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Abstract

Major progress has been achieved in recent years to elucidate
mechanisms driving the early response of pulmonary innate
immune cells to inhaled micrometric and nanometric particles.
Mononuclear phagocytes promptly categorize particles, alert
immune network and engage crescendo responses for parti-
cle clearance and homeostasis restoration. Negatively
charged particles directly interact with scavenger receptors
A and B (SR-A and SR-B) and consequently activate specific
signaling pathways, resulting in the production of TNF and IL-
1 family members, which coordinate effective innate immune
responses. Cytokine secretion also arises after a simple
contact between particle-associated radicals and cell mem-
branes. Reactive particles engage the passive release of
constitutive alarmins, ensuing particle- or TNF-a-induced cell
death and membranolysis. Finally, the inflammasome ma-
chinery represents the decisive intracellular platform that
finely tune immune pathways engaged after SR activation,
alarmin release, TNF-a production and cell homeostasis
perturbations. Disturbance of these collective recognition
processes prolongs particle persistence and innate immune
responses that generate long-lasting adaptive immunity and
cause chronic lung diseases.

Addresses
Louvain Centre for Toxicology and Applied Pharmacology (LTAP),
Institut de Recherche Experimentale et Clinique (IREC), Université
Catholique de Louvain, Brussels, Belgium

Corresponding author: Huaux, François, Louvain centre for
Toxicology and Applied Pharmacology (LTAP), Université catholique
de Louvain, Avenue Mounier 53 bte B1.52.12, 1200 Brussels,
Belgium. Fax: +32 2 764.53.38. (francois.huaux@uclouvain.be)
Current Opinion in Toxicology 2018, 10:84–90

This review comes from a themed issue on Systems Tox: Immuno-
toxicity (2018)

Available online 21 February 2018

For a complete overview see the Issue and the Editorial

https://doi.org/10.1016/j.cotox.2018.02.004

2468-2020/© 2018 Published by Elsevier B.V.

Keywords
Sensing, Particles, Nanoparticles, Silica, Innate immunity, PRR, DAMP,
HAMP, Cytokines, Alarmins and inflammasome.
Abbreviation
PRRs, Pattern Recognition Receptors; DAMPs, Damage-Associated
Molecular Patterns; HAMPs, Homeostasis-Altering Molecular
Processes; LMP, Lysosomal Membrane Permeabilization; CDE,
Clathrin-Dependent Endocytosis; NLRP, NOD-like Receptor Rroteins.
Current Opinion in Toxicology 2018, 10:84–90
1. Introduction
Interest in clarifying the immuno-pathophysiology of
lung disorders induced by inorganic particles was initi-

ated almost 30 years ago with the first description of a
marked accumulation of neutrophils and activated
macrophages (or mononuclear phagocytes) in the lungs
of dust-exposed individuals with respiratory impair-
ments [1]. Although additional immune cells and
pathways have been identified that refine our under-
standing of the immune mechanisms leading to particle-
induced chronic diseases [2], it remains to elucidate
how innate immunity senses particles (inert or reactive)
and elicits early tissue responses that have an essential
role in eliminating particles or driving diseases such as

fibrosis and cancer.

The innate immune system integrates a distinct set of
receptors on phagocytes designated pattern recognition
receptors (PRRs) and serving as sensors for monitoring
the extracellular and intracellular compartments for
signs of infection or tissue injury [3]. These sentinel
receptors rely on sensing common structural and func-
tional features associated with different classes of mi-
croorganisms termed pathogen-associated molecular
patterns (PAMPs). The PRR system also detects debris

from dying cells, known as danger-associated molecular
patterns (DAMPs that comprise alarmins) and pertur-
bations in cytoplasmic homeostasis, recently defined as
homeostasis-altering molecular processes (HAMPs) [4].
The engagement of PRRs by PAMPs, DAMPs or
HAMPs results in the production of master cytokines
such as IL-1 and TNF family members that orchestrate
effective immune responses [5].

