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Abstract
This work proposes a new algorithm for training neural networks to solve the problems of feature selection and function
approximation. The algorithm applies different weight constraint functions for the hidden and the output layers of a multilayer
perceptron neural network. The LASSO operator is applied to the hidden layer; therefore, the training provides automatic
selection of relevant features and the standard norm regularization function is applied to the output layer. Therefore, we
propose a multi-objective training algorithm that is able to select the important features while solving the approximation
problem.

Keywords Supervised learning · Feature selection · Multi-objective · LASSO

1 Introduction

Feature selection aims at minimizing redundancy among
input variables and maximizing their relevance in relation
to the output variable. Redundancy elimination is usually
accomplished in the input space by identifying overlapping
and information sharing between pairs or within groups
of input variables. Relevant variables are those that are
capable of discriminating output events represented by the
output variable. The problem is often treated with univari-
ate approaches, such as by ranking variables according to
their discrimination ability. Although multivariate relevance
indexes have been reported in the literature (Kira and Ren-
dell 1992), the problem of finding the most relevant feature
set is combinatorial and its solution can be prohibitive in
higher dimensions. Present feature selection methods aim at
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representing the problem with polynomial-time algorithms,
although global convergence to the optimal feature set cannot
be guaranteed. Wrappers (Guyon and Road 2008) offer an
alternative approach for solving the problemwith amultivari-
ate approach; however, sensitivity analysis and combination
of input variables are still required.

Feature selection is usually accomplished prior to learn-
ing, as represented in Fig. 1a, and is often considered as
preprocessing, before the actual learningmodel is induced, so
the learnedmodel f (x,w), may suffer from a poorly selected
feature set (x1, x2, · · · , xn) ∈ x. Thismay impose a dilemma
to the feature selection and inductive learningproblems, since
they are accomplished independently, although they do in
fact depend of each other. The wrapper approach for feature
selection is based on a model that learns with the complete
set of features to further discard the irrelevant ones. Again,
this is a two-step approach, which is highly dependent of
how well the learned model f (x,w) represents the general
function fg(x). In case the learned function is representa-
tive, then the feature selection method can rely on f (x,w)

as a wrapper; however, inducing a representative and gen-
eral f (x,w) is not straightforward, since the problem itself
is also characterized by a dilemma between model bias and
variance (Geman et al. 1992).

Wrappers or any other approach that is based on model
sensitivity should rely on a model that is capable of properly
representing the data generator function. Learning should
be accomplished by implicitly or explicitly trading-off error
and model complexity (Braga et al. 2006; Teixeira 2000).
For instance, when one searches for the proper number of
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parameters of a model in a learning task, an implicit trade-off
between model error and model capacity is accomplished. In
many formulations of such learning problem, model capac-
ity is represented by the magnitude of the weights, since it
is also associated with the separation margin in classifica-
tion and regression problems (Vapnik and Cortes, 1995a). In
neural networks this learning dilemma can be treated with
multi-objective optimization, which involves jointly mini-
mizing learning set error and model structure (Braga et al.
2006; Teixeira 2000), often represented by the L2 norm of
the weight vector.

This paper presents a novel view of feature selection
and learning problems, which is based on accomplishing
the two tasks jointly instead of selecting features and then
learning. The principle seems to find grounds on selective
learning by humans, which involves jointly learning and
selecting features (Broadbent 1958). However, learning from
data is inherently a trade-off problem (Gacek and Pedrycz
2011; Bartlett 1997; Vapnik 1995b), multi-objective learn-
ing (MOBJ).
Braga et al. (2006) and Teixeira (2000) were adopted for
inducing the classification model. The general scheme for
feature selection and learning is represented in Fig. 1b.

The interaction between the two tasks represented in
Fig. 1b is possible due to the layered structure of neural net-
works which allows for different objective functions to be
minimized on each layer. The magnitude of the weights, rep-
resented by their norm, usually adopted inMOBJ learning, is
a single parameter that can control smoothness response and
effective capacity. L2-norm is usually considered to represent
complexity and tomaximize separationmargin; however, L1-
norm representation of LASSO (Tibshirani 1996a) (Least
Absolute Shrinkage Operator) has also been adopted in the
present work, since it may result on sparse solutions, parame-
ter elimination and, of course, on feature selection. In partic-
ular, for MLPs (multilayer perceptron), weight elimination
at the input layer may result on input variables selection.@@

