

Document Image Analysis and Text

Recognition on Khmer Historical

Manuscripts

A thesis submitted in partial fulfillment of the requirements for the

degree of Docteur en sciences de l’ingénieur et technologie,

Université catholique de Louvain

January 2020

DONA VALY

Thesis committee:

Prof. Michel Verleysen (UCLouvain), supervisor
Prof. Jean-Pierre Raskin (UCLouvain), chairperson

Prof. John Lee (UCLouvain), secretary
Prof. Bernard Gosselin (UMons, Belgium)

Dr. Sophea Chhun (ITC, Cambodia)

i

List of Figures

Figure 2.1: A collection of Khmer palm leaf manuscripts 8

Figure 2.2: Palm leaves are being placed to dry 9

Figure 2.3: A black mixture is used to make the engraved text easy to

read ... 10

Figure 2.4: Several types of deformations and defects found in palm

leaf manuscripts .. 13

Figure 2.5: Example of similarity between certain Khmer characters 14

Figure 2.6: Examples of double-decker and triple-decker clusters of

Khmer consonants .. 15

Figure 2.7: Some examples of ligatures between certain letters which

form new shapes ... 16

Figure 2.8: Irregular sequential ordering of symbols in a word. The

different order of the position of the characters in the text image (top)

and the Unicode sequence of the text (bottom) 17

Figure 2.9: Simulation of how the word “TABLE” could have been

written in Khmer style (vowel ‘A’ composed of two parts which are

placed on top and on the left side of ‘T’, consonant ‘L’ written as a

sub-from under ‘B’, and vowel ‘E’ placed under ‘B’ and the sub-f . 17

Figure 3.1: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) Leaky ReLU 28

Figure 3.2: Architecture of a simple CNN ... 31

Figure 3.3: Architecture of a simple RNN (a) rolled, (b) unrolled 33

Figure 3.4: Architecture of an LSTM cell .. 35

Figure 3.5: Architecture of a simple Bidirectional-RNN 37

Figure 3.6: Axes representing the 4 possible directions in 2D-RNN . 39

Figure 4.1: Samples of digitized images from top to bottom: EFEO,

BI, and NL .. 45

Figure 4.2: A set up for our digitization campaign 46

ii

Figure 4.3: Sample images of our digitization campaign (from top to

bottom: Phnom Penh, Kandal, and Siem Reap) 46

Figure 4.4: Annotation of individual character dataset 48

Figure 4.5: Examples of (a) characters containing multiple parts and

(b) merged shapes ... 49

Figure 4.6: Application of inpainting technique on a character image

patch (a) input image, (b) inpainting mask using polygon boundary,

(c) result .. 49

Figure 4.7: Order sequence of characters in a word 50

Figure 4.8: Annotation of word dataset .. 50

Figure 4.9: (a) Sample Khmer text, (b) Word separation, (c) Sub-

syllable separation .. 52

Figure 4.10: Construction of line segmentation ground truth 53

Figure 4.11: Sample of an xml file storing annotation information of a

manuscript page .. 54

Figure 4.12: Samples of annotated character patch images 55

Figure 4.13: Samples of annotated word patch images 55

Figure 4.14: Balinese palm leaf manuscripts 57

Figure 4.15: Sundanese palm leaf manuscript 57

Figure 5.3: Khmer manuscript with binarized ground truth image 61

Figure 5.3: Balinese manuscript with binarized ground truth image . 61

Figure 5.3: Sundanese manuscript with binarized ground truth image

 .. 61

Figure 5.4: Binarization of Khmer manuscript with ICFHR G1 method

 .. 65

Figure 5.5: Binarization of Balinese manuscript with ICFHR G2

method .. 65

Figure 5.6: Binarization of Sundanese manuscript with Niblack’s

method .. 65

Figure 5.7: Overview of the proposed line segmentation pipeline 66

iii

Figure 5.8: (a) Original Image, (b) Edge map using Canny edge

detection, (c) Stroke map .. 68

Figure 5.9: (a) Smooth projection profiles and the estimated medial

points (red dots), (b) Adaption of the medial points to surrounding

connected components (black dots) ... 71

Figure 5.10: An example of an optimal path going from the start state

�1 to the goal state �� .. 74

Figure 5.11: Segmentation results of the proposed approach (pairs of

whole segmented manuscript page and zoomed out area with medial

seams marked in red) .. 76

Figure 6.1: Overview of the workflow of the text recognition module

 .. 79

Figure 6.2: CNN based network ... 81

Figure 6.3: Column wise LSTM network .. 81

Figure 6.4: Column wise and row wise LSTM 81

Figure 6.5: A combination of convolutional and recurrent neural

network ... 82

Figure 6.6: (a). Original image, (b). Gray scaled and resized, (c).

Normalized ... 83

Figure 6.7: Sample images of Balinese characters 84

Figure 6.8: Sample images of Sundanese characters 84

Figure 6.9: (a). Original word image patch, (b). Annotated character

information in the word: polygon boundaries of all characters, (c).

Glyph-class map ... 87

Figure 6.10: General architecture of the networks in the first trial 88

Figure 6.11: Architecture of the 1D-LSTM layer (Trial-Net1) 89

Figure 6.12: Architecture of the 2D-LSTM layer (Trial-Net2) 89

Figure 6.13: (a). Initial sample order, (b). Sort by the width of each

sample, (c). Pad each sample to the maximum width in the batch, (d).

Shuffle batch order ... 90

iv

Figure 7.6: (a). Original word image, (b). Ground truth GCM, (c).

Result predicted by the Trial-Net1, (d). Result predicted by the Trial-

Net2 .. 91

Figure 7.1: Overview of the architecture of proposed word recognition

model .. 94

Figure 7.2: Detailed architecture of the GCM decoder 98

Figure 7.3: Overview of the architecture of the SubSyl-Net 102

Figure 7.4: Modified version of GCM, (a) Raw image patch I, (b) Map

I' containing polygon boundaries of all glyphs, (c) Downsampling I'

by applying nearest neighbor interpolation to obtain the new GCM 103

Figure 7.5: Detailed architecture of the inception layer. Values in the

parenthesis are the numbers of filters (corresponding respectively to

the first and the second inception blocks in the SubSyl-Net 104

Figure 7.7: Sample results from the SubSyl-Net showing the predicted

GCM and the attention map at each time step (the region highlighted

in red is where the decoder attends to) ... 117

v

List of Tables

Table 4.1: Number of digital Image collections available in various

establishments .. 44

Table 4.2: Collection of digitized palm leaf manuscripts from our

digitization campaign ... 45

Table 4.3: Collection of palm leaf manuscript images from different

sources composing SleukRith Set .. 47

Table 4.4 Summary of the statistics of the SleukRith Set 54

Table 5.1: Palm leaf manuscript datasets for binarization task 60

Table 5.2: Experimental results for the binarization task 62

Table 5.3 Result of the performance evaluation of line segmentation

methods (Experiment 1) ... 75

Table 5.4: Palm leaf manuscript datasets for text line segmentation

task (Experiment 2) .. 77

Table 5.5: Experimental results for text line segmentation task

(Experiment 2) .. 78

Table 6.1: Palm leaf manuscript datasets for isolated character/glyph

recognition task .. 83

Table 6.2: Experimental results for isolated character/glyph

recognition task (in % recognition rate) ... 86

Table 6.3: Evaluation results of the Trial-Net1 and Trial-Net2 92

Table 7.1: number of samples of the word dataset and the dataset of

groups of sub-syllables ... 112

Table 7.2: Evaluation results of the Word-Net 116

Table 7.3: Evaluation results of the SubSyl-Net 118

Table 7.4: Comparison between Word-Net and SubSyl-Net 118

vi

vii

Abstract

Palm leaves have been used as one of the major sources of writing and

painting in many Southeast Asian countries. In Cambodia nowadays,

palm leaf documents called “Sleuk Rith” in Khmer are still around

attributable to their cultural value as well as the precious contents

written on them. However, as a consequence of deterioration from

natural aging and damage caused by various natural factors, palm leaf

manuscripts are facing destruction and are in need for preservation.

Many programs and projects are underway to recover and preserve

palm leaf documents not only in their physical form but also in digital

imaging through scanning and photography. The centralization of the

digitized images allows easy access for the public. Nonetheless,

searching and filtering the content of those documents using particular

keywords are still unmanageable. An automatic recognition system

therefore needs to be developed.

This dissertation takes part in exploring document image analysis

(DIA) researches which put Khmer palm leaf manuscripts into the

spotlight. We aim to bring added values by designing tools to analyze,

index, and access quickly and efficiently to the text content of palm leaf

documents. In order to achieve this objective, different DIA tasks are

studied, and novel approaches to solve such tasks are proposed. First, a

new corpus of digitized Khmer palm leaf manuscripts has been

collected. From this corpus, the first Khmer palm leaf manuscripts

dataset called “SleukRith Set” consisting of different types of annotated

data has been constructed. Experimental evaluations and comparisons

of approaches on various DIA tasks such as binarization, text line

segmentation, and isolated character recognition have been conducted

on Khmer palm leaf manuscript datasets in addition to datasets of palm

leaf manuscripts from Indonesia. Moreover, we propose an efficient

line segmentation scheme for grayscale images of Khmer ancient

documents which is able to adapt to the curvature of the actual text lines

and to produce separating seams using a path finding technique. We

also introduce a novel concept of utilizing the annotated information of

glyph components in the word image to build a glyph-class map

viii

followed by a complete text recognition scheme using encoder-decoder

mechanism. A new annotated data called “sub-syllable” which can be

used as an efficient data augmentation technique for the text recognition

task has been added to SleukRith set.

ix

Acknowledgements

This dissertation would not have been possible without the help of many

people who in one way or another contributed and extended their

precious assistance to me during my PhD.

First and foremost, I would like to express my sincere gratitude to my

advisor Prof. Michel Verleysen for his continuous support, patience,

motivation, and enthusiasm. I am grateful for his immense knowledge

in the field of machine learning, for his confidence in my potential, as

well as for the perfect balance of guidance and freedom that he gave me

to pursue my goals. I could not have imagined having a better advisor

and mentor.

My appreciation to the head of my research project Dr. Sophea Chhun

for her leadership and her help in dealing with challenges and in

managing research activities throughout the whole project period. I

would like to thank also Prof. Bernard Gosselin, member of my thesis

committee, for his encouragement and insightful comments during my

thesis confirmation.

Many thanks to Dr. Made Windu Antara Kesiman, Prof. Jean-

Christophe Burie, and the team from Universitas Padjadjaran for their

collaboration and for providing sample images of Balinese and

Sundanese palm leaf manuscripts which are very valuable for the

experimental studies of my research.

Last but not least, very special thanks go to my family and friends

especially my mother, Phally, and my brother, Dyda for their constant

love and support that they have never failed to offer.

This research study is supported by the ARES-CCD (program AI 2014-

2019) under the funding of Belgian university cooperation.

x

xi

Table of Contents

LIST OF FIGURES ... i

LIST OF TABLES ... v

ABSTRACT .. vii

ACKNOWLEDGEMENTS ... ix

1. INTRODUCTION ... 1

1.1. Motivation .. 1

1.2. Objectives .. 2

1.3. Contributions ... 3

1.4. Outline ... 5

2. KHMER PALM LEAF MANUSCRIPTS .. 7

2.1. General Description of Palm Leaf Manuscripts 7

2.1.1. A Brief History ... 7

2.1.2. From Palm Leaves to Writing Materials 7

2.1.2.1. Processing of Palm Leaves 8

2.1.2.2. Writing on Processed Palm Leaves 9

2.2. Khmer Language ... 10

2.2.1. Revolution of Khmer Language 10

2.2.2. Khmer Script .. 11

2.3. Challenges for a DIA System Development 12

2.3.1. Conditions and Characteristics of Historical Khmer

Palm Leaf Manuscripts ... 12

2.3.2. Complexity of Khmer Script .. 14

3. STATE OF THE ART: DOCUMENT IMAGE ANALYSIS 19

3.1. Preprocessing Tasks ... 19

3.1.1. Binarization .. 19

xii

3.1.1.1. Global Thresholding ... 20

3.1.1.2. Local Thresholding ... 20

3.1.1.3. Training Based Binarization 21

3.1.2. Line Segmentation .. 22

3.2. Character and Text Recognition .. 24

3.2.1. Handcrafted Feature Extraction 25

3.2.2. Neural Networks and Deep Learning 26

3.2.2.1. Neural Network Basics.. 26

3.2.2.2. Convolutional Neural Networks 29

3.2.2.3. Recurrent Neural Networks 32

3.2.2.4. Neural Networks for Handwriting Recognition 39

4. DIGITAL IMAGE CORPUS AND GROUND TRUTH DATASET 43

4.1. Digital Image Corpus ... 43

4.1.1. Existing Digital Images of Khmer Palm Leaf

Manuscripts ... 43

4.1.2. Digitization Campaign ... 44

4.2. SleukRith Set ... 46

4.2.1. Description of SleukRith Set .. 46

4.2.2. Isolated Glyphs ... 48

4.2.3. Words ... 49

4.2.4. Sub-syllables .. 51

4.2.5. Lines and their Transcriptions 52

4.2.6. Annotation File Format .. 53

4.3. Additional Datasets of Palm Leaf Manuscripts from

Indonesia ... 55

4.3.1. Balinese Manuscripts ... 56

4.3.2. Sundanese Manuscripts .. 56

5. PREPROCESSING ... 59

xiii

5.1. Binarization .. 59

5.1.1. Datasets .. 59

5.1.2. Evaluation Method ... 60

5.1.3. Experiments and Results .. 62

5.2. Text Line Segmentation ... 64

5.2.1. Description ... 67

5.2.1.1. Foreground Text Detection and Extraction (A) 67

5.2.1.2. Line Number and Location Estimation (B) 68

5.2.1.3. Skew and Fluctuation Adaption (C) 69

5.2.1.4. Line Boundary Creation (D) 71

5.2.2. Experiments and Results .. 73

5.2.2.1. Evaluation Metrics .. 73

5.2.2.2. Experiment 1 ... 75

5.2.2.3. Experiment 2 ... 76

6. FEASIBILITY STUDY: GLYPH RECOGNITION AND LOCALIZATION

USING DEEP LEARNING .. 79

6.1. Isolated Glyph Recognition ... 79

6.1.1. Description of the Networks ... 80

6.1.2. Experiments and Results .. 82

6.1.2.1. Datasets ... 82

6.1.2.2. Experiment Procedure and Evaluation Protocols 83

6.1.2.3. Results and Discussion.. 84

6.2. Glyph Localization in Word Images 86

6.2.1. Glyph-class Map (GCM) .. 86

6.2.2. GCM Generator .. 87

6.2.3. Experiments and Results .. 90

6.2.3.1. Datasets ... 90

xiv

6.2.3.2. Evaluation Protocols... 90

6.2.3.3. Results and Discussion.. 91

7. TEXT RECOGNITION ... 93

7.1. Recognition of Word Image Patches (Word-Net) 93

7.2. Recognition of Sub-syllable Image Patches (SubSyl-Net) 101

7.2.1. Modified GCM ... 102

7.2.2. Feature Generator ... 102

7.2.3. Decoder and Attention Mechanism 105

7.2.4. Implementation Details .. 107

7.2.5. Training .. 108

7.3. Segmenting into Groups of Sub-syllables and Merging their

Transcriptions ... 110

7.4. Experiments and Results .. 111

7.4.1. Datasets .. 111

7.4.2. Evaluation Protocols ... 112

7.4.3. Hyper-parameter Tuning .. 114

7.4.4. Results and Discussion ... 115

8. CONCLUSIONS ... 119

8.1. Summary .. 119

8.2. Impacts ... 122

8.3. Future Work ... 122

REFERENCES .. 125

APPENDIX A ... 139

APPENDIX B .. 143

1

1. Introduction

1.1. Motivation

Dating back to centuries ago, in many countries in South Asia and

Southeast Asia, palm leaves have been used as writing materials.

Initially, knowledge was passed down orally, but after the diffusion of

Indian scripts throughout most of Asia, people eventually began to write

it down in dried and smoked treated palm leaves. These palm leaves

have been used to record narratives from actual events or mythical

phenomenon influenced by cultural and religious activities during those

periods. The content of these documents are mostly handwritten texts,

but some of them also contain drawings in black and white or even in

color. With the spreading of Indian culture to Southeast Asian countries

such as Thailand, Indonesia, and Cambodia, these nations became home

to large collections of documents written on palm leaves.

In Cambodia, palm leaf documents are still seen in Buddhist

establishments, mostly Buddhist temples called “pagodas”, and are

considered to be holy and sacred. They are being used habitually and

traditionally by monks as reading scriptures. Besides their cultural

merit, these ancient manuscripts store valuable content including old

religious sayings, crucial historical events, as well as certain scientific

findings that are still very useful for researchers in those fields of study.

Nowadays, some programs to collect, preserve, and digitize palm leaf

documents are under way, but only few have been completed especially

in Indonesia and Cambodia. The main goal of these efforts is to preserve

cultural heritage embedded with these ancient documents before they

face destruction due to their fragility. From previous preservation

campaigns, the manuscripts are scanned empirically, sometimes with

poor resolution and inadequate light by different stakeholders in diverse

institutions (public or private). Moreover, the storage of the digital files

is not always safe, lacking backup and mirror storage.

Beside the objective of preserving physical conditions of the

manuscripts i.e. preventing damage from the injuries of time (dirt,

2

moisture, insects) and accidents (fire, floods), these programs aim also

at facilitating the access to the content of the documents for researchers.

Currently, most of the digitized images are in reality not accessible to

the public. Remarkable efforts in providing open access to the data

along with a precise bibliometric indexing have been made in

Cambodia, for instance the collaborative work with Ecole Française

d’Extrême-Orient (EFEO) which has made available a database1 of

thousands of collections of palm leaf manuscripts digitized from

microfilms. This excellent example of open-handed data is

unfortunately still rare. Nevertheless, to date, only bibliometric

indexing can be offered beside the image files: identification of the

manuscript origin, title, date, topic, etc., but no indexing of the content

is available. Therefore, in-text search by keywords is still impossible.

As far as we know some work has been done to enhance the quality of

images of palm leaf manuscripts but no research to analyze and to index

automatically the content of these ancient documents has been

conducted. People, such as historians or philologist wanting to study

these ancient documents have to read them one by one to find the

needed information, and they have to go, most of the time, physically

to the place where the documents are stored. To enable this in-text

search capability as well as applications related to text processing on

palm leaf manuscripts, a text recognition system is therefore needed.

1.2. Objectives

This research work aims at bringing added value to digitized palm leaf

manuscripts by developing tools to analyze, index, and access quickly

and efficiently to the content of ancient manuscripts. A document image

analysis (DIA) system is to be developed. The development of the

system is divided into several step-by-step image processing tasks

starting from the construction of digital corpus and ground truth data.

Next, the pre-processing phase includes analyzing document layouts

and segmenting document images into smaller entities such as text lines

and individual words or syllables. Finally, the segmented elements will

1 http://khmermanuscripts.efeo.fr

3

be recognized and transformed into output texts to complete the text

recognition scheme.

Under the scope of this research work, experimental study is performed

on palm leaf manuscripts from Cambodia and Indonesia; however,

documents written in Khmer script are the main focus. With respect to

this type of documents, many technical challenges will be assessed. A

standardized methodology for safe and efficient manuscript digitization

will be adopted in order to preserve the physical integrity of the

manuscripts and to ensure a necessary and proper quality to analyze the

document. Secondary data such as old photographs of palm leaves

manuscripts which can be found in libraries and various institutions will

also be taken into account. The DIA system will therefore be able to

deal with these palm leaf documents under a variety of qualities. The

palm leaves are sometimes in poor physical conditions, and although

they are digitized properly, scratches and artifacts might still occur in

the images. The developed DIA system should be able to eliminate most

of those noises and to extract only the relevant information. Other

challenges including unique characteristics of these palm leaf

documents such as their format and layout as well as the complexity of

the script written on them (Chapter 2.3) should also be considered.

After the completion of the DIA system, an interactive search engine is

expected to be developed. The idea is to propose a tool allowing to

search all the instances of a specific word inside the corpus. Thanks to

this search engine, rather than spending extensive amount of time

searching for some specific content, researchers (philologists and

historians for example) will be able to access quickly to the relevant

information.

1.3. Contributions

The main contributions of this thesis are listed as the following (the

presented work has been published in large parts in various

international conference papers and journals which are also referenced

here).

4

1) Ground truth creation: A collection of digitized Khmer leaf

manuscripts has been collected to create a corpus. A tool has

been designed and developed to specifically build the ground

truth consisting of different types of annotated data suitable for

experimental studies on various DIA tasks. The first Khmer

palm leaf manuscripts dataset called “SleukRith Set” has been

constructed and made available to public [1].

2) Benchmarking of DIA methods on palm leaf manuscript

datasets: Experimental evaluations and comparisons of

approaches on various DIA tasks such as binarization, text line

segmentation, and isolated character recognition have been

conducted on Khmer palm leaf manuscript dataset in addition to

datasets of palm leaf manuscripts from Indonesia [2, 3].

3) Line segmentation: A novel text line segmentation approach

on binary images has been proposed [4]. The approach starts by

determining the number of lines and setting up text line mid

points’ initial positions using a modified piece-wise projection

profile technique. The competitive learning algorithm is applied

afterwards to adaptively move those mid points according to the

geometrical information of connected components in the

document page to form lines. Borders between text lines are

defined so that they can be used to separate touching

components that spread over multiple lines. The proposed

method is robust in handling documents with skewed,

fluctuated, or discontinued text lines. An extended binary-free

version of the approach has also been proposed i.e. the approach

works directly on grayscale or color input images [5].

4) Character and text recognition: trial experimentations on

isolated character recognition as well as text recognition on

word image patches have been conducted using different types

of neural network architectures such as Convolutional Neural

Networks, Long Short-Term Memory Recurrent Neural

Networks, and a combination of both [6]. A novel concept

utilizing the annotated information of glyph components in the

word image to build a glyph class map is introduced followed

by a complete text recognition scheme using encoder-decoder

5

mechanism [7]. A new annotated data called “sub-syllable” has

been added to SleukRith Set along with a new optimized text

recognition system adapted on this data. This new data can be

used as an efficient data augmentation technique for the text

recognition task.

Not included in this manuscript are related collaborative works of

organizing competitions on DIA tasks for Southeast Asian palm leaf

manuscripts for a wider research community in the 15th and 16th

International Conference on Frontiers in Handwriting Recognition

(ICFHR 2016 and 2018) [8, 9]

1.4. Outline

The remainder of this dissertation is organized as follows. Chapter 2

presents a detailed description of Khmer palm leaf manuscripts. This

chapter includes a brief introduction to the history of palm leaf

manuscripts in Southeast Asia followed by the process of transforming

raw palm leaves into writing medium as well as a presentation about

Khmer language, its script, and its writing style. DIA challenges from

the conditions and characteristics of Khmer palm leaf documents and

from the complexity of Khmer script are also discussed. Next, Chapter

3 focuses on literature review which examines state-of-the-art

approaches on various DIA tasks such as binarization, segmentation,

and text recognition system which is subdivided into the traditional

handcrafted feature extraction approaches and the deep learning

methods. The collection of digital corpus of Khmer palm leaf

manuscripts, the construction of ground truth tool and data, and the

introduction to Sleuk Rith Set, the first Khmer palm leaf manuscript

dataset, are presented in Chapter 4. After that, Chapter 5 first presents

a benchmarking and comparison study of binarization approaches from

the literature. This chapter also introduces the proposed binary-free line

segmentation method as well as experimental evaluation with some

base-line approaches. In Chapter 6, we cover the initial

experimentations on using different neural network architectures on

solving individual character recognition as well as the task of localizing

glyphs in short image patches. After the feasibility study of using deep

6

learning approaches for Khmer text recognition problem, in Chapter 7,

we present an overview of the proposed text recognition scheme.

Finally, conclusions are drawn, and future research directions are

discussed in Chapter 8.

7

2. Khmer Palm Leaf Manuscripts

In this chapter, details on Khmer palm leaf manuscripts are discussed.

A general description, including a brief history and the production

process of palm leaf documents, is presented. Khmer language whose

script is handwritten on the manuscripts is also introduced. At the end

of the chapter, we look at DIA challenges from two aspects of historical

Khmer palm leaf documents: (1) the conditions as well as certain

characteristics of such documents and (2) the complexity of Khmer

script.

2.1. General Description of Palm Leaf Manuscripts

The concept of writing has been revolutionized throughout many

civilizations. The main purpose of writing is to be used as an alternative

form of communication and also to record important information.

Before the invention of paper, the geographical condition of each nation

was the main influence on the choice of natural materials to be used as

a medium for writing.

2.1.1. A Brief History

Palm leaf manuscripts are one of the oldest mediums and also one of

the major sources of writing and painting in Southeast Asian countries

including Nepal, Sri Lanka, Burma, Thailand, Indonesia, and Cambodia

[10]. Although the practice of palm leaf writing existed since the ancient

times, it is still unclear about its precise origin. According to [11], it is

difficult to say exactly when palm leaves began to be used for writing;

however, palm leaves were definitely in use much earlier than the 10th

century since it is mentioned as a writing material in several literary

works and its visual representation can be seen in several sculptures and

monuments. Until today, the composition and method of writing of

palm leaf manuscripts have remained unchanged. Even though not as

high in volume, people still prepare and use palm leaf manuscripts the

way our ancestors used centuries ago.

