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Purpose: Robust optimization is becoming the gold standard for generating robust plans against var-
ious kinds of treatment uncertainties. Today, most robust optimization strategies use a pragmatic set
of treatment scenarios (the so-called uncertainty set) consisting of combinations of maximum errors,
of each considered uncertainty source (such as tumor motion, setup and image-conversion errors).
This approach presents two key issues. First, a subset of considered scenarios is unnecessarily
improbable which could potentially compromise the plan quality. Second, the resulting large uncer-
tainty set leads to long plan computation times, which limits the potential for robust optimization as a
standard clinical tool. In order to address these issues, a method is introduced which is able to prese-
lect a limited set of relevant treatment error scenarios.

Methods: Uncertainties due to systematic setup errors, image-conversion errors and respiratory
tumor motion are considered. A four-dimensional (4D)-equiprobability hypersurface is defined,
which takes into account the joint probabilities of the above-mentioned uncertainty sources. Only
scenarios that lie on the predefined 4D hypersurface are considered, guaranteeing statistical consis-
tency of the uncertainty set. In this regard, twelve scenarios are selected that cover maximum spatial
displacements of the tumor during breathing. Subsequently, additional scenarios are considered (sam-
pled from the aforementioned 4D hypersurface) in order to cover any estimated residual range errors.
Two different scenario-selection procedures were tested: (a) the maximum displacements (MD)
method that only considers twelve scaled maximum displacement scenarios and (b) maximum dis-
placements and residual range (MDR) method which, in addition to the scaled maximum displace-
ment scenarios, considers additional maximum range uncertainty scenarios. The methods were tested
for five lung cancer patients by performing comprehensive Monte Carlo robustness evaluations.
Results: A plan computation time gain of 78% is achieved by applying the MD method, whilst
obtaining a target robustness of Dgs larger than 95% of the prescribed dose, for the worst-case sce-
nario. Additionally, the MD method has the potential to be fully automatic which makes it a promis-
ing candidate for fast automatic planning workflows. The MDR method produced plans with
excellent target robustness (Dgg larger than 95% of the prescribed dose, even for the worst-case sce-
nario), whilst still obtaining a significant plan computation time gain of 57%.

Conclusions: Two scenario-selection procedures were developed which achieved significant reduc-
tion of plan computation time and memory consumption, without compromising plan quality or
robustness. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.13850]
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1. INTRODUCTION

Clinical trials have indicated a potential clinical benefit of
proton therapy, due to its improved physical dose deposition
properties.' Such benefit is related to the steep dose fall-off
at the proton’s end-of-range (the so-called “Bragg peak™)
which creates the possibility to spare healthy tissues without
compromising target coverage. Unfortunately, the high dose
gradients make intensity-modulated proton therapy (IMPT)
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plans sensitive to treatment uncertainties. Important sources
of uncertainties include, among others, setup errors as well as
image-conversion errors (related to the CT image and conver-
sion of the CT Hounsfield units (HUs) to stopping powers).
Additionally, tumor motion is another important source of
uncertainty which is composed of the following two main
elements: (a) changes in the local position of the tumor dur-
ing delivery (intra-fraction motion), with potential issues
related to the interplay effect,”® and (b) changes in the
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average position of the tumor over a respiratory cycle,
referred to as a “baseline shift” (with both intra- and inter-
fraction components).”® In addition to geometrical uncertain-
ties, the aforementioned errors induce an uncertainty on the
estimated proton range, that is, uncertainty on the position of
the Bragg peak, which may cause a deterioration of the actual
delivered dose distribution.””'® Hence, taking uncertainties
into account at the planning stage is critical for successfully
treating patients.

To this end, two main robust planning formalisms have
been developed: (a) safety margins, and (b) robust optimiza-
tion. The safety margin approach aims at covering treatment
errors by geometrically expanding the “clinical target vol-
ume” (CTV) into a “planning target volume” (PTV). A well-
known margin recipe is the one developed by van Herk."
However, studies have demonstrated that the classic CTV-
PTV margin is unable to cover for the range errors in proton
therapy; this is due to the failure of the margin recipe’s
implicitly assumed “static dose cloud approximation™ in pro-
ton dose distributions.”®"® Consequently, beam-specific
PTVs (BSPTVs) were introduced which adequately account
for range uncertainties, under the influence of various treat-
ment errors.”’ Unfortunately, BSPTVs can only be used in
single-field uniform dose optimization, which is considered
inferior to multi-field optimization in proton therapy.”’

