactor needs to fixed order by order,
which further detracts from the procedure’s computational advantage, especially in light of
the ready availability of the FTQED partition function.

Secondly, the procedure described above entirely ignores the fact that there are collective
excitations in the plasma that can behave like well-defined quasiparticles, such as plasmons,
transversal photons, or fermionic holes. Collective excitations are infrared phenomena that
rely on coherent behaviours across inter-particle distances; as such they are typically only
relevant for modes with soft momenta with p� T , and they do not affect the O(e2) results.
However, collective excitations would be required for a fully consistent quasiparticle descrip-
tion, and we have already noticed in section 4.2 that infrared effects appear to be relevant at
the next order in the expansion in e.

Finally, from the diagrammatic expansion of lnZ it is clear that the quasiparticle picture
cannot describe all terms of higher orders in e. In FTQED the quasiparticle picture corre-
sponds to using resummed thermal propagators (rather than free thermal propagators) in
loop computations. This is, for instance, commonly done in the so-called “hard thermal loop”
resummation. However, there are many higher-order contributions to lnZ that cannot be
obtained from lower-order diagrams by simply replacing the bare propagators with resummed
ones, e.g., all diagrams that involve vertex corrections. This shortcoming clearly indicates
that the quasiparticle picture cannot describe the bulk thermodynamic properties of a plasma
beyond the leading-order terms, even though the picture is extremely useful in the computa-
tion of interaction rates in cosmological settings, see, e.g., [42, 43]. Indeed, it has been shown
for both scalar field theories [44] and QED [45] at high temperatures as well as in condensed
matter systems [46, 47] that the stress-energy-momentum tensor of a thermal plasma can be
split up into (i) a quasiparticle ideal gas component with temperature-dependent dispersion
relations, plus (ii) an additional contribution that acts as a kind of “interaction energy”.

4.4.2 Is Neff = 3.052?

Central to the result of [18] appears to be the claim that the FTQED corrections have been
performed “non-perturbatively”. The term “non-perturbatively” together with the equations
given in [18] suggests to us that they had adopted the same quasiparticle ideal gas descrip-
tion of [15], but without Taylor-expanding P qp in powers of e (“non-perturbative”). Given
the smallness of the fine structure constant α, this so-called “non-perturbative” procedure is
tantamount to omitting the crucial 1/2 factor that must be inserted before the O(e2) pres-
sure term P qp

e2
. This also means that following this (incorrect) recipe one must arrive at a

finite-temperature correction to Neff that is a factor of two larger than established results.7

We therefore conclude that the claimed FTQED contribution of δNeff ' 0.02 (and hence
Neff = 3.052) [18] is incorrect, and most probably stemmed from a misinterpretation of the
thermal mass/quasiparticle ideal gas narrative as laid down in [15].8

7Reference [48] also pointed to the same missing factor of 1/2 as the source of error in [18].
8It is important to emphasise that the O(e2) FTQED correction to the QED equation of state presented

in [15] is itself correct, and in fact follows from the same O(e2) pressure correction (4.7) used in this work.
Our criticism pertains only to the subsequent use by others of the thermal mass/quasiparticle ideal gas
description [15] as a defining property of finite-temperature effects.
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5 Estimates of the neutrino decoupling temperature Td from real-time
finite-temperature field theory

What remains to be determined is the neutrino decoupling temperature Td. In the instan-
taneous decoupling limit, the decoupling temperature is defined via Γν(Td) = H(Td), where
Γν(T ) is the interaction rate per neutrino with the QED thermal bath from which it decou-
ples, and H(T ) is the Hubble expansion rate. In the timeframe of interest, the latter is given
by

H2(T ) =
8πG

3
[ρ(T ) + ρν(T )] (5.1)

where G is the gravitational constant, ρ is the energy density of the QED plasma discussed
in detail in section 4, and

ρν = 3× 7

8

π2

30
gνT

4
ν (5.2)

is the energy density of the neutrino sector. For the purpose of establishing the neutrino
decoupling temperature, Tν should be set to the plasma temperature T .

We use the Schwinger–Keldysh formalism [49–52] of nonequilibrium quantum field theory
to establish the neutrino interaction rate Γν . The Schwinger–Keldysh formalism (see, e.g., [53,
54] for introductory articles) provides a convenient tool to obtain quantum kinetic equations at
any desired order in e and GF . It has previously been applied to neutrino kinematics in dense
and high-temperature environments [55, 56]. In near-equilibrium situations the formalism
practically reproduces the results of the real-time formalism of thermal field theory (see,
e.g. [57, 58]). Here, we work only at leading order in e, in which case the formalism reproduces
exactly the standard computation of the semi-classical Boltzmann collision integral, as we
shall illustrate in appendix A. While this clearly means that we are cracking nuts with a
sledgehammer in the present computation, the approach we take here has the advantage that
higher-order corrections can be systematically included in follow-up works.

Using the Schwinger–Keldysh formalism it can be shown that the neutrino occupation
numbers follow a generalised Boltzmann equation [59, 60], which in the absence of oscillations
takes the form [61]

dfν,p
dt

= (1− fν,p)Γ<p − fν,pΓ>p , (5.3)

where

Γ≷
p =

∓1

2p0
Tr[/pΠ

≷]

∣∣∣∣
p0=Ωp

(5.4)

are the production (<; “gain”) and destruction (>; “loss”) terms, respectively, which are
determined from the Wightman self-energies of opposite Schwinger–Keldysh polarities Π≶.
Note that Γ>p and Γ<p are functionals of all distribution functions in the plasma—including
fν,p, and the master equation (5.3) formally incorporates all contributions to the collision
term at all orders in the couplings, provided that perturbation theory can be applied and the
bulk properties of the plasma change only adiabatically [61].

