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Abstract

Nonnegative matrix factorization is a popular data analysis tool able to extract significant features from nonnegative
data. We consider an extension of this problem to handle functional data, using parametrizable nonnegative functions
such as polynomials or splines. Factorizing continuous signals using these parametrizable functions improves both
the accuracy of the factorization and its smoothness. We introduce a new approach based on a generalization of the
Hierarchical Alternating Least Squares algorithm. Our method obtains solutions whose accuracy is similar to that of
existing approaches using polynomials or splines, while its computational cost increases moderately with the size of the
input, making it attractive for large-scale datasets.
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1. Introduction

1.1. Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a commonly
used linear dimensionality reduction technique for nonneg-
ative data. This method compresses data and is able to
filter noise. It expresses data vectors using a part-based
representation [1, 2] and extracts nonnegative characteris-
tic features from the dataset. To do so, NMF takes a collec-
tion of nonnegative vectors, concatenated as the columns
of input matrix Y ∈ R

m×n
+ , and tries to decompose each

of them as a nonnegative linear combination (with coeffi-
cients in X ∈ R

r×n
+ ) of a few nonnegative basis vectors,

contained in the columns of A ∈ R
m×r
+ . Since an exact

decomposition is in general not achievable, several cost
functions can be considered to measure the accuracy of
the approximation, such as the commonly used Frobenius
distance:

min
A∈R

m×r
+

, X∈R
r×n
+

||Y −AX||2F (NMF)

The factorization performed in NMF problems is in
general not unique [3]. Therefore, a penalty term on the
objective function is often added to take into account a
priori knowledge on the data, such as sparsity [4], smooth-
ness [1], orthogonality [5], etc.
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NMF is a non-convex problem, and is NP-Hard [6].
However, it is convex with respect to A when X is fixed,
and vice-versa. Moreover, as ||Y − AX||2F = ||Y ⊤ −
X⊤A⊤||2F , the problem is symmetric in A and X. Hence,
many NMF algorithms proceed by (approximately) mini-
mizing the problem alternatively on both matrices [7], in-
cluding the popular hierarchical alternating least squares
method which we describe next.

1.2. Hierarchical Alternating Least Squares

The hierarchical alternating least squares method [8]
(HALS) is frequently used to obtain state-of-the art results
for NMF [9, 10], and corresponds to Algorithm 1 below.

Algorithm 1 HALS

Require: data Y ∈ R
m×n, rank r ≪ m,n, initial A ∈

R
m×r and initial X ∈ R

r×n

while Stop Condition not encountered do
A← updateHALS(Y ,A,X)
X⊤ ← updateHALS (Y ⊤,X⊤, A⊤)

end while

function updateHALS(Y , A, X)
P = Y X⊤, Q = XX⊤ ⊲ (2n− 1)r(m+ r) flops
for a:j in A do

t = (p:j −
∑

k 6=j
a:kqkj)/qjj ⊲ unconstrained update

a:j ← max(0, t) ⊲ projection
end for ⊲ 2mr2 flops in loop
return A

end function ⊲ O(nrm)

HALS updates the matrix A through its columns a:j .
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Columns are successively updated by optimizing the prob-
lem considering all the other variables as fixed. The op-
timal update for a column is obtained by computing the
optimal solution of the unconstrained problem and pro-
jecting it over the set of nonnegative vectors [11]. Note
that each component in the solution of the unconstrained
problem is obtained in closed-form as the minimum of a
univariate convex quadratic function. Performing an up-
date of all columns leads to a better approximation of the
optimal matrix A for X fixed.

1.3. NMF over continuous signals

NMF is often used to analyze continuous signals, such
as spectral data [12, 13, 14]. Many of these signals can
be well approximated using parametrizable functions like
polynomials or splines. Hence, in this work, we tackle the
situation where input data consists of continuous signals
(possibly discretized), and seek to obtain an NMF-like fac-
torization where the columns of matrix A will be replaced
by continuous functions. Indeed, decomposing input data
as linear combinations of functions instead of vectors will
allow considering the input signals continuously, and not
only at some discretization points, and a suitable choice
of parametrizable functions will enforce some intrinsic fea-
tures on the recovered data, such as smoothness in the case
of polynomials or splines.

Section 2 introduces the functional NMF problem, and
proposes a generalization of HALS to compute factoriza-
tions over parametrizable functions. Section 3 focuses on a
crucial component of the new HALS algorithm, namely the
projection operator over the set of nonnegative parametriz-
able functions. Section 4 describes existing approaches for
the functional NMF problem. These are then compared to
our approach in Section 5, where several numerical exper-
iments, using both synthetic and real-world signals, allow
us to assess the accuracy and speed of all algorithms.

2. HALS using parametrizable functions (F-HALS)

2.1. NMF over parametrizable functions (F-NMF)

Consider a set Y = {y1(t), · · · , yn(t)} of n univariate
functions defined over a common fixed interval [a, b]. The
functional NMF problem (F-NMF) aims at recovering a
dictionaryA = {a1(t), · · · ar(t)} of r nonnegative functions
over interval [a, b], and a nonnegative mixing matrix X ∈
R

r×n
+ , which can provide an approximate linear description

of the original data as follows:

yi(t) ≃
r

∑

j=1

aj(t)xji

such that aj(t) ≥ 0, xji ≥ 0

∀t ∈ [a, b],

1 ≤ j ≤ r, 1 ≤ i ≤ n.

