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Abstract 

Palm leaves have been used as one of the major sources of writing and 

painting in many Southeast Asian countries. In Cambodia nowadays, 

palm leaf documents called “Sleuk Rith” in Khmer are still around 

attributable to their cultural value as well as the precious contents 

written on them. However, as a consequence of deterioration from 

natural aging and damage caused by various natural factors, palm leaf 

manuscripts are facing destruction and are in need for preservation. 

Many programs and projects are underway to recover and preserve 

palm leaf documents not only in their physical form but also in digital 

imaging through scanning and photography. The centralization of the 

digitized images allows easy access for the public. Nonetheless, 

searching and filtering the content of those documents using particular 

keywords are still unmanageable. An automatic recognition system 

therefore needs to be developed. 

This dissertation takes part in exploring document image analysis 

(DIA) researches which put Khmer palm leaf manuscripts into the 

spotlight. We aim to bring added values by designing tools to analyze, 

index, and access quickly and efficiently to the text content of palm leaf 

documents. In order to achieve this objective, different DIA tasks are 

studied, and novel approaches to solve such tasks are proposed. First, a 

new corpus of digitized Khmer palm leaf manuscripts has been 

collected. From this corpus, the first Khmer palm leaf manuscripts 

dataset called “SleukRith Set” consisting of different types of annotated 

data has been constructed. Experimental evaluations and comparisons 

of approaches on various DIA tasks such as binarization, text line 

segmentation, and isolated character recognition have been conducted 

on Khmer palm leaf manuscript datasets in addition to datasets of palm 

leaf manuscripts from Indonesia. Moreover, we propose an efficient 

line segmentation scheme for grayscale images of Khmer ancient 

documents which is able to adapt to the curvature of the actual text lines 

and to produce separating seams using a path finding technique. We 

also introduce a novel concept of utilizing the annotated information of 

glyph components in the word image to build a glyph-class map 
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followed by a complete text recognition scheme using encoder-decoder 

mechanism. A new annotated data called “sub-syllable” which can be 

used as an efficient data augmentation technique for the text recognition 

task has been added to SleukRith set.  
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1. Introduction 

1.1. Motivation  

Dating back to centuries ago, in many countries in South Asia and 

Southeast Asia, palm leaves have been used as writing materials. 

Initially, knowledge was passed down orally, but after the diffusion of 

Indian scripts throughout most of Asia, people eventually began to write 

it down in dried and smoked treated palm leaves. These palm leaves 

have been used to record narratives from actual events or mythical 

phenomenon influenced by cultural and religious activities during those 

periods.  The content of these documents are mostly handwritten texts, 

but some of them also contain drawings in black and white or even in 

color. With the spreading of Indian culture to Southeast Asian countries 

such as Thailand, Indonesia, and Cambodia, these nations became home 

to large collections of documents written on palm leaves. 

In Cambodia, palm leaf documents are still seen in Buddhist 

establishments, mostly Buddhist temples called “pagodas”, and are 

considered to be holy and sacred. They are being used habitually and 

traditionally by monks as reading scriptures. Besides their cultural 

merit, these ancient manuscripts store valuable content including old 

religious sayings, crucial historical events, as well as certain scientific 

findings that are still very useful for researchers in those fields of study. 

Nowadays, some programs to collect, preserve, and digitize palm leaf 

documents are under way, but only few have been completed especially 

in Indonesia and Cambodia. The main goal of these efforts is to preserve 

cultural heritage embedded with these ancient documents before they 

face destruction due to their fragility. From previous preservation 

campaigns, the manuscripts are scanned empirically, sometimes with 

poor resolution and inadequate light by different stakeholders in diverse 

institutions (public or private). Moreover, the storage of the digital files 

is not always safe, lacking backup and mirror storage. 

Beside the objective of preserving physical conditions of the 

manuscripts i.e. preventing damage from the injuries of time (dirt, 
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moisture, insects) and accidents (fire, floods), these programs aim also 

at facilitating the access to the content of the documents for researchers. 

Currently, most of the digitized images are in reality not accessible to 

the public. Remarkable efforts in providing open access to the data 

along with a precise bibliometric indexing have been made in 

Cambodia, for instance the collaborative work with Ecole Française 

d’Extrême-Orient (EFEO) which has made available a database1 of 

thousands of collections of palm leaf manuscripts digitized from 

microfilms. This excellent example of open-handed data is 

unfortunately still rare. Nevertheless, to date, only bibliometric 

indexing can be offered beside the image files: identification of the 

manuscript origin, title, date, topic, etc., but no indexing of the content 

is available. Therefore, in-text search by keywords is still impossible. 

As far as we know some work has been done to enhance the quality of 

images of palm leaf manuscripts but no research to analyze and to index 

automatically the content of these ancient documents has been 

conducted. People, such as historians or philologist wanting to study 

these ancient documents have to read them one by one to find the 

needed information, and they have to go, most of the time, physically 

to the place where the documents are stored. To enable this in-text 

search capability as well as applications related to text processing on 

palm leaf manuscripts, a text recognition system is therefore needed. 

1.2. Objectives 

This research work aims at bringing added value to digitized palm leaf 

manuscripts by developing tools to analyze, index, and access quickly 

and efficiently to the content of ancient manuscripts. A document image 

analysis (DIA) system is to be developed. The development of the 

system is divided into several step-by-step image processing tasks 

starting from the construction of digital corpus and ground truth data. 

Next, the pre-processing phase includes analyzing document layouts 

and segmenting document images into smaller entities such as text lines 

and individual words or syllables. Finally, the segmented elements will 

 
1 http://khmermanuscripts.efeo.fr 
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be recognized and transformed into output texts to complete the text 

recognition scheme. 

Under the scope of this research work, experimental study is performed 

on palm leaf manuscripts from Cambodia and Indonesia; however, 

documents written in Khmer script are the main focus. With respect to 

this type of documents, many technical challenges will be assessed. A 

standardized methodology for safe and efficient manuscript digitization 

will be adopted in order to preserve the physical integrity of the 

manuscripts and to ensure a necessary and proper quality to analyze the 

document. Secondary data such as old photographs of palm leaves 

manuscripts which can be found in libraries and various institutions will 

also be taken into account. The DIA system will therefore be able to 

deal with these palm leaf documents under a variety of qualities. The 

palm leaves are sometimes in poor physical conditions, and although 

they are digitized properly, scratches and artifacts might still occur in 

the images. The developed DIA system should be able to eliminate most 

of those noises and to extract only the relevant information. Other 

challenges including unique characteristics of these palm leaf 

documents such as their format and layout as well as the complexity of 

the script written on them (Chapter 2.3) should also be considered. 

After the completion of the DIA system, an interactive search engine is 

expected to be developed. The idea is to propose a tool allowing to 

search all the instances of a specific word inside the corpus. Thanks to 

this search engine, rather than spending extensive amount of time 

searching for some specific content, researchers (philologists and 

historians for example) will be able to access quickly to the relevant 

information.  

1.3. Contributions 

The main contributions of this thesis are listed as the following (the 

presented work has been published in large parts in various 

international conference papers and journals which are also referenced 

here). 
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1) Ground truth creation: A collection of digitized Khmer leaf 

manuscripts has been collected to create a corpus. A tool has 

been designed and developed to specifically build the ground 

truth consisting of different types of annotated data suitable for 

experimental studies on various DIA tasks. The first Khmer 

palm leaf manuscripts dataset called “SleukRith Set” has been 

constructed and made available to public [1]. 

2) Benchmarking of DIA methods on palm leaf manuscript 

datasets: Experimental evaluations and comparisons of 

approaches on various DIA tasks such as binarization, text line 

segmentation, and isolated character recognition have been 

conducted on Khmer palm leaf manuscript dataset in addition to 

datasets of palm leaf manuscripts from Indonesia [2, 3]. 

3) Line segmentation: A novel text line segmentation approach 

on binary images has been proposed [4]. The approach starts by 

determining the number of lines and setting up text line mid 

points’ initial positions using a modified piece-wise projection 

profile technique. The competitive learning algorithm is applied 

afterwards to adaptively move those mid points according to the 

geometrical information of connected components in the 

document page to form lines. Borders between text lines are 

defined so that they can be used to separate touching 

components that spread over multiple lines. The proposed 

method is robust in handling documents with skewed, 

fluctuated, or discontinued text lines. An extended binary-free 

version of the approach has also been proposed i.e. the approach 

works directly on grayscale or color input images [5]. 

4) Character and text recognition: trial experimentations on 

isolated character recognition as well as text recognition on 

word image patches have been conducted using different types 

of neural network architectures such as Convolutional Neural 

Networks, Long Short-Term Memory Recurrent Neural 

Networks, and a combination of both [6]. A novel concept 

utilizing the annotated information of glyph components in the 

word image to build a glyph class map is introduced followed 

by a complete text recognition scheme using encoder-decoder 
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mechanism [7]. A new annotated data called “sub-syllable” has 

been added to SleukRith Set along with a new optimized text 

recognition system adapted on this data. This new data can be 

used as an efficient data augmentation technique for the text 

recognition task. 

Not included in this manuscript are related collaborative works of 

organizing competitions on DIA tasks for Southeast Asian palm leaf 

manuscripts for a wider research community in the 15th and 16th 

International Conference on Frontiers in Handwriting Recognition 

(ICFHR 2016 and 2018) [8, 9] 

1.4. Outline 

The remainder of this dissertation is organized as follows. Chapter 2 

presents a detailed description of Khmer palm leaf manuscripts. This 

chapter includes a brief introduction to the history of palm leaf 

manuscripts in Southeast Asia followed by the process of transforming 

raw palm leaves into writing medium as well as a presentation about 

Khmer language, its script, and its writing style. DIA challenges from 

the conditions and characteristics of Khmer palm leaf documents and 

from the complexity of Khmer script are also discussed. Next, Chapter 

3 focuses on literature review which examines state-of-the-art 

approaches on various DIA tasks such as binarization, segmentation, 

and text recognition system which is subdivided into the traditional 

handcrafted feature extraction approaches and the deep learning 

methods. The collection of digital corpus of Khmer palm leaf 

manuscripts, the construction of ground truth tool and data, and the 

introduction to Sleuk Rith Set, the first Khmer palm leaf manuscript 

dataset, are presented in Chapter 4. After that, Chapter 5 first presents 

a benchmarking and comparison study of binarization approaches from 

the literature. This chapter also introduces the proposed binary-free line 

segmentation method as well as experimental evaluation with some 

base-line approaches. In Chapter 6, we cover the initial 

experimentations on using different neural network architectures on 

solving individual character recognition as well as the task of localizing 

glyphs in short image patches. After the feasibility study of using deep 
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learning approaches for Khmer text recognition problem, in Chapter 7, 

we present an overview of the proposed text recognition scheme. 

Finally, conclusions are drawn, and future research directions are 

discussed in Chapter 8.  
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2. Khmer Palm Leaf Manuscripts 

In this chapter, details on Khmer palm leaf manuscripts are discussed. 

A general description, including a brief history and the production 

process of palm leaf documents, is presented. Khmer language whose 

script is handwritten on the manuscripts is also introduced. At the end 

of the chapter, we look at DIA challenges from two aspects of historical 

Khmer palm leaf documents: (1) the conditions as well as certain 

characteristics of such documents and (2) the complexity of Khmer 

script.  

2.1. General Description of Palm Leaf Manuscripts 

The concept of writing has been revolutionized throughout many 

civilizations. The main purpose of writing is to be used as an alternative 

form of communication and also to record important information. 

Before the invention of paper, the geographical condition of each nation 

was the main influence on the choice of natural materials to be used as 

a medium for writing.    

2.1.1. A Brief History 

Palm leaf manuscripts are one of the oldest mediums and also one of 

the major sources of writing and painting in Southeast Asian countries 

including Nepal, Sri Lanka, Burma, Thailand, Indonesia, and Cambodia 

[10]. Although the practice of palm leaf writing existed since the ancient 

times, it is still unclear about its precise origin. According to [11], it is 

difficult to say exactly when palm leaves began to be used for writing; 

however, palm leaves were definitely in use much earlier than the 10th 

century since it is mentioned as a writing material in several literary 

works and its visual representation can be seen in several sculptures and 

monuments. Until today, the composition and method of writing of 

palm leaf manuscripts have remained unchanged. Even though not as 

high in volume, people still prepare and use palm leaf manuscripts the 

way our ancestors used centuries ago. 

2.1.2. From Palm Leaves to Writing Materials 

Due to the natural size of the leaves, palm leaf manuscripts are always 

found in linear horizontal format. Each palm leaf page is long and 
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rectangular in shape whose dimension varies from 15��-60�� in 

width and from between 3��-12�� in height (Figure 2.1). Their 

dimension normally depends on the available size of the leaves. To 

make them suitable for scribing, before writing the palm leaves need to 

be processed and prepared.  

2.1.2.1. Processing of Palm Leaves 

Palm leaves are first selected from the tree and cut into required size. 

Only half open young shoots of palm leaves are suitable for making 

manuscripts. To avoid being too dried up and becoming brittle, the cut 

palm leaves are placed in an organized manner to dry (Figure 2.22). 

They need to be taken very good care of, or they will be damaged, torn, 

and saturated. The drying process can be done at early dawn or during 

the night to take advantage of the dew which can make the leaves soft. 

After the stems are extracted from the dried leaves, they need to be 

wiped to remove dirt. When they are all clean, we arrange and tie them 

by putting them in a splint in order to be pressed tightly together. This 

process takes up to two or three months so that the leaves can be 

straightened properly. As a final stage of the preparation process, the 

earlier pressed leaves are smoked and roasted to remove remaining 

humidity. The leaves are finally ready for writing.   

 
2 From the documentary “Project Three 2016: Sleuk Rith, My Life” produced by 
Ream Chamroeun, Leng Sreynich, Seng Vannak, and Ngy Sovan Ratany 

Figure 2.1: A collection of Khmer palm leaf manuscripts 
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2.1.2.2. Writing on Processed Palm Leaves 

Writing on palm leaves is a skilled activity which requires patience, 

practice, and training. Before writing, the readily prepared leaves are 

marked using thin threads to create lines. Normally five rows of lines 

sit on both the back and the front of the leaf. Incision with a sharp metal 

stylus is the most common method of writing on palm leaves. The text 

to be written is therefore carved on the leaf one letter at a time. After 

the incision, the letters may not be visible to read. A mixture of dark 

burned wick from oil lamp and wood oil, often called “Mrenh Plerng”, 

is used to rub on the leaf so that the engraved letters become more 

noticeable and easier to read. The excess mixture is then wiped off with 

a cloth (Figure 2.3). Since correction or overwriting is difficult, great 

attention is required to make each leaf error free.  

After making sure that all texts are correctly inscribed, the pages are 

then secured between two wooden panels that are slightly larger in size 

than the leaves. To keep the leaves together, holes are punched in the 

them. One hole is normally created in the center if the leaf is small 

otherwise two holes are punched at either end of it. A cord is passed 

through the holes and bound around the manuscript to keep the pages 

in position. A case is also often used for the newly created manuscript. 

The case is made from the remnants of the leaves and is sewn together 

with several layers of fabric.  

Figure 2.2: Palm leaves are being placed to dry 
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2.2. Khmer Language 

Khmer is the official language spoken by Cambodian people. In the next 

sections, we will talk briefly on how Khmer language has been 

revolutionized. Different categories of symbols composing Khmer 

script are also presented.   

2.2.1. Revolution of Khmer Language 

Throughout Cambodian history, Khmer has been affected significantly 

by languages such as Sanskrit and Pali under religious influences from 

Hinduism and Buddhism. It is the earliest recorded written language of 

the Mon-Khmer family which is the language being used during 

historical empires of Chenla, Angkor, and presumably even the earlier 

predecessor state, Funan [12]. According to [13], the history of Khmer 

language is divided into four periods. The Old Khmer period, which is 

subdivided into pre-Angkorian (from 600 through 800 AD) and 

Angkorian (Khmer Empire era from 9th to 13th centuries), is only known 

from words and phrases in Sanskrit texts of the era. Following the end 

of Khmer Empire, the Middle Khmer took form under the transitioning 

period from around the 14th to 18th centuries. During this period, the 

language underwent a major change in morphology, phonology, and 

lexicon which is influenced by neighboring countries due to 

geographical proximity. In the early 20th century, the language once 

again transitioned through a standardization phase called Khmerization 

by getting rid of foreign elements, reviving affixation, and using the old 

Khmer roots (from historical Pali and Sanskrit) to develop new words 

Figure 2.3: A black mixture is used to make the engraved text easy to read 
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for modern ideas. Until today, the language became recognizable as 

Modern Khmer.  

2.2.2. Khmer Script 

The Khmer script was one of the earliest writing systems used in 

Southeast Asia. It derived immediately from the Pallava script of South 

India. Its alphabet consists of a large number of different types of 

symbols which can be categorized as follows: 

 Consonants: there are 35 Khmer consonants. However, 

Modern Khmer only uses 33 consonants due to two of them 

becoming obsolete. Every consonant is attached with an 

inherent vowel and therefore can be a standalone character when 

being spelled in a word. Each consonant (except one) has a 

subscript form which is also called “sub-consonant”. Most sub-

consonants resemble the corresponding consonant counterpart 

but in a smaller and possibly simplified form although in a few 

cases, certain consonants and their sub-consonants do not share 

obvious resemblance. The majority of sub-consonants are 

written below the main consonant with the exception of several 

sub-consonants whose parts are elongated from the bottom of 

the main consonant to either its left or right side.  

 Dependent Vowels: most Khmer vowel sounds are written 

using one type of vowels called dependent vowels. Dependent 

vowels can only be written in combination with a consonant or 

a consonant cluster (see Figure 2.6) i.e. they cannot stand alone.  

 Independent Vowels: in contrast to dependent vowels, Khmer 

independent vowels (also known as “complete vowels”) are 

vowel characters that stand alone i.e. they are not written in 

combination with other consonants or vowels. The independent 

vowels are used in only a small number of words. 

All Khmer consonants (and their corresponding sub-consonants), 

dependent vowels, and independent vowels are listed in Appendix A. 

In Khmer writing, there are also additional symbols including:  
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 Diacritics: Khmer uses several diacritics to indicate further 

modifications in pronunciation such as shortening the length of 

the vowels or to showcase some loanwords from Pali and 

Sanskrit. 

 Punctuation: just like most languages, Khmer also uses 

punctuation to state end of phrases or sentences. In addition to 

its own punctuation, western-style punctuation marks are quite 

commonly used in modern Khmer writing. 

 Numeral: the numerals of the Khmer script, consisting of 10 

distinct digits, are also derived from the southern Indian script. 

Western-style Arabic numerals are also used, but to a lesser 

extent. 

Commonly used diacritics and punctuations as well as all 10 Khmer 

numerals are also listed in Appendix A. 

2.3. Challenges for a DIA System Development 

For Khmer palm leaf manuscripts, several major challenges need to be 

overcome. Those challenges mainly come from the physical conditions 

as well as the format of palm leaf documents. The complexity of Khmer 

script also provides many difficulties in solving DIA tasks for these 

documents. 

2.3.1. Conditions and Characteristics of Historical Khmer Palm 

Leaf Manuscripts 

Despite the availability of advanced image capturing methods, 

photography technology, and scanning equipment, the quality of many 

palm leaf images is still low due to natural aging. Palm leaf manuscripts 

are organic in nature and are susceptible to different types of 

deterioration which leads to physical damage and decay. Some of the 

most common deteriorating agents are light, insects, constant handling, 

adverse storage, and climatic factors including variations in relative 

humidity and temperature. Some degradations and noises caused by 

these agents include seepage of ink or bleed through, damage or tear 

around the area of the holes used for binding the document, stain from 

dirt, and other types of discoloration. Figure 2.4 illustrates these 
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degradations. The fragility of the aging leaves also presents some 

difficulties during the digitization process of the leaves. For instance, 

sometimes leaf manuscripts are curved and cannot be forced flat which 

results in an uneven illumination in the output image. 

Due to their characteristics, palm leaf manuscripts provide challenging 

layout analysis problems, segmenting palm leaf pages into individual 

text lines for example. In most Khmer palm leaf manuscripts, the 

scripters tend to exaggerate their writing by elongating the upper or 

lower part of a character which makes it go far out of its main line, 

touch, or overlap with other characters from adjacent lines. Moreover, 

due to high width-height ratio of the manuscript page, text lines are 

written very close to each other with very little spacing between them. 

Because text lines are long, they may also be slanted, curved 

upward/downward, or fluctuated on account of them being handwritten 

or from improper digitizing. In addition, strings used to tie palm leaves 

together to create a book-like binding leave behind holes surrounded by 

empty areas in the middle of the page producing discontinuity of text 

lines. Efficient line segmentation approaches on palm leaf manuscript 

are therefore very important as well as challenging to develop. 

Figure 2.4: Several types of deformations and defects found in palm leaf 
manuscripts 
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2.3.2. Complexity of Khmer Script 

Complexity of Khmer script is also a big challenge. Khmer is 

recognized by the Guinness World Records3 to be the language with the 

longest alphabet. As mentioned in Chapter 2.2.2, certain types of letters 

have more than one form and/or can be combined with other letters to 

create more shapes which increase even more the number of symbols 

in Khmer writing. The abundance of different symbols in Khmer script 

requires a complex and sophisticated system for those letters to be 

efficiently recognized and accurately classified. 

On account of the large quantity of symbols, many of those symbols are 

very similar and can be distinguishable by only the appearance of some 

small strokes or holes and their spatial locations. In old handwritten 

form, this similarity is even more apparent and sometimes creates an 

ambiguity between symbols which requires context from neighboring 

symbols so that those ambiguous symbols can be correctly identified. 

Some types of symbols contain multiple parts whose shapes are 

identical or very similar to other characters. Figure 2.5 shows some 

examples of this ambiguity. 