2.1.2. From Palm Leaves to Writing Materials

Due to the natural size of the leaves, palm leaf manuscripts are always

found in linear horizontal format. Each palm leaf page is long and

8

rectangular in shape whose dimension varies from 15��-60�� in

width and from between 3��-12�� in height (Figure 2.1). Their

dimension normally depends on the available size of the leaves. To

make them suitable for scribing, before writing the palm leaves need to

be processed and prepared.

2.1.2.1. Processing of Palm Leaves

Palm leaves are first selected from the tree and cut into required size.

Only half open young shoots of palm leaves are suitable for making

manuscripts. To avoid being too dried up and becoming brittle, the cut

palm leaves are placed in an organized manner to dry (Figure 2.22).

They need to be taken very good care of, or they will be damaged, torn,

and saturated. The drying process can be done at early dawn or during

the night to take advantage of the dew which can make the leaves soft.

After the stems are extracted from the dried leaves, they need to be

wiped to remove dirt. When they are all clean, we arrange and tie them

by putting them in a splint in order to be pressed tightly together. This

process takes up to two or three months so that the leaves can be

straightened properly. As a final stage of the preparation process, the

earlier pressed leaves are smoked and roasted to remove remaining

humidity. The leaves are finally ready for writing.

2 From the documentary “Project Three 2016: Sleuk Rith, My Life” produced by
Ream Chamroeun, Leng Sreynich, Seng Vannak, and Ngy Sovan Ratany

Figure 2.1: A collection of Khmer palm leaf manuscripts

9

2.1.2.2. Writing on Processed Palm Leaves

Writing on palm leaves is a skilled activity which requires patience,

practice, and training. Before writing, the readily prepared leaves are

marked using thin threads to create lines. Normally five rows of lines

sit on both the back and the front of the leaf. Incision with a sharp metal

stylus is the most common method of writing on palm leaves. The text

to be written is therefore carved on the leaf one letter at a time. After

the incision, the letters may not be visible to read. A mixture of dark

burned wick from oil lamp and wood oil, often called “Mrenh Plerng”,

is used to rub on the leaf so that the engraved letters become more

noticeable and easier to read. The excess mixture is then wiped off with

a cloth (Figure 2.3). Since correction or overwriting is difficult, great

attention is required to make each leaf error free.

After making sure that all texts are correctly inscribed, the pages are

then secured between two wooden panels that are slightly larger in size

than the leaves. To keep the leaves together, holes are punched in the

them. One hole is normally created in the center if the leaf is small

otherwise two holes are punched at either end of it. A cord is passed

through the holes and bound around the manuscript to keep the pages

in position. A case is also often used for the newly created manuscript.

The case is made from the remnants of the leaves and is sewn together

with several layers of fabric.

Figure 2.2: Palm leaves are being placed to dry

10

2.2. Khmer Language

Khmer is the official language spoken by Cambodian people. In the next

sections, we will talk briefly on how Khmer language has been

revolutionized. Different categories of symbols composing Khmer

script are also presented.

2.2.1. Revolution of Khmer Language

Throughout Cambodian history, Khmer has been affected significantly

by languages such as Sanskrit and Pali under religious influences from

Hinduism and Buddhism. It is the earliest recorded written language of

the Mon-Khmer family which is the language being used during

historical empires of Chenla, Angkor, and presumably even the earlier

predecessor state, Funan [12]. According to [13], the history of Khmer

language is divided into four periods. The Old Khmer period, which is

subdivided into pre-Angkorian (from 600 through 800 AD) and

Angkorian (Khmer Empire era from 9th to 13th centuries), is only known

from words and phrases in Sanskrit texts of the era. Following the end

of Khmer Empire, the Middle Khmer took form under the transitioning

period from around the 14th to 18th centuries. During this period, the

language underwent a major change in morphology, phonology, and

lexicon which is influenced by neighboring countries due to

geographical proximity. In the early 20th century, the language once

again transitioned through a standardization phase called Khmerization

by getting rid of foreign elements, reviving affixation, and using the old

Khmer roots (from historical Pali and Sanskrit) to develop new words

Figure 2.3: A black mixture is used to make the engraved text easy to read

11

for modern ideas. Until today, the language became recognizable as

Modern Khmer.

2.2.2. Khmer Script

The Khmer script was one of the earliest writing systems used in

Southeast Asia. It derived immediately from the Pallava script of South

India. Its alphabet consists of a large number of different types of

symbols which can be categorized as follows:

 Consonants: there are 35 Khmer consonants. However,

Modern Khmer only uses 33 consonants due to two of them

becoming obsolete. Every consonant is attached with an

inherent vowel and therefore can be a standalone character when

being spelled in a word. Each consonant (except one) has a

subscript form which is also called “sub-consonant”. Most sub-

consonants resemble the corresponding consonant counterpart

but in a smaller and possibly simplified form although in a few

cases, certain consonants and their sub-consonants do not share

obvious resemblance. The majority of sub-consonants are

written below the main consonant with the exception of several

sub-consonants whose parts are elongated from the bottom of

the main consonant to either its left or right side.

 Dependent Vowels: most Khmer vowel sounds are written

using one type of vowels called dependent vowels. Dependent

vowels can only be written in combination with a consonant or

a consonant cluster (see Figure 2.6) i.e. they cannot stand alone.

 Independent Vowels: in contrast to dependent vowels, Khmer

independent vowels (also known as “complete vowels”) are

vowel characters that stand alone i.e. they are not written in

combination with other consonants or vowels. The independent

vowels are used in only a small number of words.

All Khmer consonants (and their corresponding sub-consonants),

dependent vowels, and independent vowels are listed in Appendix A.

In Khmer writing, there are also additional symbols including:

12

 Diacritics: Khmer uses several diacritics to indicate further

modifications in pronunciation such as shortening the length of

the vowels or to showcase some loanwords from Pali and

Sanskrit.

 Punctuation: just like most languages, Khmer also uses

punctuation to state end of phrases or sentences. In addition to

its own punctuation, western-style punctuation marks are quite

commonly used in modern Khmer writing.

 Numeral: the numerals of the Khmer script, consisting of 10

distinct digits, are also derived from the southern Indian script.

Western-style Arabic numerals are also used, but to a lesser

extent.

Commonly used diacritics and punctuations as well as all 10 Khmer

numerals are also listed in Appendix A.

2.3. Challenges for a DIA System Development

For Khmer palm leaf manuscripts, several major challenges need to be

overcome. Those challenges mainly come from the physical conditions

as well as the format of palm leaf documents. The complexity of Khmer

script also provides many difficulties in solving DIA tasks for these

documents.

2.3.1. Conditions and Characteristics of Historical Khmer Palm

Leaf Manuscripts

Despite the availability of advanced image capturing methods,

photography technology, and scanning equipment, the quality of many

palm leaf images is still low due to natural aging. Palm leaf manuscripts

are organic in nature and are susceptible to different types of

deterioration which leads to physical damage and decay. Some of the

most common deteriorating agents are light, insects, constant handling,

adverse storage, and climatic factors including variations in relative

humidity and temperature. Some degradations and noises caused by

these agents include seepage of ink or bleed through, damage or tear

around the area of the holes used for binding the document, stain from

dirt, and other types of discoloration. Figure 2.4 illustrates these

13

degradations. The fragility of the aging leaves also presents some

difficulties during the digitization process of the leaves. For instance,

sometimes leaf manuscripts are curved and cannot be forced flat which

results in an uneven illumination in the output image.

Due to their characteristics, palm leaf manuscripts provide challenging

layout analysis problems, segmenting palm leaf pages into individual

text lines for example. In most Khmer palm leaf manuscripts, the

scripters tend to exaggerate their writing by elongating the upper or

lower part of a character which makes it go far out of its main line,

touch, or overlap with other characters from adjacent lines. Moreover,

due to high width-height ratio of the manuscript page, text lines are

written very close to each other with very little spacing between them.

Because text lines are long, they may also be slanted, curved

upward/downward, or fluctuated on account of them being handwritten

or from improper digitizing. In addition, strings used to tie palm leaves

together to create a book-like binding leave behind holes surrounded by

empty areas in the middle of the page producing discontinuity of text

lines. Efficient line segmentation approaches on palm leaf manuscript

are therefore very important as well as challenging to develop.

Figure 2.4: Several types of deformations and defects found in palm leaf
manuscripts

14

2.3.2. Complexity of Khmer Script

Complexity of Khmer script is also a big challenge. Khmer is

recognized by the Guinness World Records3 to be the language with the

longest alphabet. As mentioned in Chapter 2.2.2, certain types of letters

have more than one form and/or can be combined with other letters to

create more shapes which increase even more the number of symbols

in Khmer writing. The abundance of different symbols in Khmer script

requires a complex and sophisticated system for those letters to be

efficiently recognized and accurately classified.

On account of the large quantity of symbols, many of those symbols are

very similar and can be distinguishable by only the appearance of some

small strokes or holes and their spatial locations. In old handwritten

form, this similarity is even more apparent and sometimes creates an

ambiguity between symbols which requires context from neighboring

symbols so that those ambiguous symbols can be correctly identified.

Some types of symbols contain multiple parts whose shapes are

identical or very similar to other characters. Figure 2.5 shows some

examples of this ambiguity.

Consonants in Khmer script are used either as individuals or as clusters

of multiple letters i.e. a double or triple decker form which is composed

of a normal consonant and one or two sub-consonants to merge the

sound of those consonants together. Figure 2.6 shows some examples

of different combinations of consonant clusters. Vowels and diacritics

can be ascenders or descenders or can be placed at either side (right or

3 http://www.guinnessworldrecords.com/world-records/longest-alphabet

Figure 2.5: Example of similarity between certain Khmer characters

15

left), on top, or at the bottom of the main consonant or the cluster of the

main consonant. Some letters which consist of multiple parts can even

be positioned at different locations simultaneously. Moreover, some

ligatures between certain letters produce new shapes which might not

be a straightforward combination of the composing letters. Some

examples of this type of ligatures are presented in Figure 2.7. In Figure

2.7 (a), a combination between consonant BA and vowel A creates a

new shape to represent the word BA-A otherwise their direct

combination would be identical to the shape of consonant HA. In Figure

2.7 (b), by attaching vowel E above certain consonants, the vowel

replaces the top part of those consonants.

Unicode encoding (U1780-U17FF) has been adopted to represent

Khmer symbols (Appendix B). Even though the overall writing

direction of a word is left to right, the order of the Unicode codes in the

code sequence representing that word does not always follow the

writing order of the composing symbols. Also, symbol to code

relationship is not always one to one i.e. some symbols can be

represented by more than one code, and some codes can represent a

combination of symbols. For instance, each subscript of any consonant

does not have its own code but is instead represented by a sequence of

two codes: a special code “coeng” (U17D2) followed by the code of its

corresponding normal consonant. Unlike words in Latin script whose

symbols can be identified one by one, to recognize a Khmer word, one

must look at the whole writing of the word. This illustrates that the

Figure 2.6: Examples of double-decker and triple-decker clusters of Khmer
consonants

16

spatial information of each symbol composing a word is crucial for the

recognition of that word.

Khmer is written from left to right; however, there is no word separation

in Khmer writing. Spaces are occasionally used to separate phrases

instead of words. We rely on grammatical structures, character

combination rules, and sometimes contextual meaning of the sentence

in order to identify where the beginning and the ending of a word are.

As mentioned earlier, the sequential order of characters composing a

word is irregular. For instance, a word must start with a consonant and

may be followed by vowels. However, the physical positions of the

vowels can either be on the left, on the right, on top, or under the starting

consonant. Some particular vowel symbols consist of multiple parts

which are placed simultaneously at multiple locations around the

consonant. Figure 2.8 illustrates this case. The vowel symbol AEU is

composed of two parts which are located on the left and on top of the

Figure 2.7: Some examples of ligatures between certain letters which form new
shapes

17

main consonant SA. To emphasize even more, we also simulate how an

English word could have been written in Khmer style in Figure 2.9.

Figure 2.8: Irregular sequential ordering of symbols in a word. The different
order of the position of the characters in the text image (top) and the Unicode
sequence of the text (bottom)

Figure 2.9: Simulation of how the word “TABLE” could have been written in
Khmer style (vowel ‘A’ composed of two parts which are placed on top and on the
left side of ‘T’, consonant ‘L’ written as a sub-from under ‘B’, and vowel ‘E’
placed under ‘B’ and the sub-f

18

19

3. State of the Art: Document Image

Analysis

In recent years, research in DIA has received considerable attention.

The process of solving DIA tasks does not consist of a single step but

often a sequence of steps composing a complete pipeline. For

handwritten text recognition problem in particular, the pipeline is

divided into two major parts: preprocessing and recognition. The state

of the art of each part of the handwritten text recognition scheme which

often comprises of different sub-tasks will be discussed in the following

sections.

3.1. Preprocessing Tasks

Preprocessing of document images is very crucial and influences

greatly the performance of the text recognition stage. In this part, we

discuss existing approaches of two preprocess tasks: binarization and

line segmentation.

3.1.1. Binarization

Binarization is widely applied as the first preprocessing step in image

document analysis [14]. Binarization is a common starting point for

document image analysis pipeline. It converts gray image values into a

binary representation for background and foreground, or in a more

specific definition, text and non-text, which is then fed into further tasks

such as text line segmentation and text recognition (OCR). The

performance of binarization techniques has a great impact and directly

affects the performance of the recognition task [15]. Non optimal

binarization methods produce unrecognizable characters with noises

[16]. Many binarization methods have been reported. These methods

have been tested and evaluated on different types of document

collections. Based on the choice of the thresholding value, binarization

methods can be generally divided into two types, global binarization

and local adaptive binarization [16]. Some surveys and comparative

studies of the performance of several binarization methods have been

reported [15, 17]. A binarization method that performs well for one

20

document collection, might not necessarily be applied to another

document collection with the same performance [14]. For this reason,

there is always a need to perform a comprehensive evaluation of the

existing binarization methods for a new document collection with

different characteristics, for example, the historical archive documents

[17].

3.1.1.1. Global Thresholding

Global thresholding method is one of the simplest techniques and is one

of the most conventional approaches for binarization [14, 18]. A single

threshold value is calculated from global characteristics of the image.

This value should be properly chosen based on a heuristic technique or

a statistical measurement to be able to give a promising optimal

binarization result [17]. It is widely known that using a global threshold

to process a batch of archive images with different illumination and

noise variation is not a proper choice. The variation between images on

foreground and background colors on low quality document images

gives unsatisfactory results. It is difficult to choose one fixed threshold

value which is adaptable for all images [17, 19].

Otsu’s method is a very popular global binarization technique [14, 18].

Conceptually, Otsu’s method tries to find an optimum global threshold

on an image by minimizing the weighted sum of variances of the objects

and background pixels [14]. Otsu’s method is implemented as a

standard binarization technique (a built-in Matlab function called

graythresh4).

3.1.1.2. Local Thresholding

To overcome the weakness of the global binarization technique, many

local adaptive binarization techniques were proposed, for example

Niblack’s method [14, 17, 18, 19, 20], Sauvola’s method [14, 17, 18,

19, 20, 21], Wolf’s method [19, 20, 22], NICK’s method [20], and

Rais’s method [14]. The threshold value in local adaptive binarization

technique is calculated in each smaller local image area, region, or

window. Niblack's method proposed a local thresholding computation

4 https://fr.mathworks.com/help/images/ref/graythresh.html

21

based on the local mean and local standard deviation of a rectangular

local window for each pixel on the image. The rectangular sliding local

window covers the neighborhood for each pixel. Using this concept,

Niblack's method was reported to outperform many thresholding

techniques and gave optimal acceptable results for many document

collections [17]. However, there is still a drawback of this method. It

was found that Niblack's method works optimally only on the text

region, but it is not well suited for large non-text regions on the image.

The absence of text on the local areas forces Niblack’s method to detect

noises as text. The suitable window size should be properly chosen

based on the character and stroke size which may vary on each image.

Many other local adaptive binarization techniques were then proposed

to improve the performance of the basic Niblack's method. For

example, Sauvola’s method is a modified version of Niblack's method.

Sauvola's method proposes a local binarization technique to deal with

light textures, big variation and uneven illuminations. The improvement

from Niblack's method is on the use of adaptive contribution of standard

deviation in determining local threshold on the gray values of text and

non-text pixels. Sauvola's method processes separately the image in

� × � adjacent and non-overlapping blocks.

Wolf’s method tries to overcome the problem of Sauvola’s method

when the gray values of text and non-text pixels are close to each other

by normalizing the contrast and the mean of gray values of the image

to compute the local threshold. However, a sharp change in the

background gray values across the image decreases the performance of

Wolf's method. Two other improvements for Niblack's method are

Nick's method and Rais’s method. Nick's method proposes a threshold

computation derived from the basic Niblack's method and Rais’s

method proposes an optimal size of window for the local binarization.

3.1.1.3. Training Based Binarization

The top two proposed methods in Binarization Challenge for ICFHR

2016 Competition on the Analysis of Handwritten Text in Images of

Balinese Palm Leaf Manuscripts [8] are training-based. The best

method in this competition employs a Fully Convolutional Network

22

(FCN). It takes a color sub image as input and outputs the probability

that each pixel in the sub image is part of the foreground. The FCN is

pre-trained on normal handwritten document images with automatically

generated ground truth binarizations using the method of [22]. The FCN

is then fine-tuned using DIBCO and HDIBCO competition images and

their corresponding ground truth binarizations. Finally, the FCN is fine-

tuned again on the provided palm leaf images. For inference, the pixel

probabilities of foreground are efficiently predicted for the whole image

at once and thresholded at 0.5 to create a binarized output image.

The second-best method uses two neural network classifiers C1 and C2

to classify each pixel as background or not. Two binarized images B1

and B2 are generated in this step. C1 is a rough classifier which tries to

detect all the foreground pixels while probably making mistakes for

some background pixel. C2 is an accurate classifier which should not

classify the background pixel as foreground pixel while probably

missing some foreground pixels. Second, they join these two binary

images to get the final classification result.

3.1.2. Line Segmentation

Line separation is one of the most important and challenging pre-

processing tasks in handwritten text recognition especially for the case

of old Khmer handwriting on palm leaf documents. A text line is

normally composed by some words which are arranged in such spatial

position so that it represents the reading order of all words of the

document in the horizontal direction. The vertical position of some text

lines gives an important information about the paragraph which

represents the layout of the document. Segmentation of document

images into physical spatial entities such as text lines, words, and

characters is often performed prior to the recognition step of a text

recognition system. Segmentation-based text recognition methods need

a prior segmentation process of the document image into text line

segments and afterward into even smaller units such as word segments

or character segments. In this case, extracting properly the text lines in

a document enables an easier extraction of smaller size entities of the

23

document. Consequently, the performance of the recognition system is

greatly influenced by the result of the segmentation process.

Even though some of the text line segmentation methods perform

sufficiently well for printed documents, segmenting text lines in

handwritten documents is significantly more challenging. The

difficulties are even more elaborating in historical documents. Some

challenges for segmenting text lines from Khmer palm leaf documents

are discussed in Chapter 2.3.1. Certain distinct properties of Khmer

palm leaf documents can also be noted. As mentioned in Chapter 2.1.2,

the manuscript pages are made from dried palm leaves with light

yellowish or brown color. Ancient Khmer characters are carved on each

page, and a mixture of coal powder and a type of paste is applied on the

carving resulting in dark black text. We can therefore be sure that the

documents contain dark color foreground text over light color

background. Furthermore, despite its form being elaborative and

complex, Khmer handwriting is not cursive. Connected components

representing individual characters can be extracted from each text line.

Numerous state-of-the-art methods of line segmentation have been

proposed. However, many of them operate only on binary images. A

variety of projection profile techniques are used [23, 24, 25, 26]. The

goal of this type of methods is to extract estimated medial or seam

positions of text lines based on the peaks/valleys of the histogram

profiles projected on vertical axis of the document page. Another genre

of line segmentation approaches tries to find optimal paths which pass

through text line seams [27, 28, 29, 30]. Tracers following the white-

most and black-most trails are used in [27] in order to shred the image

into text line areas. In [28], an improved Viterbi algorithm based on

Hidden Markov Model generates all possible paths, and a filtering

process is applied afterwards to remove invalid paths leaving behind

only the optimal ones. To select the ideal paths, the approach in [29]

computes an energy map which accumulates energy from left to right

for each path while a traveling cost function of the path is instead

calculated in [30]. Other methods of text line segmentation working on

binary images include smearing/blurring [31], Hough transform [32],

and water flow [33]. For the approaches mentioned above, a good initial

24

binarization process is required. However, common degradations and

noises on aging palm leaves such as seepage of ink or bleed through,

tears, stains from dirt and moisture, and other types of damage render

this task impossible to produce an acceptable result. It is therefore

necessary that a new binarization-free scheme is developed.

Some methods which are independent on the binarization process have

also been proposed. In [34], projection profile is applied directly on a

grayscale document. The profile is computed by summing the pixel

values from each row. Different skew angles can be detected and

estimated. However, one of the drawbacks from the method is that

seams separating text lines are straight along the direction of the

detected skew. This is not suitable for documents with little spacing

between adjacent lines whose text components may touch or be too

close to each other that the seams are not able to separate them correctly.

Another technique transforms the document page into a set of interest

points which can be grouped into clusters to form text lines based on

their local orientation [35]. The approach of [36] makes use of seam

carving technique to compute separating seams between text lines by

constraining the optimization procedure inside a defined region.

Similarly, in [37], areas for segmentation path are selected, and the

multi-stage graph search algorithm is applied to find the shortest

nonlinear path in each area.

Due to specific characteristics of Khmer handwriting, text line

extraction from Khmer palm leaf manuscripts still remains an open

problem. By taking into account some properties of this type of

document such as its non-cursive writing style, a performance

improvement over state-of-the-art methods is expected. The new

proposed scheme should manage to deal with challenges including

detecting skew/fluctuation of text lines and especially the discontinuity

of text lines which is difficult to solve for many of the existing

approaches.

3.2. Character and Text Recognition

Character or text recognition is the final task in the DIA pipeline. This

task analyses an input image (normally already segmented), extracts

25

useful information from it, and returns a corresponding text as output.

The extracted information is a group of values called features which are

reduced from the initial set of raw data in the input image. Traditionally,

feature extraction techniques are often non-training based i.e. the

methods are manually engineered for certain specific tasks. Those

handcrafted features are then passed to a classifier (for example,

Nearest Neighbor or SVM) to output the predicted class label of the

character image or the text transcription of the text image. Recently, due

to the availability of high-performance computing resources as well as

the accessibility to labeled data of document images, training-based

approaches become more and more popular since features can be

extracted automatically and possibly more efficiently. Next, well

known handcrafted feature extraction methods followed by training-

based approaches such as artificial neural networks and deep learning

will be discussed.

3.2.1. Handcrafted Feature Extraction

Numerous feature extraction methods for character and text recognition

have been proposed in the literature [38, 39, 40, 41]. Each method is

designed to deal with certain specific problems. Reviews on feature

extraction techniques were also reported [42, 43, 44].

Some traditional approaches include projection histogram [45],

crossing [46], outer contour profile [47], and Kirsch directional edge

[48]. The projection histogram technique counts the total number of

pixels composing the foreground texts or characters row-wise

(horizontal histogram) or column-wise (vertical histogram) while the

crossing approach counts the number of pixel transitions from

background to foreground or vice versa. The profile method computes

the distance from the contour of the object to be recognized to the

boundary of the input image. For Kirsch direction edge method, feature

vectors are extracted from the segmented regions of the binary edge

image constructed by computing the edge strength from neighboring

pixels in four directions (horizontal, vertical, and the two diagonals).

Other popular traditional techniques consist of Fourier transform [49]

and Moment invariants [50]. Zoning [51] is also often used. This

26

technique divides the image into smaller partitioned zones. The division

can be performed to create one-dimensional sequences of row-wise,

column-wise, or diagonal-wise slices as well as multi-dimensional

zones such as grid-like cells, circular zones, or radial zones. Any feature

extraction method can then be applied independently on each zone. For

instance, the Celled Projection (CP) technique [52] extracts the

projection histogram features from each of the sub-divided zones.

For palm leaf manuscripts in particular, [53] conducts a study on some

popular features and evaluates them on the dataset of digitized palm leaf

documents. In this study, 10 feature extraction methods, some of them

being traditional approaches described above, are investigated. After

evaluating the performance of those individual feature extraction

methods, the Histogram of Gradient (HoG) features as directional

gradient based features [38], the Neighborhood Pixels Weights (NPW)

[54], and the Kirsch Directional Edges combined with Zoning are found

to give very promising results. A new feature extraction method by

applying NPW on Kirsch edge images is also proposed, and the

concatenation of the NPW-Kirsch output with the two other features

(HoG and Zoning) is then chosen as the final feature vectors.

3.2.2. Neural Networks and Deep Learning

3.2.2.1. Neural Network Basics

Artificial Neural Networks (ANNs) were originally developed as a

mathematical tool to be used to model information processing

capabilities of human brain [55]. The architecture of basic ANNs

consists of processing units or nodes which are connected to each other

by weighted connections i.e. the outputs of some neurons might become

inputs to other neurons. Many variations of the basic ANNs have been

proposed over the past years [56]. One of the widely used ANN

structure is feed forward in which instead of indeterminate groups of

connected neurons, the ANN models are structured into a layer-wise

organization (the models are organized as distinct layers of neurons).

There are always one first layer called input layer and one last layer

called output layer while the intermediate layers between the first and

the last layer are called hidden layers. The most common layer type for

27

regular ANNs is the fully connected (FC) layer. In a FC layer, neurons

between two adjacent layers are fully pairwise connected, but neurons

from the same layer share no connection with each other.