Since all species are in thermal equilibrium at T > Td, we can use thermal propagators
to compute Π≶ so that the self-energies satisfy the fermionic Kubo–Martin–Schwinger (KMS)
relation

Π> = −eΩp/TΠ<, (5.5)
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in which Ωp is the full effective frequency dictating the dispersion relation of the neutrinos. It
then follows that the gain and loss terms (5.4) obey the detailed balance condition Γ>p /Γ

<
p =

eβΩp , and the generalised Boltzmann equation (5.3) now simplifies to
dfν,p

dt
= −Γp [fν,p − fD(Ωp)] , (5.6)

where we can define a mode-dependent interaction rate,

Γp ≡ Γ>p + Γ<p

=
1

2p0fD(p0)
Tr
[
/pΠ

<
]∣∣∣∣
p0=Ωp

.
(5.7)

Note that Γp can be related to the imaginary part of the retarded self-energy ΠR of the
neutrino at the (quasi)particle pole,

Γp = − 1

p0
ImTr

[
/pΠ

R
]∣∣∣∣
p0=Ωp

, (5.8)

following from the relation 2ImΠR = Π> − Π<. Indeed, the fact that a collision rate can be
related to the imaginary part of a self-energy is simply a manifestation of the optical theorem
and cutting rules at finite temperature [36]. See also [62–64].

The form of equation (5.6) immediately suggests that it is the mode-dependent interac-
tion rate Γp that is responsible for driving the neutrino occupation number at mode p back
to its equilibrium value. We therefore connect Γp to the interaction rate per neutrino Γν
required to compute the neutrino decoupling temperature (details to follow in section 5.2),
and equation (5.7) is our master equation for the rest of the analysis.

5.1 The neutrino–QED plasma interaction rate from Fermi theory

For the problem at hand, the particle interaction rate per particle, Γs, by definition counts only
those weak-interaction processes that directly link the neutrino sector to the QED plasma.
Counting only 2→ 2 scattering processes, these are

νeν̄e → e+e−,

νee
± → νee

±,

ν̄ee
± → ν̄ee

±.

(5.9)

Note that we have neglected those processes that either (i) do not involve an electron/positron,
or (ii) pertain to a muon or tau neutrino. The former do not play a direct role in connecting
the neutrino and the QED sector. In the latter case, we assume the muon and tau neutrino
populations to be kept in thermal equilibrium with the electron neutrino population through
a combination of large-angle flavour oscillations and neutrino-neutrino scattering, which typ-
ically remain efficient beyond electron neutrino decoupling from the QED plasma [65].

The self-energy diagrams encapsulating the scattering processes (5.9) are shown in fig-
ure 5. Following SM Feynman rules [66] and integrating out the massive gauge bosons in the
Fermi limit, we find

Tr
[
/pΠ

ba
(a)(p)

]
=− 2

(
GF√

2

)2 ∫ d4`d4q

(2π)8
Tr

[
/pγ

µ(1− γ5)iSbae (q)γν(gV,e − gA,eγ5)

× iSabe (`+ q − p)γµ(1− γ5)iSbaν (`)γν(1− γ5)

]
,

(5.10)
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Figure 5. Leading-order weak self-energy diagrams that contain an imaginary component. For
notational simplicity we have not labelled every internal fermion line and momentum. The former is
however easy to deduce from the bosons connected to the vertices, and momentum is taken to flow
in the same direction as the fermion number flow.

Tr
[
/pΠ

ba
(b)(p)

]
=− 2

(
GF√

2

)2 ∫ d4`d4q

(2π)8
Tr

[
/pγ

µ(1− γ5)iSbaν (`)γν(1− γ5)

× iSabe (`+ q − p)γµ(gV,e − gA,eγ5)iSbae (q)γν(1− γ5)

]
,

(5.11)

Tr
[
/pΠ

ba
(c)(p)

]
=4

(
GF√

2

)2 ∫ d4`d4q

(2π)8
Tr
[
/pγ

µ(1− γ5)iSbaν (`)γν(1− γ5)
]

× Tr
[
γµ(gV,e − gA,eγ5)iSbae (q)γν(gV,e − gA,eγ5)iSabe (`+ q − p)

]
,

(5.12)

Tr
[
/pΠ

ba
(d)(p)

]
=

(
GF√

2

)2 ∫ d4`d4q

(2π)8
Tr
[
/pγ

µ(1− γ5)iSbae (q)γν(1− γ5)
]

× Tr
[
γµ(1− γ5)iSbaν (`)γν(1− γ5)iSabe (`+ q − p)

]
,

(5.13)

where the superscripts a and b are real-time contour labels, gV,e = −1
4 + sin2 θW , gA,e = −1

4 ,
and gνV,e = gνA,e = 1

4 . Note that we have chosen the loop momenta such that the internal
neutrino always carries the momentum ` and the electrons q and `+ q − p; this will ease the
calculation later on. The total self-energy is simply a sum of these four contributions.