A similar PRR-mediated sensing system for inhaled
particles did initially not appear plausible because par-

ticles are different from biological structures such as
microorganism cell-wall components or viral nucleic
acids, which are avidly and specifically recognized by
PRRs. The discovery that scavenger receptors (SR), a
subfamily of PRRs, are dedicated to sense endogen low-
density lipoprotein (LDL) particles and asbestos [6]
changed the opinion of researchers in particle toxi-
cology and suggested that innate immunity can specif-
ically recognize particles and initiate responses against
particles. In 1998, three distinct reports [7e9] concur-
rently revealed a new PRR-related intracellular sensing
axis comprising nod-like receptors (NLRP), termed
www.sciencedirect.com
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inflammasome, that is pivotal in particle recognition and
immune system activation (reviewed in Ref. [10]).
Altogether, these unforeseen aspects of particle-sensing
processes by PRRs have shaken up our knowledge of
early host defense responses against particles.

Available evidence supports the view that the innate
immune system senses particles such as silica, asbestos or

titanium dioxide to promote their clearance and to pre-
vent tissue injury. However, the inability of phagocytes to
eliminate particles can result in inappropriate and
prolonged activation of innate immunity responses [11].
The progressive development of fibrosis, cancer or auto-
immune diseases after particle exposure appears when
particles are refractory to clearance process, constantly
activate PRR-mediated particle recognition, induce
cytokine release and promote long-lasting adaptive
immune responses and drive chronic diseases [12]. Thus,
the fine regulation of innate immunity after its activation

by particles is essential to restore homeostasis (Fig. 1).

Here, we discuss some of the recent developments in
particle sensing and describe the emerging concepts of
micro- and nanoparticle-recognition systems that
include different classes of PRRs (scavenger receptors
Fig. 1
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and inflammasome machinery), DAMPs (alarmins) and
HAMPs (membrane destabilization). These recognition
systems survey the extracellular or cytosolic spaces for
detecting particles themselves or particle-related cell
signatures and operate in a complementary manner to
promote effective responses to particles. Exploring the
collective actions of the PRR pathways sensing particles
represents a new frontier in particle toxicity, and is the

focus of this review.
2. Initial pattern recognition receptor
activation by particles
Scavenger receptor (SR) are integral membrane proteins

that contribute to the recognition and elimination of
foreign or altered-self targets. The SR subfamily abun-
dantly present on mononuclear phagocytes comprises a
diverse array of functional innate receptors sharing the
ability to recognize polyionic ligands such as oxidized
LDL particles [13]. SR-mediated sensing also repre-
sents the main PRR-related system to detect inhaled
particles and initiate early tissue responses [14].

Among SR members, compelling studies support SR-A6
(MARCO) as critical in particle recognition. Expression
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of SR-A6 in macrophages mediates silica particle binding
and endocytosis with cell death [15] (Fig. 2a1). Pulmo-
nary macrophage SR-A6 also mediates clearance of silica
from lung tissue [16]. The role of SR-A1 (CD204) is
currently less clear but probably comparable to MARCO
when considering particle endocytosis [14]. SR-A1 and
silica particles can undergo internalization from the
plasma membrane via clathrin-dependent endocytosis

(CDE) [17]. SR-A6 and -A1 recognize various particles
(silica, metallic particles and latex beads), irrespective of
their primary size (from micrometric to nanometric)
[18e20]. Importantly, SR-A-mediated particle endocy-
tosis can result in lysosomal membrane permeabilization
(LMP) and cell death, two crucial events leading to
inflammasome engagement and alarmin release, respec-
tively (see below, points 5 and 3). Recently, another SR
Fig. 2
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of the B subfamily (SR-B1) has been identified to spe-
cifically sense amorphous and crystalline nano- and
micro-sized silica particles. Consistent with previous
characterization of SR-B1 as a non-endocytic receptor,
this PRR is, however, not required for silica internaliza-
tion as the SR-A members [21].