Consonants in Khmer script are used either as individuals or as clusters 

of multiple letters i.e. a double or triple decker form which is composed 

of a normal consonant and one or two sub-consonants to merge the 

sound of those consonants together. Figure 2.6 shows some examples 

of different combinations of consonant clusters. Vowels and diacritics 

can be ascenders or descenders or can be placed at either side (right or 

 
3 http://www.guinnessworldrecords.com/world-records/longest-alphabet 

Figure 2.5: Example of similarity between certain Khmer characters 
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left), on top, or at the bottom of the main consonant or the cluster of the 

main consonant. Some letters which consist of multiple parts can even 

be positioned at different locations simultaneously. Moreover, some 

ligatures between certain letters produce new shapes which might not 

be a straightforward combination of the composing letters. Some 

examples of this type of ligatures are presented in Figure 2.7. In Figure 

2.7 (a), a combination between consonant BA and vowel A creates a 

new shape to represent the word BA-A otherwise their direct 

combination would be identical to the shape of consonant HA. In Figure 

2.7 (b), by attaching vowel E above certain consonants, the vowel 

replaces the top part of those consonants. 

Unicode encoding (U1780-U17FF) has been adopted to represent 

Khmer symbols (Appendix B). Even though the overall writing 

direction of a word is left to right, the order of the Unicode codes in the 

code sequence representing that word does not always follow the 

writing order of the composing symbols. Also, symbol to code 

relationship is not always one to one i.e. some symbols can be 

represented by more than one code, and some codes can represent a 

combination of symbols. For instance, each subscript of any consonant 

does not have its own code but is instead represented by a sequence of 

two codes: a special code “coeng” (U17D2) followed by the code of its 

corresponding normal consonant. Unlike words in Latin script whose 

symbols can be identified one by one, to recognize a Khmer word, one 

must look at the whole writing of the word. This illustrates that the 

Figure 2.6: Examples of double-decker and triple-decker clusters of Khmer 
consonants 
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spatial information of each symbol composing a word is crucial for the 

recognition of that word.  

Khmer is written from left to right; however, there is no word separation 

in Khmer writing. Spaces are occasionally used to separate phrases 

instead of words. We rely on grammatical structures, character 

combination rules, and sometimes contextual meaning of the sentence 

in order to identify where the beginning and the ending of a word are. 

As mentioned earlier, the sequential order of characters composing a 

word is irregular. For instance, a word must start with a consonant and 

may be followed by vowels. However, the physical positions of the 

vowels can either be on the left, on the right, on top, or under the starting 

consonant. Some particular vowel symbols consist of multiple parts 

which are placed simultaneously at multiple locations around the 

consonant. Figure 2.8 illustrates this case. The vowel symbol AEU is 

composed of two parts which are located on the left and on top of the 

Figure 2.7: Some examples of ligatures between certain letters which form new 
shapes 
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main consonant SA. To emphasize even more, we also simulate how an 

English word could have been written in Khmer style in Figure 2.9. 

  

  

Figure 2.8: Irregular sequential ordering of symbols in a word. The different 
order of the position of the characters in the text image (top) and the Unicode 
sequence of the text (bottom) 

Figure 2.9: Simulation of how the word “TABLE” could have been written in 
Khmer style (vowel ‘A’ composed of two parts which are placed on top and on the 
left side of ‘T’, consonant ‘L’ written as a sub-from under ‘B’, and vowel  ‘E’ 
placed under ‘B’ and the sub-f 
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3. State of the Art: Document Image 

Analysis 

In recent years, research in DIA has received considerable attention. 

The process of solving DIA tasks does not consist of a single step but 

often a sequence of steps composing a complete pipeline. For 

handwritten text recognition problem in particular, the pipeline is 

divided into two major parts: preprocessing and recognition. The state 

of the art of each part of the handwritten text recognition scheme which 

often comprises of different sub-tasks will be discussed in the following 

sections.  

3.1. Preprocessing Tasks 

Preprocessing of document images is very crucial and influences 

greatly the performance of the text recognition stage. In this part, we 

discuss existing approaches of two preprocess tasks: binarization and 

line segmentation. 

3.1.1. Binarization 

Binarization is widely applied as the first preprocessing step in image 

document analysis [14]. Binarization is a common starting point for 

document image analysis pipeline. It converts gray image values into a 

binary representation for background and foreground, or in a more 

specific definition, text and non-text, which is then fed into further tasks 

such as text line segmentation and text recognition (OCR). The 

performance of binarization techniques has a great impact and directly 

affects the performance of the recognition task [15]. Non optimal 

binarization methods produce unrecognizable characters with noises 

[16]. Many binarization methods have been reported. These methods 

have been tested and evaluated on different types of document 

collections. Based on the choice of the thresholding value, binarization 

methods can be generally divided into two types, global binarization 

and local adaptive binarization [16]. Some surveys and comparative 

studies of the performance of several binarization methods have been 

reported [15, 17]. A binarization method that performs well for one 
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document collection, might not necessarily be applied to another 

document collection with the same performance [14]. For this reason, 

there is always a need to perform a comprehensive evaluation of the 

existing binarization methods for a new document collection with 

different characteristics, for example, the historical archive documents 

[17]. 

3.1.1.1. Global Thresholding 

Global thresholding method is one of the simplest techniques and is one 

of the most conventional approaches for binarization [14, 18]. A single 

threshold value is calculated from global characteristics of the image. 

This value should be properly chosen based on a heuristic technique or 

a statistical measurement to be able to give a promising optimal 

binarization result [17]. It is widely known that using a global threshold 

to process a batch of archive images with different illumination and 

noise variation is not a proper choice. The variation between images on 

foreground and background colors on low quality document images 

gives unsatisfactory results. It is difficult to choose one fixed threshold 

value which is adaptable for all images [17, 19].  

Otsu’s method is a very popular global binarization technique [14, 18]. 

Conceptually, Otsu’s method tries to find an optimum global threshold 

on an image by minimizing the weighted sum of variances of the objects 

and background pixels [14]. Otsu’s method is implemented as a 

standard binarization technique (a built-in Matlab function called 

graythresh4). 

3.1.1.2. Local Thresholding 

To overcome the weakness of the global binarization technique, many 

local adaptive binarization techniques were proposed, for example 

Niblack’s method [14, 17, 18, 19, 20], Sauvola’s method [14, 17, 18, 

19, 20, 21], Wolf’s method [19, 20, 22], NICK’s method [20], and 

Rais’s method [14]. The threshold value in local adaptive binarization 

technique is calculated in each smaller local image area, region, or 

window. Niblack's method proposed a local thresholding computation 

 
4 https://fr.mathworks.com/help/images/ref/graythresh.html 
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based on the local mean and local standard deviation of a rectangular 

local window for each pixel on the image. The rectangular sliding local 

window covers the neighborhood for each pixel. Using this concept, 

Niblack's method was reported to outperform many thresholding 

techniques and gave optimal acceptable results for many document 

collections [17]. However, there is still a drawback of this method. It 

was found that Niblack's method works optimally only on the text 

region, but it is not well suited for large non-text regions on the image. 

The absence of text on the local areas forces Niblack’s method to detect 

noises as text. The suitable window size should be properly chosen 

based on the character and stroke size which may vary on each image. 

Many other local adaptive binarization techniques were then proposed 

to improve the performance of the basic Niblack's method. For 

example, Sauvola’s method is a modified version of Niblack's method. 

Sauvola's method proposes a local binarization technique to deal with 

light textures, big variation and uneven illuminations. The improvement 

from Niblack's method is on the use of adaptive contribution of standard 

deviation in determining local threshold on the gray values of text and 

non-text pixels. Sauvola's method processes separately the image in 

� × � adjacent and non-overlapping blocks. 

Wolf’s method tries to overcome the problem of Sauvola’s method 

when the gray values of text and non-text pixels are close to each other 

by normalizing the contrast and the mean of gray values of the image 

to compute the local threshold. However, a sharp change in the 

background gray values across the image decreases the performance of 

Wolf's method. Two other improvements for Niblack's method are 

Nick's method and Rais’s method. Nick's method proposes a threshold 

computation derived from the basic Niblack's method and Rais’s 

method proposes an optimal size of window for the local binarization. 

3.1.1.3. Training Based Binarization 

The top two proposed methods in Binarization Challenge for ICFHR 

2016 Competition on the Analysis of Handwritten Text in Images of 

Balinese Palm Leaf Manuscripts [8] are training-based. The best 

method in this competition employs a Fully Convolutional Network 



22 
 

(FCN). It takes a color sub image as input and outputs the probability 

that each pixel in the sub image is part of the foreground. The FCN is 

pre-trained on normal handwritten document images with automatically 

generated ground truth binarizations using the method of [22]. The FCN 

is then fine-tuned using DIBCO and HDIBCO competition images and 

their corresponding ground truth binarizations. Finally, the FCN is fine-

tuned again on the provided palm leaf images. For inference, the pixel 

probabilities of foreground are efficiently predicted for the whole image 

at once and thresholded at 0.5 to create a binarized output image. 

The second-best method uses two neural network classifiers C1 and C2 

to classify each pixel as background or not. Two binarized images B1 

and B2 are generated in this step. C1 is a rough classifier which tries to 

detect all the foreground pixels while probably making mistakes for 

some background pixel. C2 is an accurate classifier which should not 

classify the background pixel as foreground pixel while probably 

missing some foreground pixels. Second, they join these two binary 

images to get the final classification result. 

3.1.2. Line Segmentation 

Line separation is one of the most important and challenging pre-

processing tasks in handwritten text recognition especially for the case 

of old Khmer handwriting on palm leaf documents. A text line is 

normally composed by some words which are arranged in such spatial 

position so that it represents the reading order of all words of the 

document in the horizontal direction. The vertical position of some text 

lines gives an important information about the paragraph which 

represents the layout of the document. Segmentation of document 

images into physical spatial entities such as text lines, words, and 

characters is often performed prior to the recognition step of a text 

recognition system. Segmentation-based text recognition methods need 

a prior segmentation process of the document image into text line 

segments and afterward into even smaller units such as word segments 

or character segments. In this case, extracting properly the text lines in 

a document enables an easier extraction of smaller size entities of the 
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document. Consequently, the performance of the recognition system is 

greatly influenced by the result of the segmentation process. 

Even though some of the text line segmentation methods perform 

sufficiently well for printed documents, segmenting text lines in 

handwritten documents is significantly more challenging. The 

difficulties are even more elaborating in historical documents. Some 

challenges for segmenting text lines from Khmer palm leaf documents 

are discussed in Chapter 2.3.1. Certain distinct properties of Khmer 

palm leaf documents can also be noted.  As mentioned in Chapter 2.1.2, 

the manuscript pages are made from dried palm leaves with light 

yellowish or brown color. Ancient Khmer characters are carved on each 

page, and a mixture of coal powder and a type of paste is applied on the 

carving resulting in dark black text. We can therefore be sure that the 

documents contain dark color foreground text over light color 

background. Furthermore, despite its form being elaborative and 

complex, Khmer handwriting is not cursive. Connected components 

representing individual characters can be extracted from each text line. 

Numerous state-of-the-art methods of line segmentation have been 

proposed. However, many of them operate only on binary images. A 

variety of projection profile techniques are used [23, 24, 25, 26]. The 

goal of this type of methods is to extract estimated medial or seam 

positions of text lines based on the peaks/valleys of the histogram 

profiles projected on vertical axis of the document page. Another genre 

of line segmentation approaches tries to find optimal paths which pass 

through text line seams [27, 28, 29, 30]. Tracers following the white-

most and black-most trails are used in [27] in order to shred the image 

into text line areas. In [28], an improved Viterbi algorithm based on 

Hidden Markov Model generates all possible paths, and a filtering 

process is applied afterwards to remove invalid paths leaving behind 

only the optimal ones. To select the ideal paths, the approach in [29] 

computes an energy map which accumulates energy from left to right 

for each path while a traveling cost function of the path is instead 

calculated in [30]. Other methods of text line segmentation working on 

binary images include smearing/blurring [31], Hough transform [32], 

and water flow [33]. For the approaches mentioned above, a good initial 
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binarization process is required. However, common degradations and 

noises on aging palm leaves such as seepage of ink or bleed through, 

tears, stains from dirt and moisture, and other types of damage render 

this task impossible to produce an acceptable result. It is therefore 

necessary that a new binarization-free scheme is developed. 

Some methods which are independent on the binarization process have 

also been proposed. In [34], projection profile is applied directly on a 

grayscale document. The profile is computed by summing the pixel 

values from each row. Different skew angles can be detected and 

estimated. However, one of the drawbacks from the method is that 

seams separating text lines are straight along the direction of the 

detected skew. This is not suitable for documents with little spacing 

between adjacent lines whose text components may touch or be too 

close to each other that the seams are not able to separate them correctly. 

Another technique transforms the document page into a set of interest 

points which can be grouped into clusters to form text lines based on 

their local orientation [35]. The approach of [36] makes use of seam 

carving technique to compute separating seams between text lines by 

constraining the optimization procedure inside a defined region. 

Similarly, in [37], areas for segmentation path are selected, and the 

multi-stage graph search algorithm is applied to find the shortest 

nonlinear path in each area.  

Due to specific characteristics of Khmer handwriting, text line 

extraction from Khmer palm leaf manuscripts still remains an open 

problem. By taking into account some properties of this type of 

document such as its non-cursive writing style, a performance 

improvement over state-of-the-art methods is expected. The new 

proposed scheme should manage to deal with challenges including 

detecting skew/fluctuation of text lines and especially the discontinuity 

of text lines which is difficult to solve for many of the existing 

approaches. 

3.2. Character and Text Recognition 

Character or text recognition is the final task in the DIA pipeline. This 

task analyses an input image (normally already segmented), extracts 
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useful information from it, and returns a corresponding text as output. 

The extracted information is a group of values called features which are 

reduced from the initial set of raw data in the input image. Traditionally, 

feature extraction techniques are often non-training based i.e. the 

methods are manually engineered for certain specific tasks. Those 

handcrafted features are then passed to a classifier (for example, 

Nearest Neighbor or SVM) to output the predicted class label of the 

character image or the text transcription of the text image. Recently, due 

to the availability of high-performance computing resources as well as 

the accessibility to labeled data of document images, training-based 

approaches become more and more popular since features can be 

extracted automatically and possibly more efficiently. Next, well 

known handcrafted feature extraction methods followed by training-

based approaches such as artificial neural networks and deep learning 

will be discussed.    

3.2.1. Handcrafted Feature Extraction 

Numerous feature extraction methods for character and text recognition 

have been proposed in the literature [38, 39, 40, 41]. Each method is 

designed to deal with certain specific problems. Reviews on feature 

extraction techniques were also reported [42, 43, 44].  

Some traditional approaches include projection histogram [45], 

crossing [46], outer contour profile [47], and Kirsch directional edge 

[48]. The projection histogram technique counts the total number of 

pixels composing the foreground texts or characters row-wise 

(horizontal histogram) or column-wise (vertical histogram) while the 

crossing approach counts the number of pixel transitions from 

background to foreground or vice versa. The profile method computes 

the distance from the contour of the object to be recognized to the 

boundary of the input image. For Kirsch direction edge method, feature 

vectors are extracted from the segmented regions of the binary edge 

image constructed by computing the edge strength from neighboring 

pixels in four directions (horizontal, vertical, and the two diagonals). 

Other popular traditional techniques consist of Fourier transform [49] 

and Moment invariants [50]. Zoning [51] is also often used. This 
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technique divides the image into smaller partitioned zones. The division 

can be performed to create one-dimensional sequences of row-wise, 

column-wise, or diagonal-wise slices as well as multi-dimensional 

zones such as grid-like cells, circular zones, or radial zones. Any feature 

extraction method can then be applied independently on each zone. For 

instance, the Celled Projection (CP) technique [52] extracts the 

projection histogram features from each of the sub-divided zones. 

For palm leaf manuscripts in particular, [53] conducts a study on some 

popular features and evaluates them on the dataset of digitized palm leaf 

documents. In this study, 10 feature extraction methods, some of them 

being traditional approaches described above, are investigated. After 

evaluating the performance of those individual feature extraction 

methods, the Histogram of Gradient (HoG) features as directional 

gradient based features [38], the Neighborhood Pixels Weights (NPW) 

[54], and the Kirsch Directional Edges combined with Zoning are found 

to give very promising results. A new feature extraction method by 

applying NPW on Kirsch edge images is also proposed, and the 

concatenation of the NPW-Kirsch output with the two other features 

(HoG and Zoning) is then chosen as the final feature vectors. 

3.2.2. Neural Networks and Deep Learning 

3.2.2.1. Neural Network Basics 

Artificial Neural Networks (ANNs) were originally developed as a 

mathematical tool to be used to model information processing 

capabilities of human brain [55]. The architecture of basic ANNs 

consists of processing units or nodes which are connected to each other 

by weighted connections i.e. the outputs of some neurons might become 

inputs to other neurons. Many variations of the basic ANNs have been 

proposed over the past years [56]. One of the widely used ANN 

structure is feed forward in which instead of indeterminate groups of 

connected neurons, the ANN models are structured into a layer-wise 

organization (the models are organized as distinct layers of neurons). 

There are always one first layer called input layer and one last layer 

called output layer while the intermediate layers between the first and 

the last layer are called hidden layers. The most common layer type for 
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regular ANNs is the fully connected (FC) layer. In a FC layer, neurons 

between two adjacent layers are fully pairwise connected, but neurons 

from the same layer share no connection with each other. 

Mathematically, a neuron � can be described by the following 

equations: 

�� = ∑ �����
�
���     (3.1) 

�� = �(�� + ��)   (3.2) 

where ��, ��, … , �� are the inputs, ���, ���, … , ��� are the weights of 

neuron �, �� is the bias, and � is the activation function which 

represents the frequency of the activation of neuron � (or simply put, it 

decides whether the neuron should be fired or not). In other words, each 

neuron in the FC layer performs a dot product with the input and its 

weights, adds the bias, and applies the non-linearity to output a fired 

signal to neurons in the next layer. 

Activation Function 

Activation functions take a single value and performs a certain fixed 

mathematical operation on it [57]. Commonly used activation functions 

are: 

 Sigmoid has its mathematical form �(�) = 1/(1 + ���) which 

squashes the input real-value number into range between 0 and 

1. This type of non-linearity has two drawbacks: (1) sigmoids 

saturate and kill gradients giving the vanishing gradient problem 

and (2) sigmoid outputs are always positive and not zero-

centered so the gradient on the weights during back propagation 

become either all positive or all negative which could introduce 

undesirable dynamics in the gradient updates for the weights.   

 Tanh �(�) = tanh (�) squashes the input number to the range 

between −1 and 1. It is often preferred to sigmoid in practice 

since it eliminates one of the drawbacks mentioned earlier (tanh 

is zero-centered). 

 ReLU (short for Rectified Linear Unit) computes the formula 

�(�) = max (0, �). The activation simply threshold the input 
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number at zero. Compared to sigmoid and tanh, due to its linear 

and non-linear form, the weight update converges much faster 

(no saturation). The ReLU operation is also much less 

expensive. There is also a variant of ReLU called Leaky ReLU 

[58] which instead of the function being zero when � < 0, a 

small negative slope � is used to compute the output value: 

�(�) = �� if � < 0 otherwise �(�) = �.  

Figure 3.1 illustrates these activation functions.  

Cost Function 

Cost functions (sometimes also referred to as objective function, loss or 

error) are used to estimate how the networks perform. A cost function 

is a measure of how wrong the network is in terms of its ability to 

estimate the relationship between the input output pairs. This is 

typically expressed as the difference or the distance between the output 

values predicted by the network and the real values (also known as the 

Figure 3.1: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) Leaky ReLU 
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ground truth). By minimizing the cost function i.e. finding the optimal 

parameters (normally weights and biases), we can make sure that the 

network performance (its predicting ability) is as good the ground truth. 

Gradient descent is one of the efficient algorithms that attempt to find a 

local or global minimum of a function. It allows the network to compute 

the gradient or the direction that the network should take from 

parameters of consecutive layers in order to reduce losses (difference 

between the predicted output and the ground truth). Gradient descent 

therefore enables the learning process to make corrective updates to the 

learned estimates that move the network toward an optimal combination 

of parameters. 

Backpropagation 

The forward propagation refers to when we use a feedforward neural 

network to process an input and produce an output where the input 

contains initial information that flows forward trough hidden units at 

each layer. The backpropagation algorithm computes information from 

the cost or objective function and then lets it flow backward through the 

network in order to determine the gradient for the weights at each layer 

[59, 60]. By using the chain rule, backpropagation enables us to 

simultaneously compute all the partial derivatives using just one 

forward pass followed by one backward pass through the network. For 

neural networks, their layer-like architectures can be seen as a 

computational graph. For any input value fed into the network, layer by 

layer during the backward pass, the gradient of each parameter that we 

passed through during the forward pass is computed in a reversed 

manner.   

3.2.2.2. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs), a variant of the feed forward 

network, are a specialized kind of network for processing data with a 

grid-like topology [61, 60]. Similar to ordinary feed forward ANNs, 

CNNs are made up of neurons with learnable weights and biases. What 

makes CNNs different is the use of mathematical operation called 

“convolution” (hence the name). Convolution can be considered as a 
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process where we take a small matrix of numbers (called kernel or filter) 

and pass it over a normally bigger matrix and transform it based on the 

values from the filter. The output values are calculated according to the 

following formula: 

(� ∗ ℎ)[�, �] = ∑ ∑ ℎ[�, �]�[� − �, � − �]��    (3.3) 

where the input matrix is denoted by � and the kernel by ℎ. The indexes 

of rows and columns of the output matrix are denoted by � and � 

respectively. 

CNNs are therefore ANNs that use convolution in place of matrix 

multiplication in at least one of their layers (such layers are called 

convolutional layers). For applications related to digital images, the 

convolutional layers take an input volume of dimension ℎ���ℎ� ×

����ℎ × ����ℎ (for example an image with 3 color channels has a 

depth of 3) and return an output volume of feature maps. The 

parameters in the convolutional layers can be seen as a set of learnable 

filters. Each filter is often small spatially along the width and height 

dimension but extends through the full depth of the whole input volume. 

During the forward pass, each filter is shifted or slid across the width 

and height of the input volume to apply the convolution operation i.e. 

the dot products between the entries of the filter and the region of the 

input volume that we slide the filter on. Equation 3.3 is therefore 

extended as 

(� ∗ ℎ)[�, �] = ∑ ∑ ∑ ℎ[�, �, �]�[� − �, � − �, �]���      (3.4) 

where ℎ and � now are 3-dimensional (height, width, and depth). The 

network will intuitively learn filters that activate when patterns such as 

edges, corners, or some type of visual features are found. For each filter, 

after being slid over the entire region of the input volume, a 2-

dimensional feature map is produced. According to the number of filters 

used in the layer, the feature maps can be stacked together, and an 

output volume of feature maps is obtained.  