Factorization rank r ≪ n is provided, as well as a set
F of parametrizable functions containing the dictionary
(A ⊂ F). In this work, we consider functions that are

linearly parametrizable through a finite number of param-
eters, i.e. that can be described as a linear combination of
d fixed basis functions {π1(t), π2(t), · · · πd(t)}:

aj(t) =
d

∑

k=1

πk(t)bkj ∀1 ≤ j ≤ r.

Coefficients bkj expressing function aj(t) ∈ A in that basis
are stored in a coefficient matrix B ∈ R

d×r (each of its
columns b:j ∈ R

d describing a function aj(t) ∈ A). We
also introduce the set F+([a, b]) ⊂ R

d, which is the set of
coefficients describing functions in F that are nonnegative
over interval [a, b], i.e.

b:j ∈ F+([a, b])⇔ aj(t) =

d
∑

k=1

πk(t)bkj ≥ 0 for all t ∈ [a, b].

To solve the (F-NMF) problem, we need to introduce
some assumptions on the input functions in Y. We con-
sider two cases:

1. Functions are square-integrable over interval [a, b],
and the integral of their product with any basis func-

tion is computable, i.e. we know
∫ b

a
πj(t)yi(t) dt.

2. Functions are known form fixed discretization points,
denoted {τl}ml=1 ⊂ [a, b] and are represented using
column vectors {y:i}ni=1 ⊂ R

m with yli = yi(τl).

This leads to the following two finite-dimensional formu-
lations of (F-NMF), where x:i denotes the ith column of
matrix X and basis functions are grouped in row vector
π(t) = (π1(t) · · · πd(t)):

min
B,X

n
∑

i=1

∫∫∫ b

a

(yi(t)− π(t)Bx:i

)2
dt

integrable functions

(integral cost)

or min
B,X

n
∑

i=1

m
∑∑∑

l=1

(

yli − π(τl)Bx:i

)2

only observations

(sum cost)

s.t. b:j ∈ F+([a, b]), xji ≥ 0 ∀ i, j (1)

These formulations differ in the way they assess the
accuracy of the reconstructed functions: in the first case,
named integral cost, the difference between an input signal
yi(t) and its approximation is measured using the (squared)
functional L2 norm, while the second sum cost formulation
only sums the (squared) differences at the {τl}ml=1 obser-
vation abscissas (discretization points).

Interestingly, these two costs can be analyzed at once
using the following equivalent formulation, with matrices
Z and M defined in Table 1 below:

min
B,X

n
∑

i=1

−2z⊤
:iBx:i + x⊤

:iB
⊤MBx:i s.t. (1) (F-NMF)

Note that the sum case can be seen as an approxima-
tion of the integral one, as one can approximate integral
∫ b

a
f(t)g(t) with the Riemann sum b−a

m

∑

τl
f(τl)g(τl) us-

ing only values at discretization points.
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integral cost sum cost

Z ∈ R
d×n zji =

∫ b

a
πj(t)yi(t) dt

∑

τl
πj(τl)yli

M ∈ R
d×d mji =

∫ b

a
πj(t)πi(t) dt

∑

τl
πj(τl)πi(τl)

Table 1: Matrices Z and M for unified formulation of (F-NMF)

2.2. A generalized HALS for F-NMF

We propose to solve the (F-NMF) problem with an
adapted version of HALS (Algorithm 1) that will update
alternatively the columns of A (through their coefficients
contained in matrix B) and the rows of mixing matrix X.
As the considered problem is no longer symmetric, the
updates of A and X are now different, and we described
them in turn below.

Update of columns in B. To update the columns in B,
one must minimize the cost

C(B,X) =
∑

i

−2z⊤
:iBx:i + x⊤

:iB
⊤MBx:i

with respect to one column b:k at a time, while keeping all
the other columns of B and matrix X fixed. The gradient
of the cost with respect to b:k is

∂C

∂b:k
(B,X) = 2(−Zx⊤

k: +M
∑r

j=1 b:jxj:x
⊤
k:)

Ignoring the nonnegativity constraint, the solution of
this problem can be obtained by canceling the gradient:

∂C

∂b:k
(B,X) = 0⇒Mb:k =

Zx⊤
k: −M

∑

j 6=k b:jxj:x
⊤
k:

xk:x
⊤
k:

To take the nonnegativity constraint b:j ∈ F+([a, b])
into account, one simply projects the unconstrained solu-
tion on set F+([a, b]) using a suitable metric (this is due
to the fact that cost C is quadratic in b:k), and obtain
the following update for the columns in B: (we used that
matrix M is invertible)

b:k ←
[

(M)−1Zx⊤
k: −

∑

j 6=k b:jxj:x
⊤
k:

xk:x
⊤
k:

]

F+([a,b])

The projection operator onto F+([a, b]), denoted as
[·]F+([a,b]), is not as straightforward to compute as in the
case of standard HALS (for which projection over non-
negative vectors is a simple thresholding operation, see
Algorithm 1) and, in particular, nonnegativity of the coef-
ficients is in general not equivalent to nonnegativity of the
function. Nevertheless, computing this projection is possi-
ble, and is presented in Section 3 in the case of polynomials
and splines.