Intracellular signaling pathways are also directly acti-

vated after SR-A/B and particle interaction (Fig. 2a2).
Activation of SR-A6 and SR-A1 by silica is implicated in
free radical and TNF-a production in bone-marrow-
derived mast cells and macrophages [22,23]. SR-A1
and SR-B1 also mediate IL-1b release [20,21]. These
data strongly indicate that SR-A/B directly induces
mitogen-activated protein kinase (MAPK) phosphory-
lation and NF-kB and/or AP-1 nuclear translocation after
in response to inhaled particles. (a1) Micrometric (mm) and nanometric
s (SR) A and B and clathrin-dependent (CD) endocytosis. (a2) Particle
sults in the activation of MAPK and MerTK signal transduction leading to
mmasome platform (see d). (b) Endocytosis of particles can result in cell
ss of danger-associated molecular patterns, DAMPs) in the tissue envi-
imulation, alarmins are also powerful stimulators of immature proIL-1b
surface induce plasma membrane peroxidation, calcium flux perturbation,
result in TNF-a release. In addition to its own innate immune activity, TNF-
some machinery (d) and to induce cell death and membranolysis (b). (d)
ations in cytoplasmic homeostasis (homeostasis-altering molecular pro-
ge of cathepsin K and S) that are sensed by the intracellular PRR-related
1b release from inactive proIL-1b. Inflammasome engagement results in a
tepwise engagement of PRRs with the progressively increase of serial
rticle elimination.
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particle exposure [13,24]. The Mer receptor tyrosine
kinase (MerTK) signal cascade is also activated after
silica sensing by SR-A1 and mediates IL-1b release by
macrophages [20]. However, SR-A6- and SR-A1-
deficient mice display exacerbated cytokine produc-
tion and neutrophilic accumulation after administration
of silica particles [16,25]. Exacerbated LMP, cholesterol
recycling dysfunction and increased IL-1b release are

also observed in macrophages deficient for SR-A6 [26].
In contrast, SR-B1 depleted mice treated with silica
particles showed, as expected, reduced IL-1b levels and
neutrophilia [21]. Thus, the SR-A subfamily signals
through different intracellular pathways with distinct
effects on immune responses to inhaled particles.

The mechanisms underlying the direct recognition of
particles by SR-A and -B have been elegantly clarified in
recent studies. The positively charged amino acids of SR
are involved in the sensing processes of particles with

negative surface charges. A conserved R-X-R motif of
domain V (also termed C-terminal SR cysteine-rich
domain or SRCR) of SR-A6 containing positively
charged residues is required to initiate cell signaling
after macrophage exposure to silica or asbestos particles.
Crystalline or amorphous silica and TiO2 particles bind
at different sites in domain V, which may elicit specific
and different downstream effects and tissue responses
[18,23]. SR-B1 binding to silica is also linked to the
particle surface charge and a basic amino acid cluster (a4
to a5) at the apex position of the receptor [21].
3. Membranolysis and alarmin release
Dying cells and cell death pathways have an important
role in the initiation of host defense against bacterial
and viral infection or during tissue injury [27]. The
release of necrotic cell or apoptotic body contents after

membrane rupture (membranolysis) acts as a signal to
initiate rapid immune responses. Molecules generated
by dying cells include DAMPs that account for the up-
stream immunological cues regulating innate immunity
and initiating adaptive immune responses [28].

Membranolysis during cell death induced by silica in
phagocytes [29] is initiated by the peroxidation of
membrane lipids caused by reactive surface silanol
patches present on particle surface [30e33]. Alarmins
are the main endogenous danger signals among DAMPs

released to the extracellular milieu after particle expo-
sure [10] (Fig. 2b). Unlike most cytokines, which are up
regulated upon stimulation, alarmins are constitutively
present in resting cells and play important intracellular
functions as transcription factors under homeostatic
conditions. Alarmins possess extracellular functions
when passively released by dying macrophages after
membranolysis and bind membrane receptors in adja-
cent phagocytes not yet affected or newly recruited
[28]. IL-1a, along with other constitutive alarmins such
www.sciencedirect.com
as High Mobility Group Box 1 (HMGB1) is abundantly
secreted after particle exposure and promotes IL-1b
gene transcription by activating NFkB or AP-1 trans-
location (see point 5 and reference [10]).