Pooling layer is commonly used in-between successive convolutional 

layers to progressively reduce the spatial size of the representation 
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output volume of feature maps. This consequently also reduces the 

number of parameters and the computation cost in the network. The 

most common form of pooling layer is the maxpooling with filters of 

size 2 × 2 and with a stride of 2. It uses MAX operation which selects 

the maximum value from each 2 × 2 region of each individual slice 

along the depth dimension of the input volume. After passing through 

this maxpooling layer, the input volume will be downsampled by a 

factor of 2 along the width and height dimension keeping only a quarter 

of the activations of the feature map volume (the depth dimension of 

the output however normally remains unchanged). 

Figure 3.2 presents an overall architecture of a simple CNN. The 

network takes as input a one-channel image with dimension 28 × 28. 

The first convolutional layer uses 32 filters of size 5 × 5, and it is 

followed by a maxpooling layer. The second convolutional layer uses 

64 filters of the same size as in the first convolutional layer, and its 

output is again passed through a maxpooling layer to reduce its size. 

The output volume is then transformed into a vector to be fed to the first 

fully connected layer and then the second one to produce the final class 

probabilities. 

In this dissertation, the application of CNNs on document images is 

focused. CNNs have been tremendously successful in practical 

applications on digital image analysis since the architectures allow us 

to encode certain properties of the input images. Some eminent deep 

CNN architectures including AlexNet [62], VGGNet [63], and ResNet 

[64] are considered to be state-of-the-art approaches for image 

classification problems.  

Figure 3.2: Architecture of a simple CNN 
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3.2.2.3. Recurrent Neural Networks 

Recurrent neural networks (RNNs) are a family of neural networks for 

processing sequential data [59]. In contrast to feedforward networks, 

RNNs contain loops that return output activations back into the 

network. Basically, an RNN remembers the past and its decisions are 

influenced by what it has learned from the past. In other words, a simple 

feedforward ANN takes a fixed size input vector and transforms it into 

a fixed size output vector. Such a network becomes “recurrent” when 

the transformation is performed repeatedly instead on each element in 

a sequence of input vectors to produce a sequence of output vectors. 

Figure 3.3 is an example of a simple RNN architecture with one hidden 

layer. Let (��, ��, … , ��, … , ��) be a sequence of input vectors which 

are fed into the RNN in order to produce an output sequence 

(��, ��, … , ��, … , ��) where � is the number of elements in both 

sequence. At each time step �, the RNN has an internal or hidden state 

ℎ� which can be computed by the input vector in the current time step 

�� and the hidden state in the previous time step ℎ��� as following: 

ℎ� = �(���� + ��ℎ��� + �)   (3.5) 

where ��, ��, � are weights and bias respectively and � is an activation 

function. It should also be noted that the parameters ��, ��, and � are 

shared for every computation at each time step �. The hidden state ℎ� 

can be used to further compute the corresponding output ��.  

Backpropagation Through Time 

Backpropagation Through Time (or BPTT) happens when the 

backpropagation algorithm is applied to train RNNs. As mentioned 

earlier, a RNN processes a sequence of inputs, and one input is shown 

to the network at each timestep to produce one output which is then fed 

back to the network to be used in the computation for the next timestep. 

This behavior causes the network to contain loops (rolled version) as 

illustrated in Figure 3.3.a. The network, however, can be unrolled i.e. 

each timestep of the unrolled network (Figure 3.3.b) can be considered 

as an additional layer given that the output from the previous timestep 

is taken as input to the layer. As such, similar to feedforward networks, 
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we determine derivatives through each timestep of the unrolled network 

(hence the term “through time”), compute gradients, and finally reroll 

the network to update weights. The main difference here is that unlike 

in the feedforward networks where the errors are normally computed 

only at the end of the network (the output layer), the errors in RNNs are 

accumulated across each timestep taking into account also the order 

dependence of the input sequence. 

Long Short-Term Memory 

RNNs seek to establish connections between a final output and events 

many time steps before. It is therefore difficult to know the importance 

of those remote inputs since the information flows through the neural 

networks by passing through many stages of multiplications. Any 

quantity multiplied frequently by an amount greater than one can 

become large quickly while multiplying by a quantity less than one 

saturates to zero. In RNNs, due to the relation between time steps and 

multiplications, the weight gradients (derivatives) are susceptible to 

exploding and vanishing. Exploding gradients happen when the weight 

gradients become saturated on the high end (they become too large). 

This can be solved by truncating or squashing the values of the 

Figure 3.3: Architecture of a simple RNN (a) rolled, (b) unrolled 
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gradients. Vanishing gradients (when the gradients are too small or very 

close to zeros) are however harder to solve.   

Long Short-Term Memory RNNs or LSTMs in short [65, 66] are 

designed to overcome the vanishing gradient problem and allow them 

to retain information for longer periods (time steps) compared to 

traditional RNNs. Figure 3.4 illustrates the architecture of an LSTM 

cell. As seen in Figure 3.4, LSTMs use gated cells to store information 

in addition to the regular flow of the RNN. Due to these cells, the 

network is able to manipulate the information in many ways, including 

storing information in the cells and reading from them. Each cell in the 

LSTM unit is capable of making decisions regarding the information 

and can execute these decisions by opening or closing the gates. 

The three major parts of an LSTM cell are: (1) the forget gate which 

eliminates information that becomes unnecessary, (2) the input gate 

which is responsible for adding new information to the cells, and (3) the 

output gate which selects and outputs the necessary information 

corresponding to each time step. The formula for each gate at each time 

step � is computed as follows: 

�� = �(��[��; ℎ���] + ��)   (3.6) 

�� = �(��[��; ℎ���] + ��)   (3.7)  

�� = �(��[��; ℎ���] + ��)   (3.8)  

where Γ�, Γ�, and Γ� represent the forget gate, the input gate, and the 

output gate respectively. Each gate uses its own weights and biases and 

is computed as a function of the hidden state from the previous time 

step ℎ��� and the current input vector ��. 

In addition to the hidden state ℎ�, LSTM cells contain another state 

called “cell state” denoted by ��. This cell state maintains information 

from previous time steps. As mentioned earlier, the LSTM cell is able 

to add new useful information or remove unnecessary one. This 

modification is performed on the cell state via the forget gate (to remove 

information) and the input gate (to add information). The new 

information to be added is denoted by ��
�  and is computed by 
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��
� = ���ℎ (��[��; ℎ���] + ��)  (3.9) 

The new cell state �� is modified by calculating how much information 

should be kept (or removed) from the previous cell state ���� and how 

much new information should be added from ��
� . The modification is as 

follows 

�� = ��⨀���� + ��⨀��
�        (3.10) 

where ⨀ denotes element-wise multiplication. Finally, the hidden state 

ℎ� is computed by determining how much information should be output 

from the cell state �� using the output gate. Before going through the 

output gate, �� is first squashed by tanh so that the values are between 

−1 and 1. The hidden state is therefore calculated by 

ℎ� = ��⨀���ℎ (��)            (3.11) 

Numerous variants of LSTM RNNs have been proposed using a slightly 

different version from the basic LSTM architecture described above. 

One popular LSTM variant is adding special connections called 

“peepholes” which allows the computations of the three gates to take 

into account also the information from the cell state [67]. Another 

variation which also gains popularity in recent years is the Gated 

Recurrent Unit or GRU [68]. It combines the cell state and the hidden 

state and also merges the forget gate and the input gate into a single gate 

called the “update” gate among other changes. Other notable variants 

Figure 3.4: Architecture of an LSTM cell 
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include the Depth Gated LSTM proposed by [69] and the Clockwork 

RNNs [70] which tackles long-term dependencies using a completely 

different approach. Some comparison studies of popular variants of 

LSTM have been conducted [71, 72]. It is found that some variants 

work better than the other on certain tasks; however, their overall 

performances are somehow similar. For the sake of simplicity, in this 

dissertation, the basic LSTM will be focused.  

Bi-directional RNNs 

Bidirectional RNNs (BRNN) introduced by [73] are an extension to 

typical RNNs that can enhance the performance of the model on 

sequence classification problems. The idea behind BRNNs involves 

using two recurrent layers (instead of just one) to process the input 

sequence twice. The first layer handles the input sequence as it is while 

the second layer takes a reversed copy of the input sequence which adds 

additional context to the network. In other words, BRNNs allow us at a 

point in time to take information from both earlier and later in the 

sequence. Figure 3.5 gives an example of a BRNN. 

At each time step �, two hidden states can be obtained: one from the 

forward direction (ℎ�⃗ �) and another one from the backward direction 

(ℎ⃖��). To take into account information from both directions, the two 

hidden states can be merged together before being passed to the next 

layer. The final hidden state at each time step ℎ� can be computed by 

ℎ� = �(ℎ�⃗ �, ℎ⃖��)    (3.12) 

where � is a merge function. The most common options for � are 

 Sum: the hidden states are added together element-wise. 

ℎ� = ℎ�⃗ � + ℎ⃖��    (3.13) 

 Average: the average of the hidden states is computed. 

ℎ� =
���⃗ ���⃖���

�
    (3.14) 
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 Multiplication: the hidden states are multiplied together 

element-wise. 

ℎ� = ℎ�⃗ �⨀ℎ⃖��    (3.15) 

 Concatenation: the hidden states are concatenated together 

doubling the dimension of ℎ�. 

ℎ� = [ℎ�⃗ �; ℎ⃖��]    (3.16) 

Multi-dimensional RNNs 

The standard RNN architectures are explicitly one dimensional, 

meaning the input sequence needs to be pre-processed to one 

dimensional as well. Data such as digital images are two dimensional 

in nature, and in order to be fed to an RNN, the input images are 

preferably transformed into sequence of slices along either width 

(column wise) or height (row wise) dimension. The RNN therefore is 

not able to exploit the full multi-dimensional structure of the images. 

Multi-dimensional RNNs (MDRNNs) have been proposed by [74] to 

solve this problem. The basic idea behind MDRNNs is to use as many 

Figure 3.5: Architecture of a simple Bidirectional-RNN 
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recurrent connections as there are dimensions in the data to replace the 

single recurrent connection found in standard one-dimensional RNNs. 

Even though MDRNNs are designed to perform on multi-dimensional 

data, in this dissertation, only the application on images which are two 

dimensional will be discussed.  

LSTMs, a variant of RNNs, can also be extended to multi-dimensional 

(MDLSTMs) [74]. Instead of a single hidden state from the previous 

time step like in the conventional one-dimensional LSTM, MDLSTM, 

2D-LSTM in particular, makes use of two states each from both the 

vertical and horizontal axes. Denote ℎ���
(�)

 and ℎ���
(�)

 as the previous 

hidden states, ����
(�)

 and ����
(�)

 the previous memory (cell) states along the 

two axes, and �� the current input, we compute the current hidden state 

ℎ� and the current memory state �� of the 2D-LSTM as follows: 

�� = � ������; ℎ���
(�)

; ℎ���
(�)

� + ���  (3.17) 

��
(�)

= � ���
(�)

���; ℎ���
(�)

; ℎ���
(�)

� + ��
(�)

�       (3.18)  

��
(�)

= �(��
(�)

���; ℎ���
(�)

; ℎ���
(�)

� + ��
(�)

)      (3.19) 

�� = � ������; ℎ���
(�)

; ℎ���
(�)

� + ���   (3.20) 

��� = ���ℎ ������; ℎ���
(�)

; ℎ���
(�)

� + ���     (3.21) 

�� = ��⨀��� + ��
(�)

⨀����
(�)

+ ��
(�)

⨀����
(�)

     (3.22) 

ℎ� = ��⨀���ℎ (��)             (3.23) 

where �’s and �’s are weights and biases, and Γ�, Γ�, and Γ� are 

respectively input, forget, and output gates of the LSTM. Since it is two-

dimensional, there are two forget gates corresponding to each of the two 

previous memory states and computed with different sets of parameters. 

Multi-directional RNNs 

The concept of bi-direction in one-dimensional RNNs can also be 

applied to MDRNNs. For two-dimensional data such as images, we 
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would prefer the network to have access to surrounding contexts from 

all directions. One example of directional order in two-dimensional 

sequence of a digital image is that we set the origin of the two axes (let’s 

denote the horizonal axis �� and the vertical axis ��) at the top left 

corner of the image, and ��,� < ���,�� (��,� is processed by the network 

before ���,�� in the sequence) if � < �′ or � < �′ in case � = �′ where ��,� 

represents an element in the sequence at the ��� row and the ��� column 

from the origin. Similarly, we can define the other three directional 

orders by setting the origin of the two axes at the top right, at the bottom 

left, and at the bottom right of the image respectively as shown in Figure 

3.6. By using these four directional orders, the network produces 

independently four hidden states corresponding to each direction which 

can be merged together by summing, multiplying, averaging, or 

concatenating as in Equation 3.12. 

3.2.2.4. Neural Networks for Handwriting Recognition 

CNNs have been successfully used for solving isolated character 

recognition problems, for example they are considered to be the base 

line approaches for the popular but simple handwritten digit dataset 

(MNIST) [75, 76]. As mentioned earlier, one of the main benefits of 

CNNs is that the input images are fed into the networks as raw pixel 

values to be processed to extract useful automatic features instead of 

the handcrafted ones.  

Figure 3.6: Axes representing the 4 possible directions in 2D-RNN 
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For text recognition, due to texts being sequences of smaller units such 

as characters or glyphs, the problem becomes a sequence learning task. 

Over the last few years, end-to-end handwritten text recognition models 

using RNNs have started to outperform earlier approaches [77] such as 

those based on Hidden Markov models [78, 79]. LSTM and its extended 

version such as Bi-directional LSTM as well as its multi-dimensional 

variant have been used. The current state-of-the-art in many 

handwritten text recognition tasks additionally integrates CNNs as an 

improved low-level feature extraction module prior to the recurrent 

layers. Some recent works have shown great success in using solely 

RNN modules or the combination with CNNs for text recognition tasks 

of different languages. Some examples include Latin texts which are 

the most primitive ones [80, 81, 82, 83], Chinese and Japanese scripts 

which show numerous challenges such as the large number of character 

classes and vocabularies [84, 85, 86, 87], and also Arabic handwritten 

documents with the cursive nature of the writing and the visual 

similarities of the characters [88, 89]. However, the main challenge in 

processing sequential data is to find appropriate alignment information 

that matches elements in the input sequence to those of the output 

sequence. Currently, the two major directions to solve this problem are 

(1) the use of Connectionist Temporal Classification (CTC) introduced 

by [90] and (2) the sequence to sequence (Seq2Seq) technique.  

CTC is a type of objective function which can be attached at the end of 

the recurrent modules. CTC-based architectures remove the need to 

forcefully align the input stream with character prediction location. This 

provides a benefit of not needing properly segmented labeled data. 

Nevertheless, these architectures are subject to inherent limitations like 

strict monotonic input-output alignment i.e. one-to-one input-output 

pair. This technique is one dimensional in nature and works efficiently 

well for scripts with one directional writing style (for example, left to 

right or top to bottom), in other words no more than one character is at 

the same horizonal or vertical position. However, for scripts with a 

more complex writing style such as Khmer, character annotation and 

alignment information might still be required to produce a more 

accurate recognition result. 
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On the other hand, the main concept of Seq2Seq architectures is that 

they follow the encoder-decoder framework. The models consist of two 

main parts i.e. they decouple the decoding from the feature extraction 

module. First, an encoder reads and builds a feature representation of 

the input sequence, then a decoder emits the output sequence one token 

at a time. Usually an attention mechanism is employed by the decoder 

to gather context information and search for relevant parts of the 

encoded features. 

In Chapter 7, following the Seq2Seq scheme, we propose a model 

which takes advantage of both the convolutional module and the multi-

dimensional recurrent module specifically developed to recognize texts 

on Khmer palm leaf manuscripts. The proposed model also incorporates 

the annotated spatial alignment information of each character or glyph 

in the text image. Moreover, due to its depth, these types of deep 

architectures mentioned above normally require significantly large 

amount of data (for example tens of millions of samples) to train and 

tend to overfit on smaller datasets. Some optimization is also taken into 

account of designing the proposed model. Data augmentation technique 

is also employed in order to extend existing data. 
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4. Digital Image Corpus and Ground 

Truth Dataset 

This chapter presents the collection of digital corpus of Khmer palm 

leaf manuscripts, the construction of ground truth tool and data, and the 

introduction to SleukRith Set, the first Khmer palm leaf manuscript 

dataset. We also talk briefly about datasets constructed on palm leaf 

manuscript from Indonesia which will be used in addition to the datasets 

from SleukRith Set for the experimental studies in the next chapter. 

4.1. Digital Image Corpus 

4.1.1. Existing Digital Images of Khmer Palm Leaf Manuscripts 

In Cambodia, existing digital data of palm leaf manuscripts can be 

found in various libraries and institutions. Table 4.1 shows the number 

of digital image collections (a collection here refers to one complete set 

of palm leaf documents) available in those establishments. Sample 

images are shown in Figure 4.1. 

École Française d’Extrême-Orient (EFEO): the online database of 

Khmer manuscripts is the result of the work conducted by the École 

Française d’Extrême-Orient (EFEO-FEMC) research team since 1990, 

aiming to provide a comprehensive inventory and photographic 

collection of Cambodia’s manuscripts. The website is accessible to 

public and is home to hundreds of collections of palm leaf manuscripts. 

The digital images were captured from microfilms hence their low 

quality. 

Buddhist Institute (BI): the Buddhist Institute was an initiative of 

King Sisovat in 1921, when he inaugurated the royal library, Khemra 

Bannalai which subsequently changed its name to Preah Raj Bannalai 

in 1925. Then in 1930, King Monivong established the Buddhist 

Institute. The responsibilities of the Institute are not only research on 

Cambodian literature, language and Buddhism, but also publication and 

education. Only one collection containing 96 pages is available from 

this institute. The digitization method of this collection is unknown. 
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Phnom Penh National Library (NL): the National Library of 

Cambodia was inaugurated by the French colonial administration. 

Thereafter it was successively managed by French staff until the 

appointment of the first Khmer Director in 1951. After independence in 

1954 there was a steady growth in Cambodian publishing, which was 

reflected in the increased number of Khmer language books in the 

National Library. Closed down during the Khmer Rouge era, the 

National Library was used for several years as accommodation by 

members of the Pol Pot regime, who destroyed many of the books. 

Since 1980 the National Library has been re-established with the 

assistance of various overseas governments and agencies. Today the 

National Library of Cambodia holds hundred thousands of books in 

various languages (Khmer, French, English, and German). There is also 

a large collection of palm leaf manuscripts. Some collections of the 

manuscripts were digitized recently by a Khmer manuscript 

conservation and research group. We obtained in total 35 collections of 

already digitized manuscripts from this establishment. 

Table 4.1: Number of digital Image collections available in various establishments 

No Establishment Digitization 

Method 

Nb. Of 

Collections5 

1 École Française d’Extrême-

Orient (EFEO) 

Nikon F3 937 

2 Buddhist Institute (BI) Unknown 1 

3 National Library (NL) Canon 750D 35 

4.1.2. Digitization Campaign 

We also conducted our own digitization campaign in order to capture 

and collect palm leaf manuscript images found in Buddhist temples in 

different locations throughout Cambodia. A standard digitization 

procedure and a proper set up have been developed. Due to the fact that 

palm leaf manuscripts are fragile, and certain scripts are not allowed to 

be moved from the place where they are stored, digitizing using a 

 
5 Each collection consists of in average several dozens of palm leaf pages  
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scanner is not viable, so a portable option was needed. In order to 

capture the scripts, a Canon EOS 5DS professional camera was used. 

The camera settings are as follows: F-stop: f/4, shutter speed: 1/10 

second, ISO: 100, focal length: 45 mm, distance to object: 65 cm, and 

auto focus: on. To support the camera to be able to shoot downward, we 

use a Manfrotto 055XPro3 tripod with its fluid head. To avoid irregular 

lighting condition and to adapt to our semi indoor/outdoor capturing 

location, the camera is covered over by a black cloth. Additional 

rechargeable led lights (led 715) are attached to each of the tripod legs. 

Figure 4.2 illustrates this set up. 

Our campaign has been conducted in three locations in Cambodia: 

Phnom Penh, Kandal, and Siem Reap. We have collected and digitized 

manuscripts found mostly in Buddhist temples (pagodas). A summary 

of the collection from our digitization campaign is listed in Table 4.2. 

Some sample images are shown in Figure 4.3. 

Table 4.2: Collection of digitized palm leaf manuscripts from our digitization 
campaign 

No Location Nb. Of Collections Nb. Of Pages 

1 Tuol Tom Poung, Phnom Penh 2 54 

2 Tek Vil Pagoda, Kandal 2 98 

3 Bo Pagoda, Siem Reap 9 59 

Total 13 211 

Figure 4.1: Samples of digitized images from top to bottom: EFEO, BI, and NL 
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4.2. SleukRith Set 

4.2.1. Description of SleukRith Set 

SleukRith set is a collection of three types of annotated data: isolated 

characters, words, and lines. The annotation is made on 657 pages of 

Khmer palm leaf manuscript randomly selected from different sources. 

A summary of selected pages and their sources are shown in Table 4.3. 

The majority of the images are chosen from the recently digitized 

Figure 4.2: A set up for our digitization campaign 

Figure 4.3: Sample images of our digitization campaign (from top to bottom: 
Phnom Penh, Kandal, and Siem Reap) 
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manuscripts at the National Library and from our digitization campaign. 

Due to their low quality, the dataset contains much fewer pages from 

the collections of EFEO and the Buddhist Institute. 

For annotating the three types of data, a tool with an easy-to-use user 

interface has been developed. The tool is implemented in Java hence its 

multi-platform portability. Since annotating a large amount of data can 

be quite exhausting, most interactions between the user and the tool are 

performed using only left and right clicks of mouse buttons. A keyboard 

input is required when giving labels to the data, modifying data, or 

deleting data. 