LASSO was applied in other works in order to select
features. In Rampone andRusso (2012), amethodwas devel-
oped to deal with databases with missing information. It is
based on an algorithm that is able to infer Disjunctive Nor-
mal Form Boolean formula (DNF 1994) on low syntactic
complexity variables. It defines a relevance index based on
a membership function. The extended algorithm uses this
function as a greedy criterion and selects the most rele-
vant variables one at a time. Also in Yamada et al. (2014)
the authors consider a feature-wise kernelized LASSO in
order to identify nonlinear input–output dependency. Itsmain
idea is to apply a nonlinear transformation in a feature-wise
manner applied to particular kernel functions. By doing so,
non-redundant variables strongly correlatedwith output vari-
ables can be found in terms of kernel-based independence
measures, such as the Hilbert-Schmidt independence cri-

Fig. 1 Classification and feature selection in machine learning

terion (Gretton et al. 2005). A MOBJ learning algorithm
for MLPs with different penalty functions for each layer
is presented in this work. The L1-norm penalty function is
applied to the hidden (or input) layer, whereas the L2-norm is
applied to the output layer. Theminimization of the two func-
tions jointly with MSE (minimum square error) allows for
complexity control and data set fitting. In addition, LASSO
solutions that result from the L1-norm penalty function, at
the input layer, may also result on a minimum set of input
features.

This work is organized as follows: Sect. 2 reviews the
MOBJ learning, while Sect. 3 deals with LASSO for feature
selection. Section 4 reviews the training of MLP layers and
explores the independent training for different layers. The
proposed feature selection method is presented in Sect. 5.
Sections 6 and 7 present the experiments and results using
synthetic and real case data. Section 8 presents discussion
and conclusion.

2 Multi-objective learning

Feature selection with wrappers is quite dependent of model
quality and of how well f (x,w) represents the generator
function fg(x). The poorer the model, the less representative
the resulting selected features. It is well known that learn-
ing is a multi-objective problem that requires minimization
of empirical and structural risks (Vapnik 1995b) or balance
between bias and variance (Geman et al. 1992). The prob-
lem has, therefore, an intrinsic multi-objective nature since it
involves the optimization of two conflicting objective func-
tions (Teixeira 2000). In a more general way, multi-objective
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learning can be described by introducing error and com-
plexity objective functions φe(ω) and φc(ω), with the first
one representing the empirical risk and the second one the
structural risk. It can be formulated as the following vector
optimization problem:

min
ω∈�

(φe(ω), φc(ω)), (1)

whereω is the vector of network parameters in the parameter
space �.

Since the two objective functions are conflicting in the
region of interest, the solution of the problem in expression 1
is a Pareto-optimal front �∗ ⊆ �, in which the elements
ω∗ ∈ �∗ satisfy the conditions

∀ω :
{

φe(ω) ≥ φe(ω
∗),

φc(ω) ≥ φc(ω
∗). (2)

In other words, the optimization problem results on the opti-
mal solutions that represent the best compromise between the
two objectives, so for every solutionω /∈ �∗, there are others
in �∗ that have lower complexity and error. From the Opti-
mization perspective, the final solution should be selected
from the Pareto set �∗, so multi-objective learning involves
first generating�∗ and then selecting one of its solutions. The
original MOBJ learning algorithm (Teixeira 2000) considers
φe(ω) = ∑

e2 and φc(ω) = ||w||2.

3 LASSO for feature selection

Similar to MOBJ learning, LASSO (Least Absolute Shrink-
age and Selection Operator) (Tibshirani 1996b) is defined as
a constrained optimization problem that aims at minimizing
the residual sum of squares (error) subject to the sum of the
absolute weights being less than a constant t .

w∗ = arg min 1
N

∑N
j=1

(
d j − y(w, x j )

)2
subject to : ∑

i |wi | ≤ t
(3)

The method is very similar to the L2 norm constrain
(MOBJ) approach, however, with subtle but important dif-
ferences. To illustrate the differences between theMOBJ and
LASSOmethods, we present a single perceptron with hyper-
bolic tangent activation function, one input and two weights:
the input weight w and the bias weight, b. The perceptron’s
output equation is: y(xi ) = tanh(w.xi + b). The follow-
ing patterns: (xi , yi ) = {(−3,−0.4), (2,−0.9)} define the
training set. The error surface is shown in Fig. 2.

