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Abstract
Severe spinal cord injury (SCI) results inpermanent functional deficits,whichdespitepre-clinical advances,
remainuntreatable.Combinational approaches, including the implantationof bioengineered scaffolds are
likely topromote significant tissue repair.However, this criticallydependson the extent towhichhost tissue
can integratewith the implant. In thepresentpaper, bloodvessel formation andmaturationwere studied
within andaround implantedmicro-structured type-I collagen scaffolds at 10weekspost implantation in
adult ratmid-cervical spinal cord lateral funiculotomy injuries.Morphometric analysis revealed that blood
vessel densitywithin the scaffoldwas similar to that of the lateralwhitematter tracts that the implant
replaced.However, immunohistochemistry for zonula occludens−1 (ZO-1) andendothelial barrier antigen
revealed that scaffoldmicrovessels remained largely immature, suggestingpoorblood-spinal cordbarrier
(BSB) reformation. Furthermore, a bandof intenseZO-1-immunoreactivefibroblast-like cells isolated the
implant. Spinal cord vessels outside theZO-1-banddemonstratedBSB-formation,while vesselswithin the
scaffold generally didnot.The formationof adouble-layeredfibrotic andastroglial scar around the collagen
scaffoldmight explain the relatively poor implant-host integrationand suggests amechanism for failed
microvesselmaturation.Targeted strategies that improve implant-host integration for suchbiomaterials
will be vital for future tissue engineering and regenerativemedicine approaches for traumatic SCI.

1. Introduction

The devastating, long-term motor, sensory and auto-
nomic deficits following severe, traumatic spinal cord
injury (SCI) are the result of acute damage to neurovas-
cular tissues at the lesion site as well as the initiation of a
cascade of secondary degenerative events that exagge-
rate tissue loss, promote fibrogliotic scarring and cystic
cavitation [1–8].

Characterisation of the cellular and molecular
events of secondary degeneration has resulted in the

development of a wide range of therapeutic strategies
that, to some extent, improve functional outcome in
experimental models of injury [9–12]. Such strategies
are intended to shift the balance between axon-growth
promoting and inhibitory conditions at the lesion site,
for example by the delivery of pharmacological agents
or other bioactive molecules such as neurotrophic fac-
tors, antibodies or enzymes, as well as the implant-
ation of glial or progenitor cells [7, 13, 14]. It is widely
acknowledged that future therapeutic strategies are
likely to include combinations of these approaches to
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induce tissue repair and functional recovery [9, 12]. A
rapidly growing area of tissue engineering and regen-
erative medicine that may contribute to such combi-
national strategies is the development of implantable
scaffolds intended to bridge the lesion site [10, 15]. A
large number of natural and synthetic polymers have
been used to generate such scaffolds, with specific
nano- ormicro-architectures which are also capable of
delivering bioactive agents and growth-promoting
cells [16–18]. Amongst the range of natural polymers
being developed for traumatic SCI, scaffolds based on
collagen have been reported to be promising candi-
dates due to their biocompatibility, the natural abun-
dance of collagen and the ability tomanipulate it into a
wide range of three-dimensional structures. Further-
more, the intrinsic cell-signaling motifs of collagen,
and the ability to tailor its rate of biodegradation by
cross-linking agents make this a highly versatile poly-
mer [14, 19].

Our earlier in vitro studies have demonstrated the
biocompatibility of a longitudinally micro-porous
form of type-I collagen scaffold with neurons and glia
from the central nervous system (CNS) and peripheral
nervous system, as well as with non-neural cells such
as fibroblasts [20–24]. Data revealed that astroglia
were capable of substantial adhesion and migration
into the micro-porous type-I collagen scaffolds [21]
and that astrocytes as well as other populations of cells,
such as Schwann cells and fibroblasts, could mix inti-
mately within the scaffold in support of axon growth
[22]. Such micro-porous collagen scaffolds have been
used in an attempt to bridge complete or partial exper-
imental lesions of the adult rat spinal cord [25–29].
Although some degree of functional recovery has been
observed in the affected forepaw, this could not be cor-
related with a significant increase in axonal regenera-
tion across the scaffold. Indeed, the implanted scaffold
was poorly penetrated by host axons or astrocytes [30].
Attempts to improve implant-host integration and
functional recovery by pre-seeding the collagen scaf-
fold with syngeneic olfactory ensheathing cells only
induced a trend for increased axonal growth into the
scaffold, and reactive host astroglia largely failed to
penetrate the scaffold [31]. As part of the development
of such bioengineered scaffolds, it is important to
understand the benefits as well as any possible short-
comings of the materials. Therefore, our recent efforts
have focused on the host scarring response initiated by
the implantation of the collagen scaffold into defined
resection injuries of the adult rat spinal cord to obtain
a better characterisation of themechanism(s) involved
in the prevention of scaffold-host integration. This has
already revealed an encapsulating response by fibro-
blast-like cells that appeared to prevent the vastmajor-
ity of neural profiles from entering the scaffold [32].

In the present investigation, the interactions of the
implanted collagen scaffold with the host spinal cord
have been further studied with particular emphasis on
microvascular re-modelling and the disruption of the

blood-spinal cord barrier (BSB, [33]). The induction
of angiogenesis has been correlated with enhanced tis-
sue repair following traumatic CNS injury [34, 35],
and newly formed blood vessels have been shown to
act as substrates for guiding axon regeneration [34].
We therefore investigated new blood vessel formation
and maturation in response to collagen scaffold
implantation into defined model of SCI in the adult
rat. We report that implantation induced an angio-
genic response within the scaffold that lacked micro-
vessel maturation, as indicated by a paucity of zonula
occludens−1 (ZO-1) and endothelial barrier antigen
(EBA) immunoreactivity. This suggests that the
environment of such implants fails to promote suc-
cessful BSB reformation. Furthermore, ZO-1-immu-
nohistochemistry unexpectedly revealed the intense
staining of overlapping layers of fibroblast-like cells
that formed a band around the implant, partially
encapsulating the scaffold. These observations
strongly suggest that such type-I collagen scaffolds do
not foster the reformation of a vascular bed within the
implant that recapitulates the properties of CNS-
microvessels, possibly due to the involvement of a
novel and, as yet, poorly defined aspect of the host
scarring response to the implant.