Mathematically, a neuron � can be described by the following

equations:

�� = ∑ �����
�
��� (3.1)

�� = �(�� + ��) (3.2)

where ��, ��, … , �� are the inputs, ���, ���, … , ��� are the weights of

neuron �, �� is the bias, and � is the activation function which

represents the frequency of the activation of neuron � (or simply put, it

decides whether the neuron should be fired or not). In other words, each

neuron in the FC layer performs a dot product with the input and its

weights, adds the bias, and applies the non-linearity to output a fired

signal to neurons in the next layer.

Activation Function

Activation functions take a single value and performs a certain fixed

mathematical operation on it [57]. Commonly used activation functions

are:

 Sigmoid has its mathematical form �(�) = 1/(1 + ���) which

squashes the input real-value number into range between 0 and

1. This type of non-linearity has two drawbacks: (1) sigmoids

saturate and kill gradients giving the vanishing gradient problem

and (2) sigmoid outputs are always positive and not zero-

centered so the gradient on the weights during back propagation

become either all positive or all negative which could introduce

undesirable dynamics in the gradient updates for the weights.

 Tanh �(�) = tanh (�) squashes the input number to the range

between −1 and 1. It is often preferred to sigmoid in practice

since it eliminates one of the drawbacks mentioned earlier (tanh

is zero-centered).

 ReLU (short for Rectified Linear Unit) computes the formula

�(�) = max (0, �). The activation simply threshold the input

28

number at zero. Compared to sigmoid and tanh, due to its linear

and non-linear form, the weight update converges much faster

(no saturation). The ReLU operation is also much less

expensive. There is also a variant of ReLU called Leaky ReLU

[58] which instead of the function being zero when � < 0, a

small negative slope � is used to compute the output value:

�(�) = �� if � < 0 otherwise �(�) = �.

Figure 3.1 illustrates these activation functions.

Cost Function

Cost functions (sometimes also referred to as objective function, loss or

error) are used to estimate how the networks perform. A cost function

is a measure of how wrong the network is in terms of its ability to

estimate the relationship between the input output pairs. This is

typically expressed as the difference or the distance between the output

values predicted by the network and the real values (also known as the

Figure 3.1: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) Leaky ReLU

29

ground truth). By minimizing the cost function i.e. finding the optimal

parameters (normally weights and biases), we can make sure that the

network performance (its predicting ability) is as good the ground truth.

Gradient descent is one of the efficient algorithms that attempt to find a

local or global minimum of a function. It allows the network to compute

the gradient or the direction that the network should take from

parameters of consecutive layers in order to reduce losses (difference

between the predicted output and the ground truth). Gradient descent

therefore enables the learning process to make corrective updates to the

learned estimates that move the network toward an optimal combination

of parameters.

Backpropagation

The forward propagation refers to when we use a feedforward neural

network to process an input and produce an output where the input

contains initial information that flows forward trough hidden units at

each layer. The backpropagation algorithm computes information from

the cost or objective function and then lets it flow backward through the

network in order to determine the gradient for the weights at each layer

[59, 60]. By using the chain rule, backpropagation enables us to

simultaneously compute all the partial derivatives using just one

forward pass followed by one backward pass through the network. For

neural networks, their layer-like architectures can be seen as a

computational graph. For any input value fed into the network, layer by

layer during the backward pass, the gradient of each parameter that we

passed through during the forward pass is computed in a reversed

manner.

3.2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs), a variant of the feed forward

network, are a specialized kind of network for processing data with a

grid-like topology [61, 60]. Similar to ordinary feed forward ANNs,

CNNs are made up of neurons with learnable weights and biases. What

makes CNNs different is the use of mathematical operation called

“convolution” (hence the name). Convolution can be considered as a

30

process where we take a small matrix of numbers (called kernel or filter)

and pass it over a normally bigger matrix and transform it based on the

values from the filter. The output values are calculated according to the

following formula:

(� ∗ ℎ)[�, �] = ∑ ∑ ℎ[�, �]�[� − �, � − �]�� (3.3)

where the input matrix is denoted by � and the kernel by ℎ. The indexes

of rows and columns of the output matrix are denoted by � and �

respectively.

CNNs are therefore ANNs that use convolution in place of matrix

multiplication in at least one of their layers (such layers are called

convolutional layers). For applications related to digital images, the

convolutional layers take an input volume of dimension ℎ���ℎ� ×

����ℎ × ����ℎ (for example an image with 3 color channels has a

depth of 3) and return an output volume of feature maps. The

parameters in the convolutional layers can be seen as a set of learnable

filters. Each filter is often small spatially along the width and height

dimension but extends through the full depth of the whole input volume.

During the forward pass, each filter is shifted or slid across the width

and height of the input volume to apply the convolution operation i.e.

the dot products between the entries of the filter and the region of the

input volume that we slide the filter on. Equation 3.3 is therefore

extended as

(� ∗ ℎ)[�, �] = ∑ ∑ ∑ ℎ[�, �, �]�[� − �, � − �, �]��� (3.4)

where ℎ and � now are 3-dimensional (height, width, and depth). The

network will intuitively learn filters that activate when patterns such as

edges, corners, or some type of visual features are found. For each filter,

after being slid over the entire region of the input volume, a 2-

dimensional feature map is produced. According to the number of filters

used in the layer, the feature maps can be stacked together, and an

output volume of feature maps is obtained.

Pooling layer is commonly used in-between successive convolutional

layers to progressively reduce the spatial size of the representation

31

output volume of feature maps. This consequently also reduces the

number of parameters and the computation cost in the network. The

most common form of pooling layer is the maxpooling with filters of

size 2 × 2 and with a stride of 2. It uses MAX operation which selects

the maximum value from each 2 × 2 region of each individual slice

along the depth dimension of the input volume. After passing through

this maxpooling layer, the input volume will be downsampled by a

factor of 2 along the width and height dimension keeping only a quarter

of the activations of the feature map volume (the depth dimension of

the output however normally remains unchanged).

Figure 3.2 presents an overall architecture of a simple CNN. The

network takes as input a one-channel image with dimension 28 × 28.

The first convolutional layer uses 32 filters of size 5 × 5, and it is

followed by a maxpooling layer. The second convolutional layer uses

64 filters of the same size as in the first convolutional layer, and its

output is again passed through a maxpooling layer to reduce its size.

The output volume is then transformed into a vector to be fed to the first

fully connected layer and then the second one to produce the final class

probabilities.

In this dissertation, the application of CNNs on document images is

focused. CNNs have been tremendously successful in practical

applications on digital image analysis since the architectures allow us

to encode certain properties of the input images. Some eminent deep

CNN architectures including AlexNet [62], VGGNet [63], and ResNet

[64] are considered to be state-of-the-art approaches for image

classification problems.

Figure 3.2: Architecture of a simple CNN

32

3.2.2.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks for

processing sequential data [59]. In contrast to feedforward networks,

RNNs contain loops that return output activations back into the

network. Basically, an RNN remembers the past and its decisions are

influenced by what it has learned from the past. In other words, a simple

feedforward ANN takes a fixed size input vector and transforms it into

a fixed size output vector. Such a network becomes “recurrent” when

the transformation is performed repeatedly instead on each element in

a sequence of input vectors to produce a sequence of output vectors.

Figure 3.3 is an example of a simple RNN architecture with one hidden

layer. Let (��, ��, … , ��, … , ��) be a sequence of input vectors which

are fed into the RNN in order to produce an output sequence

(��, ��, … , ��, … , ��) where � is the number of elements in both

sequence. At each time step �, the RNN has an internal or hidden state

ℎ� which can be computed by the input vector in the current time step

�� and the hidden state in the previous time step ℎ��� as following:

ℎ� = �(���� + ��ℎ��� + �) (3.5)

where ��, ��, � are weights and bias respectively and � is an activation

function. It should also be noted that the parameters ��, ��, and � are

shared for every computation at each time step �. The hidden state ℎ�

can be used to further compute the corresponding output ��.

Backpropagation Through Time

Backpropagation Through Time (or BPTT) happens when the

backpropagation algorithm is applied to train RNNs. As mentioned

earlier, a RNN processes a sequence of inputs, and one input is shown

to the network at each timestep to produce one output which is then fed

back to the network to be used in the computation for the next timestep.

This behavior causes the network to contain loops (rolled version) as

illustrated in Figure 3.3.a. The network, however, can be unrolled i.e.

each timestep of the unrolled network (Figure 3.3.b) can be considered

as an additional layer given that the output from the previous timestep

is taken as input to the layer. As such, similar to feedforward networks,

33

we determine derivatives through each timestep of the unrolled network

(hence the term “through time”), compute gradients, and finally reroll

the network to update weights. The main difference here is that unlike

in the feedforward networks where the errors are normally computed

only at the end of the network (the output layer), the errors in RNNs are

accumulated across each timestep taking into account also the order

dependence of the input sequence.

Long Short-Term Memory

RNNs seek to establish connections between a final output and events

many time steps before. It is therefore difficult to know the importance

of those remote inputs since the information flows through the neural

networks by passing through many stages of multiplications. Any

quantity multiplied frequently by an amount greater than one can

become large quickly while multiplying by a quantity less than one

saturates to zero. In RNNs, due to the relation between time steps and

multiplications, the weight gradients (derivatives) are susceptible to

exploding and vanishing. Exploding gradients happen when the weight

gradients become saturated on the high end (they become too large).

This can be solved by truncating or squashing the values of the

Figure 3.3: Architecture of a simple RNN (a) rolled, (b) unrolled

34

gradients. Vanishing gradients (when the gradients are too small or very

close to zeros) are however harder to solve.

Long Short-Term Memory RNNs or LSTMs in short [65, 66] are

designed to overcome the vanishing gradient problem and allow them

to retain information for longer periods (time steps) compared to

traditional RNNs. Figure 3.4 illustrates the architecture of an LSTM

cell. As seen in Figure 3.4, LSTMs use gated cells to store information

in addition to the regular flow of the RNN. Due to these cells, the

network is able to manipulate the information in many ways, including

storing information in the cells and reading from them. Each cell in the

LSTM unit is capable of making decisions regarding the information

and can execute these decisions by opening or closing the gates.

The three major parts of an LSTM cell are: (1) the forget gate which

eliminates information that becomes unnecessary, (2) the input gate

which is responsible for adding new information to the cells, and (3) the

output gate which selects and outputs the necessary information

corresponding to each time step. The formula for each gate at each time

step � is computed as follows:

�� = �(��[��; ℎ���] + ��) (3.6)

�� = �(��[��; ℎ���] + ��) (3.7)

�� = �(��[��; ℎ���] + ��) (3.8)

where Γ�, Γ�, and Γ� represent the forget gate, the input gate, and the

output gate respectively. Each gate uses its own weights and biases and

is computed as a function of the hidden state from the previous time

step ℎ��� and the current input vector ��.

In addition to the hidden state ℎ�, LSTM cells contain another state

called “cell state” denoted by ��. This cell state maintains information

from previous time steps. As mentioned earlier, the LSTM cell is able

to add new useful information or remove unnecessary one. This

modification is performed on the cell state via the forget gate (to remove

information) and the input gate (to add information). The new

information to be added is denoted by ��
� and is computed by

35

��
� = ���ℎ (��[��; ℎ���] + ��) (3.9)

The new cell state �� is modified by calculating how much information

should be kept (or removed) from the previous cell state ���� and how

much new information should be added from ��
� . The modification is as

follows

�� = ��⨀���� + ��⨀��
� (3.10)

where ⨀ denotes element-wise multiplication. Finally, the hidden state

ℎ� is computed by determining how much information should be output

from the cell state �� using the output gate. Before going through the

output gate, �� is first squashed by tanh so that the values are between

−1 and 1. The hidden state is therefore calculated by

ℎ� = ��⨀���ℎ (��) (3.11)

Numerous variants of LSTM RNNs have been proposed using a slightly

different version from the basic LSTM architecture described above.

One popular LSTM variant is adding special connections called

“peepholes” which allows the computations of the three gates to take

into account also the information from the cell state [67]. Another

variation which also gains popularity in recent years is the Gated

Recurrent Unit or GRU [68]. It combines the cell state and the hidden

state and also merges the forget gate and the input gate into a single gate

called the “update” gate among other changes. Other notable variants

Figure 3.4: Architecture of an LSTM cell

36

include the Depth Gated LSTM proposed by [69] and the Clockwork

RNNs [70] which tackles long-term dependencies using a completely

different approach. Some comparison studies of popular variants of

LSTM have been conducted [71, 72]. It is found that some variants

work better than the other on certain tasks; however, their overall

performances are somehow similar. For the sake of simplicity, in this

dissertation, the basic LSTM will be focused.

Bi-directional RNNs

Bidirectional RNNs (BRNN) introduced by [73] are an extension to

typical RNNs that can enhance the performance of the model on

sequence classification problems. The idea behind BRNNs involves

using two recurrent layers (instead of just one) to process the input

sequence twice. The first layer handles the input sequence as it is while

the second layer takes a reversed copy of the input sequence which adds

additional context to the network. In other words, BRNNs allow us at a

point in time to take information from both earlier and later in the

sequence. Figure 3.5 gives an example of a BRNN.

At each time step �, two hidden states can be obtained: one from the

forward direction (ℎ�⃗ �) and another one from the backward direction

(ℎ⃖��). To take into account information from both directions, the two

hidden states can be merged together before being passed to the next

layer. The final hidden state at each time step ℎ� can be computed by

ℎ� = �(ℎ�⃗ �, ℎ⃖��) (3.12)

where � is a merge function. The most common options for � are

 Sum: the hidden states are added together element-wise.

ℎ� = ℎ�⃗ � + ℎ⃖�� (3.13)

 Average: the average of the hidden states is computed.

ℎ� =
���⃗ ���⃖���

�
 (3.14)

37

 Multiplication: the hidden states are multiplied together

element-wise.

ℎ� = ℎ�⃗ �⨀ℎ⃖�� (3.15)

 Concatenation: the hidden states are concatenated together

doubling the dimension of ℎ�.

ℎ� = [ℎ�⃗ �; ℎ⃖��] (3.16)

Multi-dimensional RNNs

The standard RNN architectures are explicitly one dimensional,

meaning the input sequence needs to be pre-processed to one

dimensional as well. Data such as digital images are two dimensional

in nature, and in order to be fed to an RNN, the input images are

preferably transformed into sequence of slices along either width

(column wise) or height (row wise) dimension. The RNN therefore is

not able to exploit the full multi-dimensional structure of the images.

Multi-dimensional RNNs (MDRNNs) have been proposed by [74] to

solve this problem. The basic idea behind MDRNNs is to use as many

Figure 3.5: Architecture of a simple Bidirectional-RNN

38

recurrent connections as there are dimensions in the data to replace the

single recurrent connection found in standard one-dimensional RNNs.

Even though MDRNNs are designed to perform on multi-dimensional

data, in this dissertation, only the application on images which are two

dimensional will be discussed.

LSTMs, a variant of RNNs, can also be extended to multi-dimensional

(MDLSTMs) [74]. Instead of a single hidden state from the previous

time step like in the conventional one-dimensional LSTM, MDLSTM,

2D-LSTM in particular, makes use of two states each from both the

vertical and horizontal axes. Denote ℎ���
(�)

 and ℎ���
(�)

 as the previous

hidden states, ����
(�)

 and ����
(�)

 the previous memory (cell) states along the

two axes, and �� the current input, we compute the current hidden state

ℎ� and the current memory state �� of the 2D-LSTM as follows:

�� = � ������; ℎ���
(�)

; ℎ���
(�)

� + ��� (3.17)

��
(�)

= � ���
(�)

���; ℎ���
(�)

; ℎ���
(�)

� + ��
(�)

� (3.18)

��
(�)

= �(��
(�)

���; ℎ���
(�)

; ℎ���
(�)

� + ��
(�)

) (3.19)

�� = � ������; ℎ���
(�)

; ℎ���
(�)

� + ��� (3.20)

��� = ���ℎ ������; ℎ���
(�)

; ℎ���
(�)

� + ��� (3.21)

�� = ��⨀��� + ��
(�)

⨀����
(�)

+ ��
(�)

⨀����
(�)

 (3.22)

ℎ� = ��⨀���ℎ (��) (3.23)

where �’s and �’s are weights and biases, and Γ�, Γ�, and Γ� are

respectively input, forget, and output gates of the LSTM. Since it is two-

dimensional, there are two forget gates corresponding to each of the two

previous memory states and computed with different sets of parameters.

Multi-directional RNNs

The concept of bi-direction in one-dimensional RNNs can also be

applied to MDRNNs. For two-dimensional data such as images, we

39

would prefer the network to have access to surrounding contexts from

all directions. One example of directional order in two-dimensional

sequence of a digital image is that we set the origin of the two axes (let’s

denote the horizonal axis �� and the vertical axis ��) at the top left

corner of the image, and ��,� < ���,�� (��,� is processed by the network

before ���,�� in the sequence) if � < �′ or � < �′ in case � = �′ where ��,�

represents an element in the sequence at the ��� row and the ��� column

from the origin. Similarly, we can define the other three directional

orders by setting the origin of the two axes at the top right, at the bottom

left, and at the bottom right of the image respectively as shown in Figure

3.6. By using these four directional orders, the network produces

independently four hidden states corresponding to each direction which

can be merged together by summing, multiplying, averaging, or

concatenating as in Equation 3.12.

3.2.2.4. Neural Networks for Handwriting Recognition

CNNs have been successfully used for solving isolated character

recognition problems, for example they are considered to be the base

line approaches for the popular but simple handwritten digit dataset

(MNIST) [75, 76]. As mentioned earlier, one of the main benefits of

CNNs is that the input images are fed into the networks as raw pixel

values to be processed to extract useful automatic features instead of

the handcrafted ones.

Figure 3.6: Axes representing the 4 possible directions in 2D-RNN

40

For text recognition, due to texts being sequences of smaller units such

as characters or glyphs, the problem becomes a sequence learning task.

Over the last few years, end-to-end handwritten text recognition models

using RNNs have started to outperform earlier approaches [77] such as

those based on Hidden Markov models [78, 79]. LSTM and its extended

version such as Bi-directional LSTM as well as its multi-dimensional

variant have been used. The current state-of-the-art in many

handwritten text recognition tasks additionally integrates CNNs as an

improved low-level feature extraction module prior to the recurrent

layers. Some recent works have shown great success in using solely

RNN modules or the combination with CNNs for text recognition tasks

of different languages. Some examples include Latin texts which are

the most primitive ones [80, 81, 82, 83], Chinese and Japanese scripts

which show numerous challenges such as the large number of character

classes and vocabularies [84, 85, 86, 87], and also Arabic handwritten

documents with the cursive nature of the writing and the visual

similarities of the characters [88, 89]. However, the main challenge in

processing sequential data is to find appropriate alignment information

that matches elements in the input sequence to those of the output

sequence. Currently, the two major directions to solve this problem are

(1) the use of Connectionist Temporal Classification (CTC) introduced

by [90] and (2) the sequence to sequence (Seq2Seq) technique.

CTC is a type of objective function which can be attached at the end of

the recurrent modules. CTC-based architectures remove the need to

forcefully align the input stream with character prediction location. This

provides a benefit of not needing properly segmented labeled data.

Nevertheless, these architectures are subject to inherent limitations like

strict monotonic input-output alignment i.e. one-to-one input-output

pair. This technique is one dimensional in nature and works efficiently

well for scripts with one directional writing style (for example, left to

right or top to bottom), in other words no more than one character is at

the same horizonal or vertical position. However, for scripts with a

more complex writing style such as Khmer, character annotation and

alignment information might still be required to produce a more

accurate recognition result.

41

On the other hand, the main concept of Seq2Seq architectures is that

they follow the encoder-decoder framework. The models consist of two

main parts i.e. they decouple the decoding from the feature extraction

module. First, an encoder reads and builds a feature representation of

the input sequence, then a decoder emits the output sequence one token

at a time. Usually an attention mechanism is employed by the decoder

to gather context information and search for relevant parts of the

encoded features.

In Chapter 7, following the Seq2Seq scheme, we propose a model

which takes advantage of both the convolutional module and the multi-

dimensional recurrent module specifically developed to recognize texts

on Khmer palm leaf manuscripts. The proposed model also incorporates

the annotated spatial alignment information of each character or glyph

in the text image. Moreover, due to its depth, these types of deep

architectures mentioned above normally require significantly large

amount of data (for example tens of millions of samples) to train and

tend to overfit on smaller datasets. Some optimization is also taken into

account of designing the proposed model. Data augmentation technique

is also employed in order to extend existing data.

42

43

4. Digital Image Corpus and Ground

Truth Dataset

This chapter presents the collection of digital corpus of Khmer palm

leaf manuscripts, the construction of ground truth tool and data, and the

introduction to SleukRith Set, the first Khmer palm leaf manuscript

dataset. We also talk briefly about datasets constructed on palm leaf

manuscript from Indonesia which will be used in addition to the datasets

from SleukRith Set for the experimental studies in the next chapter.

4.1. Digital Image Corpus

4.1.1. Existing Digital Images of Khmer Palm Leaf Manuscripts

In Cambodia, existing digital data of palm leaf manuscripts can be

found in various libraries and institutions. Table 4.1 shows the number

of digital image collections (a collection here refers to one complete set

of palm leaf documents) available in those establishments. Sample

images are shown in Figure 4.1.

École Française d’Extrême-Orient (EFEO): the online database of

Khmer manuscripts is the result of the work conducted by the École

Française d’Extrême-Orient (EFEO-FEMC) research team since 1990,

aiming to provide a comprehensive inventory and photographic

collection of Cambodia’s manuscripts. The website is accessible to

public and is home to hundreds of collections of palm leaf manuscripts.

The digital images were captured from microfilms hence their low

quality.

Buddhist Institute (BI): the Buddhist Institute was an initiative of

King Sisovat in 1921, when he inaugurated the royal library, Khemra

Bannalai which subsequently changed its name to Preah Raj Bannalai

in 1925. Then in 1930, King Monivong established the Buddhist

Institute. The responsibilities of the Institute are not only research on

Cambodian literature, language and Buddhism, but also publication and

education. Only one collection containing 96 pages is available from

this institute. The digitization method of this collection is unknown.

44

Phnom Penh National Library (NL): the National Library of

Cambodia was inaugurated by the French colonial administration.

Thereafter it was successively managed by French staff until the

appointment of the first Khmer Director in 1951. After independence in

1954 there was a steady growth in Cambodian publishing, which was

reflected in the increased number of Khmer language books in the

National Library. Closed down during the Khmer Rouge era, the

National Library was used for several years as accommodation by

members of the Pol Pot regime, who destroyed many of the books.

Since 1980 the National Library has been re-established with the

assistance of various overseas governments and agencies. Today the

National Library of Cambodia holds hundred thousands of books in

various languages (Khmer, French, English, and German). There is also

a large collection of palm leaf manuscripts. Some collections of the

manuscripts were digitized recently by a Khmer manuscript

conservation and research group. We obtained in total 35 collections of

already digitized manuscripts from this establishment.

Table 4.1: Number of digital Image collections available in various establishments

No Establishment Digitization

Method

Nb. Of

Collections5

1 École Française d’Extrême-

Orient (EFEO)

Nikon F3 937

2 Buddhist Institute (BI) Unknown 1

3 National Library (NL) Canon 750D 35

4.1.2. Digitization Campaign

We also conducted our own digitization campaign in order to capture

and collect palm leaf manuscript images found in Buddhist temples in

different locations throughout Cambodia. A standard digitization

procedure and a proper set up have been developed. Due to the fact that

palm leaf manuscripts are fragile, and certain scripts are not allowed to

be moved from the place where they are stored, digitizing using a

5 Each collection consists of in average several dozens of palm leaf pages

45

scanner is not viable, so a portable option was needed. In order to

capture the scripts, a Canon EOS 5DS professional camera was used.

The camera settings are as follows: F-stop: f/4, shutter speed: 1/10

second, ISO: 100, focal length: 45 mm, distance to object: 65 cm, and

auto focus: on. To support the camera to be able to shoot downward, we

use a Manfrotto 055XPro3 tripod with its fluid head. To avoid irregular

lighting condition and to adapt to our semi indoor/outdoor capturing

location, the camera is covered over by a black cloth. Additional

rechargeable led lights (led 715) are attached to each of the tripod legs.

Figure 4.2 illustrates this set up.

Our campaign has been conducted in three locations in Cambodia:

Phnom Penh, Kandal, and Siem Reap. We have collected and digitized

manuscripts found mostly in Buddhist temples (pagodas). A summary

of the collection from our digitization campaign is listed in Table 4.2.

Some sample images are shown in Figure 4.3.

Table 4.2: Collection of digitized palm leaf manuscripts from our digitization
campaign

No Location Nb. Of Collections Nb. Of Pages

1 Tuol Tom Poung, Phnom Penh 2 54

2 Tek Vil Pagoda, Kandal 2 98

3 Bo Pagoda, Siem Reap 9 59

Total 13 211

Figure 4.1: Samples of digitized images from top to bottom: EFEO, BI, and NL

46

4.2. SleukRith Set

4.2.1. Description of SleukRith Set

SleukRith set is a collection of three types of annotated data: isolated

characters, words, and lines. The annotation is made on 657 pages of

Khmer palm leaf manuscript randomly selected from different sources.

A summary of selected pages and their sources are shown in Table 4.3.