A perceptron with linear activation function has an ellip-
tical error surface centered at the full least squares estimates.
However, the nonlinear activation function turns the surface
irregular but with a distinct minimum at wo = −0.207 and
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Fig. 2 Perceptron’s error surface for the training set: (xi , yi ) =
{(−3,−0.4), (2,−0.9)}
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Fig. 3 Error, norm and LASSO contours

bo = −1.045. Both norm and sum of the absolute weights
functions have their minimum at the origin (w = 0, b = 0).
The associated Pareto sets for norm and absolute weights
functions are sets of solutions that start from origin and end
at the minimum error point. To compare the solutions condi-
tioned to the previous constraints, the error contours as well
as the norm and the LASSO contours are shown in Fig. 3.
The constraint region for the norm is the disk w2 + b2 ≤ η

while that for LASSO is the diamond |w| + |b| ≤ t . Both
methods find the first point where the error contours hit the
constraint regions which represent a solution with minimum
error conditioned to the respective constraint.Unlike the disk,
the diamond has corners; if the solution occurs at a corner,
then it has one weight equal to zero. When the number of
weights is larger than 2, the diamond becomes a rhomboid
and has many corners, flat edges and faces, with many more
opportunities for the estimated weights to be zero (Hastie
et al. 2009).
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Fig. 4 Comparison between two network solutions, one obtained with
LASSO and the other with MOBJ. As can be observed, LASSO’s solu-
tion is sparse,withmanynullweights,whatmay result on input selection
when adopted at the input layer

Although MOBJ and LASSO methods have common
solutions, the paths between origin and minimum error are
quite different. Figure 3 shows that the norm solutions are
nonzero for any constraint except at the origin. The LASSO
approach has a subset of solutions where w is null, what
may result on feature selection. As for MLPs, the LASSO
approach adopted at the input layer may result on weight
elimination and input variable selection. The comparison
between MOBJ and LASSO presented in Fig. 4 shows the
difference of sparseness between the two approaches. The
figure shows the magnitudes of all weights of a MLP trained
with the two approaches. As can be observed, sparseness is
much higher in LASSO solutions, since it has resulted on
many null weights that can be eliminated. The same does not
happen with MOBJ solution, which has many solutions with
small magnitudes, but not null. The approach presented in
this paper suggests that LASSO is used for optimizing input
weights, whereas MOBJ is adopted at the output weights, so
that separation margin is maximized.

4 Dependent versus independent training of
hidden and output layers

Consider, for instance, without loss of generality, that our
problem is aimed at a two-layer MLP and that we aim at
obtaining a large margin classifier as well as at selecting
input features, as discussed in previous sections. A general
schematic representation for a two-layer network structure
for binary classification problems is presented in Fig. 5. Input
to output mapping is accomplished by the two transforma-
tions h(x,Z) and g(h,w), where Z is the matrix containing

Fig. 5 General representation of a neural network of one output and
two layers

all hidden layerweights andw is the vector of outputweights.
The network function can then be represented as f (x,Z,w)

with argument x and parameters Z and w. In this paper, we
aim at L1 norm minimization for Z and at L2 norm mini-
mization for w so that feature selection is accomplished at
the input layer and margin maximization at the output.

According to Fig. 5, for every input vector xi a corre-
sponding vector hi is mapped into the hidden layer space,
where margin maximization actually happens. Therefore,
separation margin ρ is actually optimized in relation to
the mapped vectors hi , so it depends on the separation
hyperplane characterized solely by the weight vector w and
known to be inversely proportional to the L2 norm of the
weights (Vapnik 1995b), so ρ ∝ 1

||w|| . Most methods, like
MOBJ, that consider the norm of the weights for margin
maximization minimize the weights for the augmented vec-
tor [w,Z]. Anotherwell-known example of such an approach
is regularization, which is based on the objective function
minω

∑n
i=1

(
yi − ŷi

)2 + λ ‖w‖2, where λ is the regular-
ization parameter and the weight vector w is composed of
hidden z jk and output weights w j (w = [w j , z jk]), i.e.,
‖w‖2 = ∑

w2
j + ∑

z2jk . Therefore, with the regulariza-
tion approach, both hidden and output norms are minimized
simultaneously (Haykin 2001; Vapnik and Cortes, 1995a).