We are interested to compute Π<(p). This corresponds to setting the contour indices

to a = − and b = +, so that Π+−(p) = Π<(p), and only Wightman propagators S
+−
−+
ψ = S≶

ψ ,
where ψ = νe, e, appear in the expressions (5.10) to (5.13). In momentum space, these read

iS>ψ (p) = (1− fD(p0))ρψ(p),

iS<ψ (p) = −fD(p0)ρψ(p),
(5.14)
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Figure 6. Finite temperature Cutkosky cuts for the Wightman self-energies depicted in figure 5.

where ρψ(p) is the spectral density. For the present calculation we use the leading-order
spectral density, i.e., the spectral density of a free fermion of mass mψ,

ρψ,f (p) = (2π)sgn(p0)(/p+mψ)δ(p2 −m2
ψ), (5.15)

which has only one sharp peak at p2 = m2
ψ, i.e., the vacuum particle mass shell. Note however

that the full resummed spectral density can have additional poles that correspond to collective
plasma excitations in the quasiparticle picture, as well as continuous parts that encapsulate
multiparticle states and higher order scattering processes (see [42, 43] for a discussion). Using
the approximation (5.15) also implies that we neglect the effect of thermal masses in the
collision integral.

From here on, the connection of our approach to the usual kinetic theory method of
calculating Γν is clear: the free-fermion Wightman propagators can now be expressed as [67]

S≶
ψ,f (p) = (fD(|p0|)− θ(∓p0))(2πi)(/p+mψ)δ(p2 −m2

ψ), (5.16)

where θ(x) denotes a Heaviside step function; these put the internal fermion lines of the
self-energy diagrams on shell. This amounts diagrammatically to cutting through all inter-
nal fermion lines, as shown in figure 6, so that the resulting separate pieces are nothing but
tree-level diagrams corresponding to the 2 → 2 scattering processes (5.9) and their complex
conjugates. We demonstrate in detail the correspondence between the two approaches in ap-
pendix A. Suffice it to say here that, while at leading order the two approaches are equivalent,
nonequilibrium field theory methods clearly offer a more self-consistent way to incorporate
higher-order effects.

5.2 The neutrino decoupling temperature

Evaluating the self-energy contributions (5.10) to (5.13) assuming a free fermion-spectral
density (5.15) for both ψ = νe, e, we find a mode-dependent interaction rate

Γp(T ) =
(e|p|/T + 1)

2|p|
∑

i=a,b,c,d

Ci G2
F

4(2π)4

∫∫ ∞

0
d|q|d|`| |q|

2|`|
Eq

∫ +1

−1
d cosα

∑

ε,τ=±1

{
πθ(b̃2 − 4ãc̃)√

|ã|

×
[
fD(|`0 + q0 − p0|)− θ(`0 + q0 − p0)

][
fD(|`0|)− θ(−`0)

][
fD(|q0|)− θ(−q0)

]

×
∑

(mn)

Ai(mn)

[
G0

(mn) +
b̃

2|ã|G
1
(mn) +

(
3b̃2 + 4c̃|ã|

8ã2

)
G2

(mn)

]


∣∣∣∣∣∣q0=εEq

`0=τ |`|

.

(5.17)
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Figure 7. Interaction rate per neutrino with the QED plasma Γν (solid lines) versus the Hubble
expansion rate H (dashed lines) as functions of the temperature of the QED plasma T . Rates without
FTQED corrections are indicated in red, while those with FTQED corrections are in blue.

The definitions of the coefficients Ci, Ai(mn), and G
i
(mn) can be found in tables 2 and 3, while ã,

b̃, and c̃ are ε- and τ - dependent functions of |p|, |q|, |`|, and cosα given in equations (B.12)
to (B.14). We detail the full calculation of Γp(T ) in appendix B.

To connect the mode-dependent Γp to the interaction rate per neutrino Γν , we identify
Γν with the Γp evaluated at some representative neutrino momentum,

Γν ≡ Γp||p|=〈|p|〉 , (5.18)

which we choose here to be the mean momentum 〈|p|〉 ' 3.15T . (Alternatively, we can iden-
tify Γν(T ) with the momentum-averaged 〈Γp〉(T ), weighted by the Fermi–Dirac distribution
function; this procedure is however computationally more expensive, and therefore not used
here.) Figure 7 shows the interaction rate Γν(T ) thus defined as a function of the QED plasma
temperature T , alongside the Hubble expansion rate H(T ) assuming the QED plasma to be
an ideal gas.

Solving Γν(Td)−H(Td) = 0 for Td, we find

Td = 1.3453 MeV. (5.19)

This is the neutrino decoupling temperature used throughout this work, and is consistent
with the findings of [41] to about 5%. We attribute the difference primarily to the different
definitions of Γν : while we have defined in this work Γν as the mode-dependent rate Γp

evaluated at |p| = 〈|p|〉 ' 3.15T , the definition used in [41] is essentially equivalent to
identifying Γν with the momentum-averaged destruction rate 〈Γ>p 〉.
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5.2.1 FTQED corrections to the decoupling temperature

An immediate and straightforward way to incorporate some form of FTQED corrections in the
estimate of Td is to replace in the interaction rate (5.17) all occurrences of the vacuum electron
massm2

e by its thermally-corrected counterpartm2
e+δm2

e(p, T ) given in equation (4.38). This
is essentially equivalent to using O(e2) resummed electron propagators in the calculation of
the neutrino self-energy, and is especially simple to compute if we neglect the momentum-
dependent part of δm2

e(p, T ), i.e., the third, logarithmic term of equation (4.38), which is
in any case known to be subdominant [17]. Care must also be taken to incorporate the
higher-order energy density corrections ρ(n) previously calculated in section 4 into the Hubble
expansion rate, and not simply alter the ideal gas phase space distribution by replacing the
vacuum electron mass with its thermally-corrected counterpart.9

