arXiv:2002.10289v2 [cs.CR] 3 Jun 2020

EL PASSO: Privacy-preserving, Asynchronous Single Sign-On

Zhiyi Zhang Michat Krol Alberto Sonnino Lixia Zhang Etienne Riviere
UCLA UCLouvain Facebook Calibra UCLA UCLouvain
University College London
Abstract OpenID Connect (OIDC) EL PASSO

EL PASSO is a privacy-preserving Single Sign-On system.
It implements anonymous credentials, enables selective at-
tribute disclosure, and allows users to prove properties about
their identity without revealing it in the clear. EL PASSO
offers the necessary tradeoff between privacy and user ac-
countability by allowing the recovery of a misbehaving user’s
identity through a strict process involving multiple authori-
ties. EL. PASSO is the first single-sign-on system to combine
the security of anonymous credentials with the simplicity
of use of Open ID Connect. It is deployed as a WebAssem-
bly client module that can be cached by users’ browsers. It
does not require additional software or hardware and stream-
lines traditionally difficult tasks in anonymous credentials that
are multi-device support, device theft recovery, and privacy-
preserving two-factor authentication. Our implementation
using PS Signatures and WebAssembly achieves 39x to 180x
lower computational cost than previous anonymous creden-
tials schemes, and similar or lower sign-on latency than Open
ID Connect.

1 Introduction

Single Sign-On (SSO) is an answer to the complexity and
fragility of using individual passwords on the web, i.e., lead-
ing to reuse and leaks [42]. SSO enables the use of a unique
identity provided by an Identity Provider (IdP). Users authen-
ticate themselves to services (called Relying Parties—RP) with
tokens provided by their IdP. SSO improves overall web se-
curity [30] and enables the generalization of good security
practices such as the use of 2-factor authentication (2FA) [55].

Limitations of OpenID Connect. OIDC is a dominant SSO
solution used by over a million websites in 2020 [70]. Ma-
jor web players such as Google or Facebook play the role
of IdPs, offering so-called social login features to RPs previ-
ously registered with their services. However, while facilitat-
ing identity management, the wide adoption of OIDC raises
concerns on users’ privacy [12,28]. These concerns are direct
consequences of the coupled mode of operation of OIDC,

<—A—>| RP |
=

| 1P |
\

\

\
token % \
generator \

\
.t .l‘*a;;,fv;;

User User

—A\—> Privacy-breaking
El Identity token

Figure 1: Sign-on in OIDC and in EL PASSO.

—» Synchronous

— — — — & Asynchronous

illustrated in Figure 1. Each login request to an RP requires
first an interaction between the user and the IdP for authenti-
cation and then another interaction between the RP and the
IdP to validate credentials. An IdP is, therefore, aware of its
users’ every sign-on attempt and the nature of visited web-
sites. Similarly, any RP may learn users’ identity information
(e.g., email or social media account) when interacting with
the IdP, even though this is not strictly necessary for authen-
tication. OIDC extensions have been proposed to increase
users’ privacy but only partially address these problems, as
they either leak users’ global identifiers to the RPs [26] or do
not protect against the IdP [2]. In addition to privacy concerns,
the synchronicity in OIDC impacts availability: Users cannot
connect to an RP if their IdP is offline. This requirement of
availability can prevent small organizations (e.g., digital rights
NGOs) from offering an alternative to tech giants’ IdPs and
counter Internet consolidation [3].

State of the art. Anonymous credentials [9, 18,57, 58] have
been identified as a sound basis for preserving users’ pri-
vacy in SSO [5]. They allow decoupling the interactions be-
tween the RP and the IdP and enable unlinkable authentica-
tion across RPs. This prevents the inference by the IdP of
its users’ visited websites. Unfortunately, existing authenti-
cation schemes using anonymous credentials [1, 19,39, 62]

present limitations that prevent their adoption as a drop-in
replacement of OIDC. First, they suffer from poor perfor-
mance [1,9] or overheads increasing with the number of un-
linkable uses and therefore with the number of RPs [57,58].
In addition, they require pre-installed specific software and
manual management of the cryptographic material at the user
side [38,39,60]. The tasks are too complicated for most Web
users [64,75], hindering the deployment of those systems at a
large scale. Finally, they do not consider multi-device scenar-
ios, are vulnerable in case of device theft, or do not support
2FA, i.e. the possibility for an RP to require a joint sign-on
operation by the same user but from two different devices.

We position that, in order to be adopted widely, secure
privacy-preserving SSOs must offer the same level of usability,
ease of deployment, and performance as OIDC.

Contributions. We present the design, security analysis, and
evaluation of EL PASSO, a practical privacy-preserving SSO
system, illustrated in Figure 1.

EL PASSO is asynchronous and offers unlinkable authenti-
cation and the strong privacy guarantees of anonymous cre-
dentials. The generation of authentication material by the
IdP is decoupled in time from its use by the client to sign
on at some RP. It enables minimal disclosure of information:
Users may share only elements necessary for a specific RP
or provide authenticatable personal properties to an RP, such
as being above a minimum age or coming from a certain
geographical area, without sharing their exact age or location.

The design of EL. PASSO acknowledges the practical con-
sideration that unbreakable anonymity is not desirable for
many online services. EL PASSO offers guardrails to the
risk of digital impunity associated with minimal disclosure of
information, by providing accountability guarantees to RPs
about users signing on their services. Users convicted of fraud-
ulent behaviors (e.g. authors of hate speech or harassment in
an online forum, or publishers of illegal content) can be even-
tually identified. This identification obeys a strict cooperation
process involving several authorities, whose number and iden-
tity must be announced by RPs using the feature.

At the same time, EL PASSO aims for ease of deploy-
ment by users, RPs, and IdPs. User-side operations are im-
plemented as a client module in WebAssembly [32] received
from the IdP and cached along with authentication material.
As a result, our platform does not require prior software in-
stallation or specific hardware and automatically manages
cryptographic material and client code using browser built-in
features. EL PASSO enables multi-device deployments: It is
robust against the theft or loss of a device and the secrets it
contains, and naturally supports 2FA without disclosing the
user’s phone or email address.

EL PASSO is built using PS signatures [59] and designed
to limit the amount of heavy cryptographic operations re-
quired for all parties. Our evaluation using representative user
devices and RP and IdP services hosted on Amazon EC2 indi-
cates that EL PASSO performance, costs, and scalability make

it amenable for large-scale deployments. Sign-on operations
only require one round-trip between the user-side client and
the RP, and while more computations are required at the user
side than for OIDC, their CPU cost is a factor of 39x to 180x
lower than for those of IRMA [1,9], a previous platform using
anonymous credentials. This results in comparable or even
lower sign-on latency compared to OIDC, e.g., only 250 ms
on a laptop and 800 ms on a Raspberry Pi representative of a
mobile device. Finally, implementations of the RP and of the
IdP scale vertically and horizontally in the cloud, and allow
throughput of more than 260 setup phases or more than 170
sign-on phases per second using only a 4-core VM.

Outline. We first refine our model and design goals in Sec-
tion 2. We provide an overview of the design of EL PASSO in
Section 3. We present its detailed construction, starting with
background on anonymous credentials and zero-knowledge
proofs in Section 4, followed by the protocol in Section 5
and its implementation in Section 6. We provide a security
analysis in Section 7. Our evaluation is given in Section 8. We
review related work in Section 9 and conclude in Section 10.

2 Design Goals

We start by defining our system and adversary models. We
follow up by specifying target properties for authentication,
privacy, accountability, availability, and ease of deployment.

2.1 System and Adversary Model

Our system model aligns with that of OIDC, with three ac-
tors. Relying Parties (RPs) are interested in allowing users
to sign up with their services without creating specific ac-
counts. Users trust IdPs for safeguarding their identity and
associated attributes, and for providing the client code imple-
menting user-side operations. RPs can choose which Identity
Providers (IdP) they trust for certifying the authenticity of
users. We assume that users employ a modern web browser
supporting sandboxed code execution and an integrated pass-
word manager (i.e., the ability to safeguard passwords or other
secrets under the user’s local credentials).

We consider the following adversarial model. IdPs are con-
sidered honest-but-curious: They do not modify the protocol
or deny service. Both IdPs and RPs may wish to break privacy
guarantees or obtain authentication information allowing to
impersonate users at correct RPs. RPs may arbitrarily deviate
from the protocol in addition to observing interactions with
their users. In particular, they can provide arbitrary code to
run in their users’ browsers. We consider, however, that this
code runs in isolation from the rest of the system, and notably
from the EL PASSO client that is obtained from the IdP. Users
may, finally, actively attempt to abuse or bypass authentica-
tion or accountability mechanisms. Note that the adversary
can control multiple corrupted entities simultaneously, e.g. set
up several RPs, or a combination of users and RPs.

Authentication

personal authentication
intra-RP linkability

only legitimate IdPs users can authenticate
prevent creation of Sybils within a domain

Privacy

selective attributes disclosure
provable personal properties
tracking protection

inter-RP unlinkability

user only discloses necessary attributes

user attributes’ properties attested by IdP

IdP not aware of user’s sign-ons

sign-ons across multiple RPs cannot be linked

Accountability

reliable identity retrieval misbehaving users identity can be revealed

Deployment

asynchronous authentication
no RP registration
browser-only

multi-device support

can sign on even if IdP temporarily unavailable
RP does not have to register with IdP
no software pre-installation required
support device theft & two-factor authentication

Table 1: Target properties of EL PASSO.