Alternatively, robust optimization methods have been
introduced, in which treatment errors are directly incorpo-
rated into the optimization process.”>® In this study, we
focus on a robust optimization method commonly called
“worst-case” robust optimization. Worst-case robust opti-
mization aims at ensuring adequate target coverage by defin-
ing an uncertainty set of treatment error scenarios, defined as
the realizations of specific combinations of treatment errors.
These error scenarios are evaluated at each iteration of the
optimization process with the optimization variables (i.e., the
spot weights) adjusted so that the objective function of the
current worst-case scenario (the one with the highest value)
will be minimized. A popular implementation of worst-case
robust optimization is the so-called “minimax” optimization
of Fredriksson.”* Studies demonstrate that worst-case robust
optimization can outperform PTV based plans in terms of
guaranteeing robustness of the target coverage.”’ >’

Two issues are identified in the typical worst-case robust
optimization workflow. First, the conventional choice of the
uncertainty set limits the ability to handle various types of
errors in a statistically sound way. Second, the increased com-
putational burden of the optimization algorithm, related to the
high number of required error scenarios, hampers the use of
robust optimization in the clinical environment. The availabil-
ity of computationally cheap algorithms is particularly impor-
tant in online adaptive workflows, where robust optimization
is considered unsuitable due to its long computation time.**

More specifically, worst-case robust optimization aims at
achieving robustness, by selecting scenarios which represent
combinations of maximum errors of each considered uncer-
tainty source, within a predefined confidence interval.** For
instance, a moving lung tumor case typically uses
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combinations of +5 mm setup errors in the three direc-
tions,>*313? flat image-conversion errors of +39%"'52%32 and
maximum inhale/exhale breathing phases, giving an uncer-
tainty set of 63 error scenarios (7 setup error scenarios X 3
image-conversion error scenarios x 3 breathing phases).
However, this approach is statistically inconsistent as it does
not account for the joint probabilities of the considered error
sources. Moreover, such an approach overlooks the fact that
intermediate setup errors could potentially result in even lar-
ger range uncertainties.

Additionally, because all error sources are handled in a
mutually independent way,”* an increase in the amount of
considered error sources is not practically realizable as this
will exponentially increase the size of the uncertainty set. For
instance, if baseline shifts or delineation errors are also con-
sidered, then the required number of scenarios scale from 63
to hundreds or even thousands scenarios. Attempts have been
made to mitigate the need for a large uncertainty set, by deriv-
ing empirical formulas which convert robustness parameters
of one type of error source into another.>* However, this solu-
tion is limited as evaluations for a different tumor location
requires re-evaluation of the recipe.

This study aims at establishing a scenario-selection proce-
dure that addresses the above-mentioned issues. The focus
lies in an efficient preselection of a limited number of rele-
vant error scenarios, which are later on fed to a worst-case
robust optimizer. As will be illustrated, the resulting uncer-
tainty set contains scenarios that are statistically consistent,
whilst its reduced size limits the computational burden of the
optimization process.

2. MATERIALS AND METHODS

In this section, first the statistical framework is presented,
followed by a detailed explanation of the proposed methods
and the reference method. Afterwards, we give an overview
of the planning and evaluation software applied for testing
the respective methods. Finally, the section concludes with a
description of the patient data and the quality metrics for the
evaluation and comparison of the treatment plans.

2.A. Methodology
2.A.1. Statistical framework

Uncertainties due to systematic setup errors, image-con-
version errors and respiratory organ motion are considered.
Because the organ motion is represented by a set of equally
spaced phases in time (see Section 2.D.), each phase is
assumed to be equally probable.

The systematic setup errors x; = (xy,ys,2;) along left—
right x, anterior—posterior y and superior—inferior z directions
are assumed to be described by a three-dimensional (3D)-
Gaussian probability distribution (characterized by a standard
deviation X = (Z,, Zys, Z;)).* By following Van Herk’s

*Bold symbols represent vectors.
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margin recipe,”’ a confidence interval for the above-men-
tioned 3D distribution is generated by considering all setup
errors that satisfy the following inequality:

Xs : Vs : s : 2
s s &) < 1
(£) () () = ®

with a3pbeing a coverage parameter that can be adapted to
specify the integration limit in the error scenario space, or in
other words, to fix the width of the confidence interval.
Values for o in one-dimensional (1D), two-dimensional (2D),
and 3D can be found in Van Herk."” For the general N-dimen-
sional case, the following formula can be used to evaluate
oaND numerically:34

oyp = +/inv-y2(C,N), (2)

with C the confidence interval and inv-y> the inverse
cumulative density function of the chi-squared distribu-
tion. Equation (2) was evaluated with Matlab (Math-
Works, Natick, United States) in order to obtain the
different values for oyp. For a perfect 3D dose conforma-
tion of the target, the clinically recommended confidence
interval is 90%, which corresponds to a value for ozp
of 2.5. A 3D-equiprobability surface can subsequently be
constructed by regarding the maximum setup errors, lim-
ited by the inequality in Eq. (1):

X 2 y 2 z 2
s s s 2
'S ) = . 3
(ZXS) * (2)’5> * (ZZS) OCSD ( )

In proton therapy planning, image-conversion errors
must also be handled. In contrast to setup errors, image-
conversion errors r only vary in one dimension and can
thus be described by a 1D-Gaussian probability distribu-
tion (characterized by sigma X,).” Hence, if both setup
errors and image-conversion errors are considered, the
probability of a treatment error scenario (defined as a
specific combination of a setup error and image-conver-
sion error) has to be treated with increased dimensionality
as compared to the confidence interval that defines the
hypersurface of Eq. (3). As a result, the probability distri-
bution that describes the treatment error realizations is
four-dimensional and the scenarios that lie within the pre-
defined confidence interval (in scenario space), are repre-
sented by:

X 2 y 2 z 2 r 2
@)@ o
XS Vs zs r

In this case, the 90% confidence interval is represented by a
value for ayp of 2.8 [using Eq. (2)]. The inequality of Eq. (4)
defines the following four-dimensional (4D)-equiprobability
hypersurface:

X 2 y 2 z 2 r 2
B @) o
xS Vs zs r

Hence, we can sample equiprobable scenarios (xy, ys, Zs, ),
that is, specific combinations of setup errors and image-
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FiG. 1. Two dimensional (2D)-Gaussian probability distribution, defined by
[|Z]| and ||%,||, representing the likelihood of sampled scenarios (the lighter,
the more unlikely). The 90% equiprobability line (green) defines all possible
scenarios that are positioned exactly on the edge of the 90% confidence inter-
val. The scenarios within the conventional uncertainty set (combinations of
+5 mm setup errors and flat +2.6% image-conversion errors) are depicted
by the red circles (6 scenarios in 2D). The maximum displacement scenarios
(as explained in Section 2.A.2.) are depicted by the blue circles (4 scenarios
in 2D). [Color figure can be viewed at wileyonlinelibrary.com]

conversion errors, which are positioned exactly on the edge
of the predefined confidence interval. Two conditions are
defined which must be satisfied by the considered scenarios:

X 2 y 2 z 2

S s ) <

() +(2) =) == ©
x 2 y 2 z 2 r 2

SEORCRO A
XS s zs r

The first condition [Eq. (6)] restricts the magnitude of the
setup errors and is identical to the condition that yields the
margin recipe [Eq. (3)]. Hence, the spatial displacements of
the CTV will be limited by the maximum considered setup
error. The second condition [Eq. (7)] guarantees that only
scenarios of equal probability, defined by the coverage
parameter oyp, are selected. The 90% equiprobability line,
from which the scenarios are sampled, is shown in Fig. 1.
As illustrated in the figure, the constraint of the maximum
setup error, imposed by the inequality of Eq. (6), reduces
the considered confidence interval in scenario space. A
maximum setup error of 5 mm is chosen in order to limit
the maximum setup error to a value commonly found in
other worst-case robust optimization studies, see for exam-
ple.?#?*3132 Nevertheless, we must rely on an unbiased
robustness evaluation to check if the treatment plan satisfies
the robustness criteria as defined by the confidence interval
in dosimetric space.

Values for the setup error standard deviation X, =
Yy = X are set equal to 2 mm in order to provide a
uniform maximum setup error of 5 mm (= Xy =


www.wileyonlinelibrary.com
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Vsmax = Zsmax)s at @ 90% confidence interval. Following
the review of Paganetti,” the magnitude of the image-conver-
sion error standard deviation X, is set equal to 1.6% (this
value was reported for calculations with a Monte Carlo dose
engine).

2.A.2. Scenario-selection procedures

Using the formulation described in Section 2.A.1., two dif-
ferent procedures of selecting relevant error scenarios are
investigated: (a) maximum displacements method (MD) and
(b) maximum displacements and residual range method
(MDR). Both procedures are described in detail below. After-
wards, the performance of the two proposed scenario-selec-
tion methods (MD and MDR) will be compared to the
conventional robust optimization (without preselection of
scenarios), where the treatment plans are constructed using
an uncertainty set of 63 scenarios, that is, combinations of
+5 mm setup errors in the three directions, +2.6% image-
conversion error (see Section 2.B.) and maximum inhale/ex-
hale breathing phases (as it would be performed convention-
ally in commercial TPSs).

Maximum displacements: In the MD method, twelve sce-
narios are selected that aim to cover the extreme positions
reached by the tumor. If respiratory motion is considered,
these scenarios are determined as follows: first, the target cen-
ters of mass are computed for all breathing phases. Then, six
phases are selected where the center of mass reaches its maxi-
mum value, along along the three directions (4+x, £y and
+7z). For each of the resulting six phases, a maximum setup
error (=5 mm), in the direction of largest spatial displace-
ment is applied, by rigidly shifting the chosen CT images.
For example, in the breathing phase with the largest displace-
ment in the +x direction, a setup error of +x; =,(+5 mm,0,0)
is applied. Analogously for the other directions. In the case
of nonmoving tumors, the six maximum displacement scenar-
ios are simply represented by the maximum setup error along
+x, +y and £z directions. To each selected scenario, an
image-conversion error is applied with a magnitude equal to
the maximum value +r allowed by the 4D-equiprobability
hypersurface [Eq. (7)]. That is, each of the six scenarios are
scaled with both positive and negative image-conversion
errors +r (equal to £2%), providing twelve scenarios in
total.

The application of image-conversion errors on the CT
image is performed by uniformly scaling the mass densities
obtained from the CT image (using the same CT calibration
curve as in the dose calculation). The twelve scaled maxi-
mum spatial displacement scenarios can be interpreted by the
intersection of the 90% equiprobability line with the box,
which is constructed by the scenarios of the conventional

fusing Eq. (6), Z, = Xgmax/%3p, With  Xg e = 5 mm  and
oazp = 2.5 at a 90% confidence interval (analogous for the other
directions s mqx and Zg max)-
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uncertainty set, at the 5 mm setup error. The uncertainty set
of the MD method, contains thirteen scenarios [twelve
selected scenarios in addition to the nominal scenario (=
planning CT)]. Each selected error scenario is simulated by
modifying the original CT with the chosen error values, gen-
erating virtual CTs that will later be imported in the treatment
planning system (TPS).