The majority of the images are chosen from the recently digitized

Figure 4.2: A set up for our digitization campaign

Figure 4.3: Sample images of our digitization campaign (from top to bottom:
Phnom Penh, Kandal, and Siem Reap)

47

manuscripts at the National Library and from our digitization campaign.

Due to their low quality, the dataset contains much fewer pages from

the collections of EFEO and the Buddhist Institute.

For annotating the three types of data, a tool with an easy-to-use user

interface has been developed. The tool is implemented in Java hence its

multi-platform portability. Since annotating a large amount of data can

be quite exhausting, most interactions between the user and the tool are

performed using only left and right clicks of mouse buttons. A keyboard

input is required when giving labels to the data, modifying data, or

deleting data.

The annotation process was accomplished with the help from volunteer

students from the department of Computer Science at the Institute of

Technology of Cambodia (ITC) and the National Institute of Posts,

Telecommunications, and ICT (NIPTICT). Each participant played the

role of a ground truther and was assigned a set of palm leaf document

images identified by number codes. Using their common knowledge of

Khmer language, the ground truthers were asked to annotate each of

their assigned pages according to the following steps: segment and label

all characters, group segmented characters into words, and finally

assign each segmented character to a line it belongs to. After the initial

annotation stage done by the students, a final validation and correction

iteration has been performed verifying that the data is consistent and

without errors.

Table 4.3: Collection of palm leaf manuscript images from different sources
composing SleukRith Set

No Source Nb. Of Pages

1 National Library 427

2 EFEO 26

3 Buddhist Institute 15

4 Our Digitization Campaign 189

Total 657

48

4.2.2. Isolated Glyphs

The individual or isolated character dataset is the most important data

type in SleukRith Set since its information is used to produce the other

types of data. In order to segment and annotate a manuscript page into

small image patches representing each individual character, a polygon

boundary enclosing the character needs to be drawn manually. The

ground truther is required to dot out vertex of the polygon one by one

until a proper boundary is formed (see Figure 4.4). The ground truther

is then prompted to input the correct Unicode or Unicode sequence as

label for that character.

A problem in annotating a character occurs when it is composed of

multiple parts. In this situation, each part of the character is segmented

separately and is labeled with the original Unicode of the character

followed by a number representing that part. A different situation is

when multiple characters are merged together and form a new shape. In

this case, the shape is then annotated as a whole and is given the label

which is a sequence of the Unicode of the characters comprising it.

Examples illustrating these cases are shown in Figure 4.5.

Figure 4.4: Annotation of individual character dataset

49

Certain writers exaggerate their writing by elongating the ending stroke

of the characters. Also, some characters are written in a way that they

encircle other characters. When cropped into a rectangular area, the

image patch of such elaborate character does not only contain the

character itself but also parts or the entirety of other characters. To solve

this issue, by using the polygon boundary as a mask, an inpainting

technique [91] can be applied in order to eliminate the unwanted area

in the image patch. In Figure 4.6, the image patch of character SUBYO

is inpainted resulting in a new clean image.

4.2.3. Words

After all characters in the page are manually annotated, they can be

combined together into words. To form a word, the character

components of that word are selected one by one (see Figure 4.8). The

selection order is also important since Khmer Unicode sequence does

not follow the left to right position order of the characters but instead

respects a consonant-first-vowel-second basis. Figure 4.7 shows an

example illustrating this phenomenon. In the example, the word is

composed of five characters, and the correct sequence is PHO-SUBLO-

Figure 4.5: Examples of (a) characters containing multiple parts and (b)
merged shapes

Figure 4.6: Application of inpainting technique on a character image patch (a)
input image, (b) inpainting mask using polygon boundary, (c) result

50

EE-CHA-BANTAK. Even though the vowel EE is at the left-most

position of the word, it is placed third in the Unicode sequence after the

consonant PHO and the sub-consonant SUBLO.

The ground truther is then again prompted to input a Unicode sequence

representing the label of the formed word. By default, the word label is

generated by putting together the labels of the characters which are the

components of that word. The second label should also be provided by

the ground truther when either the current word spelling is found to be

erroneous or when an equivalent word from the modern Khmer

language has a different spelling.

Figure 4.8: Annotation of word dataset

Figure 4.7: Order sequence of characters in a word

51

4.2.4. Sub-syllables

One of the main difficulties in creating useful data from palm leaf

manuscripts is that the number of digitized pages is still limited. Current

machine learning approaches require much more data to train, and the

number of annotated words in the SleukRith Set is still limited and

insufficient. Moreover, some manuscripts are written in Pali which,

even though it uses Khmer alphabet, is a completely different language

from Khmer. It requires the knowledge of the language to identify the

word separation, and therefore word annotation and recognition cannot

be achieved easily for those manuscripts.

To solve both of these problems, we introduce a new type of data added

to the SleukRith Set called “sub-syllables”. A sub-syllable refers to a

group of glyphs which satisfies the following criteria:

1) A sub-syllable must be a cluster of glyphs belonging to the same

text line and containing at least one main consonant or be a

standalone digit, a punctuation, or an independent vowel

2) In the case where it is a cluster of glyphs, it must not begin with

any irregular character such as an dependent vowels, a sub-

consonant, or a diacritic

3) Each sub-syllable must represent the smallest possible

combination of glyphs which satisfies criteria 1) and 2). A new

label is also needed to be specified for the created sub-syllable.

Adjacent sub-syllables can be joined together to form a group

representing a synthetic word. Let �-SG denote a group of sub-syllables

where � is the number of sub-syllables composing it. A text line

containing � sub-syllables might therefore be able to produce up to

(� − � + 1) �-SGs. Two neighboring sub-syllables are not grouped

together if the distance between them is greater than a predefined

threshold. This is to take into account blank gaps which often appear

between phrases in the manuscripts. Figure 4.9 illustrates a comparison

between word separation and sub-syllable separation. As shown, eight

sub-syllables can be extracted from the text. We can group therefore

those sub-syllables into �-SGs. For � = 2, the following set of 2-SGs

can be generated: {(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8)} i.e. we can

52

obtain six synthetic words instead of only four real words. Note that the

sub-syllable 4 and 5 cannot be grouped together since there is a large

gap between them.

4.2.5. Lines and their Transcriptions

Similar to word and sub-syllable annotation, annotated characters may

be grouped into lines. To efficiently achieve this, using the annotation

tool, the ground truther uses left click and drag over annotated

characters belonging to the same line. He is then asked to create a new

line from the selected characters or add them to existing lines (see

Figure 4.10). Each annotated glyph is given an ID corresponding to the

line which it belongs to. The area of a text line can therefore be

constructed by performing a union operation on all its glyph polygon

boundaries. Due to the irregularity of how certain glyphs are positioned

in the text sequence, the text transcription cannot be generated by

simply using a left-to-right sequential concatenation of the labels of all

glyphs in the line. Another benefit of annotated sub-syllables is that they

can be used to generate line transcriptions. Similar to annotated words,

a rectangle boundary of a sub-syllable is built using the polygon

boundaries of the component glyphs. We then sort all sub-syllables in a

line by their horizontal positions and produce the final line transcription

Figure 4.9: (a) Sample Khmer text, (b) Word separation, (c) Sub-
syllable separation

53

by concatenating the label of each sub-syllable according to this sorted

order.

4.2.6. Annotation File Format

After all steps in the annotation scheme are complete, an xml file

containing all information of the four types of data of the annotation can

be exported for each manuscript page. It also serves as a temporary save

file to store incomplete progress of the annotation. The xml file is

divided into five sections (see Figure 4.11). The first section contains

meta information related to the document page. The information

includes the 3-digit code, the document name, the document source, and

the resolution of the document image. The next four sections represent

respectively the four types of annotation. The section under the tag

name “CharAnno” is dedicated to the annotation at the character level.

This section block contains child blocks. Each child block represents an

annotated character, information about the coordinates of its polygon

boundary and additional attributes including character id, its label, and

the id of the line which the character belongs to. The next section under

the tag name “WordAnno” describes the annotation at the word level.

Since a word is a combination of characters, only the IDs of the

Figure 4.10: Construction of line segmentation ground truth

54

annotated characters defined in the previous section are stored along

with the id information of the annotated word and its two labels. The

sub-syllable annotation is stored under the section with tag name

“SubSylAnno”. Similar to the word annotation, each sub-syllable is

given an ID and is represented by a block containing child blocks

storing the IDs of all glyphs composing the sub-syllable. Only a single

label is noted for each sub-syllable. The last section of the xml file

(under tag name “LineAnno”) holds information linked to the line

annotation. This section stores a number of child blocks equivalent to

the number of text lines in the document page.

From this xml file, image patches representing characters and words (or

groups of sub-syllables) can be generated (see Figure 4.12 and Figure

4.13). Table 4.4 shows the current statistics of the SleukRith Set.

Table 4.4 Summary of the statistics of the SleukRith Set

No Data Quantity

1 Document pages 657

2 Annotated glyphs 302,191

3 Character classes 225

4 Annotated sub-syllables 157,754

5 Unique sub-syllables 3,603

6 Annotated words 73,660

Figure 4.11: Sample of an xml file storing annotation information of a manuscript
page

55

No Data Quantity

7 Unique words 9,301

8 Text lines 3,247

4.3. Additional Datasets of Palm Leaf Manuscripts from

Indonesia

In Indonesia, palm leaves were also historically used as writing supports

in manuscripts from Indonesian archipelago. The leaves of sugar palm

(Borassus Flabellifer) are known as lontar. Although the official

language of Indonesia, Bahasa Indonesia, is written in the Latin script,

Figure 4.12: Samples of annotated character patch images

Figure 4.13: Samples of annotated word patch images

56

Indonesia has many local and traditional scripts, most of which are

ultimately derived from Brahmi. In this dissertation, we focus on two

Indonesian scripts: Balinese and Sundanese.

4.3.1. Balinese Manuscripts

In Bali, palm leaf manuscripts were written in Balinese script in

Balinese language, in the ancient literary texts composed in the old

Javanese language of Kawi and Sanskrit. Balinese language is a

Malayo-Polynesian language spoken by about more than 3 million

people mainly in Bali, Indonesia. Balinese language is the native

language of the people of Bali, known locally as Basa Bali. The

alphabet and numeral of Balinese script is composed of more or less

100 character classes including consonants, vowels, and some other

special compound characters.

Apart from the collection at the museums (Museum Gedong Kertya

Singaraja and Museum Bali Denpasar), it was estimated that there are

more than 50,000 lontar collections which are owned by private

families. In order to obtain a large variety of manuscript images, the

sample images have been collected from 23 different collections

(contents), which come from 5 different locations (regions): 2 museums

and 3 private families. It consists of randomly selected 10 collections

from Museum Gedong Kertya (City of Singaraja, Regency of Buleleng,

North Bali), 4 collections from manuscript collections of Museum Bali

(City of Denpasar, South Bali), 7 collections from the private families

situated in the Village of Jagaraga (Regency of Buleleng), and 2 others

collections from the private families in the Village of Susut (Regency

of Bangli) and the Village of Rendang (Regency of Karangasem) [92].

Sample images of digitized Balinese palm leaf manuscripts are shown

in Figure 4.14.

4.3.2. Sundanese Manuscripts

The collection of Sundanese palm leaf manuscripts (Figure 4.15) comes

from Situs Kabuyutan Ciburuy, Garut, West Java, Indonesia. The

Kabuyutan Ciburuy is a cultural complex heritage from Prabu Siliwangi

and Prabu Kian Santang, The King and the son of the Padjadjaran

57

kingdom. The cultural complex consists of six buildings. One of them

is Bale Padaleuman which is used to store the Sundanese palm leaf

manuscripts. The oldest Sundanese palm leaf manuscript in Situs

Kabuyutan Ciburuy came from the 15th century. In Bale Padaleuman,

there are 27 collections of Sundanese manuscripts. Each collection

contains 15 to 30 pages, with the dimension of 25-45 cm in length x 10-

15 cm in width [93]. The Sundanese palm leaf manuscripts were written

in the ancient Sundanese language and script. The characters consist of

numeral characters, vocal characters, basic characters, punctuations,

diacritics, and many special compound characters.

Figure 4.14: Balinese palm leaf manuscripts

Figure 4.15: Sundanese palm leaf manuscript

58

59

5. Preprocessing

A complete DIA system for Khmer palm leaf manuscripts is composed

of two main modules: preprocessing and text recognition. In this

chapter, we present experimental studies on the preprocessing part of

the DIA system. Two sub-tasks will be covered in the preprocessing

step: a benchmarking and comparison study of binarization approaches

from the literature which are discussed in Chapter 5.1 followed by a

new proposed approach of binary-free line segmentation introduced in

Chapter 5.2 along with an experimental evaluation with some base-line

approaches.

5.1. Binarization

In this section, we compare several alternative binarization algorithms

for palm leaf manuscripts. We test and evaluat some well-known

standard binarization methods, and some binarization methods that are

promising experimentally for historical archive documents, not

specifically for images of palm leaf manuscripts. We also test the

binarization methods from DIBCO competition [94, 95] for example

the Howe’s method [96] and the ones from the binarization challenge

of ICFHR competition [8]. The evaluation of the binarization

approaches is conducted on three palm leaf manuscript datasets: Khmer

and two scripts from Indonesia (Balinese and Sudanese).

5.1.1. Datasets

The palm leaf manuscript datasets for binarization task are presented in

Table 5.1. For Khmer dataset, the binary ground truths are created from

the digitized EFEO images (see Chapter 4.1.1). When necessary, a local

thresholding method [21] is applied, and noises caused by isolated

pixels are then removed using median filter. The results are corrected

with the help of a photo editing software. The binarized document is

superimposed on the original image, and strokes are traced manually

using a stylus with pressure sensitive tip to maintain the variation of

stroke width of each character in the manuscript. An example of the

binary ground truths of Khmer manuscripts is shown in Figure 5.3. For

the manuscripts from Bali, the binarized ground truth images have been

60

created with a semi-automatic scheme [92, 97] (Figure 5.3) while the

binarized ground truth images for Sundanese manuscripts [93] have

been manually generated by using PixLabeler [98] (Figure 5.3). The

training set required for training-based approached is provided only for

the Balinese dataset.

Table 5.1: Palm leaf manuscript datasets for binarization task

Manuscripts Train
(pages)

Test
(pages)

Ground
Truth (pages)

Dataset

Khmer - 46 46 Extracted from
EFEO

Balinese 50 50 100 Extracted from
AMADI_LontarSet

Sundanese - 61 61 Extracted from
Sundanese Dataset

5.1.2. Evaluation Method

Following the evaluation method from the DIBCO 2009 contest [94]

and the ICFHR 2016 competition [8], three metrics of binarization

evaluation are used: F-Measure (FM), Peak SNR (PSNR), and Negative

Rate Metric (NRM).

F-Measure (FM) is computed from Recall and Precision as following:

�� =
�.������.���������

����������������
 (5.1)

������ =
��

�����
 (5.2)

��������� =
��

�����
 (5.3)

where �� is a true positive which occurs when the image pixel is

labeled as foreground as in the ground truth. �� is a false positive

representing when the image pixel is labeled as foreground, but the

ground truth is labeled as background, and �� is a false negative which

represents when the image pixel is labeled as background, but the

61

ground truth is labeled as foreground. A higher F-measure indicates a

better match.

Peak SNR (PSNR) is calculated from Mean Square Error (MSE):

��� = ∑ ∑
���(�,�)���(�,�)�

�

�.�
�
���

�
��� (5.4)

���� = 10. ����� �
��

���
� (5.5)

where � is defined as 1, the difference between the foreground and the

background colors in the case of binary image. A higher PSNR indicates

a better match.

Negative Rate Metric (���) is computed from the negative rate of

false negative (����) and the negative rate of false positive (����).

 ���� =
��

�����
 (5.6)

Figure 5.3: Khmer manuscript with binarized ground truth image

Figure 5.3: Balinese manuscript with binarized ground truth image

Figure 5.3: Sundanese manuscript with binarized ground truth image

62

���� =
��

�����
 (5.7)

��� =
���������

�
 (5.8)

where �� is the true negative which occurs when both the image pixel

and ground truth are labeled as background. A lower NRM indicates a

better match.

5.1.3. Experiments and Results

The experimental results for the binarization task are presented in Table

5.2. These results show that the performances of all methods on each

dataset are still quite low. Most of the methods achieve only less than

50% �� score. It means that binarization on palm leaf manuscripts is

still an open challenge. The different parameter values for the local

adaptive binarization methods gives a significant improvement in the

performance of those methods, but it is still unsatisfactory. In these

experiments, ICFHR G1 method was evaluated for Khmer and

Sundanese dataset by using the pre-trained Balinese training set

weighted model. Based on these experiments, ICFHR G1 method gives

the highest FM score for Khmer manuscripts (Figure 5.4), ICFHR G2

gives the highest FM score for Balinese manuscripts (Figure 5.5), and

Niblack’s method gives the highest FM score for Sundanese

manuscripts (Figure 5.6). However, according to the observation on the

output results, many broken and unrecognizable characters/glyphs and

noises are still visually seen in the binary images.

Table 5.2: Experimental results for the binarization task

Methods Parameter Manuscripts FM
(%)

NRM PSNR
(%)

OtsuGray

Otsu from gray
image using
Matlab
graythresh6

Khmer 23.92 0.3130 7.38

Balinese 18.98 0.3988 5.01

Sundanese 23.70 0.3266 9.99

OtsuRed Khmer 21.15 0.3371 5.90

6 https://fr.mathworks.com/help/images/ref/graythresh.html

63

 Otsu from red
image channel
using Matlab
graythresh

Balinese 29.20 0.3001 10.94

Sundanese 21.25 0.3864 12.60

Sauvola

window = 50, k
= 0.5, R = 128

Khmer 44.73 0.2685 26.06

Balinese 13.20 0.4623 27.69

Sundanese 6.19 0.4799 24.78

Sauvola2

window = 50, k
= 0.2, R = 128

Khmer 47.55 0.1557 21.96

Balinese 40.18 0.2745 25.09

Sundanese 43.04 0.2996 23.65

Sauvola3

window = 50, k
= 0.0, R = 128

Khmer 30.55 0.1900 12.78

Balinese 35.38 0.1658 17.05

Sundanese 40.29 0.1814 16.25

Niblack

window = 50, k
= -0.2

Khmer 38.01 0.1608 16.84

Balinese 41.55 0.1757 21.24

Sundanese 46.79 0.1950 20.31

Niblack2

window = 50, k
= 0.0

Khmer 30.55 0.1900 12.78

Balinese 35.38 0.1658 17.05

Sundanese 40.29 0.1814 16.25

Nick window = 50,
k= -0.2

Khmer 51.25 0.1760 24.51

Balinese 37.85 0.3283 27.59

Sundanese 29.59 0.3904 24.26

Rais window = 50 Khmer 31.59 0.1879 13.52

Balinese 34.46 0.1710 16.84

Sundanese 40.65 0.1770 16.35

Wolf window = 50, k
= 0.5

Khmer 46.78 0.2373 25.19

Balinese 27.94 0.3929 27.16

Sundanese 42.40 0.2991 23.61

Howe1 Khmer 40.20 0.2806 25.59

Balinese 44.70 0.2676 28.35

64

Default values7 Sundanese 45.90 0.2351 21.90

Howe2

Default values Khmer 32.35 0.2940 25.96

Balinese 40.55 0.2739 28.02

Sundanese 35.35 0.2748 22.36

Howe3

Default values Khmer 30.71 0.3820 26.36

Balinese 42.15 0.3049 28.38

Sundanese 25.77 0.3503 23.66

Howe4

Default values Khmer 36.48 0.2805 25.83

Balinese 45.73 0.2730 28.60

Sundanese 38.98 0.2811 22.83

ICFHR
G1

See [8] Khmer 52.65 0.2505 28.16

Balinese 63.32 0.1500 31.37

Sundanese 38.95 0.3290 24.15

ICFHR
G2

See [8] Khmer - - -

Balinese 68.76 0.1300 33.39

Sundanese - - -

ICFHR
G3

See [8] Khmer - - -

Balinese 52.20 0.1800 26.92

Sundanese - - -

ICFHR
G4

See [8] Khmer - - -

Balinese 58.57 0.1700 29.98

Sundanese - - -

5.2. Text Line Segmentation

Text line segmentation is one of the most crucial pre-processing steps

in the DIA pipeline. In ancient documents, palm leaf manuscripts in

particular, a variety of deformations caused by aging produce noises

which make the binarization process very challenging as mentioned in

7 http://www.cs.smith.edu/~nhowe/research/code/

65

the previous section. Moreover, due to the irregular layout such as

skewness and fluctuation of text lines, segmenting an ancient

manuscript page into separate lines still remains an open problem to

solve. An efficient approach should therefore be binary-free and be able

to deal with the complex layout of the palm leaf manuscripts. In this

section, we propose a novel line segmentation scheme for grayscale

images of Khmer palm leaf documents. First, connected components

are extracted from the document page. The number and medial

positions of text lines are estimated using a modified piece-wise

projection profile technique. Those positions are then modified

adaptively according to the curvature of the actual text lines. Finally, a

path finding approach is used to separate touching components and also

Figure 5.4: Binarization of Khmer manuscript with ICFHR G1 method

Figure 5.5: Binarization of Balinese manuscript with ICFHR G2 method

Figure 5.6: Binarization of Sundanese manuscript with Niblack’s method

66

to mark the boundary of the text lines. An overview pipeline of the

proposed text line segmentation approach is presented in Figure 5.7.

The input data to the system is a grayscale image of a palm leaf

manuscript page. The details of each step of the pipeline are described

next. Two experiments are conducted. The first experiment is

performed on a small subset of the SleukRith while the second

experiment expands to a larger subset in addition to the datasets

constructed from the Balinese and Sundanese manuscripts. In both

experiments, we also compare the robustness of the proposed approach

with existing methods from the literature.

Figure 5.7: Overview of the proposed line segmentation pipeline

67

5.2.1. Description

5.2.1.1. Foreground Text Detection and Extraction (A)

In order to extract text components from a document page, edges in the

image are first calculated using Canny edge detection method [99]. A

text localization approach called Stroke Width Transform (SWT) [100]

is then applied. SWT is a local image operator which computes per pixel

the width of the most likely stroke containing the pixel. In other words,

for each pixel in the image, we determine the most relevant stroke that

the pixel belongs to. The stroke width value is then given to that pixel.

A new feature map of strokes representing foreground texts can be

computed by grouping connected pixels whose stroke width values are

similar.

The approach creates a new feature map storing the width values of the

most likely strokes containing each pixel. We then group together

adjacent pixels with similar stroke width into characters (connected

components). The average stroke width ����� of the whole stroke map

is also computed. Unwanted noise components such as big patches,

long horizontal or vertical strokes, and small dots are removed using the

following rules:

 The mean of stroke width values of all pixels in the connected

component must be less than 2. ����� to prevent including in

the stroke map any undesirable connect component that contains

too many large strokes. Small strokes representing text often

have consistent width.

 The length-width and width-length ratio of the component must

be less than 3. This rule eliminates connected components

which are either too wide or too thin i.e. they do not resemble

Khmer glyphs.

 The length or width of the component must be greater than

3. �����. Following this rule, noises including small dots and

long thin strips are removed.

After all noise components are filtered out, we obtain a new stroke map

��� consisting of all stroke pixels as black foreground over a white

68

background. The median height ������� of all connected components

is also calculated. This process is illustrated in Figure 5.8.

5.2.1.2. Line Number and Location Estimation (B)

The main goal of this step is to determine the number of text lines in the

manuscript page. First, X-projection profile is built from the map to find

the starting and ending positions of the text region. The discovered

region is divided into �� vertical columns whose width is empirically

set to �� = 10. �������. We then construct a Y-projection profile

histogram for each column, and we smooth them twice using moving

average filters with widow size of ⅓������� and ½�������

respectively. We consider the local maxima or peaks of the smoothed

histogram of each column to be the medial line positions in that column.

The variance value of each peak is computed, and spurious peaks with

very small value of variance compared to the average variance values

of all peaks in their same column are removed. To further filter out

incorrect peaks, we also remove peaks too close to each other. Suppose

in a column, � peaks are detected. �� represents the ��� peak from top

Figure 5.8: (a) Original Image, (b) Edge map using Canny edge detection,
(c) Stroke map

69

to bottom (0 < � < �). We remove �� if the distance between �� and

���� is less than ½������� where ������� is the median value of all

distances between two adjacent peaks. The final numbers of peaks in

all columns are stored in a sorted list from which we choose the value

in the 95th percentile to be the number of text lines �� in the document

page.

5.2.1.3. Skew and Fluctuation Adaption (C)

To construct an estimation of medial seam of a text line, we connect

corresponding medial points situated at the peaks of the Y-projection

histogram of neighboring columns together. However, some peaks may

be missing due to the fact that different numbers of peaks can be found

in different columns. To guarantee a smooth connection between peaks,

new medial points may be added. We want to have eventually a

�� × �� grid of medial points. Let’s denote ��,� a medial point on text

line � in column � with 0 ≤ � < �� and 0 ≤ � < �� and ��,�
� , ��,�

�
 its x-

coordinate and y-coordinate respectively. Each medial point can be

added as follows. First, relative to the starting point of the text region,

each medial point should be placed horizontally at the center of its

column (��,�
� = �. �� + ½��). Then we select a starting column �

whose Y-projection profile consists of exactly �� peaks. Among

multiple instances of such columns, we pick the one with the highest

average peak variance and place one medial point at each peak. To the

left of column j, we iterate one column at a time (column �, � = � −

1, � − 2, … ,0) to find the closest peaks to the corresponding peaks of the

column to its right (column � + 1) and place a medial point there. If no

peak is found, we place a medial point at the same y-coordinate position

of the corresponding medial point in column � + 1 (��,�
�

= ��,���
�

). We

also maintain the distance between two adjacent medial points from the

same column to be approximately equal to the common distance

�������. To do so, if the distance from the previously placed medial

point ����,� is less than ½�������, the new medial point ��,� is instead

placed at ��,�
�

= ����,�
�

+ �������. We place the medial points one by

one from top to bottom until we reach the total number of �� points per

column. The placement can be expressed by the pseudo code shown in

70

Algorithm 5.1. Similarly, to the right of column �, medial points are

added from top to bottom one column at a time (column �, � = � +

1, � + 2, … , �� − 1).