2.2 Target Properties for EL. PASSO

EL PASSO provides the properties listed in Table 1:

Authentication. EL PASSO only allows legitimate users reg-
istered with an IdP to sign up and on with an RP. It prevents
any other entity in the system from impersonating existing
user accounts created at RPs' (personal authentication).

Authentication requirements also include the prevention
of Sybil identities, disallowing a user from creating multiple
identities for the same domain. RPs can detect authentication
attempts made with credentials issued by an IdP for the same
user (intra-RP linkability).

Privacy. EL PASSO targets minimal disclosure of informa-
tion, i.e. the ability for users to control the amount of infor-
mation about their profile they wish to share with RPs. A user
can select which of their attributes (e.g. email address, but not
last name) should be revealed to an RP. Note that a user still
benefits from personal authentication when sharing none of
their personal attributes (selective attributes disclosure). A
user may even decide to only share authenticatable certifica-
tions of properties about their attributes, without disclosing
their values (provable personal properties). For instance, the
2005 Gambling Act of the United Kingdom [48] requires
users of online casinos to be at least 18 years old, and holds
online services responsible to enforce the regulation. In this
example, EL PASSO can provide a certificate that a specific
user is over 18 years old, while their actual age does not need
to be revealed.

EL PASSO prevents the tracking of users’ activity. It is
unfeasible for IdPs to track the sign-ons activity of their users
onto different RPs, to prevent profiling and the resulting leak-
age of personal information [46] (tracking protection). In
addition, in the absence of common information, it is impos-
sible to correlate multiple accounts created from the same
credential on different RPs (inter-RP unlinkability). For in-

I'This includes IdPs, who are not allowed to possess material for signing
on as a specific user at an RP, to prevent account abuse in case of a data leak.

stance, an account on one RP disclosing the real name of a
user cannot be correlated with another account, for the same
user but at another RP, that only revealed the user’s address.

Accountability. EL PASSO enables accountability of users,
mitigating the risks associated with anonymous identities,
and enabling privacy preservation for services such as online
democracy. If a user engages in reprehensible behavior such
as publishing illegal content or harassment, a set of author-
ities can eventually collaborate and hold them accountable,
in cooperation with the IdP (reliable identity retrieval). RPs
must announce the use of accountability, the set of authorities,
and the threshold number of authorities strictly necessary for
re-identification. RPs can validate that their users provide the
necessary identity recovery material upon sign-on.

Deployment. SSO services become a critical part of many
information systems [71]. Even large, highly redundant sys-
tems may experience downtimes, as exemplified by the recent
14-hour disruption of Facebook’s services in March 2019 [7]
or the Amazon AWS outage in 2018 [72]. In EL PASSO, a
user does not need to be authenticated by the IdP each time
they sign on with an RP; instead, users acquire their creden-
tials periodically and can connect to RPs even when the IdP
is temporarily offline (asynchronous authentication).

RPs do not need to register with IdPs to be able to trust
authentication information, and it is impossible for IdPs to
impersonate each other. The sign-on process is universal: RPs
do not need specialized operations for a specific IdP (no RP
registration). This improves system automation and mitigates
Internet consolidation [3], as RPs becomes more independent
and new, smaller IdPs can enter the market more easily.

On the user side, EL PASSO does not require specific
hardware (e.g., a trusted execution environment), physical
device (e.g., an external fingerprint reader or a smart card) or
extra network services to offer its functionalities. It does not
require, either, the installation of a specific software client,
and all user-side code runs as sandboxed code inside their
web browser (browser-only).

Finally, EL PASSO supports multi-device scenarios. It en-
ables users to easily register new devices (e.g., laptop, phone,
tablet) and supports easy identity recovery in case of the theft
of one device. It natively supports 2FA: An RP may request
and assess that users connect from two different devices in
order to sign on their services (multi-device support).

3 Overview of EL PASSO

A fundamental design principle of EL PASSO is the avoid-
ance of synchronous communication between RPs and IdPs.
User-side clients derive, instead, RP-specific tokens based on
material previously obtained from the IdP (Figure 1). The gen-
eration and use of tokens are divided into two asynchronous
phases (Figure 2). In the setup phase, the client obtains an
anonymous credential from the user’s IdP. In the sign-on
phase, the client prepares an RP-specific derivation of this

o Authenticate &
ﬁ | RequestID - |
|- - - - - - - =-=-=-= |
% | © ProvidelD |
2 g e = = |
©® unbiindiD

3 ..
e User -

K=

: P

s I > |

v | | -

3 @ VeriyD @ | verifyiD
(7] [|

Figure 2: EL PASSO uses two phases; (i) a setup phase where
the user obtains a credential from their identity provider, and
(ii) a sign-on phase where the user proves possession of their
credential to anonymously authenticate to websites.

credential based on what information the user decides to dis-
close, and proves the authenticity of this client to the RP.
The setup phase is executed periodically (e.g. once every few
days), while the sign-on phase is executed each time the user
logs in or creates an account on an RP.

Setup phase. The user first authenticates to their IdP and runs
RequestID to request a credential from the IdP (@) over a
random attribute s acting as user secret; s is hidden from the
IdP. Users can also specify which information info they need
to be embedded in their credentials, such as their email ad-
dress, names, or age. If the IdP successfully authenticates the
user, verifies the user’s knowledge of the secret s, and knows
the requested information about the user, it runs ProvidelD
to issue a credential embedding that information as well as a
long-term pseudonym Y unique to the user and a timestamp
tp marking the expiration date of the credential (®). The IdP
also keeps A" for the user in their database, where % is a pub-
lic parameter. The user-side client locally runs UnblindID to
unblind the received credential (®). Importantly, the IdP (or
anyone else) is unable to use the credential on behalf of the
user as this would require knowing the user secret s.

Sign-on phase. The user-side client connects to the RP and
executes ProvelD to prove knowledge of the credential issued
by the IdP (@). In this process, (i) the client locally random-
izes the credentials so that even if an attacker observes both
the RP and the IdP it cannot link the credentials to a specific
user of this IdP. (ii) The client provides the RP with the ran-
domized credential and the expiration time p, and selectively
discloses any subset of information info' embedded in the
credential, enabling selective attributes disclosure. The client
may also generate and include proofs about properties of the
attributes they do not wish to share in the clear, enabling prov-
able personal properties. (iii) The client locally generates a
group element uniquely derived from the user’s secret s and
the RP’s DNS domain name, and proves in zero-knowledge
its correctness; the RP uses this group element as the device-
specific user ID. Once the RP verifies the credential along

with the proofs, it considers the user as authenticated (®).

To verify that the credential was initially issued by a trusted
IdP, an RP must collect the public key of this IdP. Since
the setup and sign-on phases are asynchronous, the RP can
fetch the public key from the IdP domain directly, by issuing
a GET request over https to the IdP”. This requires the
IdP to be online for a sign-up operation (creation of a new
account), but the RP can cache this public key for future
sign-ons, enabling asynchronous authentication. Since the
credentials are randomized (as part of ProvelD) and the alias
{ changes for each RP without leaking s, a user can employ
the same credential to authenticate to different RPs. At the
same time, different sign-ons to different RPs are unlinkable
even if observed by the same adversary. A user cannot create
multiple accounts with a single RP since { is bound to the
user’s secret embedded in a credential and the RP’s DNS
domain name; it is infeasible to create two different over
the same RP’s DNS domain name from a single credential.

To mitigate risks of correlation of requests at different
RPs by the adversary, the timestamp #p should be rounded or
limited to denominations fixed by the IdP’; e.g. specifying an
expiration day, but omitting more detailed information such
as hours, minutes and seconds.

Finally, if support for reliable identity retrieval is required
by the RP, the client must provide and prove the correctness
of an El-Gamal encryption E of their long-term pseudonym Yy
encrypted under the public key of specific decryption authori-
ties, as part of the ProvelD operation. If the user misbehaves,
the RP discloses E to these decryption authorities, which
decrypt it to obtain /7, and then collaborate with the IdP to
recover the identity of the user. EL PASSO supports flexible
key management for decryption authorities—the ciphertext
is typically encrypted using threshold encryption, where at
least a threshold number of decryption authorities are needed
to recover A and, therefore, the user’s identifier.

Multi-device support. A user may add a new device and use
it to connect to RP accounts created with any of their older
devices. The new device needs to receive the secret s without
leaking it to any third party; this can be achieved as follows.
The new device generates an ephemeral public/private key
pair and sends the public key to the IdP. The user confirms
the new device at the IdP using one of the older devices,
and the user-side client encrypts s under the new device’s
public key. To ensure the integrity of the public key, the user
inputs a number on both devices used as salt. The IdP sends
the encrypted secret to the new device allowing it to request
credentials over s.

2The IdP cannot correlate a previous setup phase with the current sign-
on phase at this RP. This contrasts with synchronous designs such as
SPRESSO [26] where the collection of public parameters must happen via
Tor to prevent time-based attacks by the IdP.