Maximum displacements and residual range: In the
MDR method, in addition to the MD scenarios, additional
scenarios are considered which have estimated range errors
larger than the ones induced by the twelve MD scenarios
already present in the uncertainty set. In other words, we want
to include scenarios that will cover any residual range errors,
that is, range errors that are not yet covered by previously
included scenarios. These scenarios are selected as follows:
first, proton ranges can be estimated by converting the con-
sidered breathing CT images into maps of water-equivalent
path lengths (WEPLs).* Because WEPLSs are beam-specific,
each breathing phase has a separate WEPL map for each
respective beam angle. Scenarios are then simulated by sam-
pling treatment errors as follows:

1. Random selection of a breathing phase and beam
angle, as well as,

2. Random sampling of a combination of setup error
(x5,y5,2s) and image-conversion error r that satisfies
both Egs. (6) and (7).

The sampling of breathing phases can be omitted if
breathing motion is not considered. For each scenario, the
sampled setup error is applied by rigidly translating the pre-
computed WEPL map image. For the image-conversion error,
the WEPL values are scaled with the respective error value r.
By repeating this process, a distribution of WEPL values for
all target voxels is obtained across all scenarios. Finally, a
voxel-based scenario selection is performed by identifying
which scenario s has induced the largest residual range for
most of the target voxels (see Fig. 2). To compute this, the
following four matrices are stored. First, the maximum and
minimum WEPLSs, for each target voxel, across the MD sce-
narios, are stored in Wi and Wik respectively. Second, the
maximum and minimum WEPLs, for each target voxel,
across all randomly sampled scenarios, are stored in W7

rand
and Wmin,respectively. Afterwards, we can identify worst-
case overshoot scenarios by computing for each randomly
sampled scenario, the number of voxels N, that the sce-
nario has in common with W% and that induce WEPL val-
ues larger than Wy, Analogously, the worst-case
undershoot scenario are classified according to the number of

voxels N, that the sampled scenarios have in common with

*The WEPL in a voxel is obtained by integrating the relative stop-
ping power ratio (RLSP) of the voxels along the beam path:
WEPL = f(f RLSP(HU,l)dI for each beam angle. WEPL maps are
computed using the open-source platform OpenReggui®> which uses
a fast ray-tracing algorithm™® for its WEPL calculations.
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Fic. 2. [Illustration of the voxel based scenario selection. Scenarios are
ordered according to the maximum range error they induced in most target
voxels. The left panel shows the worst-case undershoot scenarios: the sce-
nario with ID s induces a worst-case overshoot range error for N,,;, number
of voxels in the target volume [Eq. (9)]. Analogously, the right panel shows
worst-case overshoot scenarios following Eq. (8). [Color figure can be
viewed at wileyonlinelibrary.com]

min min .
W, and are smaller than Wy :

Nmax = #{n‘WAn/;an(l) < Ws(l) = :Z(rlzfl(i)}iGCTVﬂ (8)
Noin = #{n|Wygp (§) > Wi (i) = Wi (i) }icervs 9

with n the voxels in Wy that satisfy the condition, W the
WEPL map of scenario s and i the vector that represents the
voxels in the CTV. In other words, worst-case scenarios are
selected in which the combination of setup errors, image-con-
version errors and breathing phases have estimated proton
ranges that deviate most from the values in the previously
included scaled maximum displacement scenarios.

In order to limit the size of the uncertainty set, we define a
threshold (Fig. 2) that discards scenarios which induce maxi-
mum residual ranges in <2% of target voxels (=2%N ¢y with
Nery the total number of CTV voxels). Using Egs. (8) and
(9), the scenarios that do not meet N,,uy < 2%Ncry and N,y

< 2%Ncry are discarded for the overshoot and undershoot
scenarios, respectively. By doing so, we avoid the selection
of scenarios that cover only few range errors (see Section 4.).
As a result, the MDR method’s uncertainty set contains the
twelve maximum displacement scenarios, with additional
error scenarios that aim at covering any residual range errors.
Analogous to the MD method, virtual CTs are generated that
represent the selected error scenarios.

It must be noted that, in the scenario-selection procedure,
the calculation of the WEPL maps consumes the largest share
of the total precomputation time. Moving lung tumor cases,
together with three beam plans, require 69 WEPL maps (11
breathing phases + 12 MD scenarios, each with three beam
angles). For a single scenario, the calculation of a WEPL
map takes approximately 6 s for smaller target volumes
(~41 cm?) and 15 s for a deep-seated larger target volume
(~ 152 cm?), amounting to an upper limit of 17 min. More-
over, once the WEPL maps are stored, errors scenarios are
generated quasi instantaneously. The advantage of this
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approach is that it does not involve any dose evaluations and,
hence, many scenarios ( > 10*) can be evaluated in a very
short time period. Sampling and evaluation of 10* scenarios
typically takes less than 2 min. Together with the WEPL map
calculations and scenario creation (max. 4 min), this gives a
maximum precomputation time of 23 min.