Consider, therefore, that our binary classification problem
characterized by the hyperplane w is defined in intermediate
layer space as wT∗ hi ≥ 0 ∀ hi ∈ C1 e wT∗ hi < 0 ∀ hi ∈ C2

and that the maximum margin is given by Eq. 4 (Vapnik
1995b).
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ρ(w∗) = hs · w∗

||w∗|| (4)

where hs = [h1(xs), h2(xs), · · · , h p(xs)]T is the nearest
vector to the hyperplane, xs is the corresponding input vector
and w∗ is the maximum margin separator. Equation 4 can be
expanded as follows:

ρ(w∗) = h1(xs, z1)w1

||w∗|| + h2(xs, z2)w2

||w∗||
+ · · · + h p(xs, zp)wp

||w∗|| (5)

ρ(w∗) = h1
(∑n

i xsi zi1
)
w1

||w∗|| + h2
(∑n

i xsi zi2
)
w2

||w∗||
+ · · · + h p

(∑n
i xsi zip

)
wp

||w∗|| (6)

For small values of zki , the approximation

hk(
∑
i

xsi zki ) ≈
∑
i

xsi zki ,

could be made, so Equation 6 could be rewritten as Eq. 7
and then in Eqs. 8 and 9, since the sigmoidal functions
tend to respond close to their inflection points in such a con-
dition.

ρ(w∗) = xs1z11w1

||w∗|| + xs2z21w1

||w∗|| + · · · + xsnzn1w1

||w∗||
+ xs1z12w2

||w∗|| + xs2z22w2

||w∗|| + · · · + xsnzn2w2

||w∗||
+ xs1z1pwp

||w∗|| + xs2z2pwp

||w∗|| + · · · + xsnznpwp

||w∗|| (7)

ρ(w∗) =
p∑
j

xs1z1 jw j

||w∗|| +
p∑
j

xs2z2 jw j

||w∗||

+ · · · +
p∑
j

xsnznjw j

||w∗|| (8)

ρ(w∗) =
n∑

i=1

p∑
j=1

xsi zi jw j

||w∗|| (9)

Furthermore, it can be shown that LASSO weights are,
on average, larger than MOBJ weights. Let us first consider
that both hidden and output layers are trained considering L2-
norm, and then, suppose a finalmulti-objectiveMLP solution
with error e0. This solution has a L2 norm of r2, i.e., r2 =∑

i j z
2
i j . Let z = (z1, . . . , z p) be the hidden weight vector

of dimension p. Using polar coordinates, the elements of
vector z can be represented as linear combination of sines

and cosines associated with a vector of angles of dimension
p − 1, � = (

θ1, . . . , θp−1
)
:

zi =

⎧⎪⎪⎨
⎪⎪⎩

r sin(θ1) i = 1.

r
∏i−1

k=1 cos(θk)sin(θi ) 2 ≤ i ≤ p − 1.

r
∏i−1

k=1 cos(θk) i = p.

(10)

From Eq. 10, the absolute value of weight zi , |zi | can be
written as:

|zi | =

⎧⎪⎪⎨
⎪⎪⎩

r |sin(θ1)| i = 1.

r | ∏i−1
k=1 cos(θk)sin(θi )| 2 ≤ i ≤ p − 1.

r | ∏i−1
k=1 cos(θk)| i = p.

(11)

Furthermore, vector z can be rearranged into many forms
so that any weight z j , j = 1, . . . , p can occupy the first posi-
tion. As a consequence, the first angle θ1 in vector � can be
associated with any weight z j . Now let us consider that hid-
den layer is trained considering LASSO norm. The LASSO
constraint,

∑
i |zi | = r drives some of the weights toward

zero, i.e., sin(θi ) = 0, ∃i . As mentioned, if the LASSO solu-
tion occurs at a corner of the rhomboid, then sin(θ j ) = 1, ∃ j
and j �= i . Thus, if sin(θ j ) = 1, then |z j | = r · sin(θ j ) = r .
For nonzero weights not located in corner of the rhomboid,
0 ≤ |sin(θk)| ≤ 1 or 0 ≤ |cos(θk)| ≤ 1, i.e., for these
weights |zi | < r . Therefore, weights located in the corner of
the rhomboid are larger as compared to weights not located
in the corner.

The weights not located in the corner can be written as
an L2 norm solution with a smaller radius r∗ < r given by
Eq. 12

r∗ =

⎧⎪⎪⎨
⎪⎪⎩

r/|sin(θ1)| i = 1.

r/| ∏i−1
k=1 cos(θk)sin(θi )| 2 ≤ i ≤ p − 1.

r/| ∏i−1
k=1 cos(θk)| i = p.