Update of rows in X. To update rows in X, we compute
the gradient of the cost with respect to xk:

∂C

∂xk:
(B,X) = 2b⊤:k(−Z +M

∑r
j=1 b:jxj:)

Cancellation of the gradient followed by projection onto
the feasible set (xk: ≥ 0) provides the update:

xk: ←
[

b⊤:kZ −
∑

j 6=k b
⊤
:kMb:jxj:

b⊤:kMb:k

]

+

(where [·]+ the straightforward projection over nonnega-
tive reals: [ξ]+ = max{ξ, 0}).

The pseudo-code for F-HALS, our adapted version of
HALS, can be found in Algorithm 2, including the num-
ber of floating point operations for each statement. Be-
sides the two updates described above, we normalize (or
scale) all rows of X after each full update according to
xk: ← xk:

(xk:x
⊤

k:
)1/2

(scaling the columns of the B matrix ac-

cordingly), and similarly normalize the columns of B after
each full update with b:k ← b:k

(b⊤

:k
Mb:k)1/2

(while scaling the

rows of the X matrix accordingly).

Algorithm 2 F-HALS

Require: matrices Z,M , rank r, initial B ∈ R
d×r and

initial X ∈ R
r×n

M1 = M−1Z

while Stop Condition not encountered do
B ← updateB(M1, M , B, X)
X ← updateX (Z, M , B, X)

end while

function updateB(M1, M , B, X)
P = M1X

⊤, Q = XX⊤ ⊲ (2n− 1)r(d+ r) flops

for b:k in B do
t = p:k −

∑

j 6=k b:jqjk ⊲ 2d(r − 1) flops

b:k ← Projection(t/qkk) ⊲ P flops
end for
for b:k in B do ⊲ Normalization

nb← (b⊤:kMb:k)
1/2 ⊲ 2d2 + 2d− 1 flops

b:k ← b:k/nb, xk: ← xk: ∗ nb ⊲ d+ n flops

end for
return B ⊲ O(rP + nrd)

end function

function updateX(Z, M , B, X)
P = B⊤Z, Q = B⊤MB ⊲ (2d−1)r(n+d+r) flops

repeat min(1 + ρX/2, 10) times
for xk: in X do

t = pk: −
∑

j 6=k qkjxj: ⊲ 2n(r − 1) flops

xk: ← max(0, t/qkk) ⊲ 2n flops

end for
until no more progress
for xk: in X do ⊲ Normalization

nx← (xk:x
⊤
k:)

1/2 ⊲ 3n− 1 flops

xk: ← xk:/nx, b:k ← b:k ∗ nx ⊲ n+ d flops

end for
return X

end function ⊲ O(nrd)

We also use the acceleration technique introduced in
[15], which consists in performing the first for loop of the
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updates several times. Note that the matrices Z, M and
M1 = M−1Z can be pre-computed. Looking at the up-
date of B, the projection into the set of nonnegative func-
tions can be very costly, so that no gain is likely to be
achieved when repeating the corresponding for loop. Con-
sidering now the update of X, we see that the ratio be-
tween the number of flops needed for one complete itera-
tion and the number of flops for iterations doing only the
first for loop is equal to:

ρX = 1 +
(2d− 1)(d+ r + n) + 4n+ d− 1

2nr

Using the results obtained for HALS updates in [15], up-
date of matrix X is performed max{1 + ρX

2 , 10} times
before alternating (updates are also stopped when the im-
provement is no longer significant, see [15]).

As this acceleration scheme does not modify the order
of complexity of the algorithm, we can say that updating
both matrices B and X can be done with a total com-
plexity of O(rP + nrd) where P the complexity of the
projection (this estimate is based on r < d < n).

3. Projection onto the set of nonnegative functions

To perform theB update in F-HALS we need to project its
columns onto the set F+([a, b]), so that the functions used
in the factorization remain nonnegative. This projection,
which is performed on a vector of coefficients f ∈ R

d, can
be obtained as the solution of the following minimization
problem: [f ]F+([a,b]) is the minimizer of

min
g
‖f − g‖2M s.t. g ∈ F+([a, b]) (2)

min
g

(f − g)⊤M(f − g) s.t. g ∈ F+([a, b])

⇔min
g
||L(f − g)||22 s.t. g ∈ F+([a, b]).

Note that matrix M (defined in Table 1) appearing in
the objective defines the metric used for the projection (it
actually comes from the Hessian of the cost function with
respect to a column of B). It is symmetric and positive
definite, so that it can be expressed as M = L⊤L with
L ∈ R

d×d.
The objective function is easy to handle, since it is

a convex quadratic in g, and the main difficulty is the
constraint g ∈ F+([a, b]). We now explain how this mini-
mization problem can be solved when the set F contains
polynomials or splines.

3.1. Projection onto nonnegative polynomials

When F is the set of univariate polynomials with some
fixed maximum degree, one can use any basis of polyno-
mials such as the monomial basis or the Chebyshev ba-
sis. These basis allow to write a degree d polynomial as
f(t) = π(t)f where f is a vector in R

d+1. In this work, we

use Chebyshev basis as in [16] in order to attempt avoiding
issues with ill-conditioning.

To express that a univariate polynomial is nonnegative
we use the sum-of-squares technique (SOS). Indeed, it is
known (see e.g. [17]) that a univariate polynomial a(t) is
nonnegative if and only if it is SOS, meaning that it can
be written as a(t) =

∑

i(hi(t))
2 for some polynomials hi(t)

(actually, two such polynomials are sufficient).
To express nonnegativity on the considered interval

[a, b] we use the Markov-Lukács theorem. It states in the
case of an even degree d that nonnegativity over interval
[a, b] = [−1, 1] is equivalent to

g ∈ F+([−1, 1]) ⇔ g(t) = a(t) + (1− t2)b(t)

where a(t) and b(t) are two nonnegative polynomials (with
respective degrees d and d − 2). The case of odd degree
polynomials is given by (4) in the next section, and an ap-
propriate change of variable allows to adapt the condition
for any interval [a, b].