2.B. Treatment planning system

Treatment plan optimization is performed with the 4D-ro-
bust optimization algorithm of the TPS RayStation research
version v7.99 (RaySearch Laboratories, Stockholm, Sweden).
The time-averaged mid-position CT is used as the nominal
planning CT which was created with the open-source plat-
form OpenReggui.>>*” OpenReggui calculates the mid-posi-
tion CT by computing the mean position over the respiratory
cycle after deformable registration between all phases of the
4D-CT image set. The Monte Carlo dose engine of the TPS
is used for the dose calculations with 10* ions per spot and a
3 x 3 x 3 mm? dose calculation grid.

For the conventional method, the robust optimization tool
of the TPS is used, selecting robustness parameters of 5 mm
setup errors in all directions, 2.6% image-conversion errors
and maximum inhale and maximum exhale phases (total of
63 scenarios). A value of 2.6% is chosen because it represents
the value at which 90% of image-conversion errors are cov-
ered, assuming they are described by a 1D Gaussian distribu-
tion, that is, 2.6% = o pX, with oyp = 1.64 [Eq. (2)] and
Y, = 1.6%. As mentioned in Section 2.A., treatment plans
of the MD and MDR methods are obtained by importing the
DICOM CT data of the virtual CTs in the TPS, which repre-
sent the selected set of error scenarios. A 4D-robust plan opti-
mization is then performed over the imported CT images.

2.C. Evaluation software

Treatment plans are evaluated with the independent Monte
Carlo dose engine MCsquare, available open-source.i’®
MCsquare has been commissioned and validated for clinical
practice. The same beam model (optimised from the commis-
sioning measurements) was used for the Monte Carlo and
TPS dose calculations, thus avoiding possible errors due to
algorithm-machine calibration. The dose level difference
(evaluated at Dgs) between a MCsquare and the TPS is typi-
cally <0.1 Gy, for final dose calculation at a 1% statistical
uncertainty.

The effects of systematic setup errors, image-conversion
errors and breathing motion on the planned dose distribution
are evaluated by performing comprehensive robustness evalu-
ations with Mquuare.i39 In each robustness test, a set of 250
error scenarios were sampled with the number of protons
selected in order to reach a statistical uncertainty of 1%.

MCsquare follows a Monte Carlo approach for its robust-
ness evaluation, by randomly sampling error scenarios
according to the error distributions mentioned below.* For
all error scenarios, the dose distributions are recomputed, dis-
carding the 10% worst scenarios (based on the target Dos).


www.wileyonlinelibrary.com
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Because scenarios are sampled from the entire dosimetric
error space, the selection of evaluation scenarios is not lim-
ited by the 90% equiprobability hypervolume in the scenario
space, utilized for the selection of the optimization scenarios
(see Section 2.A.1.). Hence, the robustness tests can be con-
sidered as an unbiased representation of the plan’s sensitivity
to the treatment errors.

Probability distributions for setup errors and image-con-
version errors are identical to the distributions used in the
planning process (standard deviations of 2 mm and 1.6% for
setup and image-conversion errors, respectively). MCsquare
models the setup errors and image-conversion errors by
rigidly translating the CT image (= shifting the beam isocen-
ter) for the first one, whilst scaling the CT densities for the
latter. Breathing motion is simulated by recomputing the dose
distribution for each breathing phase and accumulating the
dose on the mid-position CT.

2.D. Patient cases

Lung tumor cases were chosen with the purpose of testing
the proposed methods, as they typically present difficulties in
terms of ensuring target robustness (large density hetero-
geneities and large tumor motion). Treatment plans were cal-
culated for five lung tumor patients, all diagnosed with single
tumor volume, delineated on the CT data. The set of patients
presented a wide range of varying tumor size and motion
amplitude, therefore representative of the entire patient popu-
lation. Patient data were characterized by a 4D-CT image set,
binned in ten breathing phases, equally spaced in time. The
main features of the patient cohort are summarized in Table I.
All treatment plans were designed using a configuration of
three co-planar fields, delivered via IMPT with the pencil
beam scanning (PBS) technique (see Table I).

Treatment plans were constructed with identical target and
OARs objectives in the optimization. Patients had a dose pre-
scription of 60 Gy to the CTV. Target coverage was consid-
ered acceptable if 95% of the CTV received more that 95%
of the prescribed dose (D,esc), whilst no more than 5% of the
CTV received over 105% of D, even for the worst-case
scenario. However, in order to test the proposed methods, we

TasLE I. Patient characteristics including tumor size, tumor motion ampli-
tude, tumor position, and beam configuration.

Motion amplitude

CTV

size LR AP SI Tumor Gantry
Patient (cm?) (mm) (mm) (mm) position (°) angles
Pl 152.6 4.2 2.1 3.1 RML 0, 270, 310
P2 107.7 3.1 29 3.7 LLL 90,135, 180
P3 41.3 1.4 2.9 0.8 RUL 180, 225, 270
P4 70.3 0.8 1.2 0.5 LUL 90, 135, 180
P5 109.6 2.2 1.8 6.6 RUL 180, 225, 270

Tumor motion amplitude (in left-right (LR), anterior—posterior (AP) and superior
—inferior (SI) directions). Tumor positions (right-middle lobe (RML), left-lower
lobe (LLL), right-upper lobe (RUL), left-upper lobe (LUL)).
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focus on target coverage during the optimization, by aiming
to reach CTV Dgg > 95%D, s, in the nominal case.