While the above procedure already gives an acceptable medial seam of

text lines it is important to further adapt the seams accurately to the

skew and fluctuation of text lines. For that purpose, a competitive

algorithm is used in order to adapt the vertical position of medial points

to the surrounding connected components. Figure 5.9 illustrates these

two successive skew adaption steps.

Let us denote ���
 the y-coordinate of the center of mass of a connected

component ��, 0 ≤ � < ��� where ��� is the total number of connected

components extracted. The grid-like set of medial points extracted as

mentioned above plays the role of centroids for the competitive learning

algorithm. The so-called winning centroid with respect to each

component ��, is the medial point ��,� whose vertical distance to �� is

the smallest:

|���
− ��,�

�
 | ≤ |���

− ��,�
�

 | ∀� ∈ [0, ��[(5.9)

After being selected as a winner, the winning medial point is moved by

a fraction of its distance towards the connected component ��.

��,�
�

← ��,�
�

+ ��. ��,��
. (���

− ��,�
�

) (5.10)

Algorithm 5.1: Pseudo code illustrating the placement of medial points

71

After each iteration k, the learning step �� is forced to decrease towards

zero (�� = ����/(1 + ����)) from an initial value �� (�� is set to 0.15

in our experiment) so that we can halt the algorithm. In order to take

into account, the horizontal distance between the component �� and

medial point, we introduce a weight �: the value of � is large if the

connected component is close to the medial point and decreases with

the distance to the latter. This means that the components at a distance

far away do not have much effect on the movement of the medial point.

We use a Gaussian function (mean � = ��,�
�) for the value of �� which

is normalized so that 0 < �� ≤ 1.

5.2.1.4. Line Boundary Creation (D)

To define the boundary between two adjacent lines, a path finding

technique is used. Our path finding approach is inspired by the A* path

planning method proposed by [30]. The objective of path planning is to

compute the shortest path from a starting point to its destination

avoiding obstacles along the way. A* is one of the path planning

algorithms that minimizes the traveling costs between states (a state

refers to each pixel in the sequence of neighboring pixels representing

Figure 5.9: (a) Smooth projection profiles and the estimated medial points (red dots),
(b) Adaption of the medial points to surrounding connected components (black dots)

72

a particular path) from the starting state to the goal state. To solve the

line segmentation problem, paths separating text lines need to be traced

from the left side (starting state) to right side (goal state) of the text, and

the pixels which belong to text are viewed as obstacles. However due

to some handwritten text components from adjacent lines being touched

or over- lapped, the goal state can be unreachable. A modified A* path-

planning technique is proposed here to allow the path to pass through

such components.

First, separating seams between text lines are created from the already

defined medial points. We denote a new set of border points ��,�, 0 ≤

� < �� − 1 and 0 ≤ � < �� . It is defined as follows:

��,� =
��,������,�

�
 (5.11)

For each separating seam, we find a sequence of �� − 1 paths, and each

path starts from the starting state �� at ��,� to the goal state �� at ��,���,

� ∈ [0, �� − 1[. To emphasize the text foreground, the original

grayscale image of the manuscript page is filtered using Sobel operator.

The inverted gradient map ����� of the image is used so that the pixel

intensity of the foreground text is less than the one of its background.

Two cost functions are computed and combined to obtain the final

traveling cost �(��, ��) between states. If we denote ��,�, ��,�, … , ���,�

as the sequence of states traversed by path ��, the goal of the path

finding algorithm is to determine the optimal path �������� with the

minimum total traveling cost:

�������� = ��� ���
��

∑ ����,�, ����,��
����
��� (5.12)

The two function costs are described as follows:

Intensity difference cost function �(��, ��): This function enforces

the path to avoid passing through foreground pixels. The function

returns a large value when the pixel intensity abruptly changes from

high to low demonstrating a situation when an edge of a foreground text

stroke is encountered (going from background pixels to foreground

pixels). The function however does not give penalty but encourages it

73

when the path leaves the foreground stroke (going from foreground

pixels to background pixels). The cost function �(��, ��) is computed

by:

����, ��� = ���(��. |��|, 0) (5.13)

where �� = ��������
�, ��

�
� − ��������

�, ��
�

� (5.14)

Vertical distance cost function �(��): This function reassures that the

path does not deviate too far from the seam line preventing the path

from jumping up or down the entire line region. It is the vertical distance

from the state �� to the slanted seam line constructed from the two points

at �� and ��. This cost function is defined as:

�(��) = ���
�

− ��
�

−
���

����
�����

�
���

�
�

��
����

� � (5.15)

In order to connect continuously consecutive paths, we set the starting

state �� of the next path in the sequence to be at the same position as the

goal state �� from the previous path. We combine these two cost

functions to achieve the final traveling cost ����, ��� defined as follows:

����, ��� = ��. ����, ��� + ����� (5.16)

where �� is a parameter which controls how the path choose its next

state to traverse. A large value of �� means that the path would prefer

staying far away from the seam line rather than passing through

foreground text pixels. In our experiment, a small validation set will be

used to define ��. Since the path traverses through states from left to

right, instead of computing the cost functions for neighbor pixels in all

eight directions, only five directional steps are considered: South,

South-East, East, North-East, and North. Figure 5.10 shows an example

of an optimal path going from the start state �� to the goal state ��.

5.2.2. Experiments and Results

5.2.2.1. Evaluation Metrics

In order to evaluate the performance of the proposed method and also

to compare it with existing methods in the literature, we adopt the

74

measures used in the ICDAR2013 Handwriting Segmentation

Competition [101]. According to the evaluation method, we count the

number of one-to-one matches between text lines detected by the

approach and the text lines in the ground truth. The matching score is

computed as follows:

����ℎ�����(�, �) =
����∩��∩����

�����∪���∩����
 (5.17)

where �(�) is function that counts the number of points in set �; �� is

the set of all points inside the union of all polygon regions of isolated

characters in the ground truth belonging to text line �; �� the set of all

points inside the region of result text line �; and ��� the set of all points

inside the union of all polygon regions of ground truth isolated

characters in the whole document page.

We consider a region pair to be a one-to-one match only if the matching

score is above an acceptance threshold ��. Let’s assume � to be the

number of text lines found in the ground truth, � to be the number of

detected text lines by the approach, and �2� to be the number of one-

to-one match pairs, then the detection rate (��) and recognition

accuracy (��) are defined as:

�� =
���

�
 (5.18)

�� =
���

�
 (5.19)

Figure 5.10: An example of an optimal path going from the start state �� to the goal
state ��

75

By combining �� and ��, we obtain the evaluation metric F-measure

score ��:

�� =
�.��.��

�����
 (5.20)

5.2.2.2. Experiment 1

In this first experiment, we conduct an evaluation only on image

samples from the SleukRith Set. A subset of 110 pages of digitized

manuscript images randomly selected. The line segmentation ground

truth can be constructed as follows. As described in Chapter 4.2, in

order to first segment and annotate a manuscript page into small image

patches representing each individual character, a polygon boundary

enclosing the character needs to be drawn manually. The human ground

truther is required to dot out vertices of the polygon one by one until a

proper boundary is formed. After all characters in the page are manually

annotated, they may be grouped together and be inserted into a line. The

union of the polygon areas of all isolated characters in a line represents

the total region of that line.

Among the 110 pages of the SleukRith Set, 10 pages are chosen

arbitrarily and are used for parameter tuning (the optimal value of ��=3

is found). We then apply the proposed approach to the other 100 pages

(the total number of text lines in the ground truth � = 476). For

comparison, the same subsets are also used for the methods proposed

by [36] and by [37]. The evaluation results using the acceptance

threshold �� = 0.9 are illustrated in Table 5.3. As it can be observed

from Table 5.3, the proposed method outperforms the other approaches

by a large margin. Some results of line segmentation using the proposed

method dealing with skew, fluctuation, and discontinuity of text lines

are given in Figure 5.11.

Table 5.3 Result of the performance evaluation of line segmentation methods
(Experiment 1)

Method M o2o
DR

(%)

RA

(%)

FM

(%)

Method in [36] 665 356 53.53 74.79 62.40

76

Method in [37] 505 157 31.09 32.98 32.01

Proposed method 484 446 92.15 93.70 92.92

5.2.2.3. Experiment 2

In the second experiment, to showcase that the proposed approach is

able to generalize to other datasets, we apply it on a larger dataset of

text lines extracted from the SleukRith set as well as a dataset which is

a collection of low-resolution images from EFEO database. We also

include datasets generated from Balinese and Sundanese manuscripts.

All palm leaf manuscript datasets used in this experiment are presented

in Table 5.4.

Khmer 1 represents the collection of images from EFEO database. A

semi-automatic scheme is used to construct a ground truth for this set.

A set of medial points for each text are generated automatically on the

binarization ground truth of the page image. Then those points can be

moved up or down with a tool to fit to the skew and fluctuation of the

real text lines. We also note touching components spreading over

multiple lines and the locations where they can be separated.

Figure 5.11: Segmentation results of the proposed approach (pairs of whole
segmented manuscript page and zoomed out area with medial seams marked in red)

77

Khmer 2 is constructed similarly to the dataset used in Experiment 1;

however, we double the number of pages in this new dataset. The text

line segmentation ground truth data for Balinese and Sundanese

manuscripts have been generated by hand based on the binarized ground

truth images constructed on AMADI_LontarSet and Sunda dataset

respectively [92, 93].

Table 5.4: Palm leaf manuscript datasets for text line segmentation task (Experiment
2)

Manuscripts Pages Text Lines Dataset

Khmer 1 43 pages 191 text lines Extracted from
EFEO

Khmer 2 200 pages 971 text lines Extracted from
SleukRith Set

Balinese 1 35 pages 140 text lines Extracted from
AMADI_LontarSet

Balinese 2 Bali-2.1: 47 pages

Bali-2.2: 49 pages

181 text lines

182 text lines

Extracted from
AMADI_LontarSet

Sundanese 1 12 pages 46 text lines Extracted from
Sunda Dataset

Sundanese 2 61 pages 242 text lines Extracted from
Sunda Dataset

In this experiment, the proposed method and the seam carving method,

which is the runner up according to the results from Experiment 1, are

applied on all datasets. The experimental results are presented in Table

5.5. According to these results, both methods performs sufficiently well

for most datasets except Khmer 1. This is because all images in this set

are of low quality due to the fact that they are digitized from microfilms.

Nevertheless, the proposed method still proves to achieve better results

than the seam carving method on all datasets of palm leaf manuscripts

in our experiment. The main difference between these two approaches

is that instead of finding an optimal separating path within an area

constrained by medial seam locations of two adjacent lines (in the seam

carving method), the proposed approach tries to find a path close to an

estimated straight seam line section. These line sections already

78

represent well enough the seam borders between two neighboring lines,

so they can be considered as a better guide for finding good paths, hence

producing better results.

One common error that we encounter for both methods is in the medial

position computation stage. Detecting correct medial positions of text

lines is crucial for the path finding stage of the methods. In our

experiment, we noticed that some parameters play an important role.

For instance, the number of columns/slices � of the seam carving

method and the high and low thresholding values of the edge detection

algorithm in the proposed approach. In order to select these parameters,

similar to Experiment 1, a validation set consisting of five random pages

from each dataset is used. The optimal values of the parameters are then

empirically selected based on the results from this validation set.

Table 5.5: Experimental results for text line segmentation task (Experiment 2)

Method Manuscript N M o2o DR
(%)

RA
(%)

FM
(%)

Seam Carving
Method in [36]

Khmer 1 191 145 57 29.84 39.31 33.92

Khmer 2 971 1046 845 87.02 80.78 83.78

Balinese 1 140 167 128 91.42 76.64 83.38

Bali-2.1 181 210 163 90.05 77.61 83.37

Bali-2.2 182 219 161 88.46 73.51 80.29

Sundanese 1 46 43 36 78.26 83.72 80.89

Sundanese 2 242 257 218 90.08 84.82 87.37

Proposed method Khmer 1 191 169 118 61.78 69.82 65.55

Khmer 2 971 990 910 93.71 91.91 92.80

Balinese 1 140 143 132 94.28 92.30 93.28

Bali-2.1 181 188 159 87.84 84.57 86.17

Bali-2.2 182 191 164 90.10 85.86 87.93

Sundanese 1 46 50 41 89.13 82.00 85.41

Sundanese 2 242 253 222 91.73 87.74 89.69

79

6. Feasibility Study: Glyph Recognition

and Localization using Deep Learning

This chapter presents a study about the feasibility of using deep learning

approaches to solve handwritten text recognition problems on Khmer

palm leaf documents. Trial experimentations are conducted on two

basic DIA tasks: isolated glyph (or character) recognition (Chapter 6.1)

and glyph localization in word images (Chapter 6.2). We also introduce

in the proposed glyph localization model a special type of feature maps

called “glyph-class map” (or GCM in short) which is able to store

spatial information as well as the identity of all glyphs in the text image.

The glyph localization problem now becomes GCM generation.

As illustrated in Figure 6.1, complete systems to recognize text on short

word image patches will be developed using the outcomes from the

feasibility study presented in this chapter. The detailed description as

well as experimental evaluations of those systems will be explored in

Chapter 7.

6.1. Isolated Glyph Recognition

The first attempt in using neural networks to solve the text recognition

problem for Khmer palm leaf manuscripts is presented here. Before

Figure 6.1: Overview of the workflow of the text recognition module

80

getting into a more challenging task of recognizing text images of whole

text lines, individual or isolated glyph recognition is studied first.

Isolated glyph recognition problem is a task that takes an input image

patch containing a single glyph or symbol and predicts the class (or

probabilities of all classes) that glyph in the image belongs to. For this

task, we present four neural network architectures. The choice of the

hyper parameters such as the number of layers as well as the number of

hidden units of each model presented here is empirical. In other words,

we focus on the feasibility of different types of neural network

architectures (see Chapter 3.2.2) on the recognition problem of Khmer

palm leaf manuscripts rather than a computationally intensive fine

tuning of their structure.

6.1.1. Description of the Networks

The first network (Figure 6.2) is CNN based and is composed of two

pairs of convolutional (12 and 24 of 5 by 5 filters) and max pooling

layers (2 by 2 window size with 2 by 2 strides for both layers). The

output from each convolutional part is activated by Relu non-linearity.

A drop out with dropped probability of 0.2 is applied after each max

pooling. The output from the last max pooling is flattened and followed

by a fully connected layer (with 1024 hidden units) also activated by

Relu. A drop out with dropped probability of 0.6 is also applied

afterward. Finally, the final output with a softmax activation is

produced.

The second network (Figure 6.3) is recurrent. First, the input image is

transformed into a sequence of one-pixel columns. Each column is then

fed into two layers of LSTM cells with 512 hidden units each. The last

time step output from the last LSTM layer is connected to the final

output layer which is then activated with a softmax function.

The third network (Figure 6.4) is also RNN based. However, the input

image is transformed simultaneously into a sequence of one-pixel

columns and a sequence of one-pixel rows. Each sequence is fed

separately into two distinct pairs of LSTM layers which are similar to

the ones in the second network. The last time step output from the last

81

layer of each pair is concatenated before being fed into the softmax

activated final output layer.

The fourth network is a combination of the convolutional and max

pooling part in the first network and the recurrent part in the third

network (Figure 6.5). The input is first fed into the two convolutional

and max pooling pairs. The output from this first two layers is split row

wise and column wise along the height and width dimension

respectively (the depth or channel dimension is flattened). Similar to

Figure 6.2: CNN based network

Figure 6.3: Column wise LSTM network

Figure 6.4: Column wise and row wise LSTM

82

the third network, we feed the row wise and column wise sequences to

two different two-layer LSTMs (again with 512 hidden units in each

layer). The outputs from the last time step of the last layer of the two

LSTMs are concatenated and finally are followed by the last output

layer activated by a softmax function. Like previous architectures, a

drop out (with dropped probability of 0.2) is applied after each max

pooling and also after each LSTM layer.

6.1.2. Experiments and Results

6.1.2.1. Datasets

The dataset for this task consists of sample images of isolated character

patches extracted from different manuscript pages in SleukRith set. The

glyph images are grouped by their class label. We do not take into

account small symbols such as punctuations and diacritics and also

remove symbols with too few occurrences. The resulting set consists of

a total number of 111 classes. Each image patch is gray scaled, resized

to be 48 by 48 pixels, and then normalized using histogram stretching

technique (Figure 6.6).

We also extend the evaluation of the proposed methods to the datasets

extracted from Indonesian manuscripts: Balinese script dataset and

Sundanese script dataset. Figure 6.7 and Figure 6.8 show respectively

some sample images of Balinese and Sundanese handwritten characters.

Table 6.1 summarizes the datasets on all languages used for this task.

Figure 6.5: A combination of convolutional and recurrent neural network

83

Table 6.1: Palm leaf manuscript datasets for isolated character/glyph recognition
task

Manuscripts Classes Train Test Dataset

Khmer 111 113,206 90,669 SleukRith Set

Balinese 133 11,710 7,673 AMADI_LontarSet

Sundanese 60 4,555 2,816 Sunda Dataset

6.1.2.2. Experiment Procedure and Evaluation Protocols

A multi-class cross-entropy loss is used as the loss function for this task

since it is suitable and effective for multi-class classification problems.

For each sample �, the loss is computed by

�� = ∑ ��,� ���(��,�)
��������
��� (6.1)

where ��,� is a binary indicator if the class label � is the correct

classification for the sample � (1 if it is correct or 0 otherwise), ��,� is

the predicted probability by the network that input sample � belongs to

class label �, and ������ is the total number of classes. The final loss is

the sum of losses from all samples in the batch.

During training, the loss function of each network is minimized using

Adam optimizer [102] with initial learning rate of 0.001. Weight

parameters in all networks are initialized using a truncated normal

distribution with a standard deviation of 0.1 while biases are initialized

with constant values of 0.1. The network is trained per mini batch basis

(in our experiment we choose a batch size of 300). The training set starts

with all samples being shuffled, and after a competition of each epoch,

the order of the samples in the training set is then again reshuffled. For

Figure 6.6: (a). Original image, (b). Gray scaled and resized, (c). Normalized

84

every ����� of iterations, we calculate the average loss of all batches and

stop the training if the average loss does not improve for �����

consecutive tests. In our experiments we choose ����� to be 50 and �����

to be 10.

Following the evaluation method from ICFHR competition [8], the

recognition rate i.e. the percentage of correctly classified samples over

the test samples: ��������/������ is calculated, where �������� is the

number of correctly recognized samples, and ������ is the total number

of the test samples.

6.1.2.3. Results and Discussion

Since the beginning period of pattern recognition research, many

feature extractions methods for character recognition have been

Figure 6.7: Sample images of Balinese characters

Figure 6.8: Sample images of Sundanese characters

85

presented in the literature. We, therefore, also perform a comparison

study with a handcrafted feature extraction approach [103] mentioned

in Chapter 3.2.1. A neural network is used as a classifier which takes

the feature vectors as input and predict the probability of all character

classes. Additional improvement is performed by applying

unsupervised learning based on K-means clustering to calculate the

initial weight for the neural network training phase from the cluster

centers of all feature vectors.

The experimental results of this evaluation are presented in Table 6.2.

According to these results, the proposed networks (except the column-

wise RNN network) perform similarly to the handcrafted feature

extraction approach on Balinese and Sundanese. However, the

proposed networks (again except the column-wise RNN) outperform

the handcrafted one on Khmer. This is due to the size of the datasets

since multi-layer neural networks require a large amount of data to train

which is not the case for Balinese and Sundanese isolated character

datasets. It can also be noted from the results that even being purely a

recurrent network, which is more suitable in sequence modeling rather

than a single object classification, the column-wise network as well as

the column-row-wise network preform sufficiently well in recognizing

isolated characters on palm leaf documents. The latter produces a

slightly better result since it uses sequential information along both

horizontal and vertical axes. It is also shown that, utilizing both the

convolutional and recurrent modules is able to reach a lower error rate

(compared to the CNN based only network) since on top of using

convolutional modules in the shallow layers to extract principle features

from the character images, the network also uses the column wise and

row wise sequential information in the deeper layers. This illustrates

that combining convolutional with recurrent module is a powerful

technique to classify handwritten characters written on palm leaves.

86

Table 6.2: Experimental results for isolated character/glyph recognition task (in %
recognition rate)

Methods Khmer Balinese Sundanese

Handcrafted Feature (HoG-NPW-
Kirsch-Zoning) with UFL + NN
[103]

92.44 85.63 79.33

Purely CNN based 93.71 85.46 79.83

Column-wise RNN network 91.51 81.38 67.72

Column-wise and row-wise RNN
network

93.00 84.33 71.16

Convolutional recurrent network 94.99 84.65 80.26

6.2. Glyph Localization in Word Images

In this section, we look into a more challenging problem: glyph

localizing in word images. This is a sequence learning task which takes

as input an image containing a handwritten text and returns as output

the spatial location and the identity of all glyphs in that text. According

to the experimental results from the previous section, utilizing a

combination of convolutional and recurrent blocks is very efficient in

recognizing Khmer handwritten characters on palm leaf manuscripts,

and it is the direction that we go further in this section.

6.2.1. Glyph-class Map (GCM)

To take into account the character annotation information, for each

word, a glyph-class map (GCM) is built. The word image patch is

divided into grid like cells of �� by �� pixels where �� and �� are the

height and the width of each cell respectively. Resizing may be applied

to ensure that all cells are of equal size (after the resizing, the width of

the word image patch must be divisible by ��, and the height must be

divisible by ��). Each cell of the GCM is then assigned to one and only

one glyph-class which contains the most pixels in that cell. From all the

annotated words in the dataset, 134 glyph-classes are found including

one additional token class for cells containing only blank space or

background pixels. An example of how a glyph-class map is built is

shown in Figure 6.9.

87

6.2.2. GCM Generator

The objective of the approaches for this task is just to predict the glyph-

class map of the input word image patch which means to classify each

cell of the input patch to its corresponding glyph-class rather than to

output the text transcription of the input word image. Again, here we

focus on the feasibility of different types of neural network architectures

especially the choice between one-dimensional and two-dimensional

RNNs.

Two network architectures are presented. Figure 6.10 shows the general

architecture of both networks. The two models consist of the same two

beginning convolutional layers (the filter size is 5 by 5 for both layers

and the numbers of filters are 12 and 24 respectively). A max pooling

layer of stride 2 follows, so the output gives rise to a ½�� × ½�� × �

feature map where �� and �� are the height and the width of the input

image (after possible paddings) and � = 24 the depth of the feature

map which equals to the number of filters of the last convolutional

layer. To match the number of cells in the character-class map

(���� × ���� cells where ���� = ��/�� and ���� = ��/��), the feature

map is also divided into grid like cells where each cell is of equal size

of ½�� by ½�� (�� and �� must be divisible by 2 and in our

experiments, we choose �� and �� to be �� = �� = 8). Therefore, the

final dimensions of the feature map are now ���� × ���� × �� where

�� = ½��. ½��. �.

The first network (let’s call it Trial-Net1) utilizes a one-dimensional

RNN (1D-RNN) architecture (Figure 6.11). Inspired by the architecture

in [87], all four directions are taken into account: left to right, right to

Figure 6.9: (a). Original word image patch, (b). Annotated character information
in the word: polygon boundaries of all characters, (c). Glyph-class map

88

left, top to bottom, and bottom to top. To keep the architecture as 1D,

the feature map cells are flattened column wise or row wise to generate

four one-dimensional sequences of length ����. ���� where each

sequence corresponds to each direction mentioned above. All sequences

are then fed into one shared LSTM layer with 512 hidden units to

produce four output sequences also of length ����. ���� each of which

is then reshaped back to be a grid of ���� × ����. The four grids are

concatenated together along the feature axis to form a single grid of

features (���� × ���� × 2048). The next layers of the network are a

fully connected layer with 1024 hidden units followed by a softmax

activated final output layer to produce the predicted character-class map

(���� × ���� × ������ where ������ = 134).

Due to the characteristics of Khmer writing especially how characters

are positioned to form a word, the second network (Trial-Net2) takes

into consideration both spatial dimensions of the image. For this reason,

the proposed network uses a two-dimensional RNN (Figure 6.12).

Unlike the first network, diagonal directions are considered instead.

Four grids of cells are produced from the input feature map to represent

each of the four diagonal directions: top-left to bottom-right, bottom-

right to top-left, top-right to bottom-left, and bottom-left to top-right.

They share a 2D LSTM layer (whose previous states are given by the

Figure 6.10: General architecture of the networks in the first trial

89

previous cells along both horizontal and vertical axes) also with 512

hidden units to output four grids of the same size (���� × ���� × 512)

which are then concatenated along the depth or feature axis to get a final

grid before feeding it to a fully connected layer and then to the final

output layer similar to the architecture of the first network.