3 Alternatively, instead of revealing the time-stamp upon execution of
ProvelD, the client could prove in zero-knowledge that the timestamp is
greater than the current date (but this requires a potentially expensive range-
proof).

Two-factor authentication. EL PASSO allows RPs to re-
quire two-factor authentication (2FA), i.e. that users connect
from two different devices for attesting their authenticity. Un-
der the principle of minimal disclosure of information, 2FA
does not require revealing an email address or phone number,
but only to use two different previously-enabled devices. This
requires, in addition to secret s, a device-specific secret 5.
The client includes s, during the setup phase making it a part
of the credentials. When the user connects with a given device
to the RP for the first time, they provide { and generate an
RP- and device-specific pseudonym {; derived from s, and
the RP’s DNS domain name. Similarly to £, {; are unlinkable
across domains and cannot be re-used by a malicious RP. The
RP is able to link the new device to the user account using
€ and adds {; to the list of authorized devices. Subsequent
logins using the same device requires only providing {; and
do not involve additional overhead. When requiring 2FA, an
RP simply checks that two subsequent logins are performed
from devices with different values of s,.

Device theft recovery. A user can declare the loss of a device
to their IdP. The IdP will stop issuing credentials for that
device. A thief able to unlock the secret storage of the stolen
device’s browsers would be able to connect to RPs, unless
2FA is required, but only until the IdP credential expires. It
will not be able to authorize new devices. Users do not lose
access to their RP accounts as long as they hold at least one
device (or two devices, if 2FA is required). A user can replace
their secret s using the following procedure. The user contacts
the IdP and asks for credentials on a new, blinded s'; from
now on, the IdP will not renew credentials for s to preserve
sybil resistance. The client connects to the RP and presents:
credentials over the old, expired s, {(s), credentials over the
new s’ and {(s). The RP replaces {(s) by {(s'), and stops
accepting credentials on s.

4 Building Blocks

We present our building blocks, anonymous credentials and
zero-knowledge proofs, and our cryptographic assumptions.

4.1 Anonymous Credentials

Anonymous credentials [21, 59] allow the issuance of cre-
dentials to users, and the subsequent unlinkable revelation
to a verifier. Users can selectively disclose some of the at-
tributes embedded in the credential or specific functions of
these attributes. EL PASSO requires a credential scheme
providing short and computationally efficient credentials, re-
randomization, unlinkable multi-show selective disclosure,
and blind issuance [21]. An anonymous credential scheme
can be defined by the set of algorithms below.

% Cred.Setup(1*) = (pp): define the system parameters pp
with respect to the security parameter A. These parameters
are publicly available.

< Cred.KeyGen(pp) — (sk,pk): run by the authority to gen-
erate their own secret key sk and public key pk from the
public parameters pp.

< Cred.Issue(sk,M;,M,,$) = (c): interactive protocol be-
tween the user-side client and the authority; the client ob-
tains a credential ¢ embedding the set of public attributes
M, and the set of hidden attributes M;, if they satisfy the
statement 0. Cred.Issue is composed of three algorithms:

+ Cred.PrepareBlindSign(pk, My, ¢) — (d, A, 0): run by
the client to generate the blind factor d, and the cryp-
tographic material A (embedding M},) over which the
authority blindly issues a credential.

% Cred.Sign(sk, M, A, 0) — (6): run by the authority to
issue the blinded credentials & over M, and A, using
their private key sk.

+ Cred.Unblind(d,) — (0): run by the client to unblind
G (using the factor d) to retrieve the credential G.

% Cred.Prove(pk,M,,M;,c,¢') = (M,,0,¢'): run by the
client to compute a proof ® proving possession of a cre-
dential ¢ certifying that the private attributes M), and the
public attributes M), satisfy the statement ¢/ 4

% Cred.Verify(pk,M,,0,0') = (b): run by any third party
verifier to verify that the credential represented by the
cryptographic material ® embeds M), as well as hidden
attributes satisfying the statement ¢/, using the public key
pk of the issuing authority.

All algorithms receive the security parameter A as an input
but we show it explicitly only for Cred.Setup. EL PASSO
uses PS Signatures [59] as the underlying credentials scheme
as it uses short, and computationally efficient credentials. We
use PS Signatures for the generation of credentials by the
IdP, and for the verification of credentials by RPs on both
known messages (e.g., timestamp #p) and hidden messages
(e.g., user’s secret).

4.2 Zero-knowledge Proofs

Zero-knowledge proofs are protocols allowing a prover to
convince a verifier that it knows a secret value x, without
revealing any information about that value. The prover can
also convince the verifier that they know a secret value x satis-
fying some statements ¢. Anonymous credentials extensively
employ zero-knowledge proofs to provide users with certified
secret values; users are successively able to prove to third
party verifiers that they hold secret values certified by specific
credentials issuers, and prove statements about those values
without disclosing them. This enables, for instance, the prop-
erty of provable personal properties. A credential issuer may
provide a user with a secret value x = 20 representing their

4Note that ¢’ may be different from ¢.

age; the user can then prove in zero-knowledge to a verifier
that a specific credential issuer certified that their age is larger
than 18, without revealing their real age x.

EL PASSO uses non-interactive zero-knowledge proofs
(NIZK) to assert knowledge and relations over discrete log-
arithm values. These proofs can be efficiently implemented
without trusted setups using sigma protocols [65], which can
be made non-interactive using the Fiat-Shamir heuristic [34]
in the random oracle model.

4.3 Cryptographic assumptions

EL PASSO inherits the same cryptographic assumptions as
PS Signatures, which requires groups (G, G,,Gr) of prime
order p with a bilinear map e : G| x G, — Gr and satisfy-
ing (i) Bilinearity, (ii) Non-degeneracy, and (iii) Efficiency.
We use type-3 pairings because of their efficiency [29], and
therefore rely on the XDH assumption which implies the
difficulty of the Computational co-Diffie-Hellman (co-CDH)
problem in G| and G, and the difficulty of the Decisional
Diffie-Hellman (DDH) problem in G [11]. We also rely on a
cryptographically secure hash function H*, hashing a string
into an element of Gy; i.e. applying a full-domain hash func-
tion to hash strings into elements of G (such as BLS [11]).

5 EL PASSO Construction

We present the construction of EL PASSO satisfying all prop-
erties described in Section 2.2, and then discuss how to sim-
plify it when reliable identity retrieval is not required or if
the user wishes to sign on as guest without establishing an
identity with the RP, and how to support login with multi-
ple devices. We discuss the implementation of the protocol
steps in Section 6 and their security guarantees in Section 7.
EL PASSO primitives (see Figure 2) are defined as follows:

Bootstrapping the IdP. The following algorithms are exe-
cuted only once, when bootstrapping the IdP.

% Setup(1*) — (pp): output Cred.Setup(1*).
> Describe the publicly-available system parameters with
respect to the security parameter A.

« KeyGen(pp) — (sk,pk): output Cred.KeyGen(pp).
> Run by the IdP to generate their own secret key sk and
public key pk from the public parameters pp.

Setup phase. We describe the algorithms implementing the
setup phase of EL PASSO; these algorithms are executed
periodically, when the user requests a credential from the IdP.

+ RequestID(s) — (A): set M, = s and ¢ = true; run
(d,A, L) = Cred.PrepareBlindSign(M},, ¢); output A.
> Run by the user-side client to request a credential from
the IdP, generating the cryptographic material A embed-
ding the user secret s along with the proof. The blinding
factor d will be kept by the client for later use.

% ProvidelD(sk, Yy, info,1p,A) = (6): set M), = (Y,1p,info);
output & = Cred.Sign(sk,Mp, A, true).
> Run by the IdP to provide the client with a blinded creden-
tial & over A, the user identifier Y, and some user attribute
info; the credential has an expiration date fp, and is pro-
duced from the IdP’s secret key sk.

+« UnblindID(d,6) — (c): output ¢ = Cred.Unblind(d, 6).
> The client locally unblinds the credential & using the
blinding factor d, and outputs the credential G.

Sign-on phase. We describe the algorithms implementing the
sign-on phase; these algorithms are executed each time the
users logs in or creates an account on an RP.

< ProvelD(pk, G, Y, info, tp,domain,y) — (©,¢): split info
into info, and infoy, respectively containing the attributes
to disclose and to hide from the RP. Set M), = (info, 1p)
and My, = (s,Y,info,); pick a random € < FF and compute
the El-Gamal ciphertext E = (g%, y®h"), where g and h are
generators of Gy, and y is the aggregated public key of the
decryption authorities; compute

h < H*(domain) ; { + h*

(where H* is a hash function as defined in Section 4.3) and
the statement

O {E = (g"Yh") A =" A finfor) =1}

compute (®,M,,¢’) = Cred.Prove(pk,M,,M},,5,¢’); out-
put (§,©,M,,0/. f)

> Run by the client to show the RP a proof of correctness of
user ID € and identity retrieval token E, and the ownership
O of a credential 6 whose attributes satisfy the statement
¢’; this proof is generated from the RP’s public domain
domain, and from the parameters (pk,7,tp,y). The subset
of hidden attributes info, satisfy the function f.