3. RESULTS

By comparing target coverage and OAR dose, the methods
are assessed for their quality and robustness and their ability
to spare the normal tissues. The coverage metrics for the rele-
vant regions-of-interest (ROIs), are derived from the DVHs
of the plan’s robustness evaluation. The results of the nominal
plans were normalized by applying a correction factor in such
a way that 50% of the target volume received the prescribed
dose. The evaluation dose distributions, for each patient, were
scaled with its respective correction factor. The lung,
bronchus, and heart received significant dose levels and are
therefore the OARS reported in the figures and tables.

Figure 3 illustrates the result of the robustness test by dis-
playing the DVH bands of the CTV, lung, bronchus and heart
along with the nominal DVHs, for a single patient. The
results for the other patients are presented in Tables IT and III.
The results are concentrated in a summary table (Table IV),
displaying for each metric the difference between the value
obtained by the conventional method with the MD method,
averaged across all patients and analogously, the difference
between the conventional method and the MDR method. For
each evaluation metric, the results are reported in, respec-
tively, the average, worst-case and nominal scenarios.

In terms of target coverage, results show treatment plans
obtained from all methods passed the target coverage accept-
ability limit of worst-case Dgs > 95%D)e5c. Only the MDR
and conventional methods exceeded a target coverage of Dgg
> 95%Dy s, in the worst-case scenario, for all patients. Com-
paring the MDR method with the conventional method shows
that a similar target coverage is obtained (average reduction
of only 0.1 Gy Dy for the worst-case scenario) while improv-
ing slightly the normal-tissue sparing (sparing of the lung, on

Conventional

Volume (%)
Volume (%)

0 20 40 60
Dose (Gy)

MDR

Dose (Gy)

—CTV

Lung

Heart

Volume (%)

Bronchus

Dose (Gy)

Fic. 3. DVH bands for the clinical target volume (CTV), lung and bronchus
for plans obtained using the conventional, maximum displacements and max-
imum displacements and residual range methods, for a single patient (Patient
2). [Color figure can be viewed at wileyonlinelibrary.com]
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TasLE II. Target DVH metrics for plans of each patient (P), obtained using the conventional (Ref), maximum displacements (MD) and maximum displacements
and residual range (MDR) methods.

CTV
Dy (Gy) Dys (Gy) Ds (Gy)

Ref MD MDR Ref MD MDR Ref MD MDR

P1 Avg. 58.8 57.4 58.4 59.2 58.9 59.1 60.8 60.7 60.8
Worst 57.6 54.7 57.0 59.0 57.9 58.8 60.9 60.9 61.0

Nom. 58.9 58.1 58.8 59.3 59.1 59.2 60.8 60.7 60.8

P2 Avg. 59.0 58.5 58.9 59.3 59.2 59.3 60.7 60.7 60.7
‘Worst 58.4 56.6 58.2 59.2 58.6 59.2 60.8 60.8 60.8

Nom. 59.1 59.0 59.1 59.3 59.3 59.4 60.7 60.7 60.6

P3 Avg. 58.5 58.1 58.5 59.0 58.8 59.0 60.9 60.8 60.8
Worst 57.6 56.6 57.5 58.8 58.4 58.8 61.0 61.0 60.9

Nom. 58.6 58.5 58.7 59.1 59.0 59.1 60.8 60.8 60.7

P4 Avg. 58.8 58.7 58.9 59.2 59.1 59.2 60.7 60.7 60.7
Worst 57.5 56.2 58.3 59.1 58.7 59.1 60.8 60.8 60.8

Nom. 59.0 59.0 59.0 59.3 59.3 59.3 60.7 60.8 60.8

P5 Avg. 58.8 58.7 58.7 59.2 59.2 59.2 60.8 60.8 60.7
‘Worst 58.2 572 58.0 59.1 59.0 59.0 60.9 60.8 60.8

Nom. 58.8 58.9 58.9 59.2 59.2 59.3 60.8 60.7 60.7

TaBLE III. Organ-at-risk DVH metrics (lung, bronchus, and heart) for plans of each patient (P), obtained using the conventional (Ref), maximum displace-
ments (MD) and maximum displacements and residual range (MDR) methods.