Figure 7 shows the thermal-mass-corrected interaction rate Γmth
ν (T ) as a function of the

QED plasma temperature, together with the O(e2) thermally-corrected Hubble expansion
rate Hth(T ). Solving Γmth

ν (Tmth
d ) − Hth(Tmth

d ) = 0 for the thermal-mass-corrected neutrino
decoupling temperature Tmth

d , we find

Tmth
d = 1.3467 MeV, (5.20)

a deviation of 0.1% from the uncorrected Td, consistent with the findings of [41].10 Reading
off figures 1 and 3, this deviation essentially shifts the final Neff by an amount

δNmth
eff ' −0.000080, (5.21)

larger than the O(e2) logarithmic correction to the QED equation of state discussed in
section 4.1.2, but still an order of magnitude smaller than the O(e3) correction of sec-
tion 4.2. Interestingly, the most recent precision calculations of Neff do incorporate thermal-
mass-corrected weak rates in their modelling of neutrino energy transport around decou-
pling [19, 21]. What we have demonstrated here is that, on its own, this correction has no
significant impact on Neff .

Of course, a fully self-consistent treatment of O(e2) FTQED corrections to the weak
rates goes beyond using resummed electron propagators: corrections to the weak vertices in
the self-energy diagrams of figure 5, for example, also enter at O(e2), which would in principle
shift Neff again. A complete treatment of O(e2) FTQED corrections to the weak rates will
be presented in a future publication.

6 Conclusions

We have examined and quantified precisely in this work several aspects of Standard Model
physics that drive the theoretical value of the effective number of neutrinos Neff away from 3.
The expected deviations are summarised in table 1.

9 At first glance it might seem inconsistent that we freely replace vacuum masses with thermal masses
in order to estimate FTQED corrections to the weak interaction rate (5.17), while we argue in section 4.4.1
that this procedure is not consistent when it comes to the equation of state (and thus the Hubble rate). The
key point is that the quasiparticle picture offers a suitable scheme to compute interaction rates in resummed
perturbation theory (see, e.g., [42]), but fails to accurately describe the bulk properties of the plasma. .

10Note that [41] always assumed ideal gases when evaluating H(T ). Their thermally-corrected neutrino
decoupling temperature therefore corresponds to the intersection of the red dashed and blue solid lines in
figure 7, which generally returns a higher value of Td than the intersection of the two blue lines.
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x δNx
eff (Td = 1.3453 MeV) δNx

eff (Tmth
d = 1.46 MeV) Included in [19, 21]

QED equation of state corrections
/NNC 0.039895 0.033903 Yes

(2) /ln 0.010121 0.010173 Yes
(2) ln −0.000050 −0.000043 No
(3) −0.000952 −0.000951 No
(4) ' 3.5× 10−6 ' 3.5× 10−6 No

Weak rate corrections
mth −0.000080 −0.000067 Yes
Total 0.048937 0.043019

Table 1. Summary of the various SM contributions to Neff considered in this work. The (instan-
taneous) neutrino decoupling temperature Td = 1.3453 MeV is that established in section 5, while
Tmth

d = 1.46 MeV has been obtained from matching δN /NNC+(2) /ln
eff + δNmth

eff to 0.044 [21]. The last
column indicates whether or not the correction has been implemented in the most recent full neutrino
energy transport calculations of [19, 21].

The dominant departure from Neff = 3 comes from dropping the assumption that the
QED plasma is ultra-relativistic at the time of neutrino decoupling, i.e., what we have
dubbed the “neutrino-never-coupled” (NNC) approximation, as it is equivalent to sending
Td/me → ∞. A finite Td/me enables some energy from e±-annihilation to be transferred to
the neutrinos when the neutrino and QED sectors are in thermal equilibrium, and, depending
on the precise Td, can incur a change in Neff , δN

/NNC
eff , as large as a few percent. This effect

is often conflated with non-instantaneous decoupling in the literature, the latter of which
can induce out-of-equilibrium energy transfer and distort the equilibrium distributions. We
emphasise here that the two phenomena are distinct, and genuine out-of-equilibrium effects
on Neff are in fact subdominant.

We then examined finite-temperature corrections to the QED equation of state and their
effects on the Neff parameter. Specifically, beginning with the FTQED partition function up
to and including O(e4), we have quantified the role of each contribution to driving Neff

from 3. At leading-order O(e2), we have been able to recover the established result δN (2) /ln
eff '

0.01, and, in doing so, identify the source of error in [18] (which purportedly included the
same FTQED correction but obtained a correction twice as large as the establishment). We
further assessed a hitherto-neglected O(e2) logarithmic contribution, and found its effect
on Neff , δN

(2) ln
eff ' −5× 10−5, to be even smaller than previously envisaged. Relative to our

four-significant-digit accuracy goal, this O(e2) logarithmic correction—along with the O(e4)

correction, which contribution δN (4)
eff ' 3× 10−6—can be considered optional to unnecessary

in future calculations.
Of particular note, however, is the O(e3) correction to the QED equation of state.