Moreover, sum of squares polynomials can be expressed
using positive semidefinite matrices [18], which can be
optimized very efficiently as semidefinite programs using
interior-point algorithms (see e.g. [19]). Indeed, a degree
d polynomial a(t) is SOS if and only if

a(t) =
∑

i(π(t)hi)
2 = π(t)

∑

ihih⊤

i
π⊤(t) = π(t)Qπ⊤(t)

where Q is a positive semidefinite matrix in R
( d
2
+1)×( d

2
+1)

(since it is a sum of positive semidefinite rank-one terms
hih

⊤
i ), called the Gram matrix associated to a(t). Coeffi-

cients a can be easily recovered from matrixQ, in way that
depends on the chosen basis. For example, in the mono-
mial basis, we have ak =

∑

i+j=k qij and in the Chebyshev

basis ak =
∑

i+j=k
qij
2 +

∑

|i−j|=k
qij
2 . Therefore, using an

appropriate matrix G, we have a = G vec(Q).
Using this equivalence it is possible to obtain the pro-

jection as the solution of the following semidefinite pro-
gram:

min t

s.t. (u, t) ∈ L
d+1 Lorentz cone, ||u|| ≤ t

A ∈ S
d/2+1,B ∈ S

d/2 Semidefinite cones

u = L

(

f −
[

G G′
]

[

vec(A)
vec(B)

])

u = L(f − g)

G′ is such that G′ vec(B) is the vector of coefficients of
(1 − t2)b(t). Figure 1 illustrates this result of such a pro-
jection.

3.2. Projection onton nonnegative splines

As splines are piecewise polynomials, it is expected
that an approach similar to the one presented above al-
lows to project splines onto the nonnegative set. We con-
sider in this work splines of degree 3, represented using the
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Figure 1: Projection of a degree 8 polynomial onto the set of non-
negative polynomials.

B-Spline basis, which can be computed using the Cox-de
Boor recursion formula:

Bi,0(t) =

{

1 if t ∈ [ti, ti+1]
0 otherwise.

(3)

Bi,k(x) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+k+1 − x

ti+k+1 − ti+1
Bi−1,k−1(t)

The basis consists of all the Bi,3(t) polynomials. The
set of {ti} abscissas are the interior knots of the splines.
To consider a closed interval, the first and the last knot
are repeated 4 times. Each basis element is nonzero over
4 intervals (including length zero intervals) and is a cubic
polynomial over these intervals.

Traditionally, splines are analyzed over interval [0, 1].
A cubic polynomial is nonnegative on this interval if and
only if it can be expressed as (Markov-Lukacs):

f(t) = f1(t)t+ f2(t)(1− t) (4)

with f1, f2 two quadratic nonnegative polynomials. More-
over, a quadratic polynomial f1(t) = a1x

2 + b1x + c1 is
nonnegative if and only if a1, c1 ≥ 0 and b21 ≤ 4a1c1. Us-
ing a (convex) rotated quadratic cone

Qr = {(x1, x2, x3) st. 2x1x2 ≥ x2
3, x1, x2 ≥ 0}

this nonnegativity condition on f(t) = at2+bt+c becomes
exactly (a, c, b/

√
2) ∈ Qr. Hence a cubic polynomial is

nonnegative over [0, 1] if and only if it can be written as

f(t) = (a1 − a2)t
3 + (b1 − b2 + a2)t

2 + (c1 + b2 − c2)t+ c2

with q1 = (a1, c1, b1/
√
2) ∈ Qr and q2 = (a2, c2, b2/

√
2) ∈

Qr. Hence we can write the vector of coefficients of f as
a linear transformation of q1 and q2, i.e. f = Q(q1, q2)

⊤.

For every non-empty interval [ti, ti + 1], coefficients of
the corresponding cubic polynomial can be expressed as a
linear mapping of the coefficients of the four B-Splines that
are nonzero over this interval, gi. This linear map Ni can
be computed from the definition in (3) and is invertible.
Therefore, B-Splines coefficients can be expressed with a
linear map applied to elements of a rotated quadratic cone:

gi = N−1
i f = N−1

i Q(q1, q2)
⊤ with q1, q2 ∈ Qr. (5)

Imposing constraint (5) over all intervals ensures the
nonnegativity of the spline created by the coefficients g. If
k interior knots are used, k+2 basis splines are necessary
over the k − 1 nonzero intervals and the problem is:

min t

s.t (u, t) ∈ L
k+2

q1i ∈ Qr, q2i ∈ Qr ∀i = 0, · · · k − 2

gi = N−1
i Q(q1i, q2i)

⊤ ∀i = 0, · · · k − 2

u = L(g − f)

Note that each gi is a sub-vector of g (gi = g[i : i + 4])
and that each coefficient in g appears in several gi.

An example of projection using this method is pre-
sented in Figure 2, together with another approach that
imposes the B-spline coefficients to be nonnegative, but
not the spline itself (as proposed in [20] and [21], see also
the next Section). Splines with nonnegative B-Splines co-
efficients are always nonnegative, but there exist nonneg-
ative splines that cannot be described in such a way [22].
Therefore, this second approach is less accurate that pro-
jection described above.