Lung Bronchus Heart
Vo (%) Dynean (Gy) Dyax (Gy) Vo (%)
Ref MD MDR Ref MD MDR Ref MD MDR Ref MD MDR
Pl Avg. 36.3 30.8 32.1 16.8 14.7 15.3 62.8 62.5 63.3 2.8 1.9 2.6
Worst 39.1 33.6 34.8 18.1 15.8 16.3 63.4 63.1 63.9 3.6 2.7 34
Nom. 36.7 31.1 32.6 17.0 14.8 15.6 62.6 62.7 63.5 29 2.0 2.7
P2 Avg. 32.1 29.2 31.3 16.4 14.5 15.8 61.2 61.2 61.2 43 3.7 3.8
Worst 339 30.9 32.7 17.2 15.4 16.5 61.5 61.6 61.6 5.6 49 5
Nom. 323 29.4 31.4 16.5 14.6 15.9 61.7 61.5 61.0 4.5 39 39
P3 Avg. 14.3 13.5 14.0 7.8 7.1 7.4 61.1 61.0 60.9 0.0 0.0 0.0
Worst 15.1 14.4 14.9 8.2 7.7 79 61.5 61.5 61.4 0.0 0.0 0.0
Nom. 14.4 13.6 14.1 7.8 7.2 7.5 61.3 60.9 60.9 0.0 0.0 0.0
P4 Avg. 21.5 20.3 21.0 11.2 10.5 10.9 9.6 8.5 9.4 0.0 0.0 0.0
Worst 234 21.8 22.8 12.0 11.3 11.8 17.4 14.6 16.3 0.0 0.0 0.0
Nom. 21.7 20.6 21.2 11.2 10.7 11.0 9.7 8.8 9.7 0.0 0.0 0.0
P5 Avg. 25.4 22.5 22.6 12.7 11.2 11.3 63.3 62.9 62.6 1.3 1.0 1.1
Worst 26.3 231 232 132 11.5 11.7 64.3 63.7 63.4 1.7 1.4 1.5
Nom. 25.6 22.7 22.8 12.8 11.3 11.4 63.0 62.7 63.2 1.4 1.1 1.2
average, 1.9% and 0.9 Gy for Vyy and D,,..,, respectively closest to the conventional method in terms of homogene-
and, on average, reducing maximum bronchus dose 0.3 Gy, ity (an average difference of only 0.2 Gy between both meth-
evaluated for the worst-case scenario). In order to evaluate ods).
the plan’s sensitivity to the treatment errors, the dose homo- Table V reports the plan computation times, together with
geneity of the target volume is calculated by subtracting the the simulated number of scenarios. Results show that the MD
worst-case CTV Dogg from the worst-case CTV D, (see method achieved an average time gain of 78% with respect to

Table V). In general, the MDR method produced plans the conventional method. By using the MDR method, the
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TasLE IV. Difference of the average (across all patients) target and organ-at-risk DVH metrics between plans of the MD with the conventional method (MD-Ref)
and difference in the average metrics between the MDR with the conventional method (MDR-Ref).

CTV
ADy (Gy) ADys (Gy) ADs (Gy)
MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref
Avg. —0.5 —0.1 —0.1 0.0 0.0 0.0
Worst —1.6 —0.1 —0.5 0.0 0.0 0.0
Nom. —0.2 0.0 —0.1 0.0 0.0 0.0
Lung Bronchus Heart
AVZO (%) ADmean (G)’) ADmax (G)’) A\/40 (%)
MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref
Avg. —2.2 —-1.7 —1.4 —-0.9 —-0.4 —0.1 —0.4 —0.2
Worst —2.8 -19 —1.4 -0.9 —0.7 -0.3 —-0.4 —-0.2
Nom. 2.7 —-1.7 -1.3 —0.8 —0.3 0.0 —-0.4 —0.2
TaBLE V. Plan computation time, number of scenarios and dose homogeneity for plans of each patient (P), obtained using the conventional (Ref), MD, and MDR

methods. The average time differences At and average dose homogeneity, across all patients, are reported at the bottom.

Computation time (min) Scenarios Dose Homogeneity (Gy)
Ref MD MDR Ref MD MDR Ref MD MDR
P1 229 2+41 =43 22 +73 =95 63 13 21 2.8 5.1 35
P2 156 2+32=34 21 +44 =65 63 13 15 2.1 3.6 2.7
P3 58 2+12=14 10 + 21 = 31 63 13 20 3.0 3.8 3.0
P4 94 2+ 19=21 13 +32=45 63 13 22 2.5 3.7 2.3
P5 141 2+28 =30 21 +33 =54 63 13 15 2.8 2.8 2.6
Avg. At = —78% At = —=57% 63 13 19 2.6 3.8 2.8

For the reference method, the plan computation time comprises only of the plan calculation time (= mainly dose—influence matrix calculations and plan optimization). For
the MD and MDR method, the total computation time is reported as the precomputation time + the plan calculation time. The precomputation time consists of the scenario
creation (both MD and MDR methods), WEPL map calculation, and scenario sampling (only MDR method).

number of optimization scenarios is reduced by approxi-
mately a factor of three on average, which translated in an
average time gain of 57%.

4. DISCUSSION

The rationale for introducing a scenario-selection proce-
dure was twofold:

First, the scenario-selection procedure guarantees statisti-
cal consistency across scenarios present in the uncertainty
set. As Fig. 1 illustrates, the conventional uncertainty set (re-
sulting from the use of a flat +2.6% image-conversion error)
contains scenarios that are positioned outside the equiproba-
bility line. The proposed methods (MD and MDR) do not
emphasize these unlikely scenarios and only select equiproba-
ble scenarios that lie within the predefined confidence inter-
val, which is set at 90%.

Second, the scenario-selection procedure allows for a
reduction in the size of the uncertainty set. Reducing the
uncertainty set is important as, for a given patient, the number
of input optimization scenarios is directly proportional to the
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plan computation time (see Fig. 4). The main reason for this
is that the amount of beamlet dose—influence matrices must
be computed and stored for each optimization scenario.
Moreover, fewer dose evaluations, at each iteration, improves
the speed of the optimization process and reduces the mem-
ory consumption. Deciding the optimal robust planning
method will depend on the intended goals of the planning
workflow: (A) fast and automatic planning, or (B) robust tar-
get coverage.