The annotation process was accomplished with the help from volunteer 

students from the department of Computer Science at the Institute of 

Technology of Cambodia (ITC) and the National Institute of Posts, 

Telecommunications, and ICT (NIPTICT). Each participant played the 

role of a ground truther and was assigned a set of palm leaf document 

images identified by number codes. Using their common knowledge of 

Khmer language, the ground truthers were asked to annotate each of 

their assigned pages according to the following steps: segment and label 

all characters, group segmented characters into words, and finally 

assign each segmented character to a line it belongs to. After the initial 

annotation stage done by the students, a final validation and correction 

iteration has been performed verifying that the data is consistent and 

without errors. 

Table 4.3: Collection of palm leaf manuscript images from different sources 
composing SleukRith Set 

No Source Nb. Of Pages 

1 National Library 427 

2 EFEO 26 

3 Buddhist Institute 15 

4 Our Digitization Campaign 189 

Total 657 
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4.2.2. Isolated Glyphs 

The individual or isolated character dataset is the most important data 

type in SleukRith Set since its information is used to produce the other 

types of data. In order to segment and annotate a manuscript page into 

small image patches representing each individual character, a polygon 

boundary enclosing the character needs to be drawn manually. The 

ground truther is required to dot out vertex of the polygon one by one 

until a proper boundary is formed (see Figure 4.4). The ground truther 

is then prompted to input the correct Unicode or Unicode sequence as 

label for that character.  

A problem in annotating a character occurs when it is composed of 

multiple parts. In this situation, each part of the character is segmented 

separately and is labeled with the original Unicode of the character 

followed by a number representing that part. A different situation is 

when multiple characters are merged together and form a new shape. In 

this case, the shape is then annotated as a whole and is given the label 

which is a sequence of the Unicode of the characters comprising it. 

Examples illustrating these cases are shown in Figure 4.5.  

Figure 4.4: Annotation of individual character dataset 
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Certain writers exaggerate their writing by elongating the ending stroke 

of the characters. Also, some characters are written in a way that they 

encircle other characters. When cropped into a rectangular area, the 

image patch of such elaborate character does not only contain the 

character itself but also parts or the entirety of other characters. To solve 

this issue, by using the polygon boundary as a mask, an inpainting 

technique [91] can be applied in order to eliminate the unwanted area 

in the image patch. In Figure 4.6, the image patch of character SUBYO 

is inpainted resulting in a new clean image. 

4.2.3. Words 

After all characters in the page are manually annotated, they can be 

combined together into words. To form a word, the character 

components of that word are selected one by one (see Figure 4.8). The 

selection order is also important since Khmer Unicode sequence does 

not follow the left to right position order of the characters but instead 

respects a consonant-first-vowel-second basis. Figure 4.7 shows an 

example illustrating this phenomenon. In the example, the word is 

composed of five characters, and the correct sequence is PHO-SUBLO-

Figure 4.5: Examples of (a) characters containing multiple parts and (b) 
merged shapes 

Figure 4.6: Application of inpainting technique on a character image patch (a) 
input image, (b) inpainting mask using polygon boundary, (c) result 
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EE-CHA-BANTAK. Even though the vowel EE is at the left-most 

position of the word, it is placed third in the Unicode sequence after the 

consonant PHO and the sub-consonant SUBLO.  

The ground truther is then again prompted to input a Unicode sequence 

representing the label of the formed word. By default, the word label is 

generated by putting together the labels of the characters which are the 

components of that word. The second label should also be provided by 

the ground truther when either the current word spelling is found to be 

erroneous or when an equivalent word from the modern Khmer 

language has a different spelling. 

Figure 4.8: Annotation of word dataset 

Figure 4.7: Order sequence of characters in a word 



51 
 

4.2.4. Sub-syllables  

One of the main difficulties in creating useful data from palm leaf 

manuscripts is that the number of digitized pages is still limited. Current 

machine learning approaches require much more data to train, and the 

number of annotated words in the SleukRith Set is still limited and 

insufficient. Moreover, some manuscripts are written in Pali which, 

even though it uses Khmer alphabet, is a completely different language 

from Khmer. It requires the knowledge of the language to identify the 

word separation, and therefore word annotation and recognition cannot 

be achieved easily for those manuscripts. 

To solve both of these problems, we introduce a new type of data added 

to the SleukRith Set called “sub-syllables”. A sub-syllable refers to a 

group of glyphs which satisfies the following criteria:  

1) A sub-syllable must be a cluster of glyphs belonging to the same 

text line and containing at least one main consonant or be a 

standalone digit, a punctuation, or an independent vowel  

2) In the case where it is a cluster of glyphs, it must not begin with 

any irregular character such as an dependent vowels, a sub-

consonant, or a diacritic 

3) Each sub-syllable must represent the smallest possible 

combination of glyphs which satisfies criteria 1) and 2). A new 

label is also needed to be specified for the created sub-syllable.  

Adjacent sub-syllables can be joined together to form a group 

representing a synthetic word. Let �-SG denote a group of sub-syllables 

where � is the number of sub-syllables composing it. A text line 

containing � sub-syllables might therefore be able to produce up to 

(� − � + 1) �-SGs. Two neighboring sub-syllables are not grouped 

together if the distance between them is greater than a predefined 

threshold. This is to take into account blank gaps which often appear 

between phrases in the manuscripts. Figure 4.9 illustrates a comparison 

between word separation and sub-syllable separation. As shown, eight 

sub-syllables can be extracted from the text. We can group therefore 

those sub-syllables into �-SGs. For � = 2, the following set of 2-SGs 

can be generated: {(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8)} i.e. we can 
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obtain six synthetic words instead of only four real words. Note that the 

sub-syllable 4 and 5 cannot be grouped together since there is a large 

gap between them. 

4.2.5. Lines and their Transcriptions 

Similar to word and sub-syllable annotation, annotated characters may 

be grouped into lines. To efficiently achieve this, using the annotation 

tool, the ground truther uses left click and drag over annotated 

characters belonging to the same line. He is then asked to create a new 

line from the selected characters or add them to existing lines (see 

Figure 4.10). Each annotated glyph is given an ID corresponding to the 

line which it belongs to. The area of a text line can therefore be 

constructed by performing a union operation on all its glyph polygon 

boundaries. Due to the irregularity of how certain glyphs are positioned 

in the text sequence, the text transcription cannot be generated by 

simply using a left-to-right sequential concatenation of the labels of all 

glyphs in the line. Another benefit of annotated sub-syllables is that they 

can be used to generate line transcriptions. Similar to annotated words, 

a rectangle boundary of a sub-syllable is built using the polygon 

boundaries of the component glyphs. We then sort all sub-syllables in a 

line by their horizontal positions and produce the final line transcription 

Figure 4.9: (a) Sample Khmer text, (b) Word separation, (c) Sub-
syllable separation 
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by concatenating the label of each sub-syllable according to this sorted 

order. 

4.2.6. Annotation File Format 

After all steps in the annotation scheme are complete, an xml file 

containing all information of the four types of data of the annotation can 

be exported for each manuscript page. It also serves as a temporary save 

file to store incomplete progress of the annotation. The xml file is 

divided into five sections (see Figure 4.11). The first section contains 

meta information related to the document page. The information 

includes the 3-digit code, the document name, the document source, and 

the resolution of the document image. The next four sections represent 

respectively the four types of annotation. The section under the tag 

name “CharAnno” is dedicated to the annotation at the character level. 

This section block contains child blocks. Each child block represents an 

annotated character, information about the coordinates of its polygon 

boundary and additional attributes including character id, its label, and 

the id of the line which the character belongs to. The next section under 

the tag name “WordAnno” describes the annotation at the word level. 

Since a word is a combination of characters, only the IDs of the 

Figure 4.10: Construction of line segmentation ground truth 
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annotated characters defined in the previous section are stored along 

with the id information of the annotated word and its two labels. The 

sub-syllable annotation is stored under the section with tag name 

“SubSylAnno”. Similar to the word annotation, each sub-syllable is 

given an ID and is represented by a block containing child blocks 

storing the IDs of all glyphs composing the sub-syllable. Only a single 

label is noted for each sub-syllable. The last section of the xml file 

(under tag name “LineAnno”) holds information linked to the line 

annotation. This section stores a number of child blocks equivalent to 

the number of text lines in the document page.     

From this xml file, image patches representing characters and words (or 

groups of sub-syllables) can be generated (see Figure 4.12 and Figure 

4.13). Table 4.4 shows the current statistics of the SleukRith Set. 

Table 4.4 Summary of the statistics of the SleukRith Set 

No Data Quantity 

1 Document pages 657 

2 Annotated glyphs 302,191 

3 Character classes 225 

4 Annotated sub-syllables 157,754 

5 Unique sub-syllables 3,603 

6 Annotated words 73,660 

Figure 4.11: Sample of an xml file storing annotation information of a manuscript 
page 
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No Data Quantity 

7 Unique words 9,301 

8 Text lines 3,247 

4.3. Additional Datasets of Palm Leaf Manuscripts from 

Indonesia 

In Indonesia, palm leaves were also historically used as writing supports 

in manuscripts from Indonesian archipelago. The leaves of sugar palm 

(Borassus Flabellifer) are known as lontar. Although the official 

language of Indonesia, Bahasa Indonesia, is written in the Latin script, 

Figure 4.12: Samples of annotated character patch images 

Figure 4.13: Samples of annotated word patch images 
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Indonesia has many local and traditional scripts, most of which are 

ultimately derived from Brahmi. In this dissertation, we focus on two 

Indonesian scripts: Balinese and Sundanese.  

4.3.1. Balinese Manuscripts 

In Bali, palm leaf manuscripts were written in Balinese script in 

Balinese language, in the ancient literary texts composed in the old 

Javanese language of Kawi and Sanskrit. Balinese language is a 

Malayo-Polynesian language spoken by about more than 3 million 

people mainly in Bali, Indonesia. Balinese language is the native 

language of the people of Bali, known locally as Basa Bali. The 

alphabet and numeral of Balinese script is composed of more or less 

100 character classes including consonants, vowels, and some other 

special compound characters.  

Apart from the collection at the museums (Museum Gedong Kertya 

Singaraja and Museum Bali Denpasar), it was estimated that there are 

more than 50,000 lontar collections which are owned by private 

families. In order to obtain a large variety of manuscript images, the 

sample images have been collected from 23 different collections 

(contents), which come from 5 different locations (regions): 2 museums 

and 3 private families. It consists of randomly selected 10 collections 

from Museum Gedong Kertya (City of Singaraja, Regency of Buleleng, 

North Bali), 4 collections from manuscript collections of Museum Bali 

(City of Denpasar, South Bali), 7 collections from the private families 

situated in the Village of Jagaraga (Regency of Buleleng), and 2 others 

collections from the private families in the Village of Susut (Regency 

of Bangli) and the Village of Rendang (Regency of Karangasem) [92]. 

Sample images of digitized Balinese palm leaf manuscripts are shown 

in Figure 4.14.  

4.3.2. Sundanese Manuscripts 

The collection of Sundanese palm leaf manuscripts (Figure 4.15) comes 

from Situs Kabuyutan Ciburuy, Garut, West Java, Indonesia. The 

Kabuyutan Ciburuy is a cultural complex heritage from Prabu Siliwangi 

and Prabu Kian Santang, The King and the son of the Padjadjaran 
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kingdom. The cultural complex consists of six buildings. One of them 

is Bale Padaleuman which is used to store the Sundanese palm leaf 

manuscripts. The oldest Sundanese palm leaf manuscript in Situs 

Kabuyutan Ciburuy came from the 15th century. In Bale Padaleuman, 

there are 27 collections of Sundanese manuscripts. Each collection 

contains 15 to 30 pages, with the dimension of 25-45 cm in length x 10-

15 cm in width [93]. The Sundanese palm leaf manuscripts were written 

in the ancient Sundanese language and script. The characters consist of 

numeral characters, vocal characters, basic characters, punctuations, 

diacritics, and many special compound characters. 

  

Figure 4.14: Balinese palm leaf manuscripts 

Figure 4.15: Sundanese palm leaf manuscript 
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5. Preprocessing 

A complete DIA system for Khmer palm leaf manuscripts is composed 

of two main modules: preprocessing and text recognition. In this 

chapter, we present experimental studies on the preprocessing part of 

the DIA system. Two sub-tasks will be covered in the preprocessing 

step: a benchmarking and comparison study of binarization approaches 

from the literature which are discussed in Chapter 5.1 followed by a 

new proposed approach of binary-free line segmentation introduced in 

Chapter 5.2 along with an experimental evaluation with some base-line 

approaches.  

5.1. Binarization 

In this section, we compare several alternative binarization algorithms 

for palm leaf manuscripts. We test and evaluat some well-known 

standard binarization methods, and some binarization methods that are 

promising experimentally for historical archive documents, not 

specifically for images of palm leaf manuscripts. We also test the 

binarization methods from DIBCO competition [94, 95] for example 

the Howe’s method [96] and the ones from the binarization challenge 

of ICFHR competition [8]. The evaluation of the binarization 

approaches is conducted on three palm leaf manuscript datasets: Khmer 

and two scripts from Indonesia (Balinese and Sudanese).  

5.1.1. Datasets 

The palm leaf manuscript datasets for binarization task are presented in 

Table 5.1. For Khmer dataset, the binary ground truths are created from 

the digitized EFEO images (see Chapter 4.1.1). When necessary, a local 

thresholding method [21] is applied, and noises caused by isolated 

pixels are then removed using median filter. The results are corrected 

with the help of a photo editing software. The binarized document is 

superimposed on the original image, and strokes are traced manually 

using a stylus with pressure sensitive tip to maintain the variation of 

stroke width of each character in the manuscript. An example of the 

binary ground truths of Khmer manuscripts is shown in Figure 5.3. For 

the manuscripts from Bali, the binarized ground truth images have been 
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created with a semi-automatic scheme [92, 97] (Figure 5.3) while the 

binarized ground truth images for Sundanese manuscripts [93] have 

been manually generated by using PixLabeler [98] (Figure 5.3). The 

training set required for training-based approached is provided only for 

the Balinese dataset. 

Table 5.1: Palm leaf manuscript datasets for binarization task 

Manuscripts Train 
(pages) 

Test 
(pages) 

Ground 
Truth (pages) 

Dataset 

Khmer - 46 46 Extracted from 
EFEO 

Balinese 50 50 100  Extracted from 
AMADI_LontarSet 

Sundanese - 61 61 Extracted from 
Sundanese Dataset 

 

5.1.2. Evaluation Method 

Following the evaluation method from the DIBCO 2009 contest [94] 

and the ICFHR 2016 competition [8], three metrics of binarization 

evaluation are used: F-Measure (FM), Peak SNR (PSNR), and Negative 

Rate Metric (NRM). 

F-Measure (FM) is computed from Recall and Precision as following: 

�� =
�.������.���������

����������������
     (5.1) 

������ =
��

�����
          (5.2) 

��������� =
��

�����
              (5.3) 

where �� is a true positive which occurs when the image pixel is 

labeled as foreground as in the ground truth. �� is a false positive 

representing when the image pixel is labeled as foreground, but the 

ground truth is labeled as background, and �� is a false negative which 

represents when the image pixel is labeled as background, but the 
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ground truth is labeled as foreground. A higher F-measure indicates a 

better match. 

Peak SNR (PSNR) is calculated from Mean Square Error (MSE): 

��� = ∑ ∑
���(�,�)���(�,�)�

�

�.�
�
���

�
���    (5.4) 

���� = 10. ����� �
��

���
�        (5.5) 

where � is defined as 1, the difference between the foreground and the 

background colors in the case of binary image. A higher PSNR indicates 

a better match. 

Negative Rate Metric (���) is computed from the negative rate of 

false negative (����) and the negative rate of false positive (����). 

 ���� =
��

�����
    (5.6) 

Figure 5.3: Khmer manuscript with binarized ground truth image 

Figure 5.3: Balinese manuscript with binarized ground truth image 

Figure 5.3: Sundanese manuscript with binarized ground truth image 
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���� =
��

�����
    (5.7) 

��� =
���������

�
      (5.8) 

where �� is the true negative which occurs when both the image pixel 

and ground truth are labeled as background. A lower NRM indicates a 

better match. 

5.1.3. Experiments and Results 

The experimental results for the binarization task are presented in Table 

5.2. These results show that the performances of all methods on each 

dataset are still quite low. Most of the methods achieve only less than 

50% �� score. It means that binarization on palm leaf manuscripts is 

still an open challenge. The different parameter values for the local 

adaptive binarization methods gives a significant improvement in the 

performance of those methods, but it is still unsatisfactory. In these 

experiments, ICFHR G1 method was evaluated for Khmer and 

Sundanese dataset by using the pre-trained Balinese training set 

weighted model. Based on these experiments, ICFHR G1 method gives 

the highest FM score for Khmer manuscripts (Figure 5.4), ICFHR G2 

gives the highest FM score for Balinese manuscripts (Figure 5.5), and 

Niblack’s method gives the highest FM score for Sundanese 

manuscripts (Figure 5.6). However, according to the observation on the 

output results, many broken and unrecognizable characters/glyphs and 

noises are still visually seen in the binary images. 

Table 5.2: Experimental results for the binarization task 

Methods Parameter Manuscripts FM 
(%) 

NRM PSNR 
(%) 

OtsuGray 

 

Otsu from gray 
image using 
Matlab 
graythresh6 

Khmer 23.92 0.3130 7.38 

Balinese 18.98 0.3988 5.01 

Sundanese 23.70 0.3266 9.99 

OtsuRed Khmer 21.15 0.3371 5.90 

 
6 https://fr.mathworks.com/help/images/ref/graythresh.html 
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 Otsu from red 
image channel 
using Matlab 
graythresh 

Balinese 29.20 0.3001 10.94 

Sundanese 21.25 0.3864 12.60 

Sauvola 

 

window = 50, k 
= 0.5, R = 128 

Khmer 44.73 0.2685 26.06 

Balinese 13.20 0.4623 27.69 

Sundanese 6.19 0.4799 24.78 

Sauvola2 

 

window = 50, k 
= 0.2, R = 128 

Khmer 47.55 0.1557 21.96 

Balinese 40.18 0.2745 25.09 

Sundanese 43.04 0.2996 23.65 

Sauvola3 

 

window = 50, k 
= 0.0, R = 128 

Khmer 30.55 0.1900 12.78 

Balinese 35.38 0.1658 17.05 

Sundanese 40.29 0.1814 16.25 

Niblack 

 

window = 50, k 
= -0.2 

Khmer 38.01 0.1608 16.84 

Balinese 41.55 0.1757 21.24 

Sundanese 46.79 0.1950 20.31 

Niblack2 

 

window = 50, k 
= 0.0 

Khmer 30.55 0.1900 12.78 

Balinese 35.38 0.1658 17.05 

Sundanese 40.29 0.1814 16.25 

Nick  window = 50, 
k= -0.2 

Khmer 51.25 0.1760 24.51 

Balinese 37.85 0.3283 27.59 

Sundanese 29.59 0.3904 24.26 

Rais  window = 50 Khmer 31.59 0.1879 13.52 

Balinese 34.46 0.1710 16.84 

Sundanese 40.65 0.1770 16.35 

Wolf  window = 50, k 
= 0.5 

Khmer 46.78 0.2373 25.19 

Balinese 27.94 0.3929 27.16 

Sundanese 42.40 0.2991 23.61 

Howe1  Khmer 40.20 0.2806 25.59 

Balinese 44.70 0.2676 28.35 
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Default values7 Sundanese 45.90 0.2351 21.90 

Howe2 

 

Default values Khmer 32.35 0.2940 25.96 

Balinese 40.55 0.2739 28.02 

Sundanese 35.35 0.2748 22.36 

Howe3 

 

Default values Khmer 30.71 0.3820 26.36 

Balinese 42.15 0.3049 28.38 

Sundanese 25.77 0.3503 23.66 

Howe4 

 

Default values Khmer 36.48 0.2805 25.83 

Balinese 45.73 0.2730 28.60 

Sundanese 38.98 0.2811 22.83 

ICFHR 
G1 

See [8] Khmer 52.65 0.2505 28.16 

Balinese 63.32 0.1500 31.37 

Sundanese 38.95 0.3290 24.15 

ICFHR 
G2 

See [8] Khmer - - - 

Balinese 68.76 0.1300 33.39 

Sundanese - - - 

ICFHR 
G3 

See [8] Khmer - - - 

Balinese 52.20 0.1800 26.92 

Sundanese - - - 

ICFHR 
G4 

See [8] Khmer - - - 

Balinese 58.57 0.1700 29.98 

Sundanese - - - 

 

5.2. Text Line Segmentation 

Text line segmentation is one of the most crucial pre-processing steps 

in the DIA pipeline. In ancient documents, palm leaf manuscripts in 

particular, a variety of deformations caused by aging produce noises 

which make the binarization process very challenging as mentioned in 

 
7 http://www.cs.smith.edu/~nhowe/research/code/ 
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the previous section. Moreover, due to the irregular layout such as 

skewness and fluctuation of text lines, segmenting an ancient 

manuscript page into separate lines still remains an open problem to 

solve. An efficient approach should therefore be binary-free and be able 

to deal with the complex layout of the palm leaf manuscripts. In this 

section, we propose a novel line segmentation scheme for grayscale 

images of Khmer palm leaf documents. First, connected components 

are extracted from the document page. The number and medial 

positions of text lines are estimated using a modified piece-wise 

projection profile technique. Those positions are then modified 

adaptively according to the curvature of the actual text lines. Finally, a 

path finding approach is used to separate touching components and also 

Figure 5.4: Binarization of Khmer manuscript with ICFHR G1 method 

Figure 5.5: Binarization of Balinese manuscript with ICFHR G2 method 

Figure 5.6: Binarization of Sundanese manuscript with Niblack’s method 
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to mark the boundary of the text lines. An overview pipeline of the 

proposed text line segmentation approach is presented in Figure 5.7. 

The input data to the system is a grayscale image of a palm leaf 

manuscript page. The details of each step of the pipeline are described 

next. Two experiments are conducted. The first experiment is 

performed on a small subset of the SleukRith while the second 

experiment expands to a larger subset in addition to the datasets 

constructed from the Balinese and Sundanese manuscripts. In both 

experiments, we also compare the robustness of the proposed approach 

with existing methods from the literature. 