2.Material andmethods

2.1. Experimental animals
All surgical procedures and animal handling were
performed at the Institute of Neuroscience, Group of
Neuropharmacology, Université Catholique de Lou-
vain (UCLouvain), Belgium, according to the EU
directive of 22nd September 2010 and granted by the
local ethical committee on animal experimentation
(2014/UCL/MD/012) and by the Belgian authority
on animal experimentation (LA1230618). Adult
female Sprague-Dawley rats (n=24, body weight
180–200 g) were bred in the local UCLouvain animal
facility and were housed in standard makrolon cages
(2–3 animals per cage) under 12:12 h light-dark cycles.
Food and water were provided ad libitum. All mea-
sures were taken to minimize the number of animals
used, and to prevent pain and discomfort during the
experiments.

2.2. Surgical procedure
The experimental spinal cord resection injuries were
performed as described previously [32]. Briefly, a
subcutaneous injection of buprenorphine (0,1 mg kg−1

body weight)was administered to all animals 30–60min
before surgery. Anaesthesia was induced by isoflurane
inhalation delivered by a U-400 anaesthesia unit
(Agntho’s, Lidingö, Sweden, 4%–5% mixture in air for
induction and maintained with a 2% mixture in air).
Ophthalmic ointment was applied to prevent corneal
drying. The shoulder and neck area were shaved and
disinfected, followed by a mid-line skin incision and
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blunt dissection of the neck musculature to expose the
C3-C4 vertebrae and facilitate a right-sided hemi-
laminectomy.Using a dissectionmicroscope andmicro-
scissors, a small dural windowwas opened followed by a
right-sided, 2 mmwide lateral funiculotomy. Complete-
ness of the resection injury was checked microscopically
after aspiration andpurging of the resection-gap.During
surgery, care was taken to spare major spinal cord blood
vessels to prevent severe bleeding and excessive local
ischemia. Experimental animals were randomly allo-
cated into two different groups: those receiving a lesion-
only (i.e. control group, n=12) and those receiving an
orientated micro-structured type-I collagen scaffold (i.e.
experimental group, n=12) (Optimaix, Matricel
GmbH, Herzogenrath, Germany). The collagen scaffold
was trimmed and positioned into the resection-gap with
its longitudinally orientated pores following the long axis
of the spinal cord. After haemostasis, the dural flap was
sutured using 10/0 sutures (Ethicon, Inc., Somerville,
USA) and the layers of neck musculature and skin were
realigned and sutured with 4/0 Prolene® (Ethicon Inc.,
Somerville,USA).

2.3. Tissue processing and histological analyses
At 10 weeks post-surgery (wps), animals were sacri-
ficed in a euthanasia chamber by exposing them to
high concentrations of carbon dioxide. After respira-
tory arrest, animals were transcardially perfused with
100 ml phosphate buffered saline (PBS, pH 7,4)
followed by 300 ml of cold 4% paraformaldehyde in
0.1 M phosphate buffer. The fixed spinal cords were
then dissected and post-fixed in the same fixative
solution for 24 h, followed by cryoprotection in 30%
sucrose in PBS. Tissue blocks of approximately 1 cm
length (n=8 lesion-only; n=8 scaffold-implanted),
centred around the lesion/implantation site, were
then removed, frozen in powdered dry-ice and long-
itudinally cryosectioned (25 μm thick) using a Leica
CM3040S cryostat. The remaining lesion/implant-
ation tissue blocks (n=4 lesion-only; n=4 scaffold-
implanted) were sectioned in a transverse plane (10
μmthick). Serial sections weremounted onto adjacent
Superfrost Plus slides (R. Langenbrinck GmbH, Ger-
many) such that the distance between adjacent long-
itudinal sections on each slide was 250 μm for
longitudinal sections and 200 μm for adjacent trans-
verse sections. All slides were then stored at −80 °C
until further immunohistochemical processing.

For immunofluorescence, the following primary
antibodies were used: mouse anti-neurofilament 200
kDa (NF200, Clone NE 14, 1:2000, Sigma Aldrich
MERCK, USA), mouse anti-rat-endothelial-cell-anti-
gen-1 (RECA-1, 1:500, Bio-Rad, USA), mouse anti-
endothelial-barrier-antigen (IgM) (EBA, clone SMI-71,
1:10 000, Biolegend, USA), mouse anti-vimentin (clone
V9, 1:200, Sigma Aldrich MERCK, USA), mouse anti-
glial-fibrillary-acidic-protein (GFAP, Clone GA5,
1:2000, MERCK), rabbit anti-zonula-occludens-

protein-1 (ZO-1, 1:500, Life Technologies, Germany)
and rabbit anti-aquaporin-4 (Aqp-4, clone H80, 1:500,
Santa Cruz Biotechnologies, USA). Prior to immuno-
fluorescence, antigen retrieval was performed by heat-
ing samples to 37°C in citrate buffer (pH6, Code S1699,
DAKO, Germany) for 5 h. All solutions were prepared
in antibody diluent, consisting of PBS containing 1%
Triton X-100 (Sigma Aldrich, MERCK, USA) and 1%
bovine serum albumin (Carl Roth, Germany), and all
immunohistochemical steps took place at room
temperature.

Sections were incubated in 10% normal goat serum
(Jackson ImmunoResearch, UK) for 1 h after an initial
washing step in PBS to block non-specific antibody
interactions. The sectionswere then incubated overnight
with combinations of primary antibodies. The next day,
sections were washed in PBS and incubated with the
fluorochrome-conjugated secondary antibodies (diluted
at 1:500) for 2 h: Alexa-488 conjugated goat-anti-rabbit
IgG, Alexa-594 conjugated goat-anti-mouse IgG or
Alexa-594 conjugated goat-anti-mouse IgM (for EBA,
Thermofisher Scientific, USA). A nuclear counterstain
was performed by adding 1 μg/ml of DNA-intercalator
4′,6-diamino-2-phenylindole (DAPI, Sigma-Aldrich
MERCK, USA) to the secondary antibody solutions and
sections were coverslipped using DAKO-Mounting-
Medium (DAKO,Germany). Imageswere capturedwith
aZeiss Axioplan epi-fluorescencemicroscope connected
to a Zeiss Axiovision CCD camera and Zeiss AxioVision
4.8 software.