0.0 0.2 0.4 0.6 0.8
−1.5

−1.0

−0.5

0.0

0.5

1.0

Function f
Projection of f onto the nonnegative set (0.027)
Projection of f using nonnegative coefficients (0.033)

Figure 2: Example of projection onto the set of nonnegative splines,
using a spline with 9 equally spaced interior knots. The number
in parenthesis is the value of the cost function (i.e. the squared
distance).

4. Prior work on functional NMF

Before testing our proposed F-HALS algorithm we sum-
marize existing work on the functional NMF problem. Sev-
eral authors recently considered the F-NMF problem where
input functions yi(t) are known at some observed dis-
cretization points (this data is collected in matrix Y ),
corresponding to what we called the sum cost. To tackle
the problem, they work with an NMF-like factorization
Y ≈ AX where columns in matrix A are forced to cor-
respond to the discretization of parametrizable functions
(meaning that each element in a given column is obtained
by evaluating a parametrizable function on an observation
point). Three main approaches have been developed, and
all of them optimize a matrix of parameters describing the
functions that in turn define the columns of matrix A.

Using unconstrained parameters: nonlinear least-squares.
Debals et al. propose in [16] a nonlinear parametrization
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of the functions defining matrix A. They rely on the pre-
viously described SOS technique to express nonnegativ-
ity, and use the coefficients of the polynomials appearing
in those sums of squares as parameters. The weight ma-
trix X is also represented with xij = z2ij . Note that all
parameters in this formulation (for both A and X) are
now free (no constraints needs to be enforced), so that the
NMF problem becomes an unconstrained non-linear least-
squares problem, featuring a non-convex objective func-
tion, to be solved using a standard solver.

If d is the degree of the polynomials in A and m the
number of discretization points at which the polynomials
are observed, one iteration in the least squares solver can
be computed in O(dnr) flops. As d < m, the asymp-
totic complexity per iteration is lower than for HALS up-
dates. Moreover, the authors observed experimentally that
this method needed fewer iterations than HALS to con-
verge, and that the features obtained after convergence
are smooth.

However, this method appears to be very slow com-
pared to HALS for problems with less than 103 discretiza-
tion points. Moreover, its extension to other parametriz-
able functions would involve finding an unconstrained para–
metrization for them, which may not be straightforward.

Using nonnegative parameters: nonnegative basis functions.
Closer to our approach, one can consider that matrix A

can be described as A = ΠB, where Π contains the dis-
cretization over m points of d nonnegative basis functions
(πij = πj(τi) ≥ 0 ∀i, j). Imposing coefficients in B to be
nonnegative is then sufficient to ensure the nonnegativity
of A (but may not be necessary).

This approach has been considered when matrixΠ con-
tains B-Splines by Backenroth [20] and Zdunek et al. [21].
This problem, closer to the original NMF problem, can be
solved in an efficient way and provides smooth features.
However, constraining B to be nonnegative is a stronger
constraint than strictly needed. Indeed, B-Splines com-
bined using some negative coefficients can still be non-
negative, and it has been proven than estimating nonneg-
ative functions using B-Splines with nonnegative coeffi-
cients may leads to a poorer reconstruction [22].

Using constrained parameters: arbitrary basis functions.
Suppose again that matrix A can be described as A =
ΠB, where Π is the discretization over m points of d basis
functions, which can now be arbitrary (i.e. not necessarily
nonnegative). It is then possible to ensure the nonnega-
tivity of A by constraining parameter matrix B. If the
mixing matrix X is fixed, this constrained NMF problem
is convex and can be described as a quadratic problem. A
method using active sets is suggested in [23] for Gaussian
Radial Basis Functions, while a method using Alternating
Direction Method of Multipliers (ADMM [24]) is suggested
in [25] for B-Splines. The active-set method leads to a rela-
tively large computational complexity for large-scale prob-
lems [23], while the ADMM method is more suitable. Us-

ing indicator function Φ(A) =
∑

i,j φ(aij), with φ(a) =∞
if a < 0 and 0 otherwise, this method solves the following
problem to update A:

min
A,B

1

2
||Y −ΠBX||2F +Φ(A) st. A = ΠB (6)

via iterations, using projection [ξ]+ = max{0, ξ}, τ > 0
and Π† = (Π⊤Π)−1Π⊤:

Bk+1 = Π†
[

Y X⊤ +Λk + τAk

](

XX⊤ + τIr
)−1

Ak+1 =
[

ΠBk+1 − τ−1Λk

]

+

Λk+1 = Λk + τ(Ak+1 −ΠBk+1).

Note that in this approach, nonnegativity of the func-
tions in the dictionary is only ensured at the discretiza-
tion points considered in A. Also, the presented scheme
updates matrix A, and not the matrix of coefficients B.
Coefficients are thus not directly accessible. Nevertheless,
when the algorithm converges it leads to A = ΠB.

The F-HALS algorithm proposed in Section 2 also cor-
responds to this third approach, using A = ΠB, where Π
is arbitrary while the coefficients B are constrained to en-
sure nonnegativity. However it differs from previous work
in several ways: first, we do not explicitly compute matrix
A, and the coefficients B are used instead. Note that in
principle this allows working with an infinite-dimensional
matrix A (i.e. infinitely many observation points), which
is in essence what we do when using the integral cost for-
mulation. Then, we ensure the nonnegativity of the func-
tions in A over the entire considered interval, and not only
at discretization points, using the same parametrization as
in [16]. This is ensured using projections (see Section 3,
for both polynomials and splines), which is the main new
ingredient in our approach.