IL-1a is released from cellular stocks in pulmonary
macrophages after exposure to silica or carbon nano-
tubes (CNT). This effect is size-dependent since

nanoparticles where more efficient to induce IL-1a
release than the corresponding micrometric particles.
IL-1a release by macrophages was predictive of the
acute inflammogenic potential (active IL-1b levels and
neutrophil accumulation) of micro- and nano-silica [34].
Passive release of HMGB1 is documented in cultures of
macrophages exposed to silica or CNT [35]. The pres-
ence of HMGB1 in the extracellular environment in-
creases IL-1b secretion by CNT-treated macrophages
and inhibition of extracellular HMGB1 reduces CNT-
induced IL-1b secretion and inflammation in vivo [35].
4. Particle recognition and TNF-a signaling
There is very little doubt that TNF-a is a key cytokine in
lung responses to inhaled particles [36]. Release of TNF-
a by phagocytes is typically observed after in vitro or in vivo
exposure to diverse particles [37]. TNF-a is a powerful
activator of NFkB and AP-1 transcription factors and is
known to orchestrate cytokine expression during the
early inflammatory responses to particles [38].

Recent elements emphasize TNF-a as the first innate
immune signal immediately released after reactive par-
ticle exposure. While its early production dependents on
SR or Fas ligand (see the above point 2 and reference
[39]), evidence also suggests that particle-generated
radicals and TNF-a expression are functionally linked.
A simple contact between the macrophage plasma

membrane and particles is sufficient to trigger TNF-a
production in the absence of phagocytosis [40e42].
Radicals generated at the surface of particles cause
membrane lipid peroxidation, extracellular Ca2þ influx,
ABA/LANCL2 interaction and TNF-a release, which
occurs within the first minutes of cell exposure to par-
ticles such as silica [40,41] (Fig. 2c). Simple particle
contacts with the cell membrane are also evoked as
triggers for IL-1b secretion [43].

Under resting conditions, TNF-a translation is

repressed in most cells but rapidly restored under stress
conditions [44]. In addition, a membrane-bound pre-
cursor of TNF-a is processed by a TNF-a converting
enzyme (TACE) to generate secreted mature TNF-a
[45], confirming that TNF-a is very promptly secreted,
independently of transcriptional induction or other early
immune mediators.

The capacity of TNF-a to transduce particle detection
to alert the immune network is not limited to its direct
Current Opinion in Toxicology 2018, 10:84–90
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effects. In response to particles, TNF-a also emerges as
one of the major cytokines mediating proIL-1b expres-
sion and initiating inflammasome activation (point 5 and
reference [38]). Finally, this early cytokine is involved in
cell death of phagocytes and subsequent alarmin release
after particle treatment (point 3 and [46]).
5. The inflammasome platform: the ultimate
regulator of innate immune responses to
particles
BesideSRexpressedontheir surface(point2),phagocytes
can elicit discriminating responses to inhaled particles by
deploying a sophisticated PRR-related intracellular ma-

chinery termed inflammasome (or NLRP) [9] (Fig. 2d).
This key component of cytosolic surveillance is a multi-
protein signaling platform that controls activation of the
proteolytic enzymecaspase-1which, in turn, regulates the
secretion of mature IL-1b and IL-18, coordinates host
defenses and induces pyroptotic cell death [47]. The
inflammasome components NLRP3 (NOD-, LRR- and
pyrin domain-containing 3) and pyrin do not directly
detect microorganism or particle patterns, but instead act
as signal integrators detecting perturbations in cyto-
plasmic homeostasis. These cell perturbations now

termed HAMPs underlie inflammasome assembly and
biologically active IL-1b release that play a crucial role in
the establishment of innate and adaptive immune re-
sponses [4].