2.4.Morphometric analysis ofmicrovessels (RECA-
1 and EBA)
Data obtained from eight longitudinally sectioned spinal
cord blocks per group were used for morphometric
analyses. Transverse sections from the remaining four
spinal cord blocks were used for qualitative descriptions.
Quantification of RECA-1- and EBA-immunoreactive
microvessels was based on the examination of 4
representative longitudinal sections spaced 250μmapart
per spinal cord sample and group (i.e. 32 sections per
group). The percentage area occupied by RECA-1- and
EBA-immunoreactive microvessels within defined areas
of interests (AOIs, 225 μm × 175 μm) at the rostral-,
medial- and caudal interfaces in lesion-only (figure 1(A))
and collagen scaffold-implanted tissues (figure 1(B))was
calculated from images of uniform exposure times and
thresholding using the ‘analyse particles’ function of
ImageJ® (as described previously [30–32]). The same
analyses were also made from AOIs from the contral-
ateral, non-lesioned side of the spinal cord which acted
as internal controls. Additionally, AOIs within the
collagen scaffold at rostral, middle and caudal positions
were alsomeasured (figure 1(B)).

2.5. Statistical analyses
Quantitation of RECA-1- and EBA-immunoreactive
microvessels was presented as mean±standard error
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of the mean (SEM) of all AOIs and all examined
sections. The pooled and overall data were compared
by using the paired and unpaired Student’s t-test. P-
values of 0.05 or less were considered as statistically
significant. All statistical analyses were calculated by
GraphPad Prism 4 andwere graphically represented as
mean±SEM. Asterisks (*) were used to indicate
statistical significance.

3. Results

Dark-field images and DAPI nuclear counterstains
were used to demonstrate some of the morphological
details including a clear delineation of the edge of the
lesion/implantation site (figures 1(C), (D) and (F),
(G)). In lesion-only animals, numerous fluid-filled
cystic cavities were regularly observed throughout the

Figure 1. Schematic diagramwith areas of interest (AOI) in both experimental groups as well as sections of lesion-only and scaffold-
implanted spinal cords. (A)AOI images were taken for the quantification of RECA-1- and EBA-immunoreactive blood vessels at the
anatomical edges of themain cystic cavity (AOIs: blue boxes=225μm× 175μm). The same analyses weremade from the
contralateral, non-lesioned side for internal baseline or control values. (B)AOI images were taken for the quantification of RECA-1-
and EBA-immunoreactive blood vessels at the anatomical edges of the collagen implant (AOIs: blue boxes=225μm× 175μm).
Other images were taken for the quantification of blood vessels within the scaffold (three AOIswithin the scaffolds). The grey area
around the implanted collagen scaffold indicates the connective tissue transition zone. An internal baseline control was alsomade
from the contralateral, non-lesioned side. The illustration also demonstrates the general orientation of the longitudinal sections
presented in the results (rostral and caudal directed arrows as shown inA andB). (C)–(E) Longitudinal sections of the lateral edge of
themain cystic cavity and lateral tissue bridge of the lesion-only group at 10weeks post-surgery. (C) dark-fieldmicroscopy
demonstrated the formation offluid-filled cystic cavities (asterisks, (C)–(E)), in parts separated by trabeculae of scarring tissue (arrows,
(C)–(E)). (D)DAPI nuclear counterstain identified host cellmigration into the lateral tissue bridge, whichwas clearly pronounced
(arrowheads). (E)OccasionalNF200-positive axons could be seenwithin the lateral tissue bridge or trabeculae (arrow). (F)–(H)
Implant-host interface of the collagen scaffold implanted group. (F)Dark-fieldmicroscopy of themedial interface of collagen scaffold
implants demonstrating the formation of a dark transition zone that formed a band around the implants (between twodotted lines
which indicate the edge of the host-tissue and collagen scaffold). (G)The transition zonewas occupied by densely packed cells that
were revealed byDAPI nuclear staining (arrowheads). (H)Only a fewNF200-positive axons traversed the transition zone (between
two dotted lines) and penetrated into the edges of the collagen scaffolds for short distances (arrows). Only occasional fibers could be
detected deepwithin the framework. Scale bars: 100μm.

4

Biomed.Mater. 15 (2020) 015012 HAltinova et al



lesion site (e.g. asterisks, figures 1(C)–(E)), in parts
divided by trabeculae of scarring tissue andhighlighted
at the lateral-most edge by a cell rich region (including
the dura mater), as indicated by the numerous DAPI-
positive nuclei (arrowheads in figure 1(D)). NF200-
positive host axons were often seen following the
lateral-most tissue bridge or even sometimes following
the trabeculae (e.g. arrowheads and arrow,
figures 1(C)–(E)). In stark contrast to this, the collagen
scaffold-implanted lesion sites demonstrated the for-
mation of a transition zone around the rostral-,
medial- and caudal implant-host interfaces that was
often revealed as a dark band within the dark-field
images and was occupied by densely packed DAPI-
labelled nuclei (e.g. area between the dotted lines,
figures 1(F)–(H)). Occasionally, scattered NF200-
positive axons could be seen traversing the transition
zone and entering the periphery of the implanted
collagen scaffold (arrows in figure 1(H)). However, in
most immunohistochemical sections, the transition
zonewas devoid of axonal profiles.

The distribution of blood vessels, as revealed by
RECA-1-immunohistochemistry, demonstrated the
clear disparity in density between normal grey- and

white matter (supplementary figures 1(A), (B) is avail-
able online at stacks.iop.org/BMM/15/015012/
mmedia). However, in the spared tissue adjacent to the
rostral-, medial- and caudal interfaces of the lesion-
only group, an increased density of microvessels (in
comparison to normal white matter) was observed
(e.g. figure 2(A), but see also figure 4(A) for quantifica-
tion). All these RECA-1-positive vessels were double-
immunoreactive for the tight junction protein, ZO-1
(figures 2(A)–(C), also seen at higher magnification in
figures 2(D)–(F)). Surprisingly, ZO-1-immunor-
eactivity was not only associated with RECA-1-immu-
noreactive blood vessels (figures 2(G)–(I)) but was also
intensely present in a band of cells that formed part of
the lateral tissue bridge, located between the large cys-
tic cavity at the lesion epicentre and the medial surface
of the dura mater (indicated by arrowheads,
figures 2(H)–(I)).