5. Experimental results

In this section, we assess the performance of the F-
HALS algorithm (Algorithm 2) through experiments both
over synthetic and real signals. Our method is compared
with standard HALS and some of the methods described
in the previous section.

Unless stated otherwise, the input signals we use are
created as Y = AX +N where N ∈ R

m×n is an additive
Gaussian noise with a chosen signal-to-noise ratio (SNR).
Matrix X ∈ R

r×n is randomly generated using a normal
distribution N (0, 1) with negative values replaced by zero.
Matrix A contains the discretization over m points of r
functions, which can be either random nonnegative poly-
nomials, random nonnegative splines or real reflectance
signals (coming from the U.S. Geological Survey (USGS)
database [26]1). Discretization points are equally spaced

1https://www.usgs.gov/labs/spec-lab/capabilities/spectral-
library
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over [−1, 1], including for the reflectance signals as they
are closer to polynomials and splines in this configuration
(it improves the best possible recovery).

Using such an artificially created synthetic dataset lets
us assess the error compared to the ground truth for in-
put signals Y ∗ = AX. If B̄ and X̄ are the matrices
recovered by the algorithm (with Ā = ΠB̄), we compute
the (relative) residue error as res = ||Y ∗ − ĀX̄||/||Y ∗||.
We can also evaluate the quality of the recovered signals
(Ā) with respect to the original signals (A). To do so,
it is important to remark that a factorization is defined
up to permutations and scaling of the columns of Ā and
rows of X̄. Therefore we must first find the optimal per-
mutation and scaling before evaluation the quality of re-
covery. Once the best Ā is found, each of its column āi

is compared to the columns ai of A, using the signal-to-
interference ratio (SIR) proposed in [1], that is SIR(ā,a) =

10 log
(

||γā||22
||a−γā||2

2

)

, where γ minimize ||a−γā||22. The same

is done for the rows of X̄.

In our experiments, we use a Chebyshev basis to repre-
sent polynomials and B-Splines to represent splines. Our
algorithms are compared to several other methods con-
straining the columns of matrix A in NMF problem to
be the discretization of continuous functions. We imple-
mented these methods based on the cited papers, and list
them below:

• HALS: standard HALS algorithm applied on NMF.

• P-LS:A contains nonnegative polynomials, represented
using unconstrained parameters. Problem is solved
using a nonlinear Least Squares solver [16].

• PS-HALS and PI-HALS: our F-HALS algorithm us-
ing polynomials, respectively with sum cost and with
integral cost.

• S-MU:A contains splines with nonnegative B-Splines
coefficients. Problem is solved using Multiplicative Up-
dates [21].

• S-ADMM:A contains nonnegative splines, represented
using constrained parameters. Problem is solved using
the Alternative Direction Method of Multipliers [25]

• SS-HALS and SI-HALS: our F-HALS algorithm us-
ing splines, respectively with sum cost and with integral
cost.

Projections in F-HALS are computed using conic pro-
grams solved by MOSEK [27]. Algorithms are stopped
when cost function ||Y −ĀX̄|| no longer improves, namely
when |cost− previous cost|/cost < 10−7.

5.1. Quality of recovered signals

We first compare the signals recovered by our algo-
rithm to the vectors recovered by HALS. Each test uses

n = 50 observations and r = 3 basis elements. We used in
F-HALS functions parametrized with 21 coefficients: poly-
nomials of degree 20 and splines with 19 interior knots
regularly distributed in [−1, 1]. Basis signals in A are ei-
ther polynomials or splines with 21 coefficients (Figure 3)
or real reflectance signals of olivine, spessartine and hy-
persthene (Figure 4). When A contains polynomials or
splines and no noise is added, and the integral case is con-
sidered, the inputs of our algorithms are the functions in
Y . Otherwise the signals are discretized over m = 100
points for polynomials or splines and 414 points for the
real reflectance signals. Integrals needed to compute Z in
the integral case are approximated using a piecewise in-
terpolation of order 1 of the data, while matrix M is still
computed with integrals. When noise is added its SNR is
equal to 20 dB.
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Figure 3: Example of recovered signals. Up: polynomials, Down:
splines, Left: noise-free case, Right: noisy case. Our algorithm ob-
tains very similar performances in integral and sum case.

In Figure 3 we tested the performance of our algorithms
using the appropriate functional set F (polynomials if the
basis signals are polynomials and splines otherwise). We
observe that the signals recovered in the noiseless case are
similar for the three tested methods. However, when noise
is added to the signals, signals recovered by HALS are
less smooth than the signals recovered by our algorithms.
It is interesting to observe that the recovery of splines is
worse than for polynomials, even if the residues are sim-
ilar. A deeper inspection of the recovered signals shows
that they have an higher representation power than the
original signals, that can be recovered as a nonnegative
linear combination of the found signals. This phenomenon
occurs because the basis defined by the original splines
has a non-unique representation. We observed this kind of
behavior mostly on low-degree polynomials and on dense
splines (with many nonzero coefficients).