(A) If the focus lies on limiting the computation time, then
the time-gain can be maximized by applying the MD method,
provided that a target robustness of Dos > 95%Dpes is
deemed acceptable. An additional benefit of this method is
its potential to be fully automatic and the fact that the number
of precomputations are limited. In its current implementation,
selected error scenarios must be imported manually. How-
ever, this can easily be implemented in most commercial
TPSs which provide standard scripting tools.

(B) If the focus lies on target coverage, then the robustness
of the treatment plan can be increased by utilizing the MDR
method. Results show that target robustness is significantly
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FiG. 4. Effect of a certain threshold value. Left: influence on the number of
selected scenarios in the maximum displacements and residual range method
for patients 1 to 5. Right: an example of the influence on the resulting treat-
ment plan (worst-case Dgg and plan optimization time t,,). [Color figure can
be viewed at wileyonlinelibrary.com]

improved (Dgg > 95%D,,.,.) while still achieving a time gain
of 57%, on average. These results indicate that by considering
an additional number of estimated worst-case error scenarios,
robustness criteria can be satisfied whilst avoiding overly
robust solutions. More specifically, the MDR method is able
to select scenarios which take into account the effects of
intermediate setup errors and breathing phases which could
induce substantial range uncertainties. The two main disad-
vantages of the MDR method are: (a) the necessity of a pre-
computation process outside of the TPS (mainly WEPL map
calculations), and (b) a prior analysis in order to fix the value
of the coverage threshold (see Section 2.A.2.). Retrospective
analysis found that (see Fig. 4), based on the population of
patients in this study, discarding scenarios that do not induce
residual ranges for more than 2% of target voxels
(Npax < 2%Ncry and Ny < 2%Nery, see Egs. (8) and (9)
resulted in an optimal balance between the number of
selected scenarios and the amount of covered range errors.
As Fig. 4 shows, a more conservative approach may be
employed by reducing this threshold even further, with a cor-
responding increase in the number of selected scenarios.
However, because the WEPL map evaluations treat each
beam angle separately, the effect of the treatment errors in the
WEPL space can be considered more substantial than its cor-
responding effect in the real dosimetric space. Hence, this
threshold is deemed satisfactory in order to achieve the neces-
sary robustness of the treatment plan.

This study focused on moving lung tumor cases where the
aim was to achieve robustness against systematic setup errors,
image-conversion errors and breathing motion. Random
errors should also be considered as they present an important
source of range uncertainties. However, random errors require
the simulation of fractionation effects for which a preselec-
tion of optimization scenarios does not suffice. Solutions
dealing with random errors simulate their effect during the
plan calculation. However, because access to the source code
of the TPS is restricted, random errors have been omitted
from the evaluation. In the literature, the following solutions
exist which could potentially be used in conjunction with the
scenario-selection methods: (a) random errors can be simu-
lated in the Monte Carlo calculations of the beamlet dose-in-
fluence matrices, under the assumption of an infinite number
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of fractions,i*' and (b) the method by Fredrikssoni*? can be
employed which modifies the optimization objective function
in order to include random errors, for a finite number of frac-
tions.

The scenario-selection procedure provides a method for
handling other yet unconsidered systematic error sources,
within a statistically consistent framework. However, these
potential error sources, such as baseline shifts or anatomical
changes, should be able to be realistically modeled by creat-
ing virtual CTs (analogous to setup and range errors). Fur-
thermore, the method does not change the fundamental
worst-case robust optimization algorithm. It can therefore be
integrated in any robust planning workflow where a TPS is
used that is able to perform 4D-robust optimization.

5. CONCLUSIONS

This study introduces a scenario-selection procedure
which enables the reduction of the uncertainty set used in
worst-case robust optimization. Relevant optimization scenar-
ios are selected according to the following: (a) maximum spa-
tial displacements of the tumor, and (b) largest estimated
range uncertainties. Based on the scenario-selection proce-
dure, two preselection methods are proposed and tested for
moving lung tumor cases as follows:

First, the maximum spatial displacements (MD) method
only considers scenarios corresponding to the maximum spa-
tial displacements of the tumor during breathing, with CT-
HU values scaled according to the image-conversion error
defined by a predefined 4D-equiprobability hypersurface.
Because its uncertainty set contains thirteen scenarios (twelve
selected scenarios together with the nominal scenario), a
reduction of 78% plan computation time is achieved. More-
over, the MD method has the potential to be fully automatic
which makes it a promising candidate for fast automatic plan-
ning workflows. Second, the MDR method is proposed,
which adds additional scenarios to the uncertainty set in order
to cover for any residual range errors. Results show that this
method produces plans with target robustness of CTV Dgg >
95%Dpyesc, While achieving a 57% reduction in plan compu-
tation time with respect to the sixty-three scenario conven-
tional method. Future efforts will concentrate on extending
the scenario-selection procedure by including additional
uncertainty sources. This will provide useful insights into the
full robust picture and is the topic of future research.
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