The implanted type-I collagen scaffold demon-
strated close contact with the lesioned host spinal cord
when viewed by dark-/bright-field microscopy (e.g.
figures 3(A), (E)) and as reported earlier, reduced the
incidence of cavitation at the lesion site (data not
shown, [30–32]). Angiogenesis had clearly taken place,

Figure 2. (A)–(I) Longitudinal sections of lesion-only spinal cords processed for RECA-1- andZO-1-immunoreactivity at 10weeks
post-surgery. (A)An increased density of RECA-1-immunoreactivemicrovessels could be detected near the interface to the cystic
cavity in lesion-only animals (asterisks, (A)–(C), but see alsofigure 4(A) for quantitative data). (B) and (C)Thesemicrovessels were
double-immunoreactive for tight junction protein, ZO-1, which is better seen at highmagnification (arrows, (D)–(F)). (G)–(I)Tight
junction protein, ZO-1, was not only present onRECA-1-immunoreactive endothelial cells but also formed a part of a lateral tissue
bridge between the duramater and themain cystic cavity (asterisks, (G)–(I)) and arrowheads, (H)–(I). The lateral tissue-bridge, which
was also densely occupied byDAPI-labelled nuclei, was, in parts, strongly ZO-1-immunoreactive (arrowheads inH and in overlay I).
Scale bars: 50μm.
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as indicated by the presence of RECA-1-immunor-
eactive vessels deep within the scaffolds (arrows in
figure 3(B)). In contrast to the vessels within spinal
cord grey- and white matter, many of the RECA-1-
immunoreactive vessels within the collagen scaffolds
were not associated with ZO-1-immunoreactive tight
junctions (e.g. arrows in figures 3(C), (D) and at higher
magnification in the inserts 1 and 2, see also supplemen-
tary figure 1(C) for an example of RECA-1/ZO-1-posi-
tive blood vessel within the contralateral, non-lesioned
white matter). Furthermore, an intensely ZO-1-immu-
noreactive band of overlapping cells and processes could
be observed at the rostral-,medial- and caudal transition
zones that often surrounded the type-I collagen scaffold
(e.g. arrowheads at themedial implant-host tissue trans-
ition zone of figures 3(C) and (D), also delineated by the
dotted lines at highermagnification in figures 3(E)–(H)).
The transition zone appeared to act as a type of ‘water-
shed’ for RECA-1/ZO-1-immunoreactivity: RECA-1/
ZO-1-positive vessels being located on the spared spinal
tissue side of the transition zone (e.g. yellow arrow,
figures 3(F)–(H)), while the vessels on the scaffold side of
the transition zone were not (white arrow, figures 3(F)–
(H)). Althoughmany of the RECA-1-positive blood ves-
sels that formed within the scaffold were not immunor-
eactive for the tight junction protein, ZO-1, some vessels

were positive but with the immunoreactivity beingmore
uniformly distributed throughout the endothelial cells
(figures 3(I)–(K)). This was also seen in control micro-
vessels located in longitudinal sections of the con-
tralateral, non-lesioned spinal cord white matter (e.g.
figure 3(L)).

Quantitative morphometric analysis of RECA-1-
immunoreactivity close to the interface of the lesion-
only group confirmed that the blood vessel density was
significantly higher than that of the contralateral, non-
lesioned white matter (p<0.05, figure 4(A)). This
increase in the density of RECA-1-positive blood ves-
sels showed an even greater level of statistical sig-
nificance at the transition zone of the scaffold-
implanted group when compared to the contralateral,
non-lesioned white matter (p<0.001, figure 4(B)).
No significant difference was seen, however, between
the amounts of RECA-1-staining around the lesion-
only- and the scaffold-implanted interfaces (p>0.05,
figure 4(C)). Comparison of RECA-1-staining
observed within the scaffold with that observed in the
contralateral, non-lesioned white matter tracts
revealed that both regions had similarly low amounts
of microvessels and that there was no significant dif-
ference between them (p>0.05,figure 4(D)).

Figure 3. Longitudinal sections of implanted collagen scaffolds at 10weeks post-surgery: RECA-1- andZO-1-immunoreactivity. (A)
The internal framework of the implanted collagen scaffold could be seen by dark-fieldmicroscopy. (B)RECA-1-immunoreactive
microvessels deepwithin the collagen scaffolds indicated that angiogenesis had taken place (arrows, and highermagnification in insert
1 and 2). (C)Many of these vessels were not associatedwith tight junction protein, ZO-1 (see arrows and highermagnification inserts 1
and 2). (D)Overlay of B andC confirms the lack of co-localisation. Interestingly, an intense ZO-1-immunoreactive band of
overlapping cells and processes could be detected at the rostral-, medial- and caudal transition zones (e.g. arrowheads, (C) and (D)).
(E)Bright-fieldmicroscopy of the transition zone (between dotted lines, also indicated in (F)–(H)) appeared to act as a ‘water-shed’ for
RECA-1-/ZO-1-immunoreactivity.While RECA-1-immunoreactivemicrovessels on the side of the spared spinal cord tissue were
associatedwith tight junction protein ZO-1 (yellow arrow, (F)–(H)), vessels on the scaffold side of the transition zonewere often not
ZO-1-immunreactive (white arrow, (F)–(H)). Strongly ZO-1-immunoreactive cellular processes andDAPI-labelled nuclei occupied
the transition zone (between dotted lines in E, G and F). Althoughmany of the newly formedRECA-1-immunoreactivemicrovessels
within the collagen scaffold (I), (J)were not associatedwith tight junction protein, ZO-1, some vessels were clearly double labelled but
showed amore uniformdistribution throughout thewhole endothelial cells (K) as could also be seen in baseline stains of the healthy,
contralateral whitematter (L). Scale bars: 50μm.