Figure 5.7: Overview of the proposed line segmentation pipeline 
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5.2.1. Description 

5.2.1.1. Foreground Text Detection and Extraction (A) 

In order to extract text components from a document page, edges in the 

image are first calculated using Canny edge detection method [99]. A 

text localization approach called Stroke Width Transform (SWT) [100] 

is then applied. SWT is a local image operator which computes per pixel 

the width of the most likely stroke containing the pixel. In other words, 

for each pixel in the image, we determine the most relevant stroke that 

the pixel belongs to. The stroke width value is then given to that pixel. 

A new feature map of strokes representing foreground texts can be 

computed by grouping connected pixels whose stroke width values are 

similar. 

The approach creates a new feature map storing the width values of the 

most likely strokes containing each pixel. We then group together 

adjacent pixels with similar stroke width into characters (connected 

components). The average stroke width ����� of the whole stroke map 

is also computed. Unwanted noise components such as big patches, 

long horizontal or vertical strokes, and small dots are removed using the 

following rules: 

 The mean of stroke width values of all pixels in the connected 

component must be less than 2. ����� to prevent including in 

the stroke map any undesirable connect component that contains 

too many large strokes. Small strokes representing text often 

have consistent width.   

 The length-width and width-length ratio of the component must 

be less than 3. This rule eliminates connected components 

which are either too wide or too thin i.e. they do not resemble 

Khmer glyphs. 

 The length or width of the component must be greater than 

3. �����. Following this rule, noises including small dots and 

long thin strips are removed. 

After all noise components are filtered out, we obtain a new stroke map 

��� consisting of all stroke pixels as black foreground over a white 
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background. The median height ������� of all connected components 

is also calculated. This process is illustrated in Figure 5.8. 

5.2.1.2. Line Number and Location Estimation (B) 

The main goal of this step is to determine the number of text lines in the 

manuscript page. First, X-projection profile is built from the map to find 

the starting and ending positions of the text region. The discovered 

region is divided into �� vertical columns whose width is empirically 

set to �� = 10. �������. We then construct a Y-projection profile 

histogram for each column, and we smooth them twice using moving 

average filters with widow size of ⅓������� and ½������� 

respectively. We consider the local maxima or peaks of the smoothed 

histogram of each column to be the medial line positions in that column. 

The variance value of each peak is computed, and spurious peaks with 

very small value of variance compared to the average variance values 

of all peaks in their same column are removed. To further filter out 

incorrect peaks, we also remove peaks too close to each other. Suppose 

in a column, � peaks are detected. �� represents the ��� peak from top 

Figure 5.8: (a) Original Image, (b) Edge map using Canny edge detection, 
(c) Stroke map 
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to bottom (0 < � < �). We remove �� if the distance between �� and 

���� is less than ½������� where ������� is the median value of all 

distances between two adjacent peaks. The final numbers of peaks in 

all columns are stored in a sorted list from which we choose the value 

in the 95th percentile to be the number of text lines �� in the document 

page. 

5.2.1.3. Skew and Fluctuation Adaption (C) 

To construct an estimation of medial seam of a text line, we connect 

corresponding medial points situated at the peaks of the Y-projection 

histogram of neighboring columns together. However, some peaks may 

be missing due to the fact that different numbers of peaks can be found 

in different columns. To guarantee a smooth connection between peaks, 

new medial points may be added. We want to have eventually a 

�� × ��  grid of medial points. Let’s denote ��,� a medial point on text 

line � in column � with 0 ≤ � < �� and 0 ≤ � < ��  and ��,�
� , ��,�

�
 its x-

coordinate and y-coordinate respectively. Each medial point can be 

added as follows. First, relative to the starting point of the text region, 

each medial point should be placed horizontally at the center of its 

column (��,�
� = �. �� + ½��). Then we select a starting column � 

whose Y-projection profile consists of exactly �� peaks. Among 

multiple instances of such columns, we pick the one with the highest 

average peak variance and place one medial point at each peak. To the 

left of column j, we iterate one column at a time (column �, � = � −

1, � − 2, … ,0) to find the closest peaks to the corresponding peaks of the 

column to its right (column � + 1) and place a medial point there. If no 

peak is found, we place a medial point at the same y-coordinate position 

of the corresponding medial point in column � + 1 (��,�
�

= ��,���
�

). We 

also maintain the distance between two adjacent medial points from the 

same column to be approximately equal to the common distance 

�������. To do so, if the distance from the previously placed medial 

point ����,� is less than ½�������, the new medial point ��,� is instead 

placed at ��,�
�

= ����,�
�

+ �������. We place the medial points one by 

one from top to bottom until we reach the total number of �� points per 

column. The placement can be expressed by the pseudo code shown in 
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Algorithm 5.1. Similarly, to the right of column �, medial points are 

added from top to bottom one column at a time (column �, � = � +

1, � + 2, … , �� − 1). 

While the above procedure already gives an acceptable medial seam of 

text lines it is important to further adapt the seams accurately to the 

skew and fluctuation of text lines. For that purpose, a competitive 

algorithm is used in order to adapt the vertical position of medial points 

to the surrounding connected components. Figure 5.9 illustrates these 

two successive skew adaption steps.  

Let us denote ���
 the y-coordinate of the center of mass of a connected 

component ��, 0 ≤ � < ��� where ��� is the total number of connected 

components extracted. The grid-like set of medial points extracted as 

mentioned above plays the role of centroids for the competitive learning 

algorithm. The so-called winning centroid with respect to each 

component ��, is the medial point ��,� whose vertical distance to �� is 

the smallest:  

|���
− ��,�

�
  | ≤ |���

− ��,�
�

  |  ∀� ∈ [0, ��[   (5.9) 

After being selected as a winner, the winning medial point is moved by 

a fraction of its distance towards the connected component ��.    

��,�
�

← ��,�
�

+ ��. ��,��
. (���

− ��,�
�

 )     (5.10) 

Algorithm 5.1: Pseudo code illustrating the placement of medial points 
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After each iteration k, the learning step �� is forced to decrease towards 

zero (�� = ����/(1 + ����))  from an initial value �� (�� is set to 0.15 

in our experiment) so that we can halt the algorithm. In order to take 

into account, the horizontal distance between the component �� and 

medial point, we introduce a weight �: the value of � is large if the 

connected component is close to the medial point and decreases with 

the distance to the latter. This means that the components at a distance 

far away do not have much effect on the movement of the medial point. 

We use a Gaussian function (mean � = ��,�
� ) for the value of �� which 

is normalized so that 0 < �� ≤ 1.  

5.2.1.4. Line Boundary Creation (D) 

To define the boundary between two adjacent lines, a path finding 

technique is used. Our path finding approach is inspired by the A* path 

planning method proposed by [30]. The objective of path planning is to 

compute the shortest path from a starting point to its destination 

avoiding obstacles along the way. A* is one of the path planning 

algorithms that minimizes the traveling costs between states (a state 

refers to each pixel in the sequence of neighboring pixels representing 

Figure 5.9: (a) Smooth projection profiles and the estimated medial points (red dots), 
(b) Adaption of the medial points to surrounding connected components (black dots) 
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a particular path) from the starting state to the goal state. To solve the 

line segmentation problem, paths separating text lines need to be traced 

from the left side (starting state) to right side (goal state) of the text, and 

the pixels which belong to text are viewed as obstacles. However due 

to some handwritten text components from adjacent lines being touched 

or over- lapped, the goal state can be unreachable. A modified A* path-

planning technique is proposed here to allow the path to pass through 

such components.  

First, separating seams between text lines are created from the already 

defined medial points. We denote a new set of border points ��,�, 0 ≤

� < �� − 1 and 0 ≤ � < �� . It is defined as follows: 

��,� =
��,������,�

�
    (5.11) 

For each separating seam, we find a sequence of �� − 1 paths, and each 

path starts from the starting state �� at ��,� to the goal state �� at ��,���, 

� ∈ [0, �� − 1[. To emphasize the text foreground, the original 

grayscale image of the manuscript page is filtered using Sobel operator. 

The inverted gradient map ����� of the image is used so that the pixel 

intensity of the foreground text is less than the one of its background. 

Two cost functions are computed and combined to obtain the final 

traveling cost �(��, ��) between states. If we denote ��,�, ��,�, … , ���,� 

as the sequence of states traversed by path ��, the goal of the path 

finding algorithm is to determine the optimal path �������� with the 

minimum total traveling cost: 

�������� = ��� ���
��

∑ ����,�, ����,��
����
���     (5.12) 

The two function costs are described as follows: 

Intensity difference cost function �(��, ��): This function enforces 

the path to avoid passing through foreground pixels. The function 

returns a large value when the pixel intensity abruptly changes from 

high to low demonstrating a situation when an edge of a foreground text 

stroke is encountered (going from background pixels to foreground 

pixels). The function however does not give penalty but encourages it 
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when the path leaves the foreground stroke (going from foreground 

pixels to background pixels). The cost function �(��, ��) is computed 

by: 

����, ��� = ���(��. |��|, 0)   (5.13) 

where �� = ��������
�, ��

�
� − ��������

�, ��
�

�   (5.14) 

Vertical distance cost function �(��): This function reassures that the 

path does not deviate too far from the seam line preventing the path 

from jumping up or down the entire line region. It is the vertical distance 

from the state �� to the slanted seam line constructed from the two points 

at �� and ��. This cost function is defined as: 

�(��) = ���
�

− ��
�

−
���

����
�����

�
���

�
�

��
����

� �  (5.15) 

In order to connect continuously consecutive paths, we set the starting 

state �� of the next path in the sequence to be at the same position as the 

goal state �� from the previous path. We combine these two cost 

functions to achieve the final traveling cost ����, ��� defined as follows: 

����, ��� = ��. ����, ��� + �����  (5.16) 

where �� is a parameter which controls how the path choose its next 

state to traverse. A large value of �� means that the path would prefer 

staying far away from the seam line rather than passing through 

foreground text pixels. In our experiment, a small validation set will be 

used to define ��. Since the path traverses through states from left to 

right, instead of computing the cost functions for neighbor pixels in all 

eight directions, only five directional steps are considered: South, 

South-East, East, North-East, and North. Figure 5.10 shows an example 

of an optimal path going from the start state �� to the goal state ��. 

5.2.2. Experiments and Results 

5.2.2.1. Evaluation Metrics  

In order to evaluate the performance of the proposed method and also 

to compare it with existing methods in the literature, we adopt the 
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measures used in the ICDAR2013 Handwriting Segmentation 

Competition [101]. According to the evaluation method, we count the 

number of one-to-one matches between text lines detected by the 

approach and the text lines in the ground truth. The matching score is 

computed as follows: 

����ℎ�����(�, �) =
����∩��∩����

�����∪���∩����
  (5.17) 

where �(�) is function that counts the number of points in set �; �� is 

the set of all points inside the union of all polygon regions of isolated 

characters in the ground truth belonging to text line �; �� the set of all 

points inside the region of result text line �; and ��� the set of all points 

inside the union of all polygon regions of ground truth isolated 

characters in the whole document page.  

We consider a region pair to be a one-to-one match only if the matching 

score is above an acceptance threshold ��. Let’s assume � to be the 

number of text lines found in the ground truth, � to be the number of 

detected text lines by the approach, and �2� to be the number of one-

to-one match pairs, then the detection rate (��) and recognition 

accuracy (��) are defined as: 

�� =
���

�
    (5.18) 

�� =
���

�
    (5.19) 

Figure 5.10: An example of an optimal path going from the start state �� to the goal 
state �� 
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By combining �� and ��, we obtain the evaluation metric F-measure 

score ��: 

�� =
�.��.��

�����
      (5.20) 

5.2.2.2. Experiment 1 

In this first experiment, we conduct an evaluation only on image 

samples from the SleukRith Set. A subset of 110 pages of digitized 

manuscript images randomly selected. The line segmentation ground 

truth can be constructed as follows. As described in Chapter 4.2, in 

order to first segment and annotate a manuscript page into small image 

patches representing each individual character, a polygon boundary 

enclosing the character needs to be drawn manually. The human ground 

truther is required to dot out vertices of the polygon one by one until a 

proper boundary is formed. After all characters in the page are manually 

annotated, they may be grouped together and be inserted into a line. The 

union of the polygon areas of all isolated characters in a line represents 

the total region of that line. 

Among the 110 pages of the SleukRith Set, 10 pages are chosen 

arbitrarily and are used for parameter tuning (the optimal value of ��=3 

is found). We then apply the proposed approach to the other 100 pages 

(the total number of text lines in the ground truth � = 476). For 

comparison, the same subsets are also used for the methods proposed 

by [36] and by [37]. The evaluation results using the acceptance 

threshold �� = 0.9 are illustrated in Table 5.3. As it can be observed 

from Table 5.3, the proposed method outperforms the other approaches 

by a large margin. Some results of line segmentation using the proposed 

method dealing with skew, fluctuation, and discontinuity of text lines 

are given in Figure 5.11. 

Table 5.3 Result of the performance evaluation of line segmentation methods 
(Experiment 1) 

Method M o2o 
DR 

(%) 

RA 

(%) 

FM 

(%) 

Method in [36] 665 356 53.53 74.79 62.40 
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Method in [37] 505 157 31.09 32.98 32.01 

Proposed method 484 446 92.15 93.70 92.92 

5.2.2.3. Experiment 2 

In the second experiment, to showcase that the proposed approach is 

able to generalize to other datasets, we apply it on a larger dataset of 

text lines extracted from the SleukRith set as well as a dataset which is 

a collection of low-resolution images from EFEO database. We also 

include datasets generated from Balinese and Sundanese manuscripts. 

All palm leaf manuscript datasets used in this experiment are presented 

in Table 5.4.  

Khmer 1 represents the collection of images from EFEO database. A 

semi-automatic scheme is used to construct a ground truth for this set. 

A set of medial points for each text are generated automatically on the 

binarization ground truth of the page image. Then those points can be 

moved up or down with a tool to fit to the skew and fluctuation of the 

real text lines. We also note touching components spreading over 

multiple lines and the locations where they can be separated. 

Figure 5.11: Segmentation results of the proposed approach (pairs of whole 
segmented manuscript page and zoomed out area with medial seams marked in red)
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Khmer 2 is constructed similarly to the dataset used in Experiment 1; 

however, we double the number of pages in this new dataset. The text 

line segmentation ground truth data for Balinese and Sundanese 

manuscripts have been generated by hand based on the binarized ground 

truth images constructed on AMADI_LontarSet and Sunda dataset 

respectively [92, 93]. 

Table 5.4: Palm leaf manuscript datasets for text line segmentation task (Experiment 
2) 

Manuscripts Pages Text Lines Dataset 

Khmer 1 43 pages 191 text lines Extracted from 
EFEO  

Khmer 2 200 pages 971 text lines Extracted from 
SleukRith Set  

Balinese 1 35 pages 140 text lines Extracted from 
AMADI_LontarSet  

Balinese 2 Bali-2.1: 47 pages  

Bali-2.2: 49 pages  

181 text lines 

182 text lines 

Extracted from 
AMADI_LontarSet  

Sundanese 1 12 pages 46 text lines Extracted from 
Sunda Dataset  

Sundanese 2 61 pages 242 text lines Extracted from 
Sunda Dataset  

 

In this experiment, the proposed method and the seam carving method, 

which is the runner up according to the results from Experiment 1, are 

applied on all datasets. The experimental results are presented in Table 

5.5. According to these results, both methods performs sufficiently well 

for most datasets except Khmer 1. This is because all images in this set 

are of low quality due to the fact that they are digitized from microfilms. 

Nevertheless, the proposed method still proves to achieve better results 

than the seam carving method on all datasets of palm leaf manuscripts 

in our experiment. The main difference between these two approaches 

is that instead of finding an optimal separating path within an area 

constrained by medial seam locations of two adjacent lines (in the seam 

carving method), the proposed approach tries to find a path close to an 

estimated straight seam line section. These line sections already 
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represent well enough the seam borders between two neighboring lines, 

so they can be considered as a better guide for finding good paths, hence 

producing better results.  

One common error that we encounter for both methods is in the medial 

position computation stage. Detecting correct medial positions of text 

lines is crucial for the path finding stage of the methods. In our 

experiment, we noticed that some parameters play an important role. 

For instance, the number of columns/slices � of the seam carving 

method and the high and low thresholding values of the edge detection 

algorithm in the proposed approach. In order to select these parameters, 

similar to Experiment 1, a validation set consisting of five random pages 

from each dataset is used. The optimal values of the parameters are then 

empirically selected based on the results from this validation set. 

Table 5.5: Experimental results for text line segmentation task (Experiment 2) 

Method Manuscript N M o2o DR 
(%) 

RA 
(%) 

FM 
(%) 

Seam Carving 
Method in [36]  

Khmer 1 191 145 57 29.84 39.31 33.92 

Khmer 2 971 1046 845 87.02 80.78 83.78 

Balinese 1 140 167 128 91.42 76.64 83.38 

Bali-2.1 181 210 163 90.05 77.61 83.37 

Bali-2.2 182 219 161 88.46 73.51 80.29 

Sundanese 1 46 43 36 78.26 83.72 80.89 

Sundanese 2 242 257 218 90.08 84.82 87.37 

Proposed method Khmer 1 191 169 118 61.78 69.82 65.55 

Khmer 2 971 990 910 93.71 91.91 92.80 

Balinese 1 140 143 132 94.28 92.30 93.28 

Bali-2.1 181 188 159 87.84 84.57 86.17 

Bali-2.2 182 191 164 90.10 85.86 87.93 

Sundanese 1 46 50 41 89.13 82.00 85.41 

Sundanese 2 242 253 222 91.73 87.74 89.69 
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6. Feasibility Study: Glyph Recognition 

and Localization using Deep Learning 

This chapter presents a study about the feasibility of using deep learning 

approaches to solve handwritten text recognition problems on Khmer 

palm leaf documents. Trial experimentations are conducted on two 

basic DIA tasks: isolated glyph (or character) recognition (Chapter 6.1) 

and glyph localization in word images (Chapter 6.2). We also introduce 

in the proposed glyph localization model a special type of feature maps 

called “glyph-class map” (or GCM in short) which is able to store 

spatial information as well as the identity of all glyphs in the text image. 

The glyph localization problem now becomes GCM generation. 

As illustrated in Figure 6.1, complete systems to recognize text on short 

word image patches will be developed using the outcomes from the 

feasibility study presented in this chapter. The detailed description as 

well as experimental evaluations of those systems will be explored in 

Chapter 7.  

6.1. Isolated Glyph Recognition 

The first attempt in using neural networks to solve the text recognition 

problem for Khmer palm leaf manuscripts is presented here. Before 

Figure 6.1: Overview of the workflow of the text recognition module 
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getting into a more challenging task of recognizing text images of whole 

text lines, individual or isolated glyph recognition is studied first. 

Isolated glyph recognition problem is a task that takes an input image 

patch containing a single glyph or symbol and predicts the class (or 

probabilities of all classes) that glyph in the image belongs to. For this 

task, we present four neural network architectures. The choice of the 

hyper parameters such as the number of layers as well as the number of 

hidden units of each model presented here is empirical. In other words, 

we focus on the feasibility of different types of neural network 

architectures (see Chapter 3.2.2) on the recognition problem of Khmer 

palm leaf manuscripts rather than a computationally intensive fine 

tuning of their structure.  

6.1.1. Description of the Networks 

The first network (Figure 6.2) is CNN based and is composed of two 

pairs of convolutional (12 and 24 of 5 by 5 filters) and max pooling 

layers (2 by 2 window size with 2 by 2 strides for both layers). The 

output from each convolutional part is activated by Relu non-linearity. 

A drop out with dropped probability of 0.2 is applied after each max 

pooling. The output from the last max pooling is flattened and followed 

by a fully connected layer (with 1024 hidden units) also activated by 

Relu. A drop out with dropped probability of 0.6 is also applied 

afterward. Finally, the final output with a softmax activation is 

produced. 

The second network (Figure 6.3) is recurrent. First, the input image is 

transformed into a sequence of one-pixel columns. Each column is then 

fed into two layers of LSTM cells with 512 hidden units each. The last 

time step output from the last LSTM layer is connected to the final 

output layer which is then activated with a softmax function. 

The third network (Figure 6.4) is also RNN based. However, the input 

image is transformed simultaneously into a sequence of one-pixel 

columns and a sequence of one-pixel rows. Each sequence is fed 

separately into two distinct pairs of LSTM layers which are similar to 

the ones in the second network. The last time step output from the last 
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layer of each pair is concatenated before being fed into the softmax 

activated final output layer.  

The fourth network is a combination of the convolutional and max 

pooling part in the first network and the recurrent part in the third 

network (Figure 6.5). The input is first fed into the two convolutional 

and max pooling pairs. The output from this first two layers is split row 

wise and column wise along the height and width dimension 

respectively (the depth or channel dimension is flattened). Similar to 

Figure 6.2: CNN based network 

Figure 6.3: Column wise LSTM network 

Figure 6.4: Column wise and row wise LSTM 
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the third network, we feed the row wise and column wise sequences to 

two different two-layer LSTMs (again with 512 hidden units in each 

layer). The outputs from the last time step of the last layer of the two 

LSTMs are concatenated and finally are followed by the last output 

layer activated by a softmax function. Like previous architectures, a 

drop out (with dropped probability of 0.2) is applied after each max 

pooling and also after each LSTM layer. 

6.1.2. Experiments and Results 

6.1.2.1. Datasets 

The dataset for this task consists of sample images of isolated character 

patches extracted from different manuscript pages in SleukRith set. The 

glyph images are grouped by their class label. We do not take into 

account small symbols such as punctuations and diacritics and also 

remove symbols with too few occurrences. The resulting set consists of 

a total number of 111 classes. Each image patch is gray scaled, resized 

to be 48 by 48 pixels, and then normalized using histogram stretching 

technique (Figure 6.6). 

We also extend the evaluation of the proposed methods to the datasets 

extracted from Indonesian manuscripts: Balinese script dataset and 

Sundanese script dataset. Figure 6.7 and Figure 6.8 show respectively 

some sample images of Balinese and Sundanese handwritten characters. 