If we observe the recovered signals when A contains
real reflectance signals in Figure 4, we observe again that
the signals recovered by HALS are non-smooth in cases
with noise. Its residue is around 0.04 instead of 0.02 for
the others. However, HALS is much better in the noiseless
case with a residue around 4 ∗ 10−4 instead of 0.015, as it
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is able to describe the ”less smooth” parts of the signals,
unlike low-degree polynomials or splines. It is interesting
to notice that the residues of our methods does not change
much between the noise-free and the noisy case while it
is very different between these two cases for HALS. This
suggests that our methods are less sensitive to noise than
HALS.
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Figure 4: Example of recovered signals of spessartine. Left: noise-
free case, Right: noisy case. PS-HALS and PI-HALS obtains very
similar performance, like SS-HALS and SI-HALS.

5.2. Comparison between sum and integral cases

Using polynomials of degree 20 and splines with 19
interior knots, we compared the performance of our al-
gorithms using the sum or the integral costs. Figure 5
present the results for r = 3 polynomials of degree 12 with
n = 100 observations and m = [25, 50, 100, 150, 250, 500]
equally spaced discretization points in sum case. Residue
is computed over 15000 points equally spaced in [−1, 1].

Using polynomial signals, PI-HALS performs a bit bet-
ter when fewer discretization points are available, and the
same is observed for splines. This is expected as the in-
tegrals contain the perfect information about the data,
unlike the discretization. Increasing the number of dis-
cretization points improve of course the performance of
the algorithms using the sum cost, but increases also the
initialization time.

102

10−3

10−2

10−1
Evolution of the residues

PS-HALS
PI-HALS
SS-HALS
SI-HALS

Figure 5: Performance of our algorithms over polynomial signals. No
noise is added. Average over 10 problems.

In Figure 6, we observe the performance of our algo-
rithms using the same data as for the previous test ex-
cept that the basis elements are splines with 19 interior
knots and a noise of 20dB is added to the data. In this
case, the sum case seems slightly better than the integral
one, except when very few discretization points are avail-
able. However, during our experimentation we observed
that the necessarily approximate computation of the inte-
grals required for the integral case have a large influence

on the final result. Hence, the performance of the integral
case may be improved with a more accurate evaluation of
the integrals. Nevertheless, using the sum cost is already
quite robust. Therefore, based on the results obtained in
these tests, we recommend using the integral cost when
the input functions are known and the sum case if they
are provided as vectors.

102
10−2

10−1

100
Evolution of the residues

PS-HALS
PI-HALS
SS-HALS
SI-HALS

Figure 6: Performance of our algorithms over spline signals with
noise of 20 dB. Average over 10 problems.

5.3. Comparison with other approaches

Unless stated otherwise, the following tests are made
over polynomials of degree 12 and splines with 11 inte-
rior knots, with n = 100 observations as well as a noise
level of 20 dB. Tests are made over r = 5 real reflectance
signals when possible, otherwise r = 3 polynomial signals
of degree 12 are used. Each result is the average over 10
tests.

5.3.1. Performance on large datasets

To study their computational performance we run each
algorithm during 20 iterations for an increasing number of
observations and discretization points (n = m), over poly-
nomial signals. Figure 7 illustrates that one iteration of

103 104

n=m
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PS-HALS
PI-HALS
S-MU
S-ADMM
SS-HALS
SI-HALS

Figure 7: Time for 20 iterations without initialization for in-
creasing n = m. S-MU and S-ADMM display very similar
performances, as SS-HALS and SI-HALS.

HALS, S-MU and S-ADMM has O(mn) complexity, while
for LS it is only O(n) [16]. In contrast, time spent in com-
putations increases very moderately with n = m for our
methods, because they spend a large fraction of their com-
putational time on the projection step (more than 95% for
n = m = 104), which does not depend on n neither m.

Note that the initialization time is not presented in this
graph. For P-LS and our methods, this initialization can
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be quite costly, in O(mn), but must be computed only
once. All the presented algorithms are influenced by the
initial values of matrices A and X, and a way to find the
best solution is to run the algorithm with different initial
values. In this case, the initialization of our algorithms
and P-LS must only be computed once for all runs.

Among our methods, PS-HALS has a higher computa-
tional time. A look at the projections in this case shows
that matrixM is not as sparse as for the other approaches.
The lower sparsity of M slows down the projections (per-
formed by an interior-point method) and thus the algo-
rithm in general.

Increasing only the number of observations n, we ob-
served that the accuracy of HALS is significantly improved
while the improvement is less important for the other meth-
ods, especially when using polynomials. However, the
opposite is observed when increasing the number of dis-
cretization points m: better improvement for functional-
based methods compared to HALS.

5.3.2. Performance when number of coefficients varies

We analyze the influence of the size of the chosen para-
metrizable set F , that is the degree for polynomials or the
number of interior knots for splines. In Figure 8, we ob-
serve that our algorithms and P-LS spend more time in
computations when the degree d of polynomials increases,
and that this slowdown is more consequent for F-HALS.
For P-LS method, increasing d increases the size of the
least-square problem to solve, while for our methods it in-
creases the size of the projection problem. Moreover, we
observe than using higher-degree polynomials is beneficial
only until a certain point. The choice of the degree of the
polynomials is thus very important. The same observa-
tions can be made for splines if we increase the number
of interior knots, even though the increase in time is less
pronounced than for polynomials. Time performance of S-
MU and S-ADMM is not much influenced by the number
of interior knots of the splines.