We regularize both networks by applying dropouts with dropped

probability of 0.2 after the max pooling and of 0.2 and 0.5 before and

after the fully connected layer respectively. Since the text image can be

big in width which would produce a very long sequence for the LSTM

layer, we also use gradient clipping to prevent exploding gradients.

For efficient training, input word image patches are sorted by their

width and then are batched together so that all image samples in the

same batch have similar width. This saves memory space and

Figure 6.11: Architecture of the 1D-LSTM layer (Trial-Net1)

Figure 6.12: Architecture of the 2D-LSTM layer (Trial-Net2)

90

computing time by eliminating unnecessary large paddings (we may

still need to apply small paddings so that all input images have their

widths equal to the maximum width in the batch). After each epoch, the

reshuffling is done on the order of batches instead of the order of every

single samples. Figure 6.13 illustrates this batching mechanism.

6.2.3. Experiments and Results

6.2.3.1. Datasets

The dataset used to train the Trial-Net1 and Trial-Net2 is generated

from SleukRith set. It consists of 24,009 samples of word image

patches, their corresponding ground truth GCM, and their word

transcriptions. The dataset is divided into three parts: around 65% for

training, 5% for validating, and 30% for testing. All word image patches

are in grayscale (only one-color channel) and are normalized by scaling

so that they are of the same height (72 pixels) but still with variable

width.

6.2.3.2. Evaluation Protocols

We use top � error rate measurement to evaluate the performance of the

Trial-Net1 and Trial-Net2. Each cell of the target GCM is predicted by

the networks. The error rate of one sample word image is the number

of incorrectly identified cells over the total number of cells in that

image. We obtain the final error rate of all samples in the test set by

Figure 6.13: (a). Initial sample order, (b). Sort by the width of each sample, (c).
Pad each sample to the maximum width in the batch, (d). Shuffle batch order

91

averaging the error rate of each sample. In this evaluation, we choose

� = 5 and � = 1.

6.2.3.3. Results and Discussion

Table 7.2 shows evaluation results of the Trial-Net1 and Trial-Net2.

From the results shown, we can see that the Trial-Net2 which uses two-

dimensional LSTM outperforms the Trial-Net1 which uses only one-

dimensional LSTM. This is to be expected since the LSTM module of

the latter network acquires more information from the previous states

in both vertical and horizontal axes. The error rates from both networks

drop significantly between the top 1 and top 5 measurements. This

illustrates the problem caused by the similarity and the ambiguity of

Khmer characters. An example of a comparison between predicted

GCM from both networks and the ground truth GCM is also given in

Figure 6.14. By observing this example, we can notice that the GCM is

not very sensitive to error. Connected components in the map (even

with some noises) can still be used to obtain the identity of each

character and its location in the text image.

Figure 6.14: (a). Original word image, (b). Ground truth GCM, (c). Result
predicted by the Trial-Net1, (d). Result predicted by the Trial-Net2

92

Table 6.3: Evaluation results of the Trial-Net1 and Trial-Net2

 Error Rate of the GCM
Generator (%)

 Top 1 Top 5

Trial-Net1 32.01 8.46

Trial-Net2 20.49 2.40

93

7. Text Recognition

After the trial experimentations presented in the previous chapter, we

now propose an end-to-end model to recognize a handwritten text on

short image patches extracted from Khmer palm leaf manuscripts. As

illustrated in Figure 6.1, two novel text recognition systems following

convolutional recurrent neural network architectures are proposed. The

first initial system (denoted Word-Net) is used to recognize word image

patches obtained from the annotated word dataset of SleukRith set

(Chapter 7.1). Since the number of samples in this word dataset is still

limited, a new extended dataset whose size is significantly larger is

constructed. A new optimized text recognition system (denoted SubSyl-

Net) is proposed in Chapter 7.2 to accommodate this new augmented

dataset.

7.1. Recognition of Word Image Patches (Word-Net)

The model consists of two main modules: the GCM generator and the

GCM encoder-decoder. Figure 7.1 illustrates the complete architecture

of the proposed model. Both modules utilize the combination of

convolutional and multi-dimensional recurrent blocks.

GCM Generator: a GCM generator takes a grayscale word image

patch � with dimension �� × �� as input and returns a corresponding

GCM of the patch as output. First, convolutional blocks are used to

extract automatically the features of the word image patch. Each

convolutional block is composed of a convolutional layer with a

receptive field 5 × 5 at a fixed stride 1 × 1. We increase the number of

feature maps from 64 to 128 and then to 256 to gradually obtain from

low to higher levels of representation. To further extend the depth of

the network, we also downscale the image by a factor of 2 at the end of

each convolutional block by using maxpooling with kernel size 2 × 2

at a stride 2 × 2. Convolutional blocks are activated by ReLu. To

regularize the model and to prevent overfitting, dropout of dropped

probability � = 0.3 is introduced after each block. To ensure that the

dimension of the output predicted by the CGM generator is identical to

the ground truth CGM (i.e. ���� × ����), the feature map output from

94

the convolutional blocks needs to be divided into a grid of cells of size

��
� × ��

� which can be computed as follows:

Figure 7.1: Overview of the architecture of proposed word recognition model

95

��
� =

��

������
 (7.1)

��
� =

��

������
 (7.2)

where ����� is the number of convolutional blocks which is equal to 3

in the proposed architecture. We should also ensure that �� and �� are

large enough to allow the division by 2�����. Therefore, we use �� =

�� = 8 in our experiments. Each cell in the grid is then transformed

into a vector by flattening out its dimension.

To take advantage of the importance of local spatial context in a two-

dimensional space according to the characteristics of Khmer writing,

we use multi-directional multi-dimensional LSTM (MDDLSTM) [74]

in our recurrent blocks. Instead of a single hidden state from the

previous time step like in the conventional one-dimensional LSTM,

MDDLSTM makes use of two states each from both the vertical and

horizontal axes (see Chapter 3.2.2 for more details about MDDLSTM).

To take into account all directions in the 2D space, four grids of cells

are produced from the feature map grid. Those four grids represent four

diagonal directions: top-left to bottom-right, bottom-left to top-right,

top-right to bottom-left, and bottom-right to top-left. The four

directional grids share the same two-layer block of MDDLSTM (each

layer with 256 hidden units) to produce four output grids whose feature

vectors in each cell are then concatenated together to transform back

into a single grid of feature map. At each cell of the grid, we apply a

dropout (� = 0.3) followed by a fully connected layer (with 1024

hidden units) activated by ReLu and another dropout (� = 0.5). To

predict the GCM corresponding to the input word image patch, the last

layer with ��� + 1 hidden units and a softmax activation is used to

output the probabilities of all glyph classes (including the class

representing the background) for each cell in the predicted GCM.

GCM Encoder-Decoder: an encoder-decoder model is used to convert

the GCM into final transcription of the input word image patch. This

encoder-decoder module is separated into two sub-modules: an encoder

and a decoder. The encoder encodes the GCM generated by the GCM

96

generator into a representation vector called context vector. The

decoder then uses the context vector as an initial state to predict the

Unicode transcription one letter at each time step.

We propose a combination of convolutional blocks and recurrent blocks

as our GCM encoder. It takes as input the GCM and first reduces the

dimension of the vector in each cell by passing it through an embedding

layer (64 neurons) and then squash it using Tanh activation. Since the

GCM contains information about the identity and the number of glyphs

appearing in the word image patch and also their estimated boundary

regions, two convolutional blocks are used to capture the bottom

features of the map. Two main benefits of these convolutional blocks

are that (1) the features extracted are useful in detecting and grouping

together automatically the neighbouring cells belonging to the same

glyph region without the need for handcrafted method such as

connected component extraction and also that (2) the maxpooling layer

down-samples the GCM dimensionality which limits the length of the

input sequence to the recurrent block of the encoder to be not too long.

For the purpose of regularization, dropouts are used after each

convolutional block. Due to the GCM being two-dimensional, we again

use MDDLSTM in the recurrent block of the GCM encoder. Similar to

the description of applying MDDLSTM in the GCM generator

mentioned previously, the recurrent block output four grids along four

different diagonal directions. The four grids are afterwards merged back

together to form the final grid with dimension ½���� × ½���� (the

GCM is down-sampled by a factor of 2 due to the maxpooling layer in

the first convolutional block) which is used to compute the output

context vector by averaging all its cells. The final grid of the encoder

can also be referred to as the local contexts of the GCM. Both the

context vector and the local contexts are sent to the decoder to be

decoded into word transcription.

A GCM decoder is used to predict the next letter or character in the

word transcription given the context vector generated from the encoder

and all previously predicted characters. The characters to be predicted

are represented by integer values �, 0 ≤ � < ����� + 3 where ����� is

97

the total number of Khmer Unicode characters (which are limited

between U1780 and U17E9). We add three more character codes to

represent the start token ������, the end token ����, and the unknown

character ����. Before being fed to the module as input, the character

representation value � is transformed into a vector by using the one hot

encoding technique. For this module, we use a conventional one-

dimensional LSTM as the recurrent block. Figure 7.2 shows the detailed

architecture of the GCM decoder. Before becoming the initial hidden

state of the LSTM, the context vector is first passed through a fully

connected layer with equal number of hidden units (512) and is

activated by Tanh function.

Since the generated GCM may contain multiple groups of cells

representing multiple regions of glyph boundaries, each predicted

character from the decoder should be conditioned on a different region

of cells. Instead of relying only on a single encoded context vector, the

decoder should pay its attention to particular regions in the CGM to

predict efficiently the correct character at each time step. The local

contexts provided also by the GCM encoder are useful in this situation.

We adopt the attention mechanism proposed by [104].

Denote �(��) a local context at position (�, �), 0 ≤ � < ½���� and 0 ≤

� < ½����, the attention vector at each time step � (��) is computed as

a weighted sum of the local contexts.

�� = ∑ ∑ ��
(��)

⨀�(��)
����

�
��

���

����
�

��

���
 (7.3)

The weight vector ��
(��)

 of each local context �(��) is computed by

��
(��)

=
���(��

(��)
)

∑ ∑ ���(��
(��)

)

����
�

��

���

����
�

��

���

 (7.4)

��
(��)

= ����(ℎ���, �(��)) (7.5)

where ���� is a small neural network with one hidden layer of 512 units

�����ℎ���, �(��)� = �����ℎ���; �(��)� + ���� (7.6)

98

which is used to learn the weight vector ��
(��)

 at time step t in function
of the previous hidden state of the decoder ℎ��� and each local context

�(��). The input �� to the LSTM is the concatenation of the one hot
encoding of the character and the attention vector ��. The decoder
always has the start token ������ as its first input at time step � = 0. The
current hidden state from the recurrent block is then fed into the final
output layer (after applying a dropout with dropped probability � =
0.5), and a softmax function is applied afterwards. This sotfmax
activated output is used to create the input for the next time step. The
decoder stops generating new characters when the end token ���� is
encountered or when the output transcription reaches a maximum
length.

Beam Search: Instead of using greedy search i.e. choosing the

character with the highest probability at each time step, we adopt the

beam search with length normalization as proposed by [105]. The beam

search technique maximizes the joined probability of all characters in

the predicted word transcription by keeping the top � predictions as

hypotheses. To not let the search prefer short transcriptions to long

ones, the joined probability of each hypothesis is normalized by being

divided by ����� which is computed as follows:

Figure 7.2: Detailed architecture of the GCM decoder

99

����� =
(���)�

(���)� (7.7)

where L is the length of the predicted transcription in each hypothesis.

In our experiments, we select the beam size k to be 5, and the hyper

parameters β and γ are chosen to be 5 and 0.7 respectively as

recommended by [105]. The hypothesis whose joined probability is the

maximum is chosen as the final output transcription.

Loss Functions: To train the Word-Net, two losses are minimized. The

first loss �� corresponds to how well the generator generates the CGM

while the second loss �� captures the overall performance of the model

to predict the final word transcription. For each sample image, those

two losses are computed as follows:

�� = − ∑ ∑ ∑ ���,�
(��)

���(���,�
(��)

)
���

���
������
���

������
��� (7.8)

where ���,�
(��)

 is the probability that the generator predicts that the cell at

the ith row and the ��� column of the predicted GCM belongs to glyph

class �, and ���,�
(��)

 is equal to 1 if the cell at position (�, �) of the ground

truth GCM belongs to glyph class � or otherwise it is equal to 0. The

second loss �� is computed by

�� = − ∑ ∑ �����,�
(�)

��� (�����,�
(�)

)
�������
���

���
��� (7.9)

where �����,�
(�)

 is the predicted probability of character of class � at time

step �, �����
(�)

= [�����,�
(�)

] (0 ≤ � < ����� + 3) is the one hot encoding

of the ith character in the ground truth transcription, and � is the length

of the ground truth transcription. The total loss of the complete model

is then computed by

������ = ���� + (1 − ��)�� (7.10)

where �� (�� ∈ [0,1]) is a hyper parameter to control how generating

the GCM affects the total loss of the Word-Net (see Chapter 7.4 for the

choice of ��).

100

Training: During training the total loss of the function is minimized

using Adam optimizer [102]. The GCM generator and the GCM

encoder-decoder are pre-trained separately to minimize their

corresponding losses (�� and �� respectively) using a normal

distribution with standard deviation of 0.1 as initial weights and

constants values of 0.1 as initial biases for all layers of the network. For

the GCM encoder, the ground truth GCM is used instead as input. We

also adapt the teacher forcing technique for the GCM decoder. The

technique feds the characters in the ground truth word transcription to

the decoder for the prediction of later outputs instead of using the

predicted output from the previous time step of the decoder itself. This

teacher forcing behavior forces the decoder to stay close to the ground

truth sequence resulting in faster training. Periodically every five

epochs, we alternatively train with teacher forcing for the first three

epochs, and without it for the last two epochs. After each module

converges, the complete network is then fine-tuned by minimizing the

total loss as computed in Equation 7.10.

The network and its modules are trained per mini batch basis (25

samples per batch). For efficient training, input word image patches are

sorted by their width and are then batched together so that all image

samples in the same batch have similar width. At the start of each epoch,

the order of the batch is shuffled. To ensure that all images in the same

batch have the same dimension, they are rescaled to new height ��
� and

width ��
� :

��
� = (1 + ��)�� (7.11)

��
� = (1 + ��)��,��� (7.12)

where ��,��� is the minimum width of the batch, and �� and �� are

small values selected arbitrarily between [−0.15,0.15]. This rescaling

also provides data augmentation to the training set due to the random

nature of �� and ��.

For every ����� of iterations, we evaluate the network on the validation

set and stop the training if the evaluation result does not improve for

101

������ consecutive epochs. In our experiments we select ����� = 50

and ������ = 5.

7.2. Recognition of Sub-syllable Image Patches (SubSyl-

Net)

By using the data augmentation technique (see Chapter 4.2.4), a new

and significantly larger dataset consisting of groups of sub-syllables is

constructed. To adapt to this new dataset, instead of using the Word-

Net described previously, in this section we propose a completely new

pipeline of text recognition system which is used to recognize a short

image patch consisting of a group of glyphs and to return its

corresponding text transcription (denoted SubSyl-Net). One of the

reasons behind developing a new architecture for the sub-syllable

dataset is due to the capacity of our current computing resource. Since

the new sub-syllable dataset is significantly larger than the word dataset

(see Table 7.1 for the exact number of samples in both datasets),

training the previous network on this new dataset would be too time-

consuming. We, therefore, keep in mind possible optimization options

for this new architecture. Some optimization choices include the use of

inception blocks (described in Chapter 7.2.2) instead of large

convolutional layers and the substitution of multi-directional multi-

dimensional LSTMs with BLSTM in the recurrent blocks (owing to

their comparable performance as discussed in [106]).

As illustrated in Figure 7.3, the proposed system comprises two main

modules: a generator which extracts feature maps containing the

context describing the input image and a decoder which maps the

variable length feature maps and interprets them into variable length

output text sequences. To capture the spatial information as well as the

identity of each glyph in the image patch, the generator outputs the

modified version of the GCM (which will be mentioned in detail next).

In addition, a second feature map is also produced by the generator to

acquire extra abstract information which is used to help decode the text

transcription.

102

7.2.1. Modified GCM

To improve the GCM mentioned previously (eliminating the hyper

parameters �� and �� as well as their compatibility with the input image

size), a modified version of the GCM is proposed. Let’s suppose an

image patch of a sub-syllable group � composing of � glyphs, and

�� (0 ≤ � < �) represents the region bound by the polygon boundary

of the ��� glyph ��. In each region ��, we replace the value of each pixel

by a new value �� (0 < �� ≤ ��� where ��� is the number of glyph

classes) corresponding to the class of the glyph ��. A new image �′ with

the same dimension as � is created by forming the union of all regions

��. An additional value (������ = 0) is used to fill in the background

region of �′ where no glyph pixels are assigned to. To obtain the final

GCM, the image �′ is downsampled by applying nearest-neighbor

interpolation. The process of how the new GCM is constructed is

illustrated in Figure 7.4.

7.2.2. Feature Generator

This component of the network takes as input a grayscale image patch

of a sub-syllable group and produces two outputs: a corresponding

GCM and an additional feature map. The generator starts with a

convolutional block given its effective capability in extracting visual

features from images. The block comprises of two basic convolutional

layers to output a low-level feature map whose dimension is reduced by

passing through a maxpooling layer.

Figure 7.3: Overview of the architecture of the SubSyl-Net

103

Next we utilize two inception blocks following the previous

convolutional block. Each inception block is composed of two

inception layers and again at the end of the block, a maxpooling layer

is applied to down sample the dimension of the output map. The

proposed inception layer in this work is derived from the inception

module introduced by [107]. The principle idea of the inception layer is

that multiple convolutional layers with different kernel sizes in a single

module can be used as a feature extractor to capture multi-scale

contextual information from the input. In another word, a single

inception layer contains multiple inception paths, and from these paths,

feature maps of different scales are combined to approximate more

complicated feature maps which can otherwise be achieved only

through larger filters and more layers. The architecture of the inception

layer used in our proposed system is shown in Figure 7.5.

Formally, the input image � of dimension �� × �� × 1 becomes a

feature map ℳ with dimension �ℳ × �ℳ × �ℳ after it passes through

the convolutional block and then the two inception blocks (� and �

represents the height and the width dimensions respectively). The input

Figure 7.4: Modified version of GCM, (a) Raw image patch I, (b) Map I' containing
polygon boundaries of all glyphs, (c) Downsampling I' by applying nearest
neighbor interpolation to obtain the new GCM

104

image is grayscale (only one channel) hence its third dimension is 1,

and �� is the size of the output feature. The height and width dimension

of the output feature map is reduced in size by a factor of 2�����

�� = ��/2����� (7.13)

�� = ��/2����� (7.14)

due to the application of maxpooling, where ����� is the number of the

2 × 2 maxpooling layers used in the generator.

In order to also encode the temporal context which is significant

especially in the complex writing such as Khmer whose letters are

position dependent, the feature map ℳ is transformed into a one

dimensional sequence of length �ℳ. �ℳ whose each element is a

vector of size �ℳ. To process the sequence, we utilize a Bi-directional

LSTM (BLSTM), a combination of two LSTM layers which read the

sequence in opposite directions to encode both forward and backward

dependencies. The BLSTM outputs two sequences whose

corresponding elements are concatenated to return back to a single

sequence of feature vectors. Each feature vector is passed on to a fully

connected layer and then to a final output layer activated by a softmax

to produce the probability distribution for each glyph class. The output

Figure 7.5: Detailed architecture of the inception layer. Values in the parenthesis are
the numbers of filters (corresponding respectively to the first and the second inception
blocks in the SubSyl-Net

105

sequence is finally transformed back to its previous dimension

�ℳ × �ℳ × ��� to represent the predicted GCM where ��� is a total

number of glyph classes.

In addition to the GCM, we also consider an additional feature map

(let’s denote it AFM) which is useful in decoding the text transcription

since this feature can automatically capture other information not

already contained in the GCM. As illustrated in Figure 7.3, instead of

adapting a new path to output such feature, we reuse the features

obtained from different levels of the GCM production architecture. This

new feature combines information from different levels of abstraction

and depth of the generator network by concatenating the output feature

map after the convolutional block and the feature maps after each of the

inception block (including the map ℳ). Prior to the concatenation, to

ensure that all feature maps are of the same dimension (height and

width), we repetitively apply convolutional and maxpooling layer pair

to each of the feature map (except the last map ℳ) until each feature

map obtains the dimension of the last map ℳ. The final concatenation

of these feature maps produces the AFM. The GCM and the feature map

AFM are finally concatenated along the feature dimension and are used

as the context to be decoded by the decoder to predict the corresponding

text transcription of the input image.

7.2.3. Decoder and Attention Mechanism

Let’s denote the context extracted from the input image by the generator

as ℋ (the concatenation of GCM and AFM) whose dimension is

�ℋ × �ℋ × �ℋ where �ℋ = �ℳ, �ℋ = �ℳ, and �ℋ = ���� +

���� (���� = ��� and ���� the size of the feature dimension of the

feature map AFM). The context ℋ can also be viewed as a matrix (size

�ℋ × �ℋ) of feature vectors ℎ�,�, 0 ≤ � < �ℋ and 0 ≤ � < �ℋ. Our

proposed attention-based decoder utilizes a one directional LSTM to

predict the text transcription one character at a time. The decoder

produces at each time step � the probability distribution over all

characters �(�) conditioned on the context ℋ and all previously seen

character distributions �(�), �(�), … , �(���). Again, �(�) is a character

probability distribution predicted by the decoder at time step � i.e.

106

�(�) = [��
(�)

] where �� = �(�) ∈ [0,1] is a probability that the predicted

character is likely to be �, 0 ≤ � < ����� + 3. Here, we represent each

Khmer character by an integer �, and ����� is the total number of

characters that are used. Similar to the decoder of the Word-Net, we

also include three additional special characters to represent a start token

(������), an end token (����), and an unknown character (����).

Recall that the prediction of the output character at each time step � is

also conditioned on the context matrix ℋ. Since the context ℋ

maintains the spatial information of all glyphs from the input image, to

efficiently predict the correct character, the decoder should concentrate

specifically on a particular group of context vectors in ℋ (the group of

context vectors which corresponds to the region in the input image

where the character is located) rather than to pay its attention equally to

all context vectors in ℋ. At each time step �, this weighted context or

so-called context with attention (denoted �(�)) is used instead of ℋ.

Each context vector ��,�
(�)

 in �(�) is the corresponding context vector ℎ�,�

in ℋ weighted by a coefficient ��,�
(�)

:

��,�
(�)

= ��,�
(�)

∗ ℎ�,� (7.15)

To compute the coefficient ��,�
(�)

, we use a small neural network with

one hidden layer whose input depends on the previous hidden state of

the decoder (the hidden state at time step � − 1) and the corresponding

context vector ℎ�,� in ℋ. The output of the network is squashed by a

sigmoid function so that each ��,�
(�)

∈ [0,1].

At the beginning of the decoding process (at time step � = 1), the

LSTM of the decoder requires two initial states: the start cell state and

the start hidden state. For the start cell state, a vector of all zeros is used.

However, for the initial hidden state, to utilize the context vectors ℎ�,�

at every location (�, �) as well as to capture the spatial information to

predict the first character of the text transcription, another BLSTM is

applied. The context matrix ℋ is transformed into a one-dimensional

sequence of length �ℋ ∗ �ℋ which is used as the input sequence to the

107

BLSTM to produce two sequences corresponding to both forward and

backward directions. The two sequences are concatenated, and finally

the initial hidden state of the decoder is computed by calculating the

mean of all elements in the concatenated sequence. We feed the decoder

as an initial input, a one hot encoding of the start token ����� (�������

(�)
=

1, ���������

(�)
= 0) concatenated with the sum of all context vectors �(�) =

∑ ∑ ��,�
(�)

�� in the weighted context �(�). For the next time steps, we

recursively perform the same process until the decoder produces a

distribution which represents the end token ����.

7.2.4. Implementation Details

In our experiments, all input image patches are scaled so that they are

of the same height of 72 pixels with the aspect ratio preserved.

The generator: the convolutional block consists of two conventional

layers both using 64 3 × 3 filters and activated by ReLU followed by a

2 × 2 maxpooling layer. The next module is composed of two inception

blocks. The first block contains two inception layers with the same

setting (number of parameters). There are also two inception layers in

the second block with larger parameters (see Figure 7.5 for the numbers

of filters used).

Again, after each inception block, a 2 × 2 maxpooling layer is applied

to reduce the height and width dimensions of the output feature map by

a factor of 2. All convolutional components in each inception layers use

ReLu activation. We also use a BLSTM with 128 hidden units which

produces an output whose feature dimension is 256 since the BLSTM

returns two sequences (for both forward and backward directions).

Following the recurrent module, a ReLu activated fully connected layer

with 192 hidden units is used. The final output layer is activated by a

softmax to generate a probability distribution over ��� glyph classes. In

the sub-syllable dataset constructed from SleukRith set, ��� = 149

glyph classes (including the class representing the background) are

found. To output the AFM, three feature maps from different depths are

concatenated together. The first feature map is from the convolutional

block which is down sampled by applying two consecutive

108

convolutional and maxpooling pairs. The convolutional layer in each

pair consists of 64 3 × 3 filters while the maxpooling layer uses a 2 × 2

filter. The height and width of this feature map is reduced by a factor of

4 since we apply the maxpooling twice. We use the output from the first

inception block as the second feature map. This map is passed through

a convolutional layer with 112 filters of size 3 × 3 and a 2 × 2

maxpooling layer to down sample each of its spatial dimensions in half.