Table 6.1 summarizes the datasets on all languages used for this task.  

Figure 6.5: A combination of convolutional and recurrent neural network 
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Table 6.1: Palm leaf manuscript datasets for isolated character/glyph recognition 
task 

Manuscripts Classes Train Test Dataset 

Khmer 111  113,206  90,669  SleukRith Set  

Balinese 133  11,710  7,673  AMADI_LontarSet  

Sundanese 60  4,555  2,816  Sunda Dataset  

 

6.1.2.2. Experiment Procedure and Evaluation Protocols 

A multi-class cross-entropy loss is used as the loss function for this task 

since it is suitable and effective for multi-class classification problems. 

For each sample �, the loss is computed by 

�� = ∑ ��,� ���(��,�)
��������
���     (6.1) 

where ��,� is a binary indicator if the class label � is the correct 

classification for the sample � (1 if it is correct or 0 otherwise), ��,� is 

the predicted probability by the network that input sample � belongs to 

class label �, and ������ is the total number of classes. The final loss is 

the sum of losses from all samples in the batch. 

During training, the loss function of each network is minimized using 

Adam optimizer [102] with initial learning rate of 0.001. Weight 

parameters in all networks are initialized using a truncated normal 

distribution with a standard deviation of 0.1 while biases are initialized 

with constant values of 0.1. The network is trained per mini batch basis 

(in our experiment we choose a batch size of 300). The training set starts 

with all samples being shuffled, and after a competition of each epoch, 

the order of the samples in the training set is then again reshuffled. For 

Figure 6.6: (a). Original image, (b). Gray scaled and resized, (c). Normalized 
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every ����� of iterations, we calculate the average loss of all batches and 

stop the training if the average loss does not improve for ����� 

consecutive tests. In our experiments we choose ����� to be 50 and ����� 

to be 10. 

Following the evaluation method from ICFHR competition [8], the 

recognition rate i.e. the percentage of correctly classified samples over 

the test samples: ��������/������ is calculated, where �������� is the 

number of correctly recognized samples, and ������ is the total number 

of the test samples. 

6.1.2.3. Results and Discussion 

Since the beginning period of pattern recognition research, many 

feature extractions methods for character recognition have been 

Figure 6.7: Sample images of Balinese characters 

Figure 6.8: Sample images of Sundanese characters 
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presented in the literature. We, therefore, also perform a comparison 

study with a handcrafted feature extraction approach [103] mentioned 

in Chapter 3.2.1. A neural network is used as a classifier which takes 

the feature vectors as input and predict the probability of all character 

classes. Additional improvement is performed by applying 

unsupervised learning based on K-means clustering to calculate the 

initial weight for the neural network training phase from the cluster 

centers of all feature vectors. 

The experimental results of this evaluation are presented in Table 6.2. 

According to these results, the proposed networks (except the column-

wise RNN network) perform similarly to the handcrafted feature 

extraction approach on Balinese and Sundanese. However, the 

proposed networks (again except the column-wise RNN) outperform 

the handcrafted one on Khmer. This is due to the size of the datasets 

since multi-layer neural networks require a large amount of data to train 

which is not the case for Balinese and Sundanese isolated character 

datasets.  It can also be noted from the results that even being purely a 

recurrent network, which is more suitable in sequence modeling rather 

than a single object classification, the column-wise network as well as 

the column-row-wise network preform sufficiently well in recognizing 

isolated characters on palm leaf documents. The latter produces a 

slightly better result since it uses sequential information along both 

horizontal and vertical axes. It is also shown that, utilizing both the 

convolutional and recurrent modules is able to reach a lower error rate 

(compared to the CNN based only network) since on top of using 

convolutional modules in the shallow layers to extract principle features 

from the character images, the network also uses the column wise and 

row wise sequential information in the deeper layers. This illustrates 

that combining convolutional with recurrent module is a powerful 

technique to classify handwritten characters written on palm leaves. 
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Table 6.2: Experimental results for isolated character/glyph recognition task (in % 
recognition rate) 

Methods Khmer Balinese Sundanese 

Handcrafted Feature (HoG-NPW-
Kirsch-Zoning) with UFL + NN 
[103] 

92.44 85.63 79.33 

Purely CNN based  93.71 85.46 79.83 

Column-wise RNN network 91.51 81.38 67.72 

Column-wise and row-wise RNN 
network  

93.00 84.33 71.16 

Convolutional recurrent network  94.99 84.65 80.26 

 

6.2. Glyph Localization in Word Images 

In this section, we look into a more challenging problem: glyph 

localizing in word images. This is a sequence learning task which takes 

as input an image containing a handwritten text and returns as output 

the spatial location and the identity of all glyphs in that text. According 

to the experimental results from the previous section, utilizing a 

combination of convolutional and recurrent blocks is very efficient in 

recognizing Khmer handwritten characters on palm leaf manuscripts, 

and it is the direction that we go further in this section.  

6.2.1. Glyph-class Map (GCM) 

To take into account the character annotation information, for each 

word, a glyph-class map (GCM) is built. The word image patch is 

divided into grid like cells of �� by �� pixels where �� and �� are the 

height and the width of each cell respectively. Resizing may be applied 

to ensure that all cells are of equal size (after the resizing, the width of 

the word image patch must be divisible by ��, and the height must be 

divisible by ��). Each cell of the GCM is then assigned to one and only 

one glyph-class which contains the most pixels in that cell. From all the 

annotated words in the dataset, 134 glyph-classes are found including 

one additional token class for cells containing only blank space or 

background pixels. An example of how a glyph-class map is built is 

shown in Figure 6.9. 
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6.2.2. GCM Generator 

The objective of the approaches for this task is just to predict the glyph-

class map of the input word image patch which means to classify each 

cell of the input patch to its corresponding glyph-class rather than to 

output the text transcription of the input word image. Again, here we 

focus on the feasibility of different types of neural network architectures 

especially the choice between one-dimensional and two-dimensional 

RNNs.  

Two network architectures are presented. Figure 6.10 shows the general 

architecture of both networks. The two models consist of the same two 

beginning convolutional layers (the filter size is 5 by 5 for both layers 

and the numbers of filters are 12 and 24 respectively). A max pooling 

layer of stride 2 follows, so the output gives rise to a ½�� × ½�� × � 

feature map where �� and �� are the height and the width of the input 

image (after possible paddings) and � = 24 the depth of the feature 

map which equals to the number of filters of the last convolutional 

layer. To match the number of cells in the character-class map 

(���� × ���� cells where ���� = ��/��   and ���� = ��/��), the feature 

map is also divided into grid like cells where each cell is of equal size 

of ½�� by ½�� (�� and �� must be divisible by 2 and in our 

experiments, we choose �� and �� to be �� = �� = 8). Therefore, the 

final dimensions of the feature map are now ���� × ���� × �� where 

�� = ½��. ½��. �.  

The first network (let’s call it Trial-Net1) utilizes a one-dimensional 

RNN (1D-RNN) architecture (Figure 6.11). Inspired by the architecture 

in [87], all four directions are taken into account: left to right, right to 

Figure 6.9: (a). Original word image patch, (b). Annotated character information 
in the word: polygon boundaries of all characters, (c). Glyph-class map 
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left, top to bottom, and bottom to top. To keep the architecture as 1D, 

the feature map cells are flattened column wise or row wise to generate 

four one-dimensional sequences of length ����. ���� where each 

sequence corresponds to each direction mentioned above. All sequences 

are then fed into one shared LSTM layer with 512 hidden units to 

produce four output sequences also of length ����. ���� each of which 

is then reshaped back to be a grid of ���� × ����. The four grids are 

concatenated together along the feature axis to form a single grid of 

features (���� × ���� × 2048). The next layers of the network are a 

fully connected layer with 1024 hidden units followed by a softmax 

activated final output layer to produce the predicted character-class map 

(���� × ���� × ������ where ������ = 134).  

Due to the characteristics of Khmer writing especially how characters 

are positioned to form a word, the second network (Trial-Net2) takes 

into consideration both spatial dimensions of the image. For this reason, 

the proposed network uses a two-dimensional RNN (Figure 6.12). 

Unlike the first network, diagonal directions are considered instead. 

Four grids of cells are produced from the input feature map to represent 

each of the four diagonal directions: top-left to bottom-right, bottom-

right to top-left, top-right to bottom-left, and bottom-left to top-right. 

They share a 2D LSTM layer (whose previous states are given by the 

Figure 6.10: General architecture of the networks in the first trial 



89 
 

previous cells along both horizontal and vertical axes) also with 512 

hidden units to output four grids of the same size (���� × ���� × 512) 

which are then concatenated along the depth or feature axis to get a final 

grid before feeding it to a fully connected layer and then to the final 

output layer similar to the architecture of the first network. 

We regularize both networks by applying dropouts with dropped 

probability of 0.2 after the max pooling and of 0.2 and 0.5 before and 

after the fully connected layer respectively. Since the text image can be 

big in width which would produce a very long sequence for the LSTM 

layer, we also use gradient clipping to prevent exploding gradients. 

For efficient training, input word image patches are sorted by their 

width and then are batched together so that all image samples in the 

same batch have similar width. This saves memory space and 

Figure 6.11: Architecture of the 1D-LSTM layer (Trial-Net1) 

Figure 6.12: Architecture of the 2D-LSTM layer (Trial-Net2) 
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computing time by eliminating unnecessary large paddings (we may 

still need to apply small paddings so that all input images have their 

widths equal to the maximum width in the batch). After each epoch, the 

reshuffling is done on the order of batches instead of the order of every 

single samples. Figure 6.13 illustrates this batching mechanism. 

6.2.3. Experiments and Results 

6.2.3.1. Datasets 

The dataset used to train the Trial-Net1 and Trial-Net2 is generated 

from SleukRith set. It consists of 24,009 samples of word image 

patches, their corresponding ground truth GCM, and their word 

transcriptions. The dataset is divided into three parts: around 65% for 

training, 5% for validating, and 30% for testing. All word image patches 

are in grayscale (only one-color channel) and are normalized by scaling 

so that they are of the same height (72 pixels) but still with variable 

width. 

6.2.3.2. Evaluation Protocols 

We use top � error rate measurement to evaluate the performance of the 

Trial-Net1 and Trial-Net2. Each cell of the target GCM is predicted by 

the networks. The error rate of one sample word image is the number 

of incorrectly identified cells over the total number of cells in that 

image. We obtain the final error rate of all samples in the test set by 

Figure 6.13: (a). Initial sample order, (b). Sort by the width of each sample, (c). 
Pad each sample to the maximum width in the batch, (d). Shuffle batch order 
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averaging the error rate of each sample. In this evaluation, we choose 

� = 5 and � = 1. 

6.2.3.3. Results and Discussion 

Table 7.2 shows evaluation results of the Trial-Net1 and Trial-Net2. 

From the results shown, we can see that the Trial-Net2 which uses two-

dimensional LSTM outperforms the Trial-Net1 which uses only one-

dimensional LSTM. This is to be expected since the LSTM module of 

the latter network acquires more information from the previous states 

in both vertical and horizontal axes. The error rates from both networks 

drop significantly between the top 1 and top 5 measurements. This 

illustrates the problem caused by the similarity and the ambiguity of 

Khmer characters. An example of a comparison between predicted 

GCM from both networks and the ground truth GCM is also given in 

Figure 6.14. By observing this example, we can notice that the GCM is 

not very sensitive to error. Connected components in the map (even 

with some noises) can still be used to obtain the identity of each 

character and its location in the text image.  

Figure 6.14: (a). Original word image, (b). Ground truth GCM, (c). Result 
predicted by the Trial-Net1, (d). Result predicted by the Trial-Net2 
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Table 6.3: Evaluation results of the Trial-Net1 and Trial-Net2 

  Error Rate of the GCM 
Generator (%) 

  Top 1  Top 5 

Trial-Net1 32.01 8.46 

Trial-Net2 20.49 2.40 
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7. Text Recognition 

After the trial experimentations presented in the previous chapter, we 

now propose an end-to-end model to recognize a handwritten text on 

short image patches extracted from Khmer palm leaf manuscripts. As 

illustrated in Figure 6.1, two novel text recognition systems following 

convolutional recurrent neural network architectures are proposed. The 

first initial system (denoted Word-Net) is used to recognize word image 

patches obtained from the annotated word dataset of SleukRith set 

(Chapter 7.1). Since the number of samples in this word dataset is still 

limited, a new extended dataset whose size is significantly larger is 

constructed. A new optimized text recognition system (denoted SubSyl-

Net) is proposed in Chapter 7.2 to accommodate this new augmented 

dataset.  

7.1. Recognition of Word Image Patches (Word-Net) 

The model consists of two main modules: the GCM generator and the 

GCM encoder-decoder. Figure 7.1 illustrates the complete architecture 

of the proposed model. Both modules utilize the combination of 

convolutional and multi-dimensional recurrent blocks.  

GCM Generator: a GCM generator takes a grayscale word image 

patch � with dimension �� × �� as input and returns a corresponding 

GCM of the patch as output. First, convolutional blocks are used to 

extract automatically the features of the word image patch. Each 

convolutional block is composed of a convolutional layer with a 

receptive field 5 × 5 at a fixed stride 1 × 1. We increase the number of 

feature maps from 64 to 128 and then to 256 to gradually obtain from 

low to higher levels of representation. To further extend the depth of 

the network, we also downscale the image by a factor of 2 at the end of 

each convolutional block by using maxpooling with kernel size 2 × 2 

at a stride 2 × 2. Convolutional blocks are activated by ReLu. To 

regularize the model and to prevent overfitting, dropout of dropped 

probability � = 0.3 is introduced after each block. To ensure that the 

dimension of the output predicted by the CGM generator is identical to 

the ground truth CGM (i.e. ���� × ����), the feature map output from 
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the convolutional blocks needs to be divided into a grid of cells of size 

��
� × ��

�  which can be computed as follows: 

Figure 7.1: Overview of the architecture of proposed word recognition model 
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��
� =

��

������
     (7.1) 

��
� =

��

������
     (7.2) 

where ����� is the number of convolutional blocks which is equal to 3 

in the proposed architecture. We should also ensure that �� and �� are 

large enough to allow the division by 2�����. Therefore, we use �� =

�� = 8 in our experiments. Each cell in the grid is then transformed 

into a vector by flattening out its dimension. 

To take advantage of the importance of local spatial context in a two-

dimensional space according to the characteristics of Khmer writing, 

we use multi-directional multi-dimensional LSTM (MDDLSTM) [74] 

in our recurrent blocks. Instead of a single hidden state from the 

previous time step like in the conventional one-dimensional LSTM, 

MDDLSTM makes use of two states each from both the vertical and 

horizontal axes (see Chapter 3.2.2 for more details about MDDLSTM). 

To take into account all directions in the 2D space, four grids of cells 

are produced from the feature map grid. Those four grids represent four 

diagonal directions: top-left to bottom-right, bottom-left to top-right, 

top-right to bottom-left, and bottom-right to top-left. The four 

directional grids share the same two-layer block of MDDLSTM (each 

layer with 256 hidden units) to produce four output grids whose feature 

vectors in each cell are then concatenated together to transform back 

into a single grid of feature map. At each cell of the grid, we apply a 

dropout (� = 0.3) followed by a fully connected layer (with 1024 

hidden units) activated by ReLu and another dropout (� = 0.5). To 

predict the GCM corresponding to the input word image patch, the last 

layer with ��� + 1 hidden units and a softmax activation is used to 

output the probabilities of all glyph classes (including the class 

representing the background) for each cell in the predicted GCM. 

GCM Encoder-Decoder: an encoder-decoder model is used to convert 

the GCM into final transcription of the input word image patch. This 

encoder-decoder module is separated into two sub-modules: an encoder 

and a decoder. The encoder encodes the GCM generated by the GCM 
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generator into a representation vector called context vector. The 

decoder then uses the context vector as an initial state to predict the 

Unicode transcription one letter at each time step. 

We propose a combination of convolutional blocks and recurrent blocks 

as our GCM encoder. It takes as input the GCM and first reduces the 

dimension of the vector in each cell by passing it through an embedding 

layer (64 neurons) and then squash it using Tanh activation. Since the 

GCM contains information about the identity and the number of glyphs 

appearing in the word image patch and also their estimated boundary 

regions, two convolutional blocks are used to capture the bottom 

features of the map. Two main benefits of these convolutional blocks 

are that (1) the features extracted are useful in detecting and grouping 

together automatically the neighbouring cells belonging to the same 

glyph region without the need for handcrafted method such as 

connected component extraction and also that (2) the maxpooling layer 

down-samples the GCM dimensionality which limits the length of the 

input sequence to the recurrent block of the encoder to be not too long. 

For the purpose of regularization, dropouts are used after each 

convolutional block. Due to the GCM being two-dimensional, we again 

use MDDLSTM in the recurrent block of the GCM encoder. Similar to 

the description of applying MDDLSTM in the GCM generator 

mentioned previously, the recurrent block output four grids along four 

different diagonal directions. The four grids are afterwards merged back 

together to form the final grid with dimension ½���� × ½���� (the 

GCM is down-sampled by a factor of 2 due to the maxpooling layer in 

the first convolutional block) which is used to compute the output 

context vector by averaging all its cells. The final grid of the encoder 

can also be referred to as the local contexts of the GCM. Both the 

context vector and the local contexts are sent to the decoder to be 

decoded into word transcription. 

A GCM decoder is used to predict the next letter or character in the 

word transcription given the context vector generated from the encoder 

and all previously predicted characters. The characters to be predicted 

are represented by integer values �, 0 ≤ � < ����� + 3 where ����� is 
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the total number of Khmer Unicode characters (which are limited 

between U1780 and U17E9). We add three more character codes to 

represent the start token ������, the end token ����, and the unknown 

character ����. Before being fed to the module as input, the character 

representation value � is transformed into a vector by using the one hot 

encoding technique. For this module, we use a conventional one-

dimensional LSTM as the recurrent block. Figure 7.2 shows the detailed 

architecture of the GCM decoder. Before becoming the initial hidden 

state of the LSTM, the context vector is first passed through a fully 

connected layer with equal number of hidden units (512) and is 

activated by Tanh function.  

Since the generated GCM may contain multiple groups of cells 

representing multiple regions of glyph boundaries, each predicted 

character from the decoder should be conditioned on a different region 

of cells. Instead of relying only on a single encoded context vector, the 

decoder should pay its attention to particular regions in the CGM to 

predict efficiently the correct character at each time step. The local 

contexts provided also by the GCM encoder are useful in this situation. 

We adopt the attention mechanism proposed by [104].  

Denote �(��) a local context at position (�, �), 0 ≤ � < ½���� and 0 ≤

� < ½����, the attention vector at each time step � (��) is computed as 

a weighted sum of the local contexts. 

�� = ∑ ∑ ��
(��)

⨀�(��)
����

�
��

���

����
�

��

���
   (7.3) 

The weight vector ��
(��)

 of each local context �(��) is computed by 

��
(��)

=
���(��

(��)
)

∑ ∑ ���(��
(��)

)

����
�

��

���

����
�

��

���

           (7.4) 

��
(��)

= ����(ℎ���, �(��))          (7.5) 

where ���� is a small neural network with one hidden layer of 512 units 

�����ℎ���, �(��)� = �����ℎ���;  �(��)� + ����          (7.6) 
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which is used to learn the weight vector ��
(��)

 at time step t in function 
of the previous hidden state of the decoder ℎ��� and each local context 

�(��). The input �� to the LSTM is the concatenation of the one hot 
encoding of the character and the attention vector ��. The decoder 
always has the start token ������ as its first input at time step � = 0. The 
current hidden state from the recurrent block is then fed into the final 
output layer (after applying a dropout with dropped probability � =
0.5), and a softmax function is applied afterwards. This sotfmax 
activated output is used to create the input for the next time step. The 
decoder stops generating new characters when the end token ���� is 
encountered or when the output transcription reaches a maximum 
length. 

Beam Search: Instead of using greedy search i.e. choosing the 

character with the highest probability at each time step, we adopt the 

beam search with length normalization as proposed by [105]. The beam 

search technique maximizes the joined probability of all characters in 

the predicted word transcription by keeping the top � predictions as 

hypotheses. To not let the search prefer short transcriptions to long 

ones, the joined probability of each hypothesis is normalized by being 

divided by ����� which is computed as follows: 

Figure 7.2: Detailed architecture of the GCM decoder 



99 
 

����� =
(���)�

(���)�        (7.7) 

where L is the length of the predicted transcription in each hypothesis. 

In our experiments, we select the beam size k to be 5, and the hyper 

parameters β and γ are chosen to be 5 and 0.7 respectively as 

recommended by [105]. The hypothesis whose joined probability is the 

maximum is chosen as the final output transcription. 

Loss Functions: To train the Word-Net, two losses are minimized. The 

first loss �� corresponds to how well the generator generates the CGM 

while the second loss �� captures the overall performance of the model 

to predict the final word transcription. For each sample image, those 

two losses are computed as follows: 

�� = − ∑ ∑ ∑ ���,�
(��)

���(���,�
(��)

)
���

���
������
���

������
���   (7.8) 

where ���,�
(��)

 is the probability that the generator predicts that the cell at 

the ith row and the ��� column of the predicted GCM belongs to glyph 

class �, and ���,�
(��)

 is equal to 1 if the cell at position (�, �) of the ground 

truth GCM belongs to glyph class � or otherwise it is equal to 0. The 

second loss �� is computed by 

�� = − ∑ ∑ �����,�
(�)

��� (�����,�
(�)

)
�������
���

���
���           (7.9) 

where �����,�
(�)

 is the predicted probability of character of class � at time 

step �, �����
(�)

= [�����,�
(�)

] (0 ≤ � < ����� + 3) is the one hot encoding 

of the ith character in the ground truth transcription, and � is the length 

of the ground truth transcription. The total loss of the complete model 

is then computed by 

������ = ���� + (1 − ��)��         (7.10) 

where �� (�� ∈ [0,1]) is a hyper parameter to control how generating 

the GCM affects the total loss of the Word-Net (see Chapter 7.4 for the 

choice of ��).  
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Training: During training the total loss of the function is minimized 

using Adam optimizer [102]. The GCM generator and the GCM 

encoder-decoder are pre-trained separately to minimize their 

corresponding losses (�� and �� respectively) using a normal 

distribution with standard deviation of 0.1 as initial weights and 

constants values of 0.1 as initial biases for all layers of the network. For 

the GCM encoder, the ground truth GCM is used instead as input. We 

also adapt the teacher forcing technique for the GCM decoder. The 

technique feds the characters in the ground truth word transcription to 

the decoder for the prediction of later outputs instead of using the 

predicted output from the previous time step of the decoder itself. This 

teacher forcing behavior forces the decoder to stay close to the ground 

truth sequence resulting in faster training. Periodically every five 

epochs, we alternatively train with teacher forcing for the first three 

epochs, and without it for the last two epochs. After each module 

converges, the complete network is then fine-tuned by minimizing the 

total loss as computed in Equation 7.10. 