6

Biomed.Mater. 15 (2020) 015012 HAltinova et al



An antibody directed against EBA was used as a
morphological indicator of the functional maturity of
blood vessels and for the establishment of the BSB
[36, 37]. In lesion-only samples, ZO-1- and EBA-
immunoreactive microvessels (figures 5(A) and (B),
arrow in B, but also figure 5(C), arrow in insert) in the
interface area were co-localised with ZO-1-immunor-
eactivity. A DAPI-positive cell-band was never
observed at themedial interface of lesion-only samples
(figure 5(D)). As mentioned earlier, the lateral tissue
bridge of the lesion-only samples was often high-
lighted as a band of overlapping ZO-1-immunor-
eactive cells and processes. In some cases, the layer of
cells in these regions were only 1–2 cells thick and even
appeared discontinuous in places (figures 5(E)–(G)). A
relatively frequent observation in such samples was
the appearance of clusters of ZO-1-immunoreactive
cells that were closely apposed to blood vessels, giving
a ‘rose-like’ formation when cut in a plane that was
transverse to the trajectory of the vessel (figures 5(E)–
(G), and double arrows at higher magnification in
figure 5(H)). However, not all vessels were coated by
dense clusters of such cells, even when lying immedi-
ately adjacent to the cell encrusted vessels (single white
arrow infigures 5(F), (H)).

The transition zone around the implanted col-
lagen scaffolds (as indicated between the two dotted
lines of figures 5(I)–(O)) contained variable numbers

of ZO-1-positive fibroblast-like cells that were asso-
ciated with numerous EBA-immunoreactive micro-
vessels (figure 5(J), see also figure 6(A) (for lesion-only
interface quantification) and B (for collagen scaffold
quantification)), however the number of EBA-immu-
noreactive vessels was significantly lower than the total
number of vessels in that specific area (as indicated by
RECA-1-staining, figure 6(B)). A very small number of
EBA-immunoreactive vessels were also detected that
were within the framework of the implanted collagen
scaffolds (arrows in figure 5(J), see also figure 6(C) for
quantification). Similar to the observations with
RECA-1-immunoreactive blood vessels, the majority
of the EBA-immunoreactive microvessels within the
scaffold were also devoid of any endothelial ZO-1-
positive tight junctions (figures 5(J)–(P), see also
figure 6(C), p<0.01) suggesting a delayed or slowed
maturation.

To achieve a better characterisation of the range of
cellular/vascular events and interactions taking place
in and around the lesion/implanted scaffold areas,
transverse cryosections were exposed to different
combinations of antibodies recognising vimentin,
ZO-1, EBA, Aqp-4, GFAP and RECA-1. In lesion-only
samples, the cells lining the cystic cavities appeared to
be variable: the lateral-most lining of the main cystic
cavity was lined by intensely vimentin- and ZO-1-
immunoreactive (and Aqp-4-negative) fibroblast-like

Figure 4.Quantification of RECA-1-immunoreactivemicrovascular changes in both experimental groups. (A)At the interface of the
lesion-only group, RECA-1-immunoreactivemicrovessel densitywas statistically significantly higher in comparison to the non-
lesioned, contralateral whitematter (p<0.05). (B)This increased level of RECA-1-immunoreactivemicrovessels was even higher at
the transition zone around implanted collagen scaffoldswhen comparedwith the contralateral, non-treatedwhitematter
(p<0.001). (C)When the elevated levels of RECA-1-immunoreactivity around lesion-only- and implanted collagen scaffold groups
were compared, no statistically significant difference could be seen (p>0.05). (D)A low level of RECA-1-immunoreactive
microvessels could be observedwithin the collagen scaffolds and the contralateral, non-treatedwhitematter. Comparisons between
both territories showedno statistical differences (p>0.05). Values are given asmean±SEM. (*p<0.05; ***p<0.001).
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Figure 5. Longitudinal sections of lesion-only animals and implanted collagen scaffolds at 10weeks post-surgery: EBA- andZO-1-
immunoreactivity. (A)The interface to the cystic cavity and lesion (asterisks, (A)–(H)) demonstrated tight junction protein ZO-1-
positivity in EBA-positive vessels (compare (A)–(C)). (B)An anti-EBA antibodywas used to detectmature CNS-microvessels. In
lesion-only sections, EBA-immunoreactivemicrovessels were associatedwith tight junction protein ZO-1 (arrow in B, overlay of A
andB inC, highermagnification insert C, arrow). (D)The interface-territory around cystic cavities could be seen. (E)The lateral tissue
bridge, next to the cystic cavity (asterisks, (E)–(H)) showed a loose band of partially overlapping ZO-1-immunoreactive cells and
processes (arrowheads). A commonobservationwas the appearance of clusters of ZO-1-immunoreactive cells in ‘rose-like’
formations around blood vessels (E)–(G). In the centre of these ‘rose-like’ formations, an EBA-immunoreactivemicrovessel could be
observed (dashed box inG, highermagnification inH, double arrow). Althoughmany EBA-immunoreactivemicrovessels within the
reconstructed and thickened duramater were present, thesewere not associatedwith ZO-1-immunoreactivity (arrows). (H)
Interestingly, someEBA-immunoreactivemicrovessels, despite being located next to the clustered ZO-1-positive cells were devoid of
clusters (single arrow in F and same indicated vessel inH, at highermagnification). Scale bars. (I)The transition zone of the scaffold-
implanted group also included some EBA-immunoreactivemicrovessels (between two dotted lines in J). A lownumber of EBA-
immunoreactivemicrovessels could also be observedwithin the scaffold (arrows, J and L, but also compare withfigure 6(B) for
quantification). Interestingly, thesemicrovessels were devoid of any ZO-1-immunoreactive tight junctions (arrows, K and L). (M)–(P)
At highermagnification of the dashed box in L. Several EBA-immunoreactivemicrovessels could be seen passing through the ZO-1-
immunoreactive transition zone (between dotted linesM-O) of collagen scaffold implanted group. (P)The ZO-1-positive cells often
formed close associations with the EBA-positive vessel walls (arrow). Scale bars: (A)–(H), (P): 20μm; (I)–(O): 50μm.