% VerifylD(pk,M,,,®,¢' ,domain,y) = (b): compute h =
H*(domain) and use it to execute Cred.Verify(pk,®,0’);
output b = 1 if (i) the verification passes, (ii) the time-stamp
tp is not expired, and (iii) the { and El-Gamal ciphertext E’
are correctly formed; otherwise output b = 0.
> Run by the RP to verify that ® is a proof of knowledge of
a valid credential (issued by the IdP identified by the public
key pk) whose attributes satisfy the statement ¢’, and user
ID { and identity retrieve token E are correct; the proof is
verified using (M, domain,y).

Removing reliable identity retrieval. In case support for
reliable identity retrieval is not required by the RP (see Sec-
tion 3), we can simplify the sign-on phase of the above scheme
by omitting the ciphertext €; the statement ¢’ would then be-
come ¢/ ={C=nr" A f(info,) = 1}, and the zero-knowledge

proof ® shorter by two field elements (if implemented, for
instance, using Schnorr’s protocol [65]).

Login as guest. In case the user wishes to sign on as guest
without establishing a permanent user identifier with the RP,
and if the RP allows such guest sign-ons, we can simplify
our scheme by omitting the group element ; the statement
¢’ would then become ¢’ = {E = (g°,y*hY) A f(info,) =1},
which shortens the proof ® by one group element. As a re-
sult, the RP has no way to distinguish multiple sign-ons from
the same user (this follows directly from the unlinkability
properties of the underlying credentials scheme). The inter-
action between the user and the RP is still anonymous and
accountable.

6 Implementation

The RP, IdP, and user-side client are implemented in C++ us-
ing the MCL library [67] and Google’s Protocol Buffer [31].
The C++ implementation of the client is ported to JavaScript
code using WebAssembly (Wasm) [76]°. The use of C++ and
Wasm allows our implementation to provide both high effi-
ciency and the ability to be delivered as a web resource. The
footprint of executables is 178 KB for the RP, 237 KB for
the IdP, and 264 KB for the client, including the Wasm bi-
nary and JavaScript ‘glue’ code. All user-side operations (i.e.,
cryptographic operations, secret sharing) are automatically
handled by the Wasm client running in the browser, resulting
in a deployment complexity that is similar to that of OIDC.

Obtaining credentials and client code. IdP operations (au-
thentication and RequestID) are accessed through a web page
hosted in the IdP domain. Users connect to this page to obtain
credentials, and the content of the page is then cached locally,
including the javascript code and the Wasm client module.
We leverage the fact that Wasm modules are fully cacheable
by the browser [53] and can be marked as immutable [54].
When a RP wishes to authenticate a user, it redirects to the
authentication page of their IdP (selected by this user from a
list of IdPs trusted by this RP). The user is able to check that
the authentication page URL is, indeed, part of the domain
of their IdP. The user is then presented with an interface to
select which attributes and provable properties they wish to
present to this RP. In the majority of cases, the authentication
page and Wasm module will be cached, use locally stored
credentials, and there will be no direct interaction with the
IdP, enabling the property of asynchronous authentication.
When there is no cached version we favor continuity of ex-
perience for the user and allow a synchronous redirection

SWebAssembly (Wasm) is an open standard that defines a portable binary-
code format for executable programs, a corresponding textual assembly lan-
guage, as well as interfaces for facilitating interactions between these pro-
grams and their host environment. Wasm code can run natively in all major
web browsers. Various compilers allow transforming high-level language
source code (i.e. C++, Rust) into a binary file which runs in the same sandbox
as regular JavaScript code.

to happen towards the page hosted by the IdP, as done in
SPRESSO [26]. This pragmatic approach enables continuity
of experience at the cost of a minor risk on tracking protection.
Privacy-conscious users can, and should, avoid this risk by
systematically pre-authenticating with the IdP.

Credential/Secret storage. The client module needs to store
and later retrieve user secrets (global s and device-specific s;)
as well as the credentials received from the IdP. The client
runs as a sandboxed Wasm module, unable to interact with the
outside world (e.g., the file system). We leverage instead the
password manager service provided by the browser to store
secrets and credentials securely. Users have to locally authen-
ticate with their browser (e.g. using a password, fingerprint,
or face recognition) in order to grant the client access to this
information. User do not need to be exposed to secrets s and
sq; They only need to know their local password and the pass-
word used at their IdP, as when using OIDC. The password
manager only accepts get requests for the same domain that
stored data initially, effectively protecting against attacks that
would attempt to redirect the user to a fake authentication
page or bypass user’s scrutiny of this page domain name (e.g.,
using a typosquatting attack [73]).

Anonymous credentials. We implement EL PASSO using
PS Signatures as the underlying credential system because of
its short credentials and efficient verification. Our prototype
is implemented over the curve BLS12-381 [66].

State size. IdPs store their own key pair and a 47 (32 Bytes)
for each of their users; RPs store the public key of each IdP
they trust, aggregated public keys y (32 Bytes) of decryption
authorities they wish to use, as well as ciphertext E (64 Bytes)
and group element £ (32 Bytes) for each of their users. Since
our implementation is based on PS Signatures, the size of
the public key of the IdP increases linearly with the num-
ber of attributes, ranging from 466 Bytes (for 3 attributes)
to 2,166 Bytes (for 20 attributes). Users store all the input
parameters of ProvelD, that is, their attributes (s, v, info, tp),
their credential 6 (64 Bytes), the public key pk of the IdP who
issued the credential, and the public key y (32 Bytes) of each
of the decryption authorities (when reliable identity retrieval
is required). All parties are aware of the public parameters
(generated by Setup). In the simplest scenario where there
exists one IdP, one user, and one RP, assuming there are 3
attributes and that reliable retrieval is required, the total state
required at the IdP, the user, and the RP are 562 Bytes, 630
Bytes, and 594 Bytes, respectively.

7 Security Analysis

We start by analyzing the security of EL PASSO against the
properties defined in Section 2.2. We discuss next how to
extend the security and the fault model. Finally, we discuss
known attacks against incorrect OIDC implementations and
the sensitivity of EL PASSO to similar attack vectors.

7.1 Achievement of Design Goals

We argue that EL. PASSO satisfies the design goals described
in Section 2.2 under the adversary described in Section 2.1.

Authentication. EL. PASSO preserves authentication against
malicious users. Authentication relies on the unforgeabil-
ity of the underlying credential system—it is unfeasible for
malicious users to execute ProvelD without holding a valid
credential issued by an IdP. Furthermore, IdPs cannot take
over accounts that users created with RPs as ProvelD requires
to provide the RP with a group element { that is uniquely de-
rived from the unique user secret s, and that is persistent across
authentications. The blind issuance and zero-knowledge prop-
erties of the underlying anonymous credentials system guar-
antee that the user secret attribute s is not revealed to the IdP
(nor to any other party); hence an IdP or RP under the control
of the adversary cannot impersonate existing users and access
existing accounts at RPs. In case one of the devices is compro-
mised and the attacker is able to access the password manager
on the victim user’s device, this attacker will be able to log in
to RPs, but only until the credentials expire. Similarly as for
OIDC, this risk is mitigated by the use of 2FA and the ability
to replace the secret, both features that EL PASSO enables.

Privacy Protection. The privacy guarantees of EL PASSO
rely on the security (blind issuance and unlinkability) of the
underlying credential scheme, and on the zero-knowledge
property of the selected NIZK scheme. The blind issuance
property of the underlying credential scheme ensures that
RequestID does not leak any information about the secret
attribute s to an honest-but-curious IdP; and zero-knowledge
ensures that ProvelD reveals to RPs no additional information
about users’ attributes than what is selectively disclosed by the
user. To complete the argument, note that (i) revealing { does
not leak s, and { changes indistinguishably for each website’s
domain (assuming a random oracle); and (ii) the ciphertext £
hides 7y (by the security of El-Gamal encryptions) under the
assumptions of the underlying cryptographic primitives.

Accountability. EL PASSO guarantees reliable identity re-
trieval against misbehaving users. ProvelD requires users to
provide RPs with a ciphertext E, and prove in zero-knowledge
that it is correctly formed; therefore, RPs can check that E is
a valid encryption of the user’s long-term identifier 4¥ when
the user signs in, even without decrypting it. If this user later
misbehaves, the RP can report E to a subset of the decryption
authorities (identified by the public key y) that can recover
the user’s long term identifier 47, and then collaborate with
the IdP to recover the user’s real-world identity. When exe-
cuting ProvelD, users can only disclose or prove statements
about attributes that are certified by the IdP (i.e. they cannot
add, remove, or modify attributes); this follows from the un-
forgeability of the underlying credential system, and enables
provable personal properties.

7.2 Limitations and Stronger Adversaries

We now discuss limitations and possible extensions to the
adversary model defined in Section 2.1.

Actively malicious IdPs. EL PASSO only considers honest-
but-curious IdPs; that is, actively malicious IdPs are not part
of the threat model. An actively malicious IdP [50] can break
authentication by self-issuing credentials and create fake iden-
tities; and can break accountability by refusing to cooperate
with decryption authorities. It cannot, however, access an ex-
isting user account with an RP, as this is bound to the user
secret s. Furthermore, an actively malicious IdP cannot be
trusted to deliver the user-side Wasm module. We defer the
protection against malicious IdPs to future work. One possi-
bility would be to extend distributed SSO solutions [23,45],
where a set of IdPs must collectively authenticate a user and
provide it with shares of their identity, and to rely on trusted
standardization authorities for delivering the Wasm module.
In a first iteration, this role could be played by organizations
such as the W3C or digital rights NGOs. Eventually, the in-
clusion of this code in Web browsers, e.g. by the Mozilla
foundation in Firefox, would be a more solid approach.