Intensive investigations exploring HAMPs have led to
propose different cell processes accounting for inflam-
masome activation and IL-1b maturation in response to
inhaled particles. The main perturbations of cell ho-
meostasis detected by NLRP3 are LMPand subsequent
lysosome content release after particle internalization.
Following particle uptake by the phagolysosomal

pathway, LMP elicits the leakage of cathepsin B and S
that, in turn, regulates inflammasome assembly and
activation [48,49]. Lysosome acidification probably
represents a prerequisite and an upstream inflamma-
some activator after particle endocytosis [50]. Early
modifications of cell volume, intracellular ionic con-
centrations (mainly Kþ and Caþþ) and redox balance are
also sensed by NLRP3 axis as major cellular events
requiring IL-1b activation [43,51]. Additional cell per-
turbations crucial to NLRP3 activation comprise mito-
chondrial damage and autophagy dysfunction [52].

Physicochemical characteristics of particles such as size
and shape are decisive for particle internalization and
lysosomal alteration. The smallest and fiber- or needle-
like particles are particularly active to induce inflam-
masome activation. Surface area properties and reac-
tivity also govern cell function, lysosomal damage, and
subsequent inflammasome/IL-1b processing [10].

Surprisingly, other activating stimuli are required for
phagocytes to express the immature precursor form of
Current Opinion in Toxicology 2018, 10:84–90
IL-1b (proIL-1b), a prerequisite for active IL-1b
release. The endogenous mediators that prime the
transcription of pro-IL-1b through the NFkB/AP-1
signal transduction are the alarmins IL-1a and HMGB1
released after particle-induced cell membranolysis (see
point 3 and [10]). Besides alarmins, TNF-a is another
crucial priming factor promptly released by phagocytes
after radical sensing (point 4) and scavenger receptor

activation (point 2 and [38]). Finally, pyroptosis is the
cell death pathway mediated by caspase-1 activation.
Thus, pyroptosis can amplify innate immune responses
to particles through the release of dying cell contents,
including alarmins.

Interestingly, the secretion of mature IL-1b strikingly
requires collective and concomitant signals i.e. HAMPs
(which activate inflammasome) and DAMPs (which
induce proIL-1b production). It is thus probable that
the detection of crescendo signals after PRR system

engagement allows the host to gauge particle reactivity,
particle deposition or tissue damages and ultimately
adjust effective innate immune responses to particles.
6. General scenario and predictive tests
In conclusion, this review highlights that the innate
immune system integrates SR on phagocytes that sense
inhaled particles, activate signal transduction pathways
and initiate particle endocytosis. The PRR system
associated to inhaled particles also detects components
from dying phagocytes after particle endocytosis that
comprise DAMPs (alarmins and abscisic acid) and
HAMPs (ion movements and cathepsin release). The
engagement of PRRs by the particles themselves,
DAMPs or HAMPs results in the production of potent
pro-inflammatory cytokines (mainly IL-1 and TNF)
that orchestrate early immune responses against

particles.

Simple and quantitative models or assays based on PRR
engagement may serve in (nano) toxicology to predict
the in vivo toxicity of new materials and particles and to
reduce animal uses. Alarmin release in macrophage
cultures has been proposed to serve as a basis for eval-
uating the inflammogenic activity of nano- and micro-
metric particles [34]. The binding of particles at
different sites of SR may also be used to distinguish
reactive and inert particles [18,23]. Finally, the activa-

tion of inflammasome machinery appears highly pre-
dictive of the potential capacity of micro- and
nanoparticles to activate innate immune responses [10].
Indeed, these intracellular PRRs can be activated by a
large panel of cell perturbations induced by diverse
reactive particles.
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