The network and its modules are trained per mini batch basis (25 

samples per batch). For efficient training, input word image patches are 

sorted by their width and are then batched together so that all image 

samples in the same batch have similar width. At the start of each epoch, 

the order of the batch is shuffled. To ensure that all images in the same 

batch have the same dimension, they are rescaled to new height ��
� and 

width ��
� : 

��
� = (1 + ��)��    (7.11) 

��
� = (1 + ��)��,���     (7.12) 

where ��,��� is the minimum width of the batch, and �� and �� are 

small values selected arbitrarily between [−0.15,0.15]. This rescaling 

also provides data augmentation to the training set due to the random 

nature of �� and ��. 

For every ����� of iterations, we evaluate the network on the validation 

set and stop the training if the evaluation result does not improve for 
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������ consecutive epochs. In our experiments we select ����� = 50 

and ������ = 5. 

7.2. Recognition of Sub-syllable Image Patches (SubSyl-

Net) 

By using the data augmentation technique (see Chapter 4.2.4), a new 

and significantly larger dataset consisting of groups of sub-syllables is 

constructed. To adapt to this new dataset, instead of using the Word-

Net described previously, in this section we propose a completely new 

pipeline of text recognition system which is used to recognize a short 

image patch consisting of a group of glyphs and to return its 

corresponding text transcription (denoted SubSyl-Net). One of the 

reasons behind developing a new architecture for the sub-syllable 

dataset is due to the capacity of our current computing resource. Since 

the new sub-syllable dataset is significantly larger than the word dataset 

(see Table 7.1 for the exact number of samples in both datasets), 

training the previous network on this new dataset would be too time-

consuming. We, therefore, keep in mind possible optimization options 

for this new architecture. Some optimization choices include the use of 

inception blocks (described in Chapter 7.2.2) instead of large 

convolutional layers and the substitution of multi-directional multi-

dimensional LSTMs with BLSTM in the recurrent blocks (owing to 

their comparable performance as discussed in [106]).  

As illustrated in Figure 7.3, the proposed system comprises two main 

modules: a generator which extracts feature maps containing the 

context describing the input image and a decoder which maps the 

variable length feature maps and interprets them into variable length 

output text sequences. To capture the spatial information as well as the 

identity of each glyph in the image patch, the generator outputs the 

modified version of the GCM (which will be mentioned in detail next). 

In addition, a second feature map is also produced by the generator to 

acquire extra abstract information which is used to help decode the text 

transcription.  
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7.2.1. Modified GCM 

To improve the GCM mentioned previously (eliminating the hyper 

parameters �� and �� as well as their compatibility with the input image 

size), a modified version of the GCM is proposed. Let’s suppose an 

image patch of a sub-syllable group � composing of � glyphs, and 

��  (0 ≤ � < �) represents the region bound by the polygon boundary 

of the ��� glyph ��. In each region ��, we replace the value of each pixel 

by a new value �� (0 < �� ≤ ��� where ��� is the number of glyph 

classes) corresponding to the class of the glyph ��. A new image �′ with 

the same dimension as � is created by forming the union of all regions 

��. An additional value (������ = 0) is used to fill in the background 

region of �′ where no glyph pixels are assigned to. To obtain the final 

GCM, the image �′ is downsampled by applying nearest-neighbor 

interpolation. The process of how the new GCM is constructed is 

illustrated in Figure 7.4. 

7.2.2. Feature Generator 

This component of the network takes as input a grayscale image patch 

of a sub-syllable group and produces two outputs: a corresponding 

GCM and an additional feature map. The generator starts with a 

convolutional block given its effective capability in extracting visual 

features from images. The block comprises of two basic convolutional 

layers to output a low-level feature map whose dimension is reduced by 

passing through a maxpooling layer.  

Figure 7.3: Overview of the architecture of the SubSyl-Net 
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Next we utilize two inception blocks following the previous 

convolutional block. Each inception block is composed of two 

inception layers and again at the end of the block, a maxpooling layer 

is applied to down sample the dimension of the output map. The 

proposed inception layer in this work is derived from the inception 

module introduced by [107]. The principle idea of the inception layer is 

that multiple convolutional layers with different kernel sizes in a single 

module can be used as a feature extractor to capture multi-scale 

contextual information from the input. In another word, a single 

inception layer contains multiple inception paths, and from these paths, 

feature maps of different scales are combined to approximate more 

complicated feature maps which can otherwise be achieved only 

through larger filters and more layers. The architecture of the inception 

layer used in our proposed system is shown in Figure 7.5.  

Formally, the input image � of dimension �� × �� ×  1 becomes a 

feature map ℳ with dimension �ℳ × �ℳ × �ℳ after it passes through 

the convolutional block and then the two inception blocks (� and � 

represents the height and the width dimensions respectively). The input 

Figure 7.4: Modified version of GCM, (a) Raw image patch I, (b) Map I' containing 
polygon boundaries of all glyphs, (c) Downsampling I' by applying nearest 
neighbor interpolation to obtain the new GCM 
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image is grayscale (only one channel) hence its third dimension is 1, 

and �� is the size of the output feature. The height and width dimension 

of the output feature map is reduced in size by a factor of 2�����  

�� = ��/2�����   (7.13)  

�� = ��/2�����    (7.14) 

due to the application of maxpooling, where ����� is the number of the 

2 × 2 maxpooling layers used in the generator. 

In order to also encode the temporal context which is significant 

especially in the complex writing such as Khmer whose letters are 

position dependent, the feature map ℳ is transformed into a one 

dimensional sequence of length �ℳ. �ℳ whose each element is a 

vector of size �ℳ. To process the sequence, we utilize a Bi-directional 

LSTM (BLSTM), a combination of two LSTM layers which read the 

sequence in opposite directions to encode both forward and backward 

dependencies. The BLSTM outputs two sequences whose 

corresponding elements are concatenated to return back to a single 

sequence of feature vectors. Each feature vector is passed on to a fully 

connected layer and then to a final output layer activated by a softmax 

to produce the probability distribution for each glyph class. The output 

Figure 7.5: Detailed architecture of the inception layer. Values in the parenthesis are 
the numbers of filters (corresponding respectively to the first and the second inception 
blocks in the SubSyl-Net 
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sequence is finally transformed back to its previous dimension 

�ℳ × �ℳ × ��� to represent the predicted GCM where ��� is a total 

number of glyph classes.  

In addition to the GCM, we also consider an additional feature map 

(let’s denote it AFM) which is useful in decoding the text transcription 

since this feature can automatically capture other information not 

already contained in the GCM. As illustrated in Figure 7.3, instead of 

adapting a new path to output such feature, we reuse the features 

obtained from different levels of the GCM production architecture. This 

new feature combines information from different levels of abstraction 

and depth of the generator network by concatenating the output feature 

map after the convolutional block and the feature maps after each of the 

inception block (including the map ℳ). Prior to the concatenation, to 

ensure that all feature maps are of the same dimension (height and 

width), we repetitively apply convolutional and maxpooling layer pair 

to each of the feature map (except the last map ℳ) until each feature 

map obtains the dimension of the last map ℳ. The final concatenation 

of these feature maps produces the AFM. The GCM and the feature map 

AFM are finally concatenated along the feature dimension and are used 

as the context to be decoded by the decoder to predict the corresponding 

text transcription of the input image. 

7.2.3. Decoder and Attention Mechanism 

Let’s denote the context extracted from the input image by the generator 

as ℋ (the concatenation of GCM and AFM) whose dimension is 

�ℋ × �ℋ × �ℋ where �ℋ = �ℳ, �ℋ = �ℳ, and �ℋ = ���� +

���� (���� = ��� and ���� the size of the feature dimension of the 

feature map AFM). The context ℋ can also be viewed as a matrix (size 

�ℋ × �ℋ) of feature vectors ℎ�,�, 0 ≤ � < �ℋ and 0 ≤ � < �ℋ. Our 

proposed attention-based decoder utilizes a one directional LSTM to 

predict the text transcription one character at a time. The decoder 

produces at each time step � the probability distribution over all 

characters �(�) conditioned on the context ℋ and all previously seen 

character distributions �(�), �(�), … , �(���). Again, �(�) is a character 

probability distribution predicted by the decoder at time step � i.e. 
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�(�) = [��
(�)

] where �� = �(�) ∈ [0,1] is a probability that the predicted 

character is likely to be �, 0 ≤ � < ����� + 3. Here, we represent each 

Khmer character by an integer �, and ����� is the total number of 

characters that are used. Similar to the decoder of the Word-Net, we 

also include three additional special characters to represent a start token 

(������), an end token (����), and an unknown character (����). 

Recall that the prediction of the output character at each time step � is 

also conditioned on the context matrix ℋ. Since the context ℋ 

maintains the spatial information of all glyphs from the input image, to 

efficiently predict the correct character, the decoder should concentrate 

specifically on a particular group of context vectors in ℋ (the group of 

context vectors which corresponds to the region in the input image 

where the character is located) rather than to pay its attention equally to 

all context vectors in ℋ. At each time step �, this weighted context or 

so-called context with attention (denoted �(�)) is used instead of ℋ. 

Each context vector ��,�
(�)

 in �(�) is the corresponding context vector ℎ�,� 

in ℋ weighted by a coefficient ��,�
(�)

:  

��,�
(�)

= ��,�
(�)

∗ ℎ�,�    (7.15) 

To compute the coefficient ��,�
(�)

, we use a small neural network with 

one hidden layer whose input depends on the previous hidden state of 

the decoder (the hidden state at time step � − 1) and the corresponding 

context vector ℎ�,� in ℋ. The output of the network is squashed by a 

sigmoid function so that each ��,�
(�)

∈ [0,1]. 

At the beginning of the decoding process (at time step � = 1), the 

LSTM of the decoder requires two initial states: the start cell state and 

the start hidden state. For the start cell state, a vector of all zeros is used. 

However, for the initial hidden state, to utilize the context vectors ℎ�,� 

at every location (�, �) as well as to capture the spatial information to 

predict the first character of the text transcription, another BLSTM is 

applied. The context matrix ℋ is transformed into a one-dimensional 

sequence of length �ℋ ∗ �ℋ which is used as the input sequence to the 
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BLSTM to produce two sequences corresponding to both forward and 

backward directions. The two sequences are concatenated, and finally 

the initial hidden state of the decoder is computed by calculating the 

mean of all elements in the concatenated sequence. We feed the decoder 

as an initial input, a one hot encoding of the start token ����� (�������

(�)
=

1, ���������

(�)
= 0) concatenated with the sum of all context vectors �(�) =

∑ ∑ ��,�
(�)

��  in the weighted context �(�). For the next time steps, we 

recursively perform the same process until the decoder produces a 

distribution which represents the end token ����. 

7.2.4. Implementation Details 

In our experiments, all input image patches are scaled so that they are 

of the same height of 72 pixels with the aspect ratio preserved.  

The generator: the convolutional block consists of two conventional 

layers both using 64 3 × 3 filters and activated by ReLU followed by a 

2 × 2 maxpooling layer. The next module is composed of two inception 

blocks. The first block contains two inception layers with the same 

setting (number of parameters). There are also two inception layers in 

the second block with larger parameters (see Figure 7.5 for the numbers 

of filters used). 

Again, after each inception block, a 2 × 2 maxpooling layer is applied 

to reduce the height and width dimensions of the output feature map by 

a factor of 2. All convolutional components in each inception layers use 

ReLu activation. We also use a BLSTM with 128 hidden units which 

produces an output whose feature dimension is 256 since the BLSTM 

returns two sequences (for both forward and backward directions). 

Following the recurrent module, a ReLu activated fully connected layer 

with 192 hidden units is used. The final output layer is activated by a 

softmax to generate a probability distribution over ��� glyph classes. In 

the sub-syllable dataset constructed from SleukRith set, ��� = 149 

glyph classes (including the class representing the background) are 

found. To output the AFM, three feature maps from different depths are 

concatenated together. The first feature map is from the convolutional 

block which is down sampled by applying two consecutive 
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convolutional and maxpooling pairs. The convolutional layer in each 

pair consists of 64 3 × 3 filters while the maxpooling layer uses a 2 × 2 

filter. The height and width of this feature map is reduced by a factor of 

4 since we apply the maxpooling twice. We use the output from the first 

inception block as the second feature map. This map is passed through 

a convolutional layer with 112 filters of size 3 × 3 and a 2 × 2 

maxpooling layer to down sample each of its spatial dimensions in half. 

The last feature map is the output from the second inception block 

which is fed to the concatenation operation as it is. Another fully 

connected layer with 192 hidden units is used, and the final output layer 

for the AFM contains 150 units and returns a map activated by a 

sigmoid to produce the AFM. To regularize the generator from 

overfitting on the training set, dropouts are introduced after each 

convolutional and fully connected component with the drop rates of 

10% and 25% respectively. 

The decoder: the backbone LSTM of the decoder consists of 256 

hidden units. To compute the initial hidden state of the LSTM, a 

BLSTM of size 128 is used to process the context sequence to obtain a 

vector of size 256 (again the BLSTM produces two sequences of 

vectors of size 128 which are concatenated and averaged to get the size 

of 256). The attention module, which is a small neural network used to 

compute the weight coefficient ��,�
(�)

 at each location (�, �) and at each 

time step �, is composed of one hidden layer with 128 units and 

activated by a sigmoid. In our experiments, we limit the output 

character from the decoder to be between U1780 and U17E9. The 

character which is not in this range is considered to be ����. Inspired 

by the work of [105], we adopt the beam search with length 

normalization technique to output the top � (we choose � = 5) 

predictions at each time step. The final text prediction is the sequence 

whose joined probability of each element is the maximum. 

7.2.5. Training 

The proposed network is trained from end to end in a supervised 

manner. The common approach is to train the generator and the decoder 
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jointly by minimizing the text prediction loss ����� which is a cross-

entropy loss computed by  

����� = − ∑ ��� �(�(�) = �̂(�))�    (7.16) 

where �̂(�) is the ground truth output character at time step �. We also 

want to introduce the GCM loss corresponding to the predicted GCM 

by the generator. By enforcing the generator to generate the GCM 

which contains both the identity and the spatial information of all 

glyphs in the input image, it is expected that this encoded context 

improves the recognition performance of the decoder. The GCM loss 

���� is also a cross-entropy loss summing over all locations (�, �) in the 

GCM map computed by  

���� = − ∑ ∑ ��� �(��,� = ���,�)��    (7.17) 

where ��,� is the predicted glyph and ���,� is the ground truth glyph at 

position (�, �). The objective function of the network is therefore  

� = ����� + ������     (7.18) 

where �� ≥ 0 (we choose �� = 1 in our experiments) controls how 

predicting correct GCM affects the overall performance of the network. 

The training is performed using the ADAM optimizer [102] per mini 

batch basis. To optimize the batch samples, prior to training, all sample 

image patches are sorted by their width so that the patches with similar 

dimension are put in the same batch. The images in each batch are 

upsampled to the size of the image with the maximum width to ensure 

that all images in the batch are of the same dimension. At the start of 

each epoch, the order of the batch is shuffled so that the network can 

learn to generalize well and to overfit less. After each batch, we 

accumulate gradients, and we update the parameters of the network only 

after multiple batches have been processed. This technique is equivalent 

to using a big batch size and proves to be useful in a situation where the 

computing resource is limited. In our experiments, we choose the batch 

size to be 8 and the number of batches for the parameters to be updated 

is 40. After every 200 iterations have been performed, we evaluate the 
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network on the validation set, and stop the training if the performance 

of the network does not improve after 5 epochs.   

7.3. Segmenting into Groups of Sub-syllables and 

Merging their Transcriptions 

Both the Word-Net and the SubSyl-Net can also be applied as segment-

free by training the networks using whole text line images. However, 

there are some drawbacks as followings:  

1) Each page of Khmer palm leaf manuscripts is very long which 

also produces long lines which are often curved or fluctuated. 

Therefore, in order for an image to contain a whole text line, 

parts of texts from neighboring lines might also appear in the 

image unless transformation techniques are applied to the image 

beforehand. This might also distort the texts in the image.  

2) The number of samples in the training set would be significantly 

reduced since we use images of whole text lines instead of short 

words.  

3) The computation of too long dependencies would also become 

very expensive. 

It is therefore more beneficial that after separating the document page 

into individual text lines, the next task is to further segment them into 

smaller size image patches before feeding them to the text recognition 

system. The idea is that for each text line, a number of candidate 

horizontal locations are to be computed. Attributable to the non-

cursiveness of Khmer writing, it is possible to look for small separating 

gaps between two neighboring handwritten characters. We reuse the 

SWT map calculated in the line segmentation stage (Chapter 5.2.1) to 

produce a horizontal projection histogram for each of the text lines. The 

histogram is smoothed multiple times using an average filter, and we 

then calculate the local minima of the smoothed histogram to obtain the 

candidate segmentation locations � = (��, ��, … , ����������) where 

������� is the number of local minima found in each line. Using these 

candidate locations, small image patches can be constructed following 

a number of criteria. Let’s denote ��� the most common width acquired 
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from the connected components extracted from the SWT map. This 

width is the median value of the sorted list of all connected component 

widths. An image patch is constructed by segmenting the text line 

between two candidates �� and �� if the width of the image patch stays 

between two hyper-parameters ���� and ���� i.e. ���� <

��� − ��� < ����. In our experiment, we choose empirically ���� =

2��� and ���� = 8���.  

Some image patches might not contain any foreground text. To detect 

and remove such image patches, we look at values between �� and �� in 

the smoothed histogram. We consider that the image patch contains 

foreground text if the number of zero values within this range is less 

than ¾ of |�� − ��| otherwise the image is considered to be blank and 

is removed. By applying this process, we can obtain from a segmented 

text line, a sequence of image patches containing a group of glyphs (or 

a group of sub-syllables). Each image patch is to be fed to the text 

recognition system to return its text label as output. The text 

transcription of the entire line is therefore the concatenation of those 

short text labels. 

7.4. Experiments and Results 

7.4.1. Datasets 

Similar to Trial-Net1 and Trial-Net2, the dataset used to train the Word-

Net is generated from SleukRith set (see Chapter 6.1.2.1). For the 

network to recognize image patches composing groups of sub-syllables 

(SubSyl-Net), we train it with the newly created data called groups of 

sub-syllables also extracted from SleukRith set. Again, the data is 

divided into three subsets: the training set, the validation set, and the 

testing set. Each patch image in the data samples can be considered to 

contain synthetic texts since they are groups of sub-syllables which are 

not real Khmer words but still share some resemblance. We select �, 

the number of sub-syllables in each group, to be 3 and 4 due to the fact 

that these numbers of sub-syllables are the most common. Table 7.1 

shows the number of image samples in each division from both the 

annotated word dataset and the newly created dataset of groups of sub-
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syllables. We can also see that using the technique to create groups of 

sub-syllables instead of real words can augment the size of the dataset 

significantly (around tenfold). 

Table 7.1: number of samples of the word dataset and the dataset of groups of sub-
syllables 

Type Training Set Validation set Testing Set 

Word Dataset 15,432 813 7,764 

Sub-Syllables 

Dataset 

3-SG 51,906 4,828 38,090 

4-SG 52,086 4,704 37,592 

Total SG 103,992 9,532 75,682 

 

7.4.2. Evaluation Protocols 

We use the same top � error rate measurement (as mentioned in Chapter 

6.1.2.2) to evaluate the performance of the GCM generator of the Word-

Net. To evaluate the performance of the GCM encoder-decoder of the 

Word-Net, Levenshtein distance �� is used to compute the character 

error rate (CER) of each word as follows 

��� =
��� (�����,��(�����,���))

|���|
    (7.19) 

where ����� and ��� are the predicted transcription and the ground truth 

transcription respectively, and |���| represents the length of the ground 

truth transcription. According to this computation, the CER of each 

word is always between [0,1]. This also illustrates that the error rate is 

higher for the same amount of incorrectly predicted characters when the 

network performs on a shorter word image patch which makes sense 

since the importance of each character is stronger in short length 

transcriptions. The final CER is the average of each word CER in the 

test set. Word error rate (WER), which is the number of incorrectly 

predicted words over the total number of words, is also calculated for 

the evaluation. 

For the SubSyl-Net, the evaluation is based on two criteria i.e. the 

generated GCM predicted by the generator and the text transcription 
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output by the decoder. A score � ∈ [0,1] is calculated for each predicted 

GCM by  

� =
∑ ∑ ����,�,���,����

����∗����
   (7.20) 

where ����,�, ���,�� = 1 if the predicted glyph ��,� matches the ground 

truth ���,�, otherwise it returns 0. The overall score is then computed as 

the mean of the scores of all predicted GCM over the testing set. To 

evaluate the text prediction of the network, we compute the Levenshtein 

distance between the output text from the decoder and the ground truth 

text. The character error rate (CER) can be obtained by summing the 

distances between all prediction and ground truth pairs and divide it by 

the sum of total number of characters in the ground truth text of all 

samples in the testing set. We also compute the word error rate (WER) 

which is the number of incorrectly predicted groups of sub-syllables 

over the total number of groups of sub-syllables.  

The experimental evaluation for the SubSyl-Net is performed in three 

different scenarios to keep track of how each stage of the recognition 

pipeline affects the final prediction result. 

 Scenario 1: we evaluate on the dataset of groups of sub-

syllables, the overall flow of the proposed network. 

 Scenario 2: we evaluate the network on image patches 

generated from the ground truth of line segmentation. The 

boundaries from the annotated glyph dataset are also used to 

split the ground truth text lines into smaller patches containing 

at most four sub-syllables. The CER is now computed as the 

Levenshtein distance between the predicted text line 

transcription (concatenation of all text labels in the image patch 

sequence) and the ground truth text line transcription which can 

be constructed as mentioned in Chapter 4.2.5. 

 Scenario 3: we evaluate the performance of the network on the 

dataset of whole text lines. For each document page in the 

testing set, we segment it into lines and then into sequences of 
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image patches using the approach mentioned in Chapter 7.3. 

The CER is computed as in Scenario 2. 

7.4.3. Hyper-parameter Tuning 

The process of setting the hyper-parameters for deep learning models 

requires expertise and extensive trial and error. There are no simple and 

easy ways for hyper-parameter tuning. Some of the most common 

hyper-parameters include the number of layers, the number of units in 

each layer, the batch size, the number of filters and the filter size in 

CNNs …etc. Grid search is one popular technique where we set up a 

grid of hyper-parameters and train/test our model on each of the 

combinations. When using grid search, all possible combinations of the 

hyper-parameters are tried; therefore, the number of experiments 

increases exponentially with respect to the number of hyper-parameters 

in the model. In practice, this technique is very computationally 

expensive and time consuming. 

In our experiments, to facilitate the tuning process, a manual search is 

performed instead where hyper-parameters are chosen one at a time. At 

the beginning of the process, each hyper-parameter is given an initial 

value, and after each trial, those values are updated empirically by 

different predefined intervals according to our observations. For 

example, after each experiment, the number of layers will be 

incremented or decremented by 1, the number of neurons in each layer 

will be modified by a factor of 2, and the learning rate will be changed 

by a factor of 10. During the fine-tuning experiments, the model is 

evaluated on a small validation set. We normally observe the changes 

on the results only after the first couple of epochs have been complete. 

If there is no significant improvement, we stop the experiment, decide 

on the best value for the current hyper-parameter so far, and move on 

to the next hyper-parameter.   

The degree of importance of each hyper-parameter is also distingue. For 

instance, the performance of the Word-Net is not very sensitive to the 

hyper-parameter �� in Equation 7.10 (as illustrated by the results from 

Table 7.2). This shows the importance of the recognition loss �� 

compared to the GCM prediction loss ��. Accordingly, for the SubSyl-
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Net, we modify the balance between the two losses in Equation 7.18 

(now denoted ����� and ���� respectively) by introducing the hyper-

parameter �� to be the coefficient of ���� alone. This way, the text 

recognition loss ����� does not lose its importance by scaling according 

to ��.   

7.4.4. Results and Discussion 

Table 7.2 shows evaluation results of the Word-Net. Three experiments 

are conducted on the complete network after its two modules (the GCM 

generator and the GCM encoder-decoder) are pretrained separately to 

minimize its �� and �� respectively:  

1) we do not do any finetuning 

2) we finetune the complete network on ������ setting the hype-

parameter �� to zero, i.e. �� has no effect on the total loss ������ 

3) we finetune on ������ with �� = 0.9 (very strong influence of 

��) 

By looking at the big difference between the top 1 and top 5 error rate 

of the generated GCM, it is illustrated that even though the GCM 

generator is sometimes not able to predict the correct glyph class as the 

most probable (top 1), in most of those cases, the probability of the 

correct glyph class is still high enough to be among the top 5. 

Fortunately, in the complete system, this glyph class probability 

distribution of the predicted GCM is passed directly to the GCM 

encoder-decoder which can be helpful for the generation of the final 

word transcription.  

As seen in Table 7.2, finetuning the complete network by minimizing 

������ improves the overall performance. Moreover, by enforcing the 

network to produce a good GCM (i.e. set a high value to ��), the error 

rates of the predicted word transcription decrease even more. 
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Table 7.2: Evaluation results of the Word-Net 

 Error Rate of the 
GCM Generator 

(%) 

Error Rate of the 
Complete Pipeline 

(%) 

 Top 1  Top 5 CER WER 

(1) No finetuning 12.42 0.25 4.43 13.49 

(2) Finetune on ������ 
with � = 0 

12.81 0.24 3.88 12.11 

(3) Finetune on ������ 
with � = 0.9 

12.21 0.23 3.80 11.81 

 

The evaluation results of the three scenarios for the SubSyl-Net are 

shown in Table 7.3. On the newly constructed dataset of groups of sub-

syllables, the proposed feature generator obtains a sufficiently high 

score in producing the output GCM. We observe that although the 

predicted GCM contains some noise and does not match perfectly cell 

by cell with the ground truth, it is still capable of storing the useful 

information related to the spatial position, size, and identity of each 

glyph in the input image. To highlight this and also the effectiveness of 

the GCM on the attention mechanism of the proposed decoder, Figure 

7.6 illustrates some sample outputs and the attention map at each time 

step � (��,�
(�)

) corresponding to each predicted character. According to 

this result, it is shown that the generated GCM from the generator serves 

as a blueprint which contains candidate regions for the decoder to attend 

to. As expected, by enforcing the generator to learn to produce the 

ground truth GCM, the spatial information of each glyph annotated in 

the GCM is helpful in enhancing the attention mechanism as well as 

improving the predicting capability of the decoder. We measure the 

performance of the overall network by computing the CER and the 

WER of the predicted text labels. According to these results on the new 

dataset, the proposed network is able to achieve a low CER and, as 

expected, a slightly higher WER since the text labels in the dataset are 

often long. 
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In Scenario 3, we also evaluate the performance of the proposed system 

on the input images obtained from segmenting the whole document 

page into lines which are then split into short patches. In this scenario, 

the network does not perform as well. However, according to the result 

from Scenario 2 which shows a low CER, it can be assumed that this 

problem is caused by the faults at the segmentation stage rather than at 

Figure 7.6: Sample results from the SubSyl-Net showing the predicted GCM and 
the attention map at each time step (the region highlighted in red is where the 
decoder attends to) 
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the recognition stage. The line segmentation and image patch extraction 

approach could therefore be improved. 

Table 7.3: Evaluation results of the SubSyl-Net 

Scenario GCM 
Score (%) 

CER (%) WER (%) 

1 87.12 6.16 26.23 

2 - 7.81 - 

3 - 35.30 - 

 

We also perform a comparison with the results obtained from the Word-

Net (which is trained on the word dataset). Compared to the Word-Net, 

the number of parameters in the SubSyl-Net is significantly reduced as 

illustrated in Table 7.4. According to the results shown in the table, 

although the Word-Net performs rather well on annotated word dataset, 

it does not generalize to sub-syllable dataset which is much bigger. This 

shows the overfitting problem of the Word-Net. In contrast, the SubSyl-

Net which is trained on the expanded dataset using the proposed data 

augmentation technique generalizes well to all datasets. The SubSyl-

Net produces a satisfactory result on the word dataset which it has never 

seen before (we do not train the SubSyl-Net on the word dataset). Using 

groups of sub-syllables as a technique to augment the word image patch 

sample proves to be efficient. Along with the optimized architecture of 

the SubSyl-Net, we are able to solve the overfitting problem of the 

Word-Net as well.     

Table 7.4: Comparison between Word-Net and SubSyl-Net 

Network Number of 
parameters 
(Millions) 

Dataset CER 
(%) 

WER 
(%) 

Word-Net 9.18 Words 3.80 11.81 

Groups of Sub-syllables 49.62 96.42 

SubSyl-Net 2.37 Words 6.88 19.33 

Groups of Sub-syllables 6.16 26.23 
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8. Conclusions 

8.1. Summary 

This thesis presents a number of contributions in the field of DIA 

especially on the application of handwritten recognition on old and 

degraded historical documents. The main research work in this thesis 

aims at designing and implementing an efficient text recognition system 

which is expected to help widen the accessibility of the valuable 

contents written of palm leaf manuscripts to the public.  

In order to achieve the goal of developing such handwritten recognition 

system, digital corpuses and datasets of Khmer palm leaf documents are 

of fundamental interest for benchmarking existing recognition systems 

as well as for the training of data-driven recognition methods and the 

experimental evaluation of their performance. In this dissertation, we 

introduce SleukRith Set, the first dataset constructed on digital images 

of Khmer palm leaf manuscripts from our own digitization campaign 

and also from existing digital content from various establishments. We 

select 657 manuscript pages, and a tool has been developed to perform 

the annotation task on those pages to create three types of data: isolated 

character dataset, annotated word dataset, and line segmentation ground 

truth. In future work, the next version of the dataset is likely to include 

an increased number of pages so that it can be used as training data for 

even more sophisticated systems. The dataset and also the annotation 

tool are made publicly available at github.com/donavaly/SleukRith-Set. 

Next, a comprehensive experimental study for the binarization task 

which is one the principal preprocessing steps in a DIA system is 

presented. With the special characteristics and challenges possessed by 

the palm leaf manuscript collections such as degradations, artifacts, 

different kinds of noises the performances of the binarization methods 

in the literature on this type of documents are not satisfactory. By 

observing the output binary images obtained after applying the 

binarization methods, many broken and unrecognizable 

characters/glyphs and noises still occur. This illustrates a great 

challenge in binarizing digitized palm leaf manuscripts. 
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According to the difficulty in obtaining satisfactory results from the 

binarization step, a binarization-free line segmentation scheme that 

works directly on grayscale images is proposed for Khmer palm leaf 

manuscripts. First, we apply a stroke width transform (SWT) on the 

edge map of the image to extract connected components. The proposed 

approach uses piece-wise project profiles to detect line number and to 

set up initial positions of the centroids or text line mid-points. Those 

centroids are then moved adaptively to form correct lines by applying a 

clustering algorithm called competitive learning. Finally, we construct 

text line boundaries using a path finding technique. The evaluation 

experiments on digitized pages from SleukRith set as well as on 

additional datasets constructed from documents of various Indonesian 

scripts demonstrate that the proposed approach produces a very 

promising outcome compared to other existing methods in the 

literature. The method performs well on historical palm leaf documents 

whose lines are often skewed or even fluctuated. It can also deal with 

discontinuity of text lines caused by holes made for document page 

binding. 

After dealing with the preprocessing step which is to segment the 

document page into separating text lines, we conduct the first attempt 

in using neural networks to solve the text recognition problem for 

Khmer palm leaf manuscripts. To study their feasibility and 

performance, different types of ANN architectures are used for the 

recognition of character and word image patches extracted from Khmer 

ancient palm leaf documents. For the task of classifying isolated 

characters, we present four network architectures: purely CNN based, 

RNN on sequence of one-pixel columns, RNN on both column and row 

sequences, and finally a combination which is both convolutional and 

recurrent. The results show that both CNN and RNN based architectures 

perform well enough on this task individually; however, combining 

both types of architectures proves to be better and more powerful. For 

the text word recognition task, SleukRith Set provides character 

annotation which can be used as alignment between character codes in 

the text transcription and the character positions in the text images. To 

incorporate this information, we propose approaches whose objective is 
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to output a glyph-class map (GCM) for each input word image using 

both one-dimensional and two-dimensional recurrent neural networks. 

For this task, it is illustrated in the evaluation results that the latter 

network performs better. The predicted GCM can be used as input to 

produce the final text transcription of the word.  

Since utilizing neural networks to solve Khmer handwritten text 

recognition problem in our trial experimentations is very favorable, we 

present a robust system called Word-Net whose architecture uses and 

combines both the convolutional and recurrent modules to take as input 

an image patch containing one Khmer word and to output its 

corresponding text transcription. The proposed system takes advantages 

also from the GCM constructed using the glyph annotation which 

contains information about the structure, position, and identity of each 

glyph in the word image to be recognized. Two main modules, the GCM 

generator and the GCM encoder-decoder are developed to generate the 

GCM which is to be encoded into a context vector and also local 

contexts representing the input word image before being decoded into 

the final transcription. Our approach shows promising results evaluated 

on the word dataset extracted from SleukRith set. 

However, due to the limited size of the annotated word dataset used to 

train the Word-Net, it does not generalize well i.e. it performs poorly 

on documents containing words that do not appear in the word dataset 

(for example, the many manuscript collections written in Pali script 

where words cannot be easily annotated). To overcome this challenge, 

we construct a new significantly larger dataset composing of groups of 

sub-syllables. Synthetic words which resemble real Khmer words can 

be formed by assembling adjacent annotated sub-syllables. To 

accommodate this new dataset, we also propose a new text recognition 

system (denoted SubSyl-Net) designed to take into account the limited 

computing resource which is very crucial in dealing with large size 

datasets. Similar to the Word-Net, the newly proposed network uses a 

generator to extracts a GCM and also an additional feature map so that 

these encoded features can be decoded by an attention-based decoder to 

output a corresponding text label of the input image patch. The 

experiments conducted on the new dataset show that, compared to the 
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Word-Net, the SubSyl-Net performs and generalizes promisingly well 

on all palm leaf documents.  

8.2. Impacts 

Palm leaf manuscripts have become an integral part of Cambodian 

culture and are of great importance especially due to the scarcity of 

scripters who are capable of producing new manuscripts as well as the 

fact that aging manuscripts are facing destruction. The salvation efforts 

have been made, and the digitized material of Khmer palm leaf 

documents are becoming available in increasingly large quantity. 

Making the content of those digital copies easily accessible to the public 

is a great challenge. This research is the first step in solving this 

problem.  

The outcomes from this research work open ways to development of 

numerous practical applications. For instance, keyword indexing will 

be able to be made possible to enhance the in-text search capability so 

that a relevant document can be retrieved through word spotting scheme 

with respect to a query of the user. The proposed text recognition 

system can also be used as a tool to extract and analyze the handwritten 

texts from the document images which are very useful as inputs to other 

popular applications such as machine translation and text to speech. 

These applications will make Khmer palm leaf manuscripts accessible 

to an even bigger audience. 

Historical documents written in languages with similar writing nature 

(for example, Thai, Laos as well as ancient scriptures such as Pali and 

Sanskrit) also benefit from this research work.  

8.3. Future Work 

This dissertation has tackled a number of different tasks in DIA on 

historical palm leaf manuscripts. There are still however several 

possibilities as an extension for improvement and for future research. 

Segmentation using Deep Learning: The proposed text recognition 

system works sufficiently well to recognize short image patches. To 

apply this work however to the whole document page, a method to 

efficiently extract text lines as well as to segment those lines into 
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smaller patches is still needed. In this dissertation, a line segmentation 

approach following a bottom up scheme is proposed. This approach 

proves good performance since grouping text components into lines 

does not necessarily require language context. Word segmentation 

however is a much harder problem. As illustrated by the result form 

Scenario 3 in Table 7.3, separating lines into short patches just by 

simply using the gaps between adjacent glyphs (described in detail in 

Chapter 7.3) does not produce a satisfactory outcome. Some common 

erroneous cases include separation of characters with multiple parts and 

patches containing noises or only background with no text.  A different 

approach that we can pursue is to apply deep neural network models for 

word segmentation since models such as RNNs are able to take 

advantage of sequential information between neighboring text 

components in the line. Global processing of both line and word 

segmentation in a single task can also be another direction to tackle. For 

these deep learning approaches, significantly larger datasets of line and 

word segmentation are very crucial. 

Postprocessing: For an even further improvement of the text 

recognition system, postprocessing steps are needed. Using the 

contextual information of the natural language, additional errors can be 

detected and corrected. Both error detection and error correction models 

are to be explored. One of the solutions is to adopt and integrate 

language models which construct probability distribution over all 

strings in the language. These models can be implemented in different 

levels of context i.e. characters, words, or even short phrases. To train 

such models, SleukRith Set will be utilized. In addition, more annotated 

data such as syntactic structure and grammatical form are to be 

constructed if necessary.      

Complete End-to-End and Multi-task System: As mentioned in 

previous chapters, solving DIA problems, developing a handwritten 

text recognition system in particular, does not consist of a single task 

but often a sequence of steps composing a complete pipeline. While it 

is feasible to propose and improve unique models to solve each task 

individually, another direction might be to develop an end-to-end 

system that is able to perform multiple tasks simultaneously or 
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sequentially but in a single process flow. Usually errors occurring at the 

first stages of the workflow significantly affect the outcomes in the later 

stages. By chaining all tasks together, the accumulation of errors from 

those related tasks might be useful in improving the overall 

performance of the complete system. Using deep learning approaches 

to model such sequential end-to-end workflow is expected to be 

practical and efficient due to the backward propagation where errors 

from the later layers which correspond as well to the later tasks can be 

fed back to fix the faults made by the first layers which belong to the 

task at the beginning stage of the system. This end-to-end learning 

technique is relatively new and is still an ongoing research. Some recent 

examples include the Start-Follow-Read model [108, 109] which is 

composed of modules to perform both segmentation and recognition. 

The recognition errors from the last module are not only used to correct 

the recognition module itself but also to improve the segmentation 

module. 

Transfer Learning: Transfer learning is a machine learning method 

where a model developed for a task is reused as the starting point for a 

model on a second task. Given the vast computing and time resources 

required to develop neural network models, instead of building models 

for certain tasks from scratch it is beneficial to use existing pretrained 

networks of other related tasks. Handwritten text recognition on 

historical documents is a universal problem. Numerous datasets from 

different language sources along with their DIA systems have been 

constructed, implemented, and made available. However, the questions 

of what to be transferred (i.e. the common useful information which can 

be extracted from those sources) and how the transfer is performed for 

Khmer palm leaf documents might be challenging and in need of further 

study.     
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Appendix A 

Different categories of Khmer symbols are listed as follows:  

List of consonants 

Consonant 
Sub-

consonant 
Name8   Consonant 

Sub-

consonant 
Name  

ក ◌� KA  ទ ◌� TO 

ខ ◌� KHA  ធ ◌� THO 

គ ◌� KO  ន ◌� NO 

ឃ ◌� KHO  ប ◌� BA 

ង ◌� NGO  ផ ◌� PHA 

ច ◌� CHA  ព ◌� PO 

ឆ ◌� CHHA  ភ ◌� PHO 

ជ ◌� CHO  ម ◌� MO 

ឈ ◌� CHHO  យ ◌� YO 

ញ ◌� NHO  រ �◌ RO 

ដ ◌� DA  ល ◌� LO 

ឋ ◌� DHA  វ ◌� VO 

ឌ ◌� DO  ស ◌� SA 

ឍ ◌� DHO  ហ ◌� HA 

ណ ◌� NA  ឡ  LA 

ត ◌� TA  អ ◌� AA 

ថ ◌� THA     

 

 
8 Name of each symbol written in Latin which is used to easily identify the symbol in 

this dissertation (this name does not represent the true transliteration of the symbol)  
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List of dependent vowels 

Vowel Example Name   Consonant 
Sub-

consonant 
Name  

◌ា � A  េ◌ េក AEU 

◌ិ កិ I  េ◌� េក� OEU 

◌ី កី EI  េ◌� េក� IEU 

◌ឹ កឹ E  េ◌ េក EE 

◌ឺ កឺ EU  ែ◌ ែក È 

◌ុ កុ O  ៃ◌ ៃក AI 

◌ូ កូ AU  េ◌ េ� AO 

◌ួ ក ួ UO  េ◌ េ� AOV 

List of independent vowels 

Vowel Example Name   Consonant 
Sub-

consonant 
Name  

ឥ ឥ��  Ind-I  ឬ ឬក ៏ Ind-REU 

ឦ ឦសូរ Ind-EI  ឭ រឭំក Ind-LE 

ឧ ឧក Ind-U  ឮ ឮ�ន ់ Ind-LEU 

ឩ ឩ� Ind-OU  ឯ ឯ� Ind-È 

ឪ ឪពុក Ind-EUV  ឰ ឰដ ៏ Ind-AI 

ឫ ឫក Ind-RE  ឱ ឱ�ស Ind-AO 

List of diacritics 

Diacritic Example Description9 

◌ ំ អុំទូក 
It nasalizes the inherent or dependent vowel, with 

the addition of /m/; long vowels are also shortened. 

◌ះ េសះ 
It modifies and adds final aspiration /h/ to the 

inherent or dependent vowel. 

 
9 https://en.wikipedia.org/wiki/Khmer_script#Diacritics 
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◌ៈ �សៈ 
It is written after a consonant to indicate that it is to 

be followed by a short vowel and a glottal stop 

◌ ៉ �៉ម 
It is written above a consonant, used to convert some 

o-series consonants to a-series. 

◌ ៊ ប៊ចិ 
It is written above a consonant, used to convert some 

a-series consonants to o-series. 

◌ ់ កក ់
It is written over the last consonant of a syllable, 

indicating shortening of certain vowels. 

◌ ៌ ធម ៌

It occurs in Sanskrit loanwords and originally 

represents an /r/ sound. Now, in most cases, the 

consonant above which it appears, and the diacritic 

itself, are unpronounced. 

◌ ៍ េ�រ ៍
It is written over a final consonant to indicate that it 

is unpronounced. 

◌ ៎ �៎ះ 
It is used in writing to indicate the rising intonation 

of an exclamation or interjection. 

◌ ៏ ក ៏

It is used in a few words to show that a consonant 

with no dependent vowel is to be pronounced with 

its inherent vowel, rather than as a final consonant. 

◌ ័ ចន័� 

It is used in some Sanskrit and Pali loanwords. It is 

written above a consonant to indicate that the 

syllable contains a particular short vowel. 

List of punctuations 

Punctuation Description10 

។ It is used as a period 

៕ 
It is written after a consonant to indicate that it is to be followed 

by a short vowel and a glottal stop. 

។ល។ It is equivalent to etc. 

ៗ 
Duplication sign. It indicates that the preceding word or phrase is 

to be repeated, a common feature in Khmer syntax. 

៚ A period used at the end of poetic or religious texts. 

៙ A symbol used at the start of poetic or religious texts. 

៖ Used similarly to a colon. 

 
10 https://en.wikipedia.org/wiki/Khmer_script#Spacing and punctuation 
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List of numerals 

Khmer ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩ 

Arabic 0 1 2 3 4 5 6 7 8 9 
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Appendix B 

Khmer Unicode11 (the Unicode Standard, version 12.1) 

Range: 1780-17FF  

 

 
11 https://unicode.org/charts#Khmer 
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