User device under control of the adversary. A malicious
RP may inject code at the side of a honest user, but this code
is sandboxed from rest of the environment and in particular
against the Wasm client module. The RP may, for instance,
set up a phishing attempt by displaying a fake authentication
page to the user and using a corrupted Wasm client module.
The user may fail to notice that the URL does not match
that of their IdP. We make the assumption that the password
manager of the browser is secure and does not reveal secrets
and credentials, as the domain name for the storage and re-
trieval of this information does not match. There have been
examples, however, of successful attacks against password
managers [49, 68]. The risk for EL PASSO is the same as for
OIDC in this case. The solution, besides employing more se-
cure designs for password managers [52], is to systematically
require the use of 2FA. As for OIDC implementations, which
do not require re-authenticating with the IdP using 2FA for
every sign-on operations, the frequency of 2FA is a compro-
mise between convenience and security, and can be adjusted
with timestamp fp upon issuance of the credential. We note,
however, that the asynchronous nature of EL PASSO prevents
re-using some of the existing safety checks performed at the
IdP in OIDC, such as checking for unusual origin locations of
authentication requests. Such safety checks must, instead, be
implemented at the RP side, possibly using provable personal
properties. A second solution is to use secure login solutions
such as the W3C Web Authentication protocol, WebAuthn.
This standard requires the use of an external trusted device,
the authenticator, for storing private keys and verifying users
identity (e.g., using biometrics or passcodes).

7.3 Sensitivity to Known Attacks on OIDC

We discuss attacks and exploits against incorrect implemen-
tations of OIDC [24], and the extent to which EL PASSO’s
design prevents similar attack vectors.

A first category of attacks exploits the coupling between
the RP and the IdP in OIDC. IdP Mix-Up Attacks [43,51]
trick an honest RP to connect to a malicious IdP following
the issuance of an access token, and repeating authorization
codes from the user to this malicious IdP. EL PASSO uses
a direct interaction between the user and the IdP, which is
simpler to implement and reduces the potential for exploits.

A second category of attacks exploits the fact that in
OIDC, a part of the communication between the IdP and
an RP is relayed by the user browser using HTTP redirects.
Code/Token/State Leakage [25,44], CSRF Attacks and Third-
Party Login Initiation [27] are examples of exploits on in-
correct OIDC implementations that do not properly check
redirects or embed sensitive information such as ID tokens on
redirection URLs. 307 Redirect Attack [27] similarly exploit
the improper use of HTTP redirection codes. EL. PASSO only
uses direct interactions between the user device and the IdP,
in the setup phase, or an RP, in the sign-on phase, again re-
ducing the risk of improper implementation and exploits. The
redirection by the RP to the IdP cached authentication page
and Wasm client may trick users, but we rely on the security
of the browser’s password manager to mitigate this risk.

8 Evaluation

We evaluate the EL PASSO prototype and answer the follow-
ing research questions:

1. Are EL PASSO costs and usage latencies adequate to
replace OIDC as an SSO solution? How does EL PASSO
performance compare to anonymous credential schemes
providing similar security guarantees?

2. Does the use of cryptographic operations at the user
side impair the deployment of EL. PASSO on low-power
devices, such as mobile phones or tablets?

3. What is the scalability of EL PASSO when using an
increasing number of attributes in users’ profiles?

4. How do the implementations of the IdP and RP scale up
when deployed in the cloud?

Setup. We deploy an IdP and an RP on two m5ad.xlarge
instances on Amazon EC2 (4 virtual cores, 16 GB of RAM
each), both in the same EC2 region. We use two representative
user devices: A Dell Latitude 5590 laptop with an Intel Core
17-8650U CPU and 16 GB of RAM, and a Raspberry PI model
3b (RPI) with an A53 quad-core ARMv8 CPU and 1 GB
of RAM. The RPI is representative of the performance of
lower-end mobile devices such as phones or tablets. Both
devices use Mozilla Firefox 76.0.1 to run the Wasm client.

User operations (e.g., entering a password) are emulated and
instantaneous, to focus on the performance of the protocol.
We are open sourcing our implementation, benchmarking

scripts, and measurements data to enable reproducible results
6

Comparison to OIDC and IRMA. We use as a first compar-
ison point pyoidc [56], a complete Python implementation
of OIDC. Note that the co-location of the RP and the IdP in
the same EC2 zone also applies to the deployment of OIDC;
this co-location is actually in favor of OIDC when measur-
ing operation latencies. We evaluate pyoidc with its default
settings where a standard ID token is included in the AuthN
response and a single attribute is retrieved by the RP.

Our second comparison point is IRMA [1], an authen-
tication system based on the Idemix anonymous creden-
tials [9, 19]. IRMA is a state-of-the-art system in use by the
Privacy by Design foundation [61]. We ported irmago, the
implementation of IRMA for IoS/Android mobile platforms
in go, to run on the same GNU/Linux platforms as EL. PASSO.
We generate and deploy 4096-bit IRMA keys when issuing
and verifying credentials’.

All interactions in the three systems happen over https.

Latency and costs. We start with an evaluation of the latency
of operations in EL. PASSO, IRMA, and OIDC. We use the
laptop device, and credentials with the minimal number of 3
attributes s, 'y, and #p. We analyze the impact of changing the
number of attributes in a later experiment. Figure 3 presents
the complete latencies as perceived by the user. These laten-
cies include the latencies to and from the cloud, which we
measured to be on average 20 ms round-trip. We present also
the breakdown of computational phases in the two protocols
in Figure 4, and the size of the payload of exchanged messages
in EL PASSO in Figure 5.

For EL PASSO and IRMA, we separate the asynchronous
setup and sign-on phases, while sign-on in OIDC is a single,
synchronous, and coupled operation. We observe that authen-
tication in OIDC takes less time than the two EL PASSO
phases combined, in part because the RP and IdP are located
in the same EC2 region—In most deployments, they would be
deployed in different data centers, and the RP-IdP round-trip
time would add to the overall latency. However, the setup
phase only takes place once per credential validity period,
and in the majority of cases where credentials are already
available at the user side, perceived latencies for sign-on will
be lower with EL PASSO than they are with OIDC. IRMA
experiences 5x higher Setup latency and 4x higher Sign-on
latency, which is a result of much heavier cryptographic oper-
ations. Associating a new device for 2FA during the sign-on
phase results in only 10ms latency increase compared to a

6 https://github.com/Zhiyi-Zhang/PSSignature

7While the National Institute of Standards and Technology (NIST) allows
3072-bit keys until 2030, IRMA does not support this size. 4096-bit IRMA
keys have security level equivalent to our implementation of EL PASSO.

https://github.com/Zhiyi-Zhang/PSSignature

EL PASSO
Setup

EL PASSO
Sign-on

I 2FA new device

ot I N |
Setup
IRMA

Sign-on

0.4 1.2

0.0 0.2 1.0 1.4

Timel[s]

Figure 3: User-perceived operation latencies.

EL PASSO Setup Phase

RequestID +2.03ms EEl User
ProvidelD +2.86ms, total: 4.89ms I IdP
1 RP
UnblindID +0.415ms, total: 5.305ms
EL PASSO Sign-on Phase
ProvelD +11.56ms
VerifylD +13.41ms, total: 24.97ms

40
IRMA Setup Phase

RequestID
UnblindID]
IRMA Sign-on Phase

Verify

\

900

200 300 400 500

Time[ms]

600 700 800

Figure 4: Breakdown of the execution time of computational
phases in EL PASSO and IRMA.

regular sign-on.

The breakdown of computational operations in Figure 4
allows identifying the CPU time required by the different
phases (note that network latencies are not shown in the break-
down). In contrast, EL PASSO requires little CPU time from
the IdP, and only during the setup phase. Overall, computa-
tional costs are slightly higher for EL PASSO, but they are
also more decentralized, impacting mostly users and RPs. A
similar breakdown can be observed for IRMA. However, the
combined execution time is 100x higher for the setup phase
and 39x higher for the sign-on phase.

The amount of payload exchanged, shown in Figure 5, is
reasonable. The largest payload is the sign-on request from
the client to the RP and is 0.5 KB in size. We conclude this
first set of experiments with a positive answer to our two first
questions: EL PASSO latencies and cost compare favorably
to those of OIDC and would allow for deployment as an alter-
native SSO solution with negligible impact on performance or
costs for users and operators of online services. Furthermore,
EL PASSO significantly reduces the user-perceived latency
and computational time in comparison to a similar scheme
based on anonymous credentials.

Performance on low-power devices. As the previous exper-

10

pp.pk Req {0

e aee
7

[I Y 210

pp,pk Rep
Setup Req
Setup Rep 68
Sign-on Req

Sign-on Rep

o 100 200 300 400

Payload Size (Bytes)

500 600

Figure 5: Payload size of messages exchanged in EL PASSO,
for credentials with 3 attributes (first two lines are for the
request of the public key of the IdP by the RP).