Originating from Debye screening, this correction contributes δN (3)
eff ' 0.001 across a broad

range of plausible neutrino decoupling temperatures. This is a sizeable correction not only
relative to our accuracy goal, but also relative to the typical changes incurred in Neff between
including and excluding neutrino oscillations in the modelling of out-of-equilibrium neutrino
energy transport (up to δNosc

eff ' −0.0004, depending on the transport code). Thus, the
O(e3) correction to the QED equation of state should be considered a necessary input in the
precision computation of Neff .
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Lastly, we re-estimated the neutrino decoupling temperature Td using nonequilibrium
quantum field theory techniques, which have the advantage of providing a consistent and
systematic framework for the inclusion of FTQED corrections to the weak rates. The exercise
returns at leading order Td = 1.3453 MeV, a result consistent to the estimate of [41] to 5%
despite subtle differences in the definition of the decoupling temperature. Correcting the weak
rate calculations with O(e2) resummed electron propagators we found Tmth

d = 1.3467 MeV,
corresponding to a minute change in Neff of δNmth

eff ' −8× 10−5.
A complete assessment of the various effects considered in this work on the final value

of Neff will necessitate an account of neutrino energy transport beyond the instantaneous
decoupling approximation in the manner of [19, 21]. However, by matching known corrections
δN

/NNC+(2) /ln
eff + δNmth

eff to the result obtained in the most recent such calculation [21] (see
column 3 of table 1), we deduce that, relative to Neff = 3.044 [21], the new effects found in
this work should lower the number to Neff = 3.043. The confirmation of this number via a
full transport calculation will be presented in a future publication.
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A Connection of the damping rate to the Boltzmann collision term

We demonstrate in this section the correspondence, at leading order, between the neutrino
damping rate calculated from the retarded self-energy represented by figure 5, and the usual
Boltzmann collision term for the 2→ 2 scattering processes (5.9).

For brevity we illustrate in detail only the self-energy diagram (b) in figure 5, or, equiv-
alently, equation (5.11); the correspondence between the two approaches for the other three
self-energy terms can be easily established in the same manner. For a = − and b = + (hence
ba ≡< and ab ≡>) and plugging into equation (5.11) the Wightman propagators (5.14), we
have

Tr
[
/pΠ

<
(b)(p)

]
=− 2

(
GF√

2

)2 ∫ d4`d4q

(2π)8
fD(`0)(1− fD(`0 + q0 − p0))fD(q0)

× Tr

[
/pγ

µ(1− γ5)ρν(`)γν(1− γ5)ρe(`+ q − p)γµ(gV,e − gA,eγ5)ρe(q)γν(1− γ5)

]
,

(A.1)

which is generally valid for any spectral density ρψ(p). At leading order we use the free
spectral density (5.15), so that equation (A.1) reduces to

Tr
[
/pΠ

<
(b)(p)

]
=−G2

F

∫
d4`d4q

(2π)5
fD(`0)(1− fD(`0 + q0 − p0))fD(q0)

× sgn(`0)sgn(`0 + q0 − p0)sgn(q0)δ(`2)δ((`+ q − p)2 −m2
e)δ(q

2 −m2
e)Trb,

(A.2)
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where we have defined

Trb ≡ Tr
[
/pγ

µ(1− γ5)/̀γν(1− γ5)(/̀+ /q− /p+me)γµ(gV,e− gA,eγ5)(/q+me)γν(1− γ5)
]
, (A.3)

which contains all of the Dirac algebra of the problem at hand. Using resummed spectral
densities in (A.1) would correspond to dressing all particles into quasiparticles with ther-
mal masses and widths, which is a convenient way to introduce some higher order FTQED
corrections, in particular (but not only) those assigned to thermal masses [42].

In order to connect to kinetic theory and the Boltzmann collision term, we introduce a
4-dimensional Dirac delta distribution in u and then integrate over u:

Tr
[
/pΠ

<
(b)(p)

]
=−G2

F

∫
d4`d4qd4u

(2π)9
(2π)4δ(4)(u− q − `+ p)fD(`0)(1− fD(u0))fD(q0)

× sgn(`0)sgn(u0)sgn(q0)δ(`2)δ(u2 −m2
e)δ(q

2 −m2
e)Trb.

(A.4)
Note that this step does not change the physics of the expression; it merely recasts the
expression in a more convenient form for our purposes. Then, cycling through all possible
sign combinations of `0, u0, and q0 yields

Tr
[
/pΠ

<
(b)(p)

]
=−G2

F

∫
d3`d3qd3u

(2π)98E`EqEu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(Eu − Eq − E` + p0)Tr+++

b

− f`(1− fu)(1− fq)δ(Eu + Eq − E` + p0)Tr++−
b

− f`fufqδ(−Eu − Eq − E` + p0)Tr+−+
b

− (1− f`)(1− fu)fqδ(Eu − Eq + E` + p0)Tr−++
b

+ f`fu(1− fq)δ(−Eu + Eq − E` + p0)Tr+−−
b

+ (1− f`)fufqδ(−Eu − Eq + E` + p0)Tr−−+
b

+ (1− f`)(1− fu)(1− fq)δ(Eu + Eq + E` + p0)Tr−+−
b

− (1− f`)fu(1− fq)δ(−Eu + Eq + E` + p0)Tr−−−b

]
,

(A.5)

where we have defined
Trijkb ≡ Trb|`0=iE`, u0=jEu, q0=kEq

, (A.6)

and used the vacuum dispersion relations E` = |`|, E2
u = |u|2 + m2

e, and E2
q ≡ |q|2 + m2

e.
The particle phase space distributions are labelled by their 4-momenta in the subscript,
fx ≡ fD(Ex), and we have used the relation fD(−E) = 1− fD(E).