(12)

Figure 6 illustrates the differences between L2 norm and
LASSO constraints using a vector z with two weights, z =
(z1, z2). Using polar coordinates: z1 = r sin(θ) and z2 =
r cos(θ). Results were generated assuming z21 + z22 = r2

and |z1| + |z2| = r for θ ∈ {0, . . . , 2π}. Under these similar
constraint values, LASSO solutions, located in the corner, are
larger than L2 solution located in the inner circle, which has
a smaller radius r∗ = r/|sin(θ)|. The L2 norm solution, not
located in the corner, achieves a larger weight if the radius
is larger than r , as shown in the outside circle. In general,
LASSO solutions generate few nonzero weights with larger
absolute values as compared to L2 norm solutions.
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Fig. 6 Comparison of L2 and LASSO solutions

5 Using norm and LASSO penalty functions
for different layers

In addition to minimize MSE, we aim also at eliminating
the input weights related to irrelevant features and to adapt
the norm of the weights in the output and input layers in
order to maximize generalization. Therefore, the newMOBJ
optimization equation using LASSO and norm constraints in
hidden and output layers is

min
w

n∑
i=1

(
yi − ŷi

)2 + λ1
∑
j

w2
j + λ2

∑
jk

|z jk | , (13)

where λ1 and λ2 are the L2-norm andLASSOpenalty param-
eters, respectively.

The LASSO term in equation 13 can be rewritten as∑
jk |z jk | = ∑

k
∑

j |z jk | = ∑
k |zk |, where |zk | =∑

j |z jk |. Thus, |zk | is the sum of the absolute weights in
the hidden layer related to feature k. If |zk | = 0, then it can
be said that the feature k is not connected to the network and,
therefore, does not contribute to the output.

If feature l is found to be irrelevant during training, it
can be assumed that |zl | = 0. Therefore, the optimization
problem can be rewritten as

min
w

∑
i

(
yi − ŷi

)2

subject to : ∑
jk |z jk | ≤ t1,

|zl | = 0∑
j w

2
j ≤ t2

(14)

Thus, if nl features were identified as irrelevant features,
then the following constraint can be applied |zl | = 0, ∀ l =
{1, 2, . . . , nl}.

The optimization problem defined in Eq. 14 forces all
weights in the hidden layer connected to irrelevant features
to be confined to zero. Nevertheless, the irrelevant features
are not known in advance. Thus, the optimization algorithm
should select the irrelevant features. It is also worth noticing
that one feature can be said to be irrelevant, conditioned on
the value of t1, that is, for smaller values of t1, the features
which were classified as irrelevant can be classified as rele-
vant features for larger values of t1. In practice, the constraint
|zl | = 0 means that the values of z jl are set to zero.

In order to identify irrelevant features during training, sta-
tistical outlier detection techniques were investigated. Let
|zk | be the random variable of interest. Conditioned to the
value of t1, it is expected that some k features will achieve
smaller values of |zk |, as compared to the remaining features.
Statistical methods such as boxplot, Dixon’s text, Grubbs’s
test, z-score, among others [18], are presented in the lit-
erature. The z-score test was used to detect the irrelevant
features. Therefore, the following algorithm is proposed:

– Conditioned on the values of t1 and t2, themulti-objective
optimization problem presented in Equation 14 is solved
without excluding features.

– After convergence, the sum of the absolute weights for
each feature |zk | is calculated. In sequence, the logarithm
of |zk |, log|zk |, is calculated and normalized, i.e., the
observed mean is subtracted from each value, and the
remaining value is divided by the sample standard devi-
ation.

– The features with standardized value below -2, which
represents the lower bound of a normal distribution with
cumulative probability of 2.5%, are classified as outliers
andhave theirweights set to zero, |zl | = 0.The remaining
weights are updated using Eq. 14 until final convergence.

The logarithm of |zk | is the statistic of interest because if
the constraint t1 is close to zero, thenmost of the features have
smaller values of |zk |. In such situation there is not enough
evidence to eliminate weights. As the value of t1 increases,
thenweights associatedwith important featureswill increase,
whether weights of irrelevant features will not increase.

The ellipsoidal algorithm (Bland et al. 1980) is applied to
solve the optimization problem presented in Eq. 14.