Figure 6.Quantification and statistical comparison of EBA- andRECA-1-immunoreactivemicrovascular changes in both
experimental groups. (A)At and around the interface to the lesion-only group, no statistically significant difference could be
demonstrated in the amount of EBA- andRECA-1-immunoreactivemicrovessels (p>0.05). (B) In contrast to the lesion-only
interface, therewas a statistically significant decrease in the amount of EBA- in and around the transition zone of collagen scaffold
implants in comparison toRECA-1-immunoreactivemicrovessels (p<0.001). (C)This significant reduction of EBA-immunor-
eactivemicrovessels in comparison to RECA-1-positivemicrovessels was evenmore pronouncedwithin the collagen scaffolds
(p<0.01). This apparent lack of EBA-immunoreactivity suggests a delayed or incomplete vesselmaturation. Values are given as
mean± SEM. (**p<0.01; ***p<0.001).
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cells, as part of the lateral connective tissue bridge
(arrowheads in figure 7(A)). In contrast, cells lining the
smaller cystic cavities that extended into spinal tissues
around the primary lesion site demonstrated a different
phenotype, being Aqp-4-positive (figure 7(B)), a well-
established marker of astrocytes, their processes and
end-feet, as seen by the overlapping GFAP- and Aqp-4-
signal in the contralateral unlesioned white matter
regions (figures 7(C), (D)). In other areas, both ZO-1-
positive fibroblast-like cells and GFAP-positive reactive
astrocytes appeared to share the role of lining the cystic
cavities (figure 7(E)). However, ZO-1-immunoreactive
cells lining the medial interface to the cystic cavities
were never observed in lesion-only animals (see supple-
mentary figure 1(D)). Situated between the astrocytic
lining of the cysts and the fibrous dura mater were
numerous EBA-immunoreactive microvessels that
were devoid of any astrocytic end-feet (figure 7(F),
arrows, but also see supplementary figure 1(D), F for
baseline distribution of Aqp-4 around RECA-1/EBA-
positive white matter blood vessels). This area was also
found to be rich in vimentin-positive, spindle-shaped
fibroblast-like cells (arrowheads,figure 7(B)).

Although the tightly packed, overlapping, vimen-
tin-positive, fibroblast-like cells that occupied the
transition zone were also intensely ZO-1-immunor-
eactive (arrowheads, figures 8(A), (B)), a large number
of similarly vimentin-positive, spindle-shaped cells
could also be seen deeply penetrating the porous fra-
mework of the collagen scaffold, where they had scat-
tered and adopted a loosely packed, generally
longitudinally orientated morphology. These fibro-
blast-like cells were clearly not ZO-1-immunoreactive
(small arrows, figure 8(A)). A high magnification of
the transition zone demonstrated bipolar vimentin-
positive cells withmultiple tight junctions (figure 8(B),
arrowheads, followed by vimentin-only-positive
fibroblast-like cells, with bipolar, thin-long processes).
Frequently, vimentin-positive fibroblast-like cells
accumulated as tightly packed clusters at the transition
zone, generating a sharp boundary with the Aqp-4-
immunopositive reactive host astrocytic-territory
(figure 8(C), arrowheads, see also figures 7(C), (D) for
baseline GFAP- and Aqp-4-stains in spinal cord white
matter). Although RECA-1-immunoreactive micro-
vessels were found within the scaffolds, fewer EBA-

Figure 7.Transverse sections used for immunohistochemical characterisation of the vascular/cellular events in lesion-only group at
10weeks post-surgery. (A) In lesion-only samples, intensely vimentin- andZO-1-positive (andAqp-4-negative)fibroblast-like cells
(arrowheads) lined themain lateral-most aspect of cystic cavities (asterisk). (B)The lateral tissue bridge area was found to be rich in
vimentin-positive, spindle-shaped fibroblast-like cells (arrowheads) but themedial lining of the cyst was occupied byAqp-4-positive
astrocytic processes (arrows). (C) and (D)Example of overlappingGFAP- andAqp-4-signal in the contralateral, unlesionedwhite
matter. (E) In some areas, both ZO-1-positive fibroblast-like cells andGFAP-positive reactive astrocytes appeared tomingle while
lining cystic cavities (asterisk). (F) Smaller cystic cavities that extended into spinal tissues around the primary lesion site were lined by
Aqp-4-positive astrocytic processes and end-feet. Interestingly, EBA-immunoreactivemicrovessels at themedial surface of thefibrous
duramater were devoid of any astrocytic end-feet (arrows, but also compare with supplementary figure 1(F) for baseline stains). Scale
bars: 50μm.

9

Biomed.Mater. 15 (2020) 015012 HAltinova et al



immunoreactive vessels were seen (arrows in
figures 8(D) and (E), respectively) and hardly any
accompanying Aqp-4-immunoreactive astrocytic end-
feet could be detected within the territory of the col-
lagen scaffold. As mentioned above, Aqp-4-immunor-
eactive astrocystic territory could be seen by the sharp
boundary that terminated at the edge of the transition
zone (figures 8(C)–(E)). The establishment of such
sharply demarcated territories strongly suggests that the
ZO-1-positive fibroblast-like cells and GFAP/Aqp-4-
positive reactive astrocytes may have properties of
strongmutual repulsion (figures 8(C)–(F)).

4.Discussion

It is widely accepted that a combination of intervention
strategies is likely to yield the most successful tissue
repair and functional recovery after SCI [38, 39].
Significant advances continue to bemade in developing
bioengineered scaffolds with orientated, micro- or
nanostructured topographies that can support

regenerative axonal growth across the hostile territory
of the cystic cavity-laden lesion site (e.g. [18, 40–42]).

This investigation demonstrated novel aspects of
scaffold-host tissue interactions following the implant-
ation of type-I collagen scaffolds into unilateral resec-
tion injuries of the adult rat cervical spinal cord.
Neovascularisation of the scaffolds was observed in
these long-term (i.e. 10 wps) studies, but there was little
evidence ofmicrovesselmaturation in the context of re-
establishing the BSB. Relatively few endothelial cells of
the newly formed vessels within the scaffold showed
any expression of the tight junction protein, ZO-1 or of
EBA. However, ZO-1-immunohistochemistry revealed
intense staining of the vimentin-positive fibroblast-like
cells as part of the host scarring response that we had
previously reported as surrounding the implanted scaf-
fold as a band or transition zone of encapsulating
cells [32].