In the form (A.5), the physics of the self-energy is immediately discernible: the pro-
cesses corresponding to each term can be identified by their initial and final state particles.
Specifically, initial state phase space distributions always appear simply as a factor fx, while
final state phase space distributions come in the form of a Pauli-blocking factor (1 − fx).
Furthermore, because we are computing Tr

[
/pΠ

<
(b)(p)

]
, which is associated with the produc-

tion rate Γ< and hence accompanied by a Pauli-blocking factor (1 − fp) in the generalised
Boltzmann equation (5.3), the neutrino that carries the 4-momentum p should also be inter-
preted as a final state particle. Then, the eight processes corresponding to the eight terms of
equation (A.5) are simply those shown in figure 8 (read from left to right, top to bottom).
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Figure 8. Scattering processes corresponding to the eight terms in equation (A.5), read from left to
right, top to bottom. Only the 2→ 2 processes are kinematically allowed.

Clearly, not all of the processes of figure 8 are allowed. Throwing away those processes
that are kinematically forbidden, we are left with

Tr
[
/pΠ

<
(b)(p)

]
=−G2

F

∫
d3`d3qd3u

(2π)98E`EqEu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(Eu − Eq − E` + p0)Tr+++

b

+ f`fu(1− fq)δ(−Eu + Eq − E` + p0)Tr+−−
b

+ (1− f`)fufqδ(−Eu − Eq + E` + p0)Tr−−+
b

]
.

(A.7)

Repeating the calculation for the remaining three self-energy contributions (5.10), (5.12), and
(5.13), we always find the same phase space structure, the differences being entirely contained
in the trace terms and the coupling constant. Then, collecting all contributions, the total
mode-dependent production rate can now be written as

Γ<p =
1

2p0
Tr


 ∑

i′=a,b,c,d

/pΠ
<
(i′)(p)




= − G2
F

2p0

∫
d3`d3qd3u

(2π)98E`EqEu
(2π)4δ(3)(u− q− ` + p)

×
[
f`(1− fu)fqδ(Eu − Eq − E` + p0)Tr+++

+ f`fu(1− fq)δ(−Eu + Eq − E` + p0)Tr+−−

+ (1− f`)fufqδ(−Eu − Eq + E` + p0)Tr−−+
]
,

(A.8)

where Trijk ≡ ∑i′=a,b,c,d λi′Trijki′ , with coefficients λa = λb = 1, λc = −2, and λd = −1/2.
The traces have been evaluated to be

Tra = Tr
[
/pγ

µ(1− γ5)(/q +me)γ
ν(gV,e − gA,eγ5)(/u+me)γµ(1− γ5)/̀γν(gV,e − gA,eγ5)

]

= −128(gV,e + gA,e)(p · u)(` · q) + 64m2
e(gV,e − gA,e)(p · `),

(A.9)
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Trb = Tr
[
/pγ

µ(1− γ5)/̀γν(1− γ5)(/u+me)γµ(gV,e − gA,eγ5)(/q +me)γν(1− γ5)
]

= −128(gV,e + gA,e)(p · u)(` · q) + 64m2
e(gV,e − gA,e)(p · `) = Tra,

(A.10)

Trc = Tr
[
/pγ

µ(1− γ5)/̀γν(1− γ5)
]
Tr
[
γµ(gV,e − gA,eγ5)(/q +me)γν(gV,e − gA,eγ5)(/u+me)

]

= 64(g2
V,e + g2

A,e)
(

(p · q)(` · u) + (p · u)(` · q)
)
− 64m2

e(g
2
V,e − g2

A,e)(p · `)

− 128gV,egA,e

(
(p · q)(` · u)− (p · u)(` · q)

)
,

(A.11)
Trd = Tr

[
/pγ

µ(1− γ5)(/q +me)γ
ν(1− γ5)

]
Tr
[
γµ(1− γ5)/̀γν(1− γ5)(/u+me)

]

= 256(p · u)(` · q),
(A.12)

from which we conclude that the self-energy diagrams (a) and (b) contribute identically to
the interaction rate.

The corresponding mode-dependent destruction rate Γ>p can be easily deduced from
Γ<p by (i) noting that, to turn Tr

[
/pΠ<(p)

]
into Tr

[
/pΠ>(p)

]
, we need simply to replace the

Wightman propagators S≷
ψ → S≶

ψ , which, through equation (5.14), amounts to swapping
(1− fx)↔ −fx, and (ii) introducing an overall sign flip via the definition (5.4). Then,

Γ>p = − 1

2p0
Tr


 ∑

i′=a,b,c,d

/pΠ
>
(i′)(p)




= − G2
F

2p0

∫
d3`d3qd3u

(2π)98E`EqEu
(2π)4δ(3)(u− q− ` + p)

×
[
(1− f`)fu(1− fq)δ(Eu − Eq − E` + p0)Tr+++

+ (1− f`)(1− fu)fqδ(−Eu + Eq − E` + p0)Tr+−−

+ f`(1− fu)(1− fq)δ(−Eu − Eq + E` + p0)Tr−−+
]
,

(A.13)

which together with Γ<p can be used to construct a collision term for fp,

C[fp] ≡ (1− fp)Γ<p − fpΓ>p , (A.14)

based on the generalised Boltzmann equation (5.3).
In order to match the existing results in the literature, e.g, equation (8) and table I

of [18], we change the 4-momentum variables to Pi = (Ei,pi), i = 1, . . . , 4. Then, for f1 ≡ fp,
we find the collision term