6 Experiments

Two synthetic and nine real data sets of classification
problems were chosen to evaluate the performance of the
proposed algorithm. The algorithm is implemented in a feed
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forward multilayer perceptron network with only one hidden
layer. Each hidden neuron is implemented with a hyperbolic
tangent activation function and the output unit with a lin-
ear one. For each problem, the first run was done in order
to set the best network parameters such as the number of
neurons in the hidden layer. After network initialization, the
data set is randomly split into training and test sets in a ratio
of 70% and 30%, respectively. In sequence, the neural net-
work model is trained using the proposed algorithm and the
training set. The accuracy of the trained neural network is
evaluated using the test set. This procedure is repeated 10
using a tenfold cross-validation scheme. For each training
fold, the weights of the irrelevant features were estimated as
|zl | = 0 and the mean results are presented in Sect. 7. A
support vector machine (SVM) (Vapnik 1992) is also used to
solve the same problems using the same training and testing
sets for all ten runs, in order to compare the results. First, the
SVM is applied to the entire data set (all features are con-
sidered) and, in sequence, it is applied considering only the
features selected by the proposed method. The available data
sets are described next. All but the two synthetic problems
are from Dua and Graff (2017).

– SONAR the SONAR data set comprises sonar responses.
The task is to discriminate between sonar signals bounced
off a metal cylinder and those bounced off a roughly
cylindrical rock. This data set has 208 instances with 60
features.

– PEN the Pen-Based Handwritten Digits data set com-
prises digit samples from 44 different writers. We con-
sidered only instances of the digits 6 and 9. The data set
has 16 features and 2,111 instances.

– ILPD the Indian Liver Patient Data set comprises 416
liver patient instances and 167 nonliver patient instances.
The data set has 10 features.

– IONO the JohnsHopkinsUniversity Ionosphere database
comprises 34 features with 351 patterns of radar returns
from the ionosphere. Radar returns are classified into two
classes: good returns showing evidence of some type of
structure in the ionosphere, or signals that did not pass
through the ionosphere.

– GLASS Data set containing examples of chemical analy-
sis of seven glass types. Only types 1 and 2 are considered
in this work. For these classes, there are 146 observations
of 9 features.

– HOUSE This data set contains housing data for 506 cen-
sus tracts from city of Boston. It has 12 features. The
objective is to classify whether the house will have a
median value larger than 20.000 USD per squared meter
or not.

Fig. 7 Simulated data sets

– DIABETES Data set contains 768 observations with 9
features from Indian patients. The objective is to classify
patients into two classes: positive or negative for diabetes.

– MFEAT This data set comprises 76 features of handwrit-
ten numerals (0 to 9) extracted from a Dutch collection
of utility maps. For this work, only the observations from
numerals 0 and 1 are considered. The 76 features repre-
sent the Fourier coefficients of character shapes.

– POP The climate model simulation data set comprises
20 features and 540 observations. The goal is to predict
the failure or success of a simulation outcome.

– XOR The data set comprises synthetic data set built
with an exclusive-OR function. The problem has a total
of 7 features, two important features (two dimensional
problem), three additional noise features and two more
features that are equal to the first, towhich a randomnoise
was added. This data set comprises 2000 instances. Fig-
ure 7a shows the two classes defined by the two important
features.

– PCIRC The data set comprises a synthetic problem hav-
ing two different classes. This problem has a total of
10 features of which the first two are the most relevant,
and the last two are equal to the first two to which a
random noise was added. There are eight more random
features that are completely irrelevant. The problem has
2277 instances. Figure 7b shows the two classes defined
by the two important features.

7 Results

Tables 1 and 2 list the results obtained for the experiments
proposed in Sect. 6. The mean values and the standard
deviations for accuracy are presented for the tenfold cross-
validation. Table 1 also lists the average number of selected
variables at the end of selected variables using the proposed
methods.
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Table 1 Accuracy results for LASSOMOBJ

problem LASSOMOBJ # selected features/ # Total

PCIRC 0.995 ± 0.003 4/10

XOR 0.992 ± 0.005 4/7

ILPD 0.711 ± 0.032 4/10

Sonar 0.740 ± 0.034 31/60

Iono 0.858 ± 0.030 33/34

Pen 0.999 ± 0.001 10/16

Glass 0.652 ± 0.093 6/9

House 0.894 ± 0.025 7/12

Diabetes 0.700 ± 0.039 5/8

Mfeat 1.000 ± 0.000 38/76

Pop 0.955 ± 0.016 8/20

Fig. 8 Result equivalence. LASSO label refers to the proposed method,
SVMa for the SVM method applied to all features and SVMs to only
selected features