In the present experimental model, the type-I col-
lagen scaffold was implanted to bridge a 2 mm uni-
lateral resection injury of the lateral cervical white

Figure 8.Transverse sections used for immunohistochemical characterisation of the vascular/cellular events in collagen scaffold
implanted group at 10weeks post-surgery. (A), (B)At the transition zone of the implanted collagen scaffold, tightly packed,
overlapping, vimentin-positive, fibroblast-like cells could be observed, whichwere also intensely ZO-1-immunoreactive (arrowheads,
also at high power in B). Similarly, vimentin-positive, spindle-shaped cells could be seenwithin the porous framework of the collagen
scaffold. Thefibroblast-like cells within the scaffoldswere clearly not ZO-1-immunoreactive (arrows inA). (C)The formed connective
tissue barrier was of varying thickness between theAqp-4-positive reactive astrocytic processes of the surrounding host spinal cord
and the edge of the scaffold (arrowheads). AlthoughRECA-1- (arrows inD) and rarely EBA-immunoreactivemicrovessels (arrow in
E) could be foundwithin the scaffolds, hardly anyAqp-4-immunoreactive astrocytic processes or end-feet could be detected around
these vessels (also comparewith supplementary figures 1(E) and (F) for baseline stains). (F)The ZO-1-immunoreactive transition
zone and theGFAP-positive scarring astrocytes constituted a double-fibroadhesive/astroglial barrier that isolated the collagen
scaffold frommost of the host neural cells (arrowheads, but also comparefigures 7(C) and (D) for baselineGFAP- andAqp-4-stains in
spinal cordwhitematter). Scale bars: (A) and (C)–(F): 50μm; (B): 10μm.
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matter tract of the adult rat spinal cord. It is note-
worthy that the implanted scaffold supported new
microvessel formation, quantitatively similar to that
seen in normal spinal cord white matter (as shown by
comparison to the contralateral, uninjured lateral
funiculus). In the context of axonal growth and tissue
repair, a number of studies have demonstrated a close
spatial relationship between newly formed blood ves-
sels and axonal regeneration [34, 40, 43–45]. It may be
that strategies that increase microvessel density within
the collagen scaffold would support greater axon
growth, as suggested by others [45, 46]. The identifica-
tion of angiogenesis within implanted scaffolds
RECA-1 or type-IV collagen immunohistochemistry
only provides partial information about the status of
the vessels. Other indicators of vessel functionality and
integrity within CNS implants are of substantial
importance since CNS tissue is known to be a ‘privi-
leged’ tissue [47]. An intact BSB is pivotal for the func-
tion of the spinal cord and is supported by the
presence of non-fenestrated capillary endothelial cells,
a basal lamina, pericytes and astrocytic end-feet [48].
The presence of tight junctions, typically composed of
key molecules such as claudin-5, occludin and ZO-1,
is a fundamental indicator of the formation andmain-
tenance of a functional BSB [48–50]. Any deficiency or
lack of expression of these proteins suggests significant
disruption of tight junctions and it is widely accepted
that reduced levels of endothelial ZO-1 are associated
with reduced vessel barrier-function in a number of
neurological disorders (e.g. [51]). The results of the
present study showed a similar extent of increased
angiogenesis (RECA-1-immunoreactive microvessels)
around the interface of long-term lesion-only and col-
lagen scaffold implanted animals. Others have repor-
ted that angiogenic events start as early as 3–4 d post-
injury [52] and that increased numbers of vessels may
be achieved by 7 d [53]. The present study also showed
that the vast majority of the vessels that formed within
the lesion site and within the collagen scaffold of
implanted animals lacked ZO-1- and EBA-immunor-
eactivity, suggesting an inability to form fully mature
or functional vessels in the context of reformation of a
BSB. To assess possible reasons underlying the forma-
tion of such blood vessels, their spatial relationship
with astrocytic profiles was investigated. Since GFAP-
immunoreactivity does not define the complete terri-
tory occupied by astrocytes [54], Aqp-4-immunohis-
tochemistry was used. Aqp-4 is exclusively expressed
by rodent spinal cord astrocytes [55, 56] and this
membrane-bound water channel is normally located
on astrocytic end-feet in close apposition to CNS-
microvessels [57]. Interference of the barrier role of
astrocytic end-feet around microvessels has been
demonstrated to result in enhanced vessel perme-
ability [58]. It was clear that host Aqp-4-positive astro-
cytic profiles largely failed to penetrate the implant
and therefore could not be found in association with
the blood vessels within the scaffold. It is likely that

this contributed to the lack of ZO-1- and EBA-immu-
noreactivity on these vessels and that, as a con-
sequence, they remained permeable to certain blood-
borne proteins that are normally excluded by the BSB.
However, this suggestion needs to be confirmed by
further studies.

An inability of reactive astrocytic processes to
penetrate the epicenter of the lesion site appears to be a
consistent observation in a number of experimental
models of CNS injury (including compression and
transection injuries of the spinal cord, and ischemic
stroke injuries within the brain) [59–61]. Cha and col-
leagues demonstrated the development of a dense
fibrotic scar at the lesion site in models of stroke
injury. This prevented astrocytic penetration and,
from approximately 2 weeks post-injury, acted as a
barrier that prevented inflammatory cell encroach-
ment into adjacent spared CNS tissues as well as limit-
ing the consequences of enhanced blood vessel
permeability on adjacent tissue survival. The authors
demonstrated that blood vessels within the lesion site
remained permeable to serum proteins over a number
of weeks but that the forming fibrotic scar acted as a
physical barrier to the spread of exuded serum pro-
teins. A-kinase anchoring protein 12 (AKAP12) was
shown to play a pivotal role in such barrier forma-
tion [60].

The lack of ZO-1- or EBA-immunoreactivity on
newly formed scaffold microvessels was a site (or loca-
tion) specific phenomenon, since newly formed ves-
sels at the medial interface of lesion-only animals and
the fibroblast-rich transition zone after scaffold
implantation both demonstrated robust Aqp-4-
immunoreactivity around EBA- and ZO-1-immunor-
eactive blood vessels. Although these observations
support the well-established relationship between
endothelial cells and astrocytic profiles in BSB forma-
tion [48, 57], there were other regions of the sections
(e.g. sub-dural regions, the ZO-1-immunoreactive
transition zone surrounding the implant and vessels
surrounded by ZO-1-positive clusters of fibroblast-
like cells) that exhibited EBA-immunoreactive blood
vessels. These were neither ZO-1-immunoreactive nor
supported by closely apposed astrocytic profiles. Oth-
ers have reported the presence of EBA-immunor-
eactive blood vessels within the meninges, in
astrocyte-free territories that were close to the glia lim-
itans of the adult rat brain [62, 63]. Vessels located fur-
ther away from the glia limitans showed progressively
weaker EBA-immunoreactivity which suggested that
diffusible astrocyte-derived factorsmay be responsible
for the induction of EBA in endothelial cells that were
not in direct contact to CNS astrocytes but were loca-
ted close to them [62, 63]. This suggestion might also
explain the presence of occasional EBA-positive endo-
thelial cells that were observed within the transition
zone and implanted scaffold of the present study.