The last feature map is the output from the second inception block

which is fed to the concatenation operation as it is. Another fully

connected layer with 192 hidden units is used, and the final output layer

for the AFM contains 150 units and returns a map activated by a

sigmoid to produce the AFM. To regularize the generator from

overfitting on the training set, dropouts are introduced after each

convolutional and fully connected component with the drop rates of

10% and 25% respectively.

The decoder: the backbone LSTM of the decoder consists of 256

hidden units. To compute the initial hidden state of the LSTM, a

BLSTM of size 128 is used to process the context sequence to obtain a

vector of size 256 (again the BLSTM produces two sequences of

vectors of size 128 which are concatenated and averaged to get the size

of 256). The attention module, which is a small neural network used to

compute the weight coefficient ��,�
(�)

 at each location (�, �) and at each

time step �, is composed of one hidden layer with 128 units and

activated by a sigmoid. In our experiments, we limit the output

character from the decoder to be between U1780 and U17E9. The

character which is not in this range is considered to be ����. Inspired

by the work of [105], we adopt the beam search with length

normalization technique to output the top � (we choose � = 5)

predictions at each time step. The final text prediction is the sequence

whose joined probability of each element is the maximum.

7.2.5. Training

The proposed network is trained from end to end in a supervised

manner. The common approach is to train the generator and the decoder

109

jointly by minimizing the text prediction loss ����� which is a cross-

entropy loss computed by

����� = − ∑ ��� �(�(�) = �̂(�))� (7.16)

where �̂(�) is the ground truth output character at time step �. We also

want to introduce the GCM loss corresponding to the predicted GCM

by the generator. By enforcing the generator to generate the GCM

which contains both the identity and the spatial information of all

glyphs in the input image, it is expected that this encoded context

improves the recognition performance of the decoder. The GCM loss

���� is also a cross-entropy loss summing over all locations (�, �) in the

GCM map computed by

���� = − ∑ ∑ ��� �(��,� = ���,�)�� (7.17)

where ��,� is the predicted glyph and ���,� is the ground truth glyph at

position (�, �). The objective function of the network is therefore

� = ����� + ������ (7.18)

where �� ≥ 0 (we choose �� = 1 in our experiments) controls how

predicting correct GCM affects the overall performance of the network.

The training is performed using the ADAM optimizer [102] per mini

batch basis. To optimize the batch samples, prior to training, all sample

image patches are sorted by their width so that the patches with similar

dimension are put in the same batch. The images in each batch are

upsampled to the size of the image with the maximum width to ensure

that all images in the batch are of the same dimension. At the start of

each epoch, the order of the batch is shuffled so that the network can

learn to generalize well and to overfit less. After each batch, we

accumulate gradients, and we update the parameters of the network only

after multiple batches have been processed. This technique is equivalent

to using a big batch size and proves to be useful in a situation where the

computing resource is limited. In our experiments, we choose the batch

size to be 8 and the number of batches for the parameters to be updated

is 40. After every 200 iterations have been performed, we evaluate the

110

network on the validation set, and stop the training if the performance

of the network does not improve after 5 epochs.

7.3. Segmenting into Groups of Sub-syllables and

Merging their Transcriptions

Both the Word-Net and the SubSyl-Net can also be applied as segment-

free by training the networks using whole text line images. However,

there are some drawbacks as followings:

1) Each page of Khmer palm leaf manuscripts is very long which

also produces long lines which are often curved or fluctuated.

Therefore, in order for an image to contain a whole text line,

parts of texts from neighboring lines might also appear in the

image unless transformation techniques are applied to the image

beforehand. This might also distort the texts in the image.

2) The number of samples in the training set would be significantly

reduced since we use images of whole text lines instead of short

words.

3) The computation of too long dependencies would also become

very expensive.

It is therefore more beneficial that after separating the document page

into individual text lines, the next task is to further segment them into

smaller size image patches before feeding them to the text recognition

system. The idea is that for each text line, a number of candidate

horizontal locations are to be computed. Attributable to the non-

cursiveness of Khmer writing, it is possible to look for small separating

gaps between two neighboring handwritten characters. We reuse the

SWT map calculated in the line segmentation stage (Chapter 5.2.1) to

produce a horizontal projection histogram for each of the text lines. The

histogram is smoothed multiple times using an average filter, and we

then calculate the local minima of the smoothed histogram to obtain the

candidate segmentation locations � = (��, ��, … , ����������) where

������� is the number of local minima found in each line. Using these

candidate locations, small image patches can be constructed following

a number of criteria. Let’s denote ��� the most common width acquired

111

from the connected components extracted from the SWT map. This

width is the median value of the sorted list of all connected component

widths. An image patch is constructed by segmenting the text line

between two candidates �� and �� if the width of the image patch stays

between two hyper-parameters ���� and ���� i.e. ���� <

��� − ��� < ����. In our experiment, we choose empirically ���� =

2��� and ���� = 8���.

Some image patches might not contain any foreground text. To detect

and remove such image patches, we look at values between �� and �� in

the smoothed histogram. We consider that the image patch contains

foreground text if the number of zero values within this range is less

than ¾ of |�� − ��| otherwise the image is considered to be blank and

is removed. By applying this process, we can obtain from a segmented

text line, a sequence of image patches containing a group of glyphs (or

a group of sub-syllables). Each image patch is to be fed to the text

recognition system to return its text label as output. The text

transcription of the entire line is therefore the concatenation of those

short text labels.

7.4. Experiments and Results

7.4.1. Datasets

Similar to Trial-Net1 and Trial-Net2, the dataset used to train the Word-

Net is generated from SleukRith set (see Chapter 6.1.2.1). For the

network to recognize image patches composing groups of sub-syllables

(SubSyl-Net), we train it with the newly created data called groups of

sub-syllables also extracted from SleukRith set. Again, the data is

divided into three subsets: the training set, the validation set, and the

testing set. Each patch image in the data samples can be considered to

contain synthetic texts since they are groups of sub-syllables which are

not real Khmer words but still share some resemblance. We select �,

the number of sub-syllables in each group, to be 3 and 4 due to the fact

that these numbers of sub-syllables are the most common. Table 7.1

shows the number of image samples in each division from both the

annotated word dataset and the newly created dataset of groups of sub-

112

syllables. We can also see that using the technique to create groups of

sub-syllables instead of real words can augment the size of the dataset

significantly (around tenfold).

Table 7.1: number of samples of the word dataset and the dataset of groups of sub-
syllables

Type Training Set Validation set Testing Set

Word Dataset 15,432 813 7,764

Sub-Syllables

Dataset

3-SG 51,906 4,828 38,090

4-SG 52,086 4,704 37,592

Total SG 103,992 9,532 75,682

7.4.2. Evaluation Protocols

We use the same top � error rate measurement (as mentioned in Chapter

6.1.2.2) to evaluate the performance of the GCM generator of the Word-

Net. To evaluate the performance of the GCM encoder-decoder of the

Word-Net, Levenshtein distance �� is used to compute the character

error rate (CER) of each word as follows

��� =
��� (�����,��(�����,���))

|���|
 (7.19)

where ����� and ��� are the predicted transcription and the ground truth

transcription respectively, and |���| represents the length of the ground

truth transcription. According to this computation, the CER of each

word is always between [0,1]. This also illustrates that the error rate is

higher for the same amount of incorrectly predicted characters when the

network performs on a shorter word image patch which makes sense

since the importance of each character is stronger in short length

transcriptions. The final CER is the average of each word CER in the

test set. Word error rate (WER), which is the number of incorrectly

predicted words over the total number of words, is also calculated for

the evaluation.

For the SubSyl-Net, the evaluation is based on two criteria i.e. the

generated GCM predicted by the generator and the text transcription

113

output by the decoder. A score � ∈ [0,1] is calculated for each predicted

GCM by

� =
∑ ∑ ����,�,���,����

����∗����
 (7.20)

where ����,�, ���,�� = 1 if the predicted glyph ��,� matches the ground

truth ���,�, otherwise it returns 0. The overall score is then computed as

the mean of the scores of all predicted GCM over the testing set. To

evaluate the text prediction of the network, we compute the Levenshtein

distance between the output text from the decoder and the ground truth

text. The character error rate (CER) can be obtained by summing the

distances between all prediction and ground truth pairs and divide it by

the sum of total number of characters in the ground truth text of all

samples in the testing set. We also compute the word error rate (WER)

which is the number of incorrectly predicted groups of sub-syllables

over the total number of groups of sub-syllables.

The experimental evaluation for the SubSyl-Net is performed in three

different scenarios to keep track of how each stage of the recognition

pipeline affects the final prediction result.

 Scenario 1: we evaluate on the dataset of groups of sub-

syllables, the overall flow of the proposed network.

 Scenario 2: we evaluate the network on image patches

generated from the ground truth of line segmentation. The

boundaries from the annotated glyph dataset are also used to

split the ground truth text lines into smaller patches containing

at most four sub-syllables. The CER is now computed as the

Levenshtein distance between the predicted text line

transcription (concatenation of all text labels in the image patch

sequence) and the ground truth text line transcription which can

be constructed as mentioned in Chapter 4.2.5.

 Scenario 3: we evaluate the performance of the network on the

dataset of whole text lines. For each document page in the

testing set, we segment it into lines and then into sequences of

114

image patches using the approach mentioned in Chapter 7.3.

The CER is computed as in Scenario 2.

7.4.3. Hyper-parameter Tuning

The process of setting the hyper-parameters for deep learning models

requires expertise and extensive trial and error. There are no simple and

easy ways for hyper-parameter tuning. Some of the most common

hyper-parameters include the number of layers, the number of units in

each layer, the batch size, the number of filters and the filter size in

CNNs …etc. Grid search is one popular technique where we set up a

grid of hyper-parameters and train/test our model on each of the

combinations. When using grid search, all possible combinations of the

hyper-parameters are tried; therefore, the number of experiments

increases exponentially with respect to the number of hyper-parameters

in the model. In practice, this technique is very computationally

expensive and time consuming.

In our experiments, to facilitate the tuning process, a manual search is

performed instead where hyper-parameters are chosen one at a time. At

the beginning of the process, each hyper-parameter is given an initial

value, and after each trial, those values are updated empirically by

different predefined intervals according to our observations. For

example, after each experiment, the number of layers will be

incremented or decremented by 1, the number of neurons in each layer

will be modified by a factor of 2, and the learning rate will be changed

by a factor of 10. During the fine-tuning experiments, the model is

evaluated on a small validation set. We normally observe the changes

on the results only after the first couple of epochs have been complete.

If there is no significant improvement, we stop the experiment, decide

on the best value for the current hyper-parameter so far, and move on

to the next hyper-parameter.

The degree of importance of each hyper-parameter is also distingue. For

instance, the performance of the Word-Net is not very sensitive to the

hyper-parameter �� in Equation 7.10 (as illustrated by the results from

Table 7.2). This shows the importance of the recognition loss ��

compared to the GCM prediction loss ��. Accordingly, for the SubSyl-

115

Net, we modify the balance between the two losses in Equation 7.18

(now denoted ����� and ���� respectively) by introducing the hyper-

parameter �� to be the coefficient of ���� alone. This way, the text

recognition loss ����� does not lose its importance by scaling according

to ��.

7.4.4. Results and Discussion

Table 7.2 shows evaluation results of the Word-Net. Three experiments

are conducted on the complete network after its two modules (the GCM

generator and the GCM encoder-decoder) are pretrained separately to

minimize its �� and �� respectively:

1) we do not do any finetuning

2) we finetune the complete network on ������ setting the hype-

parameter �� to zero, i.e. �� has no effect on the total loss ������

3) we finetune on ������ with �� = 0.9 (very strong influence of

��)

By looking at the big difference between the top 1 and top 5 error rate

of the generated GCM, it is illustrated that even though the GCM

generator is sometimes not able to predict the correct glyph class as the

most probable (top 1), in most of those cases, the probability of the

correct glyph class is still high enough to be among the top 5.

Fortunately, in the complete system, this glyph class probability

distribution of the predicted GCM is passed directly to the GCM

encoder-decoder which can be helpful for the generation of the final

word transcription.

As seen in Table 7.2, finetuning the complete network by minimizing

������ improves the overall performance. Moreover, by enforcing the

network to produce a good GCM (i.e. set a high value to ��), the error

rates of the predicted word transcription decrease even more.

116

Table 7.2: Evaluation results of the Word-Net

 Error Rate of the
GCM Generator

(%)

Error Rate of the
Complete Pipeline

(%)

 Top 1 Top 5 CER WER

(1) No finetuning 12.42 0.25 4.43 13.49

(2) Finetune on ������
with � = 0

12.81 0.24 3.88 12.11

(3) Finetune on ������
with � = 0.9

12.21 0.23 3.80 11.81

The evaluation results of the three scenarios for the SubSyl-Net are

shown in Table 7.3. On the newly constructed dataset of groups of sub-

syllables, the proposed feature generator obtains a sufficiently high

score in producing the output GCM. We observe that although the

predicted GCM contains some noise and does not match perfectly cell

by cell with the ground truth, it is still capable of storing the useful

information related to the spatial position, size, and identity of each

glyph in the input image. To highlight this and also the effectiveness of

the GCM on the attention mechanism of the proposed decoder, Figure

7.6 illustrates some sample outputs and the attention map at each time

step � (��,�
(�)

) corresponding to each predicted character. According to

this result, it is shown that the generated GCM from the generator serves

as a blueprint which contains candidate regions for the decoder to attend

to. As expected, by enforcing the generator to learn to produce the

ground truth GCM, the spatial information of each glyph annotated in

the GCM is helpful in enhancing the attention mechanism as well as

improving the predicting capability of the decoder. We measure the

performance of the overall network by computing the CER and the

WER of the predicted text labels. According to these results on the new

dataset, the proposed network is able to achieve a low CER and, as

expected, a slightly higher WER since the text labels in the dataset are

often long.

117

In Scenario 3, we also evaluate the performance of the proposed system

on the input images obtained from segmenting the whole document

page into lines which are then split into short patches. In this scenario,

the network does not perform as well. However, according to the result

from Scenario 2 which shows a low CER, it can be assumed that this

problem is caused by the faults at the segmentation stage rather than at

Figure 7.6: Sample results from the SubSyl-Net showing the predicted GCM and
the attention map at each time step (the region highlighted in red is where the
decoder attends to)

118

the recognition stage. The line segmentation and image patch extraction

approach could therefore be improved.

Table 7.3: Evaluation results of the SubSyl-Net

Scenario GCM
Score (%)

CER (%) WER (%)

1 87.12 6.16 26.23

2 - 7.81 -

3 - 35.30 -

We also perform a comparison with the results obtained from the Word-

Net (which is trained on the word dataset). Compared to the Word-Net,

the number of parameters in the SubSyl-Net is significantly reduced as

illustrated in Table 7.4. According to the results shown in the table,

although the Word-Net performs rather well on annotated word dataset,

it does not generalize to sub-syllable dataset which is much bigger. This

shows the overfitting problem of the Word-Net. In contrast, the SubSyl-

Net which is trained on the expanded dataset using the proposed data

augmentation technique generalizes well to all datasets. The SubSyl-

Net produces a satisfactory result on the word dataset which it has never

seen before (we do not train the SubSyl-Net on the word dataset). Using

groups of sub-syllables as a technique to augment the word image patch

sample proves to be efficient. Along with the optimized architecture of

the SubSyl-Net, we are able to solve the overfitting problem of the

Word-Net as well.

Table 7.4: Comparison between Word-Net and SubSyl-Net

Network Number of
parameters
(Millions)

Dataset CER
(%)

WER
(%)

Word-Net 9.18 Words 3.80 11.81

Groups of Sub-syllables 49.62 96.42

SubSyl-Net 2.37 Words 6.88 19.33

Groups of Sub-syllables 6.16 26.23

119

8. Conclusions

8.1. Summary

This thesis presents a number of contributions in the field of DIA

especially on the application of handwritten recognition on old and

degraded historical documents. The main research work in this thesis

aims at designing and implementing an efficient text recognition system

which is expected to help widen the accessibility of the valuable

contents written of palm leaf manuscripts to the public.

In order to achieve the goal of developing such handwritten recognition

system, digital corpuses and datasets of Khmer palm leaf documents are

of fundamental interest for benchmarking existing recognition systems

as well as for the training of data-driven recognition methods and the

experimental evaluation of their performance. In this dissertation, we

introduce SleukRith Set, the first dataset constructed on digital images

of Khmer palm leaf manuscripts from our own digitization campaign

and also from existing digital content from various establishments. We

select 657 manuscript pages, and a tool has been developed to perform

the annotation task on those pages to create three types of data: isolated

character dataset, annotated word dataset, and line segmentation ground

truth. In future work, the next version of the dataset is likely to include

an increased number of pages so that it can be used as training data for

even more sophisticated systems. The dataset and also the annotation

tool are made publicly available at github.com/donavaly/SleukRith-Set.

Next, a comprehensive experimental study for the binarization task

which is one the principal preprocessing steps in a DIA system is

presented. With the special characteristics and challenges possessed by

the palm leaf manuscript collections such as degradations, artifacts,

different kinds of noises the performances of the binarization methods

in the literature on this type of documents are not satisfactory. By

observing the output binary images obtained after applying the

binarization methods, many broken and unrecognizable

characters/glyphs and noises still occur. This illustrates a great

challenge in binarizing digitized palm leaf manuscripts.

120

According to the difficulty in obtaining satisfactory results from the

binarization step, a binarization-free line segmentation scheme that

works directly on grayscale images is proposed for Khmer palm leaf

manuscripts. First, we apply a stroke width transform (SWT) on the

edge map of the image to extract connected components. The proposed

approach uses piece-wise project profiles to detect line number and to

set up initial positions of the centroids or text line mid-points. Those

centroids are then moved adaptively to form correct lines by applying a

clustering algorithm called competitive learning. Finally, we construct

text line boundaries using a path finding technique. The evaluation

experiments on digitized pages from SleukRith set as well as on

additional datasets constructed from documents of various Indonesian

scripts demonstrate that the proposed approach produces a very

promising outcome compared to other existing methods in the

literature. The method performs well on historical palm leaf documents

whose lines are often skewed or even fluctuated. It can also deal with

discontinuity of text lines caused by holes made for document page

binding.

After dealing with the preprocessing step which is to segment the

document page into separating text lines, we conduct the first attempt

in using neural networks to solve the text recognition problem for

Khmer palm leaf manuscripts. To study their feasibility and

performance, different types of ANN architectures are used for the

recognition of character and word image patches extracted from Khmer

ancient palm leaf documents. For the task of classifying isolated

characters, we present four network architectures: purely CNN based,

RNN on sequence of one-pixel columns, RNN on both column and row

sequences, and finally a combination which is both convolutional and

recurrent. The results show that both CNN and RNN based architectures

perform well enough on this task individually; however, combining

both types of architectures proves to be better and more powerful. For

the text word recognition task, SleukRith Set provides character

annotation which can be used as alignment between character codes in

the text transcription and the character positions in the text images. To

incorporate this information, we propose approaches whose objective is

121

to output a glyph-class map (GCM) for each input word image using

both one-dimensional and two-dimensional recurrent neural networks.

For this task, it is illustrated in the evaluation results that the latter

network performs better. The predicted GCM can be used as input to

produce the final text transcription of the word.

Since utilizing neural networks to solve Khmer handwritten text

recognition problem in our trial experimentations is very favorable, we

present a robust system called Word-Net whose architecture uses and

combines both the convolutional and recurrent modules to take as input

an image patch containing one Khmer word and to output its

corresponding text transcription. The proposed system takes advantages

also from the GCM constructed using the glyph annotation which

contains information about the structure, position, and identity of each

glyph in the word image to be recognized. Two main modules, the GCM

generator and the GCM encoder-decoder are developed to generate the

GCM which is to be encoded into a context vector and also local

contexts representing the input word image before being decoded into

the final transcription. Our approach shows promising results evaluated

on the word dataset extracted from SleukRith set.

However, due to the limited size of the annotated word dataset used to

train the Word-Net, it does not generalize well i.e. it performs poorly

on documents containing words that do not appear in the word dataset

(for example, the many manuscript collections written in Pali script

where words cannot be easily annotated). To overcome this challenge,

we construct a new significantly larger dataset composing of groups of

sub-syllables. Synthetic words which resemble real Khmer words can

be formed by assembling adjacent annotated sub-syllables. To

accommodate this new dataset, we also propose a new text recognition

system (denoted SubSyl-Net) designed to take into account the limited

computing resource which is very crucial in dealing with large size

datasets. Similar to the Word-Net, the newly proposed network uses a

generator to extracts a GCM and also an additional feature map so that

these encoded features can be decoded by an attention-based decoder to

output a corresponding text label of the input image patch. The

experiments conducted on the new dataset show that, compared to the

122

Word-Net, the SubSyl-Net performs and generalizes promisingly well

on all palm leaf documents.

8.2. Impacts

Palm leaf manuscripts have become an integral part of Cambodian

culture and are of great importance especially due to the scarcity of

scripters who are capable of producing new manuscripts as well as the

fact that aging manuscripts are facing destruction. The salvation efforts

have been made, and the digitized material of Khmer palm leaf

documents are becoming available in increasingly large quantity.

Making the content of those digital copies easily accessible to the public

is a great challenge. This research is the first step in solving this

problem.

The outcomes from this research work open ways to development of

numerous practical applications. For instance, keyword indexing will

be able to be made possible to enhance the in-text search capability so

that a relevant document can be retrieved through word spotting scheme

with respect to a query of the user. The proposed text recognition

system can also be used as a tool to extract and analyze the handwritten

texts from the document images which are very useful as inputs to other

popular applications such as machine translation and text to speech.

These applications will make Khmer palm leaf manuscripts accessible

to an even bigger audience.

Historical documents written in languages with similar writing nature

(for example, Thai, Laos as well as ancient scriptures such as Pali and

Sanskrit) also benefit from this research work.

8.3. Future Work

This dissertation has tackled a number of different tasks in DIA on

historical palm leaf manuscripts. There are still however several

possibilities as an extension for improvement and for future research.

Segmentation using Deep Learning: The proposed text recognition

system works sufficiently well to recognize short image patches. To

apply this work however to the whole document page, a method to

efficiently extract text lines as well as to segment those lines into

123

smaller patches is still needed. In this dissertation, a line segmentation

approach following a bottom up scheme is proposed. This approach

proves good performance since grouping text components into lines

does not necessarily require language context. Word segmentation

however is a much harder problem. As illustrated by the result form

Scenario 3 in Table 7.3, separating lines into short patches just by

simply using the gaps between adjacent glyphs (described in detail in

Chapter 7.3) does not produce a satisfactory outcome. Some common

erroneous cases include separation of characters with multiple parts and

patches containing noises or only background with no text. A different

approach that we can pursue is to apply deep neural network models for

word segmentation since models such as RNNs are able to take

advantage of sequential information between neighboring text

components in the line. Global processing of both line and word

segmentation in a single task can also be another direction to tackle. For

these deep learning approaches, significantly larger datasets of line and

word segmentation are very crucial.

Postprocessing: For an even further improvement of the text

recognition system, postprocessing steps are needed. Using the

contextual information of the natural language, additional errors can be

detected and corrected. Both error detection and error correction models

are to be explored. One of the solutions is to adopt and integrate

language models which construct probability distribution over all

strings in the language. These models can be implemented in different

levels of context i.e. characters, words, or even short phrases. To train

such models, SleukRith Set will be utilized. In addition, more annotated

data such as syntactic structure and grammatical form are to be

constructed if necessary.

Complete End-to-End and Multi-task System: As mentioned in

previous chapters, solving DIA problems, developing a handwritten

text recognition system in particular, does not consist of a single task

but often a sequence of steps composing a complete pipeline. While it

is feasible to propose and improve unique models to solve each task

individually, another direction might be to develop an end-to-end

system that is able to perform multiple tasks simultaneously or

124

sequentially but in a single process flow. Usually errors occurring at the

first stages of the workflow significantly affect the outcomes in the later

stages. By chaining all tasks together, the accumulation of errors from

those related tasks might be useful in improving the overall

performance of the complete system. Using deep learning approaches

to model such sequential end-to-end workflow is expected to be

practical and efficient due to the backward propagation where errors

from the later layers which correspond as well to the later tasks can be

fed back to fix the faults made by the first layers which belong to the

task at the beginning stage of the system. This end-to-end learning

technique is relatively new and is still an ongoing research. Some recent

examples include the Start-Follow-Read model [108, 109] which is

composed of modules to perform both segmentation and recognition.

The recognition errors from the last module are not only used to correct

the recognition module itself but also to improve the segmentation

module.

Transfer Learning: Transfer learning is a machine learning method

where a model developed for a task is reused as the starting point for a

model on a second task. Given the vast computing and time resources

required to develop neural network models, instead of building models

for certain tasks from scratch it is beneficial to use existing pretrained

networks of other related tasks. Handwritten text recognition on

historical documents is a universal problem. Numerous datasets from

different language sources along with their DIA systems have been

constructed, implemented, and made available. However, the questions

of what to be transferred (i.e. the common useful information which can

be extracted from those sources) and how the transfer is performed for

Khmer palm leaf documents might be challenging and in need of further

study.

125

References

[1] D. Valy, M. Verleysen, S. Chhun and J.-C. Burie, "A New

Khmer Palm Leaf Manuscript Dataset for Document Analysis

and Recognition: SleukRith Set," in 4th International Workshop

on Historical Document Imaging and Processing, 2017.