Operation Latency [s] CPU time @ user [s]
EL PASSO Setup 0.7240.16 (+190%) 0.11£0.001 (+397%)
EL PASSO Sign-on 0.82+0.18 (+125%) 0.18+0.004 (+262%)
OIDC 0.8040.02 (+45%) NA

IRMA Setup 30.295+0.39 (+2420%) 29.68+0.27 (+4390%)
IRMA Sign on 34.182+0.49(+2458%) 33.89140.43 (+3640%)

Table 2: EL PASSO performance using a Raspberry PI for
single and multi (M) device scenario, relative to results using
a laptop from Figures 3 and 4.

iment has shown, EL PASSO requires computation and there-
fore CPU time at the user side. We evaluate in this experiment
whether these costs are acceptable for using it on low-power
devices, such as mobile phones, tablets, or connected appli-
ances. Our setup is the same as with the previous experiment,
but using the RPI device instead of the laptop.

Table 2 compares the perceived latency using the RPI to
those in Figure 3, and the total CPU time at the user side,
compared to Figure 4. We can observe that the CPU cost for
the setup phase almost quadruples, yet remains low at 110 ms.
For the sign-on phase, the cost is multiplied by 4, primarily
due to the lower performance of cryptographic operations
on the ARM CPU. Yet again, the overall CPU time remains
within acceptable boundaries at less than 200 ms and 220 ms
when adding a new device to an account. The overall latency
is impacted by both this increase in CPU time (except for
OIDC), and the performance of the browser running on the
RPI (including for OIDC). All operations succeed in a rea-
sonable time, the longest being the sign-on taking a second
on average, only slightly higher than OIDC compared to the
previous experiment. In contrast, more complex IRMA op-
erations experience significant execution time increase and
result in Setup and Sign-on phase finishing in more than 30s.
This allows us to answer positively to our second question:
The performance and costs of EL PASSO make it adequate
as a solution for SSO, even when users are equipped with
low-power or mobile devices.

Scalability in the number of attributes. We investigate the
impact of the number of attributes embedded in user creden-
tials on the computational cost of EL PASSO. The two first

Setup Phase

0.020 Il ProvidelD 0.25{ Il ProvelD
) [RequestiD [VerifylD
[9] . 0.20
£0.015 [Unblind
c 0.15
£ 0.010
3 0.10
%

% 0.005 0.05

0.000 0.00

BN © N ® & O H N M
- - - -
Total # of attributes

Sign-on Phase

+ m o N ® a g o
Total # of attributes

Sign-on Phase

Il ProvelD

0.25

[VerifylD

0.20

0.15

0.10

0.05

0.00
N oM m 4 B © N ® & O H N
- - - - - -

of attributes hidden from RP ouf of 12 in total

Figure 6: Impact of the the total number of attributes and the number of attributes hidden from the RP on CPU time.

IdP RP

700 700

g 600 600

< 500 500
3

400 400
©

‘v 300 . 300
g

g 200 200

<100 100

0 (i

0 50 100 150 200 250) 50 100 150

Throughput[requests/s] Throughput[requests/s]

Figure 7: Scaling of EL PASSO services in the cloud.

plots of Figure 6 show the evolution of CPU time with a grow-
ing number of attributes all of which are hidden from the RP.
Note that the case of 3 attributes corresponds to the data in
Figure 4. As expected, the CPU time increases linearly for
both the setup phase and sign-on phase (first and the second
plot, respectively). This increase is primarily due to the addi-
tional complexity of the ProvelD operation, due to the need
to respectively create and validate zero-knowledge proofs
for more values. Yet, the total cost, even with 13 attributes,
remains reasonable, at less than a second of total CPU time.
The third plot evaluates the cost of the sign-on phase when
the user decides to hide an increasing number attributes from
the RP, from a profile with 12 attributes: An abscissa value of
9 means, therefore, that the preparation of the credential for
this RP only reveals 3 attributes®. As expected, hiding more
attributes increases the computational load in the ProvelD
and VerifyID parts of the algorithm, yet again requiring less
than a second of total CPU time. We conclude, therefore,
that EL PASSO scales sufficiently well with the number of
attributes to be used in practical scenarios, where the identity
of a user is formed of up to a dozen different fields, answering
our third question.

Scalability of the IdP and RP. In this last experiment, we
measure the scalability of the EL PASSO implementation in
the cloud, for a large number of users. We inject a growing
number of precomputed requests in parallel from the laptop
device and measure the achieved throughput and operation
latencies. Figure 7 is a parametric plot showing the relation
between the two measurements. The simpler operations re-

80ur design requires at least 2 attributes (s,) to be hidden from RPs

11

quired by the setup phase allow a single IdP node to handle
up to 272 requests per second. The costlier sign-on phase at
the RP lowers the number of operations per second to about
169”. These final measurements prove that EL PASSO, while
involving privacy-preserving mechanisms can still be easily
deployed on commodity cloud servers, and positively answer
our fourth question.

9 Related Work

We review related work on SSO, its privacy-preserving ex-
tensions and anonymous authentication. We classify the most
related of the systems we discuss in Table 3 using the proper-
ties defined in Section 2 and summarized in Table 1.

SSO Standards. The Security Assertion Markup Language
(SAML) [37] is an XML-based authentication protocol,
widely deployed before OIDC was standardized. It uses a
message flow that is very similar to that of OIDC, therefore
shares its privacy vulnerabilities. Furthermore, SAML does
not enable selective attribute disclosure and provides less
flexibility to developers than OIDC.

OIDC combines the previous Open ID identity manage-
ment standard with the OAuth authentication protocol [35].
The privacy issues of these protocols were pointed out as
being a result of the direct IdP and RP communication [12].

SSO extensions. Sign In with Apple [2] uses randomized
per-RP identifiers (alias email addresses) for users instead
of permanent identifiers (actual email address). This solu-
tion provides inter-domain unlinkability. However, Apple has
largely adopted OIDC for its implementation [2, 10] and the
IdP-side privacy concerns also hold true for this system.
SPRESSO [26] decouples the communication between the
RP and the IdP, letting the two parties communicate indirectly
through a forwarder agent at the client. A user sign-on request
to an RP is followed by a synchronous user request to the
IdP for credentials. The synchronicity of operations requires
protection against time-based attacks, where the IdP could
correlate requests from the user and the RP. Furthermore,
SPRESSO leaks user’s global ID to RPs enabling tracking

9We note that operations at the IdP and RP for different users are naturally
disjoint-access parallel, if the user information is stored in a scalable NoSQL
database. This allows scaling the IdP or RP horizontally as necessary.

Personal Intra-RP

Authentication

Tracking Selective

System

Inter-RP
Linkability ~ Pr i Di e Unlink

bility

No RP
registration

Provable Personal
Attributes

Reliable Identity
Retrieval

Asynchronous

A B -onl,
Authentication rowser-ony

SAML [37] X
OpenlID Connect [63]
Apple Signln [2]
SPRESSO [26]
PRIMA [4]

UnlimitID [41]
NextLeap [33]
UProve [57,58]
Privacy-ABCs [62]
IRMA [1]
Hyperledger Idemix [1]

SIS N NN ENENENENEN
© 000000 00000
© 000000 00000

SN ISSSSSSN SN % x

EL PASSO

SN RN N N N NN TN

NSNS (SRS x
N[> % W% X% |[NSNSNS S
NSNS NN % % [%% % % %
S IR N N N N N I N O O
N> % % % % % [% NN NS

Table 3: Properties of different SSO and Anonymous Credentials systems.
Tracking Protection @ : UnlimitID and UnlimitID-based NextLeap rely on unlinkable credentials. However, the blinded credentials must be deposit by the

users at IdP, potentially allowing IdP to perform user tracking. — Selective Disclosure @ : OIDC, Apple SignIn and SPRESSO allow to disclose a subset of
user information, but are unable to prove statements about their attributes (i.e. age > 18). PRIMA supports proving statement about attributes only if they are

expressed as additional attributes signed by IdP.

PRIMA [4] decouples communications between RP and
IdP and supports selective attributes disclosure on top of
Oblivion [69]. However, it requires contacting the IdP for ev-
ery user sign-on and does not provide inter-RP unlinkability.

Anonymous authentication. Anonymous credentials such
as CL Signatures [18,47] and Idemix [9, 19] are useful
in personal identity management [1], anonymous attesta-
tion [8, 14,22], and electronic cash [20]. They provide blind
issuance and unlinkability through randomization, but come
with significant computational overheads, and large creden-
tials size. U-Prove [57,58] and Anonymous Credentials Light
(ACL) [6] are computationally efficient credentials that can be
used once unlinkably; therefore the size of the credentials is
linear with the number of unlinkable uses. Furthermore, they
do not allow an RP to distinguish different sign-on attempts
by the same user, and cannot provide intra-RP linkability.
UnlimitID [41] builds attribute-based SSO credentials over
aMAC [21], used as pseudonyms. This allows inter-RP unlink-
ability, as IdPs are unable to track user activity over different
RPs using different pseudonyms. UnlimitID follows the main
flow of OIDC and requires users to deposit their anonymized
pseudonyms at IdP before RPs can access them. This may al-
low the IdP to correlate the deposit of a pseudonym and its re-
quest by an RP, enabling tracking. The NextLeap project [33]
intends to extend UnlimitID [41] by storing identity and trust
information in a blockchain, positioning that this would re-
move the need for RPs to explicitly register with IdPs, as is
the case in EL PASSO. Recent attribute-based credential [15]
implementations such as IRMA [1], Privacy-ABCs [5, 40, 62]
and Hyperledger Idemix [38, 39] significantly improve the
performance, but still suffers from high user-perceived la-
tency on less powerful devices. Furthermore, they require
manual installation and configuration/credential management,
do not enable 2FA or multi-device support. Similar issues

12

were already identified as barriers preventing wide-spread
deployment of mature security systems such as PGP [64,75].