C[f1] =
1

2E1

∫
d3p2d3p3d3p4

(2π)98E2E3E4
(2π)4δ(4)(P1 + P2 − P3 − P4)FrSr〈|Mr|2〉, (A.15)

where Fr = (1 − f1)(1 − f2)f3f4 − f1f2(1 − f3)(1 − f4) is a phase space factor, and the
symmeterised squared matrix elements

Sr〈|Mr|2〉 = S1〈|Mνe+e−↔e−+νe |2〉+ S2〈|Mνe+e+↔e++νe |2〉+ S3〈|Mνe+ν̄e↔e−+e+ |2〉 (A.16)
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i = a, b i = c i = d

Ci 64 −128 −128

Ai(p`) gV,e − gA,e −(g2
V,e − g2

A,e) 0
Ai(pq)(`p) −4(gV,e + gA,e) 2(gV,e + gA,e)

2 2
Ai(pq)2 −2(gV,e + gA,e) 2(g2

V,e + g2
A,e) 1

Ai(p`)2 −2(gV,e + gA,e) (gV,e + gA,e)
2 1

Table 2. Coefficients appearing in the weak-rate and self-energy integrals (5.17), (B.1), and (B.17).

can be mapped to the traces of equations (A.8) and (A.13) via

G−2
F S1〈|Mνe+e−↔e−+νe |2〉 ≡ − Tr+−−∣∣

P2=(Eq ,−q),P3=(Eu,−u),P4=(E`,`)
,

G−2
F S2〈|Mνe+e+↔e++νe |2〉 ≡ − Tr+++

∣∣
P2=(Eu,u),P3=(Eq ,q),P4=(E`,`)

,

G−2
F S3〈|Mνe+ν̄e↔e−+e+ |2〉 ≡ − Tr−−+

∣∣
P2=(E`,−`),P3=(Eq ,q),P4=(Eu,−u)

.

(A.17)

Thus, we have demonstrated that the neutrino damping rate calculated from the two-loop
retarded self-energy at the (quasi)particle pole is indeed equivalent at leading order to the
the usual Boltzmann collision term for 2→ 2 scattering from kinetic theory.

B Leading-order calculation of the damping rate

We show in this section how to reduce the self-energy expressions (5.10) to (5.13) to the
leading-order mode-dependent interaction rate (5.17). Plugging into equations (5.10) to (5.13)
the free-fermionWightman propagators (5.16) and the traces (A.9) to (A.12) with u = `−p+q,
the self-energy contributions can be written as

Tr
[
/pΠ

<
(i)(p)

]
=
Ci G2

F

(2π)5

∫
d4`d4q F(p0, q0, `0)δ(`2)δ(q2 −m2

e)δ((`− p+ q)2 −m2
e)

×
[
Ai(p`) m

2
e(p · `) +Ai(pq)(`p)(p · q)(` · p) +Ai(pq)2(p · q)2 +Ai(p`)2(p · `)2

]
,

(B.1)
where

F(p0, q0, `0) ≡
[
fD(|`0 + q0 − p0|)− θ(`0 + q0 − p0)

][
fD(|`0|)− θ(−`0)

][
fD(|q0|)− θ(−q0)

]
,

(B.2)
and the various coefficients (Ci, Ai(p`), etc.) are given in table 2.

To simplify equation (B.1), observe that it is of the form

I =

∫
d4qd4` f(q, `, p) δ(`2)δ(q2 −m2

e)δ((`+ q − p)2 −m2
e)

=

∫
d3`d3q

4|`|Eq
∑

ε,τ=±1

f(q, `, p) δ((`+ q − p)2 −m2
e)

∣∣∣∣∣∣q0=εEq

`0=τ |`|

,
(B.3)

where E2
q = |q|2 + m2

e, f(q, `, p) is a scalar function independent of the Lorentz contraction
` · q, and the second equality follows from the fact that the first two Dirac deltas in `2 and q2
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simply put the corresponding particles on their mass shells. To evaluate the remaining Dirac
delta distribution, we first parameterise the 3-momenta in spherical coordinates,

p = |p|(0, 0, 1)T ,

` = |`|(0, sinα, cosα)T ,

q = |q|(sin θ sinβ, sin θ cosβ, cos θ)T ,

(B.4)

so that the integral (B.3) becomes

I =
2π

4

∫∫ ∞

0
d|`|d|q|

∫ 2π

0
dβ

∫ +1

−1
d cosα d cos θ

× |q|
2|`|
Eq

∑

ε,τ=±1

f(q, `, p) δ((`+ q − p)2 −m2
e)

∣∣∣∣∣∣q0=εEq

`0=τ |`|

.

(B.5)

Similarly, the Lorentz contractions can now be written as

` · p = τ |`||p| − |p||`| cosα,

p · q = εEq|p| − |p||q| cos θ,

` · q = ετEq|`| − |`||q|(sinα sin θ cosβ + cosα cos θ),

(B.6)

from which we immediately deduce that the integrand (B.5) depends on β only through the
Dirac delta distribution δ((`+ q − p)2 −m2

e).
Then, following [68], we can solve the β-integral in (B.5) by first identifying δ((`+ q −

p)2 −m2
e) ≡ δ(g(β)), which can be further decomposed to

δ(g(β)) =
∑

i

1

|g′(βi)|
δ(β − βi) =

δ(β − β1) + δ(β − β2)

2|`||q|| sin θ sinα sinβ0|
. (B.7)