[2] M. W. Kesiman, D. Valy, J.-C. Burie, E. Paulus, I. M. G.

Sunarya, S. Hadi, K. H. Sok and J.-M. Ogier, "Southeast Asian

palm leaf manuscript images: a review of handwritten text line

segmentation methods and new challenges," Journal of

Electronic Imaging, vol. 26, no. 1, p. 011011, 2016.

[3] M. W. Kesiman, D. Valy, J.-C. Burie, E. Paulus, M. Suryani, S.

Hadi, M. Verleysen, S. Chhun and J.-M. Ogier, "Benchmarking

of Document Image Analysis Tasks for Palm Leaf Manuscripts

from Southeast Asia," Journal of Imaging, vol. 4, no. 2, p. 43,

2018.

[4] D. Valy, M. Verleysen and K. H. Sok, "Line segmentation

approach for ancient palm leaf manuscripts using competitive

learning algorithm," in 15th International Conference on

Frontiers in Handwriting Recognition (ICFHR), 2016.

[5] D. Valy, M. Verleysen and K. H. Sok, "Line segmentation for

grayscale text images of khmer palm leaf manuscripts," in

Seventh International Conference on Image Processing Theory,

Tools and Applications (IPTA), 2017.

[6] D. Valy, M. Verleysen, S. Chhun and J.-C. Burie, "Character and

Text Recognition of Khmer Historical Palm Leaf Manuscripts,"

in 16th International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2018.

[7] D. Valy, M. Verleysen and S. Chhun, "Text Recognition on

Khmer Historical Documents using Glyph Class Map

126

Generation with Encoder-Decoder Model," in Proceedings of

ICPRAM, 2019.

[8] J.-C. Burie, M. Coustaty, S. Hadi, M. W. Kesiman, J.-M. Ogier,

E. Paulus, K. Sok, I. M. G. Sunarya and D. Valy, "ICFHR2016

competition on the analysis of handwritten text in images of

balinese palm leaf manuscripts," in 15th International

Conference on Frontiers in Handwriting Recognition (ICFHR),

2016.

[9] M. W. Kesiman, D. Valy, J.-C. Burie, E. Paulus, M. Suryani, S.

Hadi, M. Verleysen, S. Chhun and J.-M. Ogier, "ICFHR 2018

Competition On Document Image Analysis Tasks for Southeast

Asian Palm Leaf Manuscripts," in 16th International

Conference on Frontiers in Handwriting Recognition (ICFHR),

2018.

[10] D. U. Kumar, G. Sreekumar and U. Athvankar, "Traditional

writing system in southern India—palm leaf manuscripts,"

Design Thoughts, pp. 2-7, 2009.

[11] O. P. Agrawal, "Conservation of Manuscripts and Paintings of

South-east Asia," London: Butterworths & Co Ltd., 1984.

[12] J. M. Jacob and D. A. Smyth, Cambodian Linguistics, Literature

and History: Collected Articles, Routledge, 1993.

[13] C. Sak-Humphry, "The Syntax of Nouns and Noun Phrases in

Dated Pre-Angkorian Inscriptions," Mon Khmer Studies, vol. 22,

p. 1–26, 1993.

[14] N. B. Rais, M. S. Hanif and I. A. Taj, "Adaptive thresholding

technique for document image analysis," in 8th International

Multitopic Conference, 2004.

[15] K. Ntirogiannis, B. Gatos and I. Pratikakis, "An objective

evaluation methodology for document image binarization

127

techniques," in The Eighth IAPR International Workshop on

Document Analysis Systems, 2008.

[16] R. Chamchong, C. C. Fung and K. W. Wong, "Comparing

binarisation techniques for the processing of ancient

manuscripts," in Entertainment Computing Symposium, 2010.

[17] J. He, Q. D. M. Do, A. C. Downton and J. Kim, "A comparison

of binarization methods for historical archive documents," in

Eighth International Conference on Document Analysis and

Recognition, 2005.

[18] M. R. Gupta, N. P. Jacobson and E. K. Garcia, "OCR

binarization and image pre-processing for searching historical

documents," Pattern Recognition, vol. 40, no. 2, pp. 389-397,

2007.

[19] M.-L. Feng and Y.-P. Tan, "Contrast adaptive binarization of

low quality document images," IEICE Electronics Express, vol.

1, no. 16, pp. 501-506, 2004.

[20] K. Khurshid, I. Siddiqi, C. Faure and N. Vincent, "Comparison

of Niblack inspired Binarization methods for ancient

documents," Document Recognition and Retrieval XVI, vol.

7247, p. 72470U, 2009.

[21] J. Sauvola and M. Pietikäinen, "Adaptive document image

binarization," Pattern recognition, vol. 33, no. 2, pp. 225-236,

2000.

[22] C. Wolf, J.-M. Jolion and F. Chassaing, "Text localization,

enhancement and binarization in multimedia documents," in

Object recognition supported by user interaction for service

robots, 2002.

128

[23] N. Tripathy and U. Pal, "Handwriting segmentation of

unconstrained Oriya text," Sadhana, vol. 31, no. 6, pp. 755-769,

2006.

[24] R. Ptak, B. Żygadło and O. Unold, "Projection–Based Text Line

Segmentation with a Variable Threshold," International Journal

of Applied Mathematics and Computer Science, vol. 27, no. 1,

pp. 195-206, 2017.

[25] M. Arivazhagan, H. Srinivasan and S. Srihari, "A statistical

approach to line segmentation in handwritten documents,"

Document Recognition and Retrieval XIV, vol. 6500, p. 65000T,

2007.

[26] R. Chamchong and C. C. Fung, "Text line extraction using

adaptive partial projection for palm leaf manuscripts from

Thailand," in International Conference on Frontiers in

Handwriting Recognition, 2012.

[27] A. Nicolaou and B. Gatos, "Handwritten text line segmentation

by shredding text into its lines," in 10th International

Conference on Document Analysis and Recognition, 2009.

[28] G. Peng, P. Yu, H. Li and L. He, "Text line segmentation using

Viterbi algorithm for the palm leaf manuscripts of Dai," in

International Conference on Audio, Language and Image

Processing, 2016.

[29] X. Zhang and C. L. Tan, "Text line segmentation for handwritten

documents using constrained seam carving," in 14th

International Conference on Frontiers in Handwriting

Recognition, 2014.

[30] O. Surinta, M. Holtkamp, F. Karabaa, J.-P. V. Oosten, L.

Schomaker and M. Wiering, "A* path planning for line

segmentation of handwritten documents," in 14th International

Conference on Frontiers in Handwriting Recognition, 2014.

129

[31] Y. Li, Y. Zheng, D. Doermann and S. Jaeger, "Script-

independent text line segmentation in freestyle handwritten

documents," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 30, no. 8, pp. 1313-1329, 2008.

[32] G. Louloudis, B. Gatos and C. Halatsis, "Text line detection in

unconstrained handwritten documents using a block-based

hough transform approach," in Ninth International Conference

on Document Analysis and Recognition, 2007.

[33] D. Brodić and Z. N. Milivojević, "Text line segmentation with

the parametric water flow algorithm," Information Technology

And Control, vol. 45, no. 1, pp. 52-61, 2016.

[34] I. Bar-Yosef, N. Hagbi, K. Kedem and I. Dinstein, "Line

segmentation for degraded handwritten historical documents," in

10th International Conference on Document Analysis and

Recognition, 2009.

[35] A. Garz, A. Fischer, H. Bunke and R. Ingold, "A binarization-

free clustering approach to segment curved text lines in historical

manuscripts," in 12th International Conference on Document

Analysis and Recognition, 2013.

[36] N. Arvanitopoulos and S. Süsstrunk, "Seam carving for text line

extraction on color and grayscale historical manuscripts," in 14th

International Conference on Frontiers in Handwriting

Recognition, 2014.

[37] M. W. A. Kesiman, J.-C. Burie and J.-M. Ogier, "A new scheme

for text line and character segmentation from gray scale images

of palm leaf manuscript," in 15th International Conference on

Frontiers in Handwriting Recognition, 2016.

[38] A. Aggarwal, K. Singh and K. Singh, "Use of gradient technique

for extracting features from handwritten gurmukhi characters

130

and numerals," Procedia Computer Science, vol. 46, pp. 1716-

1723, 2015.

[39] M. Blumenstein, B. Verma and H. Basli, "A novel feature

extraction technique for the recognition of segmented

handwritten characters," in Seventh International Conference on

Document Analysis and Recognition, 2003.

[40] Z. Jin, K. Qi, Y. Zhou, K. Chen, J. Chen and H. Guan, "Ssift: An

improved sift descriptor for chinese character recognition in

complex images," in International Symposium on Computer

Network and Multimedia Technology, 2009.

[41] M. Rani and Y. K. Meena, "An efficient feature extraction

method for handwritten character recognition," in International

Conference on Swarm, Evolutionary, and Memetic Computing,

2011.

[42] Ø. D. Trier, A. K. Jain and T. Taxt, "Feature extraction methods

for character recognition-a survey," Pattern recognition, vol. 29,

no. 4, pp. 641-662, 1996.

[43] S. Impedovo, L. Ottaviano and S. Occhinegro, "Optical

character recognition—a survey," International Journal of

Pattern Recognition and Artificial Intelligence, vol. 5, no.

01n02, pp. 1-24, 1991.

[44] U. Pal and B. B. Chaudhuri, "Indian script character recognition:

a survey," Pattern Recognition, vol. 37, no. 9, pp. 1887-1899,

2004.

[45] M. Glauberman, "Character recognition for business machines,"

Electronics, vol. 29, no. 2, pp. 132-136, 1956.

[46] P. Bao-Chang, W. Si-Chang and Y. Guang-Yi, "Amethod of

Recognizing handprinted characters," Computer Recognition

and Human Production of Handwriting, pp. 37-60, 1989.

131

[47] M. Shridhar and A. Badreldin, "Recognition of isolated and

connected handwritten numerals," in IEEE International

Conference on Systems, Man and Cybernetics, 1984.

[48] R. A. Kirsch, "Computer determination of the constituent

structure of biological images," Computers and biomedical

research, vol. 4, no. 3, pp. 315-328, 1971.

[49] G. H. Granlund, "Fourier preprocessing for hand print character

recognition," IEEE transactions on computers, vol. 100, no. 2,

pp. 195-201, 1972.

[50] M.-K. Hu, "Visual pattern recognition by moment invariants,"

IRE transactions on information theory, vol. 8, no. 2, pp. 179-

187, 1962.

[51] M. Bokser, "Omnidocument technologies," Proceedings of the

IEEE, vol. 80, no. 7, pp. 1066-1078, 1992.

[52] M. Z. Hossain, A. Amin and H. Yan, "Rapid feature extraction

for optical character recognition," in arXiv preprint

arXiv:1206.0238, 2012.

[53] M. W. A. Kesiman, S. Prum, J.-C. Burie and J.-M. Ogier, "Study

on feature extraction methods for character recognition of

Balinese script on palm leaf manuscript images," in 23rd

International Conference on Pattern Recognition, 2016.

[54] S. Kumar, "Neighborhood Pixels Weights-A New Feature

Extractor," International Journal of Computer Theory and

Engineering, vol. 2, no. 1, p. 69, 2010.

[55] C. M. Bishop, Neural networks for pattern recognition, Oxford

university press, 1995.

[56] S. Haykin, Neural networks: a comprehensive foundation, 2nd

ed., Prentice Hall PTR, 2004.

132

[57] A. Karpathy, Cs231n convolutional neural networks for visual

recognition, 2019.

[58] A. L. Maas, A. Y. Hannun and A. Y. Ng, "Rectifier

nonlinearities improve neural network acoustic models," Proc.

icml, vol. 30, no. 1, p. 3, 2013.

[59] D. E. Rumelhart, G. E. Hinton and W. Ronald J., "Learning

representations by back-propagating errors," Cognitive

modeling, vol. 5, no. 3, p. 1, 1988.

[60] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT

press, 2016.

[61] Y. LeCun, "Generalization and network design strategies,"

Connectionism in perspective, vol. 19, 1989.

[62] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet

classification with deep convolutional neural networks," in

Advances in neural information processing systems, 2012.

[63] K. Simonyan and A. Zisserman, "Very deep convolutional

networks for large-scale image recognition," in arXiv preprint

arXiv:1409.1556, 2014.

[64] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for

image recognition," in IEEE conference on computer vision and

pattern recognition, 2016.

[65] S. Hochreiter and J. Schmidhuber, "Long short-term memory,"

Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[66] C. Olah, "Understanding LSTM Networks," 2015. [Online].

Available: https://colah.github.io/posts/2015-08-

Understanding-LSTMs/.

133

[67] F. A. Gers and J. Schmidhuber, "Recurrent nets that time and

count," in Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks, 2000.

[68] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F.

Bougares, H. Schwenk and Y. Bengio, "Learning phrase

representations using RNN encoder-decoder for statistical

machine translation," in arXiv preprint arXiv:1406.1078, 2014.

[69] K. Yao, T. Cohn, K. Vylomova, K. Duh and C. Dyer, "Depth-

gated LSTM," in arXiv preprint arXiv:1508.03790, 2015.

[70] J. Koutnik, K. Greff, F. Gomez and J. Schmidhuber, "A

clockwork RNN," in arXiv preprint arXiv:1402.3511, 2014.

[71] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink and J.

Schmidhuber, "LSTM: A search space odyssey," IEEE

transactions on neural networks and learning systems, vol. 28,

no. 10, pp. 2222-2232, 2016.

[72] R. Jozefowicz, W. Zaremba and I. Sutskever, "An empirical

exploration of recurrent network architectures," in International

Conference on Machine Learning, 2015.

[73] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural

networks," IEEE Transactions on Signal Processing, vol. 45, no.

11, pp. 2673-2681, 1997.

[74] A. Graves, S. Fernández and J. Schmidhuber, "Multi-

dimensional recurrent neural networks," in International

conference on artificial neural networks, 2007.

[75] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the

IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

134

[76] L. Deng, "The MNIST database of handwritten digit images for

machine learning research [best of the web]," IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.

[77] G. M. d. B. Wenniger, L. Schomaker and A. Way, "No Padding

Please: Efficient Neural Handwriting Recognition," in arXiv

preprint arXiv:1902.11208, 2019.

[78] U.-V. Marti and H. Bunke, "Using a statistical language model

to improve the performance of an HMM-based cursive

handwriting recognition system," Hidden Markov models:

applications in computer vision, pp. 65-90, 2001.

[79] H. Bunke, S. Bengio and A. Vinciarelli, "Offline recognition of

unconstrained handwritten texts using HMMs and statistical

language models," IEEE transactions on Pattern analysis and

Machine intelligence, vol. 26, no. 6, pp. 709-720, 2004.

[80] J. A. Sanchez, V. Romero, A. H. Toselli and E. Vidal,

"ICFHR2016 competition on handwritten text recognition on the

READ dataset," in 15th International Conference on Frontiers

in Handwriting Recognition (ICFHR), 2016.

[81] H. Ding, K. Chen, Y. Yuan, M. Cai, L. Sun, S. Liang and Q.

Huo, "A compact CNN-DBLSTM based character model for

offline handwriting recognition with Tucker decomposition," in

14th IAPR International Conference on Document Analysis and

Recognition (ICDAR), 2017.

[82] T. Bluche, J. Louradour and R. Messina, "Scan, attend and read:

End-to-end handwritten paragraph recognition with mdlstm

attention," in 14th IAPR International Conference on Document

Analysis and Recognition (ICDAR), 2017.

[83] D. Castro, B. L. Bezerra and M. Valença, "Boosting the deep

multidimensional long-short-term memory network for

handwritten recognition systems," in 16th International

135

Conference on Frontiers in Handwriting Recognition (ICFHR),

2018.

[84] W. Wang, J. Zhang, J. Du, Z.-R. Wang and Y. Zhu, "DenseRAN

for Offline Handwritten Chinese Character Recognition," in 16th

International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2018.

[85] N. T. Ly, C. T. Nguyen and M. Nakagawa, "Training an End-to-

End Model for Offline Handwritten Japanese Text Recognition

by Generated Synthetic Patterns," in 16th International

Conference on Frontiers in Handwriting Recognition (ICFHR),

2018.

[86] C. K. Nguyen, C. T. Nguyen and N. Masaki, "Tens of Thousands

of Nom Character Recognition by Deep Convolution Neural

Networks," in 4th International Workshop on Historical

Document Imaging and Processing, 2017.

[87] Y.-C. Wu, F. Yin, Z. Chen and C.-L. Liu, "Handwritten Chinese

Text Recognition Using Separable Multi-Dimensional

Recurrent Neural Network," in 14th IAPR International

Conference on Document Analysis and Recognition, 2017.

[88] A. Lawgali, "A survey on arabic character recognition,"

International Journal of Signal Processing, Image Processing

and Pattern Recognition, vol. 8, no. 2, pp. 401-426, 2015.

[89] C. Clausner, A. Antonacopoulos, N. Mcgregor and D. Wilson-

Nunn, "ICFHR 2018 Competition on Recognition of Historical

Arabic Scientific Manuscripts–RASM2018," in 16th

International Conference on Frontiers in Handwriting

Recognition (ICFHR), 2018.

[90] A. Graves, S. Fernández, F. Gomez and J. Schmidhuber,

"Connectionist temporal classification: labelling unsegmented

136

sequence data with recurrent neural networks," in 23rd

international conference on Machine learning, 2006.

[91] A. Telea, "An image inpainting technique based on the fast

marching method," Journal of graphics tools, vol. 9, no. 1, pp.

23-34, 2004.

[92] M. W. A. Kesiman, J.-C. Burie, G. N. M. A. Wibawantara, I. M.

G. Sunarya and J.-M. Ogier, "AMADI_LontarSet: The First

Handwritten Balinese Palm Leaf Manuscripts Dataset," in 15th

International Conference on Frontiers in Handwriting

Recognition, 2016.

[93] M. Suryani, E. Paulus, S. Hadi, U. A. Darsa and J.-C. Burie, "The

Handwritten Sundanese Palm Leaf Manuscript Dataset From

15th Century," 2017.

[94] B. Gatos, K. Ntirogiannis and I. Pratikakis, "DIBCO 2009:

document image binarization contest," International Journal on

Document Analysis and Recognition, vol. 14, no. 1, pp. 35-44,

2011.

[95] I. Pratikakis, B. Gatos and K. Ntirogiannis, "ICDAR 2013

document image binarization contest (DIBCO 2013)," in 12th

International Conference on Document Analysis and

Recognition, 2013.

[96] N. R. Howe, "Document binarization with automatic parameter

tuning," International Journal on Document Analysis and

Recognition, vol. 16, no. 3, pp. 247-258, 2013.

[97] M. W. A. Kesiman, S. Prum, J.-C. Burie and J.-M. Ogier, "An

initial study on the construction of ground truth binarized images

of ancient palm leaf manuscripts," in 13th International

Conference on Document Analysis and Recognition, 2015.

[98] E. Saund, J. Lin and P. Sarkar, "Pixlabeler: User interface for

pixel-level labeling of elements in document images," in 10th

137

International Conference on Document Analysis and

Recognition, 2009.

[99] J. Canny, "A computational approach to edge detection," in

Readings in computer vision, 1987.

[100] B. Epshtein, E. Ofek and Y. Wexler, "Detecting text in natural

scenes with stroke width transform," in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2010.

[101] N. Stamatopoulos, B. Gatos, G. Louloudis, U. Pal and A. Alaei,

"ICDAR 2013 handwriting segmentation contest," in 12th

International Conference on Document Analysis and

Recognition, 2013.

[102] D. P. Kingma and J. Ba, "Adam: A method for stochastic

optimization," in arXiv preprint arXiv:1412.6980, 2014.

[103] M. W. A. Kesiman, J.-C. Burie and J.-M. Ogier, "A Complete

Scheme Of Spatially Categorized Glyph Recognition For The

Transliteration Of Balinese Palm Leaf Manuscripts," in 14th

IAPR International Conference on Document Analysis and

Recognition, 2017.

[104] D. Bahdanau, K. Cho and Y. Bengio, "Neural machine

translation by jointly learning to align and translate," in arXiv

preprint arXiv:1409.0473, 2014.

[105] Y. Wu, M. Schuster, Z. Chen, Q. V. Le and M. Norouzi,

"Google’s Neural Machine Translation System: Bridging the

Gap between Human and Machine Translation," in arXiv

preprint arXiv:1609.08144, 2016.

[106] J. Puigcerver, "Are multidimensional recurrent layers really

necessary for handwritten text recognition?," in 14th IAPR

International Conference on Document Analysis and

Recognition (ICDAR), 2017.

138

[107] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke and A. Rabinovich, "Going Deeper

with Convolutions," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015.

[108] C. Wigington, C. Tensmeyer, B. Davis, W. Barrett, B. Price and

S. Cohen, "Start, follow, read: End-to-end full-page handwriting

recognition," in Proceedings of the European Conference on

Computer Vision (ECCV), 2018.

[109] B. Moysset, C. Kermorvant and C. Wolf, "Full-page text

recognition: Learning where to start and when to stop," in 14th

IAPR International Conference on Document Analysis and

Recognition (ICDAR), 2017.

139

Appendix A

Different categories of Khmer symbols are listed as follows:

List of consonants

Consonant
Sub-

consonant
Name8 Consonant

Sub-

consonant
Name

ក ◌� KA ទ ◌� TO

ខ ◌� KHA ធ ◌� THO

គ ◌� KO ន ◌� NO

ឃ ◌� KHO ប ◌� BA

ង ◌� NGO ផ ◌� PHA

ច ◌� CHA ព ◌� PO

ឆ ◌� CHHA ភ ◌� PHO

ជ ◌� CHO ម ◌� MO

ឈ ◌� CHHO យ ◌� YO

ញ ◌� NHO រ �◌ RO

ដ ◌� DA ល ◌� LO

ឋ ◌� DHA វ ◌� VO

ឌ ◌� DO ស ◌� SA

ឍ ◌� DHO ហ ◌� HA

ណ ◌� NA ឡ LA

ត ◌� TA អ ◌� AA

ថ ◌� THA

8 Name of each symbol written in Latin which is used to easily identify the symbol in

this dissertation (this name does not represent the true transliteration of the symbol)

140

List of dependent vowels

Vowel Example Name Consonant
Sub-

consonant
Name

◌ា � A េ◌ េក AEU

◌ិ កិ I េ◌� េក� OEU

◌ី កី EI េ◌� េក� IEU

◌ឹ កឹ E េ◌ េក EE

◌ឺ កឺ EU ែ◌ ែក È

◌ុ កុ O ៃ◌ ៃក AI

◌ូ កូ AU េ◌ េ� AO

◌ួ ក ួ UO េ◌ េ� AOV

List of independent vowels

Vowel Example Name Consonant
Sub-

consonant
Name

ឥ ឥ�� Ind-I ឬ ឬក ៏ Ind-REU

ឦ ឦសូរ Ind-EI ឭ រឭំក Ind-LE

ឧ ឧក Ind-U ឮ ឮ�ន ់ Ind-LEU

ឩ ឩ� Ind-OU ឯ ឯ� Ind-È

ឪ ឪពុក Ind-EUV ឰ ឰដ ៏ Ind-AI

ឫ ឫក Ind-RE ឱ ឱ�ស Ind-AO

List of diacritics

Diacritic Example Description9

◌ ំ អុំទូក
It nasalizes the inherent or dependent vowel, with

the addition of /m/; long vowels are also shortened.

◌ះ េសះ
It modifies and adds final aspiration /h/ to the

inherent or dependent vowel.

9 https://en.wikipedia.org/wiki/Khmer_script#Diacritics

141

◌ៈ �សៈ
It is written after a consonant to indicate that it is to

be followed by a short vowel and a glottal stop

◌ ៉ �៉ម
It is written above a consonant, used to convert some

o-series consonants to a-series.

◌ ៊ ប៊ចិ
It is written above a consonant, used to convert some

a-series consonants to o-series.

◌ ់ កក ់
It is written over the last consonant of a syllable,

indicating shortening of certain vowels.

◌ ៌ ធម ៌

It occurs in Sanskrit loanwords and originally

represents an /r/ sound. Now, in most cases, the

consonant above which it appears, and the diacritic

itself, are unpronounced.

◌ ៍ េ�រ ៍
It is written over a final consonant to indicate that it

is unpronounced.

◌ ៎ �៎ះ
It is used in writing to indicate the rising intonation

of an exclamation or interjection.

◌ ៏ ក ៏

It is used in a few words to show that a consonant

with no dependent vowel is to be pronounced with

its inherent vowel, rather than as a final consonant.

◌ ័ ចន័�

It is used in some Sanskrit and Pali loanwords. It is

written above a consonant to indicate that the

syllable contains a particular short vowel.

List of punctuations

Punctuation Description10

។ It is used as a period

៕
It is written after a consonant to indicate that it is to be followed

by a short vowel and a glottal stop.

។ល។ It is equivalent to etc.

ៗ
Duplication sign. It indicates that the preceding word or phrase is

to be repeated, a common feature in Khmer syntax.

៚ A period used at the end of poetic or religious texts.

៙ A symbol used at the start of poetic or religious texts.

៖ Used similarly to a colon.

10 https://en.wikipedia.org/wiki/Khmer_script#Spacing and punctuation

142

List of numerals

Khmer ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩

Arabic 0 1 2 3 4 5 6 7 8 9

143

Appendix B

Khmer Unicode11 (the Unicode Standard, version 12.1)

Range: 1780-17FF

11 https://unicode.org/charts#Khmer

144