In combination with anonymous credentials, multiple
works propose to prevent [13, 16, 17, 74] or limit [36] lo-
gin attempts of specific users without revealing their iden-
tities. While those platforms can block misbehaving users
from accessing a specific RP, they are unable to hold these
users accountable for their actions (e.g. when publishing hate
speeches online). Finally, these blacklisting systems require
significant computational and communication overhead, limit-
ing their usability and deployability, which are essential goals
for EL PASSO.

10 Conclusion

We presented EL PASSO, an SSO solution that combines
the security of anonymous credentials with the practicality
of OIDC. Our solution protects users from being tracked by
either RPs or IdPs and allows us to disclose only the minimum
user information required to sign on. While providing strong
privacy protection, EL PASSO can also hold misbehaving
users accountable in cooperation with law enforcement au-
thorities. Our system is implemented as a Wasm module that
is downloaded on the fly and cached by the user’s browser.
Support for multi-device deployment, privacy-preserving 2FA,
and device theft recovery is provided and only rely on the user
browser’s built-in features. We believe that these properties
open the perspective of using our system in a wide range
of use cases where the use of anonymous credentials would
otherwise be an issue, such as e-democracy platforms and
opinion forums.

Acknowledgments

This work is partially supported by the the National Science
Foundation under award CNS-1629922, the Belgian FNRS
project DAPOCA (33694591), and Facebook Calibra. The
authors would like to thank Dahlia Malkhi and Ben Maurer
for their feedback on an earlier version of this work.

References

[1] Gergely Alpér, Fabian van den Broek, Brinda Hampiholi,
Bart Jacobs, Wouter Lueks, and Sietse Ringers. IRMA:
practical, decentralized and privacy-friendly identity
management using smartphones. In 10th Workshop
on Hot Topics in Privacy Enhancing Technologies, Hot-
PETs, 2017.

[2] Apple Inc. Sign In with Apple, 2020. Accessed: 2020-

05-23.

[3] Jari Arkko, Brian Trammell, Mark Nottingham, Chris-
tian Huitema, Martin Thomson, Jeff Tantsura, and Niels
ten Oever. Considerations on internet consolidation and
the internet architecture. Internet-Draft draft-arkko-iab-
internet-consolidation-01, IETF Working Draft, March
2019.

[4] Muhammad Rizwan Asghar, Michael Backes, and
Milivoj Simeonovski. PRIMA: Privacy-preserving iden-
tity and access management at internet-scale. In Inter-
national Conference on Communications, ICC. IEEE,
2018.

[5] Thomas Baigneres, Patrik Bichsel, Robert R Enderlein,
Hans Knudsen, Kasper Damgard, Jonas Jensen, Gre-
gory Neven, Janus Nielsen, Pascal Paillier, and Michael
Stausholm. D4. 2 Final Reference Implementation.

ABCH4-Trust, IBM Res., Ziirich, Switzerland, 2014.

[6

[}

Foteini Baldimtsi and Anna Lysyanskaya. Anonymous
credentials light. In Conference on Computer and Com-
munications Security, CCS. ACM, 2013.

[7] BBC News. Facebook and Instagram suffer most severe
outage ever, 2019. Accessed: 2020-05-23.

[8] David Bernhard, Georg Fuchsbauer, Essam Ghadafi,
Nigel P Smart, and Bogdan Warinschi. Anonymous at-
testation with user-controlled linkability. International
Journal of Information Security, 12(3), 2013.

[9] Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas
GroB, Tom Heydt-Benjamin, Dieter Sommer, and Greg
Zaverucha. Cryptographic protocols of the identity
mixer library. Technical Report RZ 3730, IBM Research
— Zurich, 2009.

13

[10] Board of Directors of the OpenID Foundation. Open
Letter from the OpenID Foundation to Apple Regarding
Sign In with Apple, 2019. Accessed: 2020-05-23.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signa-
tures from the weil pairing. In Advances in Cryptology,
ASIACRYPT. Springer, 2001.

[12] Stefan Brands. The problem(s) with OpenlD, 2007.
Accessed: 2020-05-23.

[13] Stefan Brands, Liesje Demuynck, and Bart De Decker.
A practical system for globally revoking the unlinkable
pseudonyms of unknown users. In Australasian Con-
ference on Information Security and Privacy. Springer,

2007.

[14] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct
anonymous attestation. In Conference on Computer and

Communications Security, CCS, 2004.

[15] Jan Camenisch, Maria Dubovitskaya, Anja Lehmann,
Gregory Neven, Christian Paquin, and Franz-Stefan
Preiss. Concepts and languages for privacy-preserving
attribute-based authentication. In IFIP Working Confer-
ence on Policies and Research in Identity Management.

Springer, 2013.

[16] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss,
Anna Lysyanskaya, and Mira Meyerovich. How to win
the clonewars: efficient periodic n-times anonymous
authentication. In Conference on Computer and Com-

munications Security, CCS. ACM, 2006.

[17] Jan Camenisch and Anna Lysyanskaya. An efficient
system for non-transferable anonymous credentials with
optional anonymity revocation. In International confer-
ence on the theory and applications of cryptographic

techniques, EUROCRYPT. Springer, 2001.

[18] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In Annual International Cryptology Conference.

Springer, 2004.

[19] Jan Camenisch and Els Van Herreweghen. Design and
implementation of the idemix anonymous credential sys-
tem. In Conference on Computer and Communications

Security, CCS. ACM, 2002.

[20] Sébastien Canard, David Pointcheval, Olivier Sanders,
and Jacques Traoré. Divisible e-cash made practical. In
IACR International Workshop on Public Key Cryptogra-

phy. Springer, 2015.

[21] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha.
Algebraic macs and keyed-verification anonymous cre-
dentials. In Conference on Computer and Communica-

tions Security, CCS. ACM, 2014.

https://developer.apple.com/sign-in-with-apple/
https://www.bbc.com/news/technology-47562281
https://www.bbc.com/news/technology-47562281
https://openid.net/2019/06/27/open-letter-from-the-openid-foundation-to-apple-regarding-sign-in-with-apple/
https://openid.net/2019/06/27/open-letter-from-the-openid-foundation-to-apple-regarding-sign-in-with-apple/
https://openid.net/2019/06/27/open-letter-from-the-openid-foundation-to-apple-regarding-sign-in-with-apple/
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html

[22] Liqun Chen, Dan Page, and Nigel P Smart. On the
design and implementation of an efficient daa scheme.
In International Conference on Smart Card Research
and Advanced Applications. Springer, 2010.

[23] Tierui Chen, Bin B Zhu, Shipeng Li, and Xueqi Cheng.
ThresPassport—a distributed single sign-on service. In
International Conference on Intelligent Computing,

ICICA. Springer, 2005.

[24] Daniel Fett, Pedram Hosseyni, and Ralf Kuesters. An
Extensive Formal Security Analysis of the OpenID
Financial-grade APL. arXiv:1901.11520 [cs], January

2019. arXiv: 1901.11520.

[25] Daniel Fett, Ralf Kuesters, and Guido Schmitz. The
Web SSO Standard OpenID Connect: In-Depth
Formal Security Analysis and Security Guidelines.

arXiv:1704.08539 [cs], April 2017. arXiv: 1704.08539.

[26] Daniel Fett, Ralf Kiisters, and Guido Schmitz.
SPRESSO: A secure, privacy-respecting single sign-on
system for the web. In 22nd Conference on Computer

and Communications Security, CCS. ACM, 2015.

[27] Daniel Fett, Ralf Kiisters, and Guido Schmitz. A com-
prehensive formal security analysis of oauth 2.0. In
Conference on Computer and Communications Security,

CCS. ACM, 2016.

[28] Ruti Gafni and Dudu Nissim. To social login or not
login? exploring factors affecting the decision. Issues in
Informing Science and Information Technology, 11(1),

2014.

[29] Steven D Galbraith, Kenneth G Paterson, and Nigel P
Smart. Pairings for cryptographers. Discrete Applied

Mathematics, 156(16), 2008.

[30] Jason Goode. The importance of identity security. Com-
puter Fraud & Security, 2012(1), 2012.

[31] Google Inc. Protocol Buffers, 2020. Accessed: 2020-
05-23.

[32] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke Wag-
ner, Alon Zakai, and JF Bastien. Bringing the web up
to speed with webassembly. In 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI, 2017.