Here, βi denotes the roots of the function g(β): in this case, there are two, β1 and β2 = 2π−β1,
on the interval β ∈ [0, 2π], given by

cosβi =
|q||p| cos θ − εEq|p|+ |`||p| cosα− τ |`||`|+ ετ |`|Eq − |`||q| cosα cos θ

|`||q| sin θ sinα
, (B.8)

and | sinβ1| = | sinβ2| ≡ | sinβ0|; the derivative is g′(βi) ≡ ∂βg|βi = −2|`||q| sin θ sinα sinβi.
Then, substituting equation (B.7) into equation (B.5), yields

I =
2π

4

∫∫ ∞

0
d|`|d|q|

∫ +1

−1
d cosα d cos θ

|q|2|`|
Eq

∑

ε,τ=±1

f(q, `, p) θ(1− cos2 β0)

|`||q|| sin θ sinα sinβ0|

∣∣∣∣∣∣q0=εEq

`0=τ |`|

, (B.9)

where we have inserted a Heaviside step function θ(1− cos2 β0) to ensure that the condition
cos2 β0 ≤ 1 is respected.

The next step is to recognise that, in equation (B.9), the following two expressions are
functionally equivalent:

θ(1− cos2 β0)

|`||q|| sin θ sinα sinβ0|
=
θ(|`|2|q|2 sin2 θ sin2 α (1− cos2 β0))√
|`|2|q|2 sin2 θ sin2 α (1− cos2 β0)

, (B.10)
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where the r.h.s. expression has the desirable property that the Heaviside step function and
the square root take the same argument that is quadratic in z ≡ cos θ, i.e.,

|`|2|q|2(1− z2) sin2 α (1− cos2 β0) = ãz2 + b̃z + c̃, (B.11)

with coefficients

ã =− |q|2|`− p|2 ≤ 0, (B.12)

b̃ =− 2
[
− |`|2|p||q| cos2 α+ (|`||p|2|q|+ εEq|`||p||q|+ τ |`|2|p||q| − ετEq|`|2|q|) cosα

− εEq|p|2|q| − τ |`||p|2|q|+ ετEq|`||p||q|
]
, (B.13)

c̃ =− |`|2(|p|2 + |q|2) cos2 α+ 2(εEq|`||p|2 + τ |`|2|p|2 − ετEq|`|2|p|) cosα

+ |`|2(|q|2 − |p|2)− E2
q (|`|2 + |p|2) + 2εEq|`|2|p|+ 2τE2

q |`||p| − 2ετEq|`||p|2, (B.14)

and we note that ã is always negative or zero.
Because ã ≤ 0, the quadratic (B.11) represents a downward parabola with two real and

non-degenerate roots z±,

z± =
b̃

2|ã| ±

√√√√
(
b̃

2ã

)2

+
c̃

|ã| , (B.15)

whenever b̃2−4ãc̃ > 0 is satisfied. This also means that the Heaviside step function is nonzero
only in the region between non-degenerate z±. Then, rewriting the quadratic (B.11) in terms
of its roots (B.15), equation (B.9) can now be recast as

I =
2π

4

∫∫ ∞

0
d|`|d|q| |q|

2|`|
Eq

∫ +1

−1
d cosα

θ(b̃2 − 4ãc̃)√
|ã|

∫ z+

z−

dz
∑

ε,τ=±1

f(q, `, p)√
(z − z−)(z+ − z)

∣∣∣∣∣∣q0=εEq

`0=τ |`|

.

(B.16)
To further reduce the number of integrals, we apply (B.16) to the self-energy (B.1) to get

Tr
[
/pΠ

<
(i)(p)

]
=
Ci G2

F

4(2π)4

∫ ∞

0
d|`|d|q| |q|

2|`|
Eq

∫ +1

−1
d cosα

∑

ε,τ=±1

[
θ(b̃2 − 4ãc̃)√

|ã|
F(p0, q0, `0)

×
(
Ai(p`) I

z
(p`) +Ai(pq)(`p)I

z
(pq)(`p) +Ai(pq)2I

z
(pq)2 +Ai(p`)2I

z
(pl)2

)]∣∣∣∣∣q0=εEq

`0=τ |`|

,

(B.17)
where, for (mn) = (p`), (pq)(`p), (pq)2, (p`)2, we have defined

Iz(mn) =

∫ z+

z−

dz

(
G0

(mn) + zG1
(mn) + z2G2

(mn)√
(z − z−)(z+ − z)

)

= π

[
G0

(mn) +
b̃

2|ã|G
1
(mn) +

(
3b̃2 + 4c̃|ã|

8ã2

)
G2

(mn)

]
,

(B.18)

with the z-independent coefficients Gj(mn), j = 0, 1, 2, given in table 3.
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j = 0 j = 1 j = 2

Gj(p`) m2
e(τ |`||p| − |`||p| cosα) 0 0

Gj(pq)(`p) εEq|p|(τ |`||p| − |`||p| cosα) |q||p|(|`||p| cosα− τ |`||p|) 0
Gj

(pq)2 E2
q |p|2 −2εEq|p|2|q| |q|2|p|2

Gj
(p`)2 (τ |`||p| − |`||p| cosα)2 0 0

Table 3. Coefficients appearing in the weak-rate and self-energy integrals (5.17) and (B.18).

Putting it all back into equation (B.17), and noting that the mode-dependent interaction
rate, as defined in equation (5.7), is equivalently

Γp =
(ep

0/T + 1)

2p0

∑

i

Tr
[
/pΠ

<
(i)(p)

]
, (B.19)

we obtain the final result (5.17) for p0 = |p|.
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