We observe that S-ADMM obtains an slightly higher
residue than our methods, unlike S-MU that obtains sim-
ilar residues once the number of interior knots is larger
than 20. S-MU is also much faster than our methods when
we observe 100 signals. When we look at the best recov-
ery of the used reflectance signal using splines, we observe
that the spline coefficients are nonnegative. As S-MU uses
splines with nonnegative coefficients, it is not surprising
that it obtains good results in this configuration. How-
ever, when we compared the performances of our methods
to S-MU on nonnegative splines without imposing non-
negative coefficients, we observe that S-MU is not always
able to recover accurate signals (see for example Table 2).
Nevertheless, it is interesting to notice that using splines
with nonnegative coefficients can be accurate in some sit-
uations. Note that this assumption could also be used in
our F-HALS approach, and would accelerate its projection
step ; we leave the exploration of this idea for future work.
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Figure 8: performance for increasing degree (Top) or increasing num-
ber of interior knots (Down). Left: needed time, Right: residues.
S-MU has similar time performances than HALS and obtain a sim-
ilar residue than our methods when the number of interior knots is
higher than 30.

Method Time Its SIRA SIRX Res
S-MU 0.26 115.25 13.90 36.70 18

SS-HALS 1.89 31.50 48.27 42.27 1

Table 2: performance of S-MU and SS-HALS over spline signals with
20 dB noise, r = 3, n = m = 500, number of interior knots = 20.
Test over 10 problems and 10 initializations. Time is expressed in
seconds and Its stands for the number of iterations. Res are the
residuals multiplied by 103.

5.3.3. Performance over noisy data

We now pay attention to the performance of the algo-
rithms over various levels of noise on the data, as displayed
on Figure 9. We observe that when using polynomials or
splines as basis signals solutions appear to be almost in-
sensitive to the noise, unlike the vector-based HALS. The
computational effort required by all methods appears to
be independent of the level of noise.
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Figure 9: performance for different noise levels. Rightmost value is
the noise-free situation (replacing the 50 dB mark). All algorithms
obtain similar residues except HALS.

5.3.4. Detailed analysis of tests with reflectance signals

Table 3 contains the average results of the considered
algorithms over n = 250 observations of reflectance signals
using 10 random input datasets, each with 10 different
starting values (100 tests in total). We chose the number
of observation not too high but not too low either, in order
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to have accurate results for polynomials and spline-based
methods. Noise level is 20dB on which functional NMF
provides good results (see Figure 9). Moreover, based on
results from Subsection 5.3.2, we used polynomials of de-
gree 20 and splines with 30 interior knots, with a noise
of 20dB. We observe that splines obtain better residues
than polynomials, leading to lower residues than HALS.
Moreover, methods using splines are generally faster than
methods with polynomials.

We see also that S-ADMM obtains a significantly higher
residue than the other methods using splines. We could ob-
serve during our tests that this behavior occurs for datasets
with many observations. For n = 100 for example, the re-
sults of S-ADMM are comparable to the other methods
using splines. Our method using splines in the sum case
leads to the best residue.

The method leading to the closest signals on average
is P-LS. In general, HALS-based methods seem to obtain
matrices A and X with worse SIR than the other meth-
ods if we assess them by looking only at permutation and
rescaling (PS) of the obtained signals. However, the rep-
resentation power of the recovered basis is similar to that
of the other methods (and sometimes even better) when
using the best nonnegative linear combinations (LC) of
obtained matrices Ā and X̄ to compute the SIR.

We can observe in Figure 10 the evolution of the residues
with respect to elapsed time (including time for initializa-
tion). Our stopping criterion appears to be in general well-
adapted to the tested methods, as they all seem to have
converged. In this example, S-ADMM appears to stop a
bit too early while P-LS stops a bit too late, while the other
methods stop at the right time. The S-MU and HALS
methods are significantly faster than the others here.
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each method with respect to time. A point is plotted every 10 iter-
ations. The y-scale of the zoom is no longer in log-scale to improve
readability. The three polynomial methods converge in a similar
way, while ADMM is the only spline-based method stopping with a
residue similar to the polynomial ones.

6. Discussion and conclusion

Extending the NMF framework to handle polynomial
or spline signals leads to functional NMF, which enables
the recovery of smoother features and is less sensitive to
noise when compared to standard NMF applied to dis-
cretized signals.

In this work we adapt the HALS algorithm to this ex-
tension. Our new F-HALS algorithm requires the ability
to project over sets of nonnegative parametrizable func-
tions, which is computationally feasible for polynomials
and splines. Two cost functions can be considered, both
competitive with existing approaches. Integral cost is rec-
ommended when integrals involving the input signals are
computable, while the sum cost can be used if only dis-
cretized values are available.

Our algorithms are naturally well-suited to deal with
data originating from nonnegative polynomials or nonneg-
ative splines. However, they also lead to good results
for (relatively) smooth real-world reflectance signals. The
choice of the degree of parametrization is crucial to obtain
as accurate results as possible. The degree of parametriza-
tion is the degree of the used polynomials or the number
of interior knots of the splines. This degree should be not
too large when using our methods as it heavily impacts
their computational time. In contrast, the computational
effort spent by our method does not increase much with
the problem size compared to existing approaches, which
makes it possible to handle large-scale problems (i.e. with
large numbers of observations or discretization points).

For now, our algorithms apply only to polynomials and
splines, but it is straightforward to extend them to any lin-
early parametrizable function provided that one can com-
pute the projection over the corresponding nonnegative
set.
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