[33] Harry Halpin. NEXTLEAP: Decentralizing identity
with privacy for secure messaging. In /2th Interna-
tional Conference on Availability, Reliability and Secu-

rity. ACM, 2017.

[34] Feng Hao. Schnorr Non-interactive Zero-Knowledge

Proof. RFC 8235, RFC Editor, September 2017.

14

[35] Dick Hardt. The OAuth 2.0 Authorization Framework.
RFC 6749, RFC Editor, October 2012.

[36] Ryan Henry and Ian Goldberg. Formalizing anonymous
blacklisting systems. In Symposium on Security and
Privacy, S & P. IEEE, 2011.

[37] John Hughes and Eve Maler. Security assertion markup
language (SAML) v2.0 technical overview. Techni-
cal Report sstc-saml-tech-overview-2.0-draft-08, OA-
SIS SSTC, 2005.

[38] Hyperledger. Identity Mixer MSP configuration genera-
tor (idemixgen), 2020. Accessed: 2020-05-23.

[39] Hyperledger. MSP Implementation with Identity Mixer,
2020. Accessed: 2020-05-23.

[40] IBM. IBM Identity Mixer, 2015. Accessed: 2020-05-23.

[41] Marios Isaakidis, Harry Halpin, and George Danezis.
UnlimitID: Privacy-preserving federated identity man-
agement using algebraic MACs. In Workshop on Pri-
vacy in the Electronic Society, WPES. ACM, 2016.

[42] Blake Ives, Kenneth R Walsh, and Helmut Schneider.

The domino effect of password reuse. Communications

of the ACM, 47(4), 2004.

[43] Michael Jones, John Bradley, and Nat Sakimura. OAuth

2.0 Mix-Up Mitigation. Internet-Draft draft-ietf-oauth-

mix-up-mitigation-01, IETF Working Draft, July 2016.

[44] Michael Jones, Brian Campbell, John Bradley, and

William Denniss. OAuth 2.0 Token Binding. Internet-

Draft draft-ietf-oauth-token-binding-07, IETF Working

Draft, June 2018.

[45] William K Josephson, Emin Giin Sirer, and Fred B

Schneider. Peer-to-peer authentication with a distributed

single sign-on service. In International Workshop on

Peer-to-Peer Systems, IPTPS. Springer, 2004.

[46] Balachander Krishnamurthy, Delfina Malandrino, and

Craig E Wills. Measuring privacy loss and the impact of

privacy protection in web browsing. In 3rd symposium

on Usable privacy and security, SOUPS. ACM, 2007.

[47] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Ag-

gregating cl-signatures revisited: Extended functionality

and better efficiency. In International Conference on

Financial Cryptography and Data Security. Springer,

2013.

[48] United Kingdom Legislation. Gambling Act, 2005. Ac-

cessed: 2020-05-23.

https://developers.google.com/protocol-buffers
https://hyperledger-fabric.readthedocs.io/en/release-2.0/idemixgen.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/idemixgen.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/idemix.html
https://abc4trust.eu/idemix
http://www.legislation.gov.uk/ukpga/2005/19/contents

[49] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn
Song. The emperor’s new password manager: Security
analysis of web-based password managers. In 23rd
USENIX Security Symposium, 2014.

[50] Christian Mainka, Vladislav Mladenov, and Jorg
Schwenk. Do not trust me: Using malicious IdPs for
analyzing and attacking Single Sign-On. In European
Symposium on Security and Privacy, EuroS&P. IEEE,

2016.

[51] Christian Mainka, Vladislav Mladenov, Jorg Schwenk,
and Tobias Wich. SoK: Single Sign-On Security — An
Evaluation of OpenlD Connect. In European Sympo-

sium on Security and Privacy, EuroS&P. IEEE, 2017.

[52] Daniel McCarney, David Barrera, Jeremy Clark, Sonia
Chiasson, and Paul C Van Oorschot. Tapas: design, im-
plementation, and usability evaluation of a password
manager. In 28th Annual Computer Security Applica-

tions Conference, ACSAC, 2012.

[53] MDN contributors. Caching compiled WebAssembly

modules, 2020. MDN web docs. Accessed: 2020-05-23.

[54] MDN contributors. Cache-Control, 2020. MDN web
docs. Accessed: 2020-05-23.

[55] Aleksandr Ometov, Sergey Bezzateev, Niko Mikitalo,
Sergey Andreev, Tommi Mikkonen, and Yevgeni Kouch-
eryavy. Multi-factor authentication: A survey. Cryptog-
raphy, 2(1):1, 2018.

[56] OpenIDC. pyoidc: A complete OpenID Connect im-
plementation in Python, 2020. GitHub Repository. Ac-
cessed: 2020-05-23.

[57] Christian Paquin. U-prove technology overview v1.1.
Microsoft Corporation Draft Revision, 1, 2011.

[58] Christian Paquin and Greg Zaverucha. U-prove crypto-
graphic specification v1.1. Technical Report, Microsoft
Corporation, 2011.

[59] David Pointcheval and Olivier Sanders. Short random-
izable signatures. In Cryptographers’ Track at the RSA
Conference. Springer, 2016.

[60] Privacy by Design Foundation. IRMA Mobile Client,
2020. GitHub repository. Accessed: 2020-05-23.

[61] Privacy By Design Foundation. Privacy by Design Foun-
dation, 2020. Accessed: 2020-05-23.

[62] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri.
Attribute-based credentials for trust. Identity in the In-
formation Society, Springer, 2015.

[63] David Recordon and Drummond Reed. OpenID 2.0: a
platform for user-centric identity management. In 2nd
workshop on Digital identity management. ACM, 2006.

15

[64] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy Van
Der Horst, and Kent Seamons. Confused Johnny: when
automatic encryption leads to confusion and mistakes.
In Symposium on Usable Privacy and Security, 2013.

[65] Claus-Peter Schnorr. Efficient identification and signa-

tures for smart cards. In Conference on the Theory and

Application of Cryptology, CRYPTO. Springer, 1989.

[66] Bowe Sean. BLS12-381: New zk-SNARK Elliptic

Curve Construction, 2017. Accessed: 2020-05-23.

[67] Mitsunari Shigeo. MCL: a portable and fast pairing-

based cryptography library, 2020. GitHub Repository.

Accessed: 2020-05-23.

[68] David Silver, Suman Jana, Dan Boneh, Eric Chen, and

Collin Jackson. Password managers: Attacks and de-

fenses. In 23rd USENIX Security Symposium, 2014.

[69] Milivoj Simeonovski, Fabian Bendun, Muham-

mad Rizwan Asghar, Michael Backes, Ninja Marnau,

and Peter Druschel. Oblivion: Mitigating privacy leaks
by controlling the discoverability of online information.

In International Conference on Applied Cryptography

and Network Security, ACNS. Springer, 2015.

[70] SimilarTech.com. Market share & web usage statistics:

OpenlD, 2020. Accessed: 2020-05-23.

[71] San-Tsai Sun, Eric Pospisil, Ildar Muslukhov, Nuray

Dindar, Kirstie Hawkey, and Konstantin Beznosov.

What makes users refuse web single sign-on?: an em-

pirical investigation of OpenlID. In 7th Symposium on

Usable Privacy and Security, SOUPS. ACM, 2011.

[72] Jake Swearingen. When Amazon Web Services Goes

Down, So Does a Lot of the Web, 2018. Accessed:

2020-05-23.

[73] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan

Spring, Mark Felegyhazi, and Chris Kanich. The long

“taile” of typosquatting domain names. In 23rd USENIX

Security Symposium, 2014.

[74] Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W

Smith. Blacklistable anonymous credentials: blocking

misbehaving users without TTPs. In Conference on

Computer and Communications Security, 2007.

[75] Alma Whitten and J Doug Tygar. Why Johnny Can’t

Encrypt: A Usability Evaluation of PGP 5.0. In USENIX

Security Symposium, 1999.

[76] World Wide Web Consortium (W3C). Web Assembly,
2020. Accessed: 2020-05-23.

https://developer.mozilla.org/en-US/docs/WebAssembly/Caching_modules
https://developer.mozilla.org/en-US/docs/WebAssembly/Caching_modules
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://github.com/OpenIDC/pyoidc
https://github.com/OpenIDC/pyoidc
https://github.com/privacybydesign/irma_mobile
https://privacybydesign.foundation/
https://privacybydesign.foundation/
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://www.similartech.com/technologies/openid
https://www.similartech.com/technologies/openid
http://nymag.com/selectall/2018/03/when-amazon-web-services-goes-down-so-does-a-lot-of-the-web.html
http://nymag.com/selectall/2018/03/when-amazon-web-services-goes-down-so-does-a-lot-of-the-web.html
https://webassembly.org/

	1 Introduction
	2 Design Goals
	2.1 System and Adversary Model
	2.2 Target Properties for EL PASSO

	3 Overview of EL PASSO
	4 Building Blocks
	4.1 Anonymous Credentials
	4.2 Zero-knowledge Proofs
	4.3 Cryptographic assumptions

	5 EL PASSO Construction
	6 Implementation
	7 Security Analysis
	7.1 Achievement of Design Goals
	7.2 Limitations and Stronger Adversaries
	7.3 Sensitivity to Known Attacks on OIDC

	8 Evaluation
	9 Related Work
	10 Conclusion