Table 2 Accuracy results for SVM

problem SVM (all features) SVM (selected features)

PCIRC 0.999 ± 0.001 0.999 ± 0.001

XOR 0.997 ± 0.001 0.999 ± 0.001

ILPD 0.710 ± 0.031 0.700 ± 0.056

Sonar 0.802 ± 0.064 0.846 ± 0.031

Iono 0.902 ± 0.037 0.946 ± 0.013

Pen 0.999 ± 0.001 0.999 ± 0.001

Glass 0.782 ± 0.048 0.711 ± 0.034

House 0.855 ± 0.040 0.861 ± 0.032

Diabetes 0.754 ± 0.024 0.689 ± 0.018

Mfeat 0.995 ± 0.004 0.996 ± 0.004

Pop 0.927 ± 0.015 0.920 ± 0.019

The Friedman statistical test was applied. This test con-
siders the null hypothesis that at least one result would not
be equivalent, i.e., theMOBJ-LASSO result is different from
at least one result of the SVM methods. Results showing a
p-value of 0.93 indicate the rejection of the null hypothe-
sis, showing the equivalence between the results obtained by

Fig. 9 Weight values assigned to selected features for each problem.
Features with weight equal to zero are discarded

the two methods. Therefore, there is evidence that MOBJ-
LASSO and SVM results are similar (see Fig. 8).

As shown in Tables 1 and 2 and in the result of the statisti-
cal tests, the proposedmethod is equivalent in performance to
the benchmarkmethod for classification problems. Basically,
even in problems where the MOBJ-LASSOmethod does not
achieve good accuracy, SVM achieves either the same result
or is slightly better, but still, statistically equivalent. Nev-
ertheless, MOBJ-LASSO was able to select features which
were important for the classification problem. Consequently,
MOBJ-LASSO provides a more effective understanding of
the problem, since it provides variable selection.

Figure 9 illustrates the features selected using the pro-
posed method. Features with weight of zero are identified as
irrelevant and were discarded. The bar plots show the aver-
age value of the weights associated with each feature, where
feature 0 comprises the Bias term of the hidden neuron. For
the two synthetic data sets, only the most important features
were selected. Note that for the PCIRC, problem features 1,
2, 9 and 10 are the most relevant and for the XOR problem
features 1, 2, 6 and 7 are also the most important, as selected
by the method (see Fig. 9a and d). Finally, the number of
selected features was closer to the number of available fea-
tures using the IONO data set.
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8 Conclusion

The main objective of this work was to perform feature
selection. Usually feature selection is a preprocessing step
before training. This work proposes a multi-objective algo-
rithm that selects the important variables while solving the
function approximation problem. The algorithm proposed
in this paper applies the L1-norm function (LASSO opera-
tor) to the hidden layer of an MLP network so that, when
performing the training, automatic selection of the relevant
input variables occurs.

In general, both hidden and output weights of MLPs are
adjusted in order to minimize the mean squared error func-
tion. Furthermore, a penalty function can be applied to adjust
properly the MLP complexity, i.e., to improve the prediction
of the MLP. One alternative to selecting features or inputs
in the training process is to use different penalty functions
for input and output layers. We propose using the L1-norm
function in the hidden layer and the L2-norm function in
the output layer. Furthermore, we evaluate separately the
sum of the absolute values of the hidden weights, which are
connected to the same feature (input), |zl |. Consequently,
features with larger L1-norm values are compared to fea-
tures with smaller L1-norm values, using a simple statistical
test. Features with smaller L1-norm values are classified as
irrelevant features and are excluded from the MLP. Features
with larger L1-norm values are classified as relevant features.
Thus, this procedure allows training the MLP and selecting
relevant features automatically.

The experiments were designed to show that the algorithm
is able to generalize well while selecting a set of relevant
variables. Two synthetic data sets and nine real problem
databases found in the literature were considered in the tests,
with different quantities of features and samples. The perfor-
mance of the algorithm was compared to the performance of
SVM which is one of the state-of-the-art learning machines.

Experimental results show that the proposed method
achieves high performance, which are statistically equiva-
lent to SVM, however, with a reduced set of features.
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