The present study also revealed the novel observa-
tion that not all regions of the cystic cavities were lined
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by Aqp-4-positive astrocytic profiles, but included cell
profiles that were intensely immunoreactive for
vimentin and ZO-1. The involvement of astrocytic
profiles has been suggested to reflect the reformation
of the glia limitans [57, 64, 65]. It is possible that the
vimentin/ZO-1-positive cells identified at the lateral
edge of the main cystic cavity, adjacent to the lateral
tissue bridge could be the same as, or similar to, the
fibroblast-like cells located at the implant-host inter-
face of the collagen scaffolds. In support of this, others
have demonstrated that collagen and its degradation
products is chemotactic to fibroblasts [66]. It may be
that the collagen of the dura mater and of the implan-
ted scaffold acted as a primary substrate for cell migra-
tion by these scarring, vimentin/ZO-1-positive
fibroblast-like cells.

The use of an anti-ZO-1 antibody in the character-
isation of BSB reformation in this study revealed a
novel aspect of the fibrotic scarring in response to
implanted collagen scaffolds. The vimentin-positive
fibroblast-like cells that had previously been found to
form a band of overlapping cells and processes of vari-
able thickness around the implanted scaffold [32]were
also observed to be intensely ZO-1-immunoreactive.
Histological evidence of encapsulating connective tis-
sue responses to implanted collagen hydrogels have
been reported by others in experimental rat SCI. The
presence of fibroblasts in and around the implants was
associated with the ingrowth of blood vessels from
surrounding connective tissue and progressive com-
partmentalisation or encapsulation [67]. A similar
fibrotic scarring response around implanted, micro-
structured type-I/III collagen scaffolds in exper-
imental models of rat SCI was also described [27, 28].
In those studies, a range of growth-factors, drugs or
axon growth-promoting cells were combined with the
scaffolds, but little evidence of axonal growth through
the scaffolds could be found. The authors suggested
that invading meningeal fibroblasts were responsible
for the fibrotic scarring response. This suggestion has,
more recently, been confirmed by our previous study,
which showed that scarring cells of the transition zone
were vimentin-positive, GFAP-negative and S100-
negative [32]. The present study has extended the
characterisation of these cells by demonstrating the
rich and highly localised expression of the tight junc-
tion protein, ZO-1, in this region. This supports the
notion that the formation of tight junctions between
fibroblasts (or fibroblast-like cells) plays an important
role in the wound healing response of a wide range of
tissues (as recently reviewed by Shi and co-work-
ers [68]).

Our study demonstrated the formation of two lay-
ers of scarring tissue around the implant; an inner-
most layer of fibroblast-like cells (vimentin/ZO-1-
positive and GFAP/Aqp-4-negative) surrounded by
the astroglial scar (GFAP/Aqp-4-positive, ZO-1-nega-
tive). This pattern shows a striking resemblance to the
meningeal fibroblast/connective tissue scarring that

develops over a number of weeks around experimental
ischemic/stroke injuries and was shown to be impor-
tant in limiting inflammation [60]. Interestingly, data
from other groups also indicated a spatial separation
of reactive host astrocytes from the edge of an implan-
ted (synthetic or natural) polymer bioscaffold (includ-
ing biodegradable poly-hydroxybutyrate, chitosan
and/or alginate scaffolds, all of these polymers being
foreign to CNS [69, 70]). While some investigators
failed to define the cellular contents of the space
between the implant and the reactive host astrocytes,
others clearly demonstrated that it contained DAPI-
labelled, GFAP-negative cells [69]. These observations
appear to be similar to those presented in the present
investigation, provoking the suggestion that the novel
aspect of the scarring response to implanted collagen
scaffolds may also be involved in the host responses to
a wider range of implants. However, this suggestion
needs to be tested in future studies.

The scarring response of damaged CNS tissues
(particularly in the context of implanted biomaterials,
scaffolds or electrodes) has often focused on the glial
aspect of scarring (e.g. [71, 72]). However, over recent
years a better characterisation of the cellular andmole-
cular aspects of scarring (including both glial and
fibrotic scarring) has highlighted numerous potential
targets for therapeutic intervention (e.g. [40, 73–75]).
In this context, the cells critically involved in forming
the fibrotic scar after SCI have been extended from
meningeal fibroblasts to include blood vessel-asso-
ciated fibroblasts and pericytes [76, 77]. It is of critical
importance that any applied intervention only inter-
feres with the detrimental aspects (e.g. encapsulation)
of such scarring responses, since these are intended to
facilitate greater implant-host integration and
improve functional tissue repair. Such strategies will
likely be incorporated into future combinational
approaches in tissue engineering and regenerative
medicine designed to promote functional recovery
after severe traumatic SCI.

5. Conclusion

The present study showed that a bioengineeredmicro-
porous collagen scaffold was capable of supporting an
angiogenic response by the host spinal cord resulting
in microvessel formation within the implant at a
density appropriate for the cervical lateral whitematter
tracts that the implant replaced. Immunohistochem-
istry suggested that microvessel maturation was
impaired, as indicated by the lack of (ZO-1-immunor-
eactive) endothelial tight junctions and of the EBA.
This lack of microvessel maturation was associated
with the failure of astrocytic profiles to penetrate the
scaffold for any significant distance, whichwas in turn,
likely to be due to the formation of a previously
unidentified and intensely ZO-1-immunoreactive
layer of overlapping fibroblast-like cells and processes
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at the implant-host transition zone. These observa-
tions highlight the importance of striving to obtain a
detailed characterisation of the cellular and molecular
events that negatively influence implant-host integra-
tion. The targeted manipulation of these events will
likely contribute to future combinational intervention
strategies by improving scaffold integration and regen-
erative performance in traumatically injured spinal